WO2023038449A1 - Retaining wall structure - Google Patents

Retaining wall structure Download PDF

Info

Publication number
WO2023038449A1
WO2023038449A1 PCT/KR2022/013495 KR2022013495W WO2023038449A1 WO 2023038449 A1 WO2023038449 A1 WO 2023038449A1 KR 2022013495 W KR2022013495 W KR 2022013495W WO 2023038449 A1 WO2023038449 A1 WO 2023038449A1
Authority
WO
WIPO (PCT)
Prior art keywords
retaining wall
geocell
wall structure
soil
pillar
Prior art date
Application number
PCT/KR2022/013495
Other languages
French (fr)
Korean (ko)
Inventor
이계일
Original Assignee
이계일
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이계일 filed Critical 이계일
Publication of WO2023038449A1 publication Critical patent/WO2023038449A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/02Retaining or protecting walls

Definitions

  • the present invention relates to a retaining wall structure, which is constructed by vertically stacking geocells formed by combining a plurality of unit cells, and pillars installed in the vertical direction through some unit cells of an upper geocell and some unit cells of a lower geocell. It relates to a retaining wall structure that improves the stability and robustness of a retaining wall by strengthening resistance to lateral earth pressure using elements.
  • a retain wall is a structure made to prevent ground collapse that occurs when the stable slope of the earth surface and the ground is steeper than that, and is made to prevent the soil from collapsing by resisting the pressure of soil.
  • Concrete blocks or panels are widely used for installing retaining walls, and in particular, geocells are widely used to construct vegetation retaining walls by planting plants on the front of the retaining wall.
  • a geocell is a geotextile reinforcing material made in a honeycomb-shaped three-dimensional shape with a synthetic resin board with a thickness of about 10 mm.
  • the prior art is a method of reinforcing the lateral resistance by using a civil reinforcing material for some of the geocell layers among the plurality of geocell retaining walls stacked in the vertical direction, the lateral resistance from the viewpoint of the entire retaining wall structure of the geocell retaining wall It is necessary to further explore the configuration for strengthening.
  • the present invention was devised in view of the above problems, and is composed of vertically stacking geocells formed by combining a plurality of unit cells, passing through some unit cells of the upper geocell and some unit cells of the lower geocell. It is an object of the present invention to provide a retaining wall structure with improved stability and robustness of a retaining wall by strengthening resistance to lateral earth pressure using pillar elements installed in the vertical direction.
  • a geocell retaining wall composed of a plurality of unit cells combined and stacked up and down to have a gradient on the front side of a civil engineering slope, and installed by filling the inside of the geocell with soil; and one or more pillar elements installed along the vertical direction to have the same inclination as the geocell retaining wall through some unit cells of the upper geocell and some unit cells of the lower geocell.
  • the pillar element may be a tubular member in which the inner space is filled with a filling material.
  • the filling material may be at least one of soil and aggregate.
  • the filling material may be at least one of concrete, cement grouting, and soil cement.
  • the present invention further includes reinforcing bars inserted and arranged along the vertical direction into the inside of the column element.
  • the tubular member may be a perforated pipe.
  • the pillar element is partially embedded in soil located on the rear surface of the geocell retaining wall and receives a tensile force toward the rear from a civil engineering reinforcing material that receives earth pressure and frictional force.
  • the civil engineering reinforcing material is a belt-shaped reinforcing material, and the belt-shaped reinforcing material is coupled to the pillar element in a form of enclosing at least a portion of the pillar element.
  • the reinforcing material for civil engineering is a belt-shaped reinforcing material, and at least a portion of the transverse reinforcing bars installed by penetrating the two or more pillar elements in the transverse direction is formed in the belt-shaped
  • the reinforcing material is configured to be bonded in an enveloping form.
  • the reinforcing material for civil engineering is a geogrid configured in the form of a lattice net, and the geogrid is installed in a form passing through the upper and lower separated parts of the column elements.
  • the column element is a tubular member in which reinforcing bars are inserted and disposed along the vertical direction and the inner space is filled with a filler material, and the reinforcing bars form any one grid constituting the geogrid installed to pass through
  • the column element is a tubular member in which the inner space is filled with a filler material containing aggregate, and the aggregate constituting the filler material constitutes the geogrid so as to be engaged with the geogrid through the filler material It is installed so as to penetrate the lattice.
  • a block-shaped resistor is placed on top of a unit cell of a geocell filled with soil inside, the geogrid is installed to be located in the middle of a plurality of vertically stacked geocells, and the front side of the block-shaped resistor, It is bent and deformed in the form of covering the upper side and the rear side, and is installed in the form of covering the block-shaped resistor.
  • two or more fixing rods are installed in a hole drilled in a civil engineering slope by grouting and have one end exposed to the outside of the hole, and the geogrid is installed at different vertical positions.
  • the rear end of the expansion part of the upper geogrid and the rear end of the expansion part of the lower geogrid are integrally connected to each other through a connection part, and one end of a support rod installed across the front side of the connection part is coupled to one fixing rod material, and the other end of the support rod is another one It is coupled to the fixing bar, and the expansion part of the upper geogrid and the expansion part of the lower geogrid receive tensile force from the fixing bar through the support bar.
  • the reinforcing material for civil engineering is a reinforcing bar grid in which reinforcing bars are arranged and combined in a lattice shape, and the front end of the reinforcing bar grid is installed by penetrating two or more column elements installed at intervals in the lateral direction in the lateral direction. configured to be combined.
  • the pillar element is a tubular member capable of filling the internal space with a filling material, fixed to a hole drilled in a civil engineering slope by grouting, and a fixing bar having one end exposed to the outside of the hole is installed. And, one end of the fixing bar inserted through the pillar element is configured to be fastened to the support plate in the inner space of the pillar element.
  • the fixing bar is configured to connect two or more bar elements through a coupler.
  • the pillar element extends toward the soil side located on the rear surface of the geocell retaining wall and is provided with rearward tensile force by a rear reinforcing bar coupled to the pillar element in a form surrounding at least a portion of the pillar element.
  • a support plate is fastened to the rear end of the reinforcing bars for the rear, and the support plate is configured to be buried in the soil located on the rear surface of the geocell retaining wall.
  • a fixing bar is installed in a hole drilled in a civil engineering slope by grouting and has one end exposed to the outside of the hole, and the rear end of the rear reinforcing bar is connected to the fixing bar through a coupler. .
  • the pillar element is a tubular member capable of filling the internal space with a filling material, and has reinforcing bars inserted and arranged along the vertical direction inside the pillar element, and on the rear surface of the geocell retaining wall The rear end extends to the side of the located soil and passes through the column element to receive a rearward tensile force by a band-shaped steel plate reinforcement having a front end coupled to the reinforcing bar in the inner space of the column element.
  • two or more of the pillar elements are installed at intervals along the transverse direction, transverse reinforcing bars penetrating the two or more pillar elements in the transverse direction are installed, and the rear end toward the soil side located on the rear surface of the geocell retaining wall
  • the transverse reinforcement is coupled to the front end of the steel plate reinforcement in the form of an extending band, and a tensile force toward the rear is provided by the steel plate reinforcement.
  • the geocell retaining wall includes a first geocell retaining wall located in front of the civil slope on one side of the soil stack and a second geocell retaining wall located in front of the civil slope on the other side of the soil stack, ,
  • the pillar element is installed along the vertical direction by penetrating some unit cells of the upper geocell and some unit cells of the lower geocell of the first geocell retaining wall, and of the first pillar element and the second geocell retaining wall It includes a second pillar element installed along the vertical direction through some unit cells of the upper geocell and some unit cells of the lower geocell, and is coupled to the first pillar element in a form surrounding at least a portion of the first pillar element
  • a belt-shaped reinforcing member is coupled to the second pillar element in a form of passing through the soil laminate and surrounding at least a portion of the second pillar element, so that the first pillar element and the second pillar element have a tensile force toward the soil laminate.
  • two or more of the pillar elements are installed at intervals along the transverse direction, transverse reinforcing bars penetrating the two or more pillar elements in the transverse direction are installed, and the transverse reinforcing bars and another angle in the transverse direction
  • the placed auxiliary transverse reinforcing bars are coupled to the transverse reinforcing bars, and at least one of the transverse reinforcing bars and the auxiliary transverse reinforcing bars is fixed to a hole drilled in a civil engineering slope by grouting, and one end is exposed to the outside of the hole It is coupled and installed to the fixed rod material.
  • an auxiliary reinforcing bar is provided along the vertical direction inserted into the unit cell at a position overlapping with at least one of the transverse reinforcing bar and the auxiliary transverse reinforcing bar, and the auxiliary reinforcing bar is the transverse reinforcing bar
  • at least one of concrete, cement grouting, and soil cement is combined with at least one of the auxiliary transverse reinforcing bars and filled with at least one of concrete, cement grouting, and soil cement inside the unit cell in which the auxiliary reinforcing bars are inserted and disposed along the vertical direction. The filling of is done.
  • the geocell retaining wall is a gravity-type retaining wall formed by connecting two or more unit geocell retaining walls stacked at different heights, and the column elements are separately installed for each unit geocell retaining wall.
  • the pillar element is composed of two or more unit pillar elements coupled along the longitudinal direction, the unit pillar element is manufactured to a preset height, and a protrusion is formed on one end surface and a groove into which the protrusion is inserted and coupled to the other end surface. It is configured so that the portion is formed.
  • the inside of the column element is provided with reinforcing bars inserted and disposed along the vertical direction
  • the lower portion of the column element is provided with a steel pile or steel pipe drilled into the lower ground
  • the reinforcing bar is the steel pile or It is fixedly coupled to the steel pipe.
  • two or more of the column elements are installed at intervals along the transverse direction, transverse reinforcing bars penetrating the two or more column elements in the transverse direction are installed, and a steel pile or steel pipe drilled into the lower ground is provided And, the transverse reinforcing bar is coupled through the steel pile or steel pipe.
  • two or more of the column elements are installed at intervals along the transverse direction, and a reinforcing bar inserted and disposed along the vertical direction is provided inside the column element, and is drilled into the lower ground, and the inside of the column element
  • a steel pile having at least a portion inserted in the vertical direction is provided, and a transverse reinforcing bar penetrating the two or more column elements in a transverse direction is combined with at least one of the reinforcing bar and the steel pile.
  • the column element is a tubular member, and the inner space is filled with aggregate, and a drain board or bundle pipe inserted through the incised side portion of the column element is used to connect some unit cells of the upper geocell and the lower geocell. It is arranged between some unit cells of the cells so that moisture stored inside the column elements can be supplied to the geocell retaining wall through the drain board or the bundle pipe.
  • the pillar element is a tubular member capable of filling the internal space with a filling material, and has reinforcing bars inserted and arranged along the vertical direction inside the pillar element, and on the rear surface of the geocell retaining wall The rear end extends to the side of the located soil and passes through the column element to receive a rearward tensile force from a civil engineering reinforcing bar coupled to the reinforcing bar in the inner space of the column element.
  • transverse reinforcing bars penetrating the two or more pillar elements in the transverse direction are installed, and the rear end toward the soil side located on the rear surface of the geocell retaining wall
  • the transverse reinforcing bar is coupled to the extending civil reinforcing material, and a tensile force toward the rear is provided by the civil reinforcing material.
  • a fixing bar is installed in a hole drilled in a civil engineering slope by grouting and has one end exposed to the outside of the hole, and the pillar element is provided with a rearward tensile force based on the fixing bar .
  • two or more of the pillar elements are installed at intervals along the transverse direction, fixed by grouting to a hole drilled in a civil slope, and a fixing bar having one end exposed to the outside of the hole is installed, wherein the At least a portion of the transverse reinforcing bars installed by penetrating two or more column elements in the transverse direction is provided with a rearward tensile force based on the fixing bar.
  • a civil reinforcing member is installed that is partly buried in the soil located on the back side of the geocell retaining wall and receives a tensile force toward the rear based on the soil pressure and frictional force of the soil, and a part of the front side of the civil engineering reinforcing member is vertically It is installed to be located in the middle of a plurality of stacked geocells.
  • the civil engineering reinforcing material is a belt-shaped reinforcing material
  • a block-shaped resistor is placed on top of a unit cell of a geocell filled with soil inside
  • the band-shaped reinforcing member surrounds the front side and left and right sides of the block-shaped resistor. It includes a bending part and an expanding part that extends laterally toward the civil engineering slope to form an unfolded state, and the bending part is installed to be located in the middle of a plurality of vertically stacked geocells.
  • the reinforcement material for civil engineering is a geogrid composed of a grid-shaped net, a block-shaped resistor is placed on top of a unit cell of a geocell filled with soil inside, and the geogrid is composed of a plurality of vertically stacked geocells. It is installed to be positioned in the middle, and is bent and deformed to cover the front, upper, and rear sides of the block-shaped resistor to cover the block-shaped resistor.
  • one pillar element is configured to be installed over the entire vertical height of the geocell retaining wall by vertically penetrating a preset unit cell location of an upper geocell and a preset unit cell location of a lower geocell.
  • the geocells constituting each layer are stacked in a horizontally spread state, and the geocell retaining wall configured by stacking the geocells constituting each layer up and down has a slope, respectively
  • the geocell layer of the unit cells located at the frontmost part at least one of soil and aggregate is buried therein, and the upper surface is exposed in a stepwise manner.
  • the present invention as described above is composed of vertically stacking geocells formed by combining a plurality of unit cells, and uses pillar elements installed in the vertical direction through some unit cells of the upper geocell and some unit cells of the lower geocell.
  • the present invention can reduce the length of the civil reinforcing material used in the geocell retaining wall to a minimum length, thereby minimizing environmental damage caused by the development of urban areas and mountainous areas, and preventing interference with underground structures at the back of the soil filling section and land boundary It has the advantage of minimizing the case of encroaching on the site boundary.
  • the present invention has the advantage of securing the structural stability of the retaining wall even if the height of the retaining wall is increased according to the installation environment.
  • the present invention has the advantage of securing the structural stability of the retaining wall and reducing the cutting width of the original ground even when the inclination angle of the retaining wall is installed close to vertical according to the installation conditions.
  • FIG. 1 is a schematic diagram in the side direction of a retaining wall structure according to an embodiment of the present invention
  • FIGS. 2a and 2b are a schematic plan view and perspective view schematic diagram of a retaining wall structure according to an embodiment of the present invention
  • 3a and 3b are a planar and perspective view schematic diagram of a retaining wall structure according to an embodiment of the present invention.
  • 4a, 4b, and 4c are planar, perspective, and lateral schematic views of a retaining wall structure according to an embodiment of the present invention
  • 4D and 4E are schematic diagrams in a perspective view direction and a schematic diagram in a side direction of a retaining wall structure according to an embodiment of the present invention.
  • 4F is a cross-sectional schematic diagram showing an installation state of a block-shaped resistor according to an embodiment of the present invention.
  • Figure 4g is a schematic cross-sectional view showing the installation state of the geogrid according to an embodiment of the present invention.
  • 5A and 5B are a schematic plan view and a side view schematic diagram of a retaining wall structure according to an embodiment of the present invention.
  • 5c and 5d are a perspective view direction schematic diagram and a cross-sectional direction schematic diagram showing an installation state of a block-shaped resistor according to an embodiment of the present invention
  • 6A and 6B are schematic diagrams in a plane direction, a side view and a perspective view of a retaining wall structure according to an embodiment of the present invention
  • FIG. 7A and 7B are a schematic plan view and perspective view schematic diagram of a retaining wall structure according to an embodiment of the present invention.
  • FIG. 7C is a perspective view direction schematic diagram of a support plate according to an embodiment of the present invention.
  • FIG. 7d is a perspective view direction schematic diagram of a coupler according to an embodiment of the present invention.
  • 8a and 8b are a schematic plan view and perspective view schematic diagram of a retaining wall structure according to an embodiment of the present invention.
  • 9a and 9b are a schematic plan view and perspective view schematic diagram of a retaining wall structure according to an embodiment of the present invention.
  • 9c and 9d are schematic diagrams of a retaining wall structure according to an embodiment of the present invention in a plane direction, a side view and a perspective view;
  • 10A and 10B are a schematic plan view and a side view schematic diagram of a retaining wall structure according to an embodiment of the present invention.
  • 11a and 11b are planar and lateral schematic views of a retaining wall structure according to an embodiment of the present invention.
  • 12a, 12b and 12c are schematic views of the side direction of the retaining wall structure according to an embodiment of the present invention.
  • 13a and 13b are a schematic planar view, a schematic side view and a side view of a coupled state of a pillar element according to an embodiment of the present invention
  • 14a, 14b, 14c, and 14d are schematic diagrams in a plane direction, a schematic diagram in a plan direction, a schematic diagram in a side direction, and a coupled state diagram of column elements of a retaining wall structure according to an embodiment of the present invention
  • 15a, 15b, and 15c are schematic diagrams in a plane direction, a schematic side view, and a perspective view of a retaining wall structure according to an embodiment of the present invention
  • 16 is a schematic view showing various embodiments of a pillar element according to an embodiment of the present invention.
  • first, second, etc. are used only for the purpose of distinguishing one component from another.
  • a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
  • FIG. 1 is a schematic diagram showing a side direction of a retaining wall structure according to an embodiment of the present invention
  • FIG. 16 is a schematic diagram showing various embodiments of a column element according to an embodiment of the present invention.
  • the retaining wall structure according to this embodiment strengthens the resistance against earth pressure in the lateral direction (in particular, the front and rear direction) by using the pillar elements 4 installed in the vertical direction through the plurality of geocells 10 stacked vertically. This improves the stability and robustness of the retaining wall.
  • a plurality of geocells 10 are stacked with an inclination as illustrated in FIG. 1, and the pillar elements 4 correspondingly have the same or similar inclination as the geocell 10, and the plurality of geocells 10 It is inserted through and installed.
  • Stacking with an inclination refers to a state in which the geocell 10 of the lower layer is installed so as to protrude more forward than the geocell 10 of the layer immediately above it.
  • the retaining wall structure includes a geocell retaining wall 2 and one or more pillar elements 4.
  • the geocell retaining wall 2 is constructed by stacking a geocell 10 composed of a plurality of unit cells 12 in a vertical direction (U-D) on the front (F) side of a civil engineering slope 102,
  • the inside of the cell 10 is filled with soil (S) and installed.
  • soil for example, sandy soil of good quality may be used as the soil S inside the geocell 10, and crushed stone aggregate may be filled together or instead.
  • the horizontal resistance is higher than that of general soil.
  • two or three unit cells 12 are arranged along the front-back direction in one layer of the geocell 10, and a number of them along the left-right direction It has a form in which the number of unit cells 12 are arranged.
  • the number of unit cells 12 in the forward and backward directions or in the left and right directions to form one layer of geocells 10 can be changed.
  • the civil engineering slope 102 may be an embankment surface or a cut surface.
  • the geocell retaining wall 2 may be installed with the nonwoven fabric covering the cut surface, and soil backfilling may be performed.
  • the geocell 10 may be, for example, one having a thickness of 10 mm or more and a height of about 150 to 300 mm.
  • one unit cell 12 in a state in which three unit cells 12 are spread forward and backward, one unit cell 12 may have a size of about 200 to 300 mm in a horizontal direction and about 200 to 300 mm in a front and rear direction.
  • one or more pillar elements 4 pass through some unit cells 12 of the upper geocell 10' and some unit cells 12 of the lower geocell 10'' up and down ( U-D) is installed along the direction.
  • the column element 4 is installed over the entire vertical height of the geocell retaining wall 2.
  • one pillar element (4) vertically penetrates the preset unit cell location of the upper geocell (10') and the preset unit cell location of the lower geocell (10'') to form the geocell retaining wall (2). ) is configured to be installed over the entire vertical height of the
  • the geocell 10 is stacked in a state in which the geocell 10 is spread in the transverse direction (horizontal direction) on the front side of the civil engineering slope 102, and the location of the unit cell 12 preset in the state in which the geocell 10 is stacked is Install the pillar element 4 through the top and bottom.
  • the unit cell 12 in which the column element 4 is not installed is filled with soil S, and the space between the outer surface of the column element 4 and the inner surface of the inserted unit cell 12 is also filled with soil S. .
  • manpower compaction can be performed by using a surface leveling tool, a roller, and a ramma.
  • soil (S') is also injected into the back space of the geocell (10) to backfill and compact.
  • various civil reinforcing materials which will be described later, are installed in preset positions according to each civil reinforcing material structure.
  • the pillar element 4 is composed of a tubular member in which the inner space is filled with a filler material 4a.
  • the cross section of the pillar element 4 is not limited to a specific cross section, but it is preferable to have a circular cross section in order to increase resistance to external pressure caused by earth pressure or internal pressure caused by the filling material 4a.
  • the tubular member may be a perforated pipe.
  • a perforated pipe is a plastic pipe with a diameter of 7 to 30 cm and has many holes on the side. It is generally used to promote drainage and ventilation after being wrapped with non-woven fabric or geotextile to prevent soil from entering the hole and buried in the soil. used Since the perforated pipe is light in weight, it is advantageous to insert and construct inside the geocell 10, and can provide sufficient rigidity so that the filling material 4a inside can maintain the column shape, and through small holes Since drainage is possible, it is suitable for application to the column element (4) of the retaining wall for vegetation.
  • the filling material 4a may be at least one of soil and aggregate.
  • soil or aggregate forms a dense filling state due to its own weight, and by this filling state, the column element (4) has a load and a load similar to that of a column precast with concrete. have strength.
  • soil or aggregate procured directly from the site or externally procured in the internal space of the tubular member inserted into the geocell 10
  • the filling operation can be performed by inserting through the upper opening of the tubular member.
  • soil or aggregate may be introduced according to the height at which each unit column element is assembled. .
  • the filling material 4a can be directly procured and used in the field.
  • Soil and aggregate may be used together, and in this case, the aggregate is preferably included in a ratio of 30% or more based on the total content of soil and aggregate.
  • aggregate it is possible to lower the level of leachate and groundwater in the rear part and provide a function of a drainage hole for infiltration water during the rainy season.
  • the filling material 4a may be at least one of concrete, cement grouting, and soil cement.
  • concrete prepared in the form of ready-mixed concrete is poured into the interior space of the tubular member inserted into the geocell 10 through the upper opening of the tubular member Filling can be done in this way.
  • the pillar element 4 when the pillar element 4 is configured in a structure in which the inner space of the tubular member is filled with the filling material 4a, when inserting and constructing the inside of the geocell 10, a light weight tubular Since the work is performed in the form of a member, it is possible to secure much better workability than a structure using a heavy concrete precast column, and after installation, sufficient load and rigidity of the column can be secured by the filling material (4a) inside. Therefore, it can provide sufficient stability and solidity of the retaining wall.
  • FIG. 16 illustrates a case in which the filling material 4a is at least one of soil, concrete, cement grouting, and soil cement
  • (b) of FIG. 16 illustrates a case in which the filling material 4a is an aggregate.
  • a reinforcing bar 50 may be provided inside the pillar element 4 and inserted along the up-and-down (U-D) direction.
  • 16(c) illustrates a case in which the reinforcing bar 50 is provided inside the column element 4.
  • the reinforcing bar 50 may be inserted and disposed inside the column element 4 in the form of a tubular member, and the inner space surrounding the reinforcing bar 50 may be filled with a filling material 4a.
  • the pillar element 4 may be formed with cut side portions 4s or 4ps.
  • 16(d) illustrates a case in which side portions 4s cut along the entire outer circumferential surface of the pillar element are formed, and FIG. exemplify The incision length of the incised side portion 4ps may be varied as needed.
  • the side portion 4ps cut along a portion of the outer circumferential surface of the column element 4 has a steel plate reinforcement 430, a rear reinforcing bar 330, a drain board or a bundle pipe 70 installed through, or a geogrid ( 130) may be installed by passing in the front and rear directions.
  • the geogrid 130 can be installed through the front and rear directions on the side portions 4s cut along the entire outer circumferential surface of the pillar element 4 .
  • the incised side portion 4s or 4ps may be formed using a cutter or the like at a construction site.
  • the incised side portion 4s or 4ps of the pillar element 4 is a plurality of geocells 10 stacked vertically It is preferable to be formed according to the interface position of the upper geocell 10' and the lower geocell 10'' adjacent to the upper geocell 10'.
  • the incised side portions 4s or 4ps of the column element 4 correspond to the height of two or more layers of the plurality of geocells 10 stacked vertically. It is preferable to be formed to have a vertical gap.
  • the heights of the incised side parts 4s or 4ps of the pillar elements 4 are offset from each other in consideration of the type and installation state of the civil reinforcing material for each pillar element 4 You may.
  • Reference numeral 4h in FIG. 16(e) denotes a through hole formed in the pillar element 4.
  • a fixing rod 40 or a transverse reinforcing bar 60 may be installed through the through hole 4h formed in the pillar element 4 .
  • the through hole 4h may be formed using a drill or the like at a construction site.
  • the non-explained code S' is backfill soil located on the back of the geocell retaining wall (2), and the code S'' is backfill rubble.
  • each geocell 10 layer the upper surface of the unit cells 12 located at the frontmost part is exposed in a stepped state with soil buried therein.
  • the stems and leaves of the plants grow and cover the entire retaining wall composed of the geocell 10 with plants, which is also aesthetically pleasing. It can form a good vegetation retaining wall.
  • FIGS. 2A and 2B are a schematic plan view and a perspective view view of a retaining wall structure according to an embodiment of the present invention.
  • the pillar element 4 is partially embedded in the soil S' located on the rear side of the geocell retaining wall 2 to protect the rear B from the civil engineering reinforcing material that receives the earth pressure SP and frictional force.
  • a tensile force (TF) is provided.
  • Tensile force (TF) can also be understood as the pull-out resistance of civil engineering stiffeners from another point of view.
  • the civil engineering reinforcing material is a belt-shaped reinforcing material 30, and the belt-shaped reinforcing material 30 surrounds at least a part (front side part) of the pillar element 4, and the pillar element Combined with (4).
  • the strip-shaped reinforcing material 30 is generally manufactured by double-injecting a fiber core material coated with a synthetic resin covering material.
  • 3A and 3B are schematic views of a planar direction and a perspective view of a retaining wall structure according to an embodiment of the present invention.
  • the pillar element 4 is partially embedded in the soil S' located on the rear side of the geocell retaining wall 2, and the rear (B) is provided with a tensile force (TF) toward
  • two or more of the pillar elements 4 are installed at intervals along the transverse direction L-R.
  • the installation interval and number of pillar elements 4 may be appropriately set in consideration of the overall height and size of the retaining wall, and may be installed at intervals of 3 to 4 m, for example.
  • the civil engineering reinforcing material is a belt-shaped reinforcing material 30, and at least a portion (front side portion) of the transverse reinforcing bar 60 installed by penetrating the two or more column elements 4 in the transverse direction (L-R)
  • the band-shaped reinforcing material 30 is configured to be coupled in a wrapping form.
  • the transverse reinforcing bar 60 is positioned on the front side of the reinforcing bar 50, and reinforcing After bonding the contact point between the reinforcing bar 50 and the transverse reinforcing bar 60 through welding or a fixing means (eg, wire, connector), the inside of the column element 4 can be filled with the filling material 4a.
  • a fixing means eg, wire, connector
  • FIGS. 4a, 4b and 4c are planar, perspective and side view schematics of a retaining wall structure according to an embodiment of the present invention
  • FIGS. 4d and 4e are perspective view schematics of a retaining wall structure according to an embodiment of the present invention
  • a schematic diagram in the side direction Figure 4f is a cross-sectional schematic diagram showing the installation state of the block-shaped resistor according to an embodiment of the present invention
  • Figure 4g is a cross-sectional schematic diagram showing the installation state of the geogrid according to an embodiment of the present invention.
  • the pillar element 4 is partially embedded in the soil S' located on the rear side of the geocell retaining wall 2, and the rear (B) is provided with a tensile force (TF) toward
  • the reinforcing material for civil engineering is a geogrid 130 configured in the form of a lattice net.
  • the geogrid 300 can be classified into a plastic geogrid and a textile geogrid depending on the manufacturing method and material.
  • the plastic geogrid is manufactured by passing a polymer sheet that has passed through an extruder through a roller, punching holes in a lattice-like grid shape, and then stretching the polymer sheet uniaxially or biaxially.
  • the textile geogrid is manufactured by supplying high-strength fibers in warp and weft directions, respectively, to form a lattice-shaped fabric, and coating with polyvinyl chloride, bitumen, acrylic, latex, and rubber-based resin.
  • the type of geogrid 300 is not limited.
  • the geogrid 130 is installed in a form passing through the upper and lower (U-D) separated parts (cut side parts, 4s or 4ps) of the pillar element 4.
  • the pillar element 4 is a tubular member in which rebar 50 is inserted and disposed along the vertical (U-D) direction and the internal space is filled with a filler 4a, and the reinforcement
  • the reinforcing bars 50 are installed to pass through any one grid constituting the geogrid 130 (see (a) in FIG. 4g).
  • the pillar element 4 is engaged with the geogrid 130 through the reinforcing bars 50 and coupled in a state in which friction or bonding force is applied through the filler 4a, the geogrid 130 It receives a tensile force (TF) toward the rear (B) from
  • the pillar element 4 is a tubular member in which the inner space is filled with a filler material 4a, and the aggregate constituting the filler material 4a is a lattice constituting the geogrid 130 It is installed so that the aggregate (or part of the aggregate) can be caught on the grid by at least partially penetrating the grid (see (b) of FIG. 4g).
  • the pillar element 4 is engaged with the lattice portion of the geogrid 130 through the filler material 4a containing aggregate and coupled in a state in which frictional force or bonding force is applied through the filler material 4a, A tensile force (TF) toward the rear (B) is provided from the geogrid (130).
  • one geogrid 130 is folded up and down from the rear and arranged in the form of an upper geogrid (130U) and a lower geogrid (130D), using a fixing rod 40 and install it fixedly.
  • two or more fixing rods 40 and 40' are fixed to a hole 104 drilled in a civil engineering slope 102 by grouting 106 and one end exposed to the outside of the hole 104 is installed.
  • perforation ( ⁇ ) can be made while maintaining an angle of about 0 to 20 degrees with a crawler drill (crawler drill) the position selected by the perforation position survey.
  • a fixing rod 40 is inserted into the drilled hole 104 and fixed with grouting 106. At this time, one end of the fixing bar 40 is fixed so as to be exposed to the outside of the hole 104 .
  • cement milk grouting may be performed from the tip using a grouting hose.
  • connection part 130C the rear end of the expanded part of the upper geogrid 130U and the rear end of the expanded part of the lower geogrid 130D installed at different up and down (U-D) positions are integrally connected to each other through a connection part 130C.
  • One end of the support rod 150 installed across the front (F) side of the connecting portion 130C is coupled to one fixing rod 40, and the other end of the support rod 150 is another fixing rod (40 '), the expansion part of the upper geogrid (130U) and the expansion part of the lower geogrid (130D) through the support bar 150, the tensile force (TF) from the fixing rods (40, 40') be delivered
  • a through hole 40h is provided in the exposed end 40a of the fixing rod 40, and one end 150a of the support rod 150 has one fixing rod 40'. ), and is inserted into and coupled to the through hole 40h provided in the support bar 150, and the other end 150a of the support bar 150 is inserted into and coupled to the through hole 40h provided in another fixing bar 40.
  • the geogrid 130 is installed in the form of increasing lateral resistance by using the block-shaped resistor 20.
  • a block-shaped resistor 20 is placed on top of the unit cell 12 of the geocell 10 filled with soil (S).
  • the geogrid 130 is installed to be positioned in the middle of the plurality of geocells 10 stacked vertically (U-D), and the front (F) side, upper (U) side and rear ( It is bent and deformed in the form of wrapping the B) side and installed in the form of covering the block-shaped resistor 20 .
  • the geogrid 130 is a cover covering the block-shaped resistor 20 in a form surrounding at least a portion of the front side 20f and the upper side 20u of the block-shaped resistor 20 It includes a portion 30 'and an expanding portion 30'' extending in the transverse direction toward the civil engineering slope 102 to form an unfolded state.
  • the cover part 30' may be formed by bending deformation of the geogrid 130.
  • the block-shaped resistor 20 may be stacked on top of the soil layer Sd of the lower geocell 10 and located inside the soil layer Su of the upper geocell 10, as shown in FIG. 4F.
  • a part of the block-shaped resistor 20 may be partially positioned inside the soil layer Sd of the lower geocell 10.
  • the geogrid 130 transmits the tensile force TF generated based on the earth pressure SP applied from above to the mesh area to the block-shaped resistor 20.
  • the tensile force (TF) generated based on the earth pressure (SP) can be regarded as a kind of frictional resistance force and/or tensile resistance force.
  • the block-shaped resistor 20 receives the tensile force TF from the geogrid 130, and the block-shaped resistor 20 is stacked on top and bottom of the soil (S) The lateral movement of the filled geocell 10 is prevented through the friction resistance of the block-shaped resistor 20.
  • 6A and 6B are a schematic plan view, a side view schematic view, and a perspective view view of a retaining wall structure according to an embodiment of the present invention.
  • the pillar element 4 is partially embedded in the soil S' located on the rear side of the geocell retaining wall 2, and the rear (B) is provided with a tensile force (TF) toward
  • the reinforcing material for civil engineering is a reinforcing bar grid 230 in which reinforcing bars are arranged in a lattice shape and combined.
  • the front end of the reinforcing bar grid 230 is coupled to the transverse reinforcing bars 60 installed through two or more column elements 4 installed at intervals along the transverse direction L-R in the transverse direction L-R It is composed so that
  • the front end of the reinforcing bar grid 230 may be formed bent in a "c" shape as shown in (b) of FIG.
  • FIG. 7a and 7b are a planar and perspective view schematic diagram of a retaining wall structure according to an embodiment of the present invention
  • FIG. 7c is a perspective view direction schematic diagram of a support plate according to an embodiment of the present invention
  • FIG. It is a schematic diagram of the perspective view direction of the coupler according to.
  • the pillar element 4 is a tubular member capable of filling the internal space with a filling material 4a.
  • a fixing rod 40 is fixed to a hole 104 drilled in a civil engineering slope 102 by grouting 106 and one end exposed to the outside of the hole 104 is installed.
  • One end (40a) of the fixing bar 40 inserted through the pillar element 4 is configured to be fastened to the support plate 120 in the inner space of the pillar element 4.
  • the support plate 120 is disposed in a forward facing state in the pillar element 4 and is buried by the filling material 4a, preferably, to the reinforcing bar 50 installed in the pillar element 4. It is installed to achieve an engaging state so as to receive resistance against backward movement by
  • the support plate 120 may be formed by processing a metal plate.
  • the fixing bar 40 is fixed to a hole 104 drilled in a civil engineering slope 102 by grouting 106, and one end is exposed to the outside of the hole 104.
  • the fixing bar 40 may be a conventional reinforcing bar or screw-type reinforcing bar having a diameter of 25 to 35 mm.
  • the hole 104 may be formed to have an inner diameter of 75 to 105 mm, for example.
  • a spacer (not shown) may be inserted in the middle of the fixing bar 40 to maintain a gap with the inner surface of the hole 104 .
  • Fastening of one end of the fixing rod 40 and the support plate 120 is a state in which one end of the fixing rod 40 having a bolt portion passes through a through hole (not shown) of the support plate 120. It is made by screwing with the fastening nut 125 located in the front.
  • a plurality of fastening nuts 125 may be coupled or double coupled to the front and rear of the support plate 120 .
  • the fixing bar 40 is configured by connecting two or more bar elements 40 and 40' through a coupler 42, so that the length can be extended and/or the angle adjusted.
  • the coupler 42 is fastened with the first fastening means 423 fastened to the other end 40a of one fixing rod 40 and one end 40a' of another fixing rod 40'.
  • the second fastening means 424 is integrally formed to interconnect one fixing bar 40 and another fixing bar 40 '.
  • the coupler 42 may be made of a metal material.
  • the first fastening means 423 and the second fastening means 424 of the coupler 42 each include a nut part 425 .
  • the central axis of the nut portion 425 of the first fastening means 423 and the central axis of the nut portion 425 of the second fastening means 424 are integrally formed with an inclination angle therebetween.
  • the support plate 120 receives the bearing force from the fixing bar 40 fixed to the civil slope 102, so that the support plate 120 supports the pillar element 4 and the geocell 10 ) can be prevented from transverse movement (forward shear movement).
  • FIGS. 8A and 8B are planar and perspective view schematic views of a retaining wall structure according to an embodiment of the present invention.
  • the pillar element 4 extends toward the soil S' located on the rear surface of the geocell retaining wall 2 and surrounds at least a portion (front side portion) of the column element 4
  • a tensile force (TF) toward the rear (B) is provided by the reinforcing bars 330 for the rear coupled to the pillar element 4.
  • TF tensile force
  • a deformed reinforcing bar or a circular reinforcing bar may be used as the rear reinforcing bar 330.
  • Rebar 330 for the rear may be provided with a tensile force (TF) toward the rear (B) through the following structure.
  • the support plate 120 is fastened to the rear end of the reinforcing bar 330 for the rear, and the support plate 120 is located on the back of the geocell retaining wall 2. Configured to be buried in soil S' do. Since the fastening of the support plate 120 may be performed in the same/similar form to that of the embodiment of FIG. 7C, redundant description will be omitted.
  • a fixing bar 40 is fixed to a hole 104 drilled in a civil engineering slope 102 by grouting 106 and one end exposed to the outside of the hole 104 is installed, and the rear The rear end of the reinforcing bar 330 is connected to the fixing bar 40 through a coupler 42. Since the connection of the fixing bar 40 through the coupler 42 may be performed in the same/similar form to that of the embodiment of FIG. 7d, redundant description will be omitted.
  • 9A and 9B are schematic views of a planar direction and a perspective view of a retaining wall structure according to an embodiment of the present invention.
  • the pillar element 4 is a tubular member capable of filling the inner space with a filler 4a, and is inserted and disposed inside the pillar element 4 along the vertical (U-D) direction.
  • Rebar 50 is provided.
  • the rear end of the pillar element 4 extends toward the soil S' located on the rear surface of the geocell retaining wall 2 and penetrates the pillar element 4 to
  • the tensile force TF toward the rear (B) is provided by the steel plate reinforcement 430 in the form of a band to which the front end is coupled to the reinforcing bar 50.
  • the reinforcing bar 50 may be coupled through a through hole (not shown) formed through the front end of the steel plate reinforcement 430 in the vertical direction.
  • the steel plate reinforcement 430 may have a width of 5 to 7 cm and a thickness of 4 to 5 mm, and may be composed of a galvanized steel plate reinforcement.
  • the steel plate reinforcement 430 is installed so that the surface corresponding to the width of 5 ⁇ 7 cm faces the upper and lower sides to receive earth pressure and frictional resistance from the soil S 'located on the back of the geocell retaining wall 2 desirable.
  • 9c and 9d are a schematic plan view, a side view schematic view, and a perspective view view of a retaining wall structure according to an embodiment of the present invention.
  • two or more of the pillar elements 4 are installed at intervals along the transverse direction (L-R).
  • transverse reinforcing bars 60 penetrating the two or more pillar elements 4 in the transverse direction (L-R) are installed.
  • the transverse reinforcement 60 is coupled to the front end of the band-shaped steel plate reinforcement 430 whose rear end extends toward the soil S' located on the back side of the geocell retaining wall 2, A tensile force (TF) toward the rear (B) is provided by the steel plate reinforcement 430 .
  • the front end of the steel plate reinforcement 430 may be formed in a "c" shape as shown in (b) of FIG. 430), the front end body and the bent portion may be fastened with bolts BT.
  • FIGS. 10A and 10B are planar and lateral schematic views of a retaining wall structure according to an embodiment of the present invention.
  • the geocell retaining wall 2 is a first geocell retaining wall 2-1 located in front (F) of the civil slope 102 on one side of the soil stack ST and the soil stack It includes a second geocell retaining wall 2-2 located in front F of the civil engineering slope 102 on the other side of the body ST.
  • the pillar element 4 penetrates some unit cells 12 of the upper geocell 10 and some unit cells 12 of the lower geocell 10 of the first geocell retaining wall 2-1
  • the first pillar element 4-1 installed along the vertical (U-D) direction, and some unit cells 12 of the upper geocell 10 of the second geocell retaining wall 2-2 and the lower geocell (10) includes second pillar elements 4-2 installed along the vertical (U-D) direction through some unit cells 12.
  • the belt-shaped reinforcing member 30 coupled to the first pillar element 4-1 in a form surrounding at least a part (a part in the F direction) of the first pillar element 4-1 is the soil laminate. Passing through (ST) and coupled to the second pillar element 4-2 in a form surrounding at least a portion (B-direction side portion) of the second pillar element 4-2, the first pillar element 4 -1) and the second pillar element 4-2 receive a tensile force TF toward the soil stack ST.
  • This configuration is good for installing the geocell retaining wall 2 symmetrically on both sides of the soil stack ST.
  • 11A and 11B are planar and lateral schematic views of a retaining wall structure according to an embodiment of the present invention.
  • two or more of the pillar elements 4 are installed at intervals along the transverse direction (L-R), and transverse reinforcing bars 60 penetrating the two or more pillar elements 4 in the transverse direction (L-R) ) is installed.
  • auxiliary transverse reinforcing bars 160 disposed in the transverse direction (L-R) at another angle with the transverse reinforcing bars 60 are coupled to the transverse reinforcing bars 60.
  • transverse reinforcing bars 60 and the auxiliary transverse reinforcing bars 160 are mutually coupled through welding or the like to form a polygon based on a plane shape, as illustrated in FIG. 11A, and the upper layer of the plurality of geocells 10 stacked vertically It may be inserted and installed between the geocell 10' and the adjacent lower geocell 10''.
  • At least one of the transverse reinforcing bars 60 and the auxiliary transverse reinforcing bars 160 is fixed to the hole 104 drilled in the civil engineering slope 102 by grouting 106, and the hole (104) is coupled to the fixing bar 40, one end of which is exposed to the outside.
  • the support plate 120 is fixedly installed to the auxiliary transverse reinforcing bar 160 located at the frontmost side, and the auxiliary transverse reinforcing bar 160 is fixed to the bar 40 through the support plate 120 combined installed.
  • the installation position of the support plate 120 can be changed differently from FIG. 11A.
  • Fastening of one end of the fixing rod 40 and the support plate 120 is a state in which one end of the fixing rod 40 having a bolt portion passes through a through hole (not shown) of the support plate 120. It is made by screwing with the fastening nut 125 located at the front in (see FIG. 7c).
  • the retaining wall structure of this embodiment is inserted along the up-and-down (U-D) direction into the unit cell 12 at a position overlapping with at least one of the transverse reinforcement 60 and the auxiliary transverse reinforcement 160 It has an auxiliary rebar 250 disposed thereon.
  • the auxiliary reinforcing bars 250 are combined with at least one of the transverse reinforcing bars 60 and the auxiliary transverse reinforcing bars 160.
  • the inside of the unit cell 12 in which the auxiliary reinforcing bars 250 are inserted and disposed along the vertical (U-D) direction is filled with a concrete filling material 4a'.
  • the auxiliary reinforcing bars 250 are installed in the vertical direction over the geocell 10 of about 2 to 4 floors, and the concrete filler 4a' is the geocell 10 in which the auxiliary reinforcing bars 250 are installed.
  • the concrete filler 4a' is the geocell 10 in which the auxiliary reinforcing bars 250 are installed.
  • the polygonal structure formed by combining the transverse reinforcing bars 60 and the auxiliary transverse reinforcing bars 160 may be provided with a plurality of them at vertical intervals and coupled vertically through the auxiliary reinforcing bars 250, as illustrated in FIG. 11B. .
  • a horizontal structure is formed in which the transverse reinforcing bars 60 and the auxiliary transverse reinforcing bars 160 are combined and disposed while forming a polygon horizontally, and the plurality of auxiliary reinforcing bars 250 are arranged with vertical intervals.
  • the auxiliary reinforcing bars 250 are inserted and arranged along the up and down (U-D) direction to the inside of the unit cell 12 with a concrete filler (4a') to create a space of the interior space.
  • the three-dimensional structure may be set to an appropriate position and number in consideration of the height and width of the geocell retaining wall 2 and installed to constitute a part of the geocell retaining wall 2.
  • At least one of cement grouting and soil cement may be used as the filling material 4a' instead of concrete.
  • 12a, 12b and 12c are schematic side views of a retaining wall structure according to an embodiment of the present invention.
  • the geocell retaining wall 2 is a gravity-type retaining wall formed by connecting two or more unit geocell retaining walls 2 stacked at different heights. 12a, 12b and 12c show a total of 4 geocell retaining walls (2 ) is installed.
  • the gravity type retaining wall is a retaining wall that is installed when a sufficient space for installing civil reinforcing materials is not secured between the rear side of the retaining wall and the civil engineering slope 102, and a plurality of geocell retaining walls (2) having different heights It is a retaining wall of the method of installing sequentially according to the front and rear positions.
  • the distributed installation structure of the geocell retaining wall 2 may be modified in various ways as shown in FIG. 12a, FIG. 12b or FIG. 12c.
  • 12b or 12c shows a structure in which a part of the geocell retaining wall 2 is removed and a general soil layer is installed between the 1-row geocell retaining wall 2-A and the 4-column geocell retaining wall 2-D
  • 12c shows a configuration in which an intermediate geocell layer (not shown) is installed in the middle of a general soil layer.
  • civil engineering reinforcing materials such as geogrids, belt-shaped reinforcing materials, steel plates, and reinforcing bars.
  • the geocell retaining wall (2-D) with the lowest height is installed at the rearmost side, and the geocell retaining walls (2-C, 2-B, and 2-A) with higher heights are installed toward the front. is installed to distribute and support the earth pressure applied from the civil engineering slope 102.
  • the pillar element 4 is separately installed for each unit geocell retaining wall 2, so that the earth pressure applied from the civil engineering slope 102 can be more firmly distributed and supported.
  • 13a and 13b are a schematic plan view, a side view schematic diagram, and a side view schematic view of a coupled state of a pillar element according to an embodiment of the present invention.
  • the pillar element 4 is configured by combining two or more unit pillar elements 4u along the longitudinal direction.
  • the unit pillar element 4u is manufactured with a preset height (eg, 200 to 300 mm) and diameter (eg, 200 to 300 mm), and a protrusion 4u-1 is formed on one end surface and the other end face It is configured to form a concave portion 4u-2 into which the protruding portion 4u-1 is inserted and coupled.
  • the protrusion 4u-1 serves as a connecting pin and also serves as a shear key.
  • the unit pillar element 4u may be manufactured in the form of a concrete structure having a circular cross-sectional shape, and may be manufactured by precasting.
  • the unit pillar element 4u has a central through hole 4u-3 formed along the vertical direction at the center in order to insert a bar-shaped reinforcing member (not shown) through the center, and to provide an appropriate load condition.
  • One or more auxiliary through holes 4u-4 having a smaller diameter may be formed around the hole 4u-3 along the vertical direction.
  • two or more unit pillar elements 4u are vertically coupled along the longitudinal direction to form the pillar element 4.
  • the unit pillar element 4u can be used singly in combination or inserted inside a tubular member such as a perforated pipe and used in combination therein.
  • a tubular member such as a perforated pipe and used in combination therein.
  • the outer diameter of the unit pillar element 4u is slightly smaller than the inner diameter of the tubular member (75 to 85%). good if made
  • 14a, 14b, 14c, and 14d are schematic diagrams in a plane direction, a schematic diagram in a plane direction, a schematic diagram in a lateral direction, and a coupled state diagram of column elements of a retaining wall structure according to an embodiment of the present invention.
  • the inside of the pillar element 4 is provided with a reinforcing bar 50 inserted and disposed along the vertical (U-D) direction.
  • a steel pile 350 or a steel pipe is provided with a hole drilled into the lower ground.
  • the forced pile 350 may be used as an example of an H beam, but is not limited thereto.
  • the steel pile 350 or the steel pipe may be installed by drilling the lower ground where the geocell retaining wall 2 is installed, inserting it, and pouring ready-mixed concrete or grouting.
  • the reinforcing bar 50 is fixedly coupled to the steel pile 350 or the steel pipe.
  • the fixed coupling of the reinforcing bar 50 to the steel pile 350 or the steel pipe may be performed using welding or a known mechanical coupling means (eg, connector).
  • the column element 4 receives resistance to the transverse earth pressure by the reinforcing bar 50, and the reinforcing bar 50 has a bearing capacity based on the lower ground by the steel pile 350 or the steel pipe Therefore, the geocell retaining wall 2 can maintain a more robust and stable installation state.
  • two or more of the pillar elements 4 are installed at intervals along the transverse direction (L-R), and transverse reinforcing bars 60 penetrating the two or more pillar elements 4 in the transverse direction (L-R) is installed
  • a steel pile 350 or a steel pipe drilled into the lower ground is provided, and the transverse reinforcing bar 60 is penetrated and coupled to the steel pile 350 or the steel pipe.
  • the steel pile 350 or the steel pipe may form a through hole with a drill in the field.
  • Transverse reinforcement 60 inserted through can be welded to the steel pile 350 or the steel pipe.
  • the transverse reinforcing bar 60 is located on the front side of the reinforcing bar 50, and the point of contact between the reinforcing bar 50 and the transverse reinforcing bar 60 is welded or coupled through a fixing means (eg, wire, connector) After that, it is possible to fill the inside of the pillar element 4 with a filling material 4a. Only one reinforcing bar 50 may be installed in one column element 4, or two or more may be installed as illustrated in FIG. 14B.
  • two or more of the pillar elements 4 are installed at intervals along the transverse direction (L-R), and reinforcing bars inserted and disposed along the vertical (U-D) direction inside the pillar element 4 (50) is provided.
  • a steel pile 350 is provided by drilling into the lower ground and having at least a part inserted into the column element 4 along the up-and-down (U-D) direction.
  • Transverse reinforcing bars 60 penetrating the two or more column elements 4 in the transverse direction (L-R) are combined with at least one of the reinforcing bars 50 and the steel piles 350.
  • the geocell retaining wall 2 can maintain a more robust and stable installation state.
  • 15a, 15b and 15c are planar, lateral and perspective schematic views of a retaining wall structure according to an embodiment of the present invention.
  • the column element 4 is a tubular member, and the internal space is filled with aggregate.
  • the drain board or bundle pipe 70 installed through the incised side part (4s or 4ps) of the pillar element (4) is part of the upper geocell (10) and part of the unit cell (12) and the lower geocell (10) It is disposed between the unit cells 12.
  • the drain board is a known drainage system in which vacuum-formed high-density polystyrene and a special filter (non-woven fabric) are bonded, and installed on a retaining wall or structure to allow water to flow through a drainage pipe or pumping pipe. It can be cut to an appropriate size for use.
  • the bundle pipe is a drainage pipe that has many consecutive linear type catchments and drainage spaces, so there is no blockage and the effect of collecting and draining water is excellent. etc.
  • the bundle pipe can be used by selecting an appropriate number of bundles and pipe diameter in consideration of the supplied flow rate and cutting to an appropriate length.
  • Two or more drain boards or bundle pipes 70 may be inserted and installed at one point of the incised side portion (4s or 4ps) of the pillar element 4, and when two or more are installed, they are arranged in different directions It is installed so that water can be distributed and supplied to the soil inside the geocell 10.
  • the pillar element 4 is a tubular member capable of filling the inner space with a filling material 4a, and a vertical (U-D) direction is formed inside the pillar element 4. It has a reinforcing bar 50 inserted and arranged along the geocell retaining wall 2, and the rear end extends toward the soil S' located on the rear side of the pillar element 4 through the pillar element 4. In the inner space, a tensile force (TF) toward the rear (B) is provided by the civil reinforcing material coupled to the reinforcing bar (50).
  • TF tensile force
  • FIGS. 8A and 8B correspond to this embodiment as a case of using a steel plate reinforcement 430 as a civil engineering reinforcement.
  • the rear reinforcing bars 330 illustrated in FIGS. 8A and 8B may also be installed in this embodiment (through the column element 4 and coupled to the reinforcing bar 50).
  • two or more of the pillar elements 4 are installed at intervals along the transverse direction (L-R), and the transverse direction penetrating the two or more pillar elements 4 in the transverse direction (L-R)
  • Reinforcing bars 60 are installed, and the transverse reinforcing bars 60 are coupled to a civil reinforcing material whose rear end extends toward the soil S' located on the rear side of the geocell retaining wall 2, so that the rear ( A tensile force (TF) toward B) is provided.
  • FIGS. 3a and 3b show a case of using a belt-shaped reinforcing material 30 as a civil reinforcing material
  • FIGS. 6a and 6b show a case of using a reinforcing bar grid 230 as a civil reinforcing material
  • FIGS. 9c and 9d show a steel plate reinforcement as a civil reinforcing material ( 430) can be seen as exemplified respectively.
  • a fixing bar 40 is fixed to a hole 104 drilled in a civil engineering slope 102 by grouting 106 and one end exposed to the outside of the hole 104 is installed. And, the pillar element 4 is provided with a tensile force (TF) toward the rear (B) based on the fixing bar (40).
  • TF tensile force
  • FIGS. 7a and 7b show the support plate 120 for fixing the bar 40
  • Figures 8a and 8b when the reinforcement for the rear 330 is provided with a tensile force (TF) based on the bar 40 for fixing
  • Figures 11a and 11b are transverse Directional reinforcing bars 60 or auxiliary transverse reinforcing bars 160 can be seen as exemplified when receiving a tensile force (TF) based on the fixing bar 40, respectively.
  • two or more of the pillar elements 4 are installed at intervals along the transverse direction (L-R), and grouting (106) in a hole (104) drilled in a civil engineering slope (102) ) and a fixing bar 40 having one end exposed to the outside of the hole 104 is installed, and the transverse reinforcing bar 60 installed by penetrating the two or more pillar elements 4 in the transverse direction (L-R) At least a portion is provided with a tensile force (TF) toward the rear (B) based on the fixing bar (40).
  • TF tensile force
  • Figures 11a and 11b can be seen as an example of the case where the tensile force (TF) is provided based on the transverse reinforcement 60 and the fixing bar 40.
  • FIGS. 5A and 5B are planar and lateral schematic diagrams of a retaining wall structure according to an embodiment of the present invention
  • FIGS. 5C and 5D are perspective and cross-sectional views showing the installation state of a block-shaped resistor according to an embodiment of the present invention. It is a schematic diagram of direction.
  • a part of the geocell retaining wall (2) is buried in the soil (S') located on the back side, and based on the soil pressure (SP) and the frictional force of the soil (S), the tensile force (TF) toward the rear (B)
  • a reinforcement for civil engineering is installed, and a part of the front (F) side of the reinforcement for civil engineering is installed in the middle of the plurality of geocells 10 stacked vertically (U-D).
  • the reinforcing material for civil engineering may be a belt-shaped reinforcing material 30 .
  • the block-shaped resistor 20 is placed on top of the unit cell 12 of the geocell 10 filled with soil (S).
  • the band-shaped reinforcing member 30 extends in the lateral direction (L-R) toward the bending portion 30a and the civil slope 102 forming a state of wrapping the front (F) side and left and right sides of the block-shaped resistor 20, It includes an expanding portion (30b) forming an unfolded state, and the bending portion is installed so as to be positioned in the middle of the plurality of geocells 10 stacked vertically (U-D).
  • the block-shaped resistor 20 is spread horizontally on the front side of the civil engineering slope 102 and is placed on top of the unit cell 12 of the geocell 10 filled with soil (S).
  • the block-shaped resistor 20 may be made of a concrete material or may be made of a rectangular parallelepiped block.
  • the block-shaped resistor 20 is stacked on top of the soil layer Sd of the lower geocell 10 and may be located inside the soil layer Su of the upper geocell 10. It may be located inside the soil layer (Sd) of the geocell (10).
  • the band-shaped reinforcing member 30 extends in the transverse direction toward the bending portion 30a and the civil slope 102 that surrounds the front side 20f and the left and right sides 20u of the block-shaped resistor 20. It includes an expanding part 30b forming a state, and is installed to be located in the middle of a plurality of geocells 10 stacked vertically.
  • the band-shaped reinforcing member 30 is formed in a strip shape having a predetermined width w, and in the section forming the bending portion 30a, the front side 20f and the left and right sides 20u of the block-shaped resistor 20 ) to form a partially erect state to achieve a state of enclosing.
  • the contact area with respect to the block-shaped resistor 20 is widened as much as possible, and the mutually transmitted forces can be transmitted in a distributed form through the widest area as possible.
  • the band-shaped reinforcing member 30 maintains a lying state in the same direction as the ground so as to receive earth pressure (SP) applied from the top over a wide area as much as possible in the section constituting the expanding portion 30b.
  • SP earth pressure
  • the block-shaped resistor 20 receives the tensile force TF from the strip-shaped reinforcing member 30, and forms a stacked state on the upper and lower portions of the block-shaped resistor 20, It is configured to prevent the lateral movement of the geocell 10 filled with soil (S).
  • the reinforcing material for civil engineering may be a geogrid 130 configured in the form of a lattice net.
  • the block-shaped resistor 20 is placed on top of the unit cell 12 of the geocell 10 filled with soil (S).
  • the geogrid 130 is installed to be located in the middle of the plurality of geocells 10 stacked vertically (U-D), and the front (F) side, upper side and rear side (B) of the block-shaped resistor 20 ) side is bent and deformed to cover the block-shaped resistor 20.
  • the geogrid 130 is installed in a form similar to FIGS. 4D and 4E.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

The present invention relates to a retaining wall structure. According to an embodiment of the present invention, disclosed is a retaining wall structure configured by vertically stacking geocells, each geocell being configured by combining a plurality of unit cells, wherein resistance force against horizontal earth pressure is strengthened by using a column element vertically installed through some unit cells of upper-layer geocells and some unit cells of lower-layer geocells, thereby improving stability and durability of the retaining wall.

Description

옹벽구조retaining wall structure
본 발명은 옹벽구조에 관한 것으로서, 복수의 단위 셀이 결합하여 구성된 지오셀을 상하로 적층하여 구성되며, 상층 지오셀의 일부 단위 셀과 하층 지오셀의 일부 단위 셀을 관통하여 상하 방향으로 설치된 기둥 요소를 이용하여 횡방향의 토압에 대한 저항력을 강화함으로써, 옹벽의 안정성과 견고함을 향상시킨 옹벽구조에 관한 것이다. The present invention relates to a retaining wall structure, which is constructed by vertically stacking geocells formed by combining a plurality of unit cells, and pillars installed in the vertical direction through some unit cells of an upper geocell and some unit cells of a lower geocell. It relates to a retaining wall structure that improves the stability and robustness of a retaining wall by strengthening resistance to lateral earth pressure using elements.
옹벽(Retain wall)은 지표(earth surface) 및 지반(ground)의 안정된 경사를 그것보다 가파른 경사로 하였을 경우에 일어나는 지반 붕괴를 막기 위해 만든 구조물로서, 토(soil) 압력에 저항하여 흙이 무너지지 못하게 만든 벽체를 말한다. A retain wall is a structure made to prevent ground collapse that occurs when the stable slope of the earth surface and the ground is steeper than that, and is made to prevent the soil from collapsing by resisting the pressure of soil. say the wall
옹벽 설치를 위해 콘크리트 블록이나 패널 등이 널리 사용되며, 특히 옹벽 전면부에 식물을 식재하는 방식의 식생 옹벽을 구성하기 위해 지오셀이 널리 사용된다. Concrete blocks or panels are widely used for installing retaining walls, and in particular, geocells are widely used to construct vegetation retaining walls by planting plants on the front of the retaining wall.
지오셀(geocell)은 10 mm 정도의 두께를 갖는 합성수지판으로 벌집 모양의 삼차원 형태로 제작된 토목섬유 보강재로서, 단위 셀(cell) 안에 토사(조립토)를 채워 다짐함으로써 복합구조체의 강성 등 공학적 특성을 증대시켜 지반의 전단 강도 및 지지력을 극대화시키기 위해 사용된다.A geocell is a geotextile reinforcing material made in a honeycomb-shaped three-dimensional shape with a synthetic resin board with a thickness of about 10 mm. By filling and compacting soil (granular soil) in a unit cell, the engineering properties such as stiffness of the composite structure are improved. It is used to maximize the shear strength and bearing capacity of the ground by increasing the
다수의 지오셀을 상하 방향으로 적층하여 옹벽을 설치하는 경우에는 지오셀을 사면에 단층으로 설치할 때와 달리 지오셀이 토압에 의해 횡방향으로 이동하지 않도록 하는 구성이 고려될 필요가 있다. When installing a retaining wall by stacking a plurality of geocells in the vertical direction, it is necessary to consider a configuration that prevents the geocells from moving in the lateral direction due to earth pressure, unlike when the geocells are installed in a single layer on a slope.
이를 감안하여 본 발명자는 대한민국 등록특허 10-2132732 (2020.07.06 등록), 대한민국 등록특허 10-2066728 (2020.01.09 등록), 대한민국 등록특허 10-2010575 (2019.08.07 등록) 등을 통해, 지오셀의 횡방향 이동에 대한 저항력을 강화하는 구성을 제안한 바 있다. In view of this, the present inventors, through Korean Registered Patent No. 10-2132732 (registered on July 6, 2020), Korean Registered Patent No. 10-2066728 (registered on January 9, 2020), and Korean Registered Patent No. 10-2010575 (registered on August 7, 2019), geocell A configuration that strengthens the resistance to lateral movement of the bar has been proposed.
그런데, 상기 종래기술들은 상하 방향으로 적층된 다수의 지오셀 옹벽 중의 일부 지오셀 층에 대해 토목 보강재를 이용하여 횡방향 저항력을 강화하는 방식이므로, 지오셀 옹벽의 전체 옹벽 구조 관점에서 횡방향 저항력을 강화하기 위한 구성이 더욱 모색될 필요가 있다. However, since the prior art is a method of reinforcing the lateral resistance by using a civil reinforcing material for some of the geocell layers among the plurality of geocell retaining walls stacked in the vertical direction, the lateral resistance from the viewpoint of the entire retaining wall structure of the geocell retaining wall It is necessary to further explore the configuration for strengthening.
특히, 도심지와 산악지역의 개발에 의한 환경 훼손을 최소화하고, 토사채움 구간인 배면부 지중구조물과의 간섭과 토지경계상의 대지경계를 침범하는 경우를 최소화하기 위해, 지오셀 옹벽의 후방에 설치하는 토목 보강재를 최소한의 길이로 줄여야 할 필요가 있으며, 이러한 조건에서 전체 옹벽 구조의 횡방향 저항력을 더욱 강화하기 위한 구성이 필요하다. In particular, in order to minimize environmental damage caused by the development of urban areas and mountainous areas, and to minimize interference with underground structures at the back of the soil filling section and invasion of the site boundary on the land boundary, civil engineering installed behind the geocell retaining wall It is necessary to reduce the length of the stiffener to a minimum, and in this condition, a configuration to further strengthen the lateral resistance of the entire retaining wall structure is required.
또한 설치 환경에 따라 옹벽의 높이를 높이더라도, 옹벽의 구조적 안정성을 확보할 수 있는 옹벽 구조가 모색될 필요가 있다. In addition, it is necessary to find a retaining wall structure that can secure the structural stability of the retaining wall even if the height of the retaining wall is increased according to the installation environment.
본 발명은 상기와 같은 문제점을 감안하여 안출한 것으로서, 복수의 단위 셀이 결합하여 구성된 지오셀을 상하로 적층하여 구성되며, 상층 지오셀의 일부 단위 셀과 하층 지오셀의 일부 단위 셀을 관통하여 상하 방향으로 설치된 기둥 요소를 이용하여 횡방향의 토압에 대한 저항력을 강화함으로써, 옹벽의 안정성과 견고함을 향상시킨 옹벽구조를 제공하는 것을 목적으로 한다. The present invention was devised in view of the above problems, and is composed of vertically stacking geocells formed by combining a plurality of unit cells, passing through some unit cells of the upper geocell and some unit cells of the lower geocell. It is an object of the present invention to provide a retaining wall structure with improved stability and robustness of a retaining wall by strengthening resistance to lateral earth pressure using pillar elements installed in the vertical direction.
본 발명의 일측면에 따르면, 복수의 단위 셀이 결합하여 구성된 지오셀을 토목 경사면의 전방 측에 경사도를 갖도록 상하로 적층하여 구성되며, 상기 지오셀 내부에 토사를 채워 설치한 지오셀 옹벽체; 및 상층 지오셀의 일부 단위 셀과 하층 지오셀의 일부 단위 셀을 관통하여 상기 지오셀 옹벽체와 동일한 경사도를 갖도록 상하 방향을 따라 설치된 하나 이상의 기둥 요소;를 포함하여 구성된 옹벽구조가 개시된다.According to one aspect of the present invention, a geocell retaining wall composed of a plurality of unit cells combined and stacked up and down to have a gradient on the front side of a civil engineering slope, and installed by filling the inside of the geocell with soil; and one or more pillar elements installed along the vertical direction to have the same inclination as the geocell retaining wall through some unit cells of the upper geocell and some unit cells of the lower geocell.
바람직하게, 상기 기둥 요소는 채움재로 내부 공간의 채움이 이뤄지는 관형(管形) 부재일 수 있다. Preferably, the pillar element may be a tubular member in which the inner space is filled with a filling material.
바람직하게, 상기 채움재는 토사 및 골재 중의 적어도 어느 하나일 수 있다.Preferably, the filling material may be at least one of soil and aggregate.
바람직하게, 상기 채움재는 콘크리트, 시멘트 그라우팅 및 소일 시멘트(soil cement) 중의 적어도 어느 하나일 수 있다. Preferably, the filling material may be at least one of concrete, cement grouting, and soil cement.
바람직하게 본 발명은, 상기 기둥 요소의 내부에 상하 방향을 따라 삽입 배치된 보강 철근을 더욱 구비한다. Preferably, the present invention further includes reinforcing bars inserted and arranged along the vertical direction into the inside of the column element.
바람직하게, 상기 관형 부재는 유공관(有孔管)일 수 있다. Preferably, the tubular member may be a perforated pipe.
바람직하게, 상기 기둥 요소는 상기 지오셀 옹벽체 후면에 위치한 토사에 일부가 매립되어 토압과 마찰력을 받는 토목용 보강재로부터 후방을 향한 인장력을 제공받는다. Preferably, the pillar element is partially embedded in soil located on the rear surface of the geocell retaining wall and receives a tensile force toward the rear from a civil engineering reinforcing material that receives earth pressure and frictional force.
바람직하게, 상기 토목용 보강재는 띠형 보강재이며, 상기 띠형 보강재가 상기 기둥 요소의 적어도 일부분을 감싸는 형태로 상기 기둥 요소에 결합한다. Preferably, the civil engineering reinforcing material is a belt-shaped reinforcing material, and the belt-shaped reinforcing material is coupled to the pillar element in a form of enclosing at least a portion of the pillar element.
바람직하게, 상기 기둥 요소는 2 이상이 횡방향을 따라 간격을 갖고 설치되고, 상기 토목용 보강재는 띠형 보강재이며, 상기 2 이상의 기둥 요소를 횡방향으로 관통하여 설치된 횡방향 철근의 적어도 일부분을 상기 띠형 보강재가 감싸는 형태로 결합하도록 구성된다. Preferably, two or more of the pillar elements are installed at intervals along the transverse direction, the reinforcing material for civil engineering is a belt-shaped reinforcing material, and at least a portion of the transverse reinforcing bars installed by penetrating the two or more pillar elements in the transverse direction is formed in the belt-shaped The reinforcing material is configured to be bonded in an enveloping form.
바람직하게, 상기 토목용 보강재는 격자 형상의 네트 형태로 구성된 지오그리드이며, 상기 지오그리드가 상기 기둥 요소의 상하 분리된 부분을 통과하는 형태로 설치된다. Preferably, the reinforcing material for civil engineering is a geogrid configured in the form of a lattice net, and the geogrid is installed in a form passing through the upper and lower separated parts of the column elements.
바람직하게, 상기 기둥 요소는, 내부에 상하 방향을 따라 보강 철근이 삽입 배치되고 채움재로 내부 공간의 채움이 이뤄진 관형(管形) 부재이며, 상기 보강 철근이 상기 지오그리드를 구성하는 어느 하나의 격자를 관통하도록 설치된다. Preferably, the column element is a tubular member in which reinforcing bars are inserted and disposed along the vertical direction and the inner space is filled with a filler material, and the reinforcing bars form any one grid constituting the geogrid installed to pass through
바람직하게, 상기 기둥 요소는, 골재를 포함하는 채움재로 내부 공간의 채움이 이뤄진 관형(管形) 부재이며, 상기 채움재를 통해 상기 지오그리드와 걸림 결합되도록, 상기 채움재를 구성하는 골재가 상기 지오그리드를 구성하는 격자를 관통하도록 설치된다. Preferably, the column element is a tubular member in which the inner space is filled with a filler material containing aggregate, and the aggregate constituting the filler material constitutes the geogrid so as to be engaged with the geogrid through the filler material It is installed so as to penetrate the lattice.
바람직하게, 내부에 토사 채움이 이뤄진 지오셀의 단위 셀 상부에 블록 형상 저항체가 적치되고, 상기 지오그리드는 상하로 적층된 복수의 지오셀의 중간에 위치하도록 설치되고, 상기 블록 형상 저항체의 전방측, 상부측 및 후방측을 감싸는 형태로 굴곡 변형되어 상기 블록 형상 저항체를 커버하는 형태로 설치된다. Preferably, a block-shaped resistor is placed on top of a unit cell of a geocell filled with soil inside, the geogrid is installed to be located in the middle of a plurality of vertically stacked geocells, and the front side of the block-shaped resistor, It is bent and deformed in the form of covering the upper side and the rear side, and is installed in the form of covering the block-shaped resistor.
바람직하게, 토목 경사면에 천공(穿孔)된 구멍에 그라우팅으로 고정되며 상기 구멍 외부로 일단부가 노출된 2 이상의 고정용 봉재가 설치되며, 상기 지오그리드는 서로 다른 상하 위치에 설치된 상측 지오그리드의 펼침부의 후단부와 하측 지오그리드의 펼침부의 후단부가 연결부를 통해 상호 일체로 연결된 형태를 이루고, 상기 연결부의 전방측을 가로 질러 설치된 지지봉의 일단부가 하나의 고정용 봉재에 결합되고, 상기 지지봉의 타단부가 또다른 하나의 고정용 봉재에 결합되어, 상기 상측 지오그리드의 펼침부와 하측 지오그리드의 펼침부가 상기 지지봉을 개재하여 상기 고정용 봉재로부터 인장력을 전달받는다. Preferably, two or more fixing rods are installed in a hole drilled in a civil engineering slope by grouting and have one end exposed to the outside of the hole, and the geogrid is installed at different vertical positions. The rear end of the expansion part of the upper geogrid and the rear end of the expansion part of the lower geogrid are integrally connected to each other through a connection part, and one end of a support rod installed across the front side of the connection part is coupled to one fixing rod material, and the other end of the support rod is another one It is coupled to the fixing bar, and the expansion part of the upper geogrid and the expansion part of the lower geogrid receive tensile force from the fixing bar through the support bar.
바람직하게, 상기 토목용 보강재는 격자 형상으로 철근이 배치되어 결합된 철근그리드이며, 횡방향을 따라 간격을 갖고 설치된 2 이상의 기둥 요소를 횡방향으로 관통하여 설치된 횡방향 철근에 상기 철근그리드의 전단부가 결합되도록 구성된다. Preferably, the reinforcing material for civil engineering is a reinforcing bar grid in which reinforcing bars are arranged and combined in a lattice shape, and the front end of the reinforcing bar grid is installed by penetrating two or more column elements installed at intervals in the lateral direction in the lateral direction. configured to be combined.
바람직하게, 상기 기둥 요소는 채움재로 내부 공간의 채움이 가능한 관형(管形) 부재이며, 토목 경사면에 천공(穿孔)된 구멍에 그라우팅으로 고정되며 상기 구멍 외부로 일단부가 노출된 고정용 봉재가 설치되며, 상기 기둥 요소를 관통하여 삽입된 상기 고정용 봉재의 일단부가 기둥 요소의 내부 공간에서 지지 플레이트에 체결되도록 구성된다. Preferably, the pillar element is a tubular member capable of filling the internal space with a filling material, fixed to a hole drilled in a civil engineering slope by grouting, and a fixing bar having one end exposed to the outside of the hole is installed. And, one end of the fixing bar inserted through the pillar element is configured to be fastened to the support plate in the inner space of the pillar element.
바람직하게, 상기 고정용 봉재는 2 이상의 봉재 요소가 커플러를 통해 연결 구성된다. Preferably, the fixing bar is configured to connect two or more bar elements through a coupler.
바람직하게, 상기 기둥 요소는, 상기 지오셀 옹벽체 후면에 위치한 토사 측으로 연장되며 상기 기둥 요소의 적어도 일부분을 감싸는 형태로 상기 기둥 요소에 결합되는 후방용 철근에 의해 후방을 향한 인장력을 제공받는다. Preferably, the pillar element extends toward the soil side located on the rear surface of the geocell retaining wall and is provided with rearward tensile force by a rear reinforcing bar coupled to the pillar element in a form surrounding at least a portion of the pillar element.
바람직하게, 상기 후방용 철근의 후단부에 지지 플레이트가 체결되며, 상기 지지 플레이트는 상기 지오셀 옹벽체 후면에 위치한 토사에 매립되도록 구성된다. Preferably, a support plate is fastened to the rear end of the reinforcing bars for the rear, and the support plate is configured to be buried in the soil located on the rear surface of the geocell retaining wall.
바람직하게, 토목 경사면에 천공(穿孔)된 구멍에 그라우팅으로 고정되며 상기 구멍 외부로 일단부가 노출된 고정용 봉재가 설치되며, 상기 후방용 철근의 후단부가 커플러를 통해 상기 고정용 봉재에 연결 구성된다. Preferably, a fixing bar is installed in a hole drilled in a civil engineering slope by grouting and has one end exposed to the outside of the hole, and the rear end of the rear reinforcing bar is connected to the fixing bar through a coupler. .
바람직하게, 상기 기둥 요소는, 채움재로 내부 공간의 채움이 가능한 관형(管形) 부재이고, 상기 기둥 요소의 내부에 상하 방향을 따라 삽입 배치된 보강 철근을 구비하며, 상기 지오셀 옹벽체 후면에 위치한 토사 측으로 후단부가 연장되며 상기 기둥 요소를 관통하여 상기 기둥 요소의 내부 공간에서 상기 보강 철근에 전단부가 결합되는 밴드 형태의 강판보강재에 의해 후방을 향한 인장력을 제공받는다. Preferably, the pillar element is a tubular member capable of filling the internal space with a filling material, and has reinforcing bars inserted and arranged along the vertical direction inside the pillar element, and on the rear surface of the geocell retaining wall The rear end extends to the side of the located soil and passes through the column element to receive a rearward tensile force by a band-shaped steel plate reinforcement having a front end coupled to the reinforcing bar in the inner space of the column element.
바람직하게, 상기 기둥 요소는 2 이상이 횡방향을 따라 간격을 갖고 설치되고, 상기 2 이상의 기둥 요소를 횡방향으로 관통하는 횡방향 철근이 설치되며, 상기 지오셀 옹벽체 후면에 위치한 토사 측으로 후단부가 연장되는 밴드 형태의 강판보강재의 전단부에 상기 횡방향 철근이 결합되어, 상기 강판보강재에 의해 후방을 향한 인장력을 제공받는다. Preferably, two or more of the pillar elements are installed at intervals along the transverse direction, transverse reinforcing bars penetrating the two or more pillar elements in the transverse direction are installed, and the rear end toward the soil side located on the rear surface of the geocell retaining wall The transverse reinforcement is coupled to the front end of the steel plate reinforcement in the form of an extending band, and a tensile force toward the rear is provided by the steel plate reinforcement.
바람직하게, 상기 지오셀 옹벽체는, 토사 적층체의 일측의 토목 경사면의 전방에 위치한 제1 지오셀 옹벽체와 토사 적층체의 타측의 토목 경사면의 전방에 위치한 제2 지오셀 옹벽체를 포함하며, 상기 기둥 요소는, 상기 제1 지오셀 옹벽체의 상층 지오셀의 일부 단위 셀과 하층 지오셀의 일부 단위 셀을 관통하여 상하 방향을 따라 설치된 제1 기둥 요소와 상기 제2 지오셀 옹벽체의 상층 지오셀의 일부 단위 셀과 하층 지오셀의 일부 단위 셀을 관통하여 상하 방향을 따라 설치된 제2 기둥 요소를 포함하며, 상기 제1 기둥 요소의 적어도 일부분을 감싸는 형태로 상기 제1 기둥 요소에 결합한 띠형 보강재가 상기 토사 적층체를 통과하여 상기 제2 기둥 요소의 적어도 일부분을 감싸는 형태로 상기 제2 기둥 요소에 결합하여, 상기 제1 기둥 요소 및 상기 제2 기둥 요소가 상기 토사 적층체를 향한 인장력을 제공받는다. Preferably, the geocell retaining wall includes a first geocell retaining wall located in front of the civil slope on one side of the soil stack and a second geocell retaining wall located in front of the civil slope on the other side of the soil stack, , The pillar element is installed along the vertical direction by penetrating some unit cells of the upper geocell and some unit cells of the lower geocell of the first geocell retaining wall, and of the first pillar element and the second geocell retaining wall It includes a second pillar element installed along the vertical direction through some unit cells of the upper geocell and some unit cells of the lower geocell, and is coupled to the first pillar element in a form surrounding at least a portion of the first pillar element A belt-shaped reinforcing member is coupled to the second pillar element in a form of passing through the soil laminate and surrounding at least a portion of the second pillar element, so that the first pillar element and the second pillar element have a tensile force toward the soil laminate. is provided
바람직하게, 상기 기둥 요소는 2 이상이 횡방향을 따라 간격을 갖고 설치되고, 상기 2 이상의 기둥 요소를 횡방향으로 관통하는 횡방향 철근이 설치되며, 상기 횡방향 철근과 또다른 각도의 횡방향으로 배치된 보조 횡방향 철근이 상기 횡방향 철근에 결합되고, 상기 횡방향 철근 및 보조 횡방향 철근 중의 적어도 어느 하나는 토목 경사면에 천공(穿孔)된 구멍에 그라우팅으로 고정되며 상기 구멍 외부로 일단부가 노출된 고정용 봉재에 결합 설치된다. Preferably, two or more of the pillar elements are installed at intervals along the transverse direction, transverse reinforcing bars penetrating the two or more pillar elements in the transverse direction are installed, and the transverse reinforcing bars and another angle in the transverse direction The placed auxiliary transverse reinforcing bars are coupled to the transverse reinforcing bars, and at least one of the transverse reinforcing bars and the auxiliary transverse reinforcing bars is fixed to a hole drilled in a civil engineering slope by grouting, and one end is exposed to the outside of the hole It is coupled and installed to the fixed rod material.
바람직하게, 상기 횡방향 철근 및 보조 횡방향 철근 중의 적어도 어느 하나와 중첩되는 위치에 있는 단위 셀의 내부에 상하 방향을 따라 삽입 배치된 보조 보강 철근을 구비하며, 상기 보조 보강 철근은 상기 횡방향 철근 및 보조 횡방향 철근 중의 적어도 어느 하나와 결합되고, 상기 보조 보강 철근이 상하 방향을 따라 삽입 배치된 단위 셀의 내부에 콘크리트, 시멘트 그라우팅 및 소일 시멘트(soil cement) 중의 적어도 어느 하나를 채움재로 내부 공간의 채움이 이뤄진다. Preferably, an auxiliary reinforcing bar is provided along the vertical direction inserted into the unit cell at a position overlapping with at least one of the transverse reinforcing bar and the auxiliary transverse reinforcing bar, and the auxiliary reinforcing bar is the transverse reinforcing bar And at least one of concrete, cement grouting, and soil cement is combined with at least one of the auxiliary transverse reinforcing bars and filled with at least one of concrete, cement grouting, and soil cement inside the unit cell in which the auxiliary reinforcing bars are inserted and disposed along the vertical direction. The filling of is done.
바람직하게, 상기 지오셀 옹벽체는, 서로 다른 높이로 적층된 2 이상의 단위 지오셀 옹벽체가 연접하여 이뤄진 중력식 옹벽체이며, 상기 기둥 요소는 각각의 단위 지오셀 옹벽체별로 별도로 설치된다. Preferably, the geocell retaining wall is a gravity-type retaining wall formed by connecting two or more unit geocell retaining walls stacked at different heights, and the column elements are separately installed for each unit geocell retaining wall.
바람직하게, 상기 기둥 요소는 2 이상의 단위 기둥 요소가 길이 방향을 따라 결합하여 구성되며, 상기 단위 기둥 요소는 미리 설정된 높이로 제작되며 일측 단면에는 돌출부가 형성되고 타측 단면에는 상기 돌출부가 삽입 결합되는 요홈부가 형성되도록 구성된다. Preferably, the pillar element is composed of two or more unit pillar elements coupled along the longitudinal direction, the unit pillar element is manufactured to a preset height, and a protrusion is formed on one end surface and a groove into which the protrusion is inserted and coupled to the other end surface. It is configured so that the portion is formed.
바람직하게, 상기 기둥 요소의 내부에는 상하 방향을 따라 삽입 배치된 보강 철근이 구비되며, 상기 기둥 요소의 하부에는 하부 지반에 천공 삽입된 강제 파일 또는 강관이 구비되며, 상기 보강 철근이 상기 강제 파일 또는 강관에 고정 결합된다. Preferably, the inside of the column element is provided with reinforcing bars inserted and disposed along the vertical direction, the lower portion of the column element is provided with a steel pile or steel pipe drilled into the lower ground, and the reinforcing bar is the steel pile or It is fixedly coupled to the steel pipe.
바람직하게, 상기 기둥 요소는 2 이상이 횡방향을 따라 간격을 갖고 설치되고, 상기 2 이상의 기둥 요소를 횡방향으로 관통하는 횡방향 철근이 설치되며, 하부 지반에 천공 삽입된 강제 파일 또는 강관이 구비되고, 상기 횡방향 철근이 상기 강제 파일 또는 강관에 관통 결합된다. Preferably, two or more of the column elements are installed at intervals along the transverse direction, transverse reinforcing bars penetrating the two or more column elements in the transverse direction are installed, and a steel pile or steel pipe drilled into the lower ground is provided And, the transverse reinforcing bar is coupled through the steel pile or steel pipe.
바람직하게, 상기 기둥 요소는 2 이상이 횡방향을 따라 간격을 갖고 설치되며, 상기 기둥 요소의 내부에 상하 방향을 따라 삽입 배치된 보강 철근이 구비되고, 하부 지반에 천공 삽입되며 상기 기둥 요소의 내부에 상하 방향을 따라 적어도 일부가 삽입 배치된 강제 파일이 구비되며, 상기 2 이상의 기둥 요소를 횡방향으로 관통하는 횡방향 철근이 상기 보강 철근 및 강제 파일 중의 적어도 하나와 결합된다. Preferably, two or more of the column elements are installed at intervals along the transverse direction, and a reinforcing bar inserted and disposed along the vertical direction is provided inside the column element, and is drilled into the lower ground, and the inside of the column element A steel pile having at least a portion inserted in the vertical direction is provided, and a transverse reinforcing bar penetrating the two or more column elements in a transverse direction is combined with at least one of the reinforcing bar and the steel pile.
바람직하게, 상기 기둥 요소는 관형(管形) 부재로서 골재로 내부 공간의 채움이 이뤄지며, 상기 기둥 요소의 절개된 측면부를 통해 삽입 설치된 드레인보드 또는 다발관이 상층 지오셀의 일부 단위 셀과 하층 지오셀의 일부 단위 셀 사이에 배치되어, 상기 기둥 요소의 내부에 저장된 수분이 상기 드레인보드 또는 다발관을 통해 지오셀 옹벽체에 공급 가능하도록 구성된다. Preferably, the column element is a tubular member, and the inner space is filled with aggregate, and a drain board or bundle pipe inserted through the incised side portion of the column element is used to connect some unit cells of the upper geocell and the lower geocell. It is arranged between some unit cells of the cells so that moisture stored inside the column elements can be supplied to the geocell retaining wall through the drain board or the bundle pipe.
바람직하게, 상기 기둥 요소는, 채움재로 내부 공간의 채움이 가능한 관형(管形) 부재이고, 상기 기둥 요소의 내부에 상하 방향을 따라 삽입 배치된 보강 철근을 구비하며, 상기 지오셀 옹벽체 후면에 위치한 토사 측으로 후단부가 연장되며 상기 기둥 요소를 관통하여 상기 기둥 요소의 내부 공간에서 상기 보강 철근에 결합되는 토목보강재에 의해 후방을 향한 인장력을 제공받는다. Preferably, the pillar element is a tubular member capable of filling the internal space with a filling material, and has reinforcing bars inserted and arranged along the vertical direction inside the pillar element, and on the rear surface of the geocell retaining wall The rear end extends to the side of the located soil and passes through the column element to receive a rearward tensile force from a civil engineering reinforcing bar coupled to the reinforcing bar in the inner space of the column element.
바람직하게, 상기 기둥 요소는 2 이상이 횡방향을 따라 간격을 갖고 설치되고, 상기 2 이상의 기둥 요소를 횡방향으로 관통하는 횡방향 철근이 설치되며, 상기 지오셀 옹벽체 후면에 위치한 토사 측으로 후단부가 연장되는 토목보강재에 상기 횡방향 철근이 결합되어, 상기 토목보강재에 의해 후방을 향한 인장력을 제공받는다. Preferably, two or more of the pillar elements are installed at intervals along the transverse direction, transverse reinforcing bars penetrating the two or more pillar elements in the transverse direction are installed, and the rear end toward the soil side located on the rear surface of the geocell retaining wall The transverse reinforcing bar is coupled to the extending civil reinforcing material, and a tensile force toward the rear is provided by the civil reinforcing material.
바람직하게, 토목 경사면에 천공(穿孔)된 구멍에 그라우팅으로 고정되며 상기 구멍 외부로 일단부가 노출된 고정용 봉재가 설치되며, 상기 기둥 요소는 상기 고정용 봉재에 기초하여 후방을 향한 인장력을 제공받는다. Preferably, a fixing bar is installed in a hole drilled in a civil engineering slope by grouting and has one end exposed to the outside of the hole, and the pillar element is provided with a rearward tensile force based on the fixing bar .
바람직하게, 상기 기둥 요소는 2 이상이 횡방향을 따라 간격을 갖고 설치되고, 토목 경사면에 천공(穿孔)된 구멍에 그라우팅으로 고정되며 상기 구멍 외부로 일단부가 노출된 고정용 봉재가 설치되며, 상기 2 이상의 기둥 요소를 횡방향으로 관통하여 설치된 횡방향 철근의 적어도 일부분이 상기 고정용 봉재에 기초하여 후방을 향한 인장력을 제공받는다. Preferably, two or more of the pillar elements are installed at intervals along the transverse direction, fixed by grouting to a hole drilled in a civil slope, and a fixing bar having one end exposed to the outside of the hole is installed, wherein the At least a portion of the transverse reinforcing bars installed by penetrating two or more column elements in the transverse direction is provided with a rearward tensile force based on the fixing bar.
바람직하게, 상기 지오셀 옹벽체 후면에 위치한 토사에 일부가 매립되고 토사의 토압과 마찰력에 기초하여 후방을 향한 인장력을 제공받는 토목용 보강재가 설치되며, 상기 토목용 보강재의 전방 측 일부가 상하로 적층된 복수의 지오셀의 중간에 위치하도록 설치된다. Preferably, a civil reinforcing member is installed that is partly buried in the soil located on the back side of the geocell retaining wall and receives a tensile force toward the rear based on the soil pressure and frictional force of the soil, and a part of the front side of the civil engineering reinforcing member is vertically It is installed to be located in the middle of a plurality of stacked geocells.
바람직하게, 상기 토목용 보강재는 띠형 보강재이며, 내부에 토사 채움이 이뤄진 지오셀의 단위 셀 상부에 블록 형상 저항체가 적치되고, 상기 띠형 보강재가 상기 블록 형상 저항체의 전방측 및 좌우측을 감싸는 상태를 이루는 벤딩부와 상기 토목 경사면 측으로 횡방향으로 연장되어 펼쳐진 상태를 이루는 펼침부를 포함하며, 상기 벤딩부가 상하로 적층된 복수의 지오셀의 중간에 위치하도록 설치된다. Preferably, the civil engineering reinforcing material is a belt-shaped reinforcing material, and a block-shaped resistor is placed on top of a unit cell of a geocell filled with soil inside, and the band-shaped reinforcing member surrounds the front side and left and right sides of the block-shaped resistor. It includes a bending part and an expanding part that extends laterally toward the civil engineering slope to form an unfolded state, and the bending part is installed to be located in the middle of a plurality of vertically stacked geocells.
바람직하게, 상기 토목용 보강재는 격자 형상의 네트 형태로 구성된 지오그리드이며, 내부에 토사 채움이 이뤄진 지오셀의 단위 셀 상부에 블록 형상 저항체가 적치되고, 상기 지오그리드는 상하로 적층된 복수의 지오셀의 중간에 위치하도록 설치되고, 상기 블록 형상 저항체의 전방측, 상부측 및 후방측을 감싸는 형태로 굴곡 변형되어 상기 블록 형상 저항체를 커버하는 형태로 설치된다. Preferably, the reinforcement material for civil engineering is a geogrid composed of a grid-shaped net, a block-shaped resistor is placed on top of a unit cell of a geocell filled with soil inside, and the geogrid is composed of a plurality of vertically stacked geocells. It is installed to be positioned in the middle, and is bent and deformed to cover the front, upper, and rear sides of the block-shaped resistor to cover the block-shaped resistor.
바람직하게, 하나의 기둥 요소는 상층 지오셀의 미리 설정된 단위 셀 위치와 하층 지오셀의 미리 설정된 단위 셀 위치를 상하 관통하여 상기 지오셀 옹벽체의 상하 높이 전체에 걸쳐서 설치되도록 구성된다. Preferably, one pillar element is configured to be installed over the entire vertical height of the geocell retaining wall by vertically penetrating a preset unit cell location of an upper geocell and a preset unit cell location of a lower geocell.
바람직하게, 각각의 층을 구성하는 상기 지오셀은 각각 수평 방향으로 펼친 상태에서 적층되고, 각각의 층을 구성하는 상기 지오셀을 상하로 적층하여 구성된 상기 지오셀 옹벽체가 경사도를 갖도록 구성되며, 각각의 지오셀 층에 있어서 가장 전면부에 위치하는 단위 셀들은 내부에 토사 및 골재 중의 적어도 어느 하나가 매립된 상태로 상부면이 계단형으로 노출 상태를 이룬다. Preferably, the geocells constituting each layer are stacked in a horizontally spread state, and the geocell retaining wall configured by stacking the geocells constituting each layer up and down has a slope, respectively In the geocell layer of the unit cells located at the frontmost part, at least one of soil and aggregate is buried therein, and the upper surface is exposed in a stepwise manner.
이와 같은 본 발명은, 복수의 단위 셀이 결합하여 구성된 지오셀을 상하로 적층하여 구성되며, 상층 지오셀의 일부 단위 셀과 하층 지오셀의 일부 단위 셀을 관통하여 상하 방향으로 설치된 기둥 요소를 이용하여 지오셀 옹벽이 상하좌우 일체화되는 구조를 제공하여 횡방향의 토압에 대한 저항력을 강화함으로써, 옹벽의 안정성과 견고함을 향상시키는 장점이 있다. The present invention as described above is composed of vertically stacking geocells formed by combining a plurality of unit cells, and uses pillar elements installed in the vertical direction through some unit cells of the upper geocell and some unit cells of the lower geocell. There is an advantage in improving the stability and robustness of the retaining wall by providing a structure in which the geocell retaining wall is integrated up, down, left and right, thereby strengthening resistance to lateral earth pressure.
또한, 본 발명은 지오셀 옹벽에 사용되는 토목 보강재를 최소한의 길이로 줄일 수 있으므로, 도심지와 산악지역의 개발에 의한 환경 훼손을 최소화하고, 토사채움 구간인 배면부 지중구조물과의 간섭과 토지경계상의 대지경계를 침범하는 경우를 최소화하는 장점이 있다. In addition, the present invention can reduce the length of the civil reinforcing material used in the geocell retaining wall to a minimum length, thereby minimizing environmental damage caused by the development of urban areas and mountainous areas, and preventing interference with underground structures at the back of the soil filling section and land boundary It has the advantage of minimizing the case of encroaching on the site boundary.
또한, 본 발명은 설치 환경에 따라 옹벽의 높이를 높이더라도, 옹벽의 구조적 안정성을 확보할 수 있다는 장점이 있다. In addition, the present invention has the advantage of securing the structural stability of the retaining wall even if the height of the retaining wall is increased according to the installation environment.
또한, 본 발명은 설치 조건에 따라 옹벽의 경사 각도를 수직에 가깝게 설치하더라도, 옹벽의 구조적 안정성을 확보할 수 있으며, 원 지반의 절취 폭을 감소시킬 수 있다는 장점이 있다. In addition, the present invention has the advantage of securing the structural stability of the retaining wall and reducing the cutting width of the original ground even when the inclination angle of the retaining wall is installed close to vertical according to the installation conditions.
도 1은 본 발명의 실시예에 따른 옹벽구조의 측면 방향 모식도, 1 is a schematic diagram in the side direction of a retaining wall structure according to an embodiment of the present invention;
도 2a 및 도 2b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 사시도 방향 모식도, 2a and 2b are a schematic plan view and perspective view schematic diagram of a retaining wall structure according to an embodiment of the present invention;
도 3a 및 도 3b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 사시도 방향 모식도, 3a and 3b are a planar and perspective view schematic diagram of a retaining wall structure according to an embodiment of the present invention;
도 4a, 도 4b 및 도 4c는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도, 사시도 방향 모식도 및 측면 방향 모식도, 4a, 4b, and 4c are planar, perspective, and lateral schematic views of a retaining wall structure according to an embodiment of the present invention;
도 4d 및 도 4e는 본 발명의 실시예에 따른 옹벽구조의 사시도 방향 모식도 및 측면 방향 모식도, 4D and 4E are schematic diagrams in a perspective view direction and a schematic diagram in a side direction of a retaining wall structure according to an embodiment of the present invention;
도 4f는 본 발명의 실시예에 따른 블록 형상 저항체의 설치 상태를 나타낸 단면 모식도, 4F is a cross-sectional schematic diagram showing an installation state of a block-shaped resistor according to an embodiment of the present invention;
도 4g는 본 발명의 실시예에 따른 지오그리드의 설치 상태를 나타낸 단면 모식도, Figure 4g is a schematic cross-sectional view showing the installation state of the geogrid according to an embodiment of the present invention;
도 5a 및 도 5b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 측면 방향 모식도, 5A and 5B are a schematic plan view and a side view schematic diagram of a retaining wall structure according to an embodiment of the present invention;
도 5c 및 도 5d는 본 발명의 실시예에 따른 블록 형상 저항체의 설치 상태를 나타낸 사시도 방향 모식도 및 단면 방향 모식도, 5c and 5d are a perspective view direction schematic diagram and a cross-sectional direction schematic diagram showing an installation state of a block-shaped resistor according to an embodiment of the present invention;
도 6a 및 도 6b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도, 측면 방향 모식도 및 사시도 방향 모식도, 6A and 6B are schematic diagrams in a plane direction, a side view and a perspective view of a retaining wall structure according to an embodiment of the present invention;
도 7a 및 도 7b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 사시도 방향 모식도, 7A and 7B are a schematic plan view and perspective view schematic diagram of a retaining wall structure according to an embodiment of the present invention;
도 7c는 본 발명의 실시예에 따른 지지 플레이트의 사시도 방향 모식도, 7C is a perspective view direction schematic diagram of a support plate according to an embodiment of the present invention;
도 7d는 본 발명의 실시예에 따른 커플러의 사시도 방향 모식도, 7d is a perspective view direction schematic diagram of a coupler according to an embodiment of the present invention;
도 8a 및 도 8b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 사시도 방향 모식도, 8a and 8b are a schematic plan view and perspective view schematic diagram of a retaining wall structure according to an embodiment of the present invention;
도 9a 및 도 9b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 사시도 방향 모식도, 9a and 9b are a schematic plan view and perspective view schematic diagram of a retaining wall structure according to an embodiment of the present invention;
도 9c 및 도 9d는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도, 측면 방향 모식도 및 사시도 방향 모식도, 9c and 9d are schematic diagrams of a retaining wall structure according to an embodiment of the present invention in a plane direction, a side view and a perspective view;
도 10a 및 도 10b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 측면 방향 모식도, 10A and 10B are a schematic plan view and a side view schematic diagram of a retaining wall structure according to an embodiment of the present invention;
도 11a 및 도 11b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 측면 방향 모식도, 11a and 11b are planar and lateral schematic views of a retaining wall structure according to an embodiment of the present invention;
도 12a, 도 12b 및 도 12c는 본 발명의 실시예에 따른 옹벽구조의 측면 방향 모식도, 12a, 12b and 12c are schematic views of the side direction of the retaining wall structure according to an embodiment of the present invention;
도 13a 및 도 13b는 본 발명의 실시예에 따른 기둥 요소의 평면 방향 모식도, 측면 방향 모식도 및 결합 상태의 측면 방향 모식도, 13a and 13b are a schematic planar view, a schematic side view and a side view of a coupled state of a pillar element according to an embodiment of the present invention;
도 14a, 도 14b, 도 14c 및 도 14d는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도, 평면 방향 모식도, 측면 방향 모식도 및 기둥 요소의 결합 상태 모식도, 14a, 14b, 14c, and 14d are schematic diagrams in a plane direction, a schematic diagram in a plan direction, a schematic diagram in a side direction, and a coupled state diagram of column elements of a retaining wall structure according to an embodiment of the present invention;
도 15a, 도 15b 및 도 15c는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도, 측면 방향 모식도 및 사시도 방향 모식도, 15a, 15b, and 15c are schematic diagrams in a plane direction, a schematic side view, and a perspective view of a retaining wall structure according to an embodiment of the present invention;
도 16은 본 발명의 실시예에 따른 기둥 요소의 다양한 실시 형태를 나타낸 모식도이다. 16 is a schematic view showing various embodiments of a pillar element according to an embodiment of the present invention.
본 발명은 그 기술적 사상 또는 주요한 특징으로부터 벗어남이 없이 다른 여러가지 형태로 실시될 수 있다. 따라서, 본 발명의 실시예들은 모든 점에서 단순한 예시에 지나지 않으며 한정적으로 해석되어서는 안 된다.The present invention may be embodied in other various forms without departing from its technical spirit or essential characteristics. Therefore, the embodiments of the present invention are mere examples in all respects and should not be construed in a limited manner.
제1, 제2 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. The terms first, second, etc. are used only for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다. When a component is referred to as being “connected” or “connected” to another component, it may be directly connected or connected to the other component, but other components may exist in the middle.
본 출원에서 사용한 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "구비하다", "가지다" 등의 용어는 명세서에 기재된 구성요소 또는 이들의 조합이 존재하는 것을 표현하려는 것이지, 다른 구성요소 또는 특징이 존재 또는 부가될 가능성을 미리 배제하는 것은 아니다. Singular expressions used in this application include plural expressions unless the context clearly dictates otherwise. In this application, terms such as "comprise" or "have" or "have" are intended to express that the components described in the specification or a combination thereof exist, but the possibility that other components or features may exist or be added. It is not precluded.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 옹벽구조의 측면 방향 모식도, 도 16은 본 발명의 실시예에 따른 기둥 요소의 다양한 실시 형태를 나타낸 모식도이다. 1 is a schematic diagram showing a side direction of a retaining wall structure according to an embodiment of the present invention, and FIG. 16 is a schematic diagram showing various embodiments of a column element according to an embodiment of the present invention.
본 실시예에 따른 옹벽구조는, 상하로 적층된 복수의 지오셀(10)을 관통하여 상하 방향으로 설치된 기둥 요소(4)를 이용하여 횡방향(특히, 전후 방향)의 토압에 대한 저항력을 강화함으로써, 옹벽의 안정성과 견고함을 향상시킨다. 복수의 지오셀(10)은 도 1에 예시된 것처럼 경사도를 갖고 적층되며, 기둥 요소(4)도 이에 상응하여 지오셀(10)과 동일하거나 유사한 정도의 경사도를 갖고 복수의 지오셀(10)을 관통하여 삽입 설치된다. 경사도를 갖고 적층된다는 것은, 아래 층의 지오셀(10)이 그 바로 위층의 지오셀(10)보다 더 전방 측으로 돌출하도록 설치되는 상태를 말한다. The retaining wall structure according to this embodiment strengthens the resistance against earth pressure in the lateral direction (in particular, the front and rear direction) by using the pillar elements 4 installed in the vertical direction through the plurality of geocells 10 stacked vertically. This improves the stability and robustness of the retaining wall. A plurality of geocells 10 are stacked with an inclination as illustrated in FIG. 1, and the pillar elements 4 correspondingly have the same or similar inclination as the geocell 10, and the plurality of geocells 10 It is inserted through and installed. Stacking with an inclination refers to a state in which the geocell 10 of the lower layer is installed so as to protrude more forward than the geocell 10 of the layer immediately above it.
이를 위해, 본 실시예에 따른 옹벽구조는 지오셀 옹벽체(2)와 하나 이상의 기둥 요소(4)를 포함한다. To this end, the retaining wall structure according to this embodiment includes a geocell retaining wall 2 and one or more pillar elements 4.
상기 지오셀 옹벽체(2)는 복수의 단위 셀(12)이 결합하여 구성된 지오셀(10)을 토목 경사면(102)의 전방(F) 측에 상하(U-D)로 적층하여 구성되며, 상기 지오셀(10) 내부에 토사(S)를 채워 설치한다. 일예로, 지오셀(10) 내부의 토사(S)로서 양질의 사질토가 사용될 수 있으며, 쇄석골재를 함께 또는 대신 채울 수도 있다. 쇄석골재를 채우는 경우, 일반 토사에 비해 수평 저항력이 더욱 높아진다. The geocell retaining wall 2 is constructed by stacking a geocell 10 composed of a plurality of unit cells 12 in a vertical direction (U-D) on the front (F) side of a civil engineering slope 102, The inside of the cell 10 is filled with soil (S) and installed. For example, sandy soil of good quality may be used as the soil S inside the geocell 10, and crushed stone aggregate may be filled together or instead. In the case of filling the crushed stone aggregate, the horizontal resistance is higher than that of general soil.
일예로, 상기 지오셀 옹벽체(2)은 도 1에 도시된 것처럼 1개 층의 지오셀(10)에 전후방향을 따라 2~3개의 단위 셀(12)이 배치되고, 좌우방향을 따라 다수개의 단위 셀(12)이 배치된 형태를 갖는다. 1개 층의 지오셀(10)을 구성하기 위한 전후방향 또는 좌우방향의 단위 셀(12)의 개수는 변경 가능하다. As an example, in the geocell retaining wall 2, as shown in FIG. 1, two or three unit cells 12 are arranged along the front-back direction in one layer of the geocell 10, and a number of them along the left-right direction It has a form in which the number of unit cells 12 are arranged. The number of unit cells 12 in the forward and backward directions or in the left and right directions to form one layer of geocells 10 can be changed.
토목 경사면(102)은 성토면이거나 또는 절토면일 수 있다. 토목 경사면(102)이 절토면인 경우에는 부직포를 절토면에 덮은 상태로 지오셀 옹벽체(2)를 설치하고 토사 뒤채움을 할 수도 있다. The civil engineering slope 102 may be an embankment surface or a cut surface. When the civil engineering slope 102 is a cut surface, the geocell retaining wall 2 may be installed with the nonwoven fabric covering the cut surface, and soil backfilling may be performed.
지오셀(10)은 예를 들어, 두께 10 mm 이상, 높이 150~300 mm 정도의 것이 사용될 수 있다. 예를 들어, 3개의 단위 셀(12)이 전후방으로 펼쳐진 상태에서 하나의 단위 셀(12)은 좌우방향 폭 200~300 mm, 전후방향 폭 200~300 mm 정도의 크기를 가질 수 있다. The geocell 10 may be, for example, one having a thickness of 10 mm or more and a height of about 150 to 300 mm. For example, in a state in which three unit cells 12 are spread forward and backward, one unit cell 12 may have a size of about 200 to 300 mm in a horizontal direction and about 200 to 300 mm in a front and rear direction.
도 2b를 함께 참조하면, 하나 이상의 기둥 요소(4)는 상층 지오셀(10')의 일부 단위 셀(12)과 하층 지오셀(10'')의 일부 단위 셀(12)을 관통하여 상하(U-D) 방향을 따라 설치된다. 바람직하게, 기둥 요소(4)는 지오셀 옹벽체(2)의 상하 높이 전체에 걸쳐서 설치된다. 바람직하게, 하나의 기둥 요소(4)는 상층 지오셀(10')의 미리 설정된 단위 셀 위치와 하층 지오셀(10'')의 미리 설정된 단위 셀 위치를 상하 관통하여 상기 지오셀 옹벽체(2)의 상하 높이 전체에 걸쳐서 설치되도록 구성된다. Referring to FIG. 2B together, one or more pillar elements 4 pass through some unit cells 12 of the upper geocell 10' and some unit cells 12 of the lower geocell 10'' up and down ( U-D) is installed along the direction. Preferably, the column element 4 is installed over the entire vertical height of the geocell retaining wall 2. Preferably, one pillar element (4) vertically penetrates the preset unit cell location of the upper geocell (10') and the preset unit cell location of the lower geocell (10'') to form the geocell retaining wall (2). ) is configured to be installed over the entire vertical height of the
이를 위해, 토목 경사면(102)의 전방 측에 횡방향(수평 방향)으로 지오셀(10)을 펼친 상태에서 적층하고, 지오셀(10)이 적층된 상태에서 미리 설정된 단위 셀(12) 위치를 상하 관통하여 기둥 요소(4)를 설치한다. 기둥 요소(4)가 설치되지 않은 단위 셀(12)에는 토사(S)를 채우며, 기둥 요소(4)의 외측면과 삽입 설치된 단위 셀(12)의 내측면 사이 공간에도 토사(S)를 채운다. 토사 채움 시에는 면고르기와 롤러와 람마 등을 사용하여 인력다짐을 할 수 있다. 지오셀 옹벽체(2)의 높이가 올라가는 상태에 따라 지오셀(10)의 후면 공간에도 토사(S')를 투입하여 뒷채움 및 다짐 처리를 한다. 또한, 후술하는 다양한 토목 보강재를 이러한 지오셀 옹벽체(2)의 설치 과정 중에 미리 설정된 위치에 각각의 토목 보강재 구조에 맞추어 설치 작업을 한다. To this end, the geocell 10 is stacked in a state in which the geocell 10 is spread in the transverse direction (horizontal direction) on the front side of the civil engineering slope 102, and the location of the unit cell 12 preset in the state in which the geocell 10 is stacked is Install the pillar element 4 through the top and bottom. The unit cell 12 in which the column element 4 is not installed is filled with soil S, and the space between the outer surface of the column element 4 and the inner surface of the inserted unit cell 12 is also filled with soil S. . At the time of soil filling, manpower compaction can be performed by using a surface leveling tool, a roller, and a ramma. As the height of the geocell retaining wall (2) rises, soil (S') is also injected into the back space of the geocell (10) to backfill and compact. In addition, during the installation process of the geocell retaining wall 2, various civil reinforcing materials, which will be described later, are installed in preset positions according to each civil reinforcing material structure.
바람직하게, 상기 기둥 요소(4)는 채움재(4a)로 내부 공간의 채움이 이뤄지는 관형(管形) 부재로 구성된다. 기둥 요소(4)의 단면은 특정 단면으로 한정되는 것은 아니지만, 토압에 의한 외압이나 채움재(4a)에 의한 내압에 대한 저항성을 높이기 위해 원형 단면을 갖는 것이 좋다. Preferably, the pillar element 4 is composed of a tubular member in which the inner space is filled with a filler material 4a. The cross section of the pillar element 4 is not limited to a specific cross section, but it is preferable to have a circular cross section in order to increase resistance to external pressure caused by earth pressure or internal pressure caused by the filling material 4a.
일예로, 상기 관형 부재는 유공관(有孔管)일 수 있다. 유공관(有孔管)은 직경 7~30cm의 플라스틱 파이프로서 측면에 많은 구멍이 나 있으며, 구멍에 흙이 들어가지 않게 부직포나 토목 섬유로 싼 후 토양에 묻어 배수와 통기를 촉진하는 용도로 일반적으로 사용된다. 유공관(有孔管)은 무게가 가벼우므로 지오셀(10) 내부에 삽입 시공하기에 유리하고, 내부의 채움재(4a)가 기둥 형상을 유지할 수 있도록 충분한 강성을 제공할 수 있으며, 작은 구멍들을 통해 배수가 가능하므로 식생용 옹벽의 기둥 요소(4)에 적용하기에 적합하다. For example, the tubular member may be a perforated pipe. A perforated pipe is a plastic pipe with a diameter of 7 to 30 cm and has many holes on the side. It is generally used to promote drainage and ventilation after being wrapped with non-woven fabric or geotextile to prevent soil from entering the hole and buried in the soil. used Since the perforated pipe is light in weight, it is advantageous to insert and construct inside the geocell 10, and can provide sufficient rigidity so that the filling material 4a inside can maintain the column shape, and through small holes Since drainage is possible, it is suitable for application to the column element (4) of the retaining wall for vegetation.
일예로, 상기 채움재(4a)는 토사 및 골재 중의 적어도 어느 하나일 수 있다. 관형 부재 형태의 기둥 요소(4) 내부에서 토사 또는 골재가 자중에 의해 조밀한 채움 상태를 이루게 되며, 이러한 채움 상태에 의해 기둥 요소(4)는 콘크리트로 프리캐스트 제작한 기둥과 유사한 정도의 하중과 강성을 갖게 된다. For example, the filling material 4a may be at least one of soil and aggregate. Inside the column element (4) in the form of a tubular member, soil or aggregate forms a dense filling state due to its own weight, and by this filling state, the column element (4) has a load and a load similar to that of a column precast with concrete. have strength.
채움재(4a)로 토사 또는 골재를 사용하는 경우, 지오셀(10) 내부에 삽입 시공된 관형(管形) 부재의 내부 공간에 현장에서 직접 조달하거나 외부에서 조달한 토사 또는 골재(쇄석골재)를 관형(管形) 부재의 상측 개구부를 통해 투입하는 방식으로 채움 작업을 할 수 있다. 미리 제작된 길이의 단위 기둥 요소를 여러개 상하 방향으로 조립하여 하나의 기둥 요소(4)를 설치하는 경우, 각각의 단위 기둥 요소가 조립되는 높이에 맞추어 토사 또는 골재(쇄석골재)를 투입할 수도 있다. In the case of using soil or aggregate as the filling material (4a), soil or aggregate (crushed stone aggregate) procured directly from the site or externally procured in the internal space of the tubular member inserted into the geocell 10 The filling operation can be performed by inserting through the upper opening of the tubular member. In the case of installing one column element 4 by assembling several unit column elements of a pre-manufactured length in the vertical direction, soil or aggregate (crushed stone aggregate) may be introduced according to the height at which each unit column element is assembled. .
채움재(4a)로 토사 또는 골재를 사용하는 경우, 채움재(4a)를 현장에서 직접 조달하여 사용할 수 있다는 장점이 있다. 토사 및 골재는 함께 사용될 수도 있으며, 이 경우, 토사 및 골재의 전체 함량을 기준으로 골재는 30% 이상의 비율로 포함되는 것이 좋다. 채움재(4a)로 골재를 사용하는 경우, 배면부의 침출수 및 지하수위를 낮추고 우기 시에 침투수에 대한 배수공의 기능을 제공할 수 있다. In the case of using sand or aggregate as the filling material 4a, there is an advantage in that the filling material 4a can be directly procured and used in the field. Soil and aggregate may be used together, and in this case, the aggregate is preferably included in a ratio of 30% or more based on the total content of soil and aggregate. In the case of using aggregate as the filling material 4a, it is possible to lower the level of leachate and groundwater in the rear part and provide a function of a drainage hole for infiltration water during the rainy season.
다른예로, 상기 채움재(4a)는 콘크리트, 시멘트 그라우팅 및 소일 시멘트(soil cement) 중의 적어도 어느 하나일 수 있다.As another example, the filling material 4a may be at least one of concrete, cement grouting, and soil cement.
채움재(4a)로 콘크리트를 사용하는 경우, 지오셀(10) 내부에 삽입 시공된 관형(管形) 부재의 내부 공간에 레미콘 형태로 준비한 콘크리트를 관형(管形) 부재의 상측 개구부를 통해 현장 타설하는 방식으로 채움 작업을 할 수 있다. In the case of using concrete as the filling material (4a), concrete prepared in the form of ready-mixed concrete is poured into the interior space of the tubular member inserted into the geocell 10 through the upper opening of the tubular member Filling can be done in this way.
채움재(4a)로 콘크리트를 사용하는 경우, 콘크리트 양생 후에 프리캐스트 제작한 기둥과 동일한 정도의 하중과 강성을 제공하는 장점이 있다. In the case of using concrete as the filling material 4a, it has the advantage of providing the same level of load and rigidity as the precast pillar after curing the concrete.
이와 같이, 관형(管形) 부재의 내부 공간에 채움재(4a)로 채움이 이뤄지는 구조로 기둥 요소(4)를 구성하는 경우, 지오셀(10) 내부에 삽입 시공 시에는 무게가 가벼운 관형(管形) 부재의 상태로 작업을 하므로, 무거운 콘크리트 프리캐스트 기둥을 사용하는 구조에 비해 훨씬 양호한 작업성을 확보할 있으며, 설치 후에는 내부의 채움재(4a)에 의해 기둥의 충분한 하중과 강성을 확보할 수 있으므로 옹벽의 안정성과 견고함을 충분하게 제공할 수 있다. In this way, when the pillar element 4 is configured in a structure in which the inner space of the tubular member is filled with the filling material 4a, when inserting and constructing the inside of the geocell 10, a light weight tubular Since the work is performed in the form of a member, it is possible to secure much better workability than a structure using a heavy concrete precast column, and after installation, sufficient load and rigidity of the column can be secured by the filling material (4a) inside. Therefore, it can provide sufficient stability and solidity of the retaining wall.
다만, 현장 시공성만 원활하게 확보된다면, 내부가 채워진 형태의 기둥(예, 프리캐스트 기둥)을 사용하는 것도 물론 가능하다. However, it is of course possible to use a column filled with the inside (eg, a precast column) if only the site constructability is secured smoothly.
도 16의 (a)는 채움재(4a)가 토사, 콘크리트, 시멘트 그라우팅 및 소일 시멘트(soil cement) 중의 적어도 어느 하나인 경우를 예시하며, 도 16의 (b)는 채움재(4a)가 골재인 경우를 예시한다. (a) of FIG. 16 illustrates a case in which the filling material 4a is at least one of soil, concrete, cement grouting, and soil cement, and (b) of FIG. 16 illustrates a case in which the filling material 4a is an aggregate. exemplify
바람직하게, 상기 기둥 요소(4)의 내부에 상하(U-D) 방향을 따라 삽입 배치된 보강 철근(50)을 구비할 수 있다. 도 16의 (c)는 기둥 요소(4)의 내부에 보강 철근(50)이 구비된 경우를 예시한다. Preferably, a reinforcing bar 50 may be provided inside the pillar element 4 and inserted along the up-and-down (U-D) direction. 16(c) illustrates a case in which the reinforcing bar 50 is provided inside the column element 4.
관형(管形) 부재 형태의 기둥 요소(4)의 내부에 보강 철근(50)을 삽입 배치하고, 보강 철근(50)을 둘러싼 내부 공간을 채움재(4a)로 채울 수 있다. The reinforcing bar 50 may be inserted and disposed inside the column element 4 in the form of a tubular member, and the inner space surrounding the reinforcing bar 50 may be filled with a filling material 4a.
보강 철근(50)을 구비하는 경우, 기둥 요소(4)의 강성을 더욱 강화하는 장점이 있다. When the reinforcing bar 50 is provided, there is an advantage in further strengthening the rigidity of the column element 4.
한편, 상기 기둥 요소(4)에는 절개된 측면부(4s 또는 4ps)가 형성될 수 있다. 도 16의 (d)는 기둥 요소의 전체 외주면을 따라 절개된 측면부(4s)가 형성된 경우를 예시하고, 도 16의 (e)는 기둥 요소의 외주면 일부를 따라 절개된 측면부(4ps)가 형성된 경우를 예시한다. 절개된 측면부(4ps)의 절개 길이는 필요에 따라 가변될 수 있다. On the other hand, the pillar element 4 may be formed with cut side portions 4s or 4ps. 16(d) illustrates a case in which side portions 4s cut along the entire outer circumferential surface of the pillar element are formed, and FIG. exemplify The incision length of the incised side portion 4ps may be varied as needed.
기둥 요소(4)의 외주면 일부를 따라 절개된 측면부(4ps)에는 후술하는 바와 같이 강판보강재(430), 후방용 철근(330), 드레인보드 또는 다발관(70) 등이 관통 설치되거나, 지오그리드(130)가 전후 방향으로 통과하여 설치될 수 있다. As will be described later, the side portion 4ps cut along a portion of the outer circumferential surface of the column element 4 has a steel plate reinforcement 430, a rear reinforcing bar 330, a drain board or a bundle pipe 70 installed through, or a geogrid ( 130) may be installed by passing in the front and rear directions.
기둥 요소(4)의 전체 외주면을 따라 절개된 측면부(4s)에는 후술하는 바와 같이 지오그리드(130)가 전후 방향으로 통과하여 설치될 수 있다. As will be described later, the geogrid 130 can be installed through the front and rear directions on the side portions 4s cut along the entire outer circumferential surface of the pillar element 4 .
일예로, 절개된 측면부(4s 또는 4ps)는 시공 현장에서 커터 등을 이용하여 형성할 수 있다. For example, the incised side portion 4s or 4ps may be formed using a cutter or the like at a construction site.
한편, 띠형 보강재(30), 지오그리드(130), 강판보강재(430), 후방용 철근(330), 드레인보드 또는 다발관(70) 등이 상하로 적층된 복수의 지오셀(10)의 상층 지오셀(10')과 인접하는 하층 지오셀(10'') 사이에 삽입 설치가 가능하도록, 기둥 요소(4)의 절개된 측면부(4s 또는 4ps)는 상하로 적층된 복수의 지오셀(10)의 상층 지오셀(10')과 인접하는 하층 지오셀(10'')의 경계면 위치에 맞추어 형성되는 것이 바람직하다. 또한, 기둥 요소(4)의 강성을 저하시키지 않기 위해, 기둥 요소(4)의 절개된 측면부(4s 또는 4ps)는 상하로 적층된 복수의 지오셀(10)의 2개 이상의 층 높이에 상응하는 상하 간격을 갖도록 형성되는 것이 좋다. 2 이상의 기둥 요소(4)가 설치되는 경우, 토목 보강재의 종류 및 설치 상태를 감안하여 각각의 기둥 요소(4)별로 기둥 요소(4)의 절개된 측면부(4s 또는 4ps)의 높이를 서로 어긋나게 형성할 수도 있다. On the other hand, the upper layer of the plurality of geocells 10 in which the strip-shaped reinforcement 30, the geogrid 130, the steel plate reinforcement 430, the rear reinforcement 330, the drain board or the bundle pipe 70 are stacked vertically To enable insertion and installation between the cell 10 'and the adjacent lower geocell 10'', the incised side portion 4s or 4ps of the pillar element 4 is a plurality of geocells 10 stacked vertically It is preferable to be formed according to the interface position of the upper geocell 10' and the lower geocell 10'' adjacent to the upper geocell 10'. In addition, in order not to reduce the rigidity of the column element 4, the incised side portions 4s or 4ps of the column element 4 correspond to the height of two or more layers of the plurality of geocells 10 stacked vertically. It is preferable to be formed to have a vertical gap. When two or more pillar elements 4 are installed, the heights of the incised side parts 4s or 4ps of the pillar elements 4 are offset from each other in consideration of the type and installation state of the civil reinforcing material for each pillar element 4 You may.
도 16의 (e)의 부호 4h는 기둥 요소(4)에 형성된 관통홀을 나타낸다. Reference numeral 4h in FIG. 16(e) denotes a through hole formed in the pillar element 4.
기둥 요소(4)에 형성된 관통홀(4h)에는 후술하는 바와 같이 고정용 봉재(40) 또는 횡방향 철근(60) 등이 관통하여 설치될 수 있다. As will be described later, a fixing rod 40 or a transverse reinforcing bar 60 may be installed through the through hole 4h formed in the pillar element 4 .
일예로, 관통홀(4h)은 시공 현장에서 드릴 등을 이용하여 형성할 수 있다. For example, the through hole 4h may be formed using a drill or the like at a construction site.
미설명 부호 S'는 지오셀 옹벽체(2) 후면에 위치한 뒤채움 토사, 부호 S''는 뒷채움 잡석이다. The non-explained code S' is backfill soil located on the back of the geocell retaining wall (2), and the code S'' is backfill rubble.
각각의 지오셀(10) 층에 있어서 가장 전면부에 위치하는 단위 셀(12)들은 내부에 토사가 매립된 상태로 상부면이 계단형으로 노출 상태를 이룬다. 각각의 단위 셀(12)들의 노출면에 식물을 식생하고 수개월 정도의 기간이 경과하면, 식물들의 줄기나 잎들이 자라나 지오셀(10)로 구성된 옹벽 전체를 식물로 덮는 형태가 되어 미관 상으로도 좋은 식생 옹벽을 형성할 수 있다.In each geocell 10 layer, the upper surface of the unit cells 12 located at the frontmost part is exposed in a stepped state with soil buried therein. When plants are vegetated on the exposed surface of each unit cell 12 and a period of several months elapses, the stems and leaves of the plants grow and cover the entire retaining wall composed of the geocell 10 with plants, which is also aesthetically pleasing. It can form a good vegetation retaining wall.
도 2a 및 도 2b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 사시도 방향 모식도이다. 2A and 2B are a schematic plan view and a perspective view view of a retaining wall structure according to an embodiment of the present invention.
본 실시예의 경우, 상기 기둥 요소(4)는 상기 지오셀 옹벽체(2) 후면에 위치한 토사(S')에 일부가 매립되어 토압(SP)과 마찰력을 받는 토목용 보강재로부터 후방(B)을 향한 인장력(TF)을 제공받는다. 인장력(TF)은 다른 관점에서 토목용 보강재의 인발저항력으로 이해될 수도 있다. In the case of the present embodiment, the pillar element 4 is partially embedded in the soil S' located on the rear side of the geocell retaining wall 2 to protect the rear B from the civil engineering reinforcing material that receives the earth pressure SP and frictional force. A tensile force (TF) is provided. Tensile force (TF) can also be understood as the pull-out resistance of civil engineering stiffeners from another point of view.
도 2a 및 도 2b의 실시예에서, 상기 토목용 보강재는 띠형 보강재(30)이며, 상기 띠형 보강재(30)가 상기 기둥 요소(4)의 적어도 일부분(전방측 일부분)을 감싸는 형태로 상기 기둥 요소(4)에 결합한다. 2a and 2b, the civil engineering reinforcing material is a belt-shaped reinforcing material 30, and the belt-shaped reinforcing material 30 surrounds at least a part (front side part) of the pillar element 4, and the pillar element Combined with (4).
띠형 보강재(30)는 일반적으로 섬유 심재에 합성수지 피복재를 피복하여 이중 사출하여 제작된다. The strip-shaped reinforcing material 30 is generally manufactured by double-injecting a fiber core material coated with a synthetic resin covering material.
도 3a 및 도 3b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 사시도 방향 모식도이다. 3A and 3B are schematic views of a planar direction and a perspective view of a retaining wall structure according to an embodiment of the present invention.
본 실시예의 경우에도, 상기 기둥 요소(4)는 상기 지오셀 옹벽체(2) 후면에 위치한 토사(S')에 일부가 매립되어 토압(SP)과 마찰력을 받는 토목용 보강재로부터 후방(B)을 향한 인장력(TF)을 제공받는다. Even in the case of this embodiment, the pillar element 4 is partially embedded in the soil S' located on the rear side of the geocell retaining wall 2, and the rear (B) is provided with a tensile force (TF) toward
본 실시예에서, 상기 기둥 요소(4)는 2 이상이 횡방향(L-R)을 따라 간격을 갖고 설치된다. 기둥 요소(4)의 설치 간격 및 개수는 옹벽의 전체 높이 및 크기를 고려하여 적절하게 설정될 수 있으며, 예를 들어 3~4m 간격으로 설치될 수 있다. In this embodiment, two or more of the pillar elements 4 are installed at intervals along the transverse direction L-R. The installation interval and number of pillar elements 4 may be appropriately set in consideration of the overall height and size of the retaining wall, and may be installed at intervals of 3 to 4 m, for example.
본 실시예에서, 상기 토목용 보강재는 띠형 보강재(30)이며, 상기 2 이상의 기둥 요소(4)를 횡방향(L-R)으로 관통하여 설치된 횡방향 철근(60)의 적어도 일부분(전방측 일부분)을 상기 띠형 보강재(30)가 감싸는 형태로 결합하도록 구성된다. In this embodiment, the civil engineering reinforcing material is a belt-shaped reinforcing material 30, and at least a portion (front side portion) of the transverse reinforcing bar 60 installed by penetrating the two or more column elements 4 in the transverse direction (L-R) The band-shaped reinforcing material 30 is configured to be coupled in a wrapping form.
바람직하게, 상기 기둥 요소(4)의 내부에 상하(U-D) 방향을 따라 보강 철근(50)이 삽입 배치되는 경우, 보강 철근(50)의 전방 측에 횡방향 철근(60)을 위치시키고, 보강 철근(50)과 횡방향 철근(60)이 접하는 지점을 용접 또는 고정수단(예, 철사, 커넥터)을 통해 결합시킨 후, 기둥 요소(4)의 내부에 채움재(4a)를 채울 수 있다. Preferably, when the reinforcing bar 50 is inserted and disposed along the vertical (U-D) direction inside the column element 4, the transverse reinforcing bar 60 is positioned on the front side of the reinforcing bar 50, and reinforcing After bonding the contact point between the reinforcing bar 50 and the transverse reinforcing bar 60 through welding or a fixing means (eg, wire, connector), the inside of the column element 4 can be filled with the filling material 4a.
도 4a, 도 4b 및 도 4c는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도, 사시도 방향 모식도 및 측면 방향 모식도, 도 4d 및 도 4e는 본 발명의 실시예에 따른 옹벽구조의 사시도 방향 모식도 및 측면 방향 모식도, 도 4f는 본 발명의 실시예에 따른 블록 형상 저항체의 설치 상태를 나타낸 단면 모식도, 도 4g는 본 발명의 실시예에 따른 지오그리드의 설치 상태를 나타낸 단면 모식도이다. 4a, 4b and 4c are planar, perspective and side view schematics of a retaining wall structure according to an embodiment of the present invention, and FIGS. 4d and 4e are perspective view schematics of a retaining wall structure according to an embodiment of the present invention And a schematic diagram in the side direction, Figure 4f is a cross-sectional schematic diagram showing the installation state of the block-shaped resistor according to an embodiment of the present invention, Figure 4g is a cross-sectional schematic diagram showing the installation state of the geogrid according to an embodiment of the present invention.
본 실시예의 경우에도, 상기 기둥 요소(4)는 상기 지오셀 옹벽체(2) 후면에 위치한 토사(S')에 일부가 매립되어 토압(SP)과 마찰력을 받는 토목용 보강재로부터 후방(B)을 향한 인장력(TF)을 제공받는다. Even in the case of this embodiment, the pillar element 4 is partially embedded in the soil S' located on the rear side of the geocell retaining wall 2, and the rear (B) is provided with a tensile force (TF) toward
본 실시예에서, 상기 토목용 보강재는 격자 형상의 네트 형태로 구성된 지오그리드(130)이다. 지오그리드(300)는 제조방법 및 재료에 따라서 플라스틱 지오그리드와 텍스타일 지오그리드로 구분할 수 있다. 플라스틱 지오그리드는, 압출기를 통과한 고분자 시트를 롤러에 통과시켜 격자모양의 그리드 형태로 구멍을 뚫은 다음 일축 또는 이축으로 연신시켜 제조된다. 텍스타일 지오그리드는, 고강력 섬유를 각각 경·위사 방향으로 공급하여 격자형태의 직물을 형성하고, 폴리비닐클로라이드, 역청, 아크릴, 라텍스 및 고무계 수지 등으로 피복을 하여 제조된다. 본 실시예에서는 지오그리드(300)의 종류가 한정되지는 않는다. In this embodiment, the reinforcing material for civil engineering is a geogrid 130 configured in the form of a lattice net. The geogrid 300 can be classified into a plastic geogrid and a textile geogrid depending on the manufacturing method and material. The plