WO2023039880A1 - 一种冷焚烧催化剂的合成方法及其制备的催化剂 - Google Patents

一种冷焚烧催化剂的合成方法及其制备的催化剂 Download PDF

Info

Publication number
WO2023039880A1
WO2023039880A1 PCT/CN2021/119328 CN2021119328W WO2023039880A1 WO 2023039880 A1 WO2023039880 A1 WO 2023039880A1 CN 2021119328 W CN2021119328 W CN 2021119328W WO 2023039880 A1 WO2023039880 A1 WO 2023039880A1
Authority
WO
WIPO (PCT)
Prior art keywords
mno
tio
composite
catalyst
cold
Prior art date
Application number
PCT/CN2021/119328
Other languages
English (en)
French (fr)
Inventor
张铁锐
吴良专
Original Assignee
中国科学院理化技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院理化技术研究所 filed Critical 中国科学院理化技术研究所
Priority to PCT/CN2021/119328 priority Critical patent/WO2023039880A1/zh
Priority to CN202180099569.6A priority patent/CN117500588A/zh
Publication of WO2023039880A1 publication Critical patent/WO2023039880A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention belongs to the field of industrial catalysts. Specifically, the invention relates to a synthesis method of a cold incineration catalyst integrating adsorption, enrichment and advanced oxidation functions and a cold incineration catalyst prepared by the synthesis method.
  • Volatile Organic Compounds is a general term for volatile organic compounds with a melting point below room temperature and a boiling point between 50 and 260 °C.
  • VOCs have an important impact on the environment. On the one hand, it can form secondary aerosols through photochemical reactions, causing regional environmental problems such as smog; on the other hand, it is the most important form of pollution in the indoor environment. Indoor air VOCs pollution For example, formaldehyde and benzene series, the typical representatives of chemicals, are extremely harmful to the human body. Formaldehyde is currently a carcinogen identified by the World Health Organization (WHO).
  • Benzene series including benzene, toluene, ethylbenzene, xylene, etc. have toxic effects on the human central nervous system and blood system.
  • the purification technology for VOCs can be simply divided into passive adsorption purification technology represented by activated carbon and active purification technology mainly based on catalytic oxidation.
  • Passive adsorption method is currently the most widely used technology, which has the characteristics of high efficiency, rapidity and diversity. But it does not really play a role in degradation, it just transfers pollutants from one phase to another. When a certain amount of pollutants are adsorbed, it will become a pollution source and release the adsorbed pollutants for secondary pollution.
  • Catalytic oxidation technology is due to There is no problem of adsorption saturation, the catalytic material does not need to be replaced frequently, the service life is long, the maintenance is less, and it is easy to use.
  • the thermal catalytic oxidation technology represented by noble metal (such as Pt) catalyst system and manganese oxide (Hopcalite catalyst), even if the current research focuses on reducing the decomposition temperature of VOCs, but for benzene series, there is still No report has been found that the T90 temperature is less than 100°C, and the reaction temperature above 100°C is dangerous to the application, which limits its application.
  • Advanced oxidation is a kind of low-temperature oxidation method that produces highly active hydroxyl radicals through photoelectrochemical methods, directly interacts with various organic compounds without selection, and degrades them into CO 2 and H 2 O.
  • the mass transfer process usually becomes the rate-controlling step of the catalytic reaction, and the corresponding catalytic oxidation process has been criticized for its low efficiency. cannot be widely applied. Therefore, the so-called "cold incineration", that is, to solve this problem, the adsorption-advanced oxidation catalytic system is widely used.
  • the porous material can first enrich VOCs.
  • High-level oxidants will generate reactive oxygen species (ROS) groups, such as OH free radicals, etc.
  • ROS reactive oxygen species
  • the high-energy OH diffuses into the adsorbent, it can directly oxidize the adsorbed VOCs to generate CO 2 and H 2 O.
  • ROS media Through this advanced oxidation process of ROS media, the in-situ regeneration of the adsorption performance of the adsorption material can be realized, thus realizing the perfect combination of the rapid purification ability of the adsorption material and the no secondary pollution of the catalytic oxidation material. In this way, high-efficiency low-temperature oxidation purification similar to the "incineration" of VOCs can be achieved.
  • Activated carbon material has a well-developed pore structure, large specific surface area and rich chemical groups, and is a widely used VOCs adsorption and purification material. Therefore, combining activated carbon with catalysts to form adsorption-catalysis composites has received extensive attention.
  • the impregnation method is a widely used process at present. Its principle is to soak and load the active catalytic component solution on the surface of activated carbon, and then realize the catalyst synthesis method that the active component and the substrate material are firmly loaded by sintering and other curing processes. Although this type of method can increase the specific surface area of the catalyst, it sacrifices the adsorption capacity of porous materials.
  • the invention develops a nanostructure for efficient purification of VOCs driven by adsorption by in-situ synthesis of a composite system of carbon materials and advanced catalytic oxidation materials, and realizes efficient purification of VOCs under mild reaction conditions.
  • an object of the present invention is to provide a kind of simple and easy to control, and effect is good, is suitable for the synthesis method of the activated carbon-metal oxide composite cold incineration catalyst of large-scale industrial production, and described method comprises the following steps:
  • step (1) Add a certain amount of potassium permanganate to the aqueous solution of titanium peroxide obtained in step (1), control the molar ratio of KMnO4 to Ti to be 0.01:1 to 10:1, and after complete dissolution, heat and reflux at 90 to 100°C for 0.5 to 4h, to obtain a composite of TiO 2 -MnO 2 and titanium peroxide;
  • step (2) Dissolving the aniline monomer in an ethanol solution, wherein the volume concentration of the ethanol solution of the aniline monomer is 0.1% to 99.9%, and then adding the compound of TiO2 - MnO2 and titanium peroxide obtained in step (2), wherein , the mass ratio of aniline monomer to Ti (according to the added titanium hydroxide) in the final mixture is 0.1:1 to 20:1, and then reacted at 50 to 80°C and 100 to 300rpm under stirring conditions for 1 to 5 hours to obtain Final polyaniline-TiO 2 -MnO 2 composite emulsion;
  • the emulsion containing the polyaniline-TiO 2 -MnO 2 composite prepared in step (3) was centrifuged and precipitated, and the obtained precipitate was dried in an oven, and then placed in a muffle furnace for temperature-programmed roasting in an inert atmosphere : The temperature is programmed to rise to 500° C. at a rate of 5° C./min, and then kept at a constant temperature for 2-6 hours to obtain a C-TiO 2 -MnO 2 cold incineration catalyst.
  • the molecular molar ratio of hydrogen peroxide to titanium ions in step (1) is 1:1-80:1, more preferably 1:1-50:1.
  • the molar ratio of KMnO 4 to Ti in step (1) is 0.01:1 ⁇ 3:1, more preferably 0.1:1 ⁇ 1:1.
  • the volume concentration of the ethanol solution of the aniline monomer in step (3) is 1%-60%, more preferably 2%-30%.
  • the mass ratio of the aniline monomer to Ti (according to the added titanium hydroxide) in step (3) is 0.2:1-15:1, more preferably 0.2:1-10:1.
  • the inert atmosphere in step (4) is a nitrogen atmosphere or an argon atmosphere.
  • the synthetic method according to the present invention is carried out as follows:
  • 100g of titanium hydroxide with a solid content of 4% is precipitated, at room temperature, under the condition of stirring at 200rpm, add 100mL of 30% hydrogen peroxide aqueous solution, and continue to stir until the precipitation is complete.
  • How to add 5.2g with a purity of 99% KMnO 4 heated to reflux at 100°C for 2h; then at 200rpm stirring speed, add 100mL aniline ethanol solution with a volume concentration of 30%, and further react at 500rpm stirring speed for 4h to obtain a brown emulsion; centrifuge the prepared emulsion,
  • the obtained precipitate was dried in an oven at 100°C for 6h, and then in a nitrogen atmosphere in a muffle furnace, the temperature was programmed to rise to 500°C at a rate of 5°C/min, and then kept at constant temperature for 4h to obtain a C-TiO 2 -MnO 2 black catalyst.
  • another object of the present invention is to provide a C-TiO 2 -MnO 2 composite cold incineration catalyst, which is prepared according to the synthesis method of the present invention.
  • another object of the present invention is to provide the use of the C-TiO 2 -MnO 2 composite cold incineration catalyst in catalytically degrading VOCs.
  • the VOCs are aromatic VOCs, such as benzene, toluene, xylene, styrene, formaldehyde, Benzaldehyde etc., more preferably styrene.
  • the synthesis method according to the present invention has simple process and mild reaction conditions, and the mesoporous structure of the activated carbon generated in situ in the prepared composite catalyst remains intact, which is conducive to the adsorption of VOC, and at the same time the composite TiO 2 -MnO 2 can effectively catalyze the decomposition of VOC.
  • the synthesis method according to the invention is suitable for large-scale industrial production.
  • Fig. 1 is a transmission electron micrograph showing the cold incineration catalyst product prepared in Example 1 of the present invention.
  • Figure 2 shows the XRD results of the cold incineration catalyst prepared in Example 1 of the present invention.
  • Figure 3 shows the IR results of the polymer product prepared in Example 1 of the present invention.
  • Figure 4 shows the results of the specific surface area of the cold incineration catalyst product prepared in Example 1 of the present invention.
  • Fig. 5 shows the cold incineration catalysis results of the cold incineration catalyst product prepared in Example 1 of the present invention.
  • the key point of the present invention is that the reduction of KMnO 4 and the polymerization of aniline monomers are simultaneously initiated by the titanium peroxide ligand, thereby forming the precursor of the PANi-MnO 2 -TiO 2 composite structure, and then obtained by pyrolysis C-MnO 2 - TiO2 structure cold incineration catalyst.
  • the technical points of the present invention are as follows:
  • MnO 2 -TiO 2 advanced oxidation catalyst was obtained by reducing KMnO 4 to MnO 2 through reductive reduction of peroxygen bond in titanium peroxide.
  • the molecular molar ratio of hydrogen peroxide to titanium ions is 1:1 to 100:1, preferably 1:1 to 80:1, more preferably 1:1 to 50 :1.
  • the addition amount of hydrogen peroxide is very critical, and hydrogen peroxide not only plays and complexes with titanium ion, but also as the reducing agent that also generates MnO as KMnO 4 reduction, the free radical that peroxygen bond forms simultaneously It can also act as an initiator for the polymerization of aniline monomers.
  • the amount of hydrogen peroxide is too small, the above-mentioned purpose cannot be achieved, but if the amount of hydrogen peroxide is excessive, for example, the number of moles of hydrogen peroxide is greater than 100 based on 1 mole of Ti ions, too many free radicals are formed in the subsequent steps , resulting in the inability to obtain an ideal aniline polymer, which in turn leads to an unsatisfactory mesopore size in the final product.
  • the molar ratio of KMnO 4 to Ti in step (1) should be controlled to be 0.01:1-3:1, more preferably 0.1:1-1:1. If the molar ratio of KMnO4 and Ti is less than 0.01:1, that is, the amount of manganese added is insufficient, the doping effect is not obvious, and the catalytic effect is not ideal; if the molar ratio of KMnO4 and Ti is greater than 3:1, The presence of excessive manganese will affect the catalytic performance of TiO 2 instead, and the overall catalytic effect is not ideal.
  • aniline monomer in the step (3) of synthetic method according to the present invention and the free radical that forms by peroxy bond initiates aniline monomer polymerization, the add-on of aniline monomer has significant influence to the mesoporous structure of final composite catalyst, Due to the presence of MnO2 and TiO2 in this polymer during polymerization, in-situ mixing is achieved during the subsequent firing process.
  • the mass ratio of the aniline monomer to Ti (according to the added titanium hydroxide) in step (3) is 0.2:1-15:1, more preferably 0.2:1-10:1.
  • 100g of titanium hydroxide with a solid content of 4% is precipitated, at room temperature, under the condition of stirring at 200rpm, add 100mL of 30% hydrogen peroxide aqueous solution, and continue to stir until the precipitation is complete.
  • How to add 5.2g with a purity of 99% KMnO 4 heated to reflux at 100°C for 2h; then at 200rpm stirring speed, add 100mL aniline ethanol solution with a volume concentration of 30%, and further react at 500rpm stirring speed for 4h to obtain a brown emulsion; centrifuge the prepared emulsion,
  • the obtained precipitate was dried in an oven at 100°C for 6h, and then in a nitrogen atmosphere in a muffle furnace, the temperature was programmed to 500°C at a rate of 5°C/min, and then kept at a constant temperature for 4h to obtain a black cold incineration of C-TiO 2 -MnO 2 catalyst.
  • the titanium hydroxide precipitation can be obtained by conventional methods, for example
  • the crystal form of the obtained product referring to the XRD results in Fig. 2, confirms that a composite TiO 2 /MnO 2 composite is obtained.
  • the penetration experiment of styrene was firstly carried out by adopting the fixed adsorption catalyst adsorption bed penetration column. Weigh 2g of the prepared cold incineration catalyst material and load it into the penetration column, and the pollutants with a specific concentration pass through the adsorption column, and the tail gas is absorbed by activated carbon. Before and after the gas passes through the adsorption column, the PID sensor detects the concentration of the inlet and outlet.
  • the adsorption saturated cold incineration catalyst material was irradiated with 200mW/ cm2 185nm-254nm ultraviolet light for 4h and then regenerated, then tested its adsorption capacity.
  • the reaction conditions were: styrene concentration 50ppm, catalyst dosage 200mg, reaction temperature 25°C at room temperature, The reaction flow rate is 200mL/min, the space velocity is 60000h -1 , 5% vol O 2 and N 2 are balance gases, and the concentration of styrene and carbon oxides is detected by gas chromatography with a hydrogen ion flame detector. It has been confirmed that it has an adsorption capacity of about 49mg/g for styrene.
  • 200g of titanium hydroxide precipitate with a solid content of 4% under the condition of stirring at 200rpm, add 100mL of aqueous hydrogen peroxide solution with a concentration of 30% by mass, 1.1g of KMnO 4 with a purity of 99%, and heat to reflux at 100°C for 2h;
  • a stirring speed of 200rpm add 100mL of aniline ethanol solution with a volume concentration of 5%, and further react at a stirring speed of 500rpm for 4h to obtain a brown emulsion; centrifugally precipitate the prepared emulsion, and dry the obtained precipitate in an oven at 100°C for 2h , the temperature was programmed to 500° C. at a rate of 5° C./min, and then kept at a constant temperature for 4 hours to obtain a C—TiO 2 —MnO 2 black catalyst.
  • 200g of titanium hydroxide precipitate with a solid content of 4% under the condition of stirring at 200rpm, add 100mL of aqueous hydrogen peroxide solution with a concentration of 30% by mass, 2.2g of KMnO 4 with a purity of 99%, and heat to reflux at 100°C for 2h;
  • a stirring speed of 200rpm add 100mL of aniline ethanol solution with a volume concentration of 2%, and further react at a stirring speed of 500rpm for 4h to obtain a brown emulsion; centrifuge the prepared emulsion, and dry the obtained precipitate in an oven at 100°C for 2h , the temperature was programmed to 500° C. at a rate of 5° C./min, and then kept at a constant temperature for 4 hours to obtain a C—TiO 2 —MnO 2 black catalyst.
  • the composite catalyst is prepared in the same manner as in Example 1. It has an adsorption capacity of about 1 mg/g.
  • the composite catalyst In addition to adding 1 mL of aniline ethanol solution with a volume concentration of 30%, that is, the mass ratio of aniline monomer to Ti (calculated as titanium hydroxide) is less than 0.1:1, the composite catalyst is prepared in the same manner as in Example 1, and mesopores cannot be formed. structure, which has an adsorption capacity for styrene of about 2 mg/g.
  • the composite catalyst In addition to adding 200mL volume concentration of 30% aniline ethanol solution, that is, the mass ratio of aniline monomer to Ti (calculated as titanium hydroxide) is greater than 20:1, prepare the composite catalyst in the same manner as in Example 1, and form mesoporous Insufficient structure, it has an adsorption capacity of about 15mg/g to styrene, after 4h irradiation with ultraviolet light with a wavelength of 185nm-254nm and an irradiation intensity of 200mW/ cm2 , it is found that the residual adsorbed styrene is 4mg/g, which proves that styrene has residual, the catalytic effect is not ideal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种集吸附富集与高级氧化功能一体的冷焚烧催化剂的合成方法以及由该合成方法制备的冷焚烧催化剂及其在催化降解VOCs方面的用途。根据本发明的合成方法包括:(1)水溶性过氧化钛前驱体的制备,(2)MnO 2-TiO 2复合前驱体的制备,(3)聚苯胺-TiO 2-MnO 2复合物的制备和(4)C-TiO 2-MnO 2复合物的制备等步骤。根据本发明的合成方法工艺简单,反应条件温和,制备得到复合催化剂中原位生成的活性炭的介孔结构保持完整,有利于VOC的吸附,同时复合的TiO 2-MnO 2能够有效地催化分解VOC。根据本发明的合成方法适合大规模工业化生产。

Description

一种冷焚烧催化剂的合成方法及其制备的催化剂 技术领域
本发明属于工业催化剂领域,具体而言本发明涉及一种集吸附富集与高级氧化功能一体的冷焚烧催化剂的合成方法以及由该合成方法制备的冷焚烧催化剂。
背景技术
依据世界卫生组织(World Health Organization,WHO)的定义,挥发性有机化合物(Volatile Organic Compounds,VOCs)是熔点低于室温而沸点在50~260℃之间的挥发性有机化合物的总称。VOCs对环境具有重要的影响作用,一方面它可以通过光化学反应形成二次气溶胶,引发区域性环境问题如雾霾等;另一方面它是室内环境最重要的污染形式,以室内空气VOCs污染物的典型代表甲醛、苯系物为例,对人体危害极大,甲醛是目前世界卫生组织(WHO)确定的致癌物。苯系物,包括苯、甲苯、乙苯、二甲苯等对人的中枢神经系统及血液系统具有毒害作用。目前对对VOCs的净化技术,可以简单分为以活性炭为代表的被动式吸附净化技术和以催化氧化为主的主动式净化技术。被动式吸附法是目前应用最广泛的技术,具有高效,快速,多样性等特点。但没有真正起到降解的作用,只是把污染物从一相转移到另一相,当吸附了一定量的污染物后,就会成为污染源释放吸附的污染物气体二次污染,催化氧化技术由于不存在吸附饱和的问题,不需要经常更换催化材料,使用的寿命较长,维护少,使用方便。但是,以贵金属(如Pt)催化体系和锰系氧化物(霍加拉特催化剂)为代表的热催化氧化技术,即使现在的研究集中在降低VOCs的分解温度上,但对于苯系物,还没有发现T90温度小于100℃ 的报道,而高于100℃以上反应温度,对于应用具有一定的危险性,限制了其应用。
高级氧化是一类通过光电化学方法产生高度活性的羟基自由基无选择地直接与各种有机化合物作用而将其降解为CO 2、H 2O的低温氧化方法。考虑大部分催化反应过程是一个表面反应过程,对于低浓度特别是痕量污染物的净化过程,传质过程通常成为催化反应的速控步骤,相应的催化氧化过程也一直因为效率低而受到诟病无法得到广泛的应用。因此,所谓的“冷焚烧”,也就是为解决这一问题,吸附-高级氧化催化体系被广泛采用,如通过将多孔结构与高级氧化催化剂复合,形成复合物结构,多孔材料可以先将VOCs富集,而高级氧化剂会产生活性氧(reactive oxygen species,ROS)基团,如OH·自由基等,高能的OH·在扩散到吸附剂后,能够直接氧化所吸附的VOCs生成CO 2与H 2O。通过这一ROS媒介的高级氧化过程,可以实现吸附材料吸附性能的原位再生,从而实现了吸附材料快速净化能力与催化氧化材料无二次污染等优越性的完美组合。从而实现对VOCs的“焚烧”类似的高效低温氧化净化。
活性炭材料具有发达的孔隙结构、较大的比表面积和丰富的化学基团,是广泛采用的VOCs吸附净化材料。因此,将活性炭与催化剂复合,形成吸附-催化复合材料得到了广泛关注。浸渍法是目前广泛采用的工艺,其原理是通过将活性催化成分溶液浸泡负载在活性炭表面,再通过烧结等固化工艺实现活性成分与基底材料牢固负载的催化剂合成方法。这一类方法虽然可以获得扩大催化剂比表面积,但是却牺牲多孔材料的吸附能力,而对于环境净化,特别是低浓度、大风量的体系,快速选择性吸附能力是保证净化率的关键因 素。本发明通过原位合成碳材料和高级催化氧化材料的复合体系,开发吸附驱动VOCs高效净化纳米结构,实现温和反应条件下高效净化VOCs。
发明内容
根据本发明的一个方面,本发明的一个目的是提供一种简单易控,效果良好,适于大规模工业生产的活性炭-金属氧化物复合冷焚烧催化剂的合成方法,所述方法包括以下步骤:
(1)水溶性过氧化钛前驱体的制备
用过氧化氢水溶液溶解氢氧化钛前驱体得到金属过氧化钛水溶液,其中,钛过氧化物水溶液中的过氧化氢与钛离子的分子摩尔数比值为1:1~100:1;
(2)MnO 2-TiO 2复合前驱体的制备
向步骤(1)中得到的过氧化钛水溶液中加入一定量高锰酸钾,控制KMnO 4与Ti的摩尔比为0.01:1~10:1,完全溶解后,90~100℃加热回流0.5~4h,得到TiO 2-MnO 2与过氧化钛的复合物;
(3)聚苯胺-TiO 2-MnO 2复合物的制备
将苯胺单体溶解在乙醇溶液中,其中苯胺单体的乙醇溶液的体积浓度为0.1%~99.9%,再加入步骤(2)中得到的TiO 2-MnO 2与过氧钛的复合物,其中,最后混合液中苯胺单体与Ti(按加入的氢氧化钛计)的质量比为0.1:1~20:1,再在50~80℃,100~300rpm搅拌条件下,反应1~5h得到最终聚苯胺-TiO 2-MnO 2复合物乳液;
(4)C-TiO 2-MnO 2复合物的制备
将步骤(3)制备得到的含有聚苯胺-TiO 2-MnO 2复合物的乳液离心沉淀,将所得到得沉淀物在烘箱中干燥,再置于马弗炉中在惰性气氛中进行程序升温 焙烧:以5℃/min的速率程序升温至500℃,然后恒温2-6h,得到C-TiO 2-MnO 2冷焚烧催化剂。
优选地,步骤(1)中所述过氧化氢与钛离子的分子摩尔数比值为1:1~80:1,更优选为1:1~50:1。
优选地,步骤(1)中所述KMnO 4与Ti的摩尔比为0.01:1~3:1,更优选为0.1:1~1:1。
优选地,步骤(3)中所述苯胺单体的乙醇溶液的体积浓度为1%~60%,更优选为2%~30%。
优选地,步骤(3)中所述苯胺单体与Ti(按加入的氢氧化钛计)的质量比为0.2:1~15:1,更优选为0.2:1~10:1。
优选地,步骤(4)中所述惰性气氛为氮气气氛或氩气气氛。
优选地,根据本发明的所述合成方法如下进行:
100g固含量4%的氢氧化钛沉淀,在室温,200rpm转速搅拌条件下,加入质量百分浓度为30%的过氧化氢水溶液100mL,继续搅拌至沉淀完全溶液,如何加入5.2g纯度为99%的KMnO 4,100℃加热回流2h;再在200rpm搅拌转速下,加入100mL体积浓度为30%的苯胺乙醇溶液,进一步在500rpm搅拌转速下反应4h得到棕色乳状液;将制备得到的乳液离心沉淀,所得到的沉淀物在烘箱中100℃干燥6h,再在马弗炉中氮气气氛中以5℃/min的速率程序升温至500℃,然后恒温4h,得到C-TiO 2-MnO 2黑色催化剂。
根据本发明的另一个方面,本发明的另一个目的是提供一种C-TiO 2-MnO 2复合冷焚烧催化剂,所述催化剂根据本发明的所述合成方法制备得到。
根据本发明的另一个方面,本发明的另一个目的是提供所述C-TiO 2-MnO 2复合冷焚烧催化剂在催化降解VOCs方面的用途。
优选地,根据本发明的所述C-TiO 2-MnO 2复合冷焚烧催化剂在催化降解VOCs方面的用途,所述VOCs为芳香族类VOC,例如苯、甲苯、二甲苯、苯乙烯、甲醛、苯甲醛等,更优选为苯乙烯。
有益效果
相对于现有技术中类似催化剂的制备方法,根据本发明的合成方法工艺简单,反应条件温和,制备得到复合催化剂中原位生成的活性炭的介孔结构保持完整,有利于VOC的吸附,同时复合的TiO 2-MnO 2能够有效地催化分解VOC。根据本发明的合成方法适合大规模工业化生产。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为表示本发明实施例1所制备的冷焚烧催化剂产物的透射电子显微镜照片。
图2为表示本发明实施例1所制备的冷焚烧催化剂XRD结果。
图3为表示本发明实施例1所制备的聚合产物IR结果。
图4为表示本发明实施例1所制备的冷焚烧催化剂产物的比表面积结果。
图5为表示本发明实施例1所制备的冷焚烧催化剂产物的冷焚烧催化结 果。
具体实施方式
以下,将详细地描述本发明。在进行描述之前,应当理解的是,在本说明书和所附的权利要求书中使用的术语不应解释为限制于一般含义和字典含义,而应当在允许发明人适当定义术语以进行最佳解释的原则的基础上,根据与本发明的技术方面相应的含义和概念进行解释。因此,这里提出的描述仅仅是出于举例说明目的的优选实例,并非意图限制本发明的范围,从而应当理解的是,在不偏离本发明的精神和范围的情况下,可以由其获得其他等价方式或改进方式。
本发明的关键点在于通过过氧化钛配体物同时引发KMnO 4的还原与苯胺单体的聚合,从而形成PANi-MnO 2-TiO 2复合结构前驱体,再通过热解得到C-MnO 2-TiO 2结构冷焚烧催化剂。具体而言本发明的技术要点如下:
1)通过过氧化钛中过氧键形成的自由基引发苯胺单体聚合从而形成有机无机复合纳米结构。
2)通过过氧化钛中过氧键的还原性还原KMnO 4生成MnO 2从而得到MnO 2-TiO 2高级氧化催化剂。
3)通过热解过程及MnO 2的氧化活化作用得到富含含氧基团的活化的活性炭C-MnO 2-TiO 2结构冷焚烧催化剂。
根据本发明的合成方法的步骤(1)中过氧化氢与钛离子的分子摩尔数比值为1:1~100:1,优选为1:1~80:1,更优选为1:1~50:1。在本发明的合成方法中过氧化氢的加入量非常关键,过氧化氢不仅起到与钛离子络合,而且作为还作为KMnO 4还原生成MnO 2的还原剂,同时过氧键形成的自由基还可以作为引 发苯胺单体聚合的引发剂的作用。因此,如果过氧化氢量过少,则无法实现上述目的,但如果过氧化氢过量,例如基于1摩尔Ti离子,过氧化氢的摩尔数大于100,则在后续步骤中形成过多的自由基,而导致无法得到理想的苯胺聚合物,进而导致最终的产品中介孔尺寸不够理想。
优选地,步骤(1)中所述KMnO 4与Ti的摩尔比应控制为0.01:1~3:1,更优选为0.1:1~1:1。如果所述KMnO 4与Ti的摩尔比小于0.01:1,即加入的锰的量不足,则掺杂效果不明显,催化效果不够理想;如果所述KMnO 4与Ti的摩尔比大于3:1,则过量的锰的存在反而影响TiO 2的催化性能,总体催化效果也不够理想。
根据本发明的合成方法的步骤(3)中加入苯胺单体,并通过过氧键形成的自由基引发苯胺单体聚合,苯胺单体的加入量对最终复合催化剂的介孔结构有显著影响,由于聚合过程中MnO 2和TiO 2存在该聚合物,在后续的焙烧过程中实现原位混合。如果加入的苯胺单体太少,例如最后混合液中苯胺单体与Ti(按加入的氢氧化钛计)的质量比小于0.1:1,则很难生成具有介孔结构碳,对VOC的吸附性能大大降低;而如果大于20:1,则最终生成的碳同样不具有良好的介孔结构,同时由于生成的碳的量非常大,导致MnO 2和TiO 2的暴露量不足,催化效果反而降低。优选地,步骤(3)中所述苯胺单体与Ti(按加入的氢氧化钛计)的质量比为0.2:1~15:1,更优选为0.2:1~10:1。
以下实施例仅是作为本发明的实施方案的例子列举,并不对本发明构成任何限制,本领域技术人员可以理解在不偏离本发明的实质和构思的范围内的修改均落入本发明的保护范围。除非特别说明,以下实施例中使用的试剂和仪器均为市售可得产品。
实施例1
100g固含量4%的氢氧化钛沉淀,在室温,200rpm转速搅拌条件下,加入质量百分浓度为30%的过氧化氢水溶液100mL,继续搅拌至沉淀完全溶液,如何加入5.2g纯度为99%的KMnO 4,100℃加热回流2h;再在200rpm搅拌转速下,加入100mL体积浓度为30%的苯胺乙醇溶液,进一步在500rpm搅拌转速下反应4h得到棕色乳状液;将制备得到的乳液离心沉淀,所得到的沉淀物在烘箱中100℃干燥6h,再在马弗炉中氮气气氛中以5℃/min的速率程序升温至500℃,然后恒温4h,得到C-TiO 2-MnO 2黑色冷焚烧催化剂。所述氢氧化钛沉淀可通过常规方法得到,例如将钛酸四丁酯在搅拌下滴加入去离子水中获得。
所得产物形貌结果,参见图1的透射电子显微镜照片,证实得到纳米尺度复合物材料。
所得产物晶型,参见图2的XRD结果,证实得到复合物TiO 2/MnO 2复合物。
所得聚合产物红外结果,参见图3的FTIR结果,证实得到的C-TiO 2-MnO 2黑色冷焚烧催化剂中存在聚苯胺结构。
所得产物比表面积结果,参见图4的BET结果,证实得到的C-TiO 2-MnO 2黑色冷焚烧催化剂为多孔材料。
性能测试
对所制备得到冷焚烧材料,首先通过采用固定吸附催化剂吸附床穿透柱对苯乙烯进行穿透实验。称取2g所制备得到的冷焚烧催化剂材料装填于穿透柱中,以特定浓度污染物通过吸附柱,尾气用活性炭吸收。气体经过吸附 柱前后,通过PID传感器检测进出口浓度。将吸附饱和的冷焚烧催化剂材料在200mW/cm 2的185nm-254nm紫外照射4h后再生后,再测试其吸附能力,反应条件为:苯乙烯浓度50ppm,催化剂用量200mg,反应温度为室温25℃,反应流量为200mL/min,空速为60000h -1,5%vol O 2、N 2为平衡气体,利用带氢离子火焰检测器的气相色谱检测苯乙烯和碳氧化合物浓度。证实其对苯乙烯具有约49mg/g的吸附容量,常温下将吸附饱和的冷焚烧材料在波长185nm~254nm,辐照强度200mW/cm 2的紫外光照射4h后,然后重新进行穿透吸附测试,其对苯乙烯恢复到43mg/g的吸附容量,证实其具有吸附光催化氧化能力(参见图5)。
实施例2
50g固含量4%的氢氧化钛沉淀,200rpm转速搅拌条件下,加入质量百分浓度为30%的过氧化氢水溶液100mL,1.4g纯度为99%的KMnO 4,100℃加热回流2h;再在200rpm搅拌转速下,加入100mL体积浓度为20%的苯胺乙醇溶液,进一步在500rpm搅拌转速下反应5h得到棕色乳状液;将制备得到的乳液离心沉淀,所得到的沉淀物在烘箱中100℃干燥6h,以5℃/min的速率程序升温至500℃,然后恒温4h,得到C-TiO 2-MnO 2黑色催化剂。
按照实施例1中相似的方式进行性能测试,对所制备得到冷焚烧材料,首先通过穿透实验,证实其对苯乙烯具有约56mg/g的吸附容量,将吸附饱和的冷焚烧材料在波长185nm~254nm,辐照强度200mW/cm 2的紫外光照射4h后,重新恢复到56mg/g的吸附容量,证实其具有吸附光催化氧化能力。
实施例3
100g固含量4%的氢氧化钛沉淀,200rpm转速搅拌条件下,加入质量百 分浓度为30%的过氧化氢水溶液100mL,2.8g纯度为99%的KMnO 4,100℃加热回流2h;再在200rpm搅拌转速下,加入100mL体积浓度为15%的苯胺乙醇溶液,进一步在500rpm搅拌转速下反应4h得到棕色乳状液;将制备得到的乳液离心沉淀,所得到的沉淀物在烘箱中100℃干燥2h,以5℃/min的速率程序升温至500℃,然后恒温4h,得到C-TiO 2-MnO 2黑色催化剂。
按照实施例1中相似的方式进行性能测试,对所制备得到冷焚烧材料,首先通过穿透实验,证实其对苯乙烯具有约32mg/g的吸附容量,将吸附饱和的冷焚烧材料在波长185nm~254nm,辐照强度200mW/cm 2的紫外光照射4h后,重新恢复到32mg/g的吸附容量,证实其具有吸附光催化氧化能力。
实施例4
200g固含量4%的氢氧化钛沉淀,200rpm转速搅拌条件下,加入质量百分浓度为30%的过氧化氢水溶液100mL,1.1g纯度为99%的KMnO 4,100℃加热回流2h;再在200rpm搅拌转速下,加入100mL体积浓度为5%的苯胺乙醇溶液,进一步在500rpm搅拌转速下反应4h得到棕色乳状液;将制备得到的乳液离心沉淀,所得到的沉淀物在烘箱中100℃干燥2h,以5℃/min的速率程序升温至500℃,然后恒温4h,得到C-TiO 2-MnO 2黑色催化剂。
按照实施例1中相似的方式进行性能测试,对所制备得到冷焚烧材料,首先通过穿透实验,证实其对苯乙烯具有约20mg/g的吸附容量,将吸附饱和的冷焚烧材料在波长185nm~254nm,辐照强度200mW/cm 2的紫外光照射4h后,重新恢复到20mg/g的吸附容量,证实其具有吸附光催化氧化能力。
实施例5
200g固含量4%的氢氧化钛沉淀,200rpm转速搅拌条件下,加入质量百 分浓度为30%的过氧化氢水溶液100mL,2.2g纯度为99%的KMnO 4,100℃加热回流2h;再在200rpm搅拌转速下,加入100mL体积浓度为2%的苯胺乙醇溶液,进一步在500rpm搅拌转速下反应4h得到棕色乳状液;将制备得到的乳液离心沉淀,所得到的沉淀物在烘箱中100℃干燥2h,以5℃/min的速率程序升温至500℃,然后恒温4h,得到C-TiO 2-MnO 2黑色催化剂。
按照实施例1中相似的方式进行性能测试,对所制备得到冷焚烧材料,首先通过穿透实验,证实其对苯乙烯具有约10mg/g的吸附容量,将吸附饱和的冷焚烧材料在波长185nm~254nm,辐照强度200mW/cm 2的紫外光照射4h后,重新恢复到10mg/g的吸附容量,证实其具有吸附光催化氧化能力。
对比实施例1
除了加入质量百分浓度为30%的过氧化氢水溶液470mL,即过氧化氢与钛离子的分子摩尔数比值约为120:1以外,按照实施例1中相同方式制备复合催化剂,其对苯乙烯具有约1mg/g的吸附容量。
对比实施例2
除了加入16g纯度为99%的KMnO 4以外,,按照实施例1中相同方式制备复合催化剂,其对苯乙烯具有约46mg/g的吸附容量,但在波长185nm~254nm,辐照强度200mW/cm 2的紫外光照射4h后发现残留吸附的苯乙烯为16mg/g,证明苯乙烯有残留,催化效果不理想。
对比实施例3
除了加入1mL体积浓度为30%的苯胺乙醇溶液以外,即苯胺单体与Ti(按氢氧化钛计)的质量比小于0.1:1,按照实施例1中相同方式制备复合催化剂,无法形成介孔结构,其对苯乙烯具有约2mg/g的吸附容量。
对比实施例4
除了加入200mL体积浓度为30%的苯胺乙醇溶液以外,即苯胺单体与Ti(按氢氧化钛计)的质量比大于20:1,按照实施例1中相同方式制备复合催化剂,形成的介孔结构不足,其对苯乙烯具有约15mg/g的吸附容量,在波长185nm~254nm,辐照强度200mW/cm 2的紫外光照射4h后发现残留吸附的苯乙烯为4mg/g,证明苯乙烯有残留,催化效果不理想。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种活性炭-金属氧化物冷焚烧催化剂的合成方法,所述方法包括以下步骤:
    (1)水溶性过氧化钛前驱体的制备
    用过氧化氢水溶液溶解氢氧化钛前驱体得到金属过氧化钛水溶液,其中,钛过氧化物水溶液中的过氧化氢与钛离子的分子摩尔数比值为1:1~100:1;
    (2)MnO 2-TiO 2复合前驱体的制备
    向步骤(1)中得到的过氧化钛水溶液中加入一定量高锰酸钾,控制KMnO 4与Ti的摩尔比为0.01:1~10:1,完全溶解后,90~100℃加热回流0.5~4h,得到TiO 2-MnO 2与过氧化钛的复合物;
    (3)聚苯胺-TiO 2-MnO 2复合物的制备
    将苯胺单体溶解在乙醇溶液中,其中苯胺单体的乙醇溶液的体积浓度为0.1%~99.9%,再加入步骤(2)中得到的TiO 2-MnO 2与过氧钛的复合物,其中,最后混合液中苯胺单体与Ti(按加入的氢氧化钛计)的质量比为0.1:1~20:1,再在50~80℃,100~300rpm搅拌条件下,反应1~5h得到最终聚苯胺-TiO 2-MnO 2复合物乳液;
    (4)C-TiO 2-MnO 2复合物的制备
    将步骤(3)制备得到的含有聚苯胺-TiO 2-MnO 2复合物的乳液离心沉淀,将所得到得沉淀物在烘箱中干燥,再置于马弗炉中在惰性气氛中进行程序升温焙烧:以5℃/min的速率程序升温至500℃,然后恒温2-6h,得到C-TiO 2-MnO 2冷焚烧催化剂。
  2. 根据权利要求1所述的合成方法,其特征在于,步骤(1)中所述过氧化氢与钛离子的分子摩尔数比值为1:1~80:1,更优选为1:1~50:1。
  3. 根据权利要求1所述的合成方法,其特征在于,步骤(1)中所述KMnO 4与Ti的摩尔比为0.01:1~3:1,更优选为0.1:1~1:1。
  4. 根据权利要求1所述的合成方法,其特征在于,步骤(3)中所述苯胺单体的乙醇溶液的体积浓度为1%~60%,更优选为2%~30%。
  5. 根据权利要求1所述的合成方法,其特征在于,步骤(3)中所述苯胺单体与Ti(按加入的氢氧化钛计)的质量比为0.2:1~15:1,更优选为0.2:1~10:1。
  6. 根据权利要求1所述的合成方法,其特征在于,步骤(4)中所述惰性气氛为氮气气氛或氩气气氛。
  7. 根据权利要求1所述的合成方法,其特征在于,所述合成方法如下进行:
    100g固含量4%的氢氧化钛沉淀,在室温,200rpm转速搅拌条件下,加入质量百分浓度为30%的过氧化氢水溶液100mL,继续搅拌至沉淀完全溶液,如何加入5.2g纯度为99%的KMnO 4,100℃加热回流2h;再在200rpm搅拌转速下,加入100mL体积浓度为30%的苯胺乙醇溶液,进一步在500rpm搅拌转速下反应4h得到棕色乳状液;将制备得到的乳液离心沉淀,所得到的沉淀物在烘箱中100℃干燥6h,再在马弗炉中氮气气氛中以5℃/min的速率程序升温至500℃,然后恒温4h,得到C-TiO 2-MnO 2黑色催化剂。
  8. 一种C-TiO 2-MnO 2复合冷焚烧催化剂,所述催化剂根据权利要求1至7中任意一项所述合成方法制备得到。
  9. 根据权利要求8所述的C-TiO 2-MnO 2复合冷焚烧催化剂在催化降解VOCs方面的用途。
  10. 根据权利要求9所述的用途,其特征在于所述VOCs为芳香族类 VOC,例如苯、甲苯、二甲苯、苯乙烯、甲醛、苯甲醛等,更优选为苯乙烯。
PCT/CN2021/119328 2021-09-18 2021-09-18 一种冷焚烧催化剂的合成方法及其制备的催化剂 WO2023039880A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/119328 WO2023039880A1 (zh) 2021-09-18 2021-09-18 一种冷焚烧催化剂的合成方法及其制备的催化剂
CN202180099569.6A CN117500588A (zh) 2021-09-18 2021-09-18 一种冷焚烧催化剂的合成方法及其制备的催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/119328 WO2023039880A1 (zh) 2021-09-18 2021-09-18 一种冷焚烧催化剂的合成方法及其制备的催化剂

Publications (1)

Publication Number Publication Date
WO2023039880A1 true WO2023039880A1 (zh) 2023-03-23

Family

ID=85602363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119328 WO2023039880A1 (zh) 2021-09-18 2021-09-18 一种冷焚烧催化剂的合成方法及其制备的催化剂

Country Status (2)

Country Link
CN (1) CN117500588A (zh)
WO (1) WO2023039880A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171655A1 (de) * 2011-06-17 2012-12-20 BLüCHER GMBH Poröse materialien auf basis von oxiden des titans und/oder des vanadiums sowie deren herstellung und verwendung
CN103349971A (zh) * 2013-07-23 2013-10-16 四川农业大学 利用离子液体/聚苯胺制备的多孔碳负载二氧化钛复合材料及其方法和应用
CN113000045A (zh) * 2019-12-20 2021-06-22 北京市劳动保护科学研究所 一种锰基催化剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012171655A1 (de) * 2011-06-17 2012-12-20 BLüCHER GMBH Poröse materialien auf basis von oxiden des titans und/oder des vanadiums sowie deren herstellung und verwendung
CN103349971A (zh) * 2013-07-23 2013-10-16 四川农业大学 利用离子液体/聚苯胺制备的多孔碳负载二氧化钛复合材料及其方法和应用
CN113000045A (zh) * 2019-12-20 2021-06-22 北京市劳动保护科学研究所 一种锰基催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, YUZHEN: "Facile Fabrication of Titania/Polyaniline Hybrid Based on Peroxo-Titanium Complex", PROCEEDINGS OF THE 13TH NATIONAL CONFERENCE ON SOLAR ENERGY PHOTOCHEMISTRY & PHOTOCATALYSIS, 26 October 2012 (2012-10-26) *

Also Published As

Publication number Publication date
CN117500588A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
Mahmood et al. Carbon quantum dots-TiO2 nanocomposite as an efficient photocatalyst for the photodegradation of aromatic ring-containing mixed VOCs: An experimental and DFT studies of adsorption and electronic structure of the interface
Kim et al. Catalytic ozonation of toluene using Mn–M bimetallic HZSM-5 (M: Fe, Cu, Ru, Ag) catalysts at room temperature
Du et al. Promotional removal of HCHO from simulated flue gas over Mn-Fe oxides modified activated coke
Shu et al. Synergetic degradation of VOCs by vacuum ultraviolet photolysis and catalytic ozonation over Mn-xCe/ZSM-5
Shu et al. Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185 nm VUV irradiation
Lu et al. Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas
Song et al. Advances in catalytic oxidation of volatile organic compounds over Pd-supported catalysts: recent trends and challenges
CN106944092B (zh) 一种具有高效光热协同催化净化VOCs的Fe-MnO2催化剂的制备方法
Yan et al. Highly dispersed CuyAlOx mixed oxides as superior low-temperature alkali metal and SO2 resistant NH3-SCR catalysts
CN106975481B (zh) 具有高效光热协同催化净化VOCs的碱土金属掺杂MnO2催化剂的制备方法
JP2021506583A (ja) ホルムアルデヒド酸化を触媒するための触媒並びにその調製及び使用
Zhang et al. Integrated adsorption and photocatalytic degradation of VOCs using a TiO 2/diatomite composite: effects of relative humidity and reaction atmosphere
Yu et al. Catalytic decomposition of PCDD/Fs over nano-TiO2 based V2O5/CeO2 catalyst at low temperature
CN106861626B (zh) 一种吸附-光催化双功能材料及其制备方法与在挥发性有机气体治理工艺的应用
KR101483079B1 (ko) 악취 제거 및 탄화수소 산화 촉매 및 이의 제조방법
Wang et al. Ozone assisted oxidation of gaseous PCDD/Fs over CNTs-containing composite catalysts at low temperature
Vikrant et al. Harnessing adsorption–catalysis synergy: efficient oxidative removal of gaseous formaldehyde by a manganese dioxide/metal–organic framework nanocomposite at room temperature
Amini et al. Photocatalytic removal of SO 2 using natural zeolite modified by TiO 2 and polyoxypropylene surfactant
Chaghaganooj et al. Ce and Mn/bio-waste-based activated carbon composite: Characterization, phenol adsorption and regeneration
Park et al. Catalytic oxidation of benzene with ozone over nanoporous mn/MCM-48 catalyst
Yang et al. Solvothermal fabrication of activated semi-coke supported TiO2-rGO nanocomposite photocatalysts and application for NO removal under visible light
Saqlain et al. Enhanced removal efficiency of toluene over activated carbon under visible light
Yang et al. Gaseous mercury capture using iodine-modified carbon nitride derived from guanidine hydrochloride
Xie et al. Comparative studies of heterogeneous photocatalytic oxidation of heptane and toluene on pure titania, titania–silica mixed oxides and sulfated titania
Yadav et al. Oxidation of VOCs on a highly stabilized furfuryl alcohol-based activated carbon supported nickel oxide catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957158

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099569.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE