WO2023040382A1 - 一种具有回转式吸附塔的烟气净化系统 - Google Patents

一种具有回转式吸附塔的烟气净化系统 Download PDF

Info

Publication number
WO2023040382A1
WO2023040382A1 PCT/CN2022/099051 CN2022099051W WO2023040382A1 WO 2023040382 A1 WO2023040382 A1 WO 2023040382A1 CN 2022099051 W CN2022099051 W CN 2022099051W WO 2023040382 A1 WO2023040382 A1 WO 2023040382A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
adsorption tower
rotary adsorption
zone
adsorbent
Prior art date
Application number
PCT/CN2022/099051
Other languages
English (en)
French (fr)
Inventor
郜时旺
汪世清
许世森
王兴俊
肖平
刘练波
牛红伟
黄斌
彭虎
Original Assignee
中国华能集团有限公司
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团有限公司, 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团有限公司
Publication of WO2023040382A1 publication Critical patent/WO2023040382A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/10Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents

Definitions

  • the present application relates to the technical field of flue gas treatment, in particular to a flue gas purification system with a rotary adsorption tower.
  • the flue gas purification system with a rotary adsorption tower includes a flue gas cooling device, the flue gas cooling device has a smoke inlet and a smoke outlet, and the flue gas cooling device is used to convert the gas from the The flue gas entering the smoke inlet is cooled to room temperature and below;
  • the rotary adsorption tower has a cavity, and the rotary adsorption tower is provided with a feed port and a discharge port communicated with the cavity , flue gas inlet and flue gas outlet, the flue gas outlet of the flue gas cooling device communicates with the flue gas outlet, the cavity includes a filler section filled with adsorbent, and enters the rotary from the flue gas inlet
  • the flue gas of the type adsorption tower flows through the packing section and contacts with the adsorbent for desulfurization and denitrification.
  • the flue gas purification system with a rotary adsorption tower according to the embodiment of the present application has the advantages of small footprint, less transmission equipment, simple working principle and easy operation.
  • the packing section is divided into an adsorption zone and a regeneration zone in the circumferential direction of the rotary adsorption tower, and the adsorbent in the packing section can rotate along the circumferential direction so as to enter and exit the adsorption zone sequentially and the regeneration zone, the adsorbent in the adsorption zone is used to adsorb flue gas, and the adsorbent entering the regeneration zone is heated for desorption and regeneration.
  • the packing section further includes a first buffer zone and a second buffer zone, and the adsorption zone, the first buffer zone, the regeneration zone, and the second buffer zone are arranged in the circumferential direction Arranged in sequence, the first buffer zone and the second buffer zone are used to isolate the adsorption zone and the regeneration zone.
  • the rotary adsorption tower includes a heating pipeline, the heating pipeline is arranged in the regeneration zone, and the heating pipeline is used to heat the adsorbent in the regeneration zone to make it desorb Additional regeneration.
  • the temperature of the regeneration zone is 300-350°C.
  • the rotary adsorption tower includes a rotation shaft and a turntable, the turntable is located below the packing section for supporting the adsorbent, the turn shaft is connected to the turntable, and the turn shaft rotates to drive the The turntable rotates, and the rotation of the turntable can drive the adsorbent to rotate, and the central axis of the rotating shaft coincides with the central axis of the packing section.
  • the rotational speed of the rotating shaft is 60°-120°/h.
  • the flue gas inlet and the flue gas outlet are arranged on the side wall of the rotary adsorption tower, and the flue gas inlet is located below the flue gas outlet.
  • the adsorbent is one or both of activated carbon, activated coke and molecular sieves.
  • Fig. 1 is a schematic diagram of a flue gas purification system according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a flue gas purification system according to another embodiment of the present application.
  • Fig. 3 is a schematic front view of a rotary adsorption tower according to an embodiment of the present application.
  • Fig. 4 is a schematic top view of a rotary adsorption tower according to an embodiment of the present application.
  • Rotary adsorption tower 1 feed port 11; discharge port 12; flue gas inlet 13; flue gas outlet 14; rotating shaft 15; turntable 16; heating pipeline 25;
  • Packing section 2 adsorption zone 21; regeneration zone 22; first buffer zone 23; second buffer zone 24;
  • Smoke cooling device 3 smoke inlet 31; smoke outlet 32.
  • the flue gas purification system includes a flue gas cooling device 3 and a rotary adsorption tower 1 .
  • the flue gas cooling device 3 has a smoke inlet 31 and a smoke outlet 32, and the flue gas cooling device 3 is used to cool the flue gas entering the rotary adsorption tower 1 from the smoke inlet 31 to room temperature and below;
  • the flue gas flows into the flue gas cooling device 3 from the smoke inlet 31, and the flue gas flows out of the flue gas cooling device 3 from the smoke outlet 32.
  • the flue gas flows through the flue gas cooling device 3
  • the heat in the flue gas is absorbed by the flue gas
  • the gas cooling device 3 absorbs, and the high-temperature flue gas becomes low-temperature flue gas through the action of the flue gas cooling device 3 .
  • the temperature of the flue gas at the smoke outlet 32 is -100° C. to room temperature (for example, the room temperature is 25° C.).
  • the flue gas purification system provided in this embodiment adopts a low-temperature adsorption method when adsorbing flue gas, and utilizes the dissolution characteristics and adsorption characteristics of pollutant components in the flue gas at low temperatures to remove pollutants. It can realize desulfurization and denitrification at the same time.
  • the sulfur dioxide in the flue gas is mainly physically adsorbed, the desorption temperature is low, the loss of the adsorbent is low, and the replenishment of the adsorbent is low, which reduces the operating cost.
  • the flue gas purification system that adsorbs at low temperature has a large adsorption capacity for pollutants, a small amount of adsorbent loading, and a small footprint for equipment such as adsorption towers.
  • the flue gas purification system provided in this example performs adsorption and purification of the flue gas
  • the NO x components that are difficult to remove in the flue gas are oxidized to NO 2 for adsorption and removal through the low-temperature oxidation adsorption mechanism, and there is no need to inject NH3 is catalytically reduced, and the operating cost is low.
  • the flue gas purification system provided in this embodiment can absorb more than 99% of NOx in the flue gas, and the denitrification efficiency is obviously better than the 70-80% denitrification efficiency in the prior art.
  • the rotary adsorption tower 1 has a cavity, and the rotary adsorption tower 1 is provided with a feeding port 11, a material discharge port, a flue gas inlet 13 and a flue gas outlet 14 communicating with the cavity, and the flue gas cooling device 3 has a flue gas outlet 32 Connected with the flue gas outlet 14, the cavity includes a packing section 2 filled with adsorbent, and the flue gas entering the rotary adsorption tower 1 from the flue gas inlet 13 flows through the packing section 2 to contact with the adsorbent for desulfurization and denitrification.
  • the rotary adsorption tower 1 is cylindrical with a conical funnel at the lower end, the top of the rotary adsorption tower 1 is provided with a feeding port 11 and a discharge port, and the left end of the rotary adsorption tower 1 is provided with a flue gas inlet 13 And flue gas outlet 14.
  • the feeding port 11 is arranged on the left side of the top of the rotary adsorption tower 1
  • the discharge port is arranged on the right side of the top of the rotary adsorption tower 1 .
  • the flue gas inlet 13 is arranged on the lower side of the left end of the rotary adsorption tower 1
  • the flue gas outlet 14 is arranged on the upper side of the left end of the rotary adsorption tower 1 .
  • the packed section 2 is divided into an adsorption zone 21 and a regeneration zone 22 in the circumferential direction of the rotary adsorption tower 1, and the adsorbent in the packed section 2 can rotate along the circumferential direction so as to enter and exit the adsorption zone 21 and the regeneration zone 22 in sequence.
  • the adsorbent in the adsorption zone 21 is used to adsorb the flue gas, and the adsorbent entering the regeneration zone 22 is heated for desorption and regeneration.
  • the adsorption zone 21 is set on the lower side of the feeding port 11, and the regeneration zone 22 is set on the lower side of the material outlet.
  • the proportion of adsorbent particles in the adsorption area 21 that has not yet reacted with the flue gas is reduced, and the flue gas can enter the packing section 2 through the flue gas inlet 13, and more particles that have not yet reacted with the flue gas
  • the adsorbent particles are in contact with each other, which is conducive to improving the efficiency of adsorption.
  • the packing section 2 also includes a first buffer zone 23 and a second buffer zone 24.
  • the adsorption zone 21, the first buffer zone 23, the regeneration zone 22 and the second buffer zone 24 are arranged in sequence in the circumferential direction.
  • a buffer zone 23 and a second buffer zone 24 are used to isolate the adsorption zone 21 and the regeneration zone 22 .
  • the adsorption zone 21, the first buffer zone 23, the regeneration zone 22 and the second buffer zone 24 are arranged along a counterclockwise circle, the first buffer zone 23 and the second buffer zone A zone 24 is located between the adsorption zone 21 and the regeneration zone 22, with a first buffer zone 23 on the front side of the cavity and a second buffer zone 24 on the rear side of the cavity.
  • the low-temperature flue gas enters the adsorption area 21 through the flue gas inlet 13, it reacts with the adsorbent particles in the adsorption area 21.
  • the adsorbent particles rotate in the cavity along the direction shown in FIG.
  • the temperature of the adsorbent particles decreases.
  • the low-temperature adsorbent particles enter the regeneration zone 22 through the first buffer for heating, desorption and regeneration, and the high-temperature adsorbent particles rotate along the direction shown in Figure 4, and enter the adsorption zone 21 through the second buffer zone 24 for adsorption.
