WO2023040017A1 - 一种短流程给水处理系统及其处理工艺 - Google Patents
一种短流程给水处理系统及其处理工艺 Download PDFInfo
- Publication number
- WO2023040017A1 WO2023040017A1 PCT/CN2021/128613 CN2021128613W WO2023040017A1 WO 2023040017 A1 WO2023040017 A1 WO 2023040017A1 CN 2021128613 W CN2021128613 W CN 2021128613W WO 2023040017 A1 WO2023040017 A1 WO 2023040017A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- tank
- nanofiltration
- ozone
- coagulation
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 113
- 238000000034 method Methods 0.000 title claims abstract description 56
- 230000008569 process Effects 0.000 title claims abstract description 55
- 238000001728 nano-filtration Methods 0.000 claims abstract description 93
- 239000012528 membrane Substances 0.000 claims abstract description 82
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 56
- 238000005345 coagulation Methods 0.000 claims abstract description 48
- 230000015271 coagulation Effects 0.000 claims abstract description 47
- 238000004062 sedimentation Methods 0.000 claims abstract description 47
- 238000004659 sterilization and disinfection Methods 0.000 claims abstract description 24
- 239000000701 coagulant Substances 0.000 claims abstract description 12
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 12
- 230000003647 oxidation Effects 0.000 claims abstract description 11
- 238000001914 filtration Methods 0.000 claims description 10
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 8
- 150000002500 ions Chemical class 0.000 abstract description 4
- 238000009287 sand filtration Methods 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 8
- 239000005416 organic matter Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000000108 ultra-filtration Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010907 mechanical stirring Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical group S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/442—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/78—Treatment of water, waste water, or sewage by oxidation with ozone
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/04—Disinfection
Definitions
- the invention relates to the technical field of water treatment, in particular to a short-flow feedwater treatment system and a treatment process thereof.
- the common advanced water treatment process is mainly raw water-pre-oxidation-coagulation sedimentation-sand filtration-after ozone-biological activated carbon-disinfection.
- the biological activated carbon filter is followed by ultrafiltration membrane treatment, ultraviolet After oxidation and other treatment processes, the advanced water treatment process is more refined, and the quality of purified water is further improved.
- the purpose of the present invention is to provide a short-flow water supply treatment system and its treatment process, so as to realize the purpose of simplifying the water supply treatment process while ensuring the water supply quality.
- the present invention provides a kind of short process water supply treatment system, comprising: pre-ozone contact tank (1), coagulation sedimentation tank (2), nanofiltration device (3), disinfection tank (4), raw water tank Lifted to the pre-ozone contact tank (1), pumped into the coagulation sedimentation tank (2) after pre-ozone oxidation, passed into the nanofiltration device (3) after coagulation and sedimentation treatment, and filtered through the nanofiltration membrane
- the post-product water is sent into the disinfection pool (4) and discharged after disinfection treatment.
- the ozone dosage of the pre-ozone contact tank (1) is adjusted by the ozone generator according to the raw water quality and the water quality requirements of the nanofiltration device, and the ozone dosage is 0.6-1.4mg/L.
- the coagulant added in the coagulation-sedimentation tank (2) is selected from aluminum sulfate.
- the dosage of the coagulant added in the coagulation-settling tank (2) is controlled by the dosing pump according to the effluent parameters of the coagulation-settling tank (2), and the dosage is 35-45 mg/ L.
- the nanofiltration device includes a security filter, a booster pump, and a membrane module, and the water produced in the coagulation and sedimentation tank is filtered by the security filter and then pumped into the membrane module by the booster pump.
- the membrane module is a coiled nanofiltration membrane.
- the membrane module includes one stage of nanofiltration membrane and or two stages of nanofiltration membrane.
- a control valve is provided between the one-stage nanofiltration membrane and the two-stage nanofiltration membrane.
- the inlet water flow rate of the nanofiltration device is 4.9-5.1 m 3 /h, and the inlet water pressure is 4.2-4.5 bar.
- the present invention also provides a short-flow feedwater treatment process, comprising the following steps:
- Step S1 the raw water in the raw water tank is pumped to the pre-ozone contact tank, and pumped into the coagulation sedimentation tank after pre-ozone oxidation, and then sent to the nanofiltration device for coagulation and sedimentation treatment;
- Step S2 using the nanofiltration device to filter the water treated by coagulation and sedimentation with a nanofiltration membrane, and then pump the produced water into the disinfection tank;
- step S3 the water filtered by the nanofiltration membrane is disinfected in the disinfection tank and then discharged.
- the present invention is a short-flow feed water treatment system and its treatment process, which uses pre-ozone and coagulation sedimentation as the pre-treatment process, and uses nanofiltration to replace sand filtration and ozone biological in the existing common advanced treatment process.
- the activated carbon filter simplifies the water supply treatment process, and by adjusting the dosage of pre-ozone and coagulant, the efficient removal of the turbidity index and the partial removal of the organic matter index are achieved, and the water quality requirements of the nanofiltration membrane are met.
- the nanofiltration membrane is used to efficiently remove the organic matter and some ions in the water quality, so as to achieve the purpose of simplifying the water supply treatment process while ensuring the water supply quality.
- Figure 1 is a flow chart of the existing common feedwater advanced treatment process
- Fig. 2 is a system architecture diagram of a short flow feed water treatment system of the present invention
- Fig. 3 is the structural representation of nanofiltration device in the embodiment of the present invention.
- Fig. 4 is the flow chart of the steps of a kind of short process feedwater treatment process of the present invention.
- Fig. 5 is the flow chart of a kind of short process feedwater treatment process in the embodiment of the present invention.
- Fig. 6 is the turbidity effect diagram of the effluent water in each process section under the process flow of the present invention in Example 1 of the present invention;
- Fig. 7 is the COD Mn effect figure of each process section effluent COD Mn under the process flow of the present invention in the embodiment of the present invention 2;
- Fig. 8 is an effect diagram of TOC of effluent in each process section in Example 3 of the present invention after being treated by the process flow of the present invention.
- nanofiltration generally has a membrane pore size of 10 nm to 1 nm, which is between reverse osmosis membrane and ultrafiltration membrane, and can efficiently intercept organic matter and divalent or multivalent ions with a relative molecular weight greater than 200. It combines the advantages of ultrafiltration and reverse osmosis, can achieve the selective removal of target substances under lower operating conditions, and has important applications in drinking water purification and organic matter removal.
- the nanofiltration membrane can effectively intercept impurities in water through various functions such as screening, steric hindrance, electrostatic repulsion and adsorption, so that the water quality after filtration by the nanofiltration membrane is obvious. Superior to other water treatment processes.
- Fig. 2 is a system architecture diagram of a short-flow feedwater treatment system according to the present invention.
- a short-flow feedwater treatment system of the present invention includes: a pre-ozone contact tank 1 , a coagulation sedimentation tank 2 , a nanofiltration device 3 , and a disinfection tank 4 .
- the raw water in the raw water pool is lifted to the pre-ozone contact tank 1 through a pump.
- the pre-ozone contact tank 1 is cylindrical, and the raw water in the pre-ozone contact tank 1 enters from the upper end, and the ozone gas flows from the The lower end enters (the lower end of the gas enters the gas-water mixing more uniformly), and the water-gas mixing and oxidation reaction are carried out in the column, and the final water flow is pumped into the coagulation sedimentation tank 2 from the lower end.
- the ozone dosage of the pre-ozone contact tank 1 is regulated by the power of the ozone generator, that is, the ozone generator is adjusted according to the raw water quality (including COD, turbidity, pH, ion content, etc.) parameter) and the inlet water quality requirements of the membrane device of the nanofiltration device (the membrane requirements of different manufacturers are slightly different) to adjust the ozone dosage, and the pre-ozone dosage is 0.6 ⁇ 1.4mg/L.
- the raw water quality including COD, turbidity, pH, ion content, etc.
- Coagulation and sedimentation tank 2 after coagulation and sedimentation treatment of the pumped pre-ozone oxidized water, it is passed into nanofiltration device 3, the coagulation and stirring in the coagulation and sedimentation tank 2 adopts mechanical stirring, and the coagulant is selected from sulfuric acid
- the dosage of aluminum is 35 ⁇ 45mg/L, and the dosage of coagulant is controlled by the dosing pump, and the dosage can be adjusted and controlled according to the water quality parameters of the effluent of the coagulation sedimentation tank.
- the nanofiltration device 3 is used to filter the water treated by coagulation and sedimentation with a nanofiltration membrane, and then the produced water is pumped into the disinfection pool 4 .
- the nanofiltration device 3 includes a security filter, a booster pump and a membrane module, the membrane module in the nanofiltration device 3 is a roll-type nanofiltration membrane, and the membrane module There is a security filter in front to protect the nanofiltration membrane module, and the water produced in the coagulation sedimentation tank is pumped into the membrane module by a booster pump after passing through the security filter.
- the nanofiltration device can adopt one-stage or two-stage filtration If the one-stage filtration method is adopted, the membrane module is a section of nanofiltration membrane, and the water produced in the coagulation and sedimentation tank is pumped into a section of nanofiltration membrane with a booster pump after passing through the security filter.
- the produced water is pumped into the disinfection tank 4; After the water passes through the security filter, it is pumped into a section of nanofiltration membrane with a booster pump, and the total concentrated water of the first section of nanofiltration membrane can be passed into the second section of nanofiltration membrane for further treatment; in specific embodiments of the present invention, the nanofiltration device can also be A control valve is provided between the first-stage nanofiltration membrane and the second-stage nanofiltration membrane. During operation, one-stage or two-stage filtration can be selected according to the water quality or volume requirements of the produced water. The present invention is not limited thereto. In a specific embodiment of the present invention, the water inlet flow rate of the nanofiltration device 3 used is 4.9-5.1 m 3 /h, and the water inlet pressure is 4.2-4.5 bar.
- the disinfection pool 4 is used to discharge the water filtered by the nanofiltration membrane after disinfection treatment.
- Fig. 4 is a flow chart of the steps of a short-flow feedwater treatment process in the present invention. As shown in Fig. 4, a kind of short process feedwater treatment process of the present invention comprises the following steps:
- Step S1 the raw water in the raw water tank is pumped to the pre-ozone contact tank, and pumped into the coagulation sedimentation tank after pre-ozone oxidation, and then sent to the nanofiltration device for coagulation and sedimentation treatment.
- the raw water in the pre-ozone contact tank enters from the upper end, and the ozone gas enters from the lower end.
- the pre-ozone dosage is 0.6-1.4mg/L.
- the coagulation stirring in the coagulation sedimentation tank adopts mechanical stirring, and the coagulant is selected from aluminum sulfate and the dosage is 35 ⁇ 45mg/L.
- step S1 the dosage of ozone and coagulant in the pre-ozone contact tank and the coagulation sedimentation tank is adjusted to meet the water quality requirements of the nano-membrane device.
- the dosage of ozone is controlled by the power of the ozone generator. Requirements (different membrane manufacturers have slightly different requirements) to adjust the dosage of ozone, the dosage of coagulant is controlled by the dosing pump, and the dosage is adjusted and controlled according to the water quality parameters of the effluent of the coagulation sedimentation tank.
- step S2 the water treated by coagulation and sedimentation is filtered by a nanofiltration membrane, and the produced water is pumped into a disinfection tank.
- the nanofiltration device includes a security filter, a booster pump, and a membrane module.
- the membrane module in the nanofiltration device is a roll-type nanofiltration membrane, and a security filter is provided in front of the membrane module to protect the nanofiltration membrane module. After passing through the security filter, the water produced in the pond is pumped into the membrane module with a booster pump.
- the nanofiltration device can adopt a one-stage or two-stage filtration method.
- the membrane module is a one-stage Nanofiltration membrane
- the water produced in the coagulation sedimentation tank is pumped into a section of nanofiltration membrane with a booster pump after passing through the security filter, and the water after coagulation and sedimentation is filtered by a section of nanofiltration membrane and then pumped into the disinfection tank;
- the nanofiltration device can also adopt a two-stage filtration method.
- the membrane module includes a first-stage nanofiltration membrane and a second-stage nanofiltration membrane.
- the total concentrated water of one section of nanofiltration membrane can be passed into the second section of nanofiltration membrane for further treatment; the nanofiltration device can also be provided with a control valve between the first section of nanofiltration membrane and the second section of nanofiltration membrane, and can be operated according to the water quality of the produced water. Or the amount of water produced requires the selection of one-stage or two-stage filtration methods, and the present invention is not limited thereto.
- the inlet water flow rate of the nanofiltration device used is 4.9-5.1 m 3 /h, and the inlet water pressure is 4.2-4.5 bar.
- step S3 the water filtered by the nanofiltration membrane is disinfected in the disinfection tank and then discharged.
- the turbidity of the raw water in the raw water pool is 26.5 ⁇ 38.7NTU
- the COD Mn is 2.96 ⁇ 3.08mg/L
- the TOC is 3.34 ⁇ 3.72mg/L
- the short-flow feedwater treatment process of the present invention After process treatment, the turbidity removal rate can reach as high as 99%, the COD Mn removal rate can reach more than 80%, and the TOC removal rate can reach more than 75%.
- the present invention uses pre-ozone and coagulation-sedimentation as a pre-treatment process, replaces sand filtration and ozone biological activated carbon filter in the existing common advanced treatment process flow with nanofiltration, simplifies the water supply treatment process, and adjusts the pre-ozone and mixed
- the amount of coagulant dosage can be used to achieve efficient removal of turbidity indicators and partial removal of organic indicators, and meet the requirements of nanofiltration membrane influent water quality. In order to achieve the purpose of simplifying the process flow of water supply while ensuring the quality of water supply.
- the flow of a short-flow feedwater treatment process is as follows: the raw water in the raw water tank is pumped to the pre-ozone contact tank 1, and then pumped into the coagulation sedimentation tank 2 after pre-ozone oxidation. After the coagulation and sedimentation treatment, it is passed into the nanofiltration device 3, and the produced water is pumped into the disinfection tank 4 after being filtered by the nanofiltration membrane, and then discharged after disinfection treatment.
- the turbidity of the effluent from each process section after being treated by the process of the present invention is shown in FIG. 6 .
- Pre-ozone oxidation has no obvious removal effect on turbidity, but the turbidity of the effluent after coagulation and sedimentation treatment is reduced to 0.78 ⁇ 1.18 NTU, the average removal rate can reach 95%, and the turbidity is stable at 0.07 ⁇ 0.09 after nanofiltration treatment NTU, the effluent turbidity is at a low level.
- COD Mn of each process section is as shown in FIG. 7 .
- COD Mn is 2.4 ⁇ 2.56 mg/L after pre-ozone oxidation treatment, 1.84 ⁇ 1.88 mg/L after coagulation and sedimentation treatment, and 0.32 ⁇ 0.64 mg/L after nanofiltration treatment.
- COD Mn effluent after the process of the present invention The average removal rate can reach 84%, and the removal effect is relatively high.
- the TOC of the effluent from each process section after the process of the present invention is shown in Figure 8.
- the TOC is 3.45 ⁇ 3.58 mg/L, and after the coagulation and sedimentation treatment, it is 2.69 ⁇ 2.85 mg/L.
- L, 0.3 ⁇ 0.83 mg/L after nanofiltration treatment the average removal rate of TOC effluent after the process of the present invention can reach 86%, the removal effect is more consistent with COD Mn , and the organic matter removal efficiency is higher.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开了一种短流程给水处理系统及其处理工艺,所述处理系统包括:预臭氧接触池(1)、混凝沉淀池(2)、纳滤装置(3)、消毒池(4),原水池原水经提升至预臭氧接触池(1),经预臭氧氧化后泵入所述混凝沉淀池(2),经混凝沉淀处理后通入所述纳滤装置(3),经纳滤膜过滤后产水送入所述消毒池(4)经消毒处理后排出。本发明以预臭氧和混凝沉淀作为预处理工艺,以纳滤替代现有常见深度处理工艺流程中砂滤和臭氧生物活性炭滤池,简化给水处理工艺流程,并通过调节预臭氧和混凝剂投加量,实现对浊度指标的高效去除和有机物指标的部分去除,达到纳滤膜进水水质要求,在此基础上进一步通过纳滤膜对水质中有机物、部分离子等指标进行高效去除,从而在保障给水水质的同时,简化了给水处理工艺流程。
Description
本发明涉及水处理技术领域,特别是涉及一种短流程给水处理系统及其处理工艺。
如图1所示,常见的给水深度处理工艺以原水-预氧化-混凝沉淀-砂滤-后臭氧-生物活性炭-消毒为主,近几年来生物活性炭滤池后接超滤膜处理、紫外氧化等处理工艺后,使得给水深度处理工艺流程更加精细,净水水质得到进一步提升。
现有的给水深度处理工艺随着工艺提升,给水处理流程变得更加繁复冗长。
为克服上述现有技术存在的不足,本发明之目的在于提供一种短流程给水处理系统及其处理工艺,以实现在保障给水水质的同时,简化给水处理工艺流程的目的。
为达上述目的,本发明提供一种短流程给水处理系统,包括:预臭氧接触池(1)、混凝沉淀池(2)、纳滤装置(3)、消毒池(4),原水池原水经提升至预臭氧接触池(1),经预臭氧氧化后泵入所述混凝沉淀池(2),经混凝沉淀处理后通入所述纳滤装置(3),经纳滤膜过滤后产水送入所述消毒池(4)经消毒处理后排出。
优选地,所述预臭氧接触池(1)的臭氧投加量由臭氧发生器根据原水水质情况以及纳滤装置进水水质要求进行调节,其臭氧投加量为0.6~1.4mg/L。
优选地,所述混凝沉淀池(2)中投加的混凝剂选用硫酸铝。
优选地,所述混凝沉淀池(2)中投加的混凝剂投加量通过加药泵根据所述混凝沉淀池(2)的出水参数控制,其投加量为35~45mg/L。
优选地,所述纳滤装置包括保安过滤器、增压泵、膜组件,所述混凝沉淀池产水经所述保安过滤器过滤后以所述增压泵泵入所述膜组件。
优选地,所述膜组件选用卷式纳滤膜。
优选地,所述膜组件包括一段纳滤膜和或二段纳滤膜。
优选地,若所述膜组件包括二段纳滤膜,在所述一段段纳滤膜和二段段纳滤膜间设有控制阀门。
优选地,所述纳滤装置进水流量为4.9~5.1 m
3/h,进水压力为4.2~4.5 bar。
为达到上述目的,本发明还提供一种短流程给水处理工艺,包括如下步骤:
步骤S1,原水池原水经泵提升至预臭氧接触池,并经预臭氧氧化后泵入混凝沉淀池进行混凝沉淀处理后送入纳滤装置;
步骤S2,由所述纳滤装置对经混凝沉淀处理后的水采用纳滤膜过滤后产水泵入消毒池;
步骤S3,于消毒池对经纳滤膜过滤后的水经消毒处理后排出。
与现有技术相比,本发明一种短流程给水处理系统及其处理工艺,以预臭氧和混凝沉淀作为预处理工艺,以纳滤替代现有常见深度处理工艺流程中砂滤和臭氧生物活性炭滤池,简化给水处理工艺流程,并通过调节预臭氧和混凝剂投加量,实现对浊度指标的高效去除和有机物指标的部分去除,达到纳滤膜进水水质要求,在此基础上进一步通过纳滤膜对水质中有机物、部分离子等指标进行高效去除,从而达到在保障给水水质的同时,简化给水处理工艺流程的目的。
图1为现有常见的给水深度处理工艺流程图;
图2为本发明一种短流程给水处理系统的系统架构图;
图3为本发明实施例中纳滤装置的结构示意图;
图4为本发明一种短流程给水处理工艺的步骤流程图;
图5为本发明实施例中一种短流程给水处理工艺的流程图;
图6为本发明实施例1中经本发明工艺流程处理下各工艺段出水浊度效果图;
图7为本发明实施例2中经本发明工艺流程处理下各工艺段出水COD
Mn效果图;
图8为本发明实施例3中经本发明工艺流程处理下各工艺段出水TOC效果图。
以下通过特定的具体实例并结合附图说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。本发明亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。
纳滤作为一种新型的膜分离技术,膜孔径一般在10 nm~1 nm,介于反渗透膜和超滤膜之间,可高效截留相对分子量大于200的有机物及二价或多价离子,其集合了超滤和反渗透的优势,能够在较低的操作条件下实现目标物的选择性去除,在饮用水净化和有机物去除方面有重要应用。在给水处理过程中,纳滤膜由于其孔径和电荷差异,可通过筛分、空间位阻、静电排斥和吸附等多种作用对水中杂质进行有效截留,使得经纳滤膜过滤后的水质明显优于其他给水处理工艺。
图2为本发明一种短流程给水处理系统的系统架构图。如图2所示,本发明一种短流程给水处理系统,包括:预臭氧接触池1、混凝沉淀池2、纳滤装置3、消毒池4。
其中,原水池原水经泵提升至预臭氧接触池1,在本发明具体实施例中,所述预臭氧接触池1为圆柱状,所述预臭氧接触池1中原水从上端进入,臭氧气体从下端进入(气体下端进入气水混合更均匀),在柱体中进行水气混合和氧化反应,后水流从下端经泵抽入混凝沉淀池2。在本发明具体实施例中,所述预臭氧接触池1的臭氧投加量通过臭氧发生器功率进行调控,即由臭氧发生器根据原水水质情况(包括COD、浊度、pH、离子含量等多个参数)以及纳滤装置的膜装置进水水质要求(不同厂家膜要求略有不同)进行臭氧投加量的调节,其预臭氧投加量为0.6~1.4mg/L。
混凝沉淀池2,对泵入的经预臭氧氧化后的水混凝沉淀处理后通入纳滤装置3,所述混凝沉淀池2中的混凝搅拌采用机械搅拌,混凝剂选用硫酸铝且投加量为35~45mg/L,混凝剂投加量则通过加药泵控制,其投加量可根据混凝沉淀池出水的水质参数调节控制。
纳滤装置3,对经混凝沉淀处理后的水采用纳滤膜过滤后产水泵入消毒池4。在本发明具体实施例中,如图3所示,所述纳滤装置3包括保安过滤器、增压泵以及膜组件,所述纳滤装置3中膜组件选用卷式纳滤膜,膜组件前设有保安过滤器以保护纳滤膜组件,混凝沉淀池产水经保安过滤器后以增压泵泵入膜组件,优选地,所述纳滤装置可以采用一段式或二段式过滤方式,若采用一段式过滤方式,则所述膜组件为一段纳滤膜,混凝沉淀池产水经保安过滤器后以增压泵泵入一段纳滤膜,对经混凝沉淀处理后的水经一段纳滤膜过滤后产水泵入消毒池4;所述纳滤装置也可以采用二段式过滤方式,所述膜组件包括一段纳滤膜和二段纳滤膜,混凝沉淀池产水经保安过滤器后以增压泵泵入一段纳滤膜,一段纳滤膜总浓水可通入二段纳滤膜进一步处理;在本发明具体实施例中,所述纳滤装置也可以在一段纳滤膜和二段纳滤膜间设有控制阀门,运行时可根据产水水质或产水水量要求选用一段式或二段式过滤方式,本发明不以此为限。在本发明具体实施例中,所用纳滤装置3进水流量为4.9~5.1 m
3/h,进水压力为4.2~4.5
bar。
消毒池4,用于对经纳滤膜过滤后的水经消毒处理后排出。
图4为本发明一种短流程给水处理工艺的步骤流程图。如图4所示,本发明一种短流程给水处理工艺,包括如下步骤:
步骤S1,原水池原水经泵提升至预臭氧接触池,并经预臭氧氧化后泵入混凝沉淀池进行混凝沉淀处理后送入纳滤装置。
在本发明中,所述预臭氧接触池中原水从上端进入,臭氧气体从下端进入,其预臭氧投加量为0.6~1.4mg/L,原水池原水在预臭氧接触池经预臭氧氧化后泵入混凝沉淀池;所述混凝沉淀池中的混凝搅拌采用机械搅拌,混凝剂选用硫酸铝且投加量为35~45mg/L。
优选地,于步骤S1中,通过调节预臭氧接触池和混凝沉淀池中臭氧和混凝剂投加量以达到纳膜装置进水水质要求。
在本发明具体实施例中,臭氧投加量通过臭氧发生器功率控制,所述臭氧发生器根据原水水质情况(包括COD、浊度、pH、离子含量等多个参数)以及膜装置进水水质要求(不同厂家膜要求略有不同)进行臭氧投加量的调节,混凝剂投加量通过加药泵控制,其投加量根据混凝沉淀池出水的水质参数调节控制。
步骤S2,对经混凝沉淀处理后的水采用纳滤膜过滤后产水泵入消毒池。
所述纳滤装置包括保安过滤器、增压泵、膜组件,所述纳滤装置中膜组件选用卷式纳滤膜,膜组件前设有保安过滤器以保护纳滤膜组件,混凝沉淀池产水经保安过滤器后以增压泵泵入膜组件,优选地,所述纳滤装置可以采用一段式或二段式过滤方式,若采用一段式过滤方式,则所述膜组件为一段纳滤膜,混凝沉淀池产水经保安过滤器后以增压泵泵入一段纳滤膜,对经混凝沉淀处理后的水经一段纳滤膜过滤后产水泵入消毒池;所述纳滤装置也可以采用二段式过滤方式,所述膜组件包括一段纳滤膜和二段纳滤膜,混凝沉淀池产水经保安过滤器后以增压泵泵入一段纳滤膜,一段纳滤膜总浓水可通入二段纳滤膜进一步处理;所述纳滤装置也可以在一段段纳滤膜和二段段纳滤膜间设有控制阀门,运行时可根据产水水质或产水水量要求选用一段式或二段式过滤方式,本发明不以此为限。在本发明具体实施例中,所用纳滤装置进水流量为4.9~5.1
m
3/h,进水压力为4.2~4.5 bar。
步骤S3,于消毒池对经纳滤膜过滤后的水经消毒处理后排出。
经实验证明,在本发明中,当所述原水池原水浊度为26.5~38.7NTU,COD
Mn为2.96~3.08mg/L,TOC为3.34~3.72mg/L,经本发明短流程给水处理工艺流程处理后浊度去除率高达99%,COD
Mn去除率可达80%以上,TOC去除率可达75%以上。
可见,本发明以预臭氧和混凝沉淀作为预处理工艺,以纳滤替代现有常见深度处理工艺流程中砂滤和臭氧生物活性炭滤池,简化给水处理工艺流程,并通过调节预臭氧和混凝剂投加量,实现对浊度指标的高效去除和有机物指标的部分去除,达到纳滤膜进水水质要求,在此基础上进一步通过纳滤膜对水质中有机物、部分离子等指标进行高效去除,从而达到在保障给水水质的同时,简化给水处理工艺流程的目的。
实施例
1
如图5所示,在本实施例中,一种短流程给水处理工艺的流程如下:原水池原水经泵提升至预臭氧接触池1,经预臭氧氧化后泵入混凝沉淀池2,经混凝沉淀处理后通入纳滤装置3,经纳滤膜过滤后产水泵入消毒池4经消毒处理后排出。
在本实施例中,经本发明工艺流程处理后各工艺段出水浊度如图6所示。预臭氧氧化对浊度无明显去除效果,而混凝沉淀处理后出水浊度降低为0.78~1.18
NTU,平均去除率可达95%,经纳滤处理后浊度稳定在0.07~0.09
NTU,出水浊度处于较低水平。
实施例
2
在本实施例中,经本发明工艺流程处理后各工艺段出水COD
Mn如图7所示。经预臭氧氧化处理后COD
Mn为2.4~2.56 mg/L,混凝沉淀处理后为1.84~1.88
mg/L,纳滤处理后为0.32~0.64 mg/L,经本发明工艺处理后COD
Mn出水平均去除率可达84%,去除效果较高。
实施例
3
在本实施例中,经本发明工艺流程处理后各工艺段出水TOC如图8所示,经预臭氧氧化处理后TOC为3.45~3.58 mg/L,混凝沉淀处理后为2.69~2.85 mg/L,纳滤处理后为0.3~0.83
mg/L,经本发明工艺处理后TOC出水平均去除率可达86%,去除效果与COD
Mn较为一致,有机物去除效率较高。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员均可在不违背本发明的精神及范畴下,对上述实施例进行修饰与改变。因此,本发明的权利保护范围,应如权利要求书所列。
所属领域技术人员根据上文的记载容易得知,本发明技术方案适合在工业中制造并在生产、生活中使用,因此本发明具备工业实用性。
Claims (10)
- 一种短流程给水处理系统,包括:预臭氧接触池(1)、混凝沉淀池(2)、纳滤装置(3)、消毒池(4),原水池原水经提升至预臭氧接触池(1),经预臭氧氧化后泵入所述混凝沉淀池(2),经混凝沉淀处理后通入所述纳滤装置(3),经纳滤膜过滤后产水送入所述消毒池(4)经消毒处理后排出。
- 如权利要求1所述的一种短流程给水处理系统,其特征在于:所述预臭氧接触池(1)的臭氧投加量由臭氧发生器根据原水水质情况以及纳滤装置进水水质要求进行调节,其臭氧投加量为0.6~1.4mg/L。
- 如权利要求1所述的一种短流程给水处理系统,其特征在于:所述混凝沉淀池(2)中投加的混凝剂选用硫酸铝。
- 如权利要求3所述的一种短流程给水处理系统,其特征在于:所述混凝沉淀池(2)中投加的混凝剂投加量通过加药泵根据所述混凝沉淀池(2)的出水参数控制,其投加量为35~45mg/L。
- 如权利要求1所述的一种短流程给水处理系统,其特征在于:所述纳滤装置包括保安过滤器、增压泵、膜组件,所述混凝沉淀池产水经所述保安过滤器过滤后以所述增压泵泵入所述膜组件。
- 如权利要求5所述的一种短流程给水处理系统,其特征在于:所述膜组件选用卷式纳滤膜。
- 如权利要求6所述的一种短流程给水处理系统,其特征在于:所述膜组件包括一段纳滤膜和或二段纳滤膜。
- 如权利要求7所述的一种短流程给水处理系统,其特征在于:若所述膜组件包括二段纳滤膜,在所述一段段纳滤膜和二段段纳滤膜间设有控制阀门。
- 如权利要求8所述的一种短流程给水处理系统,其特征在于:所述纳滤装置进水流量为4.9~5.1 m 3/h,进水压力为4.2~4.5 bar。
- 一种短流程给水处理工艺,包括如下步骤:步骤S1,原水池原水经泵提升至预臭氧接触池,并经预臭氧氧化后泵入混凝沉淀池进行混凝沉淀处理后送入纳滤装置;步骤S2,由所述纳滤装置对经混凝沉淀处理后的水采用纳滤膜过滤后产水泵入消毒池;步骤S3,于消毒池对经纳滤膜过滤后的水经消毒处理后排出。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111080896.5A CN113651463A (zh) | 2021-09-15 | 2021-09-15 | 一种短流程给水处理系统及其处理工艺 |
CN202111080896.5 | 2021-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023040017A1 true WO2023040017A1 (zh) | 2023-03-23 |
Family
ID=78493993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/128613 WO2023040017A1 (zh) | 2021-09-15 | 2021-11-04 | 一种短流程给水处理系统及其处理工艺 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113651463A (zh) |
WO (1) | WO2023040017A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5585003A (en) * | 1995-11-30 | 1996-12-17 | Culligan International Company | Treatment of dialysis feedwater using ozone |
CN101224928A (zh) * | 2007-01-17 | 2008-07-23 | 东丽纤维研究所(中国)有限公司 | 一种水净化工艺 |
CN102718357A (zh) * | 2012-06-01 | 2012-10-10 | 上海穆特环保科技有限公司 | O3-bac水处理工艺及其配套饮用水处理设备 |
CN103420519A (zh) * | 2012-05-14 | 2013-12-04 | 上海市政工程设计研究总院(集团)有限公司 | 一种针对微污染原水的组合处理工艺 |
CN111087095A (zh) * | 2019-12-06 | 2020-05-01 | 北京碧水源科技股份有限公司 | 一种制备高品质饮用水的方法 |
CN111807557A (zh) * | 2020-07-23 | 2020-10-23 | 上海城市水资源开发利用国家工程中心有限公司 | 一种同步去除污染物并控制三卤甲烷生成的深度处理系统及工艺 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105906086B (zh) * | 2016-06-12 | 2019-03-15 | 深圳市水务(集团)有限公司 | 一种短流程的饮用水深度处理系统与工艺 |
CN108128916A (zh) * | 2017-11-21 | 2018-06-08 | 清华大学 | 水处理方法和装置 |
CN113144715A (zh) * | 2021-05-21 | 2021-07-23 | 上海城市水资源开发利用国家工程中心有限公司 | 一种新型功能纳米纤维可反洗精密滤芯过滤装置和方法 |
-
2021
- 2021-09-15 CN CN202111080896.5A patent/CN113651463A/zh active Pending
- 2021-11-04 WO PCT/CN2021/128613 patent/WO2023040017A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5585003A (en) * | 1995-11-30 | 1996-12-17 | Culligan International Company | Treatment of dialysis feedwater using ozone |
CN101224928A (zh) * | 2007-01-17 | 2008-07-23 | 东丽纤维研究所(中国)有限公司 | 一种水净化工艺 |
CN103420519A (zh) * | 2012-05-14 | 2013-12-04 | 上海市政工程设计研究总院(集团)有限公司 | 一种针对微污染原水的组合处理工艺 |
CN102718357A (zh) * | 2012-06-01 | 2012-10-10 | 上海穆特环保科技有限公司 | O3-bac水处理工艺及其配套饮用水处理设备 |
CN111087095A (zh) * | 2019-12-06 | 2020-05-01 | 北京碧水源科技股份有限公司 | 一种制备高品质饮用水的方法 |
CN111807557A (zh) * | 2020-07-23 | 2020-10-23 | 上海城市水资源开发利用国家工程中心有限公司 | 一种同步去除污染物并控制三卤甲烷生成的深度处理系统及工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN113651463A (zh) | 2021-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108275817A (zh) | 一种高硬度高盐分废水资源化的处理方法 | |
TWI393678B (zh) | Desalination system | |
CN105439395A (zh) | 一种含盐有机废水的零排放处理方法 | |
CN103819020B (zh) | 一种组合净水装置及其方法 | |
CN108623105B (zh) | 一种制浆工业废水零排放处理方法及装置 | |
CN101580328A (zh) | 一种处理微污染地表水的方法及装置 | |
Guo et al. | Experimental investigation of adsorption–flocculation–microfiltration hybrid system in wastewater reuse | |
CN102659291A (zh) | 纳滤、反渗透浓缩液减量化处理系统及方法 | |
CN204174044U (zh) | 垃圾渗滤液处理与回收利用系统 | |
AU2020101137A4 (en) | Wastewater treatment system by in site chemically-oxidized dynamic membrane | |
CN108046482A (zh) | 一种高盐分高硬度难降解有机浓缩废水处理方法及系统 | |
Jia et al. | Recent advances in nanofiltration-based hybrid processes | |
CN102070280A (zh) | 造纸废水深度处理回用装置及方法 | |
WO2023040018A1 (zh) | 一种新型低压高回收率纳滤系统及方法 | |
SG178334A1 (en) | Enhanced high water recovery membrane process | |
JP2003080246A (ja) | 水処理装置および水処理方法 | |
CN111875142A (zh) | 一种电厂含盐废水零排放系统及工艺 | |
CN105439347B (zh) | 一种用于二氯吡啶酸物料分离浓缩的母液处理工艺和系统 | |
WO2023040017A1 (zh) | 一种短流程给水处理系统及其处理工艺 | |
CN215947010U (zh) | 一种新型低压高回收率纳滤系统 | |
CN109205943A (zh) | 一种制药废水的处理方法 | |
CN215480160U (zh) | 一种集成化脱硫废水浓缩减量零排处理装置 | |
CN102060417A (zh) | Clt酸生产废水的处理工艺及装置 | |
CN109205944A (zh) | 一种制药废水的分盐处理方法 | |
CN215161949U (zh) | 一种反渗透浓水回收装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21957283 Country of ref document: EP Kind code of ref document: A1 |