WO2023040359A1 - 一种光伏发电系统、太阳能跟踪支架及其抗风方法 - Google Patents

一种光伏发电系统、太阳能跟踪支架及其抗风方法 Download PDF

Info

Publication number
WO2023040359A1
WO2023040359A1 PCT/CN2022/096587 CN2022096587W WO2023040359A1 WO 2023040359 A1 WO2023040359 A1 WO 2023040359A1 CN 2022096587 W CN2022096587 W CN 2022096587W WO 2023040359 A1 WO2023040359 A1 WO 2023040359A1
Authority
WO
WIPO (PCT)
Prior art keywords
locking
solar tracking
installation
wind
bracket
Prior art date
Application number
PCT/CN2022/096587
Other languages
English (en)
French (fr)
Inventor
韦海峰
Original Assignee
阳光新能源开发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光新能源开发股份有限公司 filed Critical 阳光新能源开发股份有限公司
Publication of WO2023040359A1 publication Critical patent/WO2023040359A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of solar photovoltaic power generation, in particular to a photovoltaic power generation system, a solar tracking bracket and a wind resistance method thereof.
  • Solar photovoltaic power generation is one of the most important forms of solar energy utilization at present.
  • solar tracking brackets are usually used to support and fix photovoltaic modules.
  • the solar tracking bracket controls the angle of the solar tracking bracket through the tracking controller. Regulating control enables photovoltaic modules to receive more light, thereby improving power generation efficiency.
  • the tracking logic of solar tracking is that the driving mechanism drives the rotating spindle to rotate, which in turn drives the installation beam to rotate, and the installation beam rotates to drive the photovoltaic module to rotate.
  • the strong wind can blow the installation beam, causing the installation beam to generate wind-induced vibration.
  • the length of the installation beam is also getting longer and longer.
  • the installation beam is likely to be blown by the strong wind to rotate rapidly around the main axis of rotation, resulting in failure or even destruction of the solar tracking bracket structure.
  • some solar tracking brackets set an electric pinning device on the driving swing arm of the rotating main shaft, so as to constrain the rotation of the rotating main shaft and achieve the purpose of wind resistance. Under the action, a certain wind-induced vibration will still be generated, which will reduce the wind resistance effect.
  • the first object of the present invention is to provide a solar tracking bracket, which can avoid wind-induced vibration of the installation beam under strong wind conditions, improve the stability of the installation beam under strong wind conditions, improve the service life of the solar tracking bracket, and can The environment is ensuring the normal tracking work of the solar tracking bracket.
  • a solar tracking bracket comprising a rotating main shaft, a plurality of supporting columns and a mounting beam, the rotating main shaft extends along a first direction, and a plurality of the supporting columns are arranged at intervals along the first direction and jointly support the rotating main shaft , the supporting column is rotationally connected with the rotating main shaft, the installation beam is fixed on the rotating main shaft and is used to fix the photovoltaic module, and the solar tracking bracket also includes:
  • a locking assembly configured to switch between a locked state and an unlocked state according to the operating mode of the solar tracking bracket, wherein when the locking assembly is in the locked state, the locking assembly locks the mounting beam; when the locking component is in the unlocked state, the locking component releases the mounting beam.
  • multiple installation beams are provided, and multiple installation beams are arranged side by side and at intervals along the first direction, and some of the installation beams are provided with the locking assembly, and are provided with the locking
  • the mounting beams of the components are arranged at regular intervals along the first direction.
  • one end of the locking assembly is connected to the installation beam, and the other end of the locking assembly is connected to the foundation or the supporting column.
  • the locking assembly includes:
  • the first traction rope, the first traction rope connected to the two ends of the installation beam is released from the two ends of the installation beam to the foundation, and fixed with the foundation, the first winding device is It is configured to wind up the first pulling rope to tension the first pulling rope.
  • the locking assembly includes:
  • Locking inclined beams the two ends of the installation beam are hinged with the locking inclined beams, the free end of the locking inclined beams and one of the supporting columns are provided with a first fixing hole, and the other One of them is provided with a first fixing pin, and the first fixing pin can be fixed through the first fixing hole, so that the installation crossbeam, the two locking oblique beams and the support column Both sides of the support column form a triangular support structure.
  • the locking assembly also includes:
  • the driving member is configured to drive the locking slant beam to rotate relative to the installation cross beam, so that the first fixing pin is penetrated and fixed in the first fixing hole.
  • the driver includes:
  • the second winding device is arranged on the locking inclined beam
  • a second traction rope one end of the second traction rope is connected to the second winding device, and the other end of the second traction rope passes through the first fixing hole and is connected to the first fixing pin .
  • the locking assembly includes:
  • the locking bracket is connected to the rotary motor through transmission, and one of the two ends of the locking bracket and the two ends of the installation beam is provided with a second fixing hole, and the other is provided with a second fixing pin
  • the rotary motor is configured to drive the locking bracket to rotate, so that the second fixing pin is plugged and fixed in the second fixing hole.
  • the locking bracket includes:
  • both ends of the locking beam are connected with the locking vertical rod, and the free end of the locking vertical rod is provided with the second fixing pin.
  • the locking bracket includes two sets of locking slanting rods, the two sets of locking slanting rods are respectively located on both sides of the support column, and one end of the locking slanting rod is connected to the rotary motor , the second fixing pin is arranged on the other end of the locking oblique rod.
  • the second object of the present invention is to provide a wind-resistant method for solar tracking brackets, which can avoid wind-induced vibration of the installation beam under strong wind conditions, improve the stability of the installation beam under strong wind conditions, improve the service life of the solar tracking bracket, and It can ensure the normal tracking work of the solar tracking bracket in the normal environment.
  • a wind-resistant method for a solar tracking bracket, using the above-mentioned solar tracking bracket for wind resistance, and the wind-resistant method for the solar tracking bracket includes:
  • the installation beam is rotated to a sheltered position, and the locking component locks the installation beam;
  • the locking assembly releases the installation beam.
  • the wind resistance method of the solar tracking support also includes:
  • the locking assembly is in the locked state and locks the installation beam;
  • the locking assembly When the warning signal is over, the locking assembly is in the unlocked state and releases the mounting beam.
  • the third object of the present invention is to provide a photovoltaic power generation system, which can avoid wind-induced vibration of the installation beam under strong wind conditions, improve the stability of the installation beam under strong wind conditions, and improve the service life of the entire photovoltaic power generation system.
  • the normal environment is to ensure the normal tracking work of the solar tracking bracket.
  • a photovoltaic power generation system including the solar tracking support as described above, the photovoltaic power generation system also includes:
  • a signal acquisition device is a meteorological monitoring system or a wind speed sensor, the signal acquisition device is configured to collect a wind speed signal, and when the wind speed signal exceeds a preset value, the signal acquisition device sends an early warning signal;
  • a tracking controller is connected in communication with the signal acquisition device, and the tracking controller controls the state of the locking assembly according to the received early warning signal.
  • the invention provides a solar tracking bracket.
  • the locking component can switch between a locked state and an unlocked state according to the operating mode of the solar tracking bracket.
  • the locking component locks Tight installation beams avoid wind-induced vibration of the installation beams under strong wind conditions, improve the structural strength and torsion resistance of the installation beams, thereby improving the stability of the installation beams under strong wind conditions, and strengthen the solar tracking bracket under strong wind conditions Excellent wind resistance, improving the service life of the solar tracking bracket.
  • the locking component When the locking component is in the unlocked state, the locking component releases the mounting beam to ensure the normal tracking work of the mounting beam in a normal environment.
  • the present invention also provides a wind-resistant method for the solar tracking bracket.
  • the installation beam is rotated to the wind-shielding position, and then locked and installed by the locking component Beams, so that the installation beams are in a locked state, avoiding wind-induced vibration of the installation beams under strong wind conditions, improving the structural strength and torsion resistance of the installation beams, thereby improving the stability of the installation beams under strong wind conditions, and enhancing solar energy
  • the anti-wind ability of the tracking bracket under strong wind conditions improves the service life of the solar tracking bracket.
  • the locking component releases the installation beam, thereby ensuring the normal tracking work of the solar tracking bracket.
  • the present invention also provides a photovoltaic power generation system.
  • a photovoltaic power generation system By applying the above-mentioned solar tracking bracket, wind-induced vibration of the installation beam under strong wind conditions is avoided, and the structural strength and torsion resistance of the installation beam are improved, thereby improving the performance of the installation beam under strong wind conditions.
  • the stability under the environment enhances the wind resistance of the solar tracking bracket under strong wind conditions and improves the service life of the solar tracking bracket. It can also ensure the normal tracking work of the solar tracking bracket under normal circumstances.
  • Fig. 1 is a schematic structural diagram of a solar tracking bracket provided by Embodiment 1 of the present invention
  • Fig. 2 is a schematic structural diagram of the connection relationship of the photovoltaic power generation system provided by Embodiment 1 of the present invention
  • Fig. 4 is a schematic structural view of the installation beam provided by Embodiment 2 of the present invention in an unlocked state
  • Fig. 5 is a schematic structural view of the installation beam provided by Embodiment 2 of the present invention in a locked state
  • Fig. 6 is a schematic structural diagram of a solar tracking bracket provided by Embodiment 3 of the present invention.
  • Fig. 7 is a front view of the installation beam provided by Embodiment 3 of the present invention in an unlocked state
  • Fig. 8 is a side view of the installation beam provided by Embodiment 3 of the present invention in an unlocked state
  • Fig. 9 is a schematic structural view of the installation beam provided by Embodiment 3 of the present invention in a locked state
  • Fig. 10 is a side view of the installation beam provided by Embodiment 4 of the present invention in an unlocked state.
  • Support column 11. First fixing pin;
  • Locking assembly 41. First traction rope; 42. Locking inclined beam; 421. First fixing hole; 43. Driver; 431. Second winding device; 432. Second traction rope; 44. Lock Tight support; 441, locking beam; 442, locking vertical rod; 4421, second fixed pin; 443, locking oblique bar; 45, rotary motor.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • connection can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • a first feature being “on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • this embodiment provides a solar tracking bracket 100 for supporting and fixing photovoltaic components.
  • the solar tracking bracket 100 includes a rotating main shaft 2, a plurality of supporting columns 1 and a plurality of installation beams 3, wherein the rotating main shaft 2 extends along a first direction (direction X in FIG.
  • one end of the supporting column 1 is fixed on the base, the other end of the supporting column 1 is rotationally connected with the rotating main shaft 2, multiple supporting columns 1 jointly support the rotating main shaft 2, and multiple installation beams 3 are arranged side by side along the X direction and Arranged at intervals, the installation beams 3 are fixed on the rotating spindle 2, and the installation beams 3 are used to support and fix the photovoltaic modules.
  • the lengths of the plurality of installation beams 3 arranged at intervals along the X direction can be set according to the overall length of the assembled photovoltaic modules.
  • this embodiment also provides a photovoltaic power generation system, including the above-mentioned solar tracking bracket 100, the photovoltaic power generation system also includes a slewing drive mechanism 400 and a tracking controller 300, wherein the tracking controller 300 can Detect the irradiation angle of sunlight, the rotary drive mechanism 400 is electrically connected with the tracking controller 300, the rotary drive mechanism 400 is connected with the rotating main shaft 2 in the solar tracking bracket 100, and the tracking controller 300 can control the rotary driving mechanism 400 to drive the rotating main shaft 2 Relative to the rotation of the support column 1, the rotation of the rotating shaft 2 drives multiple installation beams 3 to rotate together, and the rotation of multiple installation beams 3 drives the rotation of the photovoltaic modules to ensure that the sunlight can always shine on the photovoltaic modules vertically, thereby improving the power generation of the photovoltaic modules efficiency.
  • the tracking controller 300 can Detect the irradiation angle of sunlight
  • the rotary drive mechanism 400 is electrically connected with the tracking controller 300
  • the rotary drive mechanism 400 is connected
  • the middle position of the installation crossbeam 3 is fixed on the rotation spindle 2, so that the installation crossbeam 3 can straddle the rotation spindle 2, thereby ensuring the stability of the installation crossbeam 3 fixed on the rotation spindle 2, It also improves the stability of the installation beam 3 supporting the photovoltaic module.
  • the strong wind can blow the installation beam 3 , causing the installation beam 3 to generate wind-induced vibration.
  • the length of the installation beam 3 is also getting longer and longer.
  • the installation beam 3 is likely to be blown by the strong wind to rotate rapidly around the rotation axis 2, resulting in structural failure of the solar tracking bracket 100. Even destroy.
  • some solar tracking brackets 100 set an electric pinning device on the driving swing arm of the rotating main shaft 2, so as to constrain the rotation of the rotating main shaft 2 and achieve the purpose of wind resistance. 3 Under the action of strong wind, a certain amount of wind-induced vibration will still be generated, which will reduce the wind resistance effect.
  • the solar tracking bracket 100 provided by this embodiment also includes a locking assembly 4, and the locking assembly 4 can switch between a locked state and an unlocked state according to the operating mode of the solar tracking bracket 100, wherein , when the locking assembly 4 is in the locked state, the locking assembly 4 locks the installation beam 3, so that the installation beam 3 is in the locked state, avoiding the wind-induced vibration of the installation beam 3 under strong wind conditions, and improving the installation of the beam 3. Structural strength and torsion resistance, thereby improving the stability of the installation beam 3 under strong wind conditions, enhancing the wind resistance of the solar tracking support 100 under strong wind conditions, and improving the service life of the solar tracking support 100 . In addition, when the locking assembly 4 is in the unlocked state, the locking assembly 4 releases the mounting beam 3 to ensure that the mounting beam 3 is in normal rotation under normal circumstances.
  • This embodiment also provides a wind-resistant method for a solar tracking bracket, using the above-mentioned solar tracking bracket 100 for wind resistance, and the wind-resistant method for a solar tracking bracket includes:
  • the installation beam 3 rotates to the wind-shielding position, and the locking component 4 locks the installation beam 3 .
  • the locking assembly 4 releases the installation beam 3 .
  • wind resistance method of solar tracking bracket also includes:
  • the locking assembly 4 After receiving the weather forecast or the early warning signal of the wind speed sensor, the locking assembly 4 is in a locked state and locks the installation beam 3 .
  • the locking assembly 4 is in an unlocked state and the installation crossbeam 3 is released.
  • the photovoltaic power generation system provided in this embodiment further includes a signal acquisition device 200, the signal acquisition device 200 is used to collect wind speed signals, and when the wind speed signal exceeds a preset value, the signal acquisition device 200 sends out an early warning signal
  • the tracking controller 300 is also connected in communication with the signal acquisition device 200, and the tracking controller 300 controls the locking assembly 4 to be in a locked state according to the received early warning signal.
  • the signal acquisition device 200 can be a weather monitoring system or a wind speed sensor.
  • the tracking controller 300 first controls the slewing drive mechanism 400 to drive the rotating main shaft 2 to rotate relative to the support column 1, Make the installation beam 3 drive the photovoltaic module to a sheltered position, for example, a horizontal position, and then the tracking controller 300 controls the locking assembly 4 to lock the installation beam 3 at the wind shelter position, so that the installation beam 3 is in a locked state.
  • the tracking controller 300 controls the locking assembly 4 to release the locking of the installation beam 3, so that the installation beam 3 is in an unlocked state to ensure that the solar tracking bracket 100 is normal to sunlight. Track rotation.
  • some mounting beams 3 are provided with locking components 4 , and the mounting beams 3 provided with locking components 4 are arranged at regular intervals along the X direction.
  • This setting method only needs to install locking components 4 on part of the installation beams 3 to ensure that each installation beam 3 can be in a locked state, so that the wind resistance effect of the entire solar tracking bracket 100 at each position extending along the X direction is equivalent, and it also reduces the wind resistance. wind resistance costs.
  • the number of locking components 4 and the distance between the mounting beams 3 provided with the locking components 4 can be designed according to local specific conditions.
  • one end of the locking assembly 4 is connected to the installation beam 3, and the other end of the locking assembly 4 is connected to the foundation, and the locking assembly 4 can lock the two ends of the installation beam 3 Tightly fixed on the foundation, so that the locking component 4 can firmly lock the two ends of the installation beam 3 on the foundation in the locked state, and can also use the least material to improve the structural strength and torsion resistance of the installation beam 3, avoiding the installation of the beam 3 Wind-induced vibration occurs in high wind conditions.
  • the locking assembly 4 includes a first winding device and a first traction rope 41 , wherein the first winding device is arranged on the installation beam 3 , and both ends of the installation beam 3 are The first traction rope 41 is connected, and the two first traction ropes 41 are respectively released from the two ends of the installation beam 3 to the foundation and fixed with the foundation.
  • the two first traction ropes 41 are all wound on the first winding device , the first winding device can simultaneously wind up two first traction ropes 41 to tension the two first traction ropes 41 .
  • the tracking controller 300 controls the rotary drive mechanism 400 to drive the rotating main shaft 2 to rotate relative to the support column 1, so that the installation beam 3 drives the photovoltaic module to a sheltered position, and then the tracking controller 300 controls the first
  • the first winding device continuously winds the first traction rope 41, so that the first traction rope 41 at both ends of the installation beam 3 and the foundation are gradually tightened, and then the first winding device winds up to a preset value. After the stroke, it will be automatically locked.
  • the first traction rope 41 provides the two ends of the installation beam 3 with a pulling force toward the foundation that meets the requirements, so that the first traction rope 41 provides strong support for the two ends of the installation beam 3. Locking , so as to ensure that the installation beam 3 can effectively resist the wind-induced vibration caused by extreme wind.
  • the tracking controller 300 controls the first winding device to release the first traction rope 41, and when the release of the first traction rope 41 is completed, ensure that the first traction rope 41 has a sufficient length, It is ensured that the solar tracking bracket 100 can resume normal operation.
  • the first winding device may be a winch, which has the advantages of small size and light weight, and can reduce the load bearing burden of the winch on which the beam 3 is installed.
  • the hoist also has the advantages of stable operation and accurate and reliable transmission.
  • the first traction rope 41 can be a steel wire rope.
  • the steel rope has the advantages of light weight, large bearing safety factor, high tensile strength and fatigue resistance, which improves the service life and working reliability of the first traction rope 41 .
  • the hoist is an electronic control device, which can realize the program control and command control of the hoist, and realize the control of the hoist through the tracking controller 300 to improve the automation of the entire photovoltaic power generation system.
  • the structure of the solar tracking bracket 100 disclosed in this embodiment is basically the same as that of the first embodiment.
  • the differences between the solar tracking bracket 100 disclosed in this embodiment and the first embodiment are:
  • the locking assembly 4 can support and lock the two ends of the installation beam 3 on the support column 1, so that the locking assembly 4 provides reliable support for the two ends of the installation beam 3 in the locked state, It is also possible to improve the structural strength and torsion resistance of the installation beam 3 with the least amount of material, so as to avoid wind-induced vibration of the installation beam 3 in a strong wind state.
  • the locking assembly 4 provided in this embodiment includes a locking slant 42, and both ends of the installation beam 3 are hinged with a locking slant 42, and the locking slant 42 is free
  • a first fixing hole 421 is opened on the end, and a first fixing pin 11 is correspondingly arranged on the support column 1, and the first fixing pin 11 can be penetrated and fixed in the corresponding first fixing hole 421, so that the installation beam 3, two locks
  • the tight beam 42 and the support column 1 form a triangular support structure on both sides of the support column 1 .
  • the angle of the first fixing pin 11 on the supporting column 1 is determined according to the angle at which the free end of the locking slanting beam 42 is close to the supporting column 1, and the length of the first fixing pin 11 is determined according to the depth of the first fixing hole 421 . Hence, as long as it can be ensured that the first fixing pin 11 can pass through the first fixing hole 421 .
  • a first fixing pin 11 may also be provided on the free end of the locking inclined beam 42, and a first fixing hole 421 may be correspondingly opened on the support column 1, as long as the locking can be ensured. It is enough that the free end of the inclined beam 42 can be connected and fixed with the support column 1 .
  • the driving member 43 includes a second winding device 431 and a second traction rope 432.
  • the second winding device 431 is arranged on the locking inclined beam 42.
  • the second traction rope One end of the 432 is connected to the second winding device 431 , and the other end of the second pulling rope 432 is connected to the first fixing pin 11 through the first fixing hole 421 .
  • the second winding device 431 When it is necessary to lock the installation crossbeam 3, the second winding device 431 rewinds the second traction rope 432, and as the second traction rope 432 is continuously rewound, the locking inclined beam 42 will wind around the end of the installation crossbeam 3 The hinge point of the upper part is rotated until the first fixing pin 11 penetrates and is fixed in the first fixing hole 421. At this time, the second traction rope 432 is tensioned, and the second winding device 431 reaches a preset stroke to realize locking, thereby Ensure the stability of the locking inclined beam 42 supporting and locking the installation beam 3 .
  • the second winding device 431 releases the second traction rope 432, so that the second traction rope 432 is in a relaxed state. , so that the first fixing hole 421 will automatically slide out of the first fixing pin 11 , thereby unlocking the mounting beam 3 . It should be noted that after the second traction rope 423 is released, it is necessary to ensure that the second traction rope 432 has a sufficient length to ensure that the solar tracking bracket 100 can resume normal operation.
  • the second winding device 431 can be a miniature winch, which has the advantages of small size and light weight, and can reduce the load bearing burden of the locking inclined beam 42 on the miniature winch.
  • the miniature winch also has the advantages of stable operation and accurate and reliable transmission.
  • the second traction rope 432 can be a steel wire rope.
  • the steel wire rope has the advantages of light weight, large bearing safety factor, high tensile strength and fatigue resistance, which improves the service life and working reliability of the second traction rope 432 .
  • the micro hoist is an electronic control device, which can realize program control and command control of the micro hoist, and realize the control of the hoist through the tracking controller 300 to improve the automation of the entire photovoltaic power generation system.
  • the structure of the solar tracking bracket 100 disclosed in this embodiment is basically the same as that of the second embodiment.
  • the differences between the solar tracking bracket 100 disclosed in this embodiment and the second embodiment are:
  • the structure of the locking assembly 4 is different.
  • the locking assembly 4 provided in this embodiment includes a rotary motor 45 and a locking bracket 44, the rotary motor 45 is arranged on the support column 1, the locking bracket 44 and the rotary motor 45 Transmission connection, the two ends of the locking bracket 44 are provided with the second fixing pin 4421, the two ends of the mounting beam 3 are provided with the second fixing hole 31, the rotary motor 45 can rotate the locking bracket 44 for driving, so that the second The fixing pin 4421 is plugged and fixed in the second fixing hole 31 , so as to ensure that the locking component 4 supports and locks both ends of the installation beam 3 on the support column 1 .
  • the rotary motor 45 drives the locking bracket 44 to rotate relative to the support column 1 until the second fixing pins 4421 on both ends of the locking bracket 44 are plugged and fixed on the second pin. In the fixing hole 31 , at this moment, the rotary motor 45 is shut down and locked, thereby ensuring the stability of the locking bracket 44 .
  • the rotary motor 45 drives the locking bracket 44 to reversely rotate relative to the support column 1, so that the second fixing pins 4421 on both ends of the locking bracket 44 are separated from the second fixing hole 31, In this way, the unlocking of the mounting beam 3 by the locking bracket 44 is realized.
  • a second fixing pin 4421 may also be provided on both ends of the installation crossbeam 3, and a second fixing hole 31 may be provided on both ends of the locking bracket 44, as long as the installation of the crossbeam can be ensured.
  • the two ends of 3 can be connected and fixed with the two ends of locking bracket 44.
  • the slewing motor 45 is an electronic control device, which can realize program control and command control of the slewing motor 45, and realize the control of the slewing motor 45 through the tracking controller 300, thereby improving the degree of automation of the entire photovoltaic power generation system.
  • the locking bracket 44 when the mounting beam 3 is in the locked state, the locking bracket 44 is perpendicular to the rotating spindle 2 , and the two ends of the locking bracket 44 are exactly opposite to the two ends of the mounting beam 3 .
  • the rotary motor 45 when the mounting beam 3 is in the unlocked state, the rotary motor 45 can drive the locking bracket 44 to a position parallel to the rotating main shaft 2, so as to avoid the tracking operation of the locking bracket 44 on the solar tracking bracket 100 Interference is caused, so as to ensure that the solar tracking support 100 can resume normal operation.
  • the locking bracket 44 includes a locking beam 441 and a locking vertical rod 442.
  • the locking beam 441 is connected to the rotary motor 45 through transmission. Both ends are connected with locking upright rods 442 , and the free ends of the locking upright rods 442 are provided with second fixing pins 4421 .