  • the first buffer zone 23 and the second buffer zone 24 are used to isolate the temperature between the adsorption zone 21 and the regeneration zone 22 , which is equivalent to an insulation layer between the adsorption zone 21 and the regeneration zone 22 .
  • the rotary adsorption tower 1 includes a heating pipeline 25 provided in the regeneration zone 22, and the heating pipeline 25 is used to heat the adsorbent in the regeneration zone 22 to desorb and regenerate it.
  • the heating pipeline 25 is a hollow pipeline, and high-temperature steam can be introduced into the heating pipeline 25 to heat the adsorbent in the regeneration zone 22, so that the adsorbent particles after absorbing flue gas enter the regeneration zone 22 for heating and desorption. regeneration.
  • one end of the heating pipeline is fed with high-temperature flue gas, and the other end is connected to the smoke inlet 31 . Therefore, the heat of the high-temperature flue gas is used to heat the adsorbent in the regeneration zone 22, and the heat of the high-temperature flue gas can be used before the high-temperature flue gas enters the flue gas cooling device 3, which is beneficial to the recycling of the heat of the flue gas, thereby reducing Power consumption of flue gas cooling device 3.
  • the temperature of the regeneration zone 22 is 300-350°C.
  • the temperature of the regeneration zone 22 is 300-350° C., so that the adsorbent can be regenerated more thoroughly.
  • the rotary adsorption tower 1 includes a rotating shaft and a turntable 16, the turntable 16 is located below the packing section 2 for supporting the adsorbent, the turning shaft is connected with the turntable 16, and the turn shaft rotates to drive the turntable 16 to rotate, and the turntable 16 rotates It can drive the adsorbent to rotate, and the central axis of the rotating shaft coincides with the central axis of the packing section 2 .
  • the upper end of the rotating shaft 15 protrudes outside the cavity, and the lower end of the rotating shaft 15 is connected to the turntable 16.
  • the turntable 16 is a concentric circle, and the width of the gap between the outer side of the turntable 16 and the inner wall of the cavity is smaller than the average diameter of the adsorbent particles. Therefore, when the turntable 16 rotates, only a small amount of adsorbent particles will fall from the gap between the outer side of the turntable 16 and the inner wall of the cavity, which improves the recovery rate of the adsorbent particles and reduces the waste of the adsorbent particles.
  • the rotational speed of the rotating shaft 15 is 60°-120°/h.
  • the rotational speed of the rotating shaft 15 is 120°/h, so that the absorption time and regeneration time of the adsorbent are set to match the adsorption regeneration performance of the adsorbent, and a higher absorption saturation and regeneration resolution can be achieved.
  • the flue gas inlet 13 and the flue gas outlet 14 are arranged on the side wall of the rotary adsorption tower 1 , and the flue gas inlet 13 is located below the flue gas outlet 14 .
  • the rotary adsorption tower 1 is a hollow cylinder
  • the feeding port 11 and the discharge port are located on both sides of the top circle center of the rotary adsorption tower 1
  • the flue gas inlet 13 and the flue gas outlet 14 are on the side of the rotary adsorption tower 1.
  • the influence of the desorbed flue gas at the discharge port on the flue gas at the flue gas outlet 14 is reduced to the greatest extent.
  • the adsorbent is one or both of activated carbon, activated coke and molecular sieves.
  • the adsorbent is granular with a uniform particle size, and the particle size of the adsorbent is 6-8 mesh.
  • this setting increases the contact area between the flue gas and the adsorbent, and on the other hand, the adsorbent has better fluidity .
  • the flue gas purification system provided in this example adopts the low-temperature adsorption method when adsorbing the flue gas, and utilizes the dissolution characteristics and adsorption characteristics of the pollutant components in the flue gas at low temperatures to remove pollutants, and can simultaneously realize desulfurization and denitrification .
  • the sulfur dioxide in the flue gas is mainly physically adsorbed, the desorption temperature is low, the loss of the adsorbent is low, and the replenishment of the adsorbent is low, which reduces the operating cost.
  • the flue gas purification system that adsorbs at low temperature has a large adsorption capacity for pollutants, a small amount of adsorbent loading, and a small footprint for equipment such as adsorption towers.
  • the flue gas purification system provided in this example performs adsorption and purification of the flue gas
  • the NO components that are difficult to remove in the flue gas are oxidized to NO2 by the mechanism of super-low temperature oxidation adsorption. Injecting NH3 for catalytic reduction, low operating cost.
  • the flue gas purification system provided in this embodiment can absorb more than 99% of NOx in the flue gas, and the denitrification efficiency is obviously better than the 70-80% denitrification efficiency in the prior art.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the terms “one embodiment,” “some embodiments,” “example,” “specific examples,” or “some examples” mean specific features, structures, materials, or features described in connection with the embodiment or examples. Features are included in at least one embodiment or example of the present application. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

