WO2023040333A1 - 一种基于对等网络的网络选择方法及通信装置 - Google Patents

一种基于对等网络的网络选择方法及通信装置 Download PDF

Info

Publication number
WO2023040333A1
WO2023040333A1 PCT/CN2022/094964 CN2022094964W WO2023040333A1 WO 2023040333 A1 WO2023040333 A1 WO 2023040333A1 CN 2022094964 W CN2022094964 W CN 2022094964W WO 2023040333 A1 WO2023040333 A1 WO 2023040333A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
peer
terminal device
access
information
Prior art date
Application number
PCT/CN2022/094964
Other languages
English (en)
French (fr)
Inventor
李文正
朱强华
吴问付
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22868710.9A priority Critical patent/EP4391646A1/en
Publication of WO2023040333A1 publication Critical patent/WO2023040333A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a network selection method and a communication device based on a peer-to-peer network.
  • the non-public network is a non-public fifth generation (the 5th generation system, 5GS) communication network, which is used to provide network services for specific users.
  • the NPN may be implemented relying on the support of a public land mobile network (public land mobile network, PLMN) (also referred to as a public network for short), or may not depend on the support of the PLMN.
  • PLMN public land mobile network
  • SPNN independent deployment NPN (standalone NPN, SPNN) (also referred to as a private network or a dedicated network or a non-public network).
  • multiple access networks may exist simultaneously in the same coverage cell. And according to the agreement between the network operators of the PLMN and the NPN, for a specific terminal equipment (user equipment, UE), these access networks are in a peer-to-peer network relationship.
  • UEs accessing the SNPN cannot perform operations such as network selection, reselection, and handover between peer-to-peer networks to ensure service continuity.
  • the UE accessing the SNPN implements network selection, reselection or handover based on the UE's P2P network information, so as to ensure service continuity of the UE.
  • the embodiment of the present application provides a network selection method based on a peer-to-peer network, a network selection method based on a peer-to-peer network, including: the terminal device can determine the second network based on the information of the peer-to-peer network of the first network , the first network corresponds to the terminal device; the first network is an independently deployed non-public network SNPN; and the terminal device can also access the second network.
  • the network selection, reselection or switching of terminal equipment accessing the SNPN (that is, the first network) can be realized, and the target access network (that is, the second network) can be determined based on the SNPN peer-to-peer network, which can ensure that the terminal
  • the network quality of the target access network determined by the device improves the reliability of network selection, reselection and switching to ensure the continuity of business processing.
  • the terminal device is in an idle state, and the terminal device determines the second network based on the information of the peer-to-peer network of the first network, including: if the coverage area of the first network does not include the target residence area of the terminal device, and the coverage area of at least one of the peer-to-peer networks includes the target residence area, then the terminal device may determine the second network from the at least one peer-to-peer network .
  • the determination of the target access network based on the peer-to-peer network can realize the network selection in the mobility process of the terminal device in the idle state, thereby ensuring the network quality of the target access network determined by the terminal device, improving network selection, Reelection and switching reliability.
  • the terminal device determining the second network from the at least one peer-to-peer network includes: if there is at least one peer-to-peer SNPN in the peer-to-peer network, the terminal The device may determine the second network from the at least one peer-to-peer SNPN; if there is no peer-to-peer SNPN in the peer-to-peer network, the terminal device may set the access mode to public land mobile network PLMN access mode, determining said second network from said at least one said peer-to-peer network.
  • the peer-to-peer SNPN is preferentially selected from the peer-to-peer network, so that the terminal equipment can preferentially select the peer-to-peer SNPN as the target access network, thereby ensuring End device processing reliability.
  • the terminal device can also select the peer-to-peer PLMN after changing the access mode, which can better match the service processing scenario of the terminal device and ensure the continuity of the terminal device's business processing .
  • the method further includes: the terminal device may determine the target camping cell from the first cells in the target camping area, and the first cell corresponds to the first network or, the terminal device may determine the target cell to camp on from the second cell in the target camping area, the second cell is a cell corresponding to the second network, and the target camping area The cell does not include the cell corresponding to the first network.
  • the terminal device can further determine the target cell where it resides. If there is a cell corresponding to the first network in the target camping area of the terminal device, the terminal device does not need to change the network, just determine the target cell to camp on; if there is no cell corresponding to the first network in the target camping area of the terminal device, then The terminal device may preferentially determine whether there is a cell corresponding to the peer-to-peer network in the target camping area, and if so, preferentially access the cell corresponding to the peer-to-peer network. Therefore, the network quality of the target access network determined by the terminal device can be guaranteed, and the reliability of network selection, reselection, and handover can be improved, so as to ensure the continuity of service processing.
  • the first network may be the SNPN registered by the terminal device; or, the first network may be in the list of networks accessible to the terminal device, meeting the first priority requirement or, if the terminal device exits the SNPN access mode, the first network may be a PLMN that meets the requirements of the second priority in the network list that the terminal device can access.
  • the terminal device in addition to determining the target access network or target residential cell based on the peer-to-peer network accessing the SNPN, the terminal device can also determine other SNPNs or PLMNs that meet the priority requirements and their counterparts in the network list that the terminal device can access. Waiting for the network to determine the target access network or the target residential cell.
  • the terminal device can also select other accessible networks as the target access network and Determine the target cell to reside in, so as to ensure the network quality of the target access network determined by the terminal device, improve the reliability of network selection, reselection and handover, and ensure the continuity of business processing.
  • the terminal device is in a connected state, and the method further includes: the terminal device may receive first indication information from an access network device, and the first indication information is used to indicate that the The terminal device switches to the second network.
  • the terminal device can determine the target access network based on the indication of the access network device. It should be understood that the access network device may also determine the target access network for the terminal device based on the peer-to-peer network of the first network of the terminal device during implementation.
  • the terminal device resides on the first network, and the method further includes: the terminal device may receive second indication information from an access network device, and the second indication The information is used to instruct the terminal device to reselect to the second network.
  • the access network device can also determine a network with better network quality for the terminal device as the target access network of the terminal device, so that the target access network determined by the terminal device can be guaranteed.
  • the network quality of the incoming network is improved, and the reliability of network selection, reselection, and handover is improved to ensure the continuity of business processing.
  • the second indication information may be carried in a radio resource control RRC release message.
  • the RRC release message can indicate the network or cell reselection information of the terminal device, so that the network reselection of the terminal device can be performed to ensure that the terminal device accesses the target access network with better network quality.
  • the information of the peer-to-peer network of the first network may include a peer-to-peer network group, and the peer-to-peer network group may contain information of at least two networks, any two of the networks are peer-to-peer networks, and the network includes the first network.
  • the way of configuring the information of the peer-to-peer network for multiple terminal devices can be simplified through the form of the peer-to-peer network group.
  • the peer-to-peer network list corresponding to the access network configuration can determine the peer-to-peer network of any network by configuring multiple networks in the peer-to-peer network group, thereby improving configuration efficiency.
  • the embodiment of the present application provides a network selection method based on a peer-to-peer network, including: an access network device may determine a second network based on information of a peer-to-peer network of a first network, and the first network corresponds to the The access network device and the terminal device; the first network is SNPN; the access network device further includes sending instruction information to the terminal device, where the instruction information is used to instruct the terminal device to determine the second network.
  • the terminal device is in a connected state, and the access network device determines the second network based on the information of the peer-to-peer network of the first network, including: if the coverage area of the first network does not include The target camping area of the terminal device, and the coverage area of at least one of the peer-to-peer networks includes the target camping area, then the access network device may determine the target camping area from the at least one peer-to-peer network Describe the second network.
  • the method further includes: the access network device may determine, from the first cells in the target camping area, the target cell where the terminal device resides, and the first cell is the cell corresponding to the first network; or, the access network device may determine the target cell to camp on of the terminal device from the second cells in the target camping area, and the second cell is the cells corresponding to the second network, and cells in the target camping area do not include cells corresponding to the first network.
  • the first network may be the SNPN registered by the terminal device; or, the first network may be in the list of networks accessible to the terminal device, meeting the first priority requirement The SNPN.
  • the terminal device is in a connected state, and the access network device sends indication information to the terminal device, including: the access network device may send first indication information, and the first The instruction information may be used to instruct the terminal device to switch to the second network.
  • the terminal device resides on the first network, and the access network device sends indication information to the terminal device, including: the access network device may send second indication information , the second indication information may be used to instruct the terminal device to reselect to the second network.
  • the second indication information may be carried in an RRC release message.
  • the information of the peer-to-peer network of the first network may include a peer-to-peer network group, and the peer-to-peer network group may contain information of at least two networks, any two of the networks are peer-to-peer networks, and the network includes the first network.
  • the embodiment of the present application provides a communication device, which can have the function of realizing the above-mentioned first aspect or any possible design terminal equipment of the first aspect, or have the function of realizing the above-mentioned second aspect or the second The function of the access network device in any one possible design of the aspect.
  • the device may be a device or a chip included in the device.
  • the above-mentioned functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware, and the hardware or software includes one or more modules or units or means corresponding to the above-mentioned functions.
  • the structure of the device includes a processing module and a transceiver module, wherein the processing module is configured to support that the device may have a terminal in design that implements the first aspect or any possible design of the first aspect The function of the device, or the function of the access network device in the second aspect or any possible design of the second aspect.
  • the transceiver module is used to support the communication between the device and other communication devices, for example, when the device is a terminal device, it can receive instruction information from the access network device.
  • the communication device may also include a storage module, which is coupled to the processing module and stores necessary program instructions and data of the device.
  • the processing module may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory
  • the memory may be integrated with the processor or configured separately from the processor.
  • the structure of the device includes a processor, and may also include a memory.
  • the processor is coupled with the memory, and can be used to execute the computer program instructions stored in the memory, so that the apparatus performs the method in any one possible design of the above-mentioned aspects or aspects.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver or an input/output interface; when the device is a chip included in the access network device, the communication interface may be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a chip system, including: a processor, the processor is coupled to a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor , so that the system-on-a-chip implements the above aspects or any possible design method of the aspects.
  • the chip system further includes an interface circuit, which is used for exchanging code instructions to the processor.
  • processors in the chip system, and the processors may be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software codes stored in a memory.
  • the memory can be integrated with the processor, or can be set separately from the processor.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be respectively disposed on different chips.
  • the embodiment of the present application provides a computer-readable storage medium on which a computer program or instruction is stored, and when the computer program or instruction is executed, the computer can perform any of the above-mentioned aspects or any one of the possible aspects. method in the design.
  • the embodiment of the present application provides a computer program product, which, when a computer reads and executes the computer program product, causes the computer to execute the method in any possible design of the above aspects or aspects.
  • Figure 1a is a schematic diagram of a network architecture of a communication system applicable to the present application
  • FIG. 1b is a schematic diagram of a network architecture of a (wireless) access network device applicable to the present application
  • FIG. 2 is a schematic diagram of a network architecture of a 5G communication system applicable to the present application
  • FIG. 3 shows another possible network architecture to which this embodiment of the present application is applicable
  • FIG. 4 shows a schematic diagram of a scene of a peer-to-peer network-based network selection method applicable to an embodiment of the present application
  • FIG. 5 shows a schematic flow chart of a registration process of a UE applicable to the embodiment of the present application
  • FIG. 6 is a schematic flow diagram of obtaining information of a peer-to-peer network for the (R)AN provided in the embodiment of the present application;
  • FIG. 7 is a schematic flowchart of a network selection method based on a peer-to-peer network provided by an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of another network selection method based on a peer-to-peer network applicable to the embodiment of the present application
  • FIG. 9 is another schematic flowchart of a network selection method based on a peer-to-peer network provided by an embodiment of the present application.
  • FIG. 10 is a schematic flow diagram of an access network device performing network handover provided in an embodiment of the present application.
  • FIG. 11 is another schematic flow diagram of the network switching performed by the access network device provided by the embodiment of the present application.
  • FIG. 12 is another schematic flowchart of a network selection method based on a peer-to-peer network provided by an embodiment of the present application.
  • FIG. 13 is another schematic flowchart of a network selection based on a peer-to-peer network provided by an embodiment of the present application
  • FIG. 14 , FIG. 15 or FIG. 16 is a schematic structural diagram of a communication device provided in an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5G fifth generation mobile communication system or new radio (new radio, NR) system
  • future communication systems or other similar communication systems etc.
  • FIG. 1 a is a schematic diagram of a network architecture of a communication system applicable to this application.
  • the network architecture includes four components, namely terminal equipment (user equipment, UE), access network (access network, AN), core A network (core) and a data network (data network, DN), wherein the access network may be a radio access network (radio access network, RAN).
  • UE terminal equipment
  • AN access network
  • core core
  • data network data network
  • DN data network
  • the access network may be a radio access network (radio access network, RAN).
  • radio access network radio access network
  • Terminal equipment, (wireless) access network and core network are the main parts of the above network architecture. Logically, they can be divided into two parts: the user plane and the control plane.
  • the control plane is responsible for the management of the mobile network
  • the user plane is responsible for the transmission of business data.
  • the next generation (next generation, NG) 2 reference point is located between the (wireless) access network control plane and the core network control plane
  • the NG3 reference point is located in the (wireless) ) between the user plane of the access network and the user plane of the core network
  • the NG6 reference point is located between the user plane of the core network and the data network.
  • Terminal equipment is a device with wireless transceiver function, which is the entrance for mobile users to interact with the network. It can provide basic computing power and storage capacity, display business windows to users, and accept user input.
  • the terminal device can communicate with the core network or the data network via the (wireless) access network, exchange voice and/or data with the (wireless) access network.
  • a next-generation terminal device (NextGen UE, NG UE) can adopt a new air interface (new radio, NR) technology to establish a signal connection and a data connection with a (wireless) access network, thereby transmitting control Signal and business data to the network.
  • NextGen UE NextGen UE
  • NG UE new air interface
  • NR new radio
  • the terminal device may include a wireless terminal device, a mobile terminal device, a device to device (device to device, D2D) terminal device, a vehicle networking (vehicle to everything, V2X) terminal device, a machine to machine/machine type communication (machine -to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (Internet of things, IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent) or user equipment (user device) etc.
  • IoT Internet of things
  • IoT Internet of things
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • Remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access terminal
  • user terminal user
  • the terminal device may be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, a portable, pocket-sized, hand-held, computer built-in mobile device, and the like.
  • the terminal device may also be a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, a wireless terminal in industrial control (industrial control), or a wireless terminal in unmanned driving (self driving).
  • Wireless terminals wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, smart home Wireless terminals in (smart home), terminal equipment in the future evolution of public land mobile network (PLMN), or vehicle equipment in V2X, customer premises equipment (CPE), etc.
  • the terminal equipment can also be a personal communication service (personal communication service, PCS) phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital Assistant (personal digital assistant, PDA) and other equipment.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc., which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • Terminal equipment can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as on aircraft, balloons and satellites, etc.).
  • the embodiment of the present application does not limit the specific technology, device form, application scenario and name adopted by the terminal device.
  • the (wireless) access network is deployed close to the terminal equipment, provides network access functions for authorized users in a specific area, and can determine transmission tunnels of different qualities to transmit user data according to user levels and service requirements.
  • the (wireless) access network can manage and rationally utilize its own resources, provide access services for terminal equipment on demand, and be responsible for forwarding control signals and business data between terminal equipment and the core network.
  • a (wireless) access network device is deployed in the (wireless) access network for connecting the terminal device to the wireless network.
  • the (wireless) access network equipment can generally be connected to the core network via wired links (eg fiber optic cables).
  • a (wireless) access network device may also be called a RAN device/node, or a base station.
  • the (wireless) access network equipment may include a base station, an evolved base station (evolved NodeB, eNodeB) in an LTE system or an evolved LTE system (LTE-Advanced, LTE-A), and a next-generation node in a 5G communication system.
  • Base station nodeB, gNB
  • transmission reception point transmission reception point, TRP
  • base band unit base band unit
  • BBU base band unit
  • access point access point
  • AP access point
  • wireless local area networks wireless local area networks
  • WLAN wireless local area networks
  • IAB integrated access and backhaul
  • the radio access network device may also be a module or unit that completes some functions of the base station, such as a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the (wireless) access network device may be a CU node, or a DU node, or a (wireless) access network device including a CU node and a DU node, as shown in Figure 1b of this application
  • the CU node is used to support radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP), service data adaptation protocol (service data adaptation protocol, SDAP) and other protocols; It supports radio link control (radio link control, RLC) layer protocol, media access control (medium access control, MAC) layer protocol and physical layer protocol.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • service data adaptation protocol service data adaptation protocol
  • SDAP service data adaptation protocol
  • RLC radio link control
  • media access control medium access control
  • physical layer protocol physical layer protocol
  • (Wireless) access network equipment can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle; can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc. ).
  • the embodiment of the present application does not limit the specific technology, device form, application scenario and name adopted by the (wireless) access network device.
  • the (wireless) access network device may be referred to as an access network (AN) device for short.
  • AN access network
  • all the access network devices hereinafter may be (wireless) access network devices.
  • the core network is responsible for maintaining the subscription data of the mobile network, managing network elements of the mobile network, and providing functions such as session management, mobility management, policy management, and security authentication for terminal devices. Specifically include: when the terminal device is attached, provide network access authentication for the terminal device; when the terminal device has a service request, allocate network resources for the terminal device; when the terminal device moves, update network resources for the terminal device; when the terminal device is idle When the terminal device is connected, it provides a fast recovery mechanism for the terminal device; when the terminal device is detached, it releases network resources for the terminal device; when the terminal device has business data, it provides data routing functions for the terminal device, such as forwarding uplink data to the data network, Or receive downlink data from the data network and forward it to the (wireless) access network, so as to send it to the terminal device.
  • data routing functions for the terminal device such as forwarding uplink data to the data network, Or receive downlink data from the data network and forward it to the (wireless) access network, so as to send it to the terminal device.
  • the data network is used to provide business services to users.
  • the client is usually located in the terminal device, and the server is usually located in the data network.
  • the data network can be a private network, such as a local area network, or an external network not controlled by the operator, such as the Internet (Internet), or a proprietary network jointly deployed by the operator, such as providing an IP multimedia network subsystem (IP multimedia network subsystem). core network subsystem, IMS) service network.
  • IP multimedia network subsystem IP multimedia network subsystem
  • IMS core network subsystem
  • FIG. 2 shows a more specific network architecture applicable to this embodiment of the present application, and the network architecture may be a network architecture of a 5G communication system.
  • the network architecture includes terminal equipment, access network equipment, various types of core network elements/functional entities, and data networks.
  • the core network user plane includes a user plane function (user plane function, UPF).
  • the core network control plane includes but is not limited to: access and mobility management function (access and mobility management function, AMF), session management function (session management function, SMF), authentication server function (authentication server function, AUSF), network slicing Selection function (network slice selection function, NSSF), network exposure function (network exposure function, NEF), network function repository function (network function repository function, NRF), policy control function (policy control function, PCF), unified data management ( unified data management, UDM), application function (application function, AF).
  • access and mobility management function access and mobility management function, AMF
  • session management function session management function, SMF
  • authentication server function authentication server function
  • AUSF authentication server function
  • network slicing Selection function network slice selection function, NSSF
  • network exposure function network exposure function
  • NRF network function repository function
  • policy control function policy control function
  • PCF policy control function
  • UDM application function
  • application function application function
  • the AMF is mainly responsible for the access management and mobility management of terminal equipment, such as the status maintenance of terminal equipment, reachability management of terminal equipment, non-mobility management access layer (mobility management non-access-stratum, MM NAS) message forwarding, session management (session management, SM) N2 message forwarding.
  • terminal equipment such as the status maintenance of terminal equipment, reachability management of terminal equipment, non-mobility management access layer (mobility management non-access-stratum, MM NAS) message forwarding, session management (session management, SM) N2 message forwarding.
  • SMF is mainly responsible for session management in mobile networks, including establishing sessions for terminal devices, allocating and releasing resources for sessions, where resources include session quality of service (QoS), session paths, forwarding rules, etc. For example, assigning an Internet protocol (internet protocol, IP) address to the terminal device, selecting a UPF that provides a message forwarding function, and the like.
  • IP Internet protocol
  • the UPF is mainly responsible for connecting to the external network and forwarding user data packets according to the routing rules of the SMF. For example, the uplink data is sent to the data network or other UPFs, and the downlink data is sent to other UPFs or access network devices.
  • AUSF is mainly responsible for performing security authentication of terminal equipment.
  • NSSF is mainly responsible for selecting appropriate network slices for terminal services.
  • NEF exposes parts of the network to applications in a controlled manner.
  • the NRF is mainly responsible for providing storage and selection functions for network function entity information for other network elements.
  • PCF is mainly responsible for user policy management, including the generation of policy authorization, service quality and charging rules, and sends the corresponding rules to UPF through SMF to complete the installation of corresponding policies and rules.
  • UDM is mainly responsible for managing user data, including subscription information, context, policy information, etc.
  • the network architecture shown in FIG. 2 may also include a unified data repository (unified data repository, UDR), and the function of the UDM may be implemented through interaction with the UDR.
  • UDR unified data repository
  • the UDR is used to store the data required by the UDM to perform its operations, and the UDM is used to interact with other network elements.
  • the UDM and the UDR may be two independent physical entities, and the UDR may also be integrated in the UDM, which is not limited.
  • the AF is mainly responsible for providing service data of various applications to the control plane network elements of the operator's communication network, or obtaining network data information and control information from the control plane network elements of the communication network.
  • the interface between the terminal device and the AMF is called the N1 interface
  • the interface between the access network device and the AMF is called the N2 interface
  • the interface between the access network device and the UPF The interface is called N3 interface
  • the interface between UPF and SMF may be called N4 interface
  • the interface between UPF and data network is called N6 interface.
  • the names of these interfaces may remain unchanged, or may be replaced by other names, which is not limited in this application.
  • control plane of the core network can adopt a service-oriented architecture.
  • Each control plane network element is connected to a service bus, and the interaction between the control plane network elements adopts the method of service invocation to replace the traditional core network architecture.
  • Point-to-point communication In the service-oriented architecture, the control plane network element will open services to other control plane network elements for other control plane network elements to call. In point-to-point communication, there will be a set of specific messages on the communication interface between the control plane network elements, which can only be used by the control plane network elements at both ends of the interface during communication.
  • FIG. 3 shows another possible network architecture to which the embodiment of the present application is applicable.
  • the network architecture includes a visited network and a home network of a terminal device, and the visited network and the home network coexist and communicate with each other.
  • the visited network may be a visited PLMN or a visited NPN.
  • the visited network indicates the network that the terminal device accesses in the current area, and the visited network may be the same network as the home network, or may be a different network.
  • the mobile country code (mobile country code, MCC) and mobile network code (mobile network code, MNC) contained in the international mobile subscriber identity (IMSI) of the terminal device are the same as those in the visited network. MCC and MNC may not be completely consistent.
  • MCC mobile country code
  • MNC mobile network code contained in the international mobile subscriber identity
  • the home network may be a home PLMN, or a home NPN, indicating the network to which the user belongs.
  • the MCC and MNC included in the user's IMSI on the terminal device are consistent with the MCC and MNC in the home network, and for a certain user, there is only one home network.
  • the visited network can communicate with the home security edge protection proxies (hSEPP) in the home network through the visited security edge protection proxies (vSEPP).
  • hSEPP home security edge protection proxies
  • vSEPP visited security edge protection proxies
  • the vSEPP and hSEPP establish a connection through the N32 interface and implement protection policies to process each control plane message in the cross-network signaling.
  • the vSEPP and hSEPP can strengthen the internal security of the network, and can ensure the security of control plane information between networks, thereby protecting the security of the network where the SEPP is located from external attacks.
  • NSSAAF network slice-specific authentication and authorization function
  • network elements/functional entities in the various possible network architectures above can be network elements in hardware devices, software functions running on dedicated hardware, or platforms (for example, cloud platforms)
  • the virtualization function instantiated on can be implemented by one device, or jointly implemented by multiple devices, or may be different functional modules in one device, which is not specifically limited in this embodiment of the present application.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the evolution of the system architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments of the present application are also applicable to similar technical problems.
  • “Multiple” means two or more, and in view of this, “multiple” can also be understood as “at least two” in the embodiments of the present application.
  • “At least one” can be understood as one or more, such as one, two or more. For example, including at least one means including one, two or more, and does not limit which ones are included. For example, where at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C may be included. Similarly, the understanding of descriptions such as “at least one" is similar.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one of A, B and C includes A, B, C, AB, AC, BC or ABC.
  • And/or describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character "/”, unless otherwise specified, generally indicates that the associated objects before and after are in an "or” relationship.
  • ordinal numerals such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects, and The descriptions of “first” and “second” do not limit that the objects must be different.
  • FIG. 4 shows a schematic diagram of a scene of a network selection method based on a peer-to-peer network to which this embodiment of the present application is applicable.
  • This application scenario includes PLMN and NPN.
  • the NPN also includes the NPN that relies on the support and implementation of the PLMN, called public network integrated NPN (public network integrated NPN, PNI-NPN); and the SPN that does not depend on the support and implementation of the PLMN.
  • public network integrated NPN public network integrated NPN
  • PLMN In daily life, it is generally the PLMN that provides network services for UEs.
  • PLMN is a network established and operated by the government or its approved operators to provide land mobile communication services for the public. Different PLMNs may be distinguished by different PLMN identifications (identification, ID).
  • PLMN ID consists of mobile country code (mobile contrary code, MCC) and mobile network number (mobile net code, MNC).
  • MCC mobile country code
  • MNC mobile network number
  • MNC mobile network number
  • MCC mobile country code
  • MNC mobile network number
  • PLMN selection may include the following steps:
  • the access stratum (access stratum, AS) of the UE scans radio frequency (radio frequency, RF) channels (channels) of all NR frequency bands (band) according to its own capabilities to find available PLMNs.
  • the UE will find out the cell with the best RSRP in each frequency point, and then read the system information block 1 (system information block 1, SIB1) of the cell to obtain the PLMN ID.
  • system information block 1, SIB1 system information block 1, SIB1
  • the AS of the UE reports the PLMN list (list) to the non-access stratum (NAS) of the UE, and the PLMN list includes the PLMN ID obtained by the AS of the UE.
  • list the PLMN list
  • NAS non-access stratum
  • the NAS of the UE After receiving the PLMN list reported by the UE's AS, the NAS of the UE will select one of the PLMN IDs as the PLMN used by the UE.
  • the searched PLMN can be any of the following PLMNs: registered PLMN (registered PLMN, RPLMN), RPLMN is the PLMN registered before the UE shuts down or goes offline; or, equivalent PLMN (equivalent PLMN, EPLMN) , the EPLMN is the PLMN with the same priority as the PLMN currently selected by the UE; or, the home PLMN (home PLMN, HPLMN), the identity of the HPLMN is stored in the mobile phone customer identity module (subscriber identity module, SIM) card, each SIM The card has only one HPLMN, which is burned in when leaving the factory; or, equivalent HPLMN (equivalent HPLMN, EHPLMN), PLMN with the same priority as HPLMN.
  • registered PLMN registered PLMN
  • RPLMN is the PLMN registered before the UE shuts down or goes offline
  • equivalent PLMN equivalent PLMN
  • EPLMN Equivalent PLMN
  • the EPLMN is the
  • the UE's NAS after the UE's NAS selects the PLMN ID, it can provide the UE's AS with an EPLMN list and a forbidden tracking area (forbidden tracking area, forbidden TA) according to the selected PLMN ID.
  • the UE's AS can be banned according to the EPLMN list and The selected TA performs cell selection and reselection.
  • the access network device can use a closed access group (closed access group, CAG) function.
  • the CAG function refers to: on the one hand, the CAG cell broadcasts one or more CAGs supported by it, each CAG can identify a group of UEs, only the UEs in the group are allowed to access the corresponding CAG cell, and other UEs are not allowed; on the other hand
  • configure the CAG subscription for the UE inform the UE whether it can only access 5GS through the CAG cell, and which CAGs it is allowed to access (or which CAGs are available). In this way, in 5GS, the CAG cell can decide whether to allow the UE to access according to the UE's CAG subscription.
  • the UE3 when the UE performs network handover in 5GS, if the target cell is a CAG cell, and none of the CAG identities supported by the CAG cell is part of the CAG subscription list of the UE (UE3 in Figure 4), the UE3's The source access network shall not handover the UE to the target access network, or the target cell shall reject the N2-based handover procedure. If the UE is only allowed to access 5GS through a CAG cell, the source access network of the UE should not handover the UE to a non-CAG cell, or the target access network should reject the handover process based on N2; as shown in UE2 in Figure 4, UE2 is restricted Access to non-CAG cells.
  • the SNPN can generally provide a network for a specific UE, such as a specific campus or factory.
  • SNPN can use different NPN IDs to distinguish different SNPNs.
  • NPN ID shown in FIG. 4 is N.
  • PLMN ID and NPN ID can be an inherent value reserved by a third-party operator, or it can be a specific value of the PLMN operator deploying this SNPN.
  • the cell corresponding to the SNPN can broadcast the PLMN ID and NPN ID that identify the cell through a broadcast message.
  • the UE selects whether to access the SNPN according to the cell broadcast information and the list of accessible networks. If the UE finds that the list of accessible networks contains the NPN ID or PLMN ID and NPN ID corresponding to the broadcast message of the SNPN, the UE can access the SNPN; otherwise, the UE will not access the SNPN.
  • Fig. 5 shows a schematic flowchart of a UE registration process used in the embodiment of the present application.
  • the UE can obtain the information of the pre-configured P2P network corresponding to the SNPN, so as to further implement network selection based on the obtained P2P network of the UE.
  • Figure 5 may include the following steps:
  • the UE sends a registration request to the (R)AN.
  • the UE may be implemented to send a Registration Request message to the (R)AN in the visited network, so as to initiate a general registration process.
  • the (R)AN can be used to connect the UE to the SNPN.
  • the (R)AN performs AMF selection based on the identity information of the UE.
  • the (R)AN forwards the registration request to the AMF through the N2 message.
  • the N2 message can be an uplink NAS transport or an initial UE message.
  • S514a-S514c are the interaction process between the AMF and the UDM.
  • the AMF registers with the UDM, and subscribes to a notification notifying the AMF when the AMF deregisters with the UDM.
  • the AMF requests subscription information.
  • the subscription information includes information of a peer-to-peer network of the UE.
  • the AMF and the UDM exchange Nudm_SDM_Get Request/Response messages, so that the AMF obtains the subscription information of the UE from the UDM.
  • the information of the peer-to-peer network may be in the form of a peer-to-peer network list shown in Table 1-1, or in the form of a peer-to-peer network group shown in Table 1-2, or other peer-to-peer networks that can represent UEs. form of information.
  • AMF subscription information change notification When this application is implemented, if the UE's P2P network information is updated, the AMF can obtain the updated subscription information from the UDM, and the updated subscription information includes the updated P2P network information.
  • the UE receives registration acceptance information sent by the new AMF.
  • the registration acceptance information includes the information of the peer-to-peer network.
  • the UE updates and replaces the information of the peer-to-peer network stored in the UE.
  • the (R)AN may also acquire the information of the peer-to-peer network of the UE.
  • FIG. 6 is a schematic flow diagram of obtaining information of a peer-to-peer network for the (R)AN provided in the embodiment of the present application.
  • the (R)AN may acquire and update the information of the peer-to-peer network of the access network of the UE through the UE initial context establishment process or the UE context modification process.
  • the UE initial context establishment process shown in (a) in FIG. 6 includes: S601a, (R)AN receives the initial context establishment request sent by the new AMF. S602a, the (R)AN sends an initial context establishment response to the new AMF.
  • the information of the peer-to-peer network of the UE may be carried in the initial context establishment request, so as to enable the (R)AN to acquire the information of the peer-to-peer network.
  • the UE context modification process shown in (b) in FIG. 6 includes: S601b, (R)AN receives the context modification request sent by the new AMF. S602b, (R)AN sends a context modification response to the new AMF.
  • the UE's peer-to-peer network information may be carried in the context modification request, so as to enable the (R)AN to update the peer-to-peer network information.
  • the UE and the AMF can obtain or update the information of the peer-to-peer network of the UE during the process of registering the SNPN of the UE;
  • (R)AN can obtain or update the information of the peer-to-peer network of the UE during the process of establishing the initial context of the UE or the process of modifying the UE context Update the information of the peer-to-peer network of the UE. Therefore, in the scenario where the UE needs to select a network, the process of selecting a target access network for the UE can be performed based on the information of the UE's peer-to-peer network, thereby further improving the efficiency of the UE in scenarios such as cell handover or camping.
  • an embodiment of the present application provides a network selection method based on a peer-to-peer network, and a UE accessing the SNPN implements network selection, reselection, or handover based on the UE's peer-to-peer network information.
  • the embodiment of the present application also provides a technical solution that can support the configuration of the information of the peer-to-peer network of the UE's access network, that is, determine the peer-to-peer network of the UE's access network through the peer-to-peer network group.
  • the design concept of the embodiment of the present application is that during the process of UE initiating registration in the SNPN, the UE can obtain or update the information of the peer-to-peer network of the SNPN that the UE accesses, as shown in FIG. 5 , the registration process of the UE. That is, the information of the peer-to-peer network of the UE. It should be noted that, as the access network of the UE changes, the information of the peer-to-peer network of the UE will also be updated. Based on this, when the UE needs to perform network selection, reselection or handover, etc., it can perform network selection based on the UE's peer-to-peer network information, thereby better ensuring service continuity.
  • the information of the peer-to-peer network of the UE is pre-configured when the present application is implemented.
  • the pre-configured P2P network information may be stored in the UDM of the UE's home SNPN and/or in the UE itself as part of the subscription information of the UE.
  • the UE can store the information of the peer-to-peer network of the SNPN obtained during the registration process in the UDM and the UE, as the information of the peer-to-peer network of the UE's access network; and, If the UE’s peer-to-peer network information is stored in the UDM and the UE, as the UE’s access network changes, the UE can update and store the updated peer-to-peer network information obtained during the registration process as the peer-to-peer network information of the new UE. and other network information, so as to facilitate subsequent network selection, reselection or handover by the UE.
  • a configuration method of P2P network information provided in this embodiment of the present application is in the form of a P2P network list (equivalent list).
  • a P2P network list (equivalent list).
  • the configured peer-to-peer network information of the SNPNA network can be shown in the following table 1-1:
  • the UE access network is SNPN A
  • the UE performs network selection, reselection or handover it can be considered to switch to the peer-to-peer network SNPN B or SNPN C of SNPN A middle.
  • the UE can implement network selection based on the information of the peer-to-peer network, thereby better ensuring service continuity.
  • the number of peer-to-peer networks of the UE is not limited when the application is implemented, and may be determined according to the actual situation of the UE.
  • each access network having the peer-to-peer network is respectively configured with a corresponding equivalent list, which may or may not be the same.
  • the equivalent list corresponding to the UE access network can be SNPN A and SNPN C.
  • P2P network information configuration method provided in the embodiment of the present application is in the form of a P2P network group (equivalent group).
  • a P2P network group (equivalent group).
  • the configured peer-to-peer network information of the SNPNA network can be shown in the following table 1-2:
  • information of multiple access networks can be included in an equivalent group, and any two access networks are peer-to-peer networks.
  • the UE's source access network is SNPN A
  • the equivalent group 1 shown in Table 1-2 it can be determined that the peer-to-peer networks of SNPN A are SNPN B and SNPN C; or, if the UE's source access network is SNPN C, according to the equivalent group 1 shown in Table 1-2, it can be determined that the peer-to-peer network of SNPN C is SNPN A and SNPN B.
  • the UEs that access SNPN A, SNPN B, and SNPN C respectively can obtain the information of the same peer-to-peer network (such as the peer-to-peer network group shown in Table 1-2), and then according to the UE's access network
  • the peer-to-peer network of the UE is determined with the peer-to-peer network group shown in Table 1-2.
  • each equivalent group can be distinguished by different group identifiers, as shown in Table 1-2, it is equivalent group 1, and there may also be equivalent group 2, and the equivalent group 2 can include the access network SNPN D, SNPN E, SNPPN F, etc.
  • the configuration mode of the peer-to-peer network group can also be applied to the scenario where the UE accessing the PLMN performs network selection.
  • the information of the peer-to-peer network can not only be in the form of an EPLMN list, but also use the peer-to-peer network group provided in the embodiment of this application. form.
  • the manner of configuring the information of the peer-to-peer network for multiple UEs can be simplified by using the form of the peer-to-peer network group.
  • the configuration method of the peer-to-peer network group does not need to Enter the peer-to-peer network list corresponding to the network configuration.
  • the following takes the UE as an example to introduce the network selection method based on the peer-to-peer network provided by the embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a network selection method based on a peer-to-peer network provided by an embodiment of the present application. Include the following steps:
  • Step 701 the UE determines a second network based on the information of the peer-to-peer network of the first network, the first network corresponds to the UE; the access mode of the UE is an independently deployed non-public network SNPN access mode, so The first network is the SNPN.
  • the UE may determine that the peer-to-peer network of SNPN A includes SNPN B and SNPN C based on the information of the peer-to-peer network of the first network.
  • the UE needs to perform network selection, it can determine the second network, that is, the target access network, based on the peer SNPN B and the peer SNPN C of the SNPNA A.
  • Step 702 the UE accesses the second network.
  • MM mobility management
  • the relevant processes involved are not interrupted due to the movement of the UE, collectively referred to as mobility management (MM).
  • MM mobility management
  • the UE is in the idle state, MM mainly refers to the process of cell selection/reselection; when the UE is in the connected state, MM mainly refers to the process of cell handover.
  • FIG. 8 shows a schematic diagram of another network selection method based on a peer-to-peer network applicable to the embodiment of the present application.
  • cell 1-1, cell 1-2, and cell 1-3 belong to different cells under one network, and the network is called network 1, and cell 2-1 and cell 2-2 belong to different cells under another network.
  • the network is called Network 2, and Network 1 and Network 2 are peer-to-peer networks.
  • Figure 8 can contain three types of scenarios, as follows:
  • CM-idle state For a UE in the connection management (CM)-idle state, during UE movement, if the coverage area of the first network (that is, the source access network) accessed by the UE is not If the target camping area of the UE is included, the UE may trigger network selection.
  • the UE in the CM-idle state represents a state in which the UE realizes registration but has no signaling interaction with the AMF.
  • the network deletes resources to transmit data temporarily, so the UE needs to establish a connection with the AMF access management function. This process is called CM .
  • An optional implementation manner is that, if the coverage area of at least one peer-to-peer network of the first network includes the target camping area of the UE, the UE determines the target access network from the at least one peer-to-peer network. Then, the UE accesses the target access network. Therefore, the efficiency of network selection can be improved, and the network service of the UE is not interrupted and the service continuity is guaranteed.
  • UE1 is in CM-idle state
  • the source access network of UE1 is network 2
  • UE1 accesses cell 2-2 included in network 2
  • UE1 moves according to the moving direction shown in FIG. 8 .
  • the network 2 cannot cover the UE1's target camping area, and the coverage area of the cells 1-3 includes the UE's target camping area.
  • the UE can determine that network 1 is the target access network, and does not need to perform network search, thereby improving the efficiency of network selection and ensuring the continuity of network services.
  • the peer-to-peer network of the UE may be a peer-to-peer SNPN or a peer-to-peer PLMN; and, based on that the first network of the UE is the SNPN, it is determined that the UE is in the SNPN access mode.
  • the UE determining the second network may be implemented as, if at least one peer-to-peer SNPN exists in the peer-to-peer network, the UE determines the second network from the at least one peer-to-peer SNPN; On the contrary, if there is no peer-to-peer SNPN in the peer-to-peer network, the UE sets the access mode to the PLMN access mode, and determines the second network from the at least one peer-to-peer network. It can be understood that the UE may preferentially select peer-to-peer SNPN access in the SNPN access mode, which can better match the service processing scenario of the UE.
  • Another optional implementation manner is that, in a scenario where the UE selects a network, in addition to obtaining the information of the peer-to-peer network of the UE, it may also obtain information of other selectable networks.
  • the information of other optional networks is, for example, the network measured by the UE, the network included in the list of networks accessible to the UE, and the like.
  • the UE may also determine the second network based on the information of the peer-to-peer network of the first network and information of other selectable networks. For example, if the coverage area of the peer-to-peer network of the UE does not include the target camping area, the UE may determine the target access network based on the measured network or the network included in the accessible network list.
  • the UE can further select a target cell to camp on.
  • the UE determines whether there is a coverage area of a cell corresponding to the source access network in the target camping area. If it exists, the UE determines a target cell to camp on from first cells in the target camping area, where the first cell is a cell corresponding to the first network. If not, the UE determines a target cell to camp on from second cells in the target camping area, where the second cell is a cell corresponding to the second network.
  • the UE may determine the second network based on the information of the peer-to-peer network of the first network and other selectable networks. Based on this, the first network may register the SNPN for the UE. Alternatively, the first network may also be an SNPN that meets the first priority requirement in the UE-accessible network list; wherein, the first priority requirement indicates that the SNPN has a higher priority and can satisfy A network service requirement after UE access; the first priority requirement may be predefined or acquired based on historical experience.
  • the first network can be a PLMN that meets the requirements of the second priority in the list of networks accessible to the UE;
  • the second priority requirement indicates that the PLMN has a higher priority and can meet the network service requirements after UE access; the second priority requirement may also be predefined or obtained based on historical experience. It should be understood that the "requirement with first priority" and “requirement with second priority” are only used for distinction, and are not used to limit the priority order of the two.
  • the UE may also determine the target cell to camp on in order.
  • this application provides a setting method for determining the possible order of the target cell to reside on, as shown in Table 2 below:
  • the first ranking to the sixth ranking represent a relationship in which the rankings gradually decrease.
  • the UE may perform the following steps in order to determine the target cell to camp on:
  • the UE determines that the coverage of the first priority includes the target camping area, determine the target cell to camp on from the cells corresponding to the first priority. In this way, the UE can implement guaranteed network connection through cell selection without switching networks.
  • UE1 may determine the target cell to camp on from the cells corresponding to network 2 . It should be understood that the coverage of the target cell where UE1 determines includes the target camping area of UE1.
  • the UE determines that the coverage of the second priority includes the target camping area, determine the target cell to camp on from the cells corresponding to the second priority. In this way, the UE can implement fast handover of the target access network based on the peer-to-peer network.
  • UE1 may determine the target cell to camp on from the cells corresponding to network 1 .
  • the UE may determine the target cell to camp on from the cells corresponding to the third order. Therefore, when the coverage areas of the UE's source access network and the peer-to-peer network of the source access network cannot cover the UE's target camping area, the UE may consider choosing a network that is not equal to the source access network but has a lower priority. High SNPN can guarantee the quality of network access.
  • the UE may determine the target cell to camp on from the cells corresponding to the fourth priority.
  • the UE may determine the target cell to camp on from the cells corresponding to the fifth priority.
  • the UE may determine the target cell to camp on from the cells corresponding to the sixth priority.
  • the content introduced above in conjunction with Table 2 is an optional implementation manner for the UE to determine the target cell to camp on provided in this application, and is not used to limit the method provided in this application. It can be understood that the UE determines the target cell to camp on. Retaining the cell can also be implemented by using one or other combination of various types of networks, and can also be implemented by using other priority setting methods, which can be set according to the actual situation of the UE during implementation.
  • a new registration procedure may be initiated in the second network.
  • the registration process reference may be made to the registration process shown in FIG. 5 , which will not be repeated in this application.
  • Scenario 2 For a UE in the CM-connected state, during the movement of the UE, if the coverage area of the first network (that is, the source access network) accessed by the UE does not include the UE's target In the camping area, the source access network can trigger network handover for the UE. Wherein, the UE in the CM-connected state indicates a state of signaling interaction with the AMF.
  • FIG. 9 shows another schematic flowchart of a network selection method based on a peer-to-peer network provided by an embodiment of the present application, which is applied to an access network device in a UE in a CM-connected state that accesses a first network.
  • the access network device may determine the second network based on the information of the peer-to-peer network of the first network, where the first network is the SNPN.
  • the access network device determines the second network from the at least one peer-to-peer network.
  • the access network device determines the target access network of the UE, and further allows the UE to select a target cell to camp on.
  • the access network device determines whether there is a coverage area of a cell corresponding to the source access network of the UE in the target camping area. If it exists, the access network device determines the target cell where the UE camps on from the first cells in the target camping area, where the first cell is a cell corresponding to the first network. If not, the access network device determines a target cell where the UE camps on from second cells in the target camping area, where the second cell is a cell corresponding to the second network.
  • UE2 is in CM-connected state, and the source access network of UE2 is cell 2-1 included in network 2, and UE2 moves according to the moving direction shown in FIG. 8 .
  • the coverage area of the source cell where UE2 resides cannot cover the target area where UE2 resides, and the target cell area belongs to the coverage areas of cell 2-2 and cell 1-2, where cell 2- 2 corresponds to network 2, cells 1-2 correspond to network 1, and network 1 and network 2 are peered.
  • the access network device can determine cell 2-2 as the target cell for the UE to camp on, and the UE does not need to perform network handover at this time; or, the access network device can also determine cell 1-2 as the target cell for the UE to camp on. Need to switch from network 2 to network 1.
  • the access network device may also determine the target cell where the UE camps based on the cell measurement information reported by the UE and the peer-to-peer network information of the first network.
  • the network side determines the target cell where the UE resides based on the following steps, as follows:
  • the access network device determines, according to the cell measurement information reported by the UE, a target cell to camp on that meets the level quality requirement. In this way, the access network device can combine the cell measurement information of the UE to ensure that the determined target cell to camp on meets the requirements.
  • the access network device sequentially determines the target resident cells according to the following order:
  • the access network device determines the target cell to camp on from cells corresponding to the SNPN registered by the UE included in the target camp area.
  • the access network device starts from the cell corresponding to the SNPN registered by the UE included in the target camping area. Among the cells, the target cell to camp on is determined.
  • the access network device corresponds to the SNPN that meets the requirements of the first priority in the UE-accessible network list contained in the target camping area.
  • the target cell to camp on is determined.
  • meeting the first priority requirement indicates that the SNPN has a higher priority and can meet network service requirements after UE access; the first priority requirement may be predefined or obtained based on historical experience.
  • the access network device selects the peer-to-peer network corresponding to the SNPN that meets the first priority requirement from the UE-accessible network list contained in the target camping area Among the cells, the target cell to camp on is determined.
  • the access network device can determine the target cell in the target camping area for the UE. In addition, the access network device determines the target cell for the UE to camp on based on a preset sequence, which can improve the efficiency of the UE performing network handover.
  • the access network device can also determine the target cell for the UE based on other information.
  • Other information such as the policy of the third-party network operator, network congestion information, etc., can be implemented based on the The information of the peer-to-peer network of the first network is combined, and this application does not limit the specific implementation manner.
  • the access network device sends first indication information to the UE, where the first indication information is used to instruct the UE to switch to the second network.
  • the UE may execute the registration procedure shown in FIG. 5 to access the second network.
  • An optional implementation manner is that the access network device of the source access network sends a handover request to the target access network based on the N2 interface, so as to implement a network handover process for the UE.
  • the N2 interface is an interface between the access network device and the AMF.
  • FIG. 10 shows a schematic flow diagram of the network switching performed by the access network device provided by the embodiment of the present application, and the switching flow is triggered based on the N2 interface.
  • An access network device of a source access network sends a handover request to a T-AMF of a target access network (T-(R)AN).
  • the handover request is used to perform handover of the UE from the source access network to the target access network.
  • the access network device of the source access network may also send a handover request to the target access network based on the Xn interface, so as to implement a network handover process for the UE.
  • the Xn interface is an interface between the source access network device and the target access network device.
  • FIG. 11 is a schematic diagram of another flow of network switching performed by an access network device according to an embodiment of the present application, and the switching flow is triggered based on an Xn interface.
  • the access network device of the source access network (S-(R)AN) sends a handover request to the access network device of the target access network (T-(R)AN).
  • the handover request is used to perform handover of the UE from the source access network to the target access network.
  • the access network device of the target access network (T-(R)AN) performs admission control.
  • the access network device of the target access network sends a handover request response to the access network device of the source access network (S-(R)AN).
  • the source access network of the UE may also perform a process of triggering a network reselection process for the UE. For example, the UE is instructed to reselect from the source access network to a target access network with better network services.
  • FIG. 12 is another schematic flowchart of a network selection method based on a peer-to-peer network provided by an embodiment of the present application, which is applied to an access network device under a UE residing in the first network.
  • the access network device may determine the second network based on the information of the peer-to-peer network of the first network, where the first network is the SNPN.
  • the access network device In the network, a target access network is determined for the UE.
  • the access network device based on service network information of the first network and the at least one peer-to-peer network, policies of a third-party network operator, network congestion information, etc. Determine the network with better network quality among other networks. If the network with better network quality is different from the first network, the access network device performs a process of network reselection for the UE.
  • UE3 resides in the coverage area of cell 1-1.
  • the camping area of UE3 belongs to the coverage area of cell 2-1 in addition to the coverage area of cell 1-1.
  • the access network device can determine the target cell to camp on from among the cells 1-1 and 2-1 based on the network quality of the cell 1-1 and the cell 2-1, for example, the network quality of the cell 2-1 is better than that of the cell 1-1.
  • the network quality is 1, the UE is instructed to reselect to cell 2-1 corresponding to network 2.
  • the access network device sends second indication information to the UE, where the second indication information is used to instruct the UE to reselect to a second network.
  • FIG. 13 is another schematic flowchart of a network selection method based on a peer-to-peer network provided by an embodiment of the present application, which is applicable to a scenario where a UE camps on a first network to perform network reselection.
  • the access network device of the source access network sends an RRC release message to the UE, where the RRC release message includes second indication information used to instruct the UE to determine the second network.
  • the second indication information may include an identifier of the second network, auxiliary access information such as a frequency point and a synchronization signal of a cell corresponding to the second network, and the like.
  • the UE determines the second network from the RRC release message, and accesses the second network. Exemplarily, after receiving the RRC release message, the UE performs network reselection according to the second indication information contained in the RRC release message. It may be implemented that the UE sends the registration procedure shown in FIG. 5 to the second network, so as to reconnect to the second network.
  • the network selection, reselection or handover of the UE accessing the SNPN can be realized, and the UE can be preferentially selected to select the peer-to-peer network with the source access network, or the peer-to-peer network can be preferentially selected.
  • FIG. 14 is a schematic structural diagram of a communication device provided in the embodiment of the present application.
  • the communication device 1400 includes: a transceiver module 1410 and processing module 1420.
  • the communication device may be used to implement functions related to the UE in any of the foregoing method embodiments.
  • the communication device may be a UE or a chip or a circuit included in the UE. in,
  • the processing module 1420 may be configured to determine a second network based on information of a peer-to-peer network of the first network, where the first network corresponds to the UE; the first network is an independently deployed non-public network SNPN; The processing module 1420 may also be used to access the second network.
  • the UE is in an idle state
  • the processing module 1420 when determining the second network based on the information of the peer-to-peer network of the first network, may be specifically configured to: if the first network The coverage area of the UE does not include the target camping area of the UE, and the coverage area of at least one of the peer-to-peer networks includes the target camping area, then the second UE is determined from the at least one peer-to-peer network network.
  • the processing module 1420 when used to determine the second network from the at least one peer-to-peer network, it may be specifically configured to: if at least one of the peer-to-peer networks exists one peer-to-peer SNPN, then determine the second network from the at least one peer-to-peer SNPN; if there is no peer-to-peer SNPN in the peer-to-peer network, then set the access mode to PLMN access mode, from the The second network is determined in at least one of the peer-to-peer networks.
  • the processing module 1420 is further configured to determine a target cell to camp on from first cells in the target camp area, where the first cell is a cell corresponding to the first network or, it may also be used to determine the target camping cell from the second cells in the target camping area, the second cell is a cell corresponding to the second network, and the cells in the target camping area do not include A cell corresponding to the first network.
  • the first network may be an SNPN registered by the UE; or, the first network may be an SNPN that meets the first priority requirement in the list of networks accessible to the UE or, if the UE sets the access mode to the PLMN access mode, the first network may be a PLMN that meets the requirements of the second priority in the list of networks accessible to the UE.
  • the UE is in a connected state, and the transceiver module 1410 is further configured to receive first indication information from an access network device, where the first indication information is used to instruct the UE to switch to second network.
  • the UE resides on the first network, and the transceiver module 1410 is further configured to receive second indication information from an access network device, and the second indication information is used for Instructing the UE to reselect to the second network.
  • the second indication information may be carried in a radio resource control RRC release message.
  • the information of the peer-to-peer network of the first network may include a peer-to-peer network group, and the peer-to-peer network group contains information of at least two networks, and any two of the networks interact Being a peer-to-peer network, the network includes the first network.
  • the communication device 1400 may also be used to implement the functions related to the access network device in any of the above method embodiments.
  • the communication device may be an access network device or a chip or a circuit included in the access network device.
  • the processing module 1420 may be configured to determine a second network based on information of a peer-to-peer network of the first network, the first network corresponds to the access network device and the UE; the first network is SNPN; the The transceiving module 1410 may be configured to send indication information to the UE, where the indication information is used to instruct the UE to determine the second network.
  • the UE is in the connected state
  • the processing module 1420 when determining the second network based on the information of the peer-to-peer network of the first network, may be specifically configured to: if the first The coverage area of the network does not include the target camping area of the UE, and the coverage area of at least one of the peer-to-peer networks includes the target camping area, then determining the second UE from the at least one peer-to-peer network Two networks.
  • the processing module 1420 is further configured to determine the target cell of the UE from the first cells in the target camping area, the first cell being the first A cell corresponding to the network; or, it may also be used to determine the target cell of the UE from the second cell in the target camping area, the second cell is a cell corresponding to the second network, the The cells in the target camping area do not include the cells corresponding to the first network.
  • the first network may be an SNPN registered by the UE; or, the first network may be an SNPN in a network list accessible to the UE that meets the first priority requirement.
  • the UE is in a connected state, and the transceiver module 1410, when used to send indication information to the UE, may specifically send first indication information, and the first indication information is used to Instructing the UE to switch to the second network.
  • the UE resides on the first network, and the transceiver module 1410 may be configured to send indication information to the UE, specifically sending second indication information, the second indication information It is used to instruct the UE to reselect to the second network.
  • the second indication information may be carried in an RRC release message.
  • the information of the peer-to-peer network of the first network may include a peer-to-peer network group, and the peer-to-peer network group may contain information of at least two networks, any two of the networks are peer-to-peer networks, and the network includes the first network.
  • the processing module 1420 involved in the communication device 1400 may be implemented by at least one processor or processor-related circuit components, and the transceiver module 1410 may be implemented by at least one transceiver or transceiver-related circuit components or a communication interface.
  • the operations and/or functions of the modules in the communication device are respectively for implementing the corresponding processes of the methods shown in FIG. 5 to FIG. 13 , and for the sake of brevity, details are not repeated here.
  • the communication device may further include a storage module, which may be used to store data and/or instructions, and the transceiver module 1410 and/or processing module 1420 may read the data and/or instructions in the access module, Thus, the communication device implements the corresponding method.
  • the storage module can be implemented, for example, by at least one memory.
  • the above-mentioned storage module, processing module and transceiver module may exist separately, or all or part of the modules may be integrated, for example, the storage module is integrated with the processing module, or the processing module is integrated with the transceiver module.
  • FIG. 15 is another schematic structural diagram of a communication device provided in an embodiment of the present application.
  • the communication apparatus 1500 can be used to implement the functions corresponding to the UE in the above method embodiments or to implement the functions corresponding to the access network equipment in the above method embodiments.
  • the communication apparatus 1500 can be a UE or can support the UE to implement the above method embodiments.
  • the communication device 1500 may include a processor 1501 , a communication interface 1502 and a memory 1503 .
  • the communication interface 1502 is used to communicate with other devices through a transmission medium, and the communication interface 1502 may be a transceiver, or an interface circuit such as a transceiver circuit, a transceiver chip, and the like.
  • the memory 1503 is used to store program instructions and/or data, and the processor 1501 is used to execute the program instructions stored in the memory 1503, so as to implement the methods in the foregoing method embodiments.
  • the memory 1503 is coupled to the processor 1501, and the coupling is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used between devices, units or modules information interaction.
  • the communication interface 1502 may be specifically configured to execute the actions of the transceiver module 1410 described above, and the processor 1501 may be specifically configured to execute the actions of the processing module 1420 described above, which will not be repeated herein.
  • the embodiment of the present application does not limit the specific connection medium among the communication interface 1502, the processor 1501, and the memory 1503.
  • the memory 1503, the processor 1501, and the communication interface 1502 are connected through the bus 1504.
  • the bus is represented by a thick line in FIG. 15, and the connection mode between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 15 , but it does not mean that there is only one bus or one type of bus.
  • FIG. 16 is another schematic structural diagram of a communication device provided in an embodiment of the present application.
  • the communication apparatus 1600 may be used to implement functions related to the access network device in any of the foregoing method embodiments.
  • the communications apparatus 1600 is specifically an access network device, such as a base station.
  • the access network device 1600 includes: one or more DUs 1601 and one or more CUs 1602.
  • the DU 1601 may include at least one antenna 16011, at least one radio frequency unit 16012, at least one processor 16013 and at least one memory 16014.
  • the DU 1601 is mainly used for transmitting and receiving radio frequency signals, conversion of radio frequency signals and baseband signals, and part of baseband processing.
  • the CU 1602 may include at least one processor 16022 and at least one memory 16021.
  • the CU 1602 is mainly used for baseband processing, controlling the base station, and the like.
  • the CU 1602 is the control center of the base station, and can also be called a processing unit.
  • the CU 1602 may be used to control the base station to perform the operations or steps corresponding to the first access network device in the methods shown in FIGS. 5 to 15 above.
  • the CU 1602 and the DU 1601 can communicate through interfaces, wherein the control plane (control plane, CP) interface can be Fs-C, such as F1-C, and the user plane (user plane, UP) interface can be Fs-U, Such as F1-U.
  • control plane control plane
  • user plane user plane
  • UP user plane
  • the DU 1601 and the CU 1602 may be physically set together or physically separated (that is, a distributed base station), which is not limited.
  • the baseband processing on the CU and DU can be divided according to the protocol layers of the wireless network, for example, the functions of the PDCP layer and the protocol layers above are set in the CU, and the functions of the protocol layers below the PDCP layer (such as the RLC layer and the MAC layer, etc.) are set. at DU.
  • the CU implements the functions of the RRC and PDCP layers
  • the DU implements the functions of the RLC, MAC, and physical (physical, PHY) layers.
  • the access network device 1600 may include one or more radio frequency units (RUs), one or more DUs, and one or more CUs.
  • the DU may include at least one processor 16013 and at least one memory 16014
  • the RU may include at least one antenna 16011 and at least one radio frequency unit 16012
  • the CU may include at least one processor 16022 and at least one memory 16021 .
  • the CU 1602 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network (such as a 5G network) with a single access indication, and can also support different access systems respectively wireless access network (such as LTE network, 5G network or other networks).
  • the memory 16021 and the processor 16022 may serve one or more boards. That is to say, memory and processors can be set independently on each single board. It may also be that multiple single boards share the same memory and processor. In addition, necessary circuits can also be set on each single board.
  • the DU 1601 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as a 5G network) with a single access indication, or may separately support wireless access networks of different access standards (such as LTE network, 5G network or other networks).
  • the memory 16014 and the processor 16013 may serve one or more boards. That is to say, memory and processors can be set independently on each single board. It may also be that multiple single boards share the same memory and processor. In addition, necessary circuits can also be set on each single board.
  • the embodiment of the present application also provides a chip system, including: a processor, the processor is coupled with a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor, the The chip system implements the method corresponding to the UE or the access network device in any of the foregoing method embodiments.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be realized by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software codes stored in a memory.
  • the memory can be integrated with the processor, or can be set separately from the processor, which is not limited in this application.
  • the memory can be a non-transitory processor, such as a read-only memory ROM, which can be integrated with the processor on the same chip, or can be respectively arranged on different chips.
  • the setting method of the processor is not specifically limited.
  • the chip system may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), It can also be a central processing unit (central processor unit, CPU), it can also be a network processor (network processor, NP), it can also be a digital signal processing circuit (digital signal processor, DSP), it can also be a microcontroller (micro controller unit, MCU), and can also be a programmable logic device (programmable logic device, PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • each step in the foregoing method embodiments may be implemented by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the method steps disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the embodiment of the present application also provides a computer-readable storage medium, where computer-readable instructions are stored in the computer-readable medium, and when the computer reads and executes the computer-readable instructions, the computer executes any one of the above method embodiments method in .
  • An embodiment of the present application further provides a computer program product, which enables the computer to execute the method in any one of the above method embodiments when the computer reads and executes the computer program product.
  • processors mentioned in the embodiments of the present application may be a CPU, or other general-purpose processors, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory may be a read-only memory (read-only memory, ROM), a programmable read-only memory, an erasable programmable read-only memory, an electrically erasable programmable read-only memory, or a flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • dynamic random access memory synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory enhanced synchronous dynamic Random access memory
  • synchronously linked dynamic random access memory synchronously linked dynamic random access memory
  • direct memory bus random access memory direct memory bus random access memory
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or an access network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种基于对等网络的网络选择方法及通信装置,由接入SNPN的UE基于UE的对等网络信息实现网络选择、重选或切换,以保障UE的业务连续性。其中,该方法包括:终端设备基于第一网络的对等网络的信息确定第二网络,所述第一网络对应于所述终端设备;所述第一网络为独立部署的非公有网络SNPN;所述终端设备接入所述第二网络。

Description

一种基于对等网络的网络选择方法及通信装置
相关申请的交叉引用
本申请要求在2021年09月18日提交中华人民共和国知识产权局、申请号为202111101846.0、申请名称为“一种基于对等网络的网络选择方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种基于对等网络的网络选择方法及通信装置。
背景技术
非公共网络(non-public network,NPN)是一种非公用的第五代(the 5th generation system,5GS)通信网络,用于为特定的用户提供网络服务。NPN可以依赖于公共陆地移动网络(public land mobile network,PLMN)(又可简称为公有网络)的支持实现,也可以不依赖于PLMN的支持实现。其中,不依赖于PLMN的支持实现的NPN称为独立部署NPN(standalone NPN,SNPN)(又可简称为私有网络或专有网络或非公有网络)。
在PLMN和NPN连续覆盖区域内,在同一覆盖小区,可能同时存在多个接入网络(如NPN或者PLMN)。且根据PLMN和NPN的网络运营商之间的协定,对于特定的终端设备(user equipment,UE),这些接入网络为对等网络关系。
目前,接入SNPN的UE无法实现在对等网络之间进行网络选择、重选、切换等保障业务连续性的操作。
发明内容
本申请实施例中的一种基于对等网络的网络选择方法及通信装置,由接入SNPN的UE基于UE的对等网络信息实现网络选择、重选或切换,以保障UE的业务连续性。
第一方面,本申请实施例提供一种基于对等网络的网络选择方法,一种基于对等网络的网络选择方法,包括:终端设备可基于第一网络的对等网络的信息确定第二网络,所述第一网络对应于所述终端设备;所述第一网络为独立部署的非公有网络SNPN;所述终端设备还可以接入所述第二网络。
通过该方法,可以实现接入SNPN(也即第一网络)的终端设备的网络选择、重选或切换,基于SNPN的对等网络确定目标接入网络(也即第二网络),可以保障终端设备确定的目标接入网络的网络质量,提升网络选择、重选及切换的可靠性,用以保障业务处理的连续性。
在一种可能的设计中,所述终端设备处于空闲态,所述终端设备基于第一网络的对等网络的信息确定第二网络,包括:若所述第一网络的覆盖区域不包括所述终端设备的目标驻留区域,且至少一个所述对等网络的覆盖区域包括所述目标驻留区域,则所述终端设备可以从所述至少一个所述对等网络中确定所述第二网络。
该设计中,基于对等网络确定目标接入网络,可以实现空闲态下的终端设备的移动性过程中的网络选择,从而可以保障终端设备确定的目标接入网络的网络质量,提升网络选择、重选及切换的可靠性。
在一种可能的设计中,所述终端设备从所述至少一个所述对等网络中确定所述第二网络,包括:若所述对等网络中存在至少一个对等SNPN,则所述终端设备可以从所述至少一个对等SNPN中确定所述第二网络;若所述对等网络中不存在对等SNPN,则所述终端设备可将接入模式设置为公共陆地移动网络PLMN接入模式,从所述至少一个所述对等网络中确定所述第二网络。
该设计中,基于终端设备接入SNPN,为了保障终端设备处理业务的可靠性,从对等网络中优先选择对等SNPN,从而可以实现终端设备优先选择对等SNPN作为目标接入网络,从而保障终端设备的处理可靠性。此外,若对等网络中不存在对等SNPN,终端设备还可变更接入模式之后,选择对等PLMN,这样可以较好地匹配终端设备的业务处理场景,可以保障终端设备处理业务的连续性。
在一种可能的设计中,所述方法还包括:所述终端设备可以从所述目标驻留区域的第一小区中,确定目标驻留小区,所述第一小区为所述第一网络对应的小区;或者,所述终端设备可从所述目标驻留区域的第二小区中,确定目标驻留小区,所述第二小区为所述第二网络对应的小区,所述目标驻留区域的小区不包括所述第一网络对应的小区。
该设计中,在终端设备基于对等网络确定目标接入网络的基础上,进一步终端设备可以确定目标驻留小区。若终端设备的目标驻留区域存在第一网络对应的小区,则终端设备可以无需变更网络,确定目标驻留小区即可;若终端设备的目标驻留区域不存在第一网络对应的小区,则终端设备可以优先确定目标驻留区域是否存在对等网络对应的小区,若存在,则优先接入对等网络对应的小区。从而可以保障终端设备确定的目标接入网络的网络质量,提升网络选择、重选及切换的可靠性,用以保障业务处理的连续性。
在一种可能的设计中,所述第一网络可以为所述终端设备注册的SNPN;或者,所述第一网络可以为所述终端设备可接入网络列表中的,符合第一优先级要求的SNPN;或者,若所述终端设备退出SNPN接入模式,则所述第一网络可以为所述终端设备可接入网络列表中的,符合第二优先级要求的PLMN。
该设计中,终端设备除了基于接入SNPN的对等网络确定目标接入网络或目标驻留小区,还可以基于终端设备可接入网络列表中,符合优先级要求的其他SNPN或者PLMN及其对等网络确定目标接入网络或目标驻留小区。这样,在目标驻留区域即不存在接入SNPN的网络覆盖,也不存在接入SNPN的对等网络的网络覆盖的场景下,终端设备还可选择其他可接入网络作为目标接入网络以及确定目标驻留小区,从而可以保障终端设备确定的目标接入网络的网络质量,提升网络选择、重选及切换的可靠性,用以保障业务处理的连续性。
在一种可能的设计中,所述终端设备处于连接态,所述方法还包括:所述终端设备可接收来自于接入网设备的第一指示信息,所述第一指示信息用于指示所述终端设备切换至第二网络。
该设计中,对处于连接态的终端设备,终端设备可以基于接入网设备的指示来确定目标接入网络。应理解,接入网设备实施时也可以基于终端设备的第一网络的对等网络,为终端设备确定目标接入网络。
在一种可能的设计中,所述终端设备驻留在所述第一网络,所述方法还包括:所述终端设备可接收来自于接入网设备的第二指示信息,所述第二指示信息用于指示所述终端设备重选至第二网络。
该设计中,对驻留在第一网络的终端设备,接入网络设备还可以为终端设备确定网络质量更优的网络,作为终端设备的目标接入网络,从而可以保障终端设备确定的目标接入网络的网络质量,提升网络选择、重选及切换的可靠性,用以保障业务处理的连续性。
在一种可能的设计中,所述第二指示信息可承载于无线资源控制RRC释放release消息中。该设计中,通过RRC release消息可以指示终端设备的网络或者小区的重选信息,从而可以终端设备的网络重选,保障终端设备接入具有更优的网络质量的目标接入网络。
在一种可能的设计中,所述第一网络的对等网络的信息可包括对等网络群组,所述对等网络群组中可以包含至少两个网络的信息,任意两个所述网络互为对等网络,所述网络包括所述第一网络。
该设计中,通过对等网络群组形式可以简化对多个终端设备的对等网络的信息的配置方式。这样,相比于现有技术中采用对等网络列表的配置方式,需要为每个终端设备均配置对应的对等网络的信息的方式,采用对等网络群组的配置方式,无需为每个接入网络配置对应的对等网络列表,通过将多个网络配置在对等网络群组中,可以确定任一网络的对等网络,从而可以提升配置效率。
第二方面,本申请实施例提供一种基于对等网络的网络选择方法,包括:接入网设备可以基于第一网络的对等网络的信息确定第二网络,所述第一网络对应于所述接入网设备和终端设备;所述第一网络为SNPN;所述接入网设备还包括向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备确定第二网络。
在一种可能的设计中,所述终端设备处于连接态,所述接入网设备基于第一网络的对等网络的信息确定第二网络,包括:若所述第一网络的覆盖区域不包括所述终端设备的目标驻留区域,且至少一个所述对等网络的覆盖区域包括所述目标驻留区域,则所述接入网设备可以从所述至少一个所述对等网络中确定所述第二网络。
在一种可能的设计中,所述方法还包括:所述接入网设备可从所述目标驻留区域的第一小区中,确定所述终端设备的目标驻留小区,所述第一小区为所述第一网络对应的小区;或者,所述接入网设备可从所述目标驻留区域的第二小区中,确定所述终端设备的目标驻留小区,所述第二小区为所述第二网络对应的小区,所述目标驻留区域的小区不包括所述第一网络对应的小区。
在一种可能的设计中,所述第一网络可以为所述终端设备注册的SNPN;或者,所述第一网络可以为所述终端设备可接入网络列表中的,符合第一优先级要求的SNPN。
在一种可能的设计中,所述终端设备为连接态,所述接入网设备向所述终端设备发送指示信息,包括:所述接入网设备可发送第一指示信息,所述第一指示信息可用于指示所述终端设备切换至第二网络。
在一种可能的设计中,所述终端设备驻留在所述第一网络,所述接入网设备向所述终端设备发送指示信息,包括:所述接入网设备可发送第二指示信息,所述第二指示信息可用于指示所述终端设备重选至第二网络。
在一种可能的设计中,所述第二指示信息可承载于RRC release消息中。
在一种可能的设计中,所述第一网络的对等网络的信息可以包括对等网络群组,所述 对等网络群组中可以包含至少两个网络的信息,任意两个所述网络互为对等网络,所述网络包括所述第一网络。
第三方面,本申请实施例提供一种通信装置,该装置可以具有实现上述第一方面或第一方面的任一种可能的设计中终端设备的功能,或者具有实现上述第二方面或第二方面的任一种可能的设计中接入网设备的功能。该装置可以为设备,也可以为设备中包括的芯片。
上述通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块或单元或手段(means)。
在一种可能的设计中,该装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该装置可以具有实现上述第一方面或第一方面的任一种可能的设计中终端设备的功能,或者具有实现上述第二方面或第二方面的任一种可能的设计中接入网设备的功能。收发模块用于支持该装置与其他通信设备之间的通信,例如该装置为终端设备时,可接收来自接入网设备的指示信息。该通信装置还可以包括存储模块,存储模块与处理模块耦合,其保存有装置必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器,存储器可以和处理器集成在一起,也可以和处理器分离设置。
在另一种可能的设计中,该装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使装置执行上述各方面或各方面的任一种可能的设计中的方法。可选地,该装置还包括通信接口,处理器与通信接口耦合。当装置为接入网设备时,该通信接口可以是收发器或输入/输出接口;当该装置为接入网设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第四方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述各方面或各方面的任一种可能的设计中的方法。
可选地,该芯片系统还包括接口电路,该接口电路用于交互代码指令至所述处理器。
可选地,该芯片系统中的处理器可以为一个或多个,该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上。
第五方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述各方面或各方面的任一种可能的设计中的方法。
第六方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述各方面或各方面的任一种可能的设计中的方法。
上述第二方面至第六方面中任一方面的有益效果请具体参阅上述第一方面中各种可能的设计的有益效果,在此不再赘述。
附图说明
图1a为本申请适用的一种通信系统的网络架构示意图;
图1b为本申请适用的(无线)接入网络设备的网络架构示意图;
图2为本申请适用的一种5G通信系统的网络架构示意图;
图3示出了本申请实施例适用的另一种可能的网络架构;
图4示出了本申请实施例适用的一种基于对等网络的网络选择方法的场景示意图;
图5示出了本申请实施例适用的一种UE的注册过程的流程示意图;
图6示出的为本申请实施例中提供的(R)AN获取对等网络的信息的流程示意图;
图7为本申请实施例提供的一种基于对等网络的网络选择方法的流程示意图;
图8示出了本申请实施例适用的另一种基于对等网络的网络选择方法的场景示意图;
图9为本申请实施例提供的一种基于对等网络的网络选择方法的另一流程示意图;
图10为本申请实施例提供的接入网设备执行网络切换的流程示意图;
图11为本申请实施例提供的接入网设备执行网络切换的另一流程示意图;
图12为本申请实施例提供的一种基于对等网络的网络选择方法的又一流程示意图;
图13为本申请实施例提供的一种基于对等网络的网络选择的再一流程示意图;
图14、图15或图16为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)移动通信系统或新无线(new radio,NR)系统,或者应用于未来的通信系统或其它类似的通信系统等。
请参考图1a,为本申请适用的一种通信系统的网络架构示意图。根据第三代合作伙伴计划(3rd generation partnership project,3GPP)协议标准要求,该网络架构包括四个构成部分,分别为终端设备(user equipment,UE)、接入网(access network,AN)、核心网(core)以及数据网络(data network,DN),其中,所述接入网可以为无线接入网(radio access network,RAN)。
终端设备、(无线)接入网与核心网是构成上述网络架构的主要部分,逻辑上它们可以分为用户面和控制面两部分,控制面负责移动网络的管理,用户面负责业务数据的传输。示例性地,如图1a所示,在5G通信系统中,下一代(next generation,NG)2参考点位于(无线)接入网控制面与核心网控制面之间,NG3参考点位于(无线)接入网用户面与核心网用户面之间,NG6参考点位于核心网用户面与数据网络之间。
下面对上述网络架构的各个组成部分进行详细介绍。
1、终端设备,是一种具有无线收发功能的设备,是移动用户与网络交互的入口,能够提供基本的计算能力、存储能力,向用户显示业务窗口,接受用户的操作输入。终端设备可以经(无线)接入网与核心网或数据网络进行通信,与(无线)接入网交换语音和/或数据。示例性地,在5G通信系统中,下一代终端设备(NextGen UE,NG UE)可采用新空口(new radio,NR)技术,与(无线)接入网建立信号连接和数据连接,从而传输控 制信号和业务数据到网络。
示例性地,终端设备可以包括无线终端设备、移动终端设备、设备到设备(device to device,D2D)终端设备、车联网(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)或用户装备(user device)等。例如,终端设备可以是手机(mobile phone),平板电脑(Pad),带无线收发功能的电脑,便携式、袖珍式、手持式、计算机内置的移动装置等。又例如,终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备、或者V2X中的车辆设备、客户前置设备(customer premises equipment,CPE)等等。再例如,终端设备还可以是个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。
作为示例而非限定,终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。本申请实施例对终端设备所采用的具体技术、设备形态、应用场景以及名称不作限定。
2、(无线)接入网,部署在靠近终端设备的位置,为特定区域的授权用户提供入网功能,并能够根据用户的级别、业务的需求等确定不同质量的传输隧道来传输用户数据。(无线)接入网能够管理并合理利用自身的资源,按需为终端设备提供接入服务,并负责把控制信号和业务数据在终端设备和核心网之间转发。
(无线)接入网中部署有(无线)接入网设备,用于将终端设备接入到无线网络。(无线)接入网设备一般可以通过有线链路(例如光纤线缆)连接到核心网。(无线)接入网设备也可称RAN设备/节点,或者基站。
示例性地,(无线)接入网设备可以包括基站、LTE系统或演进的LTE系统 (LTE-Advanced,LTE-A)中的演进型基站(evolved NodeB,eNodeB)、5G通信系统中的下一代基站(next generation NodeB,gNB)、发送接收点(transmission reception point,TRP)、基带单元(base band unit,BBU)、无线局域网(wireless local area networks,WLAN)中的接入点(access point,AP)、接入回传一体化(integrated access and backhaul,IAB)节点、未来移动通信系统中的基站或WiFi系统中的接入节点等。无线接入网设备也可以是完成基站部分功能的模块或单元,例如集中式单元(central unit,CU)或者分布式单元(distributed unit,DU)。
例如,在一种网络结构中,(无线)接入网设备可以为CU节点、或DU节点、或为包括CU节点和DU节点的(无线)接入网设备,如图1b示出的本申请适用的(无线)接入网络设备的网络架构示意图。其中,CU节点用于支持无线资源控制(radio resource control,RRC)、分组数据汇聚协议(packet data convergence protocol,PDCP)、业务数据适配协议(service data adaptation protocol,SDAP)等协议;DU节点用于支持无线链路控制(radio link control,RLC)层协议、媒体接入控制(medium access control,MAC)层协议和物理层协议。
(无线)接入网设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。本申请实施例对(无线)接入网设备所采用的具体技术、设备形态、应用场景以及名称不作限定。在本申请实施例中,(无线)接入网设备可以简称为接入网(AN)设备,如无特殊说明,下文中的接入网设备均可以是(无线)接入网设备。
3、核心网,负责维护移动网络的签约数据、管理移动网络的网元,并为终端设备提供会话管理、移动性管理、策略管理、安全认证等功能。具体包括:在终端设备附着的时候,为终端设备提供入网认证;在终端设备有业务请求时,为终端设备分配网络资源;在终端设备移动的时候,为终端设备更新网络资源;在终端设备空闲的时候,为终端设备提供快恢复机制;在终端设备去附着的时候,为终端设备释放网络资源;在终端设备有业务数据时,为终端设备提供数据路由功能,如转发上行数据到数据网络,或者从数据网络接收下行数据并转发到(无线)接入网,从而发送给终端设备。
4、数据网络,用于为用户提供业务服务。实际通信过程中,客户端通常位于终端设备,服务端通常位于数据网络。数据网络可以是私有网络,如局域网,也可以是不受运营商管控的外部网络,如互联网(Internet),还可以是运营商共同部署的专有网络,如提供IP多媒体网络子系统(IP multimedia core network subsystem,IMS)服务的网络。
图2示出了本申请实施例适用的一种更为具体的网络架构,该网络架构可以是5G通信系统的网络架构。如图2所示,该网络架构中包括终端设备、接入网设备、各种类型的核心网网元/功能实体以及数据网络。
其中,核心网用户面包括用户面功能(user plane function,UPF)。核心网控制面包括但不限于:接入和移动性管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、认证服务器功能(authentication server function,AUSF)、网络切片选择功能(network slice selection function,NSSF)、网络开放功能(network exposure function,NEF)、网络功能仓储功能(network function repository function,NRF)、策略控制功能(policy control function,PCF)、统一数据管理(unified data management,UDM)、应用功能(application function,AF)。
具体的,AMF主要负责终端设备的接入管理和移动性管理,例如负责终端设备的状态维护、终端设备的可达性管理、非移动性管理接入层(mobility management non-access-stratum,MM NAS)消息的转发、会话管理(session management,SM)N2消息的转发。
SMF主要负责移动网络中的会话管理,包括为终端设备建立会话、为会话分配和释放资源,其中资源包括会话服务质量(quality of service,QoS)、会话途径、转发规则等。例如,为终端设备分配互联网协议(internet protocol,IP)地址、选择提供报文转发功能的UPF等。
UPF主要负责连接外部网络,根据SMF的路由规则执行用户数据包转发,如上行数据发送到数据网络或其它UPF,下行数据发送到其它UPF或者接入网设备。
AUSF主要负责执行终端设备的安全认证。
NSSF主要负责为终端的业务选择合适的网络切片。
NEF将网络的部分功能有控制地暴露给应用。
NRF主要负责为其他网元提供网络功能实体信息的存储功能和选择功能。
PCF主要负责用户策略管理,包括策略授权、服务质量以及计费规则的生成,并将相应规则通过SMF下发至UPF,完成相应策略及规则的安装。
UDM主要负责管理用户数据,包括签约信息、上下文、策略信息等。应注意,尽管在图2中暂未示出,图2中所示的网络架构中还可包括统一数据仓储(unified data repository,UDR),并且UDM的功能可以通过与UDR的交互实现。其中,UDR用于存储UDM执行其操作时所需的数据,UDM用于与其他网元进行交互。实际实现时,UDM和UDR可以是两个独立的物理实体,UDR也可集成在UDM中,并不限定。
AF主要负责向运营商的通信网络的控制面网元提供各类应用的服务数据,或者从通信网络的控制面网元获得网络的数据信息和控制信息。
作为示例,在图2所示的网络架构中,终端设备与AMF之间的接口称为N1接口,接入网设备与AMF之间的接口称为N2接口,接入网设备与UPF之间的接口称为N3接口,UPF与SMF之间的接口可以称为N4接口,UPF与数据网络之间的接口称为N6接口。当然,在未来的通信系统中,这些接口的名称可以不变,或者也可以用其他名称代替,本申请对此不限定。
需要说明的是,核心网控制面可以采用服务化架构,各个控制面网元连接到一条服务总线上,控制面网元之间的交互采用服务调用的方式,来替换传统的核心网架构中的点对点通信方式。服务化架构中,控制面网元会向其他控制面网元开放服务,供其他控制面网元调用。点对点通信中,控制面网元之间通信接口会存在一套特定的消息,只能由接口两端的控制面网元在通信时使用。
图3示出了本申请实施例适用的另一种可能的网络架构,该网络架构中包含终端设备的拜访地网络和归属地网络,所述拜访地网络和归属地共存且互通。
所述拜访地网络可以是拜访地PLMN,也可以是拜访地NPN。拜访地网络表示终端设备在当前所在区域所接入的网络,拜访地网络可以与归属地网络为相同的网络,也可以为不同的网络。换言之,终端设备上用户的国际移动用户识别码(international mobile subscriber identity,IMSI)中包含的移动国家代码(mobile country code,MCC)和移动网络代码(mobile network code,MNC)与拜访地网络中的MCC和MNC可以不完全一致。对终端设备来说, 当前接入的拜访地网络覆盖丢失之后,可以选择其他可接入网络作为新的拜访地网络。
所述归属地网络可以是归属地PLMN,也可以是归属地NPN,表示用户归属的网络。换言之,终端设备上用户的IMSI中包含的MCC和MNC与归属地网络中的MCC和MNC是一致的,对某一用户来说,其归属地网络只有一个。
如图3所示,拜访地网络可以通过拜访地安全边缘保护代理(visited security edge protection proxies,vSEPP)与归属地网络中的归属地安全边缘保护代理(home security edge protection proxies,hSEPP)实现互通。其中,所述vSEPP和hSEPP通过N32接口建立连接并实施保护策略,对跨网络信令中的每个控制面消息进行处理。所述vSEPP和hSEPP可以加强网络内部安全,可以保障跨网络之间的控制面信息的安全性,从而保护SEPP所在的网络安全免受外部攻击。
并且,在归属地网络中,通过网络切片选择的认证和授权功能(network slice-specific authentication and authorization function,NSSAAF)可以实现基于网络切换选择的认证和授权。
需要说明的是,上述各种可能的网络架构中的网元/功能实体既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,上述网元或者功能实体可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的不同的功能模块,本申请实施例对此不作具体限定。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有特别说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度,并且“第一”、“第二”的描述也并不限定对象一定不同。
示例性的,图4示出了本申请实施例适用的一种基于对等网络的网络选择方法的场景示意图。该应用场景包含PLMN和NPN。其中,NPN还包括依赖于PLMN的支持实现的NPN称为公网集成NPN(public network integrated NPN,PNI-NPN);以及,不依赖于PLMN的支持实现的SNPN。其中,
1、PLMN
日常生活中为UE提供网络服务的一般是PLMN。PLMN由政府或它所批准的经营者,为公众提供陆地移动通信业务目的而建立和经营的网络。可以用不同的PLMN标识(identification,ID)来区分不同的PLMN。PLMN ID由移动国家号码(mobile contrary code,MCC)和移动网号(mobile net code,MNC)组成。其中,MCC唯一表示移动用户的所属国家,例如中国的MCC为460。MNC唯一表示该国家中的网络,例如中国移动的MNC为00,中国联通的MNC为01。
UE在接入基站时需要选择一个网络,选网的过程则为PLMN选择。PLMN选择可以包括如下步骤:
A1,UE的接入层(access stratum,AS)根据自己能力扫描所有NR频带(band)的射频(radio frequency,RF)信道(channel)发现可用的PLMN。UE会找出每个频点中RSRP最好的小区,然后读取该小区的系统消息块1(system information block 1,SIB1)得到PLMN ID。例如,假设图4中示出的PLMN ID=A。
A2,UE的AS向UE的非接入层(non-access stratum,NAS)上报PLMN列表(list),PLMN list包括UE的AS获取的PLMN ID。
A3,UE的NAS在收到UE的AS上报的PLMN list后,将选择其中一个PLMN ID作为UE使用的PLMN。
UE在选择PLMN时,搜索的PLMN可以为以下中的任意PLMN:已登记PLMN(registered PLMN,RPLMN),RPLMN为UE关机或者脱网前注册的PLMN;或者,等效PLMN(equivalent PLMN,EPLMN),EPLMN为与UE当前选择的PLMN优先级相同的PLMN;或者,归属地PLMN(home PLMN,HPLMN),该HPLMN的标识存储在手机客户识别模块(subscriber identity module,SIM)卡中,每个SIM卡只有一个HPLMN,出厂时候烧进去的;或者,等效HPLMN(equivalent HPLMN,EHPLMN),与HPLMN优先级相同的PLMN。
A4,UE的NAS在选择PLMN ID后,可以根据选定的PLMN ID给UE的AS提供EPLMN list和被禁止的跟踪区(forbidden tracking area,forbidden TA),UE的AS可以根据EPLMN list和被禁止的TA进行小区选择和重选。
2、PNI-NPN
PNI-NPN可以使用PLMN中的网络切片实现。为了控制UE接入PNI-NPN,接入网设备可以使用封闭访问组(closed access group,CAG)功能。CAG功能是指:一方面,由CAG小区广播其支持的一个或多个CAG,每个CAG可识别一组UE,只有组内的UE被允许接入对应的CAG小区,而其他UE不行;另一方面,为UE配置CAG签约,告知UE是否只能通过CAG小区接入5GS,以及允许其接入哪些CAG(或者说有哪些可用的CAG)。这样,在5GS内,CAG小区可根据UE的CAG签约,决定是否允许UE接入。
PNI-NPN可以用CAG ID来区分不同的CAG。例如,假设图4中示出的CAG ID=X。
如图4所示,UE在5GS内进行网络切换时,如果目标小区为CAG小区,且CAG小区支持的CAG标识均不是UE(如图4中的UE3)的CAG签约列表的一部分,则UE3的源接入网络不应将UE切换到目标接入网络,或目标小区应拒绝基于N2的切换过程。如果UE仅允许通过CAG小区接入5GS,UE的源接入网络不应将UE切换到非CAG小区,或目标接入网络应拒绝基于N2的切换过程;如图4中的UE2,UE2被限制访问非CAG 小区。
3、SNPN
SNPN通常可以为特定的UE提供网络,例如特定的校园或者工厂等。
SNPN可以使用不同的NPN ID来区分不同的SNPN。例如,假设图4中示出的NPN ID为N。或者还可以使用PLMN ID和NPN ID来标识不同的SNPN。其中,PLMN ID可以为第三方运营商预留的固有值,也可以是部署此SNPN的PLMN运营商的特定值。
本申请实施时,SNPN对应的小区可以通过广播消息广播标识小区的PLMN ID和NPN ID。UE根据小区广播信息和可接入网络列表,选择是否接入此SNPN。如果UE发现可接入网络列表中,包含此SNPN的广播消息对应的NPN ID或者PLMN ID和NPN ID,则UE可以接入此SNPN;否则,UE不会接入此SNPN。
图5示出了本申请实施例使用的一种UE的注册过程的流程示意图。在UE注册到SNPN的过程中,UE可以获取此SNPN对应的预先配置的对等网络的信息,从而可以进一步实现基于获取的UE的对等网络进行网络选择。图5可以包括以下步骤:
S501、UE向(R)AN发送注册请求。示例性的,UE可实施为在拜访地网络发送Registration Request消息给(R)AN,用以发起通用注册流程。其中,(R)AN可以用于将UE接入到SNPN中。
S502、(R)AN基于UE的身份信息进行AMF选择。
S503、(R)AN通过N2消息转发注册请求给AMF。其中,N2消息可以为uplink NAS transport或者initial UE message。
S504~S513、可以参阅3GPP标准中TS 23.502 4.2.2.2章节现有流程中记载的有关AUSF的选择、鉴权和UDM的选择的内容,本申请对此不再赘述。
以下S514a~S514c为AMF与UDM的交互过程。
S514a、AMF注册到UDM,并订阅当AMF在UDM去注册时通知AMF的通知。
S514b、AMF请求签约信息。本申请实施例中,所述签约信息包含UE的对等网络的信息。示例性的,AMF与UDM交互Nudm_SDM_Get Request/Response消息,从而实现AMF从UDM中获取UE的签约信息。其中,对等网络的信息可以如前述表1-1示出的对等网络列表形式、或如表1-2示出的对等网络群组形式,还可以为其他可以表示UE的对等网络的信息的形式。
S514c、AMF订阅信息变更通知。本申请实施时,若UE的对等网络的信息有更新,则AMF可以从UDM中获取更新之后的签约信息,所述更新之后的签约信息包含更新之后的对等网络的信息。
S515~S520、可以参阅3GPP标准中TS 23.502 4.2.2.2章节现有流程中记载的有关PCF选择的内容,本申请对此不再赘述。
S521、UE接收新AMF发送的注册受理信息。本申请实施时,所述注册受理信息包含所述对等网络的信息。可选的,若UE中存储有对等网络的信息,在注册受理信息中包含有更新的对等网络的信息,则UE对UE所存储的对等网络的信息进行更新替换。
S522~S525、可以参阅3GPP标准中TS 23.502 4.2.2.2章节现有流程中记载的内容,本申请对此不再赘述。
需要说明的是,(R)AN也可以获取UE的对等网络的信息。图6示出的为本申请实施例中提供的(R)AN获取对等网络的信息的流程示意图。其中,(R)AN可以通过UE初始上下文建立流程、或者UE上下文修改流程,获取获更新UE的接入网络的对等网络的信息。示例性的,
如图6中(a)示出的UE初始上下文建立流程,包括:S601a、(R)AN接收新AMF发送的初始上下文建立请求。S602a、(R)AN向新AMF发送初始上下文建立响应。本申请实施时,UE的对等网络的信息可以承载于所述初始上下文建立请求中,以实现(R)AN获取对等网络的信息。
如图6中(b)示出的UE上下文修改流程,包括:S601b、(R)AN接收新AMF发送的上下文修改请求。S602b、(R)AN向新AMF发送上下文修改响应。本申请实施时,UE的对等网络的信息可以承载于所述上下文修改请求中,以实现(R)AN更新对等网络的信息。
本申请实施时,UE和AMF可以通过在UE注册的SNPN的过程中,获取或更新UE的对等网络的信息;(R)AN可以在UE初始上下文建立流程或UE上下文修改流程中,获取或更新UE的对等网络的信息。因此,在UE需要进行网络选择的场景下,可以基于UE的对等网络的信息,进行为UE选择目标接入网络的过程,从而可以进一步提高UE进行小区切换或驻留等场景下的效率。
结合背景技术中的描述,目前接入SNPN的UE无法实现基于对等网络进行网络选择、重选、切换等保障业务连续性的操作。有鉴于此,本申请实施例提供一种基于对等网络的网络选择方法,由接入SNPN的UE基于UE的对等网络信息实现网络选择、重选或切换。以及,本申请实施例还提供一种可以支持配置UE的接入网络的对等网络的信息的技术方案,即通过对等网络群组来确定UE的接入网络的对等网络。具体实现方式在以下内容中通过实施例结合附图来进行说明。
本申请实施例的设计思想为,UE在SNPN中发起注册的过程中,UE可以获取或者更新UE接入的该SNPN的对等网络的信息,如图5示出的UE的注册流程。也即UE的对等网络的信息,需要说明的是,随着UE接入网络的变化,UE的对等网络的信息也会进行更新。基于此,在UE需要进行网络选择、重选或者切换等场景时,可以进行基于UE的对等网络的信息的网络选择,从而可以较好地保障业务连续性。
上述设计思想中,可以理解本申请实施时预先配置UE的对等网络的信息。其中,预先配置的对等网络的信息可作为UE的签约信息的一部分信息存储在UE的归属地SNPN的UDM中和/或UE本身中。这样,在UE注册到SNPN的过程中,UE可以将注册过程中获取到的此SNPN的对等网络的信息存储到UDM和UE中,作为UE的接入网络的对等网络的信息;并且,若UDM和UE中存储有UE的对等网络的信息,随着UE接入网络的变更,UE可以将注册过程中获取到的更新的对等网络的信息进行更新存储,作为新的UE的对等网络的信息,以便于后续实现UE进行网络选择、重选或者切换。
可选的,本申请实施例提供的一种对等网络的信息的配置方式为对等网络列表(equivalent list)形式。示例性的,以UE接入网络为SNPN A网络作为示例,配置的SNPN A网络的对等网络的信息,可以如以下表1-1所示:
表1-1
Figure PCTCN2022094964-appb-000001
通过表1-1示出的内容,当UE接入网络为SNPN A时,在UE进行网络选择、重选或切换的场景下时,可考虑切换至SNPN A的对等网络SNPN B或SNPN C中。这样,UE可以基于对等网络的信息实现网络选择,从而可以较好地保障业务连续性。需要说明的是,本申请实施时不限定UE的对等网络的数量,可以根据UE的实际情况进行确定。
可以理解,在该对等网络的信息的配置方式中,具有对等网络的每个接入网络分别配置对应的equivalent list,可以相同也可以不相同。例如,假设UE接入网络为SNPN B,则UE接入网络对应的equivalent list可以为SNPN A、SNPN C。
另一可选的,本申请实施例提供的另一种对等网络的信息的配置方式为对等网络群组(equivalent group)形式。示例性的,仍以UE接入网络为SNPN A网络作为示例,配置的SNPN A网络的对等网络的信息,可以如以下表1-2所示:
表1-2
Figure PCTCN2022094964-appb-000002
通过表1-2示出的内容,在一个equivalent group中可以包含多个接入网络的信息,任意两个接入网络之间互为对等网络。例如,若UE的源接入网络为SNPN A,根据表1-2中示出的equivalent group 1可以确定SNPN A的对等网络为SNPN B、SNPN C;或者,若UE的源接入网络为SNPN C,根据表1-2中示出的equivalent group 1可以确定SNPN C的对等网络为SNPN A、SNPN B。可以理解,分别接入SNPN A、SNPN B、SNPN C的UE可以获取到相同的对等网络的信息(如表1-2示出的对等网络群组),然后再根据UE的接入网络和表1-2示出的对等网络群组确定UE的对等网络。其中,每个equivalent group可以通过不同的群组标识来区分,如表1-2中示出的为equivalent group 1,还可能存在equivalent group 2,所述equivalent group 2可以包含接入网络SNPN D、SNPN E、SNPN F等。
需要说明的是,对等网络群组的配置方式也可以应用于接入PLMN的UE进行网络选择的场景下。换言之,相关技术中UE选择PLMN时,基于对等网络的信息进行选择时,对等网络的信息除了可以为EPLMN列表的形式,还可以采用本申请实施例提供中提供的采用对等网络群组形式。通过对等网络群组形式可以简化对多个UE的对等网络的信息的配置方式。这样,相比于现有技术中采用对等网络列表的配置方式,需要为每个UE均配置对应的对等网络的信息的方式,采用对等网络群组的配置方式,无需为每个接入网络配置对应的对等网络列表,通过将多个网络配置在对等网络群组中,可以确定任一网络的对等网络,从而可以提升配置效率。
下面以执行主体是UE为例,介绍本申请实施例提供的基于对等网络的网络选择方法。
图7为本申请实施例提供的一种基于对等网络的网络选择方法的流程示意图。包括以下步骤:
步骤701、UE基于第一网络的对等网络的信息确定第二网络,所述第一网络对应于所述UE;所述UE的接入模式为独立部署的非公有网络SNPN接入模式,所述第一网络为SNPN。
示例性的,假设第一网络为SNPN A,UE可基于第一网络的对等网络的信息,确定所述SNPN A的对等网络包括SNPN B和SNPN C。UE在需要进行网络选择时,可以基于SNPN A的对等SNPN B和对等SNPN C,确定第二网络,也即目标接入网络。
步骤702、UE接入所述第二网络。
目前,为了保证UE与网络之间连接,不因UE的移动而中断所涉及到的相关过程的统称移动性管理(mobile management,MM)。在UE处于空闲态下,MM主要指的是小区选择/重选(selection/reselection)的过程;在UE处于连接态下,MM主要指的是小区切换(handover)的过程。在UE的不同状态下,UE确定第二网络可以采用不同的实施方式。例如,图8示出了本申请实施例适用的另一种基于对等网络的网络选择方法的场景示意图。其中,小区1-1、小区1-2和小区1-3属于一网络下的不同小区,该网络称为网络1,小区2-1、小区2-2属于另一网络下的不同小区,该网络称为网络2,网络1和网络2互为对等网络。
以下结合图8示出的场景对本申请提供的方法做进一步说明。图8可以包含三类场景,如下:
场景一、对处于连接管理(connection management,CM)-空闲(idle)态的UE来说,在UE移动过程中,若UE接入的第一网络(也即源接入网络)的覆盖区域不包括所述UE的目标驻留区域,则UE可以触发网络选择。其中,CM-idle态的UE表示UE实现注册、但与AMF没有信令交互的状态。当UE想要与核心网进行通信时,若UE首次启动或已处于idle态一段时间,此时网络删除了资源以暂时传输数据,因此UE需要与AMF访问管理功能建立连接,此过程称为CM。
一种可选的实施方式为,若第一网络的至少一个对等网络的覆盖区域包括UE的目标驻留区域,则UE从至少一个对等网络中确定目标接入网络。然后,UE接入到所述目标接入网络中。从而可以提升网络选择的效率,保证UE的网络服务不中断以及业务的连续性。
例如,参阅图8所示,UE1处于CM-idle态,UE1的源接入网络为网络2,UE1接入网络2包含的小区2-2,UE1按照图8示出的移动方向进行移动。随着UE1的移动,网络2无法覆盖到UE1的目标驻留区域,而小区1-3的覆盖区域包含UE的目标驻留区域。这样,UE可以确定网络1为目标接入网络,无需再进行网络搜索,从而可以提升网络选择的效率,保障网络服务的连续性。
其中,UE的对等网络可以为对等SNPN或者对等PLMN;并且,基于UE的第一网络为SNPN,确定UE处于SNPN接入模式下。一种可能的示例为,UE确定第二网络可实施为,若所述对等网络中存在至少一个对等SNPN,则所述UE从所述至少一个对等SNPN中确定所述第二网络;反之,若所述对等网络中不存在对等SNPN,则所述UE将接入模式设置为PLMN接入模式,从所述至少一个所述对等网络中确定所述第二网络。可以理解, UE在SNPN接入模式下可以优先选择对等SNPN接入,这样可以较好地匹配UE的业务处理场景。
另一种可选的实施方式为,UE在进行网络选择场景下,除了可以获取到UE的对等网络的信息,还可以获取到其他可选择的网络的信息。其中,其他可选的网络的信息例如为UE测量得到的网络、UE可接入网络列表包含的网络等。在实施时,UE还可以基于第一网络的对等网络的信息,以及其他可选择的网络的信息确定第二网络。例如,若UE的对等网络的覆盖区域也不包含所述目标驻留区域,则UE可以基于测量得到的网络、或可接入网络列表包含的网络确定目标接入网络。
本申请实施时,在UE确定目标接入网络后,进一步可选择目标驻留小区。可选的,所述UE确定所述目标驻留区域是否存在源接入网络对应的小区的覆盖区域。若存在,所述UE从所述目标驻留区域的第一小区中,确定目标驻留小区,所述第一小区为所述第一网络对应的小区。若不存在,所述UE从所述目标驻留区域的第二小区中,确定目标驻留小区,所述第二小区为所述第二网络对应的小区。
另一可选的,UE可基于第一网络的对等网络以及其他可选择的网络的信息确定第二网络。基于此,第一网络可以为所述UE注册的SNPN。或者,所述第一网络还可以为所述UE可接入网络列表中的,符合第一优先级要求的SNPN;其中,所述符合第一优先级要求表示SNPN的优先级较高,可以满足UE接入之后的网络服务需求;所述第一优先级要求可以为预先定义的或者基于历史经验获取的。或者,若所述UE将接入模式设置为PLMN接入模式,所述第一网络又可以为所述UE可接入网络列表中的,符合第二优先级要求的PLMN;其中,所述符合第二优先级要求表示PLMN的优先级较高,可以满足UE接入之后的网络服务需求;所述第二优先级要求也可以为预先定义的或者基于历史经验获取的。应理解,“第一优先级要求”和“第二优先级要求”仅用作区分,并不用来限定两者的优先级顺序。
示例性的,为了UE确定目标驻留小区的效率和质量,UE还可以按照顺位确定目标驻留小区。示例性的,本申请提供一种确定目标驻留小区的可能的顺位的设置方式,如下表2所示:
表2
第一顺位 UE注册的SNPN
第二顺位 UE注册的SNPN的对等网络
第三顺位 UE可接入网络列表中的,符合第一优先级要求的SNPN
第四顺位 UE可接入网络列表中的,符合第一优先级要求的SNPN的对等网络
第五顺位 UE可接入网络列表中的,符合第二优先级要求的PLMN
第六顺位 UE可接入网络列表中的,符合第二优先级要求的PLMN的对等网络
其中,第一顺位至第六顺位表示为顺位逐渐降低的关系。根据表2示出的内容,UE移动至目标驻留区域场景下,UE确定目标驻留小区可以依序执行以下步骤:
A1、若UE确定所述第一顺位的覆盖范围包括所述目标驻留区域,则从所述第一顺位对应的小区中,确定目标驻留小区。这样UE可以无需切换网络,通过小区选择来实现保障网络连接。
例如,参阅图8所示,若网络2的覆盖范围包括UE1的目标驻留区域,则UE1可从网络2对应的小区中,确定目标驻留小区。应理解,UE1确定的目标驻留小区的覆盖范围包括UE1的目标驻留区域。
A2、若UE确定所述第二顺位的覆盖范围包括所述目标驻留区域,则从所述第二顺位对应的小区中,确定目标驻留小区。这样UE可以基于对等网络,实现目标接入网络的快速切换。
例如,参阅图8所示,若网络1的覆盖范围包括UE1的目标驻留区域,则UE1可从网络1对应的小区中,确定目标驻留小区。
A3、若UE当前注册的SNPN对应的小区和当前注册的SNPN的对等网络对应的小区均无法作为目标驻留小区,且UE确定所述第三顺位的覆盖范围包括UE的目标驻留区域,则UE可从所述第三顺位对应的小区中,确定目标驻留小区。因此,在UE的源接入网络以及源接入网络的对等网络的覆盖区域均无法覆盖UE的目标驻留区域的情况下,UE可以考虑选择与源接入网络虽不对等但优先级较高的SNPN,从而可以保障网络接入的质量。
A4、若UE确定所述第四顺位的覆盖范围包括UE的目标驻留区域,则UE可从所述第四顺位对应的小区中,确定目标驻留小区。
A5、若UE确定所述第五顺位的覆盖范围包括UE的目标驻留区域,则UE可从所述第五顺位对应的小区中,确定目标驻留小区。
A6、若UE确定所述第六顺位的覆盖范围包括UE的目标驻留区域,则UE可从所述第六顺位对应的小区中,确定目标驻留小区。
需要说明的是,以上结合表2介绍的内容,为本申请提供的UE确定目标驻留小区的一种可选的实施方式,并不用来限定本申请提供的方法,可以理解,UE确定目标驻留小区还可以采用其中多种类型的网络中的一种或其他组合来实现,并且还可以采用其他优先级的设置方式来进行,实施时可以根据UE的实际情况进行设定。
此外,在UE确定第二网络之后,可以在第二网络中发起新的注册流程。注册流程可以参阅图5示出的注册流程,本申请对此不再赘述。
场景二、对处于CM-已连接(connected)态的UE来说,在UE移动过程当中,若UE接入的第一网络(也即源接入网络)的覆盖区域不包括所述UE的目标驻留区域,则源接入网络可以触发为UE执行网络切换。其中,CM-connected态的UE表示与AMF存在信令交互的状态。
图9示出的为本申请实施例提供的一种基于对等网络的网络选择方法的另一流程示意图,应用于接入第一网络的处于CM-connected态的UE下的接入网设备。
S901、接入网设备可以基于第一网络的对等网络的信息确定第二网络,所述第一网络为SNPN。
示例性的,若至少一个所述对等网络的覆盖区域包括所述目标驻留区域,则所述接入网设备从所述至少一个所述对等网络中确定所述第二网络。
与处于CM-idle态的UE进行网络选择的过程类似,接入网设备确定UE的目标接入网络,进一步可UE选择目标驻留小区。
一种可选的示例为,所述接入网设备确定所述目标驻留区域是否存在所述UE的源接入网络对应的小区的覆盖区域。若存在,所述接入网设备从所述目标驻留区域的第一小区 中,确定所述UE的目标驻留小区,所述第一小区为所述第一网络对应的小区。若不存在,所述接入网设备从所述目标驻留区域的第二小区中,确定所述UE的目标驻留小区,所述第二小区为所述第二网络对应的小区。
例如,结合图8中的UE2,UE2处于CM-connected态、且UE2的源接入网络为网络2包含的小区2-1,UE2按照图8中示出的移动方向进行移动。随着UE2的移动,UE2的源驻留小区的覆盖区域无法覆盖到UE2的目标驻留区域,并且,目标驻留区域属于小区2-2和小区1-2的覆盖区域,其中,小区2-2对应于网络2,小区1-2对应于网络1,网络1和网络2对等。接入网设备可以确定小区2-2作为UE的目标驻留小区,此时UE无需进行网络切换;或者,接入网设备也可以确定小区1-2作为UE的目标驻留小区,此时UE需要从网络2切换到网络1。
另一可选的示例为,所述接入网设备还可以基于UE上报的小区测量信息、和第一网络的对等网络信息来确定UE的目标驻留小区。示例性的,网络侧基于以下步骤确定UE的目标驻留小区,如下:
B1、接入网设备根据所述UE上报的小区测量信息,确定满足电平质量要求的目标驻留小区。这样,接入网设备可以结合UE的小区测量信息,保障确定的目标驻留小区为满足要求的小区。
B2、若存在多个满足电平质量的目标驻留小区,所述接入网设备按照以下顺位顺序依序确定目标驻留小区:
B2-1、所述接入网设备从所述目标驻留区域,包含的所述UE注册的SNPN对应的小区中,确定所述目标驻留小区。
B2-2、若所述目标驻留区域不包含所述UE注册的SNPN对应的小区,所述接入网设备从所述目标驻留区域包含的所述UE注册的SNPN的对等网络对应的小区中,确定所述目标驻留小区。
B2-3、若B2-1和B2-2无法满足,所述接入网设备从所述目标驻留区域包含的所述UE可接入网络列表中的,符合第一优先级要求的SNPN对应的小区中,确定所述目标驻留小区。其中,所述符合第一优先级要求表示SNPN的优先级较高,可以满足UE接入之后的网络服务需求;所述第一优先级要求可以为预先定义的或者基于历史经验获取的。
B2-4、若B2-3无法满足,所述接入网设备从所述目标驻留区域包含的所述UE可接入网络列表中,符合第一优先级要求的SNPN的对等网络对应的小区中,确定所述目标驻留小区。
通过以上示例,接入网设备可以为UE确定在目标驻留区域的目标驻留小区。并且,接入网设备基于预设的顺位顺序为UE确定目标驻留小区,可以提升UE进行网络切换的效率。
需要说明的是,接入网设备还可以基于其他信息实现为UE确定目标驻留小区,其他信息例如第三方网络运行商的策略、网络拥塞信息等,实施时可以与本申请实施例提供的基于第一网络的对等网络的信息实现结合,本申请对具体实现方式不进行限定。
S902、所述接入网设备向所述UE发送第一指示信息,所述第一指示信息用于指示所述UE切换至第二网络。
示例性的,UE接收到第一指示信息,确定切换至第二网络,可以执行如图5示出的注册流程,以实现接入第二网络。
一种可选的实施方式为,源接入网络的接入网设备基于N2接口,向目标接入网络发送切换请求,以实现为UE执行网络切换过程。其中,N2接口为接入网设备与AMF之间的接口。图10示出的为本申请实施例提供的接入网设备执行网络切换的流程示意图,该切换流程基于N2接口触发。
S1001、源接入网络(S-(R)AN)的接入网设备向目标接入网络(T-(R)AN)的T-AMF发送切换请求。其中,所述切换请求用于执行为UE由源接入网络切换至目标接入网络。
S1002~S1012、可以参阅3GPP标准中TS 23.502 4.9.1.3.2章节现有流程中记载的UE由源接入网络切换至目标接入网络过程的相关内容,本申请对此不再赘述。
另一种可选的实施方式为,源接入网络的接入网设备还可以基于Xn接口,向目标接入网络发送切换请求,以实现为UE执行网络切换过程。其中,Xn接口为源接入网设备与目标接入网设备之间的接口。图11示出的为本申请实施例提供的接入网设备执行网络切换的另一流程示意图,该切换流程基于Xn接口触发。
S1101、源接入网络(S-(R)AN)的接入网设备向目标接入网络(T-(R)AN)的接入网设备发送切换请求。其中,所述切换请求用于执行为UE由源接入网络切换至目标接入网络。
S1102、目标接入网络(T-(R)AN)的接入网设备进行准入控制。
S1103、目标接入网络(T-(R)AN)的接入网设备向源接入网络(S-(R)AN)的接入网设备发送切换请求应答。
场景三、对在第一网络(也即源接入网络)中驻留的UE来说,UE的源接入网络也可以执行为UE触发网络重选过程。比如,指示UE从源接入网络中重选至网络服务更优的目标接入网络中。
图12示出的为本申请实施例提供的一种基于对等网络的网络选择方法的又一流程示意图,应用于在第一网络中驻留的UE下的接入网设备。
S1201、接入网设备可以基于第一网络的对等网络的信息确定第二网络,所述第一网络为SNPN。
示例性的,若第一网络以及至少一个第一网络的对等网络的覆盖区域包含所述UE的驻留区域,则所述接入网设备从所述第一网络以及所述至少一个对等网络中,为UE确定目标接入网络。可选的,接入网设备基于所述第一网络以及所述至少一个对等网络的服务网络信息、第三方网络运营商的策略、网络拥塞信息等,从第一网络以及所述至少一个对等网络中确定网络质量较优的网络。若所述网络质量较优的网络与所述第一网络不同,则接入网设备执行为UE进行网络重选的过程。
例如,结合图8中的UE3,UE3驻留在小区1-1的覆盖区域内。UE3的驻留区域,除了属于小区1-1的覆盖区域,还属于小区2-1的覆盖区域。接入网设备可以基于小区1-1和小区2-1的网络质量从小区1-1和小区2-1中确定目标驻留小区,例如,在小区2-1的网络质量优于小区1-1的网络质量时,指示UE重选至网络2对应的小区2-1中。
S1202、所述接入网设备向所述UE发送第二指示信息,所述第二指示信息用于指示所述UE重选至第二网络。
示例性的,接入网设备通过RRC release消息向UE指示第二网络的信息。图13示出的为本申请实施例提供的一种基于对等网络的网络选择方法的再一流程示意图,适用于UE 驻留在第一网络进行网络重选场景下。
S1301、源接入网络(S-(R)AN)的接入网设备向UE发送RRC release消息,所述RRC release消息包含用于指示UE确定第二网络的第二指示信息。示例性的,第二指示信息中可以包含第二网络的标识、第二网络对应的小区的频点及同步信号等辅助接入信息等。
S1302、UE从所述RRC release消息中确定第二网络,接入第二网络。示例性的,UE接收到RRC release消息之后,根据RRC release消息中包含的第二指示信息执行网络重选。可实施为,UE向第二网络发送如图5示出的注册流程,以实现重新至第二网络。
通过本申请实施例提供的基于对等网络的网络选择方法,可以实现接入SNPN的UE的网络选择、重选或切换,并且实现优先选择UE选择与源接入网络的对等网络,或者优先选择UE可接入网络列表中,优先级较高的网络及其对等网络,从而可以保障UE选择网络的网络质量,提升网络选择、重选及切换的可靠性,用以保障业务处理的连续性。
基于与方法实施例相同的技术构思,本申请实施例还提供一种通信装置,请参考图14,为本申请实施例提供的一种通信装置的结构示意图,该通信装置1400包括:收发模块1410和处理模块1420。该通信装置可用于实现上述任一方法实施例中涉及UE的功能。该通信装置可以是UE或UE中包括的芯片或电路。其中,
所述处理模块1420,可以用于基于第一网络的对等网络的信息确定第二网络,所述第一网络对应于所述UE;所述第一网络为独立部署的非公有网络SNPN;所述处理模块1420,还可以用于接入所述第二网络。
在一种可能的设计中,所述UE处于空闲态,所述处理模块1420,在用于基于第一网络的对等网络的信息确定第二网络时,可具体用于若所述第一网络的覆盖区域不包括所述UE的目标驻留区域,且至少一个所述对等网络的覆盖区域包括所述目标驻留区域,则从所述至少一个所述对等网络中确定所述第二网络。
在一种可能的设计中,所述处理模块1420,在用于从所述至少一个所述对等网络中确定所述第二网络时,可具体用于:若所述对等网络中存在至少一个对等SNPN,则从所述至少一个对等SNPN中确定所述第二网络;若所述对等网络中不存在对等SNPN,则将接入模式设置为PLMN接入模式,从所述至少一个所述对等网络中确定所述第二网络。
在一种可能的设计中,所述处理模块1420,还可用于从所述目标驻留区域的第一小区中,确定目标驻留小区,所述第一小区为所述第一网络对应的小区;或者,还可用于从所述目标驻留区域的第二小区中,确定目标驻留小区,所述第二小区为所述第二网络对应的小区,所述目标驻留区域的小区不包括所述第一网络对应的小区。
在一种可能的设计中,所述第一网络可以为所述UE注册的SNPN;或者,所述第一网络可以为所述UE可接入网络列表中的,符合第一优先级要求的SNPN;或者,若所述UE将接入模式设置为PLMN接入模式,则所述第一网络可以为所述UE可接入网络列表中的,符合第二优先级要求的PLMN。
在一种可能的设计中,所述UE处于连接态,所述收发模块1410,还可用于接收来自于接入网设备的第一指示信息,所述第一指示信息用于指示所UE切换至第二网络。
在一种可能的设计中,所述UE驻留在所述第一网络,所述收发模块1410,还可用于接收来自于接入网设备的第二指示信息,所述第二指示信息用于指示所述UE重选至第二网络。
在一种可能的设计中,所述第二指示信息可承载于无线资源控制RRC释放release消息中。
在一种可能的设计中,所述第一网络的对等网络的信息可包括对等网络群组,所述对等网络群组中包含至少两个网络的信息,任意两个所述网络互为对等网络,所述网络包括所述第一网络。
基于与方法实施例相同的技术构思,参阅图14,通信装置1400还可用于实现上述任一方法实施例中涉及接入网设备的功能。该通信装置可以是接入网设备或接入网设备包括的芯片或电路。
所述处理模块1420,可以用于基于第一网络的对等网络的信息确定第二网络,所述第一网络对应于所述接入网设备和UE;所述第一网络为SNPN;所述收发模块1410,可以用于向所述UE发送指示信息,所述指示信息用于指示所述UE确定第二网络。
在一种可能的设计中,所述UE处于连接态,所述处理模块1420,在用于基于第一网络的对等网络的信息确定第二网络时,可具体用于:若所述第一网络的覆盖区域不包括所述UE的目标驻留区域,且至少一个所述对等网络的覆盖区域包括所述目标驻留区域,则从所述至少一个所述对等网络中确定所述第二网络。
在一种可能的设计中,所述处理模块1420,还可用于从所述目标驻留区域的第一小区中,确定所述UE的目标驻留小区,所述第一小区为所述第一网络对应的小区;或者,还可用于从所述目标驻留区域的第二小区中,确定所述UE的目标驻留小区,所述第二小区为所述第二网络对应的小区,所述目标驻留区域的小区不包括所述第一网络对应的小区。
在一种可能的设计中,所述第一网络可以为所述UE注册的SNPN;或者,所述第一网络为所述UE可接入网络列表中的,符合第一优先级要求的SNPN。
在一种可能的设计中,所述UE为连接态,所述收发模块1410,在用于向所述UE发送指示信息时,可具体为发送第一指示信息,所述第一指示信息用于指示所述UE切换至第二网络。
在一种可能的设计中,所述UE驻留在所述第一网络,所述收发模块1410,可用于向所述UE发送指示信息,具体为发送第二指示信息,所述第二指示信息用于指示所述UE重选至第二网络。
在一种可能的设计中,所述第二指示信息可承载于RRC release消息中。
在一种可能的设计中,所述第一网络的对等网络的信息可以包括对等网络群组,所述对等网络群组中可以包含至少两个网络的信息,任意两个所述网络互为对等网络,所述网络包括所述第一网络。
需要说明的是,通信装置1400中涉及的处理模块1420可以由至少一个处理器或处理器相关电路组件实现,收发模块1410可以由至少一个收发器或收发器相关电路组件或通信接口实现。该通信装置中的各个模块的操作和/或功能分别为了实现图5至图13中所示方法的相应流程,为了简洁,在此不再赘述。可选的,该通信装置中还可以包括存储模块,该存储模块可以用于存储数据和/或指令,收发模块1410和/或处理模块1420可以读取存取模块中的数据和/或指令,从而使得通信装置实现相应的方法。该存储模块例如可以通过至少一个存储器实现。
上述存储模块、处理模块和收发模块可以分离存在,也可以全部或者部分模块集成, 例如存储模块和处理模块集成,或者处理模块和收发模块集成等。
请参考图15,为本申请实施例中提供的一种通信装置的另一结构示意图。该通信装置1500可用于实现上述方法实施例中UE对应的功能或者用于实现上述方法实施例中接入网设备对应的功能,该通信装置1500可以是UE或者能够支持UE实现上述方法实施例中对应功能的装置等;或者可以是接入网设备或者能够支持接入网设备实现上述方法实施例中对应功能的装置等。
该通信装置1500可以包括处理器1501、通信接口1502和存储器1503。其中,通信接口1502用于通过传输介质与其它设备进行通信,该通信接口1502可以是收发器、也可以为接口电路如收发电路、收发芯片等。存储器1503用于存储程序指令和/或数据,处理器1501用于执行存储器1503中存储的程序指令,从而实现上述方法实施例中的方法。可选的,存储器1503和处理器1501耦合,所述耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
在一个实施例中,通信接口1502可具体用于执行上述收发模块1410的动作,处理器1501可具体用于执行上述处理模块1420的动作,本申请在此不再赘述。
本申请实施例中不限定上述通信接口1502、处理器1501以及存储器1503之间的具体连接介质。本申请实施例在图15中以存储器1503、处理器1501以及通信接口1502之间通过总线1504连接,总线在图15中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
请参考图16,为本申请实施例中提供的一种通信装置的另一结构示意图。该通信装置1600可用于实现上述任一方法实施例中涉及接入网设备的功能。该通信装置1600具体为一种接入网设备,例如基站。
该接入网设备1600包括:一个或多个DU 1601和一个或多个CU 1602。其中,所述DU 1601可以包括至少一个天线16011,至少一个射频单元16012,至少一个处理器16013和至少一个存储器16014。所述DU 1601主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。
所述CU 1602可以包括至少一个处理器16022和至少一个存储器16021。所述CU 1602主要用于进行基带处理,对基站进行控制等。所述CU 1602是基站的控制中心,也可以称为处理单元。例如所述CU 1602可以用于控制基站执行上述图5至图15所示方法中关于第一接入网设备对应的操作或步骤。
CU 1602和DU 1601之间可以通过接口进行通信,其中,控制面(control plane,CP)接口可以为Fs-C,比如F1-C,用户面(user plane,UP)接口可以为Fs-U,比如F1-U。所述DU 1601与CU 1602可以是物理上设置在一起,也可以物理上分离设置的(即分布式基站),并不限定。
具体的,CU和DU上的基带处理可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP层以下的协议层(例如RLC层和MAC层等)的功能设置在DU。又例如,CU实现RRC,PDCP层的功能,DU实现RLC、MAC和物理(physical,PHY)层的功能。
可选的,接入网设备1600可以包括一个或多个射频单元(RU),一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器16013和至少一个存储器16014,RU 可以包括至少一个天线16011和至少一个射频单元16012,CU可以包括至少一个处理器16022和至少一个存储器16021。
在一个实施例中,所述CU 1602可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器16021和处理器16022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外,每个单板上还可以设置有必要的电路。
所述DU 1601可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器16014和处理器16013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的对应UE或接入网设备的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一方法实施例中的方法。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或 可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器、动态随机存取存储器、同步动态随机存取存储器、双倍数据速率同步动态随机存取存储器、增强型同步动态随机存取存储器、同步连接动态随机存取存储器和直接内存总线随机存取存储器。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中涉及的各种数字编号仅为描述方便进行的区分,上述各过程或步骤的序号的大小并不意味着执行顺序的先后,各过程或步骤的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者接入网设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑 关系可以组合形成新的实施例。

Claims (20)

  1. 一种基于对等网络的网络选择方法,其特征在于,包括:
    终端设备基于第一网络的对等网络的信息确定第二网络,所述第一网络对应于所述终端设备;所述第一网络为独立部署的非公有网络SNPN;
    所述终端设备接入所述第二网络。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备处于空闲态,所述终端设备基于第一网络的对等网络的信息确定第二网络,包括:
    若所述第一网络的覆盖区域不包括所述终端设备的目标驻留区域,且至少一个所述对等网络的覆盖区域包括所述目标驻留区域,则所述终端设备从所述至少一个所述对等网络中确定所述第二网络。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备从所述至少一个所述对等网络中确定所述第二网络,包括:
    若所述对等网络中存在至少一个对等SNPN,则所述终端设备从所述至少一个对等SNPN中确定所述第二网络;
    若所述对等网络中不存在对等SNPN,则所述终端设备退出SNPN接入模式,从所述至少一个所述对等网络中确定所述第二网络。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述目标驻留区域的第一小区中,确定目标驻留小区,所述第一小区为所述第一网络对应的小区;或者,
    所述终端设备从所述目标驻留区域的第二小区中,确定目标驻留小区,所述第二小区为所述第二网络对应的小区,所述目标驻留区域的小区不包括所述第一网络对应的小区。
  5. 根据权利要求2至4中任一所述的方法,其特征在于,
    所述第一网络为所述终端设备注册的SNPN;或者,
    所述第一网络为所述终端设备可接入网络列表中的,符合第一优先级要求的SNPN;或者,
    若所述终端设备退出SNPN接入模式,所述第一网络为所述终端设备可接入网络列表中的,符合第二优先级要求的PLMN。
  6. 根据权利要求1至5中任一所述的方法,其特征在于,所述终端设备处于连接态,所述方法还包括:
    所述终端设备接收来自于接入网设备的第一指示信息,所述第一指示信息用于指示所述终端设备切换至第二网络。
  7. 根据权利要求1至5中任一所述的方法,其特征在于,所述终端设备驻留在所述第一网络,所述方法还包括:
    所述终端设备接收来自于接入网设备的第二指示信息,所述第二指示信息用于指示所述终端设备重选至第二网络。
  8. 根据权利要求7所述的方法,其特征在于,所述第二指示信息承载于无线资源控制RRC释放release消息中。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一网络的对等网络的信息包括对等网络群组,所述对等网络群组中包含至少两个网络的信息,任意两个所述 网络互为对等网络,所述网络包括所述第一网络。
  10. 一种基于对等网络的网络选择方法,其特征在于,包括:
    接入网设备基于第一网络的对等网络的信息确定第二网络,所述第一网络对应于所述接入网设备和终端设备;所述第一网络为SNPN;
    所述接入网设备向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备确定第二网络。
  11. 根据权利要求10所述的方法,其特征在于,所述终端设备处于连接态,所述接入网设备基于第一网络的对等网络的信息确定第二网络,包括:
    若所述第一网络的覆盖区域不包括所述终端设备的目标驻留区域,且至少一个所述对等网络的覆盖区域包括所述目标驻留区域,则所述接入网设备从所述至少一个所述对等网络中确定所述第二网络。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述接入网设备从所述目标驻留区域的第一小区中,确定所述终端设备的目标驻留小区,所述第一小区为所述第一网络对应的小区;或者,
    所述接入网设备从所述目标驻留区域的第二小区中,确定所述终端设备的目标驻留小区,所述第二小区为所述第二网络对应的小区,所述目标驻留区域的小区不包括所述第一网络对应的小区。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一网络为所述终端设备注册的SNPN;或者,
    所述第一网络为所述终端设备可接入网络列表中的,符合第一优先级要求的SNPN。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述终端设备为连接态,所述接入网设备向所述终端设备发送指示信息,包括:
    所述接入网设备发送第一指示信息,所述第一指示信息用于指示所述终端设备切换至第二网络。
  15. 根据权利要求10至13中任一项所述的方法,其特征在于,所述终端设备驻留在所述第一网络,所述接入网设备向所述终端设备发送指示信息,包括:
    所述接入网设备发送第二指示信息,所述第二指示信息用于指示所述终端设备重选至第二网络。
  16. 根据权利要求15所述的方法,其特征在于,所述第二指示信息承载于RRC release消息中。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,所述第一网络的对等网络的信息包括对等网络群组,所述对等网络群组中包含至少两个网络的信息,任意两个所述网络互为对等网络,所述网络包括所述第一网络。
  18. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至9中任一项所述的方法,或者使得所述装置执行如权利要求10至17中任一项所述的方法。
  19. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于与所述处理器交互代码指令或数据;
    所述处理器用于执行如权利要求1至9中任一项所述的方法,或者所述处理器用于执行如权利要求10至17中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,用于存储指令,当所述指令被执行时,使如权利要求1至9中任一项所述的方法被实现,或者使如权利要求10至17中任一项所述的方法被实现。
PCT/CN2022/094964 2021-09-18 2022-05-25 一种基于对等网络的网络选择方法及通信装置 WO2023040333A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22868710.9A EP4391646A1 (en) 2021-09-18 2022-05-25 Network selection method based on peer-to-peer network, and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111101846.0A CN115835320A (zh) 2021-09-18 2021-09-18 一种基于对等网络的网络选择方法及通信装置
CN202111101846.0 2021-09-18

Publications (1)

Publication Number Publication Date
WO2023040333A1 true WO2023040333A1 (zh) 2023-03-23

Family

ID=85515570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094964 WO2023040333A1 (zh) 2021-09-18 2022-05-25 一种基于对等网络的网络选择方法及通信装置

Country Status (3)

Country Link
EP (1) EP4391646A1 (zh)
CN (1) CN115835320A (zh)
WO (1) WO2023040333A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726808A (zh) * 2019-03-21 2020-09-29 华为技术有限公司 通信方法和装置
WO2021097082A1 (en) * 2019-11-13 2021-05-20 Convida Wireless, Llc Multi-sim ue cell selection and reselection
CN113068174A (zh) * 2020-01-02 2021-07-02 苹果公司 非公共无线通信网络
CN113286332A (zh) * 2020-02-19 2021-08-20 大唐移动通信设备有限公司 一种信息传输方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726808A (zh) * 2019-03-21 2020-09-29 华为技术有限公司 通信方法和装置
WO2021097082A1 (en) * 2019-11-13 2021-05-20 Convida Wireless, Llc Multi-sim ue cell selection and reselection
CN113068174A (zh) * 2020-01-02 2021-07-02 苹果公司 非公共无线通信网络
CN113286332A (zh) * 2020-02-19 2021-08-20 大唐移动通信设备有限公司 一种信息传输方法及设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Connected mode aspects", 3GPP DRAFT; R2-1914627, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20191118 - 20191122, 7 November 2019 (2019-11-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051815688 *
HUAWEI, HISILICON: "Clarification of service continuity between PLMN and SNPN", 3GPP DRAFT; S2-1901801_HANDOVER BETWEEN PLMN AND NPN 23501, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Santa Cruz - Tenerife; 20190225 - 20190301, 19 February 2019 (2019-02-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051610396 *
HUAWEI, HISILICON: "Equivalent SNPN discussion", 3GPP DRAFT; S2-1905678 EQUIVALENT SNPN DISCUSSION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. RENO, NEVADA, USA; 20190513 - 20190517, 7 May 2019 (2019-05-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051735871 *

Also Published As

Publication number Publication date
EP4391646A1 (en) 2024-06-26
CN115835320A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
JP7386981B2 (ja) ダウンリンクストリーミングにおけるトラフィックハンドリングのためのネットワーク支援を提供するためのシステムおよび装置
US11716122B2 (en) Beam management enhancement for FR2 with V-Pol/H-Pol virtualization
US10194311B2 (en) Method for setting and updating tracking area in C-RAN and apparatus therefor
WO2022048394A1 (zh) 网络连接方法、网络去连接方法及通信装置
JP2024012278A (ja) エッジコンピューティングサーバの効率的な発見
EP4181588A1 (en) Method for terminal to access public and private networks and communication apparatus
WO2023130471A1 (zh) 小区接入方法、装置、设备及可读存储介质
CN113891427B (zh) 通信方法和装置
CN113810989B (zh) 一种通信方法及相关设备
EP4050939A1 (en) Wireless communication method and terminal device
CN116390203A (zh) 选择网络的方法和装置
EP4109975A1 (en) Communication related to network slice
WO2023040333A1 (zh) 一种基于对等网络的网络选择方法及通信装置
WO2022126641A1 (zh) 无线通信方法、终端设备、第一接入网设备以及网元
WO2021036963A1 (zh) 数据处理方法、装置和系统
CN115119279A (zh) 一种接入控制方法及通信装置
KR20210144207A (ko) 사용자 가입자 데이터를 프로비저닝하기 위한 커넥티비티 제공 네트워크 검색 및 선택 방법 및 장치
TWI819462B (zh) 用於移動性更新報告之技術
WO2023226811A1 (zh) 移动性管理方法及装置
WO2023142981A1 (zh) 通信方法及相关装置
WO2023185374A1 (zh) 通信方法、通信装置和通信系统
US20220311478A1 (en) Uplink multiple input multiple output enhancements for fr2 with v-pol/h-pol virtualization
WO2023274042A1 (zh) 一种通信的方法、装置和系统
WO2023078118A1 (zh) 一种配置用户设备的方法和通信装置
WO2023020046A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868710

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022868710

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022868710

Country of ref document: EP

Effective date: 20240322

NENP Non-entry into the national phase

Ref country code: DE