WO2023040011A1 - 管道结构故障诊断装置及诊断方法 - Google Patents

管道结构故障诊断装置及诊断方法 Download PDF

Info

Publication number
WO2023040011A1
WO2023040011A1 PCT/CN2021/127883 CN2021127883W WO2023040011A1 WO 2023040011 A1 WO2023040011 A1 WO 2023040011A1 CN 2021127883 W CN2021127883 W CN 2021127883W WO 2023040011 A1 WO2023040011 A1 WO 2023040011A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pipeline
fault
knocking
acoustic wave
Prior art date
Application number
PCT/CN2021/127883
Other languages
English (en)
French (fr)
Inventor
张宏
刘啸奔
石彤
赵宏林
刘城其
刘杰
Original Assignee
中国石油大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(北京) filed Critical 中国石油大学(北京)
Priority to CA3175903A priority Critical patent/CA3175903C/en
Priority to US17/690,475 priority patent/US11747306B2/en
Publication of WO2023040011A1 publication Critical patent/WO2023040011A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/30Constructional aspects of the propulsion means, e.g. towed by cables
    • F16L55/32Constructional aspects of the propulsion means, e.g. towed by cables being self-contained
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/048Marking the faulty objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4445Classification of defects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2101/00Uses or applications of pigs or moles
    • F16L2101/30Inspecting, measuring or testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/40Constructional aspects of the body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2636Surfaces cylindrical from inside
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the embodiments of the present application relate to the technical field of natural gas pipeline safety, and in particular to a pipeline structure fault diagnosis device and diagnosis method.
  • Pipeline transportation occupies a pivotal position in the natural gas industry.
  • natural gas pipelines may have various faults, such as excessive stress and defects, or the soil outside the pipeline is not backfilled according to the design and construction requirements. Pipeline accidents caused by natural gas pipeline failures will cause huge losses to the social economy and the natural environment.
  • Embodiments of the present application provide a pipeline structure fault diagnosis device and a diagnosis method, which are used to fill the gap in the prior art that lacks a multi-fault comprehensive diagnosis device for a natural gas pipeline structure.
  • the embodiment of the present application provides a pipeline structure fault diagnosis device, including:
  • a signal generating device includes a moving part and a knocking part arranged on the moving part, the moving part is used to move along the inner wall of the pipeline, and the knocking part is used to knock the inner wall of the pipeline to generate an acoustic signal ;
  • the signal collection device is used to collect the acoustic wave signal
  • the signal storage device is connected with the signal acquisition device, and the signal storage device is used to store the acoustic wave signal for the signal processing and analysis device to analyze and determine the fault type, fault degree and fault location.
  • the knocking member includes a mounting frame, a driving part and a knocking arm;
  • the mounting frame is connected to the moving part, and the middle part of the knocking arm is rotatably connected to the mounting frame;
  • One end of the driving part is connected with the mounting frame, and the other end of the driving part is rotatably connected with a rotating shaft, and the rotating shaft is provided with a friction wheel and a cam fixedly connected with the friction wheel, and the friction wheel is used for When abutting against the inner wall of the pipeline, the cam abuts against one end of the knocking arm, and the cam is used to drive the knocking arm to rotate so that the other end of the knocking arm strikes the inner wall of the pipeline.
  • the knocking member further includes a first elastic member and a second elastic member, the driving part is hinged to the installation frame, and one end of the first elastic member is connected to the installation frame , the other end of the first elastic member is connected to the driving part, and the first elastic member is used to drive the driving part to rotate toward the inner wall of the pipeline;
  • One end of the second elastic member is connected to the driving part, the other end of the second elastic member is connected to the knocking arm, and the second elastic member is used to drive the knocking arm away from the cam One end of the pipe is turned towards the inner wall of the pipe.
  • the knocking arm has a mounting hole for mounting a protrusion, and the protrusion is used to strike the inner wall of the pipe, there are a plurality of mounting holes, and the protrusion is detachably installed In the installation hole, a plurality of the installation holes are arranged at intervals along the extending direction of the knocking arm.
  • the knocking arm also has a plurality of positioning threaded holes, each of the positioning threaded holes communicates with one of the mounting holes, and the centerline of the positioning threaded holes is connected to the mounting hole.
  • the center line of the hole is vertical;
  • the protrusion has a matching hole, and some of the protrusions are penetrated in the mounting hole, and the fastening bolt is matched with the positioning threaded hole and penetrated in the corresponding matching hole .
  • the moving part includes a moving shaft and a plurality of supporting parts, the plurality of supporting parts are arranged at intervals along the axis of the moving shaft, and the supporting parts are used for elastic interference fit with the pipe .
  • the pipeline structure fault diagnosis device further includes a position detection device, the position detection device is used to detect the position of the pipeline structure fault diagnosis device in the pipeline; the signal storage device is also used for Store the location.
  • the embodiment of the present application provides a diagnostic method, including:
  • the sample database includes simulation signal characteristics of multiple fault types and fault degrees;
  • the signal features are compared with the simulated signal features in the sample database to determine the fault type and fault degree of the acoustic wave signal.
  • a sample database is established, and the simulated signal characteristics including multiple fault types and fault degrees in the sample database include:
  • simulated signal features comprising time domain simulated signal features and frequency domain simulated signal features
  • the simulation database is classified to establish a sample database.
  • processing the acoustic wave signal to obtain signal features includes:
  • Feature extraction is performed to obtain signal features, and the signal features include time-domain signal features and frequency-domain signal features.
  • the embodiment of the present application provides a pipeline structure fault diagnosis device and diagnosis method, including a signal generating device, the signal generating device includes a moving part and a knocking part arranged on the moving part, the moving part is used to move along the inner wall of the pipeline, and the knocking part It is used to knock the inner wall of the pipeline to generate acoustic signals; the signal acquisition device is used to collect acoustic signals; the signal storage device is connected to the signal acquisition device, and the signal storage device is used to store acoustic signals for signal processing and analysis devices Analyze and determine the fault type, fault degree and fault location.
  • the signal generation device After the signal generation device generates the acoustic signal, it is collected by the signal acquisition device and stored in the signal storage device, and the signal processing and analysis device extracts the acoustic signal in the signal storage device, and performs processing and analysis to determine the fault type and fault degree of the pipeline The location of the fault is helpful for timely troubleshooting of pipeline faults and ensuring the safe operation of the pipeline.
  • FIG. 1 is a schematic structural diagram of a pipeline structure fault diagnosis device provided in an embodiment of the present application
  • Fig. 2 is a structural schematic diagram of the knocking part in the first viewing angle of a pipeline structure fault diagnosis device provided by the embodiment of the present application;
  • Fig. 3 is a structural schematic diagram of a knocker in a second viewing angle in a pipeline structure fault diagnosis device provided by an embodiment of the present application;
  • Fig. 4 is a structural schematic diagram of a knocker in a third viewing angle in a pipeline structure fault diagnosis device provided by an embodiment of the present application;
  • Fig. 5 is a structural schematic diagram of a cam in a pipeline structure fault diagnosis device provided by an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a signal analysis and processing device provided in an embodiment of the present application.
  • FIG. 7 is a flow chart of a diagnosis method provided by an embodiment of the present application.
  • the main reasons for the failure of natural gas pipelines include the following: the combination of residual stress in the pipeline or stress caused by external loads is too large, and the stress includes hoop stress and axial stress.
  • Stress, axial stress includes stress such as tension, compression and bending; there are defects in the pipe body or weld and other structural defects, and defects refer to volume defects (such as corrosion, metal loss) and plane defects existing in the pipe body or weld Type defects (such as cracks) and other geometric defects (such as depressions, geometric defects of welds);
  • the soil backfill condition outside the pipeline does not meet the construction requirements, and the soil backfill condition outside the pipeline refers to the soil type, particle size, axial and circumferential directions of the backfill soil outside the pipeline How uneven the backfill is.
  • the embodiment of the present application provides a pipeline structure fault diagnosis device and diagnosis method, including: a signal generating device, the signal generating device is used to generate an acoustic wave signal for striking the pipeline; a signal acquisition device, the signal acquisition device is used to collect sound waves Signal; signal storage device, the signal storage device is used to store the acoustic wave signal for the signal processing and analysis device to analyze and determine the fault type, fault degree and fault location.
  • the signal processing and analysis device extracts the acoustic wave signal in the signal storage device and performs processing and analysis to determine the fault type and fault of the pipeline.
  • the degree and location of the fault is conducive to timely troubleshooting of pipeline faults and ensuring the safe operation of the pipeline.
  • the pipeline structure fault diagnosis device provided by the embodiment of the present application specifically includes: a signal generating device, a signal collecting device 40 , and a signal storage device 50 .
  • the signal generating device, the signal collecting device 40 and the signal storage device 50 are all located inside the pipeline 10 .
  • the signal generating device includes a moving part and a knocking part 30 arranged on the moving part.
  • the moving part is used to move along the inner wall of the pipeline 10
  • the knocking part 30 is used to knock the inner wall of the pipeline 10 to generate an acoustic signal.
  • the moving part can be a pipeline 10 robot working in the pipeline 10
  • the driving mode of the pipeline 10 robot can be one of crawler drive, fluid flow drive in the pipeline 10 , and mechanical foot drive, for example.
  • the moving part can use the pressure of the fluid in the pipeline 10 as the driving force.
  • the moving part can be, for example, a pig.
  • the pig is a device that moves inside the pipeline 10 to scrape the dirt on the pipe wall and push out the dirt and sundries accumulated in the pipeline 10 to clean and maintain the pipeline 10. equipment.
  • the moving part includes a moving shaft 21 and a plurality of supporting parts arranged at intervals on the moving shaft 21, and the supporting parts are used to abut against the inner wall of the pipeline to play the role of supporting and fixing. Since there is a pressure difference on both sides of the support in the pipeline 10 , the support can move from the high-pressure end to the low-pressure end under the push of the pressure difference, so that the moving shaft 21 moves in the pipeline 10 .
  • the right end of the pipeline 10 can be the inlet end of the fluid
  • the left end of the pipeline 10 can be the consumption end of the fluid.
  • Inlet resulting in high pressure
  • moving parts close to the consumption end of the fluid, due to the continuous consumption of fluid, resulting in low pressure.
  • the moving part is driven to move toward the consumption end of the fluid, that is, the moving part moves to the left end in the position shown in the figure.
  • the enclosed space is a dry space, which is beneficial for the knocking member to strike the inner wall of the pipe to generate an acoustic signal.
  • the support includes a first support 211 , a second support 212 , a third support 213 and a fourth support 214 .
  • the centerline of the moving shaft 21 coincides with the centerline of the pipeline 10 .
  • the moving shaft 21 may include a first moving shaft and a second moving shaft, and the first moving shaft and the second moving shaft are articulated by a hinge shaft, which facilitates the moving of the moving shaft 21 in the curved pipe 10 .
  • a first supporting member 211 and a second supporting member 212 are arranged on the first moving shaft, and a third supporting member 213 and a fourth supporting member 214 are arranged on the second moving shaft.
  • the knocking part 30 is connected with the moving part, and the knocking part 30 is located behind the supporting part 212, which can improve the quality of the generated acoustic wave signal and prevent the acoustic signal from being doped with noise signals. Further, since the knocking piece 30 is located behind the supporting piece 212, the first supporting piece 211 of the moving piece removes the dirt in the pipeline 10, and then uses the knocking piece 30 to knock the inner wall, which is beneficial to improve the knocking piece 30. Percussion effect.
  • the knocking member 30 is an electric knocking device, such as an electric hammer.
  • an electric knocking device such as an electric hammer.
  • the signal collecting device 40 is used for collecting sound wave signals.
  • the signal collection device 40 is located behind the support member 212 and is connected to the moving shaft 21 so that the signal collecting device 40 can follow the moving shaft 21 to move.
  • the signal collection device 40 may use an audio recorder to collect sound wave signals through the audio recorder, and convert the collected sound wave signal analog quantities into digital quantities that can be used for subsequent analysis and processing.
  • the signal acquisition device 40 can also be implemented using other sound wave acquisition equipment, for example, it can be acquired by means of an acoustic probe or a microphone array.
  • the signal storage device 50 is connected with the signal acquisition device 40, and the signal storage device 50 is used for storing the acoustic wave signal, so as to process and analyze the acoustic wave signal later.
  • the signal storage device 50 can be, for example, a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, or a random access memory (random access memory, RAM) that can store information and instructions
  • Other types of dynamic storage devices can also be Electrically Erasable Programmable Read-Only Memory (EEPROM), Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, Optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can Any other medium accessed by a computer, but not limited to.
  • EEPROM Electrically Erasable Programmable Read-
  • the supporting member is a leather cup, and the leather cup is worn on the moving shaft 21.
  • the outer diameter of the leather cup is larger than the inner diameter of the pipeline 10, so that the leather cup can fit closely with the pipeline 10, so that the supporting member can support
  • the inner wall of the pipe creates a pressure difference.
  • the supporting member may also be other structures capable of supporting the inner wall of the sealing pipe 10, such as a rubber sealing ring.
  • the signal storage device 50 can be taken out and communicated with the processing and analysis device 70 .
  • the signal processing and analysis device 70 is used to determine the fault type, fault degree and fault location according to the acoustic wave signal. In this embodiment, by processing the collected acoustic signals, extracting the time domain features and frequency domain features in the acoustic signals, comparing the characteristic signals with the acoustic wave signal data in different fault types and fault degrees, thereby judging the fault condition of the pipeline 10 Specific fault type and fault degree, and further judge the fault location of pipeline 10.
  • the embodiment of the present application provides a pipeline structure fault diagnosis device, including a signal generating device, the signal generating device includes a moving part and a knocking part 30 arranged on the moving part, the moving part is used to move along the inner wall of the pipeline 10, and the knocking part 30 Used to knock the inner wall of the pipeline 10 to generate an acoustic signal; the signal acquisition device 40, the signal acquisition device 40 is used to collect the acoustic signal; the signal storage device 50 is connected in communication with the signal acquisition device 40, and the signal storage device 50 is used to store the acoustic signal , for the signal processing and analysis device 70 to analyze and determine the fault type, fault degree and fault location.
  • the signal processing and analysis device 70 extracts the sound wave signal in the signal storage device 50, and performs processing and analysis, and then determines the pipeline 10.
  • the fault type, fault degree and fault location are helpful for timely troubleshooting of the pipeline 10 and ensuring the safe operation of the pipeline 10.
  • the knocking member 30 can be knocked by mechanical driving.
  • the striking member 30 includes a mounting frame 31 , a driving part 32 and a striking arm 33 .
  • both the driving part 32 and the knocking arm 33 are rotatably connected to the mounting frame 31 , and the mounting frame 31 is connected to the moving shaft 21 so that the driving part 32 and the hitting arm 33 follow the moving shaft 21 to move.
  • the driving part 32 abuts against the knocking arm 33 , and the driving part 32 is used to drive the knocking arm 33 to rotate, and then knocks the inner wall of the pipe 10 to generate a sound wave signal.
  • the installation frame 31 includes an adapter disk 313 and a support frame 315 disposed on the adapter disk 313 .
  • the adapter disk 313 has a through hole, the center of the circle of the through hole coincides with the circle center of the adapter disk 313, and the outer diameter of the through hole is equal to the outer diameter of the moving shaft 21, so that the adapter disk 313 is passed through the through hole in the Move on axis 21. Further, the transfer disk 313 is also tightly connected to the moving shaft 21 through a cylindrical pin, and the cylindrical pin is arranged perpendicular to the extension direction of the moving shaft 21, thereby preventing rotation between the transferring disk 313 and the moving shaft 21.
  • the support frame 315 is a flat plate structure, wherein the support frame 315 includes a horizontal plate 3151, a vertical plate 3155 and an arc plate 3153, the extending direction of the horizontal plate 3151 is parallel to the extending direction of the moving shaft 21, and the extending direction of the vertical plate 3155 is perpendicular to the moving shaft In the extending direction of 21, the arc-shaped plate 3153 is located between the horizontal plate 3151 and the vertical plate 3155 for connecting the horizontal plate 3151 and the vertical plate 3155.
  • the support frame 315 includes two above-mentioned flat plate structures oppositely arranged, and the horizontal plate 3151 and the adapter disk 313 can be continuously screwed.
  • the horizontal plate 3151 is also provided with a first support shaft 341 , and both ends of the first support shaft 341 are connected with the horizontal plate 3151 through rolling bearings 35 , so that the first support shaft 341 can be rotatably connected with the horizontal plate 3151 .
  • the end of the vertical plate 3155 near the inner wall of the pipeline 10 is also provided with a second support shaft 343, and the two ends of the second support shaft 343 are connected with the vertical plate 3155 through rolling bearings 35, so that the second support shaft 343 can be rotatably connected with the vertical plate 3155 .
  • the driving part 32 may be substantially rod-shaped.
  • One end of the driving part 32 is fastened to the first support shaft 341 through a flat key, so that one end of the driving part 32 is rotatably connected to the installation frame 31 .
  • the other end of the driving part 32 is rotatably connected to a rotating shaft.
  • both ends of the rotating shaft are connected to the driving part 32 through rolling bearings 35 .
  • the rotating shaft is also provided with a friction wheel 321 and a cam 323 fixedly connected with the friction wheel 321.
  • the friction wheel 321 and the rotating shaft can be connected by a flat key, and the cam 323 and the rotating shaft can be connected by a straight pin.
  • the friction wheel 321 is used to abut against the inner wall of the pipe 10 , so that the friction wheel 321 drives the rotating shaft to rotate, and then drives the cam 323 to rotate synchronously. Further, the maximum outer diameter of the cam 323 is smaller than the outer diameter of the friction wheel 321 , so as to prevent the cam 323 from contacting the inner wall of the pipeline 10 .
  • the cam 323 in this embodiment can be a disc cam 323, the cam 323 has a first contour line segment ab and a second contour line segment ba, the first contour line segment ab and the second contour line segment ba The intersection points are A and B, the outer diameter of the first contour line segment ab gradually increases from point A to point B, and the outer diameter of the second contour line segment ba becomes smaller from point B to point A.
  • the knocking arm 33 may be roughly rod-shaped.
  • the middle part of the knocking arm 33 is fastened to the second support shaft 343 through a flat key, so that the knocking arm 33 is rotatably connected to the installation frame 31 .
  • the end of the knocking arm 33 close to the driving part 32 abuts against the cam 323 , and the end of the knocking arm 33 away from the driving part 32 is mounted with a bump 331 , and the bump 331 is arranged perpendicular to the extending direction of the knocking arm 33 .
  • the knocking arm 33 has an installation hole 333 for installing the bump 331 on the inner wall of the knocking pipe 10 , and the axis of the installation hole 333 is perpendicular to the extension direction of the knocking arm 33 .
  • the cam 323 rotated following the friction wheel 321, one end of the knocking arm 33 was in contact with the contour line of the cam 323, and one end of the knocking arm 33 swung, so that the knocking arm 33 was rotated with the second support shaft 343
  • the protrusion 331 moves toward the inner wall of the pipeline 10 , so that the protrusion 331 can strike the inner wall of the pipeline 10 to generate a sound wave signal.
  • the knocking arm 33 has a plurality of installation holes 333, and the protrusion 331 is detachably installed in the installation hole 333, and the plurality of installation holes 333 are arranged at intervals along the extension direction of the knocking arm 33, which is convenient for replacing the protrusion 331 is positioned on the knocking arm 33 to produce knocking sound waves of different volumes.
  • the position where the mounting hole 333 is away from the driving part 32 is the far end, and the position where the mounting hole 333 is close to the driving part 32 is the proximal end.
  • the protrusion 331 can be installed in the installation hole 333 at the proximal end.
  • the knocking arm 33 also has a plurality of positioning threaded holes 335, and the protrusion 331 also has a matching hole, and each mounting hole 333 is in communication with a positioning threaded hole 335, and the center line of the positioning threaded hole 335 is perpendicular to the mounting hole 333 centerline of .
  • the knocking member 30 further includes a first elastic member 361 and a second elastic member 363.
  • the first elastic member 361 and the second elastic member 363 may be springs.
  • the first elastic member 361 and the second elastic member 363 can also be rubber elastic bodies.
  • one end of the first elastic member 361 is connected to the mounting frame 31 , and the other end of the first elastic member 361 is connected to the driving part 32 , and the first elastic member 361 is used to drive the driving part 32 to rotate toward the inner wall of the pipeline 10 .
  • one end of the first elastic member 361 is connected to the adapter disc 313, and the other end of the first elastic member 361 is connected to the end of the driving part 32 away from the inner wall of the pipeline 10, so that the driving part 32 can be subjected to downward pressure. elastic tension.
  • the moving part drives the knocking part 30 to move, the friction wheel 321 is in contact with the inner wall of the pipeline 10, so that the friction wheel 321 is supported upwards, causing the driving part 32 to rotate counterclockwise with the first support shaft 341 as the rotation axis.
  • the friction wheel 321 is pressed against the inner wall of the pipeline 10 with a certain pressure, so as to prevent the friction wheel 321 from slipping, thereby ensuring that the friction wheel 321 rolls relative to the inner wall of the pipeline 10.
  • one end of the second elastic member 363 is connected to the driving part 32, and the other end of the second elastic member 363 is connected to the striking arm 33, and the second elastic member 363 is used to drive the end of the striking arm 33 away from the cam 331 to The inner wall of the pipe 10 rotates.
  • one end of the second elastic member 363 is connected with the end of the driving portion 32 away from the inner wall of the pipeline 10, and the other end of the second elastic member 363 is connected with the middle part of the knocking arm 33, so that the knocking arm 33 can be subjected to Elastic pull upwards.
  • one end of the knocking arm 33 swings along the first contour line segment ab, so that the knocking arm 33 rotates clockwise with the second support shaft 343 as the rotation axis, thereby driving the protrusion 331 to move away from the pipe 10
  • the direction of the inner wall moves, so that the second elastic member 363 is stretched and deformed; one end of the knocking arm 33 swings along the second contour line segment ba, and the knocking arm 33 is under the action of the elastic restoring force of the second elastic member 363, with the first
  • the two supporting shafts 343 are rotating counterclockwise to drive the protrusion 331 to move towards the inner wall of the pipe 10 and strike the inner wall of the pipe 10 to generate a sound wave signal.
  • the knocking part 30 also moves along the inner wall of the pipe 10 following the moving part.
  • the moving part moves to the left in the position shown in the figure, and the friction wheel 321 rolls relative to the inner wall of the pipe 10, thereby causing the cam 323 to rotate counterclockwise synchronously.
  • the pipeline structure fault diagnosis device also includes a position detection device, which is used to detect the position of the pipeline structure fault diagnosis device in the pipeline, so that the operator can prevent it in time according to the fault location and improve the operation safety of the pipeline 10 .
  • the position detection device includes a mileage wheel 23, the mileage wheel 23 is connected with the moving shaft 21, and the mileage wheel 23 is also used to abut against the inner wall of the pipeline 10, so that the mileage wheel 23 can roll along the inner wall of the pipeline 10 , it is beneficial for the moving part to move in the pipeline 10 .
  • the mileage wheel 23 includes a shaft arm and a roller, the shaft arm is firmly connected to the moving shaft 21 , and the roller is rotatably connected to the shaft arm.
  • the moving part is provided with a plurality of mileage wheels 23 , and the mileage wheels 23 are arranged in the circumferential direction around the moving shaft 21 , which is beneficial for the mileage wheels 23 to support and fix the moving shaft 21 .
  • the mileage wheel 23 is a device capable of calculating the accumulated walking distance according to the rolling distance and walking time per unit time. Specifically, the mileage wheel 23 emits a certain number of pulses every time it rolls a week, and a pulse acquisition unit is installed on the shaft arm of the mileage wheel 23 to collect the pulses emitted by the mileage wheel 23 in real time, and the pulse number can be calculated according to the measured pulse number The distance traveled by the mileage wheel 23 can then collect the moving mileage of the moving parts.
  • the signal storage device 50 is also used to store the moving mileage, so as to subsequently determine the fault location according to the moving mileage.
  • the position detection device may also include a weld seam detection device.
  • the fault location can be determined using weld seam alignment technology: a weld seam detection device can be installed on the moving part, the specific position of the pipeline 10 can be determined by the number of weld seams detected, and then the specific position of the acoustic signal can be determined. When fault identification is performed, the specific location of the fault can be obtained.
  • the moving part further includes a storage battery 60 connected to the moving shaft 21 so that the storage battery 60 can move along with the moving part. Further, the battery 60 is electrically connected to the mileage wheel 23 so that the battery 60 supplies power to the pulse counting of the mileage wheel 23 .
  • the signal processing and analyzing device 70 may include a reading unit 71 , a data unit 73 , a processing unit 72 and a judging unit 74 .
  • the reading unit 71 , the data unit 73 , the processing unit 72 and the judging unit 74 are all presented in the form of functional units.
  • the composition form of the hardware carrier of the signal processing and analyzing device 70 in this embodiment may specifically be a computer device.
  • the reading unit 71 is used for reading the acoustic wave signal stored in the signal storage device 50 so as to input the acoustic wave signal to the processing unit 72 for processing.
  • the reading unit 71 can also be used to read the moving mileage stored in the signal storage device 50, and obtain the fault location based on the moving mileage. For example, after the reading part 71 reads the moving mileage and the sound wave signal, by setting the acquisition frequency of the mileage wheel 23, the moving mileage and the data of the sound wave signal are aligned, and then the specific position of the sound wave signal collected each time can be obtained. When the signal is used for fault identification, the specific location of the fault can be obtained.
  • the processing unit 72 is communicatively connected with the reading unit 71 for extracting signal features based on the acoustic wave signal. It is worth noting that the processing unit 72 firstly needs to preprocess the acoustic wave signal to obtain a noise-reduced signal, so as to remove the high-frequency interference signal in the acoustic wave signal transmitted from the reading unit 71 to the processing unit 72 .
  • the preprocessing can be realized, for example, by using a low-pass filter.
  • the noise reduction signal since the noise reduction signal is a time domain signal, the noise reduction signal needs to be converted into a frequency domain signal in subsequent analysis and identification of the sound wave signal.
  • the step of acquiring the frequency domain signal for example, Fourier transform may be used.
  • feature extraction is performed on the acquired time-domain signal and frequency-domain signal respectively, so as to obtain corresponding time-domain signal features and frequency-domain signal features.
  • the feature extraction process can be realized by using the feature extraction method of the acoustic wave signal in the prior art, which will not be repeated in this embodiment.
  • a sample database is provided in the data part 73, and the sample database includes multiple groups of simulated signal characteristics of different fault types and fault degrees, so that the acoustic wave signals can be compared to determine the fault type and fault degree.
  • a large amount of simulation data can be used to perform simulation calculations of pipeline structural faults to obtain simulation signals.
  • feature extraction is performed on the simulated signal respectively to obtain corresponding time-domain simulated signal features and frequency-domain simulated signal features.
  • the simulated signal and the characteristics of the simulated signal are stored to establish a simulation database for subsequent comparison with the acoustic signal and the characteristic signal.
  • the signals in the simulation database are trained and classified to form a sample database, in which there are multiple groups of simulation signal characteristics with different fault types and fault degrees.
  • the support vector machine method can be used to train and classify the signals in the simulation database, or it can also be realized by typical algorithms such as the minimum distance method, neural network, decision tree method, and hidden Markov model.
  • the judging part 74 is communicatively connected with the reading part 71 and the data part 73, and is used for comparing the signal characteristics with the simulated signal characteristics, and judging and outputting the fault type and fault degree based on the comparison result.
  • the AI recognition and comparison method can be used to compare the time-domain signal characteristics of the measured acoustic wave signal with the time-domain simulation signal characteristics of the simulated signal, and compare the frequency-domain signal characteristics of the measured acoustic wave signal with the frequency-domain simulation signal of the simulated signal Features, to determine the fault type and fault degree of the measured acoustic signal.
  • the signal processing and analysis device 70 also includes an output unit 75, which is used to output the type, degree and location of the fault, so that the operator can prevent it in time according to the diagnosis result and improve the operation safety of the pipeline 10 .
  • the output unit 75 may include a display to output the fault type, fault degree and fault location on the display, or the output unit 75 may also include a printing device to output the fault type, fault degree and fault location by printing a report.
  • the embodiment of the present application also provides a diagnosis method, which is realized by the above-mentioned pipeline structure fault diagnosis device, referring to Fig. 7, including the following steps:
  • Step S101 establishing a sample database, which includes simulated signal characteristics of various fault types and fault degrees.
  • the pipeline structure fault diagnosis device may include a signal processing and analysis device 70 , wherein the signal processing and analysis device 70 includes a data unit 73 .
  • a sample database is provided in the data part 73 for comparison of the acoustic wave signals to determine the type and degree of the fault.
  • Step S102 acquiring the sound wave signal generated by knocking on the inner wall of the pipeline.
  • the sound wave signal is generated by the signal generating device, and then the sound wave signal is collected by the signal collecting device.
  • the signal generating device includes a moving part for moving inside the pipeline and a knocking part connected with the moving part. file connection.
  • the knocking piece is used to knock the inner wall of the pipe to generate a sound wave signal.
  • the knocking member may be the mechanical structure in the above embodiment, or may be an electric knocking device, which is not further limited in this embodiment.
  • the moving part and the signal collection device can be any structure in the above-mentioned embodiments, and will not be repeated here.
  • the pipeline structure fault diagnosis device may further include a signal storage device 50, which is connected to the signal acquisition device 40, and the signal storage device 50 is used to store the acoustic signal for subsequent processing and analysis of the acoustic signal.
  • the signal storage device 50 may have any structure in the above-mentioned embodiments, which will not be repeated here.
  • the pipeline structure fault diagnosis device also includes a position detection device, which is connected with the moving parts.
  • the position detection device is used to detect the position of the pipeline structure fault diagnosis device in the pipeline, so that the operator can prevent it in time according to the fault location and improve the operation safety of the pipeline 10. sex.
  • the position detection device may include any structure in the above-mentioned embodiments, which will not be repeated here.
  • Step S103 processing the acoustic wave signal to obtain signal features.
  • the signal processing and analyzing device 70 further includes a reading unit 71 and a processing unit 72 connected in communication with the reading unit 71 .
  • the reading unit 71 is used for reading the acoustic wave signal stored in the signal storage device 50, so as to input the acoustic wave signal to the processing unit 72 for processing, and the processing unit 72 is used for extracting the characteristic signal based on the acoustic wave signal.
  • the reading unit 71 can also be used to read the moving mileage stored in the signal storage device 50, and obtain the fault location based on the moving mileage. For example, after the reading part 71 reads the moving mileage and the sound wave signal, by setting the acquisition frequency of the mileage wheel 23, the moving mileage and the data of the sound wave signal are aligned, and then the specific position of the sound wave signal collected each time can be obtained. When the signal is used for fault identification, the specific location of the fault can be obtained.
  • Step S104 comparing the signal features with the simulated signal features in the sample database to determine the fault type and fault degree of the acoustic wave signal.
  • the signal processing analysis device 70 also includes a judging part 74, which is communicatively connected with the reading part 71 and the data part 73, and is used to compare the signal characteristics with the simulated signal characteristics, and judge and output the fault type and fault based on the comparison result. degree. Specifically, by comparing the time-domain signal characteristics of the measured sound wave signal with the time-domain simulation signal characteristics of the simulation signal, and comparing the frequency-domain signal characteristics of the measured sound wave signal with the frequency-domain simulation signal characteristics of the simulation signal, the measured sound wave signal is determined type and degree of failure.
  • AI recognition and comparison can be used.
  • methods such as fuzzy mathematics can be used to realize comparison and recognition with the basic voiceprint database.
  • it can also be realized by adopting machine learning and other technologies that can be compared and identified.
  • the step of including simulated signal characteristics of various fault types and fault degrees in the sample database may include: performing simulated calculations of pipeline structural faults to obtain simulated signals.
  • the simulation calculation of pipeline structure faults is carried out through a large amount of simulation data to obtain simulation signals.
  • the simulation data includes simulation values in a variety of different pipeline 10 structures, and each pipeline 10 structure includes simulation values in a variety of different fault states, such as simulation values under different stresses, Simulation values under different soil backfill conditions, simulation values under different defect conditions, etc.
  • a corresponding simulation signal can be obtained through a large amount of simulation data, and the simulation signal includes a time domain simulation signal and a corresponding frequency domain simulation signal.
  • the step of establishing the sample database also includes performing feature extraction to obtain simulated signal features, and the simulated signal features include time-domain simulated signal features and frequency-domain simulated signal features.
  • the simulated signal After the simulated signal is obtained, feature extraction is performed on the simulated signal respectively to obtain corresponding time-domain simulated signal features and frequency-domain simulated signal features.
  • the characteristics of the simulated signal may include, for example, the total power spectrum, Rice frequency, frequency center of gravity, frequency variance, mean frequency, waveform mean frequency, and waveform stability factor.
  • the feature extraction process can be realized by using the feature extraction method of the acoustic wave signal in the prior art, which will not be repeated in this embodiment.
  • factor analysis can also be performed after the obtained simulation signal features.
  • Factor analysis is a data processing method for reducing the dimensionality of numerous data based on correlation, which is beneficial to extract common factors for the simulation signal features in different pipeline 10 structures, and is convenient for subsequent Classify simulated signal features.
  • principal component analysis and manifold learning methods can also be used.
  • the step of establishing the sample database further includes storing the simulated signal and the characteristics of the simulated signal to establish the simulated database for subsequent comparison with the acoustic wave signal and the characteristic signal.
  • the step of establishing the sample database further includes classifying the simulation database to establish the sample database.
  • the signals in the simulation database are trained and classified to form a sample database, in which there are multiple groups of simulation signal characteristics with different fault types and fault degrees.
  • the support vector machine method can be used to train and classify the signals in the simulation database, for example, they can be classified into external stress faults, soil backfill status faults, defect faults, and the like.
  • it can also be realized by typical algorithms such as the minimum distance method, neural network, decision tree method, and hidden Markov model.
  • the step of processing the acoustic wave signal to obtain signal features further includes: performing preprocessing to obtain a noise-reduced signal.
  • the processing unit 72 firstly needs to preprocess the acoustic wave signal to obtain a noise-reduced signal, so as to remove the high-frequency interference signal in the acoustic wave signal transmitted from the reading unit 71 to the processing unit 72 .
  • the preprocessing can be realized, for example, by using a low-pass filter.
  • the step of processing the acoustic wave signal to obtain signal features further includes: performing time-spectrum conversion on the noise-reduced signal to obtain a frequency-domain signal.
  • the noise reduction signal since the noise reduction signal is a time domain signal, the noise reduction signal needs to be converted into a frequency domain signal in subsequent analysis and identification of the sound wave signal.
  • the step of acquiring the frequency domain signal for example, Fourier transform may be used.
  • the step of processing the acoustic wave signal to obtain signal features further includes: performing feature extraction to obtain signal features, and the signal features include time domain signal features and frequency domain signal features.
  • feature extraction is performed on the acquired time domain signal and frequency domain signal respectively, so as to obtain corresponding time domain features and frequency domain features.
  • the feature extraction process can be realized by using the feature extraction method of the acoustic wave signal in the prior art, which will not be repeated in this embodiment.
  • the diagnostic method provided by this embodiment can also output the fault type, fault degree and fault location after determining the fault type and fault degree of the acoustic signal, so that the operator can prevent in time according to the diagnosis results and improve the operation of the pipeline 10. safety.
  • the signal processing and analysis device 70 also includes an output unit 75, which is used to output the type, degree and location of the fault, so that the operator can prevent it in time according to the diagnosis result and improve the operation safety of the pipeline 10 .
  • the output unit 75 may include a display to output the fault type, fault degree and fault location on the display, or the output unit 75 may also include a printing device to output the fault type, fault degree and fault location by printing a report.
  • the reading unit 71 , the data unit 73 , the processing unit 72 and the judging unit 74 are all presented in the form of functional units.
  • the composition form of the hardware carrier of the signal processing and analyzing device 70 in this embodiment may specifically be a computer device.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • connection In this embodiment of the application, unless otherwise clearly specified and limited, the terms “installation”, “connection”, “connection”, “fixation” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a fixed connection. Disconnected connection, or integrated; it can be directly connected, or indirectly connected through an intermediary, and can be the internal communication of two elements or the interaction relationship between two elements, unless otherwise clearly defined. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.

Abstract

一种管道(10)结构故障诊断装置及诊断方法, 属于天然气管道(10)安全技术领域,旨在用以填补现有技术中缺少对天然气管道(10)进行管道(10)结构多故障综合诊断装置的空缺。信号发生装置用于产生敲击管道(10)的声波信号;信号采集装置(40)用于采集声波信号;信号存储装置(50)用于存储声波信号,以供信号处理分析装置(70)进行分析并确定故障类型、故障程度与故障位置。信号发生装置产生声波信号以后,通过信号采集装置(40)进行采集,并存储在信号存储装置(50)内,信号处理分析装置(70)提取信号存储装置(50)内的声波信号,并进行处理分析,进而确定管道(10)结构的故障类型、故障程度与故障位置,有利于及时排查管道(10)故障,保障管道(10)安全运行。

Description

管道结构故障诊断装置及诊断方法
本申请要求于2021年09月18日提交中国专利局、申请号为202111110028.7、申请名称为“管道结构故障诊断装置及诊断方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及天然气管道安全技术领域,尤其涉及一种管道结构故障诊断装置及诊断方法。
背景技术
管道运输在天然气工业中占有举足轻重的地位,管道运输中天然气管道可能存在多种故障,例如应力、缺陷超标或管道外土壤未按设计施工要求回填。天然气管道故障导致的管道事故,将使得社会经济以及自然环境都受到巨大损失。为保证天然气管道安全平稳的运行,降低管道运输中的事故发生率,有必要对天然气管道进行故障诊断,及时发现并排除隐患。
然而,在现有技术中,还缺少对天然气管道进行多故障综合诊断的装置。
发明内容
本申请实施例提供一种管道结构故障诊断装置及诊断方法,用以填补现有技术中缺少对天然气管道结构进行多故障综合诊断装置的空缺。
第一方面,本申请实施例提供一种管道结构故障诊断装置,包括:
信号发生装置,所述信号发生装置包括移动件和设置在移动件上的敲击件,所述移动件用于沿管道内壁移动,所述敲击件用于敲击管道内壁,以产生声波信号;
信号采集装置,与所述移动件连接,所述信号采集装置用于采集所述声波信号;
信号存储装置,与所述信号采集装置连接,所述信号存储装置用于存储所述声波信号,以供信号处理分析装置进行分析并确定故障类型、故障程度与故障位置。
在一种可实现方式中,所述敲击件包括安装架,驱动部以及敲击臂;
所述安装架与所述移动件连接,所述敲击臂的中部与所述安装架可转动连接;
所述驱动部的一端与所述安装架连接,所述驱动部的另一端可转动连接有转轴,所述转轴上设置有摩擦轮和与所述摩擦轮固连的凸轮,所述摩擦轮用于抵顶管道内壁,所述凸轮与所述敲击臂的一端抵顶,所述凸轮用于驱动所述敲击臂转动,以使所述敲击臂的另一端敲击管道内壁。
在一种可实现方式中,所述敲击件还包括第一弹性件和第二弹性件,所述驱动部与所述安装架铰接,所述第一弹性件的一端与所述安装架连接,所述第一弹性件的另一端与所述驱动部连接,所述第一弹性件用于驱动所述驱动部向管道内壁转动;
所述第二弹性件的一端与所述驱动部连接,所述第二弹性件的另一端与所述敲击 臂连接,所述第二弹性件用于驱动所述敲击臂背离所述凸轮的一端向管道内壁转动。
在一种可实现方式中,所述敲击臂具有用于安装凸块的安装孔,所述凸块用于敲击管道内壁,所述安装孔为多个,所述凸块可拆卸的安装于所述安装孔内,多个所述安装孔沿所述敲击臂的延伸方向间隔设置。
在一种可实现方式中,所述敲击臂还具有多个定位螺纹孔,每一所述定位螺纹孔与一个所述安装孔连通,且所述定位螺纹孔所述中心线与所述安装孔的中心线垂直;所述凸块上具有配合孔,部分所述凸块穿设在所述安装孔内,紧固螺栓与所述定位螺纹孔配合,并穿设在对应所述配合孔内。
在一种可实现方式中,移动件包括移动轴以及多个支撑件,多个所述支撑件沿所述移动轴的轴间隔的设置,所述支撑件用于与所述管道弹性过盈配合。
在一种可实现方式中,所述管道结构故障诊断装置还包括位置检测装置,所述位置检测装置用于检测所述管道结构故障诊断装置在管道内的位置;所述信号存储装置还用于存储所述位置。
第二方面,本申请实施例提供一种诊断方法,包括:
建立样本数据库,所述样本数据库内包括多种故障类型和故障程度的仿真信号特征;
获取敲击管道内壁产生的声波信号;
处理所述声波信号以获取信号特征;
将所述信号特征与所述样本数据库内的所述仿真信号特征进行对比,以判断所述声波信号的故障类型和故障程度。
在一种可能的实现方式中,建立样本数据库,所述样本数据库内包括多种故障类型和故障程度的仿真信号特征包括:
进行管道结构故障的模拟仿真计算,以获得仿真信号;
进行特征提取以获取仿真信号特征,所述仿真信号特征包括时域仿真信号特征和频域仿真信号特征;
存储所述仿真信号以及所述仿真信号特征以建立仿真数据库;
对所述仿真数据库进行分类,以建立样本数据库。
在一种可能的实现方式中,处理所述声波信号以获取信号特征包括:
进行预处理以获得降噪信号;
对所述降噪信号进行时频谱转换以获取频域信号;
进行特征提取以获取信号特征,所述信号特征包括时域信号特征和频域信号特征。
本申请实施例提供一种管道结构故障诊断装置及诊断方法,包括信号发生装置,信号发生装置包括移动件和设置在移动件上的敲击件,移动件用于沿管道内壁移动,敲击件用于敲击管道内壁,以产生声波信号;信号采集装置,信号采集装置用于采集声波信号;信号存储装置,与信号采集装置连接,信号存储装置用于存储声波信号,以供信号处理分析装置进行分析并确定故障类型、故障程度与故障位置。信号发生装置产生声波信号以后,通过信号采集装置进行采集,并存储在信号存储装置内,信号处理分析装置提取信号存储装置内的声波信号,并进行处理分析,进而确定管道的故障类型、故障程度与故障位置,有利于及时排查管道故障,保障管道安全运行。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种管道结构故障诊断装置的结构示意图;
图2为本申请实施例提供的一种管道结构故障诊断装置中敲击件在第一视角下的结构示意图;
图3为本申请实施例提供的一种管道结构故障诊断装置中敲击件在第二视角下的结构示意图;
图4为本申请实施例提供的一种管道结构故障诊断装置中敲击件在第三视角下的结构示意图;
图5为本申请实施例提供的一种管道结构故障诊断装置中凸轮的结构示意图;
图6为本申请实施例提供的一种信号分析处理装置的结构示意图;
图7为本申请实施例提供的一种诊断方法流程图。
具体实施方式
为了清楚理解本申请的技术方案,首先对现有技术的方案进行详细介绍。
管道运输在油气工业中占有举足轻重的地位,造成天然气管道故障的主要原因包括以下几点:管道中存在的残余应力或者外载荷引起的应力的组合过大,其中,应力包括环向应力和轴向应力,轴向应力包括拉伸、压缩和弯曲等应力;管道本体或焊缝存在缺陷以及其他结构缺陷,缺陷指存在于管体或焊缝处的体积型缺陷(如腐蚀、金属损失)、平面型缺陷(如裂纹)以及其它几何缺陷(如凹陷,焊缝几何缺陷);管道外土壤回填状况不符合施工要求,管道外土壤回填状况指管道外回填的土壤类型、粒度和轴向及环向回填的不均匀程度。
上述现象发生时,都会威胁管道安全,甚至造成管道断裂泄漏,使得社会经济以及自然环境受到巨大损失。为保证天然气管道安全平稳的运行,降低管道运输中的事故发生率,有必要对天然气管道进行故障诊断,及时发现并排除隐患。然而,在现有技术中,还缺少对天然气管道进行多故障综合诊断的装置。
有鉴于此,本申请实施例提供一种管道结构故障诊断装置及诊断方法,包括:信号发生装置,信号发生装置用于产生敲击管道的声波信号;信号采集装置,信号采集装置用于采集声波信号;信号存储装置,信号存储装置用于存储声波信号,以供信号处理分析装置进行分析并确定故障类型、故障程度与故障位置。信号发生装置产生的声波信号以后,通过信号采集装置进行采集,并存储在信号存储装置内,信号处理分析装置提取信号存储装置内的声波信号,并进行处理分析,进而确定管道的故障类型、故障程度与故障位置,有利于及时排查管道故障,保障管道安全运行。
下面结合附图对本申请的几种可选地实现方式进行介绍,当本领域技术人员应当理解,下述实现方式仅是示意性的,并非是穷尽式的列举,在这些实现方式的基础上,本领域技术人员可以对某些特征或者某些示例进行替换、拼接或者组合,这些仍应视 为本申请的公开内容。
请参照图1,本申请实施例提供的管道结构故障诊断装置,具体包括:信号发生装置、信号采集装置40、信号存储装置50。其中,信号发生装置、信号采集装置40、信号存储装置50均位于管道10内部。
信号发生装置包括移动件和设置在移动件上的敲击件30,移动件用于沿管道10内壁移动,敲击件30用于敲击管道10内壁,以产生声波信号。
移动件可以为一种在管道10内作业的管道10机器人,管道10机器人的驱动方式例如可以采用履带驱动、管道10内流体流动驱动、机械足驱动等驱动方式中的一种。
本实施例中,移动件可以利用管道10内流体的自身压力作为驱动力。移动件例如可以为清管器,清管器是一种通过在管道10内部移动,刮削管壁污垢,将堆积在管道10内的污垢及杂物推出管外,从而进行管道10清洁与维护的设备。
可选的,移动件包括移动轴21以及在移动轴21上的间隔设置的多个支撑件,支撑件用于与管道的内壁抵接,以起到支撑与固定的作用。由于管道10内支撑件的两侧存在压差,支撑件能够在压差的推动下,由高压端向低压端移动,从而使得移动轴21在管道10内移动。
下面参照图1简要说明移动件的移动原理。例如,管道10的右端可以为流体的进入端,管道10的左端可以为流体的消耗端,对于放置在管道10内的移动件来说,移动件靠近流体进入端的一侧,由于流体的不断通入,而产生高压;移动件靠近流体的消耗端,由于流体的不断消耗,而产生低压。在移动件两端的压差作用下,驱动移动件向流体的消耗端移动,也即,移动件向图示位置中的左端移动。需要说明的是,密闭空间内为干式空间,有利于敲击件敲击管道内壁产生声波信号。
示例性的,支撑件包括第一支撑件211、第二支撑件212、第三支撑件213以及第四支撑件214。如图1所示,为保证移动件在管道10内顺畅移动,移动轴21的中心线与管道10的中心线重合。移动轴21可以包括第一移动轴和第二移动轴,第一移动轴和第二移动轴通过铰接轴铰接,有利于移动轴21在弯曲的管道10内移动。第一移动轴上设置有第一支撑件211和第二支撑件212,第二移动轴上设置有第三支撑件213和第四支撑件214。
本实施例中,敲击件30与移动件连接,且敲击件30位于支撑件212之后,能够提高生成的声波信号质量,避免声波信号内掺杂噪声信号。进一步的,由于敲击件30位于支撑件212之后,移动件的第一支撑件211在清除掉管道10内的污垢以后,再使用敲击件30敲击内壁,有利于提高敲击件30的敲击效果。
在一种可能实现的方式中,敲击件30为电动敲击设备,例如可以为电锤,通过设置电锤的敲击频率,从而对管道10内壁进行规律性的敲击,产生所需的声波信号。
本实施例中,信号采集装置40用于采集声波信号。信号采集装置40位于支撑件212之后,且与移动轴21连接,以使信号采集装置40能够跟随移动轴21移动。
在一种可能实现的方式中,信号采集装置40可以使用音频记录仪,通过音频记录仪采集声波信号,并将采集到的声波信号模拟量转化成后续能够用于分析和处理的数字量。当然,在其他可能实现的方式中,信号采集装置40还可以使用其他声波采集设 备实现,例如可以采用声探头或者麦克风阵列的方式进行采集。
信号存储装置50与信号采集装置40连接,信号存储装置50用于存储声波信号,以便后续对声波信号进行处理与分析。信号存储装置50例如可以为只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(CompactDisc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
本实施例中,支撑件为皮碗,皮碗穿设在移动轴21上,皮碗的外径大于管道10的内径,以使皮碗能够与管道10紧密贴合,从而使支撑件能够支撑管道内壁并形成压差。当然,在其他示例中,支撑件还可以为其他能够支撑密封管道10内壁的结构,例如可以为橡胶密封环。
值得说明的是,在管道内完成声波信号的采集以及存储以后,可以将信号存储装置50取出,并与处理分析装置70通讯连接。信号处理分析装置70用于根据声波信号确定故障类型、故障程度以及故障位置。本实施例中,通过处理采集到的声波信号,提取声波信号中的时域特征和频域特征,将特征信号与不同故障类型和故障程度中的声波信号数据进行比对,从而判断管道10的具体故障类型和故障程度,并进一步判断管道10的故障位置。
本申请实施例提供一种管道结构故障诊断装置,包括信号发生装置,信号发生装置包括移动件和设置在移动件上的敲击件30,移动件用于沿管道10内壁移动,敲击件30用于敲击管道10内壁,以产生声波信号;信号采集装置40,信号采集装置40用于采集声波信号;信号存储装置50,与信号采集装置40通信连接,信号存储装置50用于存储声波信号,以供信号处理分析装置70进行分析并确定故障类型、故障程度与故障位置。信号发生装置产生的声波信号以后,通过信号采集装置40进行采集,并存储在信号存储装置50内,信号处理分析装置70提取信号存储装置50内的声波信号,并进行处理分析,进而确定管道10的故障类型、故障程度与故障位置,有利于及时排查管道10故障,保障管道10安全运行。
参照图2、图3以及图4,本实施例中,敲击件30可以为机械驱动的方式进行敲击。敲击件30包括安装架31,驱动部32以及敲击臂33。其中,驱动部32与敲击臂33均与安装架31可转动连接,安装架31与移动轴21连接,以便使驱动部32和敲击臂33跟随移动轴21移动。驱动部32与敲击臂33抵接,驱动部32用于驱动敲击臂33转动,进而敲击管道10内壁,从而产生声波信号。
示例性的,安装架31包括转接圆盘313和设置在转接圆盘313上的支撑架315。
转接圆盘313具有通孔,通孔的圆心与转接圆盘313的圆心重合,通孔的外径等于移动轴21的外径,以使转接圆盘313通过其通孔穿设在移动轴21上。进一步的,转接圆盘313还通过圆柱销与移动轴21紧固连接,圆柱销垂直于移动轴21的延伸方 向设置,从而防止转接圆盘313与移动轴21之间发生转动。
支撑架315为平板结构,其中支撑架315包括水平板3151、垂直板3155以及弧形板3153,水平板3151的延伸方向平行于移动轴21的延伸方向,垂直板3155的延伸方向垂直于移动轴21的延伸方向,弧形板3153位于水平板3151和垂直板3155之间,用于连接水平板3151和垂直板3155。如图2所示,支撑架315包括两个相对设置的上述平板结构,并且水平板3151与转接圆盘313可以继续螺纹连接。水平板3151上还设置有第一支撑轴341,第一支撑轴341的两端通过滚动轴承35与水平板3151连接,以使第一支撑轴341可以与水平板3151可转动连接。垂直板3155靠近管道10内壁的一端还设置有第二支撑轴343,第二支撑轴343的两端通过滚动轴承35与垂直板3155连接,以使第二支撑轴343可以与垂直板3155可转动连接。
示例性的,驱动部32可以大致为杆状结构。驱动部32的一端与第一支撑轴341通过平键紧固连接,从而使得驱动部32的一端与安装架31可转动连接。驱动部32的另一端可转动的连接有转轴,具体的,转轴的两端通过滚动轴承35与驱动部32连接。转轴上还设置有摩擦轮321和与摩擦轮321固连的凸轮323,具体的,摩擦轮321与转轴可以通过平键连接,凸轮323与转轴可以通过圆柱销连接。摩擦轮321用于与管道10内壁抵顶,以使摩擦轮321带动转轴转动,进而带动凸轮323进行同步转动。进一步的,凸轮323的最大外径小于摩擦轮321的外径,从而避免凸轮323与管道10内壁发生接触。
如图5所示,本实施例中的凸轮323可以为一种盘形凸轮323,凸轮323具有第一轮廓线段ab和第二轮廓线段ba,第一轮廓线段ab与第二轮廓线段ba的两个交点为A和B,第一轮廓线段ab由A点至B点的外径逐渐变大,第二轮廓线段ba由B点至A点的外径变小。
示例性的,敲击臂33可以大致为杆状结构。敲击臂33的中部与第二支撑轴343通过平键紧固连接,以使敲击臂33与安装架31可转动的连接。敲击臂33靠近驱动部32的一端与凸轮323抵接,敲击臂33远离驱动部32的一端安装有凸块331,凸块331垂直于敲击臂33的延伸方向设置。
进一步的,敲击臂33具有安装孔333,安装孔333用于安装敲击管道10内壁的凸块331,安装孔333的轴线垂直于敲击臂33的延伸方向。当凸轮323跟随摩擦轮321发生转动时,敲击臂33的一端由于与凸轮323的轮廓线抵接,敲击臂33的一端发生摆动,以使敲击臂33以第二支撑轴343为旋转轴进行逆时针转动,凸块331朝靠近管道10内壁的方向移动,进而使得凸块331能够敲击管道10内壁,产生声波信号。
需要说明的是,敲击臂33具有多个安装孔333,凸块331可拆卸的安装于安装孔333内,多个安装孔333沿敲击臂33的延伸方向间隔设置,有利于更换凸块331在敲击臂33上的位置,以产生不同音量的敲击声波。
如图4所示,安装孔333远离驱动部32的位置为远端,安装孔333靠近驱动部32的位置为近端,当需要产生音量较大的声波时,可以将凸块331安装在远端的安装孔333内,相反的,当需要产生音量较小的声波时,可以将凸块331安装在近端的安装孔333内。
相应的,敲击臂33还具有多个定位螺纹孔335,凸块331还具有配合孔,每个安 装孔333均与一个定位螺纹孔335连通,定位螺纹孔335的中心线垂直于安装孔333的中心线。凸块331上还具有配合孔,部分凸块331穿设在安装孔333内,紧固螺栓与定位螺纹孔335配合,并穿设在对应配合孔内,进而将凸块331可拆卸的安装在安装孔333内。
继续参照图3,敲击件30还包括第一弹性件361和第二弹性件363,本实施例中,第一弹性件361和第二弹性件363可以为弹簧,当然,在一些其他示例中,第一弹性件361和第二弹性件363还可以为橡胶弹性体。
示例性的,第一弹性件361的一端与安装架31连接,第一弹性件361的另一端与驱动部32连接,第一弹性件361用于驱动驱动部32向管道10内壁转动。
如图3所示,第一弹性件361的一端与转接圆盘313连接,第一弹性件361的另一端与驱动部32远离管道10内壁的一端连接,以使驱动部32能够受到向下的弹性拉力。在移动件带动敲击件30移动的过程中,摩擦轮321与管道10内壁接触,使得摩擦轮321受到向上的支持力,导致驱动部32具有以第一支撑轴341为转动轴进行逆时针旋转的运动趋势,由于第一弹性件361的作用,使得摩擦轮321以一定压力抵顶管道10内壁,避免摩擦轮321打滑,从而保证摩擦轮321相对管道10内壁进行滚动。
示例性的,第二弹性件363的一端与驱动部32连接,第二弹性件363的另一端与敲击臂33连接,第二弹性件363用于驱动敲击臂33背离凸轮331的一端向管道10内壁转动。
如图3所示,第二弹性件363的一端与驱动部32远离管道10内壁的一端连接,第二弹性件363的另一端与敲击臂33的中部连接,以使敲击臂33能够受到向上的弹性拉力。在凸轮323转动的过程中,敲击臂33的一端沿第一轮廓线段ab摆动,使得敲击臂33以第二支撑轴343为旋转轴进行顺时针转动,从而带动凸块331向远离管道10内壁的方向移动,使得第二弹性件363发生拉伸变形;敲击臂33的一端沿第二轮廓线段ba摆动,敲击臂33在第二弹性件363的弹性恢复力的作用下,以第二支撑轴343为旋转轴进行逆时针转动,从而带动凸块331向靠近管道10内壁的方向移动,并且敲击管道10内壁,产生声波信号。
参照图3,下面简要描述信号发生装置的运动过程:
随着移动件在管道10内的移动,敲击件30也跟随移动件沿管道10内壁移动。本实施例中,移动件向图示位置中的左侧移动,摩擦轮321相对管道10内壁发生滚动,进而使得凸轮323同步逆时针转动,当敲击臂33的一端沿第一轮廓线段ab摆动,使得敲击臂33以第二支撑轴343为旋转轴进行顺时针转动,从而带动凸块331向远离管道10内壁的方向移动至最高点;当敲击臂33的一端沿第二轮廓线段ba摆动,敲击臂33在第二弹性件363的弹性恢复力的作用下,以第二支撑轴343为旋转轴进行逆时针转动,从而带动凸块331向靠近管道10内壁的方向移动至与管道10接触,从而产生周期性的声波信号。
可选的,管道结构故障诊断装置还包括位置检测装置,位置检测装置用于检测管道结构故障诊断装置在管道内的位置,以便操作人员根据故障位置及时预防,提高管道10运行安全性。
本实施中,继续参照图2,位置检测装置包括里程轮23,里程轮23与移动轴21 连接,里程轮23还用于与管道10内壁抵接,以便里程轮23能够沿管道10内壁进行滚动,有利于移动件在管道10内移动。示例性的,里程轮23包括轴臂和滚轮,轴臂与移动轴21紧固连接,滚轮与轴臂可转动的连接。进一步的,移动件设置有多个里程轮23,里程轮23围绕移动轴21周向方向设置,有利于里程轮23支撑固定移动轴21。
需要说明的是,里程轮23是一种能够根据单位时间内的滚动距离和行走时间计算累计的行走距离的设备。具体的,里程轮23每滚动一周发射出一定数量的脉冲,里程轮23的轴臂上还安装有脉冲采集单元,实时采集里程轮23发射出的脉冲数,根据测量的脉冲数即可计算出里程轮23滚过的距离,进而可以采集移动件的移动里程。相应的,信号存储装置50还用于存储移动里程,以便后续根据移动里程确定故障位置。
在一些其他示例中,位置检测装置还可以包括焊缝检测装置。具体的,可以使用焊缝对齐技术确定故障位置:可以在移动件上安装焊缝检测装置,通过检测到的焊缝次数确定管道10的具体位置,进而确定声波信号的具体位置,后续对声波信号进行故障识别时,进而能够获取故障的具体位置。
本实施例中,参照图1,移动件还包括蓄电池60,蓄电池60与移动轴21连接,以便蓄电池60能够跟随移动件移动。进一步的,蓄电池60与里程轮23电连接,以便蓄电池60向里程轮23的脉冲计数供电。
本实施例中,参照图6,信号处理分析装置70可以包括取读部71、数据部73、处理部72以及判定部74。
值得说明的是,取读部71、数据部73、处理部72以及判定部74均以功能单元的形式呈现。这里的“单元”应当理解为尽可能最宽的含义,用于实现各个“单元”所描述功能的对象例如可以是用于执行一个或多个软件或固件程序的处理器(共享的、专用的或芯片组)和存储器,组合逻辑电路,和/或提供实现上述功能的其他合适的组件。本实施例中信号处理分析装置70的硬件载体的组成形式具体可以是一种计算机设备。
取读部71用于读取信号存储装置50存储的声波信号,以便将声波信号输入至处理部72进行处理。本实施例中,取读部71还可以用于读取信号存储装置50存储的移动里程,并基于移动里程获取故障位置。例如,取读部71读取移动里程与声波信号以后,通过设置里程轮23的采集频率,将移动里程与声波信号的数据对齐,进而能够得到每次采集的声波信号的具体位置,后续对声波信号进行故障识别时,进而能够获取故障的具体位置。
处理部72与取读部71通信连接,用于基于声波信号提取信号特征。值得说明的是,处理部72首先需要对声波信号进行预处理,以得到降噪信号,以便去除取读部71传输给处理部72的声波信号中的高频干扰信号。预处理过程例如可以采用低通滤波器实现。
本实施例中,由于降噪信号为时域信号,后续对声波信号进行分析识别中,需要将降噪信号转化为频域信号。获取频域信号的步骤中,例如可以采用傅立叶变换的方式实现。
获取频域信号以后,对获取到的时域信号和频域信号分别进行特征提取,以获取相应的时域信号特征和频域信号特征。特征提取过程可以采用现有技术中声波信号的特征提取方法实现,本实施例在此不再赘述。
数据部73内设置有样本数据库,样本数据库中包括多组不同故障类型和故障程度的仿真信号特征,以便供声波信号进行对比,从而判定故障类型和故障程度。
本实施例中,可以通过大量的仿真数据进行管道结构故障的模拟仿真计算,以获取仿真信号。获取仿真信号以后,对仿真信号分别进行特征提取,以获取相应的时域仿真信号特征和频域仿真信号特征。获取仿真信号特征以后,对仿真信号和仿真信号特征进行存储以建立仿真数据库,以便后续与声波信号和特征信号进行比对。建立仿真数据库以后,对仿真数据库中的信号进行训练分类,以形成样本数据库,样本数据库中具有多组不同故障类型和故障程度的仿真信号特征。例如可以采用支持向量机方法对对仿真数据库中的信号进行训练分类,或者,还可以通过最小距离法、神经网络、决策树方法、隐马尔可夫模型等典型算法实现。
判定部74与取读部71和数据部73通信连接,用于将信号特征与仿真信号特征进行比对,并基于比对结果判定输出故障类型和故障程度。具体的,可以通过AI识别对比的方法,对比实测的声波信号的时域信号特征和仿真信号的时域仿真信号特征,并对比实测的声波信号的频域信号特征和仿真信号的频域仿真信号特征,判定实测的声波信号的故障类型和故障程度。
进一步的,信号处理分析装置70还包括输出部75,输出部75用于输出故障类型、故障程度和故障位置,以便操作人员根据诊断结果及时预防,提高管道10运行安全性。输出部75可以包括显示器,在显示器上输出故障类型、故障程度以及故障位置,或者,输出部75还可以包括打印设备,通过打印报表的方式输出故障类型、故障程度以及故障位置。
本申请实施例还提供一种诊断方法,通过上述的管道结构故障诊断装置实现,参照图7,包括以下步骤:
步骤S101、建立样本数据库,样本数据库内包括多种故障类型及故障程度的仿真信号特征。
需要说明的是,参照图6,管道结构故障诊断装置可以包括信号处理分析装置70,其中,信号处理分析装置70包括数据部73。数据部73内设置有样本数据库,以便供声波信号进行对比,从而判定故障类型和故障程度。
步骤S102、获取敲击管道内壁产生的声波信号。
本实施例中,通过信号发生装置产生声波信号,再通过信号采集装置采集声波信号,信号发生装置包括用于在管道内部移动的移动件以及与移动件连接的敲击件,信号采集装置与移动件连接。
敲击件用于敲击管道内壁,以产生声波信号。敲击件可以为上述实施例中的机械结构,也可以为电动敲击设备,本实施例不做进一步限定。移动件和信号采集装置可以为上述实施例中的任一种结构,在此不再赘述。
本实施例中,管道结构故障诊断装置还可以包括信号存储装置50,信号存储装置50与信号采集装置40连接,信号存储装置50用于存储声波信号,以便后续对声波信号进行处理与分析。信号存储装置50可以为上述实施例中的任一种结构,在此不再赘述。
值得说明的是,本实施例中,在存储声波信号的同时,还存储声波信号的位置信息。管道结构故障诊断装置还包括位置检测装置,位置检测装置与移动件连接,位置检测装置用于检测管道结构故障诊断装置在管道内的位置,以便操作人员根据故障位置及时预防,提高管道10运行安全性。位置检测装置可以包括为上述实施例中任一种结构,在此不再赘述。
步骤S103、处理声波信号以获取信号特征。
信号处理分析装置70还包括取读部71和与取读部71通讯连接的处理部72。取读部71用于读取信号存储装置50存储的声波信号,以便将声波信号输入至处理部72进行处理,处理部72用于基于声波信号提取特征信号。
在位置检测装置为里程轮的实施例中,取读部71还可以用于读取信号存储装置50存储的移动里程,并基于移动里程获取故障位置。例如,取读部71读取移动里程与声波信号以后,通过设置里程轮23的采集频率,将移动里程与声波信号的数据对齐,进而能够得到每次采集的声波信号的具体位置,后续对声波信号进行故障识别时,进而能够获取故障的具体位置。
步骤S104、将信号特征与样本数据库内的仿真信号特征进行对比,以判定声波信号的故障类型和故障程度。
信号处理分析装置70还包括判定部74,判定部74与取读部71和数据部73通信连接,用于将信号特征与仿真信号特征进行比对,并基于比对结果判定输出故障类型和故障程度。具体的,通过对比实测的声波信号的时域信号特征和仿真信号的时域仿真信号特征,并对比实测的声波信号的频域信号特征和仿真信号的频域仿真信号特征,判定实测的声波信号的故障类型和故障程度。
在一种可能实现的方式中,可以采用AI识别对比,具体的,可以应用模糊数学等方法实现与基础声纹数据库的对比识别。当然,在一些其他示例中,还可以采用机器学习等可进行对比识别的技术实现。
本实施例中,建立样本数据库,样本数据库内包括多种故障类型和故障程度的仿真信号特征的步骤可以包括:进行管道结构故障的模拟仿真计算以获得仿真信号。
通过大量的仿真数据进行管道结构故障的模拟仿真计算,以获取仿真信号。需要说明的是,仿真数据包括多种不同的管道10结构中的仿真数值,在每一种管道10结构中又包括多种不同故障状态下的仿真数值,例如可以包括不同应力下的仿真数值、不同的土壤回填状况下的仿真数值、不同缺陷情况的仿真数值等。通过大量的仿真数据可以得到相应的仿真信号,仿真信号包括时域仿真信号和相应的频域仿真信号。
在获得仿真信号以后,建立样本数据库的步骤还包括,进行特征提取以获取仿真信号特征,仿真信号特征包括时域仿真信号特征和频域仿真信号特征。
获取仿真信号以后,对仿真信号分别进行特征提取,以获取相应的时域仿真信号特征和频域仿真信号特征。具体的,仿真信号特征例如可以包括总功率谱、莱斯频率、频率重心、频率方差、均值频率、波形均值频率和波形稳定因子。特征提取过程可以采用现有技术中声波信号的特征提取方法实现,本实施例在此不再赘述。
进一步的,获取的仿真信号特征之后还可以进行因子分析,因子分析是基于相关关系对众多数据进行降维的数据处理方法,有利于对不同的管道10结构中仿真信号特 征提取共性因子,便于后续对仿真信号特征进行分类。当然,在一些其他示例中,还可以使用主成分分析、流形学习方法实现。
在获得仿真信号特征以后,建立样本数据库的步骤还包括,存储仿真信号以及仿真信号特征以建立仿真数据库,以便后续与声波信号和特征信号进行比对。
在建立仿真数据库以后,建立样本数据库的步骤还包括,对仿真数据库进行分类,以建立样本数据库。
建立仿真数据库以后,对仿真数据库中的信号进行训练分类,以形成样本数据库,样本数据库中具有多组不同故障类型和故障程度的仿真信号特征。本实施例中,可以采用支持向量机方法对对仿真数据库中的信号进行训练分类,例如可以分类成外界应力故障、土壤回填状况故障、缺陷故障等。当然,在一些其他示例中,还可以通过最小距离法、神经网络、决策树方法、隐马尔可夫模型等典型算法实现。
本实施例中,处理声波信号以获取信号特征的步骤还包括:进行预处理以获取降噪信号。
值得说明的是,处理部72首先需要对声波信号进行预处理,以得到降噪信号,以便去除取读部71传输给处理部72的声波信号中的高频干扰信号。预处理过程例如可以采用低通滤波器实现。
在获取降噪信号以后,处理声波信号以获取信号特征的步骤还包括:对降噪信号进行时频谱转换以获取频域信号。
本实施例中,由于降噪信号为时域信号,后续对声波信号进行分析识别中,需要将降噪信号转化为频域信号。获取频域信号的步骤中,例如可以采用傅立叶变换的方式实现。
在获取频域信号以后,处理声波信号以获取信号特征的步骤还包括:进行特征提取以获取信号特征,信号特征包括时域信号特征和频域信号特征。
获取频域信号以后,对获取到的时域信号和频域信号分别进行特征提取,以获取相应的时域特征和频域特征。特征提取过程可以采用现有技术中声波信号的特征提取方法实现,本实施例在此不再赘述。
值得说明的是,本实施例提供的诊断方法,在判定声波信号的故障类型和故障程度以后,还可以输出故障类型、故障程度和故障位置,以便操作人员根据诊断结果及时预防,提高管道10运行安全性。进一步的,信号处理分析装置70还包括输出部75,输出部75用于输出故障类型、故障程度和故障位置,以便操作人员根据诊断结果及时预防,提高管道10运行安全性。输出部75可以包括显示器,在显示器上输出故障类型、故障程度以及故障位置,或者,输出部75还可以包括打印设备,通过打印报表的方式输出故障类型、故障程度以及故障位置。
值得说明的是,取读部71、数据部73、处理部72以及判定部74均以功能单元的形式呈现。这里的“单元”应当理解为尽可能最宽的含义,用于实现各个“单元”所描述功能的对象例如可以是用于执行一个或多个软件或固件程序的处理器(共享的、专用的或芯片组)和存储器,组合逻辑电路,和/或提供实现上述功能的其他合适的组件。本实施例中信号处理分析装置70的硬件载体的组成形式具体可以是一种计算机设备。
在本申请实施例的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请实施例的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
最后应说明的是:以上实施方式仅用以说明本申请的技术方案,而非对其进行限制;尽管参照前述实施方式对本申请已经进行了详细的说明,但本领域的普通技术人员应当理解:其依然可以对前述实施方式所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施方式技术方案的范围。

Claims (10)

  1. 一种管道结构故障诊断装置,其特征在于,包括:
    信号发生装置,所述信号发生装置包括移动件和设置在移动件上的敲击件,所述移动件用于沿管道内壁移动,所述敲击件用于敲击管道内壁,以产生声波信号;
    信号采集装置,与所述移动件连接,所述信号采集装置用于采集所述声波信号;
    信号存储装置,与所述信号采集装置连接,所述信号存储装置用于存储所述声波信号,以供信号处理分析装置进行分析并确定故障类型、故障程度与故障位置。
  2. 根据权利要求1所述的管道结构故障诊断装置,其特征在于,所述敲击件包括安装架,驱动部以及敲击臂;
    所述安装架与所述移动件连接,所述敲击臂的中部与所述安装架可转动连接;
    所述驱动部的一端与所述安装架连接,所述驱动部的另一端可转动连接有转轴,所述转轴上设置有摩擦轮和与所述摩擦轮固连的凸轮,所述摩擦轮用于抵顶管道内壁,所述凸轮与所述敲击臂的一端抵顶,所述凸轮用于驱动所述敲击臂转动,以使所述敲击臂的另一端敲击管道内壁。
  3. 根据权利要求2所述的管道结构故障诊断装置,其特征在于,所述敲击件还包括第一弹性件和第二弹性件,所述驱动部与所述安装架铰接,所述第一弹性件的一端与所述安装架连接,所述第一弹性件的另一端与所述驱动部连接,所述第一弹性件用于驱动所述驱动部向管道内壁转动;
    所述第二弹性件的一端与所述驱动部连接,所述第二弹性件的另一端与所述敲击臂连接,所述第二弹性件用于驱动所述敲击臂背离所述凸轮的一端向管道内壁转动。
  4. 根据权利要求3所述的管道结构故障诊断装置,其特征在于,管道结构故障诊断装置所述敲击臂具有用于安装凸块的安装孔,所述凸块用于敲击管道内壁,所述安装孔为多个,所述凸块可拆卸的安装于所述安装孔内,多个所述安装孔沿所述敲击臂的延伸方向间隔设置。
  5. 根据权利要求4所述的管道结构故障诊断装置,其特征在于,所述敲击臂还具有多个定位螺纹孔,每一所述定位螺纹孔与一个所述安装孔连通,且所述定位螺纹孔的中心线与所述安装孔的中心线垂直;所述凸块上具有配合孔,部分所述凸块穿设在所述安装孔内,紧固螺栓与所述定位螺纹孔配合,并穿设在对应所述配合孔内。
  6. 根据权利要求1-5任一项所述的管道结构故障诊断装置,其特征在于,移动件包括移动轴以及多个支撑件,多个所述支撑件沿所述移动轴的轴间隔的设置,所述支撑件用于与所述管道弹性过盈配合。
  7. 根据权利要求6所述的管道结构故障诊断装置,其特征在于,所述管道结构故障诊断装置还包括位置检测装置,所述位置检测装置用于检测所述管道结构故障诊断装置在管道内的位置;所述信号存储装置还用于存储所述位置。
  8. 一种诊断方法,其特征在于,包括:
    建立样本数据库,所述样本数据库内包括多种故障类型及故障程度的仿真信号特征;
    获取敲击管道内壁产生的声波信号;
    处理所述声波信号以获取信号特征;
    将所述信号特征与所述样本数据库内的所述仿真信号特征进行对比,以判断所述声波信号的故障类型和故障程度。
  9. 根据权利要求8所述的诊断方法,其特征在于,建立样本数据库,所述样本数据库内包括多种故障类型和故障程度的仿真信号特征,包括:
    进行管道结构故障的模拟仿真计算以获得仿真信号;
    进行特征提取以获取仿真信号特征,所述仿真信号特征包括时域仿真信号特征和频域仿真信号特征;
    存储所述仿真信号以及所述仿真信号特征以建立仿真数据库;
    对所述仿真数据库进行分类,以建立样本数据库。
  10. 根据权利要求8或9的诊断方法,其特征在于,处理所述声波信号以获取信号特征包括:
    进行预处理以获得降噪信号;
    对所述降噪信号进行时频谱转换以获取频域信号;
    进行特征提取以获取信号特征,所述信号特征包括时域信号特征和频域信号特征。
PCT/CN2021/127883 2021-09-18 2021-11-01 管道结构故障诊断装置及诊断方法 WO2023040011A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3175903A CA3175903C (en) 2021-09-18 2021-11-01 Pipeline structural fault diagnosis apparatus and diagnosis method
US17/690,475 US11747306B2 (en) 2021-09-18 2022-03-09 Pipeline structural fault diagnosis apparatus and diagnosis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111110028.7 2021-09-18
CN202111110028.7A CN113803566B (zh) 2021-09-18 2021-09-18 管道结构故障诊断装置及诊断方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/690,475 Continuation US11747306B2 (en) 2021-09-18 2022-03-09 Pipeline structural fault diagnosis apparatus and diagnosis method

Publications (1)

Publication Number Publication Date
WO2023040011A1 true WO2023040011A1 (zh) 2023-03-23

Family

ID=78896217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127883 WO2023040011A1 (zh) 2021-09-18 2021-11-01 管道结构故障诊断装置及诊断方法

Country Status (4)

Country Link
US (1) US11747306B2 (zh)
CN (1) CN113803566B (zh)
CA (1) CA3175903C (zh)
WO (1) WO2023040011A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115936722B (zh) * 2023-03-09 2023-06-09 成都秦川物联网科技股份有限公司 智慧燃气呼叫中心的数据管理方法与物联网系统、介质
CN116381051B (zh) * 2023-06-06 2023-08-25 安徽中铁工程技术有限公司 一种铁路桥梁孔道混凝土密实度检测装置及其检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2457304A (en) * 2008-02-11 2009-08-12 Christopher Teal Detecting pipeline leaks by detecting interference between acoustic carrier waves transmitted along the pipeline and leak generated sound waves
CN102330887A (zh) * 2010-12-08 2012-01-25 中国石油大学(北京) 一种管道声波检漏定位装置及清管器
CN104373821A (zh) * 2014-11-21 2015-02-25 天津科技大学 基于声学主动激励的天然气管道安全监测装置
CN107748314A (zh) * 2017-10-18 2018-03-02 国网重庆市电力公司北碚供电分公司 基于声波震荡检测的变压器故障分析系统
CN110940727A (zh) * 2019-11-27 2020-03-31 广东氢标科技有限公司 一种管道内检测器、管道缺陷检测系统及检测方法
CN112483908A (zh) * 2020-11-23 2021-03-12 中国华能集团清洁能源技术研究院有限公司 一种基于声波的管道监测系统及监测方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9812465D0 (en) * 1998-06-11 1998-08-05 Abb Seatec Ltd Pipeline monitoring systems
JP5108899B2 (ja) * 2007-02-22 2012-12-26 マイクロ・モーション・インコーポレーテッド 振動パイプライン診断システム及び方法
US7607351B2 (en) * 2007-06-26 2009-10-27 General Electric Company Acoustic impact detection and monitoring system
US10036680B2 (en) * 2015-03-19 2018-07-31 General Electric Company Pipeline sensor carrier
CN106596123B (zh) * 2016-11-22 2020-03-27 东软集团股份有限公司 设备故障诊断的方法、装置及系统
GB2579865A (en) * 2018-12-19 2020-07-08 Cokebusters Ltd Pig for inspecting a tubular object
CN109681720A (zh) * 2018-12-29 2019-04-26 成都普崔克机电有限公司 一种流体驱动的软体管道单元
KR102193739B1 (ko) * 2019-05-03 2020-12-21 연세대학교 산학협력단 배관 고장 예측 장치 및 방법
CN110045024A (zh) * 2019-05-30 2019-07-23 西南石油大学 一种输油管道缺陷超声探测装置
JP7475888B2 (ja) 2020-02-17 2024-04-30 シャープ株式会社 調湿装置
CN114861942A (zh) * 2021-08-02 2022-08-05 呼和浩特中燃城市燃气发展有限公司 燃气管道安全监测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2457304A (en) * 2008-02-11 2009-08-12 Christopher Teal Detecting pipeline leaks by detecting interference between acoustic carrier waves transmitted along the pipeline and leak generated sound waves
CN102330887A (zh) * 2010-12-08 2012-01-25 中国石油大学(北京) 一种管道声波检漏定位装置及清管器
CN104373821A (zh) * 2014-11-21 2015-02-25 天津科技大学 基于声学主动激励的天然气管道安全监测装置
CN107748314A (zh) * 2017-10-18 2018-03-02 国网重庆市电力公司北碚供电分公司 基于声波震荡检测的变压器故障分析系统
CN110940727A (zh) * 2019-11-27 2020-03-31 广东氢标科技有限公司 一种管道内检测器、管道缺陷检测系统及检测方法
CN112483908A (zh) * 2020-11-23 2021-03-12 中国华能集团清洁能源技术研究院有限公司 一种基于声波的管道监测系统及监测方法

Also Published As

Publication number Publication date
CN113803566B (zh) 2022-05-20
US11747306B2 (en) 2023-09-05
CA3175903A1 (en) 2022-12-29
CA3175903C (en) 2023-10-31
CN113803566A (zh) 2021-12-17
US20230104546A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
WO2023040011A1 (zh) 管道结构故障诊断装置及诊断方法
Li et al. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter
Zhang et al. Deep convolutional neural network probability imaging for plate structural health monitoring using guided waves
Gaponenko et al. Improving the methodology for assessing the technical condition of equipment during the transportation of energy carrier in energy systems and complexes
CN105637338A (zh) 用于轮胎异常的非破坏性检测的方法和装置
Zhou et al. A new method to classify railway vehicle axle fatigue crack AE signal
CN109063762B (zh) 一种基于dt-cwt和s4vm的管道堵塞故障识别方法
Yan et al. Nondestructive detection of valves using acoustic emission technique
CN103776903B (zh) 一种风电叶片脱层检测方法及检测系统
Xiao et al. Adaptive MOMEDA based on improved advance-retreat algorithm for fault features extraction of axial piston pump
WO2023279382A1 (zh) 一种电机轴承运行状态故障检测方法及系统
CN204101521U (zh) 大壁厚钢管焊缝超声波串列式检测装置
He et al. Bearing condition evaluation based on the shock pulse method and principal resonance analysis
CN114152676A (zh) 一种基于超声波实现风电叶片缺陷自动检测的方法
Mostafavi et al. A novel online machine learning approach for real-time condition monitoring of rotating machines
CN203745428U (zh) 一种微裂纹无损检测装置
CN105953081A (zh) 一种判识油管线破漏的预警装置及预警方法
CN104359008A (zh) 管网音频采集器及实现方法
CN205581061U (zh) 一种可移动传感器铝管缺陷检测定位装置
CN114692702A (zh) 一种自适应单模态变分模态分解的轴承故障诊断方法
BRPI0415956A (pt) aparelho e método para inspecionar rodas de esmeril
Li et al. Study on a novel fault diagnosis method of rolling bearing in motor
CN209640295U (zh) 一种周向扫查的超声导波扫查装置
Liu et al. Cavitations monitoring and diagnosis of hydropower turbine on line based on vibration and ultrasound acoustic
Alshimmeri Diagnosis of low-speed bearing degradation using acoustic emission techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957278

Country of ref document: EP

Kind code of ref document: A1