本申请提供一种具有回转式吸附塔的烟气净化系统,包括烟气冷却装置,烟气冷却装置具有进烟口和出烟口,烟气冷却装置用于将从进烟口进入的烟气冷却至室温及以下;回转式吸附塔,回转式吸附塔具有空腔,回转式吸附塔上设有与空腔连通的烟气进口和烟气出口,烟气冷却装置的出烟口与烟气出口连通,空腔包括填充有吸附剂的填料段,从烟气进口进入回转式吸附塔的烟气流经填料段与吸附剂接触。本申请具有占地面积小,传动设备少,工作原理简单,易操作的优点。

Description

一种具有回转式吸附塔的烟气净化系统
交叉引用
本申请要求在2021年9月15日提交中国国家知识产权局、申请号为202122237731.6、发明名称为“一种具有回转式吸附塔的烟气净化系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及烟气处理技术领域,尤其是涉及一种具有回转式吸附塔的烟气净化系统。
背景技术
燃煤烟气产生大量的污染物是危害大气环境和人类健康的重要因素之一。烟气净化领域通常采用固定床吸附塔对烟气中的污染物进行吸附以实现净化烟气的目的,但是相关技术中的固定床吸附塔在应用时普遍存在填料层压力与密度不均匀、吸附不均匀、吸附效果差、吸附能力随使用时间延长而降低的问题,而且在需要更换吸附剂时需要停止工作,严重影响吸附效率,提高了操作难度。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的实施例提出一种具有回转式吸附塔的烟气净化系统。
根据本申请实施例的具有回转式吸附塔的烟气净化系统,包括烟气冷却装置,所述烟气冷却装置具有进烟口和出烟口,所述烟气冷却装置用于将从所述进烟口进入的烟气冷却至室温及以下;回转式吸附塔,所述回转式吸附塔具有空腔,所述回转式吸附塔上设有与所述空腔连通的加料口、出料口、烟气进口和烟气出口,所述烟气冷却装置的出烟口与所述烟气出口连通,所述空腔包括填充有吸附剂的填料段,从所述烟气进口进入所述回转式吸附塔的烟气流经所述填料段与所述吸附剂接触以便脱硫和脱硝。
根据本申请实施例的具有回转式吸附塔的烟气净化系统具有占地面积小,传动设备少,工作原理简单,易操作的优点。
在一些实施例中,所述填料段在所述回转式吸附塔的周向上分为吸附区和再生区,所述填料段中的吸附剂能够沿所述周向旋转以便依次进出所述吸附区和所述再生区,所述吸附区中的吸附剂用于对烟气进行吸附,进入所述再生区的吸附剂被加热以便脱附再生。
在一些实施例中,所述填料段还包括第一缓冲区和第二缓冲区,所述吸附区、所述第一缓冲区、所述再生区和所述第二缓冲区在所述周向上依次排布,所述第一缓冲区和所述 第二缓冲区用于隔离所述吸附区和所述再生区。
在一些实施例中,所述回转式吸附塔包括加热管路,所述加热管路设在所述再生区中,所述加热管路用于加热所述再生区中的吸附剂以使其脱附再生。
在一些实施例中,其特征在于,所述再生区的温度为300-350℃。
在一些实施例中,所述回转式吸附塔包括转动轴和转盘,所述转盘位于填料段下方用于支撑吸附剂,所述转动轴与所述转盘相连,所述转动轴转动以驱动所述转盘转动,所述转盘转动能够带动所述吸附剂旋转,所述转动轴的中心轴线与所述填料段的中心轴线重合。
在一些实施例中,所述转轴的转速为60°-120°/h。
在一些实施例中,所述烟气进口和所述烟气出口设在所述回转式吸附塔的侧壁上,所述烟气进口位于所述烟气出口的下方。
在一些实施例中,所述吸附剂为活性炭、活性焦和分子筛中的一种或两种。
附图说明
图1是根据本申请实施例的烟气净化系统的示意图。
图2是根据本申请另一实施例的烟气净化系统的示意图。
图3是根据本申请实施例的回转式吸附塔的正视示意图。
图4是根据本申请实施例的回转式吸附塔的俯视示意图。
附图标记:
回转式吸附塔1;加料口11;出料口12;烟气进口13;烟气出口14;转轴15;转盘16;加热管路25;
填料段2;吸附区21;再生区22;第一缓冲区23;第二缓冲区24;
烟气冷却装置3;进烟口31;出烟口32。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
如图1所示,根据本申请实施例的烟气净化系统,包括烟气冷却装置3和回转式吸附塔1。
烟气冷却装置3具有进烟口31和出烟口32,烟气冷却装置3用于将从进烟口31进入回转式吸附塔1的烟气冷却至室温及以下;
具体地,烟气从进烟口31流入烟气冷却装置3,烟气从出烟口32流出烟气冷却装置3,烟气在流经烟气冷却装置3时,烟气中的热量被烟气冷却装置3吸收,高温烟气经过烟气冷却装置3的作用变为低温烟气。
可选地,出烟口32的烟气的温度为-100℃-室温(例如室温为25℃)。
需要说明的是,本实施例提供的烟气净化系统在对烟气进行吸附时采用低温吸附的方式,利用烟气中污染物组分在低温下的溶解特性和吸附特性进行污染物的脱出,能够同时实现脱硫脱硝。其中,烟气中的二氧化硫以物理吸附为主,解析温度低,吸附剂损耗低,吸附剂补充量低,降低了运行成本。并且,在低温下进行吸附的烟气净化系统对污染物的吸附量大,吸附剂装填量少,吸附塔等设备的占地面积小。
另外,本实施例提供的烟气净化系统在对烟气进行吸附净化时,烟气中难以脱除的NO x组分用过低温氧化吸附机理,氧化成NO 2吸附脱除,不需要喷入NH 3进行催化还原,运行成本低。本实施例提供的烟气净化系统对烟气中NO x的吸附比例大于99%,脱硝效率明显优于现有技术中70~80%的脱硝效率。
回转式吸附塔1具有空腔,回转式吸附塔1上设有与空腔连通的加料口11、出料口、烟气进口13和烟气出口14,烟气冷却装置3的出烟口32与烟气出口14连通,空腔包括填充有吸附剂的填料段2,从烟气进口13进入回转式吸附塔1的烟气流经填料段2与吸附剂接触以便脱硫和脱硝。
具体地,回转式吸附塔1为下端带有圆锥形漏斗的圆筒状,回转式吸附塔1的顶部设置有加料口11和出料口,回转式吸附塔1的左端设置有烟气进口13和烟气出口14。加料口11设置在回转式吸附塔1顶部的左侧,出料口设置在回转式吸附塔1顶部的右侧。烟气进口13设置在回转式吸附塔1左端的下侧,烟气出口14设置在回转式吸附塔1左端的上侧。由此,烟气经过烟气进口13进入填料段2后向上流动,与填料段2中的吸附剂颗粒充分接触后经过烟气出口14流出。
在一些实施例中,填料段2在回转式吸附塔1的周向上分为吸附区21和再生区22,填料段2中的吸附剂能够沿周向旋转以便依次进出吸附区21和再生区22,吸附区21中的吸附剂用于对烟气进行吸附,进入再生区22的吸附剂被加热以便脱附再生。
具体地,吸附区21设置在加料口11的下侧,再生区22设置在出料口的下侧。由此,吸附区21中的吸附剂颗粒中还未与烟气反应的吸附剂颗粒比例降低,烟气可以在经过烟气进口13进入填料段2后,与较多的还未与烟气反应的吸附剂颗粒接触,这样有利于提高吸附的效率。
在一些实施例中,填料段2还包括第一缓冲区23和第二缓冲区24,吸附区21、第一缓冲区23、再生区22和第二缓冲区24在周向上依次排布,第一缓冲区23和第二缓冲区24用于隔离吸附区21和再生区22。
具体地,如图4所示,在俯视方向上,吸附区21、第一缓冲区23、再生区22和第二缓冲区24沿着逆时针圆周排布,第一缓冲区23和第二缓冲区24位于吸附区21和再生区22之间,其中第一缓冲区23位于空腔的前侧,第二缓冲区24位于空腔的后侧。由此,低 温烟气经过烟气进口13进入吸附区21后,与吸附区21中的吸附剂颗粒进行反应,随着吸附剂颗粒在空腔中沿着如图4所示的方向旋转,在低温烟气与吸附剂充分接触后,吸附剂颗粒的温度减低。低温的吸附剂颗粒经过第一缓冲器进入再生区22中加热脱附再生,温度较高的吸附剂颗粒沿着如图4所示的方向旋转,经过第二缓冲区24进入吸附区21进行吸附。由此,第一缓冲区23和第二缓冲区24用来隔离吸附区21和再生区22之间的温度、相当于吸附区21和再生区22之间的保温层。
在一些实施例中,回转式吸附塔1包括加热管路25,加热管路25设在再生区22中,加热管路25用于加热再生区22中的吸附剂以使其脱附再生。
具体地,加热管路25为中空的管道,加热管路25中可以通入高温蒸汽对再生区22的吸附剂进行加热,使进行吸附烟气后的吸附剂颗粒进入再生区22中加热脱附再生。
在其它一些实施例中,如图2所示,所述加热管路的一端通入高温烟气,另一端与进烟口31相连。由此,利用高温烟气的热量加热再生区22的吸附剂,可以在高温烟气进入烟气冷却装置3之前就对高温烟气的热量进行利用,有利于循环利用烟气的热量,从而降低烟气冷却装置3的功耗。
在一些实施例中,其特征在于,再生区22的温度为300-350℃。
可选的,再生区22的温度为300-350℃,如此设置使吸附剂再生更彻底。
在一些实施例中,回转式吸附塔1包括转动轴和转盘16,转盘16位于填料段2下方用于支撑吸附剂,转动轴与转盘16相连,转动轴转动以驱动转盘16转动,转盘16转动能够带动吸附剂旋转,转动轴的中心轴线与填料段2的中心轴线重合。
具体地,转轴15的上端伸出空腔外侧,转轴15的下端与转盘16相连,转盘16是同心圆,转盘16的外侧与空腔内壁之间空隙的宽度小于吸附剂颗粒的平均直径。由此,在转盘16转动时,只有少量的吸附剂颗粒会从转盘16的外侧与空腔内壁之间的空隙处落下,提高了吸附剂颗粒的回收率、减少了吸附剂颗粒的浪费。
在一些实施例中,转轴15的转速为60°-120°/h。
可选的上,转轴15的转速为120°/h,由此设置吸附剂吸收时间与再生时间刚好与吸附剂吸收再生性能匹配,能够达到较高的吸收饱和度和再生解析度。
在一些实施例中,烟气进口13和烟气出口14设在回转式吸附塔1的侧壁上,烟气进口13位于烟气出口14的下方。
具体地,回转式吸附塔1是中空的圆筒状,加料口11和出料口位于回转式吸附塔1顶部圆心的两侧,烟气进口13和烟气出口14在回转式吸附塔1侧壁圆周上与加料口11最近的位置,这样烟气进口13和烟气出口14就位于最远离出料口的位置。由此,最大程度的减少了出料口处脱附的烟气对烟气出口14处的烟气的影响。
在一些实施例中,吸附剂为活性炭、活性焦和分子筛中的一种或两种。
具体地,吸附剂为粒径均匀的颗粒状,吸附剂的粒度为6-8目,这样设置一方面提高了烟气与吸附剂接触的面积,另一方面使吸附剂具有较好的流动性。
本实施例提供的烟气净化系统在对烟气进行吸附时采用低温吸附的方式,利用烟气中污染物组分在低温下的溶解特性和吸附特性进行污染物的脱出,能够同时实现脱硫脱硝。其中,烟气中的二氧化硫以物理吸附为主,解析温度低,吸附剂损耗低,吸附剂补充量低,降低了运行成本。并且,在低温下进行吸附的烟气净化系统对污染物的吸附量大,吸附剂装填量少,吸附塔等设备的占地面积小。
需要说明的是,本实施例提供的烟气净化系统在对烟气进行吸附净化时,烟气中难以脱除的NO组分用过低温氧化吸附机理,氧化成NO 2吸附脱除,不需要喷入NH 3进行催化还原,运行成本低。本实施例提供的烟气净化系统对烟气中NO x的吸附比例大于99%,脱硝效率明显优于现有技术中70~80%的脱硝效率。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特 征水平高度小于第二特征。
在本申请中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (9)

  1. 一种具有回转式吸附塔的烟气净化系统,其特征在于,包括:
    烟气冷却装置,所述烟气冷却装置具有进烟口和出烟口,所述烟气冷却装置用于将从所述进烟口进入的烟气冷却至室温及以下;
    回转式吸附塔,所述回转式吸附塔具有空腔,所述回转式吸附塔上设有与所述空腔连通的烟气进口和烟气出口,所述烟气冷却装置的出烟口与所述烟气出口连通,所述空腔包括填充有吸附剂的填料段,从所述烟气进口进入所述回转式吸附塔的烟气流经所述填料段与所述吸附剂接触以便脱硫和脱硝。
  2. 根据权利要求1所述的具有回转式吸附塔的烟气净化系统,其特征在于,所述填料段在所述回转式吸附塔的周向上分为吸附区和再生区,所述填料段中的吸附剂能够沿所述周向旋转以便依次进出所述吸附区和所述再生区,所述吸附区中的吸附剂用于对烟气进行吸附,进入所述再生区的吸附剂被加热以便脱附再生。
  3. 根据权利要求2所述的具有回转式吸附塔的烟气净化系统,其特征在于,所述填料段还包括第一缓冲区和第二缓冲区,所述吸附区、所述第一缓冲区、所述再生区和所述第二缓冲区在所述周向上依次排布,所述第一缓冲区和所述第二缓冲区用于隔离所述吸附区和所述再生区。
  4. 根据权利要求2所述的具有回转式吸附塔的烟气净化系统,其特征在于,所述回转式吸附塔包括加热管路,所述加热管路设在所述再生区中,所述加热管路用于加热所述再生区中的吸附剂以使其脱附再生。
  5. 根据权利要求2-5中任一项所述的具有回转式吸附塔的烟气净化系统,其特征在于,所述再生区的温度为300-350℃。
  6. 根据权利要求1-5中任一项所述的具有回转式吸附塔的烟气净化系统,其特征在于,所述回转式吸附塔包括转动轴和转盘,所述转盘位于填料段下方用于支撑吸附剂,所述转动轴与所述转盘相连,所述转动轴转动以驱动所述转盘转动,所述转盘转动能够带动所述吸附剂旋转,所述转动轴的中心轴线与所述填料段的中心轴线重合。
  7. 根据权利要求7所述的具有回转式吸附塔的烟气净化系统,其特征在于,所述转轴的转速为60°-120°/h。
  8. 根据权利要求1所述的具有回转式吸附塔的烟气净化系统,其特征在于,所述烟气进口和所述烟气出口设在所述回转式吸附塔的侧壁上,所述烟气进口位于所述烟气出口的下方。
  9. 根据权利要求1-5中任一项所述的具有回转式吸附塔的烟气净化系统,其特征在于,所述吸附剂为活性炭、活性焦和分子筛中的一种或两种。
PCT/CN2022/099051 2021-09-02 2022-06-16 一种具有回转式吸附塔的烟气净化系统 WO2023040382A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202122114427 2021-09-02
CN202122237731.6U CN216537703U (zh) 2021-09-02 2021-09-15 一种具有回转式吸附塔的烟气净化系统
CN202122237731.6 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023040382A1 true WO2023040382A1 (zh) 2023-03-23

Family

ID=81564087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099051 WO2023040382A1 (zh) 2021-09-02 2022-06-16 一种具有回转式吸附塔的烟气净化系统

Country Status (2)

Country Link
CN (1) CN216537703U (zh)
WO (1) WO2023040382A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216537703U (zh) * 2021-09-02 2022-05-17 中国华能集团有限公司 一种具有回转式吸附塔的烟气净化系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004275806A (ja) * 2003-03-12 2004-10-07 Mitsubishi Heavy Ind Ltd 硫黄酸化物の処理方法及び硫黄酸化物処理装置
CN110013766A (zh) * 2019-04-03 2019-07-16 哈尔滨工程大学 船舶废气一体化处理装置
CN110856792A (zh) * 2018-08-23 2020-03-03 中国石化工程建设有限公司 活性焦吸附净化烟气的系统及方法
CN216537703U (zh) * 2021-09-02 2022-05-17 中国华能集团有限公司 一种具有回转式吸附塔的烟气净化系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004275806A (ja) * 2003-03-12 2004-10-07 Mitsubishi Heavy Ind Ltd 硫黄酸化物の処理方法及び硫黄酸化物処理装置
CN110856792A (zh) * 2018-08-23 2020-03-03 中国石化工程建设有限公司 活性焦吸附净化烟气的系统及方法
CN110013766A (zh) * 2019-04-03 2019-07-16 哈尔滨工程大学 船舶废气一体化处理装置
CN216537703U (zh) * 2021-09-02 2022-05-17 中国华能集团有限公司 一种具有回转式吸附塔的烟气净化系统

Also Published As

Publication number Publication date
CN216537703U (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2023029408A1 (zh) 烟气净化系统
CN1239230C (zh) 用于吸附剂再生的装置
CN113975938B (zh) 一种旋转式低温吸附捕集烟气中二氧化碳的装置及方法
WO2023040382A1 (zh) 一种具有回转式吸附塔的烟气净化系统
CN205886514U (zh) 喷漆废气处理装置
CN106693603A (zh) 活性炭法烟气净化装置及烟气净化方法
CN205323483U (zh) 涂料生产过程中的废气净化装置
WO2023029781A1 (zh) 具有分布器的移动床吸附塔和烟气净化系统
CN208406527U (zh) 有机废气连续吸附浓缩净化系统
CN106512686A (zh) 一种有机污染土壤热解析尾气处理系统
CN108273360B (zh) Co2连续旋转式吸附系统和方法
CN104307363A (zh) 一种低温烟气NOx富集脱除系统及其方法
JP6671204B2 (ja) ガス分離装置
CN109499313A (zh) 烧结烟气的低温脱硫脱硝方法
JP2004344703A (ja) 二酸化炭素の処理方法及び二酸化炭素処理装置
CN216395818U (zh) 一种具有流化床反应器的烟气净化系统
CN209165429U (zh) VOCs吸脱附浓缩-催化燃烧系统
CN207941395U (zh) 一种粉状活性焦流化床脱硫尾部喷氨联合脱硝的系统
WO2023029411A1 (zh) 移动床吸附塔和具有其的烟气净化系统
CN216259922U (zh) 一种活性炭原位再生VOCs治理系统
WO2010106623A1 (ja) 再生塔及び乾式排ガス処理装置
CN109550393A (zh) 烧结烟气低温脱硫脱硝方法
JP6140326B1 (ja) 揮発性有機化合物の吸着剤の再生処理方法
CN104307364A (zh) 一种脱硫脱硝一体化烟气净化系统及其方法
JP2004275805A (ja) 窒素酸化物の処理方法及び窒素酸化物処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE