WO2023039699A1 - 信息传输方法、装置、设备及存储介质 - Google Patents

信息传输方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023039699A1
WO2023039699A1 PCT/CN2021/118127 CN2021118127W WO2023039699A1 WO 2023039699 A1 WO2023039699 A1 WO 2023039699A1 CN 2021118127 W CN2021118127 W CN 2021118127W WO 2023039699 A1 WO2023039699 A1 WO 2023039699A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
indication information
maximum number
mimo layers
layers indicated
Prior art date
Application number
PCT/CN2021/118127
Other languages
English (en)
French (fr)
Inventor
徐伟杰
李海涛
胡奕
左志松
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180102188.9A priority Critical patent/CN117917019A/zh
Priority to PCT/CN2021/118127 priority patent/WO2023039699A1/zh
Publication of WO2023039699A1 publication Critical patent/WO2023039699A1/zh
Priority to US18/590,331 priority patent/US20240205940A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to an information transmission method, device, device, and storage medium.
  • the communication system supports larger bandwidth, higher rate, and lower delay.
  • the NR (New Radio, new air interface) system supports hundreds of MHz (Mega Hertz, megahertz) or even several GHz (Giga Hertz , gigahertz) bandwidth, at a rate of several Gbps (Giga Bit Per Second, gigabits per second) or even tens of Gbps.
  • Embodiments of the present application provide an information transmission method, device, equipment, and storage medium. Described technical scheme is as follows:
  • an embodiment of the present application provides an information transmission method, which is applied to a terminal device, and the method includes:
  • Receive first downlink control information DCI where the first DCI includes first indication information, where the first indication information is used to indicate the maximum number of multiple-input multiple-output MIMO layers on which the terminal device receives data.
  • an embodiment of the present application provides an information transmission method, which is applied to a network device, and the method includes:
  • an information transmission device which is set in a terminal device, and the device includes:
  • An information receiving module configured to receive first downlink control information DCI, where the first DCI includes first indication information, and the first indication information is used to indicate the maximum multiple-input multiple-output based on which the terminal device receives data Number of MIMO layers.
  • an information transmission device which is set in a network device, and the device includes:
  • An information sending module configured to send first downlink control information DCI, where the first DCI includes first indication information, and the first indication information is used to indicate the maximum multiple-input multiple-output MIMO layer on which the terminal device receives data number.
  • an embodiment of the present application provides a terminal device, where the terminal device includes: a processor, and a transceiver connected to the processor; wherein:
  • the transceiver is configured to receive first downlink control information DCI, where the first DCI includes first indication information, and the first indication information is used to indicate the maximum multiple-input multiple Output the number of MIMO layers.
  • an embodiment of the present application provides a network device, where the network device includes: a processor, and a transceiver connected to the processor; wherein:
  • the transceiver is configured to send first downlink control information DCI, where the first DCI includes first indication information, and the first indication information is used to indicate the maximum multiple-input multiple-output MIMO based on which the terminal device receives data layers.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of the terminal device, so as to implement the above-mentioned terminal device side Information transfer method.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a network device, so as to implement the above-mentioned network device side Information transfer method.
  • the embodiment of the present application provides a chip, the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on the terminal device, it is used to realize the above-mentioned information transmission on the terminal device side method.
  • an embodiment of the present application provides a chip, the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on a network device, it is used to realize the above-mentioned information transmission on the network device side method.
  • an embodiment of the present application provides a computer program product, which is used to implement the above information transmission method on the terminal device side when the computer program product is run on the terminal device.
  • an embodiment of the present application provides a computer program product, which is used to implement the above information transmission method on the network device side when the computer program product runs on the network device.
  • the network device uses DCI signaling to indicate the maximum number of MIMO layers to the terminal device, thereby realizing dynamic adjustment of the maximum number of MIMO layers during data transmission.
  • the network device adjusts the number of radio frequency channels based on the load condition and then adjusts the maximum number of MIMO layers, it sends DCI signaling to the terminal device to indicate the adjusted maximum number of MIMO layers.
  • the energy saving of the network equipment is more fully considered, and on the other hand, the energy saving of the network equipment is consistent with the energy saving of the terminal equipment.
  • FIG. 1 is a schematic diagram of a system architecture of a communication system provided by an embodiment of the present application
  • FIG. 2 is a flowchart of an information transmission method provided by an embodiment of the present application.
  • Fig. 3 is a block diagram of an information transmission device provided by an embodiment of the present application.
  • FIG. 4 is a block diagram of an information transmission device provided in another embodiment of the present application.
  • Fig. 5 is a block diagram of an information transmission device provided in another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the evolution of the technology and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.
  • FIG. 1 shows a schematic diagram of a system architecture of a communication system provided by an embodiment of the present application.
  • the system architecture may include: a terminal device 10 and a network device 20 .
  • the number of terminal devices 10 is generally multiple, and one or more terminal devices 10 may be distributed in a cell managed by each network device 20 .
  • the terminal device 10 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment (User Equipment, UE), mobile station (Mobile Station, MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • the network device 20 is a device deployed in an access network to provide a wireless communication function for the terminal device 10 .
  • the network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points and so on.
  • the name of the device having the network device function may be different, for example, in the NR system, it is called gNodeB or gNB.
  • the term "network equipment" may change as communications technology evolves.
  • the above-mentioned devices that provide the wireless communication function for the terminal device 10 are collectively referred to as network devices.
  • the "NR system" in the embodiments of the present disclosure may also be called a 5G (5th Generation Mobile Communication Technology, fifth generation mobile communication technology) system or a 5G NR system, but those skilled in the art can understand its meaning.
  • the technical solutions described in the embodiments of the present disclosure may be applicable to the NR system, and may also be applicable to a communication system that evolves subsequently to the NR system, such as a 6G (6-Generation, 6th generation) system, and the like.
  • NR systems support transmission at rates of several Gbps or even tens of Gbps on bandwidths of hundreds of MHz or even several GHz.
  • Communication systems with larger bandwidth, higher speed, and lower latency can support real-time high-definition video live broadcast, high-definition movie download, AR (Augmented Reality, augmented reality), VR (Virtual Reality, virtual reality) and other services, which are expected to bring more Good user experience.
  • MIMO Multiple-Input Multiple-Output
  • MIMO technology refers to the use of multiple transmitting antennas and receiving antennas at the transmitting end and receiving end, respectively, so that communication signals are transmitted and received through multiple antennas at the transmitting end and receiving end, thereby improving communication quality.
  • MIMO technology can make full use of space resources, realize multiple transmission and multiple reception through multiple antennas, and double the system channel capacity without increasing spectrum resources and antenna transmission power.
  • the network device configures the maximum number of MIMO layers (maxMIMO-Layers) based on receiving PDSCH (Physical Downlink Shared Channel) for the terminal device through RRC (Radio Resource Control, radio resource control) signaling .
  • the network device configures the maximum number of MIMO layers for the terminal device through RRC signaling, which is used to indicate the number of MIMO layers used to receive the PDSCH on all BWP (Bandwidth Part, bandwidth part) of a serving cell (one serving cell)
  • the maximum number that is, the maximum number of MIMO layers configured by the network device for the terminal device through RRC signaling is common to all BWPs of a serving cell.
  • the maximum number of MIMO layers configured by the network device for the terminal device through RRC signaling can be used to indicate the maximum number of MIMO layers used to receive the PDSCH on each BWP, that is, the terminal device When receiving PDSCH on different BWPs, different maximum numbers of MIMO layers can be used. This is more conducive to the energy saving of the terminal equipment.
  • the network equipment can switch the BWP of the terminal equipment to the BWP corresponding to the smaller maximum number of MIMO layers, so that the terminal equipment only needs to turn on A small number of radio frequency channels are used to receive downlink data, thereby realizing energy saving of terminal equipment; in the case of large traffic, the network equipment can switch the BWP of the terminal equipment to the BWP corresponding to the larger maximum number of MIMO layers, Thereby realizing fast data transmission.
  • the technical solution of configuring the maximum number of MIMO layers for terminal equipment through RRC signaling has not fully considered the energy saving of network equipment. For example, when the load of the network equipment is low, the network equipment can close some radio frequency channels to achieve energy saving, but because the network equipment closes some radio frequency channels, the number of ports that can support transmission will also be reduced, and the corresponding transmission can The number of MIMO layers will also be reduced. At this time, if the terminal device still receives the PDSCH according to the maximum number of MIMO layers before the network device closes some radio frequency channels, the power consumption of the terminal device will be wasted.
  • an embodiment of the present application provides an information transmission method, which can be used for a network device to dynamically indicate the maximum number of MIMO layers to a terminal device.
  • the technical solution of the present application will be described in combination with several embodiments.
  • FIG. 2 shows a flow chart of an information transmission method provided by an embodiment of the present application.
  • the method is applicable to the system architecture shown in FIG. 1 , and the method may include at least some of the following steps.
  • Step 210 the network device sends the first DCI to the terminal device, where the first DCI includes first indication information, and the first indication information is used to indicate the maximum number of MIMO layers on which the terminal device receives data.
  • the network device may send the first DCI (Downlink Control Information, downlink control information) to the terminal device, the first DCI carries first indication information, and the first indication information is used for Indicates the maximum number of MIMO layers based on which the terminal device receives data.
  • the first DCI is DCI transmitted in a common search space, or in other words, the first DCI is a common DCI.
  • the common search space includes a common PDCCH (Physical Downlink Control Channel, physical downlink control channel) search space.
  • the first DCI is a defined DCI, that is, the first DCI multiplexes a defined DCI; or, the first DCI is a defined DCI.
  • the defined DCI includes: DCI 2_0 (or called DCI in format 2_0), DCI 2_6 (or called DCI in format 2_6), and of course, the defined DCI can also include DCI 2_1 (or called DCI in format 2_6).
  • DCI with format 2_1) DCI with format 2_1
  • DCI 2_2 or DCI with format 2_2
  • DCI 2_3 or DCI with format 2_3)
  • DCI 2_4 or DCI with format 2_4
  • DCI 2_5 Or called DCI with format 2_5), etc., which is not limited in this embodiment of the present application.
  • the first DCI includes first indication information for indicating the maximum number of MIMO layers, and the embodiment of the present application does not limit the number of bits occupied by the first indication information in the first DCI.
  • the number of bits occupied by the first indication information in the first DCI is n, where n is a positive integer.
  • n is equal to 1; or, n is equal to 2; or, n is equal to 3; or, n is equal to 4.
  • the first DCI is a defined DCI (the first DCI multiplexes the defined DCI)
  • n bits can be added to the defined DCI to carry the first indication information, so that the defined DCI needs Add n bits on the basis of the original number of bits; or, the reserved bits in the defined DCI can be multiplexed to carry the first indication information, that is, the reserved bits in the defined DCI can be divided into n bits to carry the first indication information, so that the number of bits occupied by the defined DCI can remain unchanged.
  • the corresponding relationship between the value of the first indication information and the maximum number of MIMO layers can be set, so that the terminal device obtains the first After the information is indicated, the maximum number of MIMO layers can be determined based on the value of the first indication information.
  • the corresponding relationship between the value of the first indication information and the maximum number of MIMO layers may be predefined by the communication protocol, or configured by the network device.
  • there is a many-to-one relationship between the value of the first indication information and the maximum number of MIMO layers that is, multiple values of the first indication information may correspond to a possibility of the maximum number of MIMO layers Situation;
  • there is a one-to-one relationship between the value of the first indication information and the maximum number of MIMO layers that is, a value situation of the first indication information corresponds to the maximum number of MIMO layers
  • One possible situation, and different value situations of the first indication information correspond to different possible situations of the maximum number of MIMO layers.
  • the maximum value indicated by the first indication information is m+1, where m is a natural number.
  • the maximum number of MIMO layers indicated by it is 2; when the value of the first indication information is 3, the maximum number of MIMO layers indicated by it is 4.
  • the correspondence between the value of the first indication information and the maximum number of MIMO layers can also be set arbitrarily, which is not limited in this embodiment of the present application. For example, when the value of the first indication information is 1, its The indicated maximum number of MIMO layers is 8; when the value of the first indication information is 3, the indicated maximum number of MIMO layers is 2.
  • the first indication information indicates the maximum number of MIMO layers.
  • the number of bits occupied by the first indication information in the first DCI is 3. In this way, there are 8 possible values of the first indication information, so that the first indication information can indicate at most 8 possible maximum values.
  • Number of MIMO layers are 3.
  • the first indication information is "000"
  • the value of the first indication information is 0, and the maximum number of MIMO layers indicated by it is 1; in the case where the first indication information is "001" , the value of the first indication information is 1, and the maximum number of MIMO layers indicated by it is 2; when the first indication information is "010", the value of the first indication information is 2, and the maximum number of MIMO layers indicated by it is The number of MIMO layers is 3; when the first indication information is "011", the value of the first indication information is 3, and the maximum number of MIMO layers indicated by it is 4; when the first indication information is "100” In this case, the value of the first indication information is 4, and the maximum number of MIMO layers indicated by it is 5; in the case that the first indication information is "101", the value
  • the terminal device After the terminal device receives the first indication information and acquires the maximum number of MIMO layers indicated by the first indication information, it may receive data based on the maximum number of MIMO layers indicated by the first indication information, or may ignore the data indicated by the first indication information.
  • the indicated maximum number of MIMO layers still receives data based on the original maximum number of MIMO layers, which is not limited in this embodiment of the present application.
  • the terminal device may immediately receive data based on the maximum number of MIMO layers indicated by the first indication information, or may receive data based on the first indication information after a period of time
  • the indicated maximum number of MIMO layers receives data, which is not limited in this embodiment of the present application. For other descriptions about how the terminal device receives data, please refer to the following embodiments, and details are not repeated here.
  • the network device uses DCI signaling to indicate the maximum number of MIMO layers to the terminal device, and realizes dynamic adjustment of the maximum number of MIMO layers during data transmission.
  • the network device adjusts the number of radio frequency channels based on the load condition and then adjusts the maximum number of MIMO layers, it sends DCI signaling to the terminal device to indicate the adjusted maximum number of MIMO layers.
  • the energy saving of the network equipment is more fully considered, and on the other hand, the energy saving of the network equipment is consistent with the energy saving of the terminal equipment.
  • the terminal device may receive data based on the maximum number of MIMO layers indicated by the first indication information after a period of time.
  • the method further includes: after the first time period, the terminal device receives data based on the maximum number of MIMO layers indicated by the first indication information. That is to say, in this example, a validation condition is set for the maximum number of MIMO layers indicated by the first indication information, and the validation condition includes the elapse of the first time period. When the validation condition is satisfied, for example, after the first time period has elapsed, the terminal device receives data based on the maximum number of MIMO layers indicated by the first indication information.
  • the embodiment of the present application does not limit the starting time of the first time period.
  • the starting moment of the first time period includes any of the following: the moment of starting to receive the first DCI, the moment of ending receiving the first DCI, the moment of starting receiving the last symbol occupied by the PDCCH carrying the first DCI, The end reception time of the last symbol occupied by the PDCCH carrying the first DCI, the start reception time of the first symbol occupied by the PDCCH carrying the first DCI, the end reception time of the first symbol occupied by the PDCCH carrying the first DCI, The start time of the time slot where the first DCI is located, and the end time of the time slot where the first DCI is located.
  • the starting moment of the first time period is predefined by the communication protocol, or, the starting moment of the first time period is configured by the network device.
  • the embodiment of the present application does not limit the length of the first time period.
  • the duration of the first time period is predefined by a communication protocol; or, the duration of the first time period is configured by a network device.
  • the duration of the first time period is less than or equal to the first duration, and the first duration is predefined by a communication protocol, or the first duration is configured by a network device. That is to say, the communication protocol can be predefined or the network device can configure the maximum duration of the first time period, and the terminal device can flexibly take effect of the maximum number of MIMO layers indicated by the first indication information based on its own implementation.
  • the terminal device may receive data based on the maximum number of MIMO layers indicated by the first indication information.
  • the terminal device may receive data based on the maximum number of MIMO layers indicated by the first indication information, or ignore the maximum number of MIMO layers indicated by the first indication information. MIMO layers, while still receiving data based on the original maximum MIMO layers.
  • the terminal device further includes: when the maximum number of MIMO layers indicated by the first indication information is smaller than the maximum number of MIMO layers indicated by the RRC signaling, the terminal device, based on the first indication The maximum number of MIMO layers indicated by the information receives data; when the maximum number of MIMO layers indicated by the first indication information is greater than the maximum number of MIMO layers indicated by RRC signaling, the terminal device, based on the maximum number of MIMO layers indicated by RRC signaling, Layers receive data.
  • the terminal device may receive Data, the maximum number of MIMO layers indicated by the first indication information replaces the maximum number of MIMO layers indicated by the RRC signaling; if the maximum number of MIMO layers indicated by the first indication information is greater than the maximum number of MIMO layers indicated by the RRC signaling, then The terminal device still receives data according to the maximum number of MIMO layers indicated by the RRC signaling, and the maximum number of MIMO layers indicated by the first indication information is ignored.
  • the terminal device may receive data based on the maximum number of MIMO layers indicated by the first indication information after the first time period.
  • the terminal device may receive data based on the maximum number of MIMO layers indicated by the first indication information after the first time period.
  • the operation performed by the terminal device is not limited.
  • the terminal further includes: when the maximum number of MIMO layers indicated by the first indication information is equal to the maximum number of MIMO layers indicated by the RRC signaling, the terminal device, based on the first indication information, The maximum number of MIMO layers to receive data.
  • the terminal device receives data based on the maximum number of MIMO layers indicated by the RRC signaling when the maximum number of MIMO layers indicated by the first indication information is equal to the maximum number of MIMO layers indicated by the RRC signaling.
  • the terminal device when the maximum number of MIMO layers indicated by the first indication information is less than or equal to the maximum number of MIMO layers indicated by the RRC signaling, the terminal device receives data based on the maximum number of MIMO layers indicated by the first indication information ; When the maximum number of MIMO layers indicated by the first indication information is greater than the maximum number of MIMO layers indicated by the RRC signaling, the terminal device receives data based on the maximum number of MIMO layers indicated by the RRC signaling.
  • the terminal device when the maximum number of MIMO layers indicated by the first indication information is smaller than the maximum number of MIMO layers indicated by the RRC signaling, the terminal device receives data based on the maximum number of MIMO layers indicated by the first indication information; the terminal When the maximum number of MIMO layers indicated by the first indication information is greater than or equal to the maximum number of MIMO layers indicated by the RRC signaling, the device receives data based on the maximum number of MIMO layers indicated by the RRC signaling.
  • the technical solution provided by the embodiment of the present application sets the valid condition of the first period of time for the validation of the maximum number of MIMO layers indicated by the DCI signaling, so that the terminal device officially Data is received based on the maximum number of MIMO layers indicated by the DCI signaling, and a buffer time is reserved for the terminal device to adjust the maximum number of MIMO layers.
  • the terminal device when the maximum number of MIMO layers indicated by the DCI signaling is greater than the maximum number of MIMO layers indicated by the RRC signaling, the terminal device is still based on the maximum MIMO layer indicated by the RRC signaling. Layers receive data, helping to ensure energy savings in end devices.
  • the technical solutions of the present application are described from the perspective of interaction between the terminal device and the network device.
  • the above-mentioned steps performed by the terminal device can be independently implemented as an information transmission method on the terminal equipment side; the above-mentioned steps performed by the relevant network equipment can be independently implemented as an information transmission method on the network equipment side.
  • FIG. 3 shows a block diagram of an information transmission device provided by an embodiment of the present application.
  • the device has the function of realizing the above example of the information transmission method, and the function may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the apparatus may be the terminal device described above, or may be set in the terminal device. As shown in FIG. 3 , the apparatus 300 may include: an information receiving module 310 .
  • the information receiving module 310 is configured to receive a first DCI, where the first DCI includes first indication information, and the first indication information is used to indicate the maximum number of MIMO layers based on which the terminal device receives data.
  • the first DCI is DCI transmitted in a common search space.
  • the first DCI is a defined DCI; or, the first DCI is a newly defined DCI other than the defined DCI.
  • the defined DCIs include: DCI 2_0, DCI 2_6.
  • the number of bits occupied by the first indication information in the first DCI is n, where n is a positive integer.
  • the n is equal to 1; or, the n is equal to 2; or, the n is equal to 3.
  • the maximum number of MIMO layers indicated by the first indication information is m+1, and m is a natural number.
  • the apparatus 300 further includes: a data receiving module 320, configured to receive data based on the maximum number of MIMO layers indicated by the first indication information after a first time period .
  • the starting moment of the first time period includes any one of the following: the moment when the first DCI starts to be received, the moment when the first DCI is finished receiving, the physical downlink carrying the first DCI
  • the duration of the first time period is predefined by a communication protocol; or, the duration of the first time period is configured by the network device.
  • the apparatus 300 further includes: a data receiving module 320, configured to determine that the maximum number of MIMO layers indicated by the first indication information is less than the maximum number of MIMO layers indicated by the RRC signaling. In the case of the maximum number of MIMO layers, data is received based on the maximum number of MIMO layers indicated by the first indication information.
  • the apparatus 300 further includes: a data receiving module 320, configured to, when the maximum number of MIMO layers indicated by the first indication information is greater than the maximum number of MIMO layers indicated by the RRC signaling In the case of the maximum number of MIMO layers, data is received based on the maximum number of MIMO layers indicated by the RRC signaling.
  • a data receiving module 320 configured to, when the maximum number of MIMO layers indicated by the first indication information is greater than the maximum number of MIMO layers indicated by the RRC signaling In the case of the maximum number of MIMO layers, data is received based on the maximum number of MIMO layers indicated by the RRC signaling.
  • the apparatus 300 further includes a data receiving module 320 configured to: the maximum number of MIMO layers indicated by the first indication information is equal to the number indicated by the RRC signaling. In the case of the maximum number of MIMO layers, data is received based on the maximum number of MIMO layers indicated by the first indication information; or, the maximum number of MIMO layers indicated by the first indication information is equal to the RRC signal In the case of the maximum number of MIMO layers indicated by the command, receive data based on the maximum number of MIMO layers indicated by the RRC signaling.
  • the network device uses DCI signaling to indicate the maximum number of MIMO layers to the terminal device, and realizes dynamic adjustment of the maximum number of MIMO layers during data transmission.
  • the network device adjusts the number of radio frequency channels based on the load condition and then adjusts the maximum number of MIMO layers, it sends DCI signaling to the terminal device to indicate the adjusted maximum number of MIMO layers.
  • the energy saving of the network equipment is more fully considered, and on the other hand, the energy saving of the network equipment is consistent with the energy saving of the terminal equipment.
  • FIG. 5 shows a block diagram of an information transmission device provided by an embodiment of the present application.
  • the device has the function of realizing the above example of the information transmission method, and the function may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the apparatus may be the above-mentioned network device, or may be set in the network device.
  • the device 500 may include: an information sending module 510.
  • the information sending module 510 is configured to send the first DCI, where the first DCI includes first indication information, and the first indication information is used to indicate the maximum number of MIMO layers on which the terminal device receives data.
  • the first DCI is DCI transmitted in a common search space.
  • the first DCI is a defined DCI; or, the first DCI is a newly defined DCI other than the defined DCI.
  • the defined DCIs include: DCI 2_0, DCI 2_6.
  • the number of bits occupied by the first indication information in the first DCI is n, where n is a positive integer.
  • the n is equal to 1; or, the n is equal to 2; or, the n is equal to 3.
  • the maximum number of MIMO layers indicated by the first indication information is m+1, and m is a natural number.
  • the network device uses DCI signaling to indicate the maximum number of MIMO layers to the terminal device, and realizes dynamic adjustment of the maximum number of MIMO layers during data transmission.
  • the network device adjusts the number of radio frequency channels based on the load condition and then adjusts the maximum number of MIMO layers, it sends DCI signaling to the terminal device to indicate the adjusted maximum number of MIMO layers.
  • the energy saving of the network equipment is more fully considered, and on the other hand, the energy saving of the network equipment is consistent with the energy saving of the terminal equipment.
  • the device provided by the above embodiment realizes its functions, it only uses the division of the above-mentioned functional modules as an example for illustration. In practical applications, the above-mentioned function allocation can be completed by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG. 6 shows a schematic structural diagram of a terminal device 60 provided by an embodiment of the present application.
  • the terminal device may be used to implement the above-mentioned information transmission method on the terminal device side.
  • the terminal device 60 may include: a processor 61, and a transceiver 62 connected to the processor 61.
  • the processor 61 includes one or more processing cores, and the processor 61 executes various functional applications and information processing by running software programs and modules.
  • Transceiver 62 includes a receiver and a transmitter.
  • the transceiver 62 is a communication chip.
  • the terminal device 60 further includes: a memory and a bus.
  • the memory is connected to the processor through a bus.
  • the memory may be used to store a computer program, and the processor is used to execute the computer program, so as to implement various steps performed by the terminal device in the foregoing method embodiments.
  • the memory can be implemented by any type of volatile or non-volatile storage device or their combination, and the volatile or non-volatile storage device includes but is not limited to: RAM (Random-Access Memory, Random Access Memory) and ROM (Read-Only Memory, read-only memory), EPROM (Erasable Programmable Read-Only Memory, erasable programmable read-only memory), EEPROM (Electrically Erasable Programmable Read-Only Memory, electrically erasable programmable read-only memory ), flash memory or other solid-state storage technology, CD-ROM (Compact Disc Read-Only Memory, CD-ROM), DVD (Digital Video Disc, high-density digital video disc) or other optical storage, tape cartridges, tapes, disk storage or other magnetic storage devices.
  • RAM Random-Access Memory
  • ROM Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory, erasable programmable read-only memory
  • EEPROM Electrically Erasable Programmable Read-Only
  • the transceiver is configured to receive first downlink control information DCI, where the first DCI includes first indication information, and the first indication information is used to indicate the maximum multiple-input multiple Output the number of MIMO layers.
  • the first DCI is DCI transmitted in a common search space.
  • the first DCI is a defined DCI; or, the first DCI is a newly defined DCI other than the defined DCI.
  • the defined DCIs include: DCI 2_0, DCI 2_6.
  • the number of bits occupied by the first indication information in the first DCI is n, where n is a positive integer.
  • the n is equal to 1; or, the n is equal to 2; or, the n is equal to 3.
  • the maximum number of MIMO layers indicated by the first indication information is m+1, and m is a natural number.
  • the transceiver is further configured to: receive data based on the maximum number of MIMO layers indicated by the first indication information after a first time period.
  • the starting moment of the first time period includes any one of the following: the moment when the first DCI starts to be received, the moment when the first DCI is finished receiving, the physical downlink carrying the first DCI
  • the duration of the first time period is predefined by a communication protocol; or, the duration of the first time period is configured by the network device.
  • the transceiver is further configured to: when the maximum number of MIMO layers indicated by the first indication information is smaller than the maximum number of MIMO layers indicated by radio resource control RRC signaling and receiving data based on the maximum number of MIMO layers indicated by the first indication information.
  • the transceiver is further configured to: when the maximum number of MIMO layers indicated by the first indication information is greater than the maximum number of MIMO layers indicated by RRC signaling, based on the Receive data according to the maximum number of MIMO layers indicated by the RRC signaling.
  • the transceiver is further configured to: when the maximum number of MIMO layers indicated by the first indication information is equal to the maximum number of MIMO layers indicated by RRC signaling, based on the The maximum number of MIMO layers indicated by the first indication information receives data; or, the maximum number of MIMO layers indicated by the first indication information is equal to the maximum number of MIMO layers indicated by RRC signaling In this case, data is received based on the maximum number of MIMO layers indicated by the RRC signaling.
  • FIG. 7 shows a schematic structural diagram of a network device 70 provided by an embodiment of the present application.
  • the network device may be used to implement the above information transmission method on the network device side.
  • the network device 70 may include: a processor 71, and a transceiver 72 connected to the processor 71.
  • the processor 71 includes one or more processing cores, and the processor 71 executes various functional applications and information processing by running software programs and modules.
  • Transceiver 72 includes a receiver and a transmitter.
  • the transceiver 72 is a communication chip.
  • the network device 70 further includes: a memory and a bus.
  • the memory is connected to the processor through a bus.
  • the memory may be used to store a computer program, and the processor is used to execute the computer program, so as to implement various steps performed by the network device in the foregoing method embodiments.
  • the memory can be implemented by any type of volatile or non-volatile storage device or their combination, and the volatile or non-volatile storage device includes but is not limited to: RAM (Random-Access Memory, Random Access Memory) and ROM (Read-Only Memory, read-only memory), EPROM (Erasable Programmable Read-Only Memory, erasable programmable read-only memory), EEPROM (Electrically Erasable Programmable Read-Only Memory, electrically erasable programmable read-only memory ), flash memory or other solid-state storage technology, CD-ROM (Compact Disc Read-Only Memory, CD-ROM), DVD (Digital Video Disc, high-density digital video disc) or other optical storage, tape cartridges, tapes, disk storage or other magnetic storage devices.
  • RAM Random-Access Memory
  • ROM Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory, erasable programmable read-only memory
  • EEPROM Electrically Erasable Programmable Read-Only
  • the transceiver is configured to send first downlink control information DCI, where the first DCI includes first indication information, and the first indication information is used to indicate the maximum multiple-input multiple-output MIMO based on which the terminal device receives data layers.
  • the first DCI is DCI transmitted in a common search space.
  • the first DCI is a defined DCI; or, the first DCI is a newly defined DCI other than the defined DCI.
  • the defined DCIs include: DCI 2_0, DCI 2_6.
  • the number of bits occupied by the first indication information in the first DCI is n, where n is a positive integer.
  • the n is equal to 1; or, the n is equal to 2; or, the n is equal to 3.
  • the maximum number of MIMO layers indicated by the first indication information is m+1, and m is a natural number.
  • the embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by the processor of the terminal device, so as to implement the above-mentioned information transmission method on the terminal device side .
  • An embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a network device, so as to implement the above-mentioned information transmission method on the side of the network device .
  • the embodiment of the present application also provides a chip, the chip includes a programmable logic circuit and/or program instructions, and when the chip is run on the terminal device, it is used to implement the above information transmission method on the terminal device side.
  • the embodiment of the present application also provides a chip, the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on the network device, it is used to implement the information transmission method on the network device side as described above.
  • the embodiment of the present application also provides a computer program product, which is used to implement the information transmission method on the terminal device side when the computer program product is run on the terminal device.
  • the embodiment of the present application also provides a computer program product, which is used to implement the above information transmission method on the network device side when the computer program product runs on the network device.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息传输方法、装置、设备及存储介质,涉及通信技术领域。该方法包括:网络设备向终端设备发送第一DCI,第一DCI包括第一指示信息,第一指示信息用于指示终端设备接收数据时所基于的最大MIMO层数。网络设备在基于负载情况调整了射频通道数目进而调整了最大MIMO层数的情况下,向终端设备发送DCI信令以指示调整后的最大MIMO层数,一方面更加充分地考虑到了网络设备的节能,另一方面实现了网络设备的节能与终端设备的节能保持一致。

Description

信息传输方法、装置、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,特别涉及一种信息传输方法、装置、设备及存储介质。
背景技术
随着通信技术的发展,通信系统支持更大带宽、更高速率、更低时延,如NR(New Radio,新空口)系统支持在数百MHz(Mega Hertz,兆赫)甚至数GHz(Giga Hertz,吉赫)的带宽上,以数Gbps(Giga Bit Per Second,千兆比特每秒)甚至数十Gbps的速率传输。
然而,更大带宽和更高速率对于通信系统中设备也会带来更多挑战。对于通信系统中的终端设备,更大带宽会导致终端设备的射频通路中的AD/DA(Analog to Digital Convert,模拟数字转换)、PA(Power Amplifier,功率放大器)、滤波器等射频器件的功耗急剧上升;更高速率要求终端设备中用于基带处理的器件(如滤波器、DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编辑逻辑门阵列)等)高速运转,也会导致功耗的增加。与终端设备类似,对于网络设备,有统计数据表明,NR系统中的网络设备的功耗,相对于LTE(Long Term Evolution,长期演进)系统增加了三至四倍。
因此,如何降低通信系统中设备的功耗,还需进一步地讨论和研究。
发明内容
本申请实施例提供了一种信息传输方法、装置、设备及存储介质。所述技术方案如下:
一方面,本申请实施例提供了一种信息传输方法,应用于终端设备中,所述方法包括:
接收第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示所述终端设备接收数据时所基于的最大多输入多输出MIMO层数。
另一方面,本申请实施例提供了一种信息传输方法,应用于网络设备中,所述方法包括:
发送第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示终端设备接收数据时所基于的最大多输入多输出MIMO层数。
再一方面,本申请实施例提供了一种信息传输装置,设置在终端设备中,所述装置包括:
信息接收模块,用于接收第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示所述终端设备接收数据时所基于的最大多输入多输出MIMO层数。
又一方面,本申请实施例提供了一种信息传输装置,设置在网络设备中,所述装置包括:
信息发送模块,用于发送第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示终端设备接收数据时所基于的最大多输入多输出MIMO层数。
还一方面,本申请实施例提供了一种终端设备,所述终端设备包括:处理器,以及与所述处理器相连的收发器;其中:
所述收发器,用于接收第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示所述终端设备接收数据时所基于的最大多输入多输出MIMO层数。
还一方面,本申请实施例提供了一种网络设备,所述网络设备包括:处理器,以及与所述处理器相连的收发器;其中:
所述收发器,用于发送第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示终端设备接收数据时所基于的最大多输入多输出MIMO层数。
还一方面,本申请实施例提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被终端设备的处理器执行,以实现如上述终端设备侧的信息传输方法。
还一方面,本申请实施例提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被网络设备的处理器执行,以实现如上述网络设备侧的信息传输方法。
还一方面,本申请实施例提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在终端设备上运行时,用于实现如上述终端设备侧的信息传输方法。
还一方面,本申请实施例提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在网络设备上运行时,用于实现如上述网络设备侧的信息传输方法。
还一方面,本申请实施例提供了一种计算机程序产品,当所述计算机程序产品在终端设备上运行时,用于实现如上述终端设备侧的信息传输方法。
还一方面,本申请实施例提供了一种计算机程序产品,当所述计算机程序产品在网络设备上运行时,用于实现如上述网络设备侧的信息传输方法。
本申请实施例提供的技术方案可以包括如下有益效果:
通过网络设备使用DCI信令向终端设备指示最大MIMO层数,实现了在数据传输过程中动态调整最大MIMO层数。通过本申请实施例提供的技术方案,网络设备在基于负载情况调整了射频通道数目进而调整了最大MIMO层数的情况下,向终端设备发送DCI信令以指示调整后的最大MIMO层数,一方面更加充分地考虑到了网络设备的节能,另一方面实现了网络设备的节能与终端设备的节能保持一致。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的通信系统的系统架构的示意图;
图2是本申请一个实施例提供的信息传输方法的流程图;
图3是本申请一个实施例提供的信息传输装置的框图;
图4是本申请另一个实施例提供的信息传输装置的框图;
图5是本申请再一个实施例提供的信息传输装置的框图;
图6是本申请一个实施例提供的终端设备的结构示意图;
图7是本申请一个实施例提供的网络设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参考图1,其示出了本申请一个实施例提供的通信系统的系统架构的示意图。该系统架构可以包括:终端设备10和网络设备20。
终端设备10的数量通常为多个,每一个网络设备20所管理的小区内可以分布一个或多个终端设备10。终端设备10可以包括各种具有无线通信功能的手持设备、车载设备、可穿 戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端设备。
网络设备20是一种部署在接入网中用以为终端设备10提供无线通信功能的装置。网络设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备网络设备功能的设备的名称可能会有所不同,例如,在NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“网络设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端设备10提供无线通信功能的装置统称为网络设备。
本公开实施例中的“NR系统”也可以称为5G(5th Generation Mobile Communication Technology,第五代移动通信技术)系统或者5G NR系统,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于NR系统,也可以适用于NR系统后续演进的通信系统,例如6G(6-Generation,第6代)系统等。
随着通信技术的发展,通信系统支持更大带宽、更高速率、更低时延,如NR系统支持在数百MHz甚至数GHz的带宽上,以数Gbps甚至数十Gbps的速率传输。更大带宽、更高速率、更低时延的通信系统可以支持实时高清视频直播、高清电影下载、AR(Augmented Reality,增强现实)、VR(Virtual Reality,虚拟现实)等业务,预期带来更好的用户体验。
然而,更大带宽和更高速率对于通信系统中设备也会带来更多挑战。对于通信系统中的终端设备,更大带宽会导致终端设备的射频通路中的AD/DA、PA、滤波器等射频器件的功耗急剧上升;更高速率要求终端设备中用于基带处理的器件(如滤波器、DSP、FPGA等)高速运转,也会导致功耗的增加。与终端设备类似,对于网络设备,有统计数据表明,NR系统中的网络设备的功耗,相对于LTE系统增加了三至四倍,在运营商的开销中占比越来越大。
为降低通信系统中设备的功耗,MIMO(Multiple-Input Multiple-Output,多输入多输出)技术受到越来越多的关注和研究。MIMO技术是指在发射端和接收端分别使用多个发射天线和接收天线,使得通信信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。MIMO技术能够充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,成倍地提高系统信道容量。
在一个示例中,网络设备通过RRC(Radio Resource Control,无线资源控制)信令为终端设备配置接收PDSCH(Physical Downlink Shared Channel,物理下行共享信道)时所基于的最大MIMO层数(maxMIMO-Layers)。可选地,网络设备通过RRC信令为终端设备配置的最大MIMO层数,用于指示一个服务小区(one serving cell)的所有BWP(Bandwidth Part,带宽部分)上用于接收PDSCH的MIMO层的最大数量,也就是说,网络设备通过RRC信令为终端设备配置的最大MIMO层数对一个服务小区的所有BWP是通用的。
为进一步实现设备节能,可选地,网络设备通过RRC信令为终端设备配置的最大MIMO层数,可以用于指示每个BWP上用于接收PDSCH的最大MIMO层数,也就是说,终端设备在不同的BWP上接收PDSCH时,可以使用不同的最大MIMO层数。这样更有助于终端设备的节能,例如,在业务量较小的情况下,网络设备可以将终端设备的BWP,切换为对应较小的最大MIMO层数的BWP,从而,终端设备仅需开启较少数量的射频通道进行下行数据的接收,从而实现终端设备的节能;在业务量较大的情况下,网络设备可以将终端设备的BWP,切换为对应较大的最大MIMO层数的BWP,从而实现快速地进行数据传输。
然而,通过RRC信令为终端设备配置最大MIMO层数的技术方案,还没有充分考虑到网络设备的节能。例如,在网络设备的负荷较低的情况下,网络设备可以关闭部分射频通道以实现节能,但由于网络设备关闭了部分射频通道,可支持传输的端口数也就会减少,进而对应的可以传输的MIMO层数也就会减少,此时,如果终端设备仍然按照网络设备关闭部分射频通道之前的最大MIMO层数接收PDSCH,就会浪费终端设备的功耗。
基于此,本申请实施例提供了一种信息传输方法,可用于网络设备向终端设备动态指示 最大MIMO层数。下面,结合几个实施例对本申请的技术方案进行介绍说明。
请参考图2,其示出了本申请一个实施例提供的信息传输方法的流程图,该方法可应用于图1所示的系统架构中,该方法可以包括如下步骤中的至少部分步骤。
步骤210,网络设备向终端设备发送第一DCI,第一DCI包括第一指示信息,第一指示信息用于指示终端设备接收数据时所基于的最大MIMO层数。
本申请实施例中,已经建立了通信连接的网络设备与终端设备之间,基于MIMO技术进行信号的传输。为实现向终端设备动态指示最大MIMO层数,网络设备可以向终端设备发送第一DCI(Downlink Control Information,下行控制信息),该第一DCI中携带第一指示信息,该第一指示信息用于指示终端设备接收数据时所基于的最大MIMO层数。为了提升信息传输效率、避免网络设备逐个通知终端设备最大MIMO层数,可选地,第一DCI是公共搜索空间中传输的DCI,或者说,第一DCI是公共DCI。其中,公共搜索空间包括公共PDCCH(Physical Downlink Control Channel,物理下行控制信道)搜索空间。
本申请实施例对第一DCI的实现方式不作限定,在一个示例中,第一DCI是已定义的DCI,也就是说,第一DCI复用已定义的DCI;或者,第一DCI是已定义的DCI之外新定义的DCI。可选地,已定义的DCI包括:DCI 2_0(或者称为格式为2_0的DCI)、DCI 2_6(或称为格式为2_6的DCI),当然,已定义的DCI还可以包括DCI 2_1(或称为格式为2_1的DCI)、DCI 2_2(或称为格式为2_2的DCI)、DCI 2_3(或称为格式为2_3的DCI)、DCI 2_4(或称为格式为2_4的DCI)、DCI 2_5(或称为格式为2_5的DCI)等等,本申请实施例对此不作限定。
第一DCI中包括用于指示最大MIMO层数的第一指示信息,本申请实施例对第一指示信息在第一DCI中占用的比特数不作限定。在一个示例中,第一指示信息在第一DCI中占用的比特数为n,n为正整数。可选地,n等于1;或者,n等于2;或者,n等于3;或者,n等于4。在第一DCI是已定义的DCI(第一DCI复用已定义的DCI)的情况下,可以在已定义的DCI中增加n个比特来承载第一指示信息,这样,已定义的DCI就需要在原有的比特数的基础上增加n个比特;或者,可以复用已定义的DCI中的保留比特来承载第一指示信息,也就是说,从已定义的DCI中的保留比特中划分出n个比特来承载第一指示信息,这样,已定义的DCI占用的比特数就可以保持不变。
由于第一指示信息用于指示终端设备接收数据时所基于的最大MIMO层数,从而可以设置第一指示信息的取值与最大MIMO层数之间的对应关系,以使得终端设备在获取第一指示信息后,基于第一指示信息的取值即可明确最大MIMO层数。其中,第一指示信息的取值与最大MIMO层数之间的对应关系,可以是通信协议预定义的,也可以是网络设备配置的。在一个示例中,第一指示信息的取值与最大MIMO层数之间是多对一的关系,也即,第一指示信息的多种取值情况可以对应于最大MIMO层数的一种可能情况;在另一个示例中,第一指示信息的取值与最大MIMO的层数之间是一对一的关系,也即,第一指示信息的一种取值情况对应于最大MIMO层数的一种可能情况,且第一指示信息的不同取值情况对应于最大MIMO层数的不同可能情况。
以第一指示信息的取值与最大MIMO层数之间是一对一的关系为例,可选地,在第一指示信息的取值为m的情况下,第一指示信息所指示的最大MIMO层数为m+1,m为自然数。例如,在第一指示信息的取值为1的情况下,其所指示的最大MIMO层数为2;在第一指示信息的取值为3的情况下,其所指示的最大MIMO层数为4。当然,第一指示信息的取值与最大MIMO层数之间的对应关系也可以任意设置,本申请实施例对此不作限定,例如,在第一指示信息的取值为1的情况下,其所指示的最大MIMO层数为8;在第一指示信息的取值为3的情况下,其所指示的最大MIMO层数为2。
下面,以一个具体的示例介绍说明第一指示信息如何指示最大MIMO层数。
示例性地,第一指示信息在第一DCI中占用的比特数为3,这样,第一指示信息的可能取值情况就有8种,从而第一指示信息就可以最多指示8种可能的最大MIMO层数。可选地,在第一指示信息为“000”的情况下,第一指示信息的取值为0,其所指示的最大MIMO层数为1;在第一指示信息为“001”的情况下,第一指示信息的取值为1,其所指示的最大MIMO层数为2;在第一指示信息为“010”的情况下,第一指示信息的取值为2,其所指示的最大MIMO层数为3;在第一指示信息为“011”的情况下,第一指示信息的取值为3,其所指示的最大MIMO层数为4;在第一指示信息为“100”的情况下,第一指示信息的取值为4,其所指示的最大MIMO层数为5;在第一指示信息为“101”的情况下,第一指示信息的取值为5,其所指示的最大MIMO层数为6;在第一指示信息为“110”的情况下,第一指示信息的取值为6,其所指示的最大MIMO层数为7;在第一指示信息为“111”的情况下,第一指示信息的取值为7,其所指示的最大MIMO层数为8。
终端设备在接收到第一指示信息,并获取到第一指示信息所指示的最大MIMO层数之后,可以基于第一指示信息所指示的最大MIMO层数接收数据,也可以忽略第一指示信息所指示的最大MIMO层数而依然基于原来的最大MIMO层数接收数据,本申请实施例对此不作限定。在终端设备基于第一指示信息所指示的最大MIMO层数接收数据的情况下,可以立即基于第一指示信息所指示的最大MIMO层数接收数据,也可以在经过一段时间后基于第一指示信息所指示的最大MIMO层数接收数据,本申请实施例对此也不作限定。有关终端设备如何接收数据的其它介绍说明,请参见下述实施例,此处不多赘述。
综上所述,本申请实施例提供的技术方案,通过网络设备使用DCI信令向终端设备指示最大MIMO层数,实现了在数据传输过程中动态调整最大MIMO层数。通过本申请实施例提供的技术方案,网络设备在基于负载情况调整了射频通道数目进而调整了最大MIMO层数的情况下,向终端设备发送DCI信令以指示调整后的最大MIMO层数,一方面更加充分地考虑到了网络设备的节能,另一方面实现了网络设备的节能与终端设备的节能保持一致。
由上述实施例可知,在终端设备基于第一指示信息所指示的最大MIMO层数接收数据的情况下,可以在经过一段时间后基于第一指示信息所指示的最大MIMO层数接收数据。
基于此,在一个示例中,上述步骤210之后,还包括:在第一时间段之后,终端设备基于第一指示信息所指示的最大MIMO层数接收数据。也就是说,在本示例中,为第一指示信息所指示的最大MIMO层数设置了生效条件,该生效条件包括经过第一时间段。在满足生效条件的情况下,如在经过第一时间段之后,终端设备基于第一指示信息所指示的最大MIMO层数接收数据。
本申请实施例对第一时间段的起始时刻不作限定。可选地,第一时间段的起始时刻包括以下任意一项:开始接收第一DCI的时刻、结束接收第一DCI的时刻、承载第一DCI的PDCCH占用的最后一个符号的开始接收时刻、承载第一DCI的PDCCH占用的最后一个符号的结束接收时刻、承载第一DCI的PDCCH占用的第一个符号的开始接收时刻、承载第一DCI的PDCCH占用的第一个符号的结束接收时刻、第一DCI所在时隙的起始时刻、第一DCI所在时隙的结束时刻。可选地,第一时间段的起始时刻由通信协议预定义,或者,第一时间段的起始时刻由网络设备配置。
本申请实施例对第一时间段的时长也不作限定。在一个示例中,第一时间段的时长由通信协议预定义;或者,第一时间段的时长由网络设备配置。在另一个示例中,第一时间段的时长小于或等于第一时长,该第一时长由通信协议预定义,或者,该第一时长由网络设备配置。也就是说,通信协议可以预定义或者网络设备可以配置第一时间段的最长时长,终端设备基于自身的实现,可以灵活生效第一指示信息所指示的最大MIMO层数。
由上述实施例可知,终端设备在获取到第一指示信息所指示的最大MIMO层数之后,可以基于第一指示信息所指示的最大MIMO层数接收数据。而如果终端设备此前从RRC信令 中已经获取到相应的最大MIMO层数,则终端设备可以基于第一指示信息所指示的最大MIMO层数接收数据,也可以忽略第一指示信息所指示的最大MIMO层数,而依然基于原来的最大MIMO层数接收数据。
基于此,在一个示例中,上述步骤210之后,还包括:终端设备在第一指示信息所指示的最大MIMO层数,小于RRC信令所指示的最大MIMO层数的情况下,基于第一指示信息所指示的最大MIMO层数接收数据;终端设备在第一指示信息所指示的最大MIMO层数,大于RRC信令所指示的最大MIMO层数的情况下,基于RRC信令所指示的最大MIMO层数接收数据。
也就是说,在本示例中,若第一指示信息所指示的最大MIMO层数小于RRC信令所指示的最大MIMO层数,则终端设备可以基于第一指示信息所指示的最大MIMO层数接收数据,第一指示信息所指示的最大MIMO层数取代RRC信令所指示的最大MIMO层数;若第一指示信息所指示的最大MIMO层数大于RRC信令所指示的最大MIMO层数,则终端设备依然按照RRC信令所指示的最大MIMO层数接收数据,第一指示信息所指示的最大MIMO层数被忽略。
可选地,在终端设备基于第一指示信息所指示的最大MIMO层数接收数据的情况下,终端设备可以在第一时间段之后,基于第一指示信息所指示的最大MIMO层数接收数据。有关第一时间段的介绍说明,请参见上述实施例,此处不多赘述。
本示例针对第一指示信息所指示的最大MIMO层数等于RRC信令所指示的最大MIMO层数时,终端设备所执行的操作不作限定。在一个示例中,上述步骤210之后,还包括:终端设备在第一指示信息所指示的最大MIMO层数,等于RRC信令所指示的最大MIMO层数的情况下,基于第一指示信息所指示的最大MIMO层数接收数据。在另一个示例中,终端设备在第一指示信息所指示的最大MIMO层数,等于RRC信令所指示的最大MIMO层数的情况下,基于RRC信令所指示的最大MIMO层数接收数据。
示例性地,终端设备在第一指示信息所指示的最大MIMO层数,小于或等于RRC信令所指示的最大MIMO层数的情况下,基于第一指示信息所指示的最大MIMO层数接收数据;终端设备在第一指示信息所指示的最大MIMO层数,大于RRC信令所指示的最大MIMO层数的情况下,基于RRC信令所指示的最大MIMO层数接收数据。
示例性地,终端设备在第一指示信息所指示的最大MIMO层数,小于RRC信令所指示的最大MIMO层数的情况下,基于第一指示信息所指示的最大MIMO层数接收数据;终端设备在第一指示信息所指示的最大MIMO层数,大于或等于RRC信令所指示的最大MIMO层数的情况下,基于RRC信令所指示的最大MIMO层数接收数据。
综上所述,本申请实施例提供的技术方案,通过为DCI信令所指示的最大MIMO层数的生效,设置了第一时间段这一生效条件,使得终端设备在第一时间段之后正式基于DCI信令所指示的最大MIMO层数接收数据,为终端设备调整最大MIMO层数预留了缓冲时间。并且,本申请实施例提供的技术方案,通过在DCI信令所指示的最大MIMO层数大于RRC信令所指示的最大MIMO层数的情况下,终端设备仍然基于RRC信令所指示的最大MIMO层数接收数据,有助于确保终端设备的节能。
需要说明的一点是,在上述方法实施例中,从终端设备和网络设备之间交互的角度对本申请技术方案进行了介绍说明。上述有关终端设备执行的步骤,可以单独实现成为终端设备侧的信息传输方法;上述有关网络设备执行的步骤,可以单独实现成为网络设备侧的信息传输方法。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图3,其示出了本申请一个实施例提供的信息传输装置的框图。该装置具有实现上述信息传输方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文所述的终端设备,也可以设置在终端设备中。如图3所示,该装置300可以包括:信息接收模块310。
信息接收模块310,用于接收第一DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示所述终端设备接收数据时所基于的最大MIMO层数。
在一个示例中,所述第一DCI是公共搜索空间中传输的DCI。
在一个示例中,所述第一DCI是已定义的DCI;或者,所述第一DCI是已定义的DCI之外新定义的DCI。
在一个示例中,所述已定义的DCI包括:DCI 2_0、DCI 2_6。
在一个示例中,所述第一指示信息在所述第一DCI中占用的比特数为n,所述n为正整数。
在一个示例中,所述n等于1;或者,所述n等于2;或者,所述n等于3。
在一个示例中,在所述第一指示信息的取值为m的情况下,所述第一指示信息所指示的所述最大MIMO层数为m+1,所述m为自然数。
在一个示例中,如图4所示,所述装置300还包括:数据接收模块320,用于在第一时间段之后,基于所述第一指示信息所指示的所述最大MIMO层数接收数据。
在一个示例中,所述第一时间段的起始时刻包括以下任意一项:开始接收所述第一DCI的时刻、结束接收所述第一DCI的时刻、承载所述第一DCI的物理下行控制信道PDCCH占用的最后一个符号的开始接收时刻、承载所述第一DCI的PDCCH占用的最后一个符号的结束接收时刻、承载所述第一DCI的PDCCH占用的第一个符号的开始接收时刻、承载所述第一DCI的PDCCH占用的第一个符号的结束接收时刻、所述第一DCI所在时隙的起始时刻、所述第一DCI所在时隙的结束时刻。
在一个示例中,所述第一时间段的时长由通信协议预定义;或者,所述第一时间段的时长由所述网络设备配置。
在一个示例中,如图4所示,所述装置300还包括:数据接收模块320,用于在所述第一指示信息所指示的所述最大MIMO层数,小于RRC信令所指示的所述最大MIMO层数的情况下,基于所述第一指示信息所指示的所述最大MIMO层数接收数据。
在一个示例中,如图4所示,所述装置300还包括:数据接收模块320,用于在所述第一指示信息所指示的所述最大MIMO层数,大于RRC信令所指示的所述最大MIMO层数的情况下,基于所述RRC信令所指示的所述最大MIMO层数接收数据。
在一个示例中,如图4所示,所述装置300还包括数据接收模块320,用于:在所述第一指示信息所指示的所述最大MIMO层数,等于RRC信令所指示的所述最大MIMO层数的情况下,基于所述第一指示信息所指示的所述最大MIMO层数接收数据;或者,在所述第一指示信息所指示的所述最大MIMO层数,等于RRC信令所指示的所述最大MIMO层数的情况下,基于所述RRC信令所指示的所述最大MIMO层数接收数据。
综上所述,本申请实施例提供的技术方案,通过网络设备使用DCI信令向终端设备指示最大MIMO层数,实现了在数据传输过程中动态调整最大MIMO层数。通过本申请实施例提供的技术方案,网络设备在基于负载情况调整了射频通道数目进而调整了最大MIMO层数的情况下,向终端设备发送DCI信令以指示调整后的最大MIMO层数,一方面更加充分地考虑到了网络设备的节能,另一方面实现了网络设备的节能与终端设备的节能保持一致。
请参考图5,其示出了本申请一个实施例提供的信息传输装置的框图。该装置具有实现上述信息传输方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文所述的网络设备,也可以设置在网络设备中。如图5所示,该装 置500可以包括:信息发送模块510。
信息发送模块510,用于发送第一DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示终端设备接收数据时所基于的最大MIMO层数。
在一个示例中,所述第一DCI是公共搜索空间中传输的DCI。
在一个示例中,所述第一DCI是已定义的DCI;或者,所述第一DCI是已定义的DCI之外新定义的DCI。
在一个示例中,所述已定义的DCI包括:DCI 2_0、DCI 2_6。
在一个示例中,所述第一指示信息在所述第一DCI中占用的比特数为n,所述n为正整数。
在一个示例中,所述n等于1;或者,所述n等于2;或者,所述n等于3。
在一个示例中,在所述第一指示信息的取值为m的情况下,所述第一指示信息所指示的所述最大MIMO层数为m+1,所述m为自然数。
综上所述,本申请实施例提供的技术方案,通过网络设备使用DCI信令向终端设备指示最大MIMO层数,实现了在数据传输过程中动态调整最大MIMO层数。通过本申请实施例提供的技术方案,网络设备在基于负载情况调整了射频通道数目进而调整了最大MIMO层数的情况下,向终端设备发送DCI信令以指示调整后的最大MIMO层数,一方面更加充分地考虑到了网络设备的节能,另一方面实现了网络设备的节能与终端设备的节能保持一致。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图6,其示出了本申请一个实施例提供的终端设备60的结构示意图,例如,该终端设备可以用于执行上述终端设备侧的信息传输方法。具体来讲,该终端设备60可以包括:处理器61,以及与所述处理器61相连的收发器62。
处理器61包括一个或者一个以上处理核心,处理器61通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器62包括接收器和发射器。可选地,收发器62是一块通信芯片。
在一个示例中,终端设备60还包括:存储器和总线。存储器通过总线与处理器相连。存储器可用于存储计算机程序,处理器用于执行该计算机程序,以实现上述方法实施例中的终端设备执行的各个步骤。
此外,存储器可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:RAM(Random-Access Memory,随机存储器)和ROM(Read-Only Memory,只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦写可编程只读存储器)、闪存或其他固态存储其技术、CD-ROM(Compact Disc Read-Only Memory,只读光盘)、DVD(Digital Video Disc,高密度数字视频光盘)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。
所述收发器,用于接收第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示所述终端设备接收数据时所基于的最大多输入多输出MIMO层数。
在一个示例中,所述第一DCI是公共搜索空间中传输的DCI。
在一个示例中,所述第一DCI是已定义的DCI;或者,所述第一DCI是已定义的DCI之外新定义的DCI。
在一个示例中,所述已定义的DCI包括:DCI 2_0、DCI 2_6。
在一个示例中,所述第一指示信息在所述第一DCI中占用的比特数为n,所述n为正整数。
在一个示例中,所述n等于1;或者,所述n等于2;或者,所述n等于3。
在一个示例中,在所述第一指示信息的取值为m的情况下,所述第一指示信息所指示的所述最大MIMO层数为m+1,所述m为自然数。
在一个示例中,所述收发器,还用于:在第一时间段之后,基于所述第一指示信息所指示的所述最大MIMO层数接收数据。
在一个示例中,所述第一时间段的起始时刻包括以下任意一项:开始接收所述第一DCI的时刻、结束接收所述第一DCI的时刻、承载所述第一DCI的物理下行控制信道PDCCH占用的最后一个符号的开始接收时刻、承载所述第一DCI的PDCCH占用的最后一个符号的结束接收时刻、承载所述第一DCI的PDCCH占用的第一个符号的开始接收时刻、承载所述第一DCI的PDCCH占用的第一个符号的结束接收时刻、所述第一DCI所在时隙的起始时刻、所述第一DCI所在时隙的结束时刻。
在一个示例中,所述第一时间段的时长由通信协议预定义;或者,所述第一时间段的时长由所述网络设备配置。
在一个示例中,所述收发器,还用于:在所述第一指示信息所指示的所述最大MIMO层数,小于无线资源控制RRC信令所指示的所述最大MIMO层数的情况下,基于所述第一指示信息所指示的所述最大MIMO层数接收数据。
在一个示例中,所述收发器,还用于:在所述第一指示信息所指示的所述最大MIMO层数,大于RRC信令所指示的所述最大MIMO层数的情况下,基于所述RRC信令所指示的所述最大MIMO层数接收数据。
在一个示例中,所述收发器,还用于:在所述第一指示信息所指示的所述最大MIMO层数,等于RRC信令所指示的所述最大MIMO层数的情况下,基于所述第一指示信息所指示的所述最大MIMO层数接收数据;或者,在所述第一指示信息所指示的所述最大MIMO层数,等于RRC信令所指示的所述最大MIMO层数的情况下,基于所述RRC信令所指示的所述最大MIMO层数接收数据。
请参考图7,其示出了本申请一个实施例提供的网络设备70的结构示意图,例如,该网络设备可以用于执行上述网络设备侧的信息传输方法。具体来讲,该网络设备70可以包括:处理器71,以及与所述处理器71相连的收发器72。
处理器71包括一个或者一个以上处理核心,处理器71通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器72包括接收器和发射器。可选地,收发器72是一块通信芯片。
在一个示例中,网络设备70还包括:存储器和总线。存储器通过总线与处理器相连。存储器可用于存储计算机程序,处理器用于执行该计算机程序,以实现上述方法实施例中的网络设备执行的各个步骤。
此外,存储器可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:RAM(Random-Access Memory,随机存储器)和ROM(Read-Only Memory,只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦写可编程只读存储器)、闪存或其他固态存储其技术、CD-ROM(Compact Disc Read-Only Memory,只读光盘)、DVD(Digital Video Disc,高密度数字视频光盘)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。
所述收发器,用于发送第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述 第一指示信息用于指示终端设备接收数据时所基于的最大多输入多输出MIMO层数。
在一个示例中,所述第一DCI是公共搜索空间中传输的DCI。
在一个示例中,所述第一DCI是已定义的DCI;或者,所述第一DCI是已定义的DCI之外新定义的DCI。
在一个示例中,所述已定义的DCI包括:DCI 2_0、DCI 2_6。
在一个示例中,所述第一指示信息在所述第一DCI中占用的比特数为n,所述n为正整数。
在一个示例中,所述n等于1;或者,所述n等于2;或者,所述n等于3。
在一个示例中,在所述第一指示信息的取值为m的情况下,所述第一指示信息所指示的所述最大MIMO层数为m+1,所述m为自然数。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被终端设备的处理器执行,以实现如上述终端设备侧的信息传输方法。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被网络设备的处理器执行,以实现如上述网络设备侧的信息传输方法。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在终端设备上运行时,用于实现如上述终端设备侧的信息传输方法。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在网络设备上运行时,用于实现如上述网络设备侧的信息传输方法。
本申请实施例还提供了一种计算机程序产品,当所述计算机程序产品在终端设备上运行时,用于实现如上述终端设备侧的信息传输方法。
本申请实施例还提供了一种计算机程序产品,当所述计算机程序产品在网络设备上运行时,用于实现如上述网络设备侧的信息传输方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (48)

  1. 一种信息传输方法,其特征在于,应用于终端设备中,所述方法包括:
    接收第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示所述终端设备接收数据时所基于的最大多输入多输出MIMO层数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一DCI是公共搜索空间中传输的DCI。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一DCI是已定义的DCI;或者,所述第一DCI是已定义的DCI之外新定义的DCI。
  4. 根据权利要求3所述的方法,其特征在于,所述已定义的DCI包括:DCI 2_0、DCI 2_6。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一指示信息在所述第一DCI中占用的比特数为n,所述n为正整数。
  6. 根据权利要求5所述的方法,其特征在于,所述n等于1;或者,所述n等于2;或者,所述n等于3。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,在所述第一指示信息的取值为m的情况下,所述第一指示信息所指示的所述最大MIMO层数为m+1,所述m为自然数。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述接收第一DCI之后,还包括:
    在第一时间段之后,基于所述第一指示信息所指示的所述最大MIMO层数接收数据。
  9. 根据权利要求8所述的方法,其特征在于,所述第一时间段的起始时刻包括以下任意一项:开始接收所述第一DCI的时刻、结束接收所述第一DCI的时刻、承载所述第一DCI的物理下行控制信道PDCCH占用的最后一个符号的开始接收时刻、承载所述第一DCI的PDCCH占用的最后一个符号的结束接收时刻、承载所述第一DCI的PDCCH占用的第一个符号的开始接收时刻、承载所述第一DCI的PDCCH占用的第一个符号的结束接收时刻、所述第一DCI所在时隙的起始时刻、所述第一DCI所在时隙的结束时刻。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一时间段的时长由通信协议预定义;或者,所述第一时间段的时长由所述网络设备配置。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述接收第一DCI之后,还包括:
    在所述第一指示信息所指示的所述最大MIMO层数,小于无线资源控制RRC信令所指示的所述最大MIMO层数的情况下,基于所述第一指示信息所指示的所述最大MIMO层数接收数据。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述接收第一DCI之后,还包括:
    在所述第一指示信息所指示的所述最大MIMO层数,大于RRC信令所指示的所述最大MIMO层数的情况下,基于所述RRC信令所指示的所述最大MIMO层数接收数据。
  13. 根据权利要求1至12任一项所述的方法,其特征在于,所述接收第一DCI之后,还包括:
    在所述第一指示信息所指示的所述最大MIMO层数,等于RRC信令所指示的所述最大MIMO层数的情况下,基于所述第一指示信息所指示的所述最大MIMO层数接收数据;
    或者,
    在所述第一指示信息所指示的所述最大MIMO层数,等于RRC信令所指示的所述最大MIMO层数的情况下,基于所述RRC信令所指示的所述最大MIMO层数接收数据。
  14. 一种信息传输方法,其特征在于,应用于网络设备中,所述方法包括:
    发送第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示终端设备接收数据时所基于的最大多输入多输出MIMO层数。
  15. 根据权利要求14所述的方法,其特征在于,所述第一DCI是公共搜索空间中传输的DCI。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第一DCI是已定义的DCI;或者,所述第一DCI是已定义的DCI之外新定义的DCI。
  17. 根据权利要求16所述的方法,其特征在于,所述已定义的DCI包括:DCI 2_0、DCI2_6。
  18. 根据权利要求14至17任一项所述的方法,其特征在于,所述第一指示信息在所述第一DCI中占用的比特数为n,所述n为正整数。
  19. 根据权利要求18所述的方法,其特征在于,所述n等于1;或者,所述n等于2;或者,所述n等于3。
  20. 根据权利要求14至19任一项所述的方法,其特征在于,在所述第一指示信息的取值为m的情况下,所述第一指示信息所指示的所述最大MIMO层数为m+1,所述m为自然数。
  21. 一种信息传输装置,其特征在于,设置在终端设备中,所述装置包括:
    信息接收模块,用于接收第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示所述终端设备接收数据时所基于的最大多输入多输出MIMO层数。
  22. 根据权利要求21所述的装置,其特征在于,所述第一DCI是公共搜索空间中传输的DCI。
  23. 根据权利要求21或22所述的装置,其特征在于,所述第一DCI是已定义的DCI;或者,所述第一DCI是已定义的DCI之外新定义的DCI。
  24. 根据权利要求23所述的装置,其特征在于,所述已定义的DCI包括:DCI 2_0、DCI2_6。
  25. 根据权利要求21至24任一项所述的装置,其特征在于,所述第一指示信息在所述第一DCI中占用的比特数为n,所述n为正整数。
  26. 根据权利要求25所述的装置,其特征在于,所述n等于1;或者,所述n等于2;或者,所述n等于3。
  27. 根据权利要求21至26任一项所述的装置,其特征在于,在所述第一指示信息的取值为m的情况下,所述第一指示信息所指示的所述最大MIMO层数为m+1,所述m为自然数。
  28. 根据权利要求21至27任一项所述的装置,其特征在于,所述装置还包括:
    数据接收模块,用于在第一时间段之后,基于所述第一指示信息所指示的所述最大MIMO层数接收数据。
  29. 根据权利要求28所述的装置,其特征在于,所述第一时间段的起始时刻包括以下任意一项:开始接收所述第一DCI的时刻、结束接收所述第一DCI的时刻、承载所述第一DCI的物理下行控制信道PDCCH占用的最后一个符号的开始接收时刻、承载所述第一DCI的PDCCH占用的最后一个符号的结束接收时刻、承载所述第一DCI的PDCCH占用的第一个符号的开始接收时刻、承载所述第一DCI的PDCCH占用的第一个符号的结束接收时刻、所述第一DCI所在时隙的起始时刻、所述第一DCI所在时隙的结束时刻。
  30. 根据权利要求28或29所述的装置,其特征在于,所述第一时间段的时长由通信协议预定义;或者,所述第一时间段的时长由所述网络设备配置。
  31. 根据权利要求21至30任一项所述的装置,其特征在于,所述装置还包括:
    数据接收模块,用于在所述第一指示信息所指示的所述最大MIMO层数,小于无线资源控制RRC信令所指示的所述最大MIMO层数的情况下,基于所述第一指示信息所指示的所述最大MIMO层数接收数据。
  32. 根据权利要求21至31任一项所述的装置,其特征在于,所述装置还包括:
    数据接收模块,用于在所述第一指示信息所指示的所述最大MIMO层数,大于RRC信令所指示的所述最大MIMO层数的情况下,基于所述RRC信令所指示的所述最大MIMO层数接收数据。
  33. 根据权利要求21至32任一项所述的装置,其特征在于,所述装置还包括数据接收模块,用于:
    在所述第一指示信息所指示的所述最大MIMO层数,等于RRC信令所指示的所述最大MIMO层数的情况下,基于所述第一指示信息所指示的所述最大MIMO层数接收数据;
    或者,
    在所述第一指示信息所指示的所述最大MIMO层数,等于RRC信令所指示的所述最大MIMO层数的情况下,基于所述RRC信令所指示的所述最大MIMO层数接收数据。
  34. 一种信息传输装置,其特征在于,设置在网络设备中,所述装置包括:
    信息发送模块,用于发送第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示终端设备接收数据时所基于的最大多输入多输出MIMO层数。
  35. 根据权利要求34所述的装置,其特征在于,所述第一DCI是公共搜索空间中传输的DCI。
  36. 根据权利要求34或35所述的装置,其特征在于,所述第一DCI是已定义的DCI;或 者,所述第一DCI是已定义的DCI之外新定义的DCI。
  37. 根据权利要求36所述的装置,其特征在于,所述已定义的DCI包括:DCI 2_0、DCI2_6。
  38. 根据权利要求34至37任一项所述的装置,其特征在于,所述第一指示信息在所述第一DCI中占用的比特数为n,所述n为正整数。
  39. 根据权利要求38所述的装置,其特征在于,所述n等于1;或者,所述n等于2;或者,所述n等于3。
  40. 根据权利要求34至39任一项所述的装置,其特征在于,在所述第一指示信息的取值为m的情况下,所述第一指示信息所指示的所述最大MIMO层数为m+1,所述m为自然数。
  41. 一种终端设备,其特征在于,所述终端设备包括:处理器,以及与所述处理器相连的收发器;其中:
    所述收发器,用于接收第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示所述终端设备接收数据时所基于的最大多输入多输出MIMO层数。
  42. 一种网络设备,其特征在于,所述网络设备包括:处理器,以及与所述处理器相连的收发器;其中:
    所述收发器,用于发送第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示终端设备接收数据时所基于的最大多输入多输出MIMO层数。
  43. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被终端设备的处理器执行,以实现如权利要求1至13任一项所述的信息传输方法。
  44. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被网络设备的处理器执行,以实现如权利要求14至20任一项所述的信息传输方法。
  45. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在终端设备上运行时,用于实现如权利要求1至13任一项所述的信息传输方法。
  46. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在网络设备上运行时,用于实现如权利要求14至20任一项所述的信息传输方法。
  47. 一种计算机程序产品,其特征在于,当所述计算机程序产品在终端设备上运行时,用于实现如权利要求1至13任一项所述的信息传输方法。
  48. 一种计算机程序产品,其特征在于,当所述计算机程序产品在网络设备上运行时,用于实现如权利要求14至20任一项所述的信息传输方法。
PCT/CN2021/118127 2021-09-14 2021-09-14 信息传输方法、装置、设备及存储介质 WO2023039699A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180102188.9A CN117917019A (zh) 2021-09-14 2021-09-14 信息传输方法、装置、设备及存储介质
PCT/CN2021/118127 WO2023039699A1 (zh) 2021-09-14 2021-09-14 信息传输方法、装置、设备及存储介质
US18/590,331 US20240205940A1 (en) 2021-09-14 2024-02-28 Methods and apparatuses for information transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/118127 WO2023039699A1 (zh) 2021-09-14 2021-09-14 信息传输方法、装置、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/590,331 Continuation US20240205940A1 (en) 2021-09-14 2024-02-28 Methods and apparatuses for information transmission

Publications (1)

Publication Number Publication Date
WO2023039699A1 true WO2023039699A1 (zh) 2023-03-23

Family

ID=85602088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118127 WO2023039699A1 (zh) 2021-09-14 2021-09-14 信息传输方法、装置、设备及存储介质

Country Status (3)

Country Link
US (1) US20240205940A1 (zh)
CN (1) CN117917019A (zh)
WO (1) WO2023039699A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104702535A (zh) * 2013-12-06 2015-06-10 中国移动通信集团公司 一种数据传输方法、装置、系统及相关设备
CN112055982A (zh) * 2020-08-06 2020-12-08 北京小米移动软件有限公司 测距信号的发送、接收方法、装置、设备及可读存储介质
US20200389283A1 (en) * 2019-06-07 2020-12-10 Qualcomm Incorporated Triggering demodulation reference signal bundling
CN112332891A (zh) * 2019-08-05 2021-02-05 华为技术有限公司 无线通信的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104702535A (zh) * 2013-12-06 2015-06-10 中国移动通信集团公司 一种数据传输方法、装置、系统及相关设备
US20200389283A1 (en) * 2019-06-07 2020-12-10 Qualcomm Incorporated Triggering demodulation reference signal bundling
CN112332891A (zh) * 2019-08-05 2021-02-05 华为技术有限公司 无线通信的方法和装置
CN112055982A (zh) * 2020-08-06 2020-12-08 北京小米移动软件有限公司 测距信号的发送、接收方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
US20240205940A1 (en) 2024-06-20
CN117917019A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
TWI785185B (zh) 傳輸配置方法及相關產品
WO2018228511A1 (zh) 通信方法、网络设备和终端
WO2020221021A1 (zh) 通信方法和通信装置
US11006398B2 (en) Hybrid FDD/TDD wireless network
WO2020029996A1 (zh) 检测dci的方法、配置pdcch的方法和通信装置
WO2023125124A1 (zh) 一种数据交换的方法、交换装置和处理装置
WO2019137299A1 (zh) 通信的方法和通信设备
WO2023124815A1 (zh) 无线设备、资源管理方法以及通信系统
WO2023039699A1 (zh) 信息传输方法、装置、设备及存储介质
WO2023040582A1 (zh) 一种动态指示ecp时隙的方法、基站及存储介质
EP3737136A1 (en) Parameter configuration method and related products
WO2021233323A1 (zh) 上行信号传输方法、装置、通信节点及存储介质
CN115701195A (zh) 资源分配方法、通信装置以及通信设备
US20230421417A1 (en) Communication method and communication apparatus
US20230283423A1 (en) Apparatus, system, and method of communicating a data field of a physical layer (phy) protocol data unit (ppdu) over a plurality of channel bandwidth (bw) segments
WO2024108924A1 (en) Methods, devices, and systems for performing cell determination based on ue capability
WO2023030089A1 (zh) 保护符号配置方法以及通信装置
US20240098724A1 (en) Methods, devices, and systems for collision resolution
CN111586819B (zh) 一种上行保证功率信息发送、接收方法及设备
US12034657B2 (en) Downlink control information for reduced-complexity device
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2022217528A1 (en) Methods, devices, and systems for configuring group-based bandwidth part switch
US20220330277A1 (en) Apparatus, system, and method of communicating quality of service (qos) information
WO2024093917A1 (zh) 时域信息的指示方法及装置
US20230164632A1 (en) Allocating Network Resources to a Mesh Access Point

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956993

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180102188.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021956993

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021956993

Country of ref document: EP

Effective date: 20240415