  • the middle position of the locking crossbeam 441 is connected to the rotary motor 45 in transmission, so as to ensure that the locking crossbeam 441 rotates more smoothly.
  • the height of the locking pole 442 can be a fixed height, or a height-adjustable structure, so as to adapt to different
  • the locking pole 442 may be a hydraulic lifting pole, a pneumatic lifting pole or other forms of lifting poles.
  • the structure of the solar tracking bracket 100 disclosed in this embodiment is basically the same as that of the third embodiment.
  • the difference between the solar tracking bracket 100 disclosed in this embodiment and the third embodiment lies in that the structure of the locking bracket 44 is different.
  • the locking bracket 44 provided by this embodiment includes two groups of locking oblique rods 443, and the two groups of locking oblique rods 443 are respectively located on both sides of the support column 1, and one end of the locking oblique rods 443 is connected to the rotary motor 45 transmission connection, the other end of the locking oblique rod 443 is provided with a second fixing pin 4421.
  • the second fixing pin 4421 is plugged and fixed in the second fixing hole 31
  • the mounting beam 3 , two sets of locking oblique rods 443 and the support column 1 form a triangular support structure on both sides of the support column 1 .
  • the locking bracket 44 can support and lock the installation beam 3 through the two locking slanting bars 443, and the use of less material further reduces the cost.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种光伏发电系统、太阳能跟踪支架及其抗风方法。该太阳能跟踪支架包括旋转主轴(2)、多个支撑立柱(1)、安装横梁(3)以及锁紧组件(4),旋转主轴(2)沿第一方向延伸,多个支撑立柱(1)沿第一方向间隔排布并且共同支撑旋转主轴(2),支撑立柱(1)与旋转主轴(2)的转动连接,安装横梁(3)固定在旋转主轴(2)上并用于固定光伏组件,锁紧组件(4)能够根据太阳能跟踪支架的运行模式在锁定状态和解锁状态之间切换,当锁紧组件(4)处于锁定状态时,锁紧组件(4)锁紧安装横梁(3)。当锁紧组件(4)处于解锁状态时,锁紧组件(4)松开安装横梁(3)。避免安装横梁(3)在大风条件下发生风致振动,提高了安装横梁(3)在大风条件下的稳定性,提高了太阳能跟踪支架的使用寿命。

Description

一种光伏发电系统、太阳能跟踪支架及其抗风方法
本申请要求于2021年09月18日提交中国专利局、申请号为202111100970.5、发明名称为“一种光伏发电系统、太阳能跟踪支架及其抗风方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及太阳能光伏发电技术领域,尤其涉及一种光伏发电系统、太阳能跟踪支架及其抗风方法。
背景技术
太阳能光伏发电是当前最主要的太阳能利用形式之一,为了提高光伏电站的发电量及经济效益,通常采用太阳能跟踪支架来支撑固定光伏组件,太阳能跟踪支架通过跟踪控制器对太阳能跟踪支架的角度进行调节控制,使得光伏组件能够接受更多的光照,从而提升发电效率。
太阳能跟踪的跟踪逻辑是驱动机构驱动旋转主轴旋转进而带动安装横梁旋转,安装横梁旋转带动光伏组件旋转。但是,在极端大风天气下,大风能够吹动安装横梁,使得安装横梁产生风致振动。随着光伏组件越来越大,安装横梁的长度也越来越长,在极端大风天气下,安装横梁很有可能被大风吹得绕旋转主轴快速旋转而导致太阳能跟踪支架结构失效甚至破坏。
随着技术的发展,有的太阳能跟踪支架通过在旋转主轴的驱动摆臂上设置电动销紧装置,从而对旋转主轴的旋转起到约束作用,起到抗风的目的,但是安装横梁在大风的作用下仍然会产生一定的风致振动,降低抗风效果。
因此,亟需发明一种光伏发电系统、太阳能跟踪支架及其抗风方法,以解决上述问题。
发明内容
本发明的第一个目的在于提供一种太阳能跟踪支架,能够避免安装横梁在大风条件下发生风致振动,提高安装横梁在大风条件下的稳定性,提高太阳能跟踪支架的使用寿命,还能够在正常环境在保证太阳能跟踪支架的正常跟踪工作。
为达此目的,本发明采用以下技术方案:
一种太阳能跟踪支架,包括旋转主轴、多个支撑立柱以及安装横梁,所述旋转主轴沿第一方向延伸,多个所述支撑立柱沿所述第一方向间隔排布并且共同支撑所述旋转主轴,所述支撑立柱与所述旋转主轴的转动连接,所述安装横梁固定在所述旋转主轴上并用于固定光伏组件,所述太阳能跟踪支架还包括:
锁紧组件,被配置根据所述太阳能跟踪支架的运行模式在锁定状态和解锁状态之间切换,其中,当所述锁紧组件处于所述锁定状态时,所述锁紧组件锁紧所述安装横梁;当所述锁紧组件处于所述解锁状态时,所述锁紧组件松开所述安装横梁。
作为优选方案,所述安装横梁设置有多个,多个所述安装横梁沿所述第一方向并排且间隔设置,部分所述安装横梁上设置有所述锁紧组件,设置有所述锁紧组件的安装横梁沿所述第一方向等间距间隔排布。
作为优选方案,所述锁紧组件的一端与所述安装横梁相连接,所述锁紧组件的另一端与地基或所述支撑立柱相连接。
作为优选方案,所述锁紧组件包括:
第一收卷装置;以及
第一牵引绳,所述安装横梁两端连接的所述第一牵引绳从所述安装横梁的两端释放至所述地基上,并与所述地基相固定,所述第一收卷装置被配置为收卷所述第一牵引绳,以张紧所述第一牵引绳。
作为优选方案,所述锁紧组件包括:
锁紧斜梁,所述安装横梁的两端均铰接有所述锁紧斜梁,所述锁紧斜梁的自由端和所述支撑立柱两者中的一个上开设有第一固定孔,另一个上设置有第一固定销,所述第一固定销能够贯穿固定在所述第一固定孔中,以使所述安装横梁、两个所述锁紧斜梁以及所述支撑立柱在所述支撑立柱的两侧均形成三角支撑结构。
作为优选方案,所述锁紧组件还包括:
驱动件,被配置为驱动所述锁紧斜梁相对所述安装横梁转动,以使所述第一固定销贯穿固定在所述第一固定孔中。
作为优选方案,所述驱动件包括:
第二收卷装置,设置在所述锁紧斜梁上;以及
第二牵引绳,所述第二牵引绳的一端与所述第二收卷装置相连接,所述第 二牵引绳的另一端穿过所述第一固定孔与所述第一固定销相连接。
作为优选方案,所述锁紧组件包括:
回转电机,设置在所述支撑立柱上;以及
锁紧支架,与所述回转电机传动连接,所述锁紧支架的两端和所述安装横梁的两端两者中的一个上开设有第二固定孔,另一个上设置有第二固定销,所述回转电机被配置能够为驱动所述锁紧支架旋转,以使所述第二固定销插接固定在所述第二固定孔中。
作为优选方案,所述锁紧支架包括:
锁紧横梁,与所述回转电机传动连接;以及
锁紧立杆,所述锁紧横梁的两端均连接有所述锁紧立杆,所述锁紧立杆的自由端上设置有所述第二固定销。
作为优选方案,所述锁紧支架包括两组锁紧斜杆,两组所述锁紧斜杆分别位于所述支撑立柱的两侧,所述锁紧斜杆的一端与所述回转电机传动连接,所述锁紧斜杆的另一端上设置有所述第二固定销。
本发明的第二个目的在于提供一种太阳能跟踪支架抗风方法,能够避免安装横梁在大风条件下发生风致振动,提高安装横梁在大风条件下的稳定性,提高太阳能跟踪支架的使用寿命,还能够在正常环境在保证太阳能跟踪支架的正常跟踪工作。
为达此目的,本发明采用以下技术方案:
一种太阳能跟踪支架抗风方法,采用如上所述太阳能跟踪支架进行抗风,所述太阳能跟踪支架抗风方法包括:
当所述太阳能跟踪支架处于抗风模式时,所述安装横梁转动至避风位置,所述锁紧组件锁紧所述安装横梁;
当所述太阳能跟踪支架处于正常运行模式时,所述锁紧组件松开所述安装横梁。
作为优选方案,所述太阳能跟踪支架抗风方法还包括:
接收天气预报或风速传感器的预警信号,所述锁紧组件处于所述锁定状态并锁紧所述安装横梁;
当所述预警信号结束后,所述锁紧组件处于所述解锁状态并松开所述安装横梁。
本发明的第三个目的在于提供一种光伏发电系统,能够避免安装横梁在大风条件下发生风致振动,提高安装横梁在大风条件下的稳定性,提高整个光伏发电系统的使用寿命,还能够在正常环境在保证太阳能跟踪支架的正常跟踪工作。
为达此目的,本发明采用以下技术方案:
一种光伏发电系统,包括如上所述太阳能跟踪支架,所述光伏发电系统还包括:
信号采集装置,所述信号采集装置为气象监测系统或风速传感器,所述信号采集装置被配置采集风速信号,当所述风速信号超出预设值时,所述信号采集装置发出预警信号;以及
跟踪控制器,与所述信号采集装置通讯连接,所述跟踪控制器根据接收的所述预警信号控制所述锁紧组件的状态。
本发明的有益效果:
本发明提供了一种太阳能跟踪支架,通过设置锁紧组件,锁紧组件能够根据太阳能跟踪支架的运行模式在锁定状态和解锁状态之间切换,当锁紧组件处于锁定状态时,锁紧组件锁紧安装横梁,避免了安装横梁在大风条件下发生风致振动,提高了安装横梁的结构强度和抗扭能力,从而提高了安装横梁在大风条件下的稳定性,增强了太阳能跟踪支架在大风条件下的抗风能力,提高了太阳能跟踪支架的使用寿命。当锁紧组件处于解锁状态时,锁紧组件松开安装横梁,保证安装横梁在正常环境下的正常跟踪工作。
本发明还提供了一种太阳能跟踪支架抗风方法,通过采用上述太阳能跟踪支架进行抗风,当太阳能跟踪支架处于抗风模式时,将安装横梁转动至避风位置,然后通过锁紧组件锁紧安装横梁,以使安装横梁处于锁定状态,避免了安装横梁在大风条件下发生风致振动,提高了安装横梁的结构强度和抗扭能力,从而提高了安装横梁在大风条件下的稳定性,增强了太阳能跟踪支架在大风条件下的抗风能力,提高了太阳能跟踪支架的使用寿命。当太阳能跟踪支架处于正常运行模式时,锁紧组件松开安装横梁,从而保证太阳能跟踪支架的正常跟踪工作。
本发明还提供了一种光伏发电系统,通过应用上述太阳能跟踪支架,避免了安装横梁在大风条件下发生风致振动,提高了安装横梁的结构强度和抗扭能 力,从而提高了安装横梁在大风条件下的稳定性,增强了太阳能跟踪支架在大风条件下的抗风能力,提高了太阳能跟踪支架的使用寿命。也能够在正常环境下保证太阳能跟踪支架的正常跟踪工作。
附图说明
图1是本发明实施例一提供的太阳能跟踪支架的结构示意图;
图2是本发明实施例一提供的光伏发电系统连接关系的结构示意图;
图3是本发明实施例二提供的太阳能跟踪支架的结构示意图;
图4是本发明实施例二提供的安装横梁处于解锁状态的结构示意图;
图5是本发明实施例二提供的安装横梁处于锁定状态的结构示意图;
图6是本发明实施例三提供的太阳能跟踪支架的结构示意图;
图7是本发明实施例三提供的安装横梁处于解锁状态的正视图;
图8是本发明实施例三提供的安装横梁处于解锁状态的侧视图;
图9是本发明实施例三提供的安装横梁处于锁定状态的结构示意图;
图10是本发明实施例四提供的安装横梁处于解锁状态的侧视图。
图中:
100、太阳能跟踪支架;200、信号采集装置;300、跟踪控制器;400、回转驱动机构;
1、支撑立柱;11、第一固定销;
2、旋转主轴;
3、安装横梁;31、第二固定孔;
4、锁紧组件;41、第一牵引绳;42、锁紧斜梁;421、第一固定孔;43、驱动件;431、第二收卷装置;432、第二牵引绳;44、锁紧支架;441、锁紧横梁;442、锁紧立杆;4421、第二固定销;443、锁紧斜杆;45、回转电机。
具体实施方式
为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
在本发明的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成 一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“左”、“右”等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
实施例一
如图1所示,本实施例提供了一种太阳能跟踪支架100,用于支撑固定光伏组件,该太阳能跟踪支架100可以适用于多种光伏电站场景,例如平地光伏电站和水面打桩光伏电站,具有较高的通用性。具体而言,该太阳能跟踪支架100包括旋转主轴2、多个支撑立柱1以及多个安装横梁3,其中,旋转主轴2沿第一方向(图1中X方向)延伸,多个支撑立柱1沿X方向间隔排布,支撑立柱1的一端固定在基地上,支撑立柱1的另一端与旋转主轴2转动连接,多个支撑立柱1共同支撑旋转主轴2,多个安装横梁3沿X方向并排且间隔设置,安装横梁3固定在旋转主轴2上,安装横梁3用于支撑固定光伏组件。需要说明的是,多个安装横梁3沿X方向间隔排布的长度可根据光伏组件拼装的整体长度进行设定。
此外,如图2所示,本实施例还提供了一种光伏发电系统,包括上述太阳能跟踪支架100,该光伏发电系统还包括回转驱动机构400以及跟踪控制器300,其中,跟踪控制器300能够检测太阳光的照射角度,回转驱动机构400与 跟踪控制器300电连接,回转驱动机构400与太阳能跟踪支架100中的旋转主轴2相连接,跟踪控制器300能够控制回转驱动机构400驱动旋转主轴2相对于支撑立柱1旋转,旋转主轴2旋转带动多个安装横梁3共同旋转,多个安装横梁3旋转从而带动光伏组件旋转,保证太阳光能够始终垂直照射在光伏组件上,从而提升光伏组件的发电效率。
优选地,如图1所示,安装横梁3的中间位置固定在旋转主轴2上,使得安装横梁3能够横跨在旋转主轴2上,从而保证安装横梁3在旋转主轴2上固定的稳定性,也提高了安装横梁3对光伏组件支撑的稳定性。
当太阳能跟踪支架100在极端大风天气下,大风能够吹动安装横梁3,使得安装横梁3产生风致振动。随着光伏组件越来越大,安装横梁3的长度也越来越长,在极端大风天气下,安装横梁3很有可能被大风吹得绕旋转主轴2快速旋转而导致太阳能跟踪支架100结构失效甚至破坏。随着技术的发展,有的太阳能跟踪支架100通过在旋转主轴2的驱动摆臂上设置电动销紧装置,从而对旋转主轴2的旋转起到约束作用,起到抗风的目的,但是安装横梁3在大风的作用下仍然会产生一定的风致振动,降低抗风效果。
为了解决上述问题,如图1所示,本实施提供的太阳能跟踪支架100还包括锁紧组件4,锁紧组件4能够根据太阳能跟踪支架100的运行模式在锁定状态和解锁状态之间切换,其中,当锁紧组件4处于锁定状态时,锁紧组件4锁紧安装横梁3,以使安装横梁3的处于锁定状态,避免了安装横梁3在大风条件下发生风致振动,提高了安装横梁3的结构强度和抗扭能力,从而提高了安装横梁3在大风条件下的稳定性,增强了太阳能跟踪支架100在大风条件下的抗风能力,提高了太阳能跟踪支架100的使用寿命。此外,当锁紧组件4处于解锁状态时,锁紧组件4松开安装横梁3,保证安装横梁3在正常环境下处于正常的转动工作。
本实施例还提供了一种太阳能跟踪支架抗风方法,采用上述太阳能跟踪支架100进行抗风,太阳能跟踪支架抗风方法包括:
当太阳能跟踪支架100处于抗风模式时,安装横梁3转动至避风位置,锁紧组件4锁紧安装横梁3。
当太阳能跟踪支架100处于正常运行模式时,锁紧组件4松开安装横梁3。
此外,太阳能跟踪支架抗风方法还包括:
接收天气预报或风速传感器的预警信号,锁紧组件4处于锁定状态并锁紧安装横梁3。
当预警信号结束后,锁紧组件4处于解锁状态并松开安装横梁3。
优选地,如图2所示,本实施例提供的光伏发电系统还包括信号采集装置200,信号采集装置200用于采集风速信号,当风速信号超出预设值时,信号采集装置200发出预警信号,跟踪控制器300还与信号采集装置200通讯连接,跟踪控制器300根据接收的预警信号控制锁紧组件4处于锁定状态。
具体而言,信号采集装置200可以为气象监测系统或风速传感器,当气象监测系统或风速传感器发出预警信号时,跟踪控制器300首先控制回转驱动机构400驱动旋转主轴2相对于支撑立柱1旋转,使得安装横梁3带动光伏组件处于避风位置,例如可以为水平位置,然后跟踪控制器300控制锁紧组件4在避风位置锁紧安装横梁3,以使安装横梁3处于锁定状态。当气象监测系统或风速传感器结束预警信号时,跟踪控制器300控制锁紧组件4解除对安装横梁3的锁紧,以使安装横梁3的处于解锁状态,保证太阳能跟踪支架100对太阳光的正常跟踪旋转。
优选地,如图1所示,部分安装横梁3上设置有锁紧组件4,设置有锁紧组件4的安装横梁3沿X方向等间距间隔排布。该设置方式只需要在部分安装横梁3上设置锁紧组件4即可保证各个安装横梁3均能够处于锁定状态,使得整个太阳能跟踪支架100沿X方向延伸的各个位置的抗风效果相当,也降低了抗风成本。需要说明的是,锁紧组件4的数量和设置有锁紧组件4的安装横梁3的间隔的距离可根据当地具体的情况进行设计。
在本实施例中,如图1所示,锁紧组件4的一端与安装横梁3相连接,锁紧组件4的另一端与地基相连接,锁紧组件4能够将安装横梁3的两端锁紧固定在地基上,使得锁紧组件4在锁定状态下将安装横梁3的两端稳固锁紧在地基上,还可以用最少的材料提高安装横梁3的结构强度和抗扭能力,避免安装横梁3在大风状态下发生风致振动。
在本实施例中,如图1所示,锁紧组件4包括第一收卷装置以及第一牵引绳41,其中,第一收卷装置设置在安装横梁3上,安装横梁3的两端均连接有第一牵引绳41,两根第一牵引绳41分别从安装横梁3的两端释放至地 基上,并与地基相固定,两根第一牵引绳41均缠绕在第一收卷装置上,第一收卷装置能够同时收卷两根第一牵引绳41,以张紧两根第一牵引绳41。当气象监测系统或风速传感器发出预警信号时,跟踪控制器300控制回转驱动机构400驱动旋转主轴2相对于支撑立柱1旋转,使得安装横梁3带动光伏组件处于避风位置,然后跟踪控制器300控制第一收卷装置启动,第一收卷装置不断收卷第一牵引绳41,使得安装横梁3两端的第一牵引绳41与地基之间逐渐收紧,然后第一收卷装置收卷达到预设行程后会自动锁死,此时第一牵引绳41为安装横梁3的两端提供满足要求的朝向地基方向的拉力,使得第一牵引绳41为安装横梁3的两端提供强有力的支撑锁定,从而保证安装横梁3有效抵抗极端大风引起的风致振动。当天气预报或风速传感器的预警信号结束时,跟踪控制器300控制第一收卷装置释放第一牵引绳41,当第一牵引绳41释放完成后,保证第一牵引绳41具有足够的长度,保证太阳能跟踪支架100可以恢复正常运行。
具体而言,第一收卷装置可以为卷扬机,卷扬机具有体积小、重量轻的优点,可以减少安装横梁3对卷扬机的承重负担。此外,卷扬机还具有工作平稳、传动准确可靠的优点。第一牵引绳41可以为钢丝绳,钢丝绳具有自重重量轻、承载安全系数大、具有较高的抗拉强度以及抗疲劳强度的优点,提高了第一牵引绳41的使用寿命和工作可靠性。
此外,需要说明的是,卷扬机为电控装置,可以实现对卷扬机的程序控制和指令控制,通过跟踪控制器300实现对卷扬机的控制,提高整个光伏发电系统的自动化程度。
实施例二
本实施例公开的太阳能跟踪支架100的结构与实施例一基本相同,本实施例公开的太阳能跟踪支架100与实施例一的不同之处在于:
如图3所示,锁紧组件4能够将安装横梁3的两端支撑锁紧在与支撑立柱1上,使得锁紧组件4在锁定状态下为安装横梁3的两端提供可靠的支撑作用,还可以用最少的材料提高安装横梁3的结构强度和抗扭能力,避免安装横梁3在大风状态下发生风致振动。
具体而言,如图4~图5所示,本实施例提供的锁紧组件4包括锁紧斜42,安装横梁3的两端均铰接有锁紧斜梁42,锁紧斜梁42的自由端上开设 有第一固定孔421,支撑立柱1上对应设置有第一固定销11,第一固定销11能够贯穿固定在对应的第一固定孔421中,以使安装横梁3、两个锁紧斜梁42以及支撑立柱1在支撑立柱1的两侧均形成三角支撑结构。当安装横梁3处于锁定状态时,保证安装横梁3的两端均与支撑立柱1形成稳定的三角支撑结构,提高锁紧斜梁42对安装横梁3的锁定支撑效果,有效提高了旋转主轴2的抗扭强度,减少了安装横梁3的风致振动,同时也大幅提高了整个太阳能跟踪支架100整体的结构稳定性和结构强度。
需要说明的是,第一固定销11在支撑立柱1上的角度是依据锁紧斜梁42的自由端靠近支撑立柱1的角度确定,第一固定销11长度是依据第一固定孔421的深度确定,只要能够保证第一固定销11能够贯穿第一固定孔421即可。
需要说明的是,在其他实施例中,还可以在锁紧斜梁42的自由端上设置有第一固定销11,在支撑立柱1上对应开设有第一固定孔421,只要能够保证锁紧斜梁42的自由端能够与支撑立柱1相连接固定即可。
此外,如图4所示,锁紧组件4还包括驱动件43,驱动件43设置在锁紧斜梁42上,驱动件43能够驱动锁紧斜梁42绕着与安装横梁3的端部的铰接点进行转动,以使第一固定销11贯穿固定在第一固定孔421中。通过设置驱动件43,提高了锁紧组件4的自动化程度,更加便于进行操作。
现结合图4对驱动件43的具体结构进行说明,驱动件43包括第二收卷装置431以及第二牵引绳432,第二收卷装置431设置在锁紧斜梁42上,第二牵引绳432的一端与第二收卷装置431相连接,第二牵引绳432的另一端穿过第一固定孔421与第一固定销11相连接。当需要将安装横梁3进行锁定时,第二收卷装置431收卷第二牵引绳432,随着第二牵引绳432不断被收卷,锁紧斜梁42会绕着与安装横梁3的端部的铰接点进行旋转,直到第一固定销11贯穿固定在第一固定孔421中,此时,第二牵引绳432被张紧,并且第二收卷装置431达到预设行程实现锁定,从而保证锁紧斜梁42对安装横梁3支撑锁紧的稳定性。
当需要将安装横梁3进行解锁时,第二收卷装置431释放第二牵引绳432,使得第二牵引绳432处于放松状态,随着第二牵引绳432的释放以及锁紧斜梁42的自重,使得第一固定孔421会自动滑出第一固定销11,从而实 现对安装横梁3的解锁。需要说明的是,当第二牵引绳423被释放完成后,需要保证第二牵引绳432具有足够的长度,保证太阳能跟踪支架100可以恢复正常运行。
具体而言,第二收卷装置431可以为微型卷扬机,微型卷扬机具有体积小、重量轻的优点,可以减少锁紧斜梁42对微型卷扬机的承重负担。此外,微型卷扬机还具有工作平稳、传动准确可靠的优点。第二牵引绳432可以为钢丝绳,钢丝绳具有自重重量轻、承载安全系数大、具有较高的抗拉强度以及抗疲劳强度的优点,提高了第二牵引绳432的使用寿命和工作可靠性。
此外,需要说明的是,微型卷扬机为电控装置,可以实现对微型卷扬机的程序控制和指令控制,通过跟踪控制器300实现对卷扬机的控制,提高整个光伏发电系统的自动化程度。
实施例三
本实施例公开的太阳能跟踪支架100的结构与实施例二基本相同,本实施例公开的太阳能跟踪支架100与实施例二的不同之处在于:
如图6所示,锁紧组件4的结构不同。
具体而言,如图7~图9所示,本实施例提供的锁紧组件4包括回转电机45以及锁紧支架44,回转电机45设置在支撑立柱1上,锁紧支架44与回转电机45传动连接,锁紧支架44的两端上设置有第二固定销4421,安装横梁3的两端上开设有第二固定孔31,回转电机45能够为驱动锁紧支架44旋转,以使第二固定销4421插接固定在第二固定孔31中,从而保证锁紧组件4将安装横梁3的两端支撑锁紧在支撑立柱1上。
具体而言,当需要将安装横梁3进行锁定时,回转电机45驱动锁紧支架44相对于支撑立柱1进行旋转,直到锁紧支架44两端上的第二固定销4421插接固定在第二固定孔31中,此时,回转电机45停机锁定,从而保证锁紧支架44的稳定性。当需要将安装横梁3进行解锁时,回转电机45驱动锁紧支架44相对于支撑立柱1进行反向旋转,以使锁紧支架44两端上的第二固定销4421脱离第二固定孔31,从而实现锁紧支架44对安装横梁3的解锁。
需要说明的是,在其他实施例中,还可以在安装横梁3的两端上设置有第二固定销4421,锁紧支架44的两端上开设有第二固定孔31,只要能够保证安装横梁3的两端能够与锁紧支架44的两端相连接固定即可。
此外,需要说明的是,回转电机45为电控装置,可以实现对回转电机45的程序控制和指令控制,通过跟踪控制器300实现对回转电机45的控制,提高整个光伏发电系统的自动化程度。
优选地,如图9所示,当安装横梁3处于锁定状态时,锁紧支架44与旋转主轴2相垂直,锁紧支架44的两端恰好与安装横梁3的两端正对设置。如图7和图8所示,当安装横梁3处于解锁状态时,回转电机45可以驱动锁紧支架44位于与旋转主轴2相平行的位置,避免锁紧支架44对太阳能跟踪支架100的跟踪运行造成干涉,从而保证太阳能跟踪支架100可以恢复正常运行。
现结合图8和图9对锁紧支架44的具体结构进行说明,锁紧支架44包括锁紧横梁441以及锁紧立杆442,锁紧横梁441与回转电机45传动连接,锁紧横梁441的两端均连接有锁紧立杆442,锁紧立杆442的自由端上设置有第二固定销4421。需要说明的是,在本实施例中,锁紧横梁441的中间位置与回转电机45传动连接,可以保证锁紧横梁441旋转地更加平稳。需要说明的是,锁紧立杆442的高度可以是固定高度,也可以是高度可调节的结构,从而适应不同
规格或不同倾斜角度安装横梁3的支撑固定。具体而言,锁紧立杆442可以为液压升降杆、气动升降杆或者其他形式的升降杆。
实施例四
本实施例公开的太阳能跟踪支架100的结构与实施例三基本相同,本实施例公开的太阳能跟踪支架100与实施例三的不同之处在于:锁紧支架44的结构不同。
如图10所示,本实施例提供的锁紧支架44包括两组锁紧斜杆443,两组锁紧斜杆443分别位于支撑立柱1的两侧,锁紧斜杆443的一端与回转电机45传动连接,锁紧斜杆443的另一端上设置有第二固定销4421。当第二固定销4421插接固定在第二固定孔31中时,安装横梁3、两组锁紧斜杆443以及支撑立柱1在支撑立柱1的两侧均形成三角支撑结构。有效提高锁紧支架44对安装横梁3的支撑强度,减少安装横梁3的风致振动,同时也大幅提高整个太阳能跟踪支架100整体的结构稳定性和结构强度。此外,锁紧支架44通过两个锁紧斜杆443便可以实现对安装横梁3的支撑锁定,使用材料 少,进一步降低了成本。
显然,本发明的上述实施例仅仅是为了清楚说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (13)

  1. 一种太阳能跟踪支架,包括旋转主轴(2)、多个支撑立柱(1)以及安装横梁(3),所述旋转主轴(2)沿第一方向延伸,多个所述支撑立柱(1)沿所述第一方向间隔排布并且共同支撑所述旋转主轴(2),所述支撑立柱(1)与所述旋转主轴(2)的转动连接,所述安装横梁(3)固定在所述旋转主轴(2)上并用于固定光伏组件,其特征在于,所述太阳能跟踪支架还包括:
    锁紧组件(4),被配置根据所述太阳能跟踪支架的运行模式在锁定状态和解锁状态之间切换,其中,当所述锁紧组件(4)处于所述锁定状态时,所述锁紧组件(4)锁紧所述安装横梁(3);当所述锁紧组件(4)处于所述解锁状态时,所述锁紧组件(4)松开所述安装横梁(3)。
  2. 根据权利要求1所述的太阳能跟踪支架,其特征在于,所述安装横梁(3)设置有多个,多个所述安装横梁(3)沿所述第一方向并排且间隔设置,部分所述安装横梁(3)上设置有所述锁紧组件(4),设置有所述锁紧组件(4)的安装横梁(3)沿所述第一方向等间距间隔排布。
  3. 根据权利要求1~2任一项所述的太阳能跟踪支架,其特征在于,所述锁紧组件(4)的一端与所述安装横梁(3)相连接,所述锁紧组件(4)的另一端与地基或所述支撑立柱(1)相连接。
  4. 根据权利要求3所述的太阳能跟踪支架,其特征在于,所述锁紧组件(4)包括:
    第一收卷装置;以及
    第一牵引绳(41),所述安装横梁(3)两端连接的所述第一牵引绳(41)从所述安装横梁(3)的两端释放至所述地基上,并与所述地基相固定,所述第一收卷装置被配置为收卷所述第一牵引绳(41),以张紧所述第一牵引绳(41)。
  5. 根据权利要求3所述的太阳能跟踪支架,其特征在于,所述锁紧组件(4)包括:
    锁紧斜梁(42),所述安装横梁(3)的两端均铰接有所述锁紧斜梁(42),所述锁紧斜梁(42)的自由端和所述支撑立柱(1)两者中的一个上开设有第一固定孔(421),另一个上设置有第一固定销(11),所述第一固定销(11) 能够贯穿固定在所述第一固定孔(421)中,以使所述安装横梁(3)、两个所述锁紧斜梁(42)以及所述支撑立柱(1)在所述支撑立柱(1)的两侧均形成三角支撑结构。
  6. 根据权利要求5所述的太阳能跟踪支架,其特征在于,所述锁紧组件(4)还包括:
    驱动件(43),被配置为驱动所述锁紧斜梁(42)相对所述安装横梁(3)转动,以使所述第一固定销(11)贯穿固定在所述第一固定孔(421)中。
  7. 根据权利要求6所述的太阳能跟踪支架,其特征在于,所述驱动件(43)包括:
    第二收卷装置(431),设置在所述锁紧斜梁(42)上;以及
    第二牵引绳(432),所述第二牵引绳(432)的一端与所述第二收卷装置(431)相连接,所述第二牵引绳(432)的另一端穿过所述第一固定孔(421)与所述第一固定销(11)相连接。
  8. 根据权利要求3所述的太阳能跟踪支架,其特征在于,所述锁紧组件(4)包括:
    回转电机(45),设置在所述支撑立柱(1)上;以及
    锁紧支架(44),与所述回转电机(45)传动连接,所述锁紧支架(44)的两端和所述安装横梁(3)的两端两者中的一个上开设有第二固定孔(31),另一个上设置有第二固定销(4421),所述回转电机(45)被配置能够为驱动所述锁紧支架(44)旋转,以使所述第二固定销(4421)插接固定在所述第二固定孔(31)中。
  9. 根据权利要求8所述的太阳能跟踪支架,其特征在于,所述锁紧支架(44)包括:
    锁紧横梁(441),与所述回转电机(45)传动连接;以及
    锁紧立杆(442),所述锁紧横梁(441)的两端均连接有所述锁紧立杆(442),所述锁紧立杆(442)的自由端上设置有所述第二固定销(4421)。
  10. 根据权利要求8所述的太阳能跟踪支架,其特征在于,所述锁紧支架(44)包括两组锁紧斜杆(443),两组所述锁紧斜杆(443)分别位于所述支撑立柱(1)的两侧,所述锁紧斜杆(443)的一端与所述回转电机(45)传动连接,所述锁紧斜杆(443)的另一端上设置有所述第二固定销(4421)。
  11. 一种太阳能跟踪支架抗风方法,其特征在于,采用如权利要求1~10任一项所述太阳能跟踪支架进行抗风,所述太阳能跟踪支架抗风方法包括:
    当所述太阳能跟踪支架处于抗风模式时,所述安装横梁(3)转动至避风位置,所述锁紧组件(4)锁紧所述安装横梁(3);
    当所述太阳能跟踪支架处于正常运行模式时,所述锁紧组件(4)松开所述安装横梁(3)。
  12. 根据权利要求11所述的太阳能跟踪支架抗风方法,其特征在于,所述太阳能跟踪支架抗风方法还包括:
    接收天气预报或风速传感器的预警信号,所述锁紧组件(4)处于所述锁定状态并锁紧所述安装横梁(3);
    当所述预警信号结束后,所述锁紧组件(4)处于所述解锁状态并松开所述安装横梁(3)。
  13. 一种光伏发电系统,其特征在于,包括如权利要求1~10任一项所述太阳能跟踪支架,所述光伏发电系统还包括:
    信号采集装置(200),所述信号采集装置(200)为气象监测系统或风速传感器,所述信号采集装置(200)被配置采集风速信号,当所述风速信号超出预设值时,所述信号采集装置(200)发出预警信号;以及
    跟踪控制器(300),与所述信号采集装置(200)通讯连接,所述跟踪控制器(300)根据接收的所述预警信号控制所述锁紧组件(4)的状态。
PCT/CN2022/096587 2021-09-18 2022-06-01 一种光伏发电系统、太阳能跟踪支架及其抗风方法 WO2023040359A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111100970.5A CN115840470A (zh) 2021-09-18 2021-09-18 一种光伏发电系统、太阳能跟踪支架及其抗风方法
CN202111100970.5 2021-09-18

Publications (1)

Publication Number Publication Date
WO2023040359A1 true WO2023040359A1 (zh) 2023-03-23

Family

ID=85574264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096587 WO2023040359A1 (zh) 2021-09-18 2022-06-01 一种光伏发电系统、太阳能跟踪支架及其抗风方法

Country Status (2)

Country Link
CN (1) CN115840470A (zh)
WO (1) WO2023040359A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116488551A (zh) * 2023-04-24 2023-07-25 榆林环科实业有限公司 一种具有太阳能板的管廊构造
CN117691932A (zh) * 2024-02-01 2024-03-12 山西晋南钢铁集团有限公司 一种可跟随的光伏板安装支架
CN118508846A (zh) * 2024-07-17 2024-08-16 忻州格林贝斯新能源装备制造有限公司 一种支架安装方便的光伏太阳能设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117294233B (zh) * 2023-11-27 2024-01-30 江苏国强兴晟能源科技有限公司 一种光伏支架的跟踪系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100000516A1 (en) * 2003-04-02 2010-01-07 Conger Steven J Solar array support methods and systems
CN201467018U (zh) * 2009-07-06 2010-05-12 武汉耀晶光电科技有限公司 新型自重驱动式跟踪太阳装置
CN102299665A (zh) * 2011-08-17 2011-12-28 青岛哈工太阳能股份有限公司 基于dsPIC30F4013的太阳能跟踪控制系统
CN104660160A (zh) * 2015-02-26 2015-05-27 吴宣湖 双层追日光伏发电装置
CN204425253U (zh) * 2015-01-31 2015-06-24 广东大粤新能源科技股份有限公司 一种抗风支架结构
CN105656420A (zh) * 2015-05-20 2016-06-08 洛阳泰宏机械设备有限公司 一种抗风型太阳能光伏支架
CN107256035A (zh) * 2017-06-19 2017-10-17 西安理工大学 单轴光伏跟踪支架抗风用电动销紧装置及其控制方法
US20180062563A1 (en) * 2016-09-01 2018-03-01 Sunpower Corporation Torque tube coupler
CN108667398A (zh) * 2017-04-01 2018-10-16 青岛中科煜成安全技术有限公司 可旋转的太阳能板支架
CN212518869U (zh) * 2020-02-13 2021-02-09 深圳市安泰科能源环保有限公司 光伏支架和光伏发电装置
CN113037200A (zh) * 2021-03-26 2021-06-25 西安理工大学 单轴光伏跟踪器双单向电磁阀液压闭锁抗风控制系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100000516A1 (en) * 2003-04-02 2010-01-07 Conger Steven J Solar array support methods and systems
CN201467018U (zh) * 2009-07-06 2010-05-12 武汉耀晶光电科技有限公司 新型自重驱动式跟踪太阳装置
CN102299665A (zh) * 2011-08-17 2011-12-28 青岛哈工太阳能股份有限公司 基于dsPIC30F4013的太阳能跟踪控制系统
CN204425253U (zh) * 2015-01-31 2015-06-24 广东大粤新能源科技股份有限公司 一种抗风支架结构
CN104660160A (zh) * 2015-02-26 2015-05-27 吴宣湖 双层追日光伏发电装置
CN105656420A (zh) * 2015-05-20 2016-06-08 洛阳泰宏机械设备有限公司 一种抗风型太阳能光伏支架
US20180062563A1 (en) * 2016-09-01 2018-03-01 Sunpower Corporation Torque tube coupler
CN108667398A (zh) * 2017-04-01 2018-10-16 青岛中科煜成安全技术有限公司 可旋转的太阳能板支架
CN107256035A (zh) * 2017-06-19 2017-10-17 西安理工大学 单轴光伏跟踪支架抗风用电动销紧装置及其控制方法
CN212518869U (zh) * 2020-02-13 2021-02-09 深圳市安泰科能源环保有限公司 光伏支架和光伏发电装置
CN113037200A (zh) * 2021-03-26 2021-06-25 西安理工大学 单轴光伏跟踪器双单向电磁阀液压闭锁抗风控制系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116488551A (zh) * 2023-04-24 2023-07-25 榆林环科实业有限公司 一种具有太阳能板的管廊构造
CN116488551B (zh) * 2023-04-24 2023-11-21 榆林环科实业有限公司 一种具有太阳能板的管廊构造
CN117691932A (zh) * 2024-02-01 2024-03-12 山西晋南钢铁集团有限公司 一种可跟随的光伏板安装支架
CN117691932B (zh) * 2024-02-01 2024-04-26 山西晋南钢铁集团有限公司 一种可跟随的光伏板安装支架
CN118508846A (zh) * 2024-07-17 2024-08-16 忻州格林贝斯新能源装备制造有限公司 一种支架安装方便的光伏太阳能设备

Also Published As

Publication number Publication date
CN115840470A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2023040359A1 (zh) 一种光伏发电系统、太阳能跟踪支架及其抗风方法
CN108736817B (zh) 一种太阳能电池组件
US8631576B2 (en) Method for attaching rotor of wind turbine generator and method for constructing wind turbine generator
CN107256035B (zh) 单轴光伏跟踪支架抗风用电动销紧装置及其控制方法
CN107947711B (zh) 聚光型柔性双轴跟踪式光伏、光热支架
KR20140119281A (ko) 태양전지 어레이의 경사각 조절형 지지장치
CN218997994U (zh) 一种抗风型路灯太阳能板安装架体
KR101770091B1 (ko) 자연재해에 대응하는 구조를 갖춘 태양광 발전용 어레이
CN107947710A (zh) 一种智能太阳能供电设备及其控制方法
CN112027901A (zh) 一种大直径顶管施工用吊装装置
WO2023207528A1 (zh) 光伏组件的支架系统
KR20100096641A (ko) 기울기를 갖는 태양광 발전기용 풍해방지장치
KR100962558B1 (ko) 태양광 발전기용 풍해방지장치
CN116717431A (zh) 一种风能与光伏互补的风力机塔架
CN116054690A (zh) 柔性支架索结构及光伏柔性跟踪支架
JP3195783B1 (ja) シーソー式ソーラーシステム
CN217998896U (zh) 一种便于操作的滑动式悬挑硬防护施工平台
KR100968876B1 (ko) 풍력 발전기 설치용 크레인
CN113489444B (zh) 一种分布式光伏发电板可调式支架
CN110427053B (zh) 一种具有双层结构的预应力柔性支撑斜单轴跟踪系统
CN221502925U (zh) 一种建筑工程用防护装置
CN219420686U (zh) 一种光伏支架
CN214954698U (zh) 一种太阳能平单轴自动跟踪装置
CN218103040U (zh) 一种光伏板摆动支架
CN219124131U (zh) 一种光伏面板安装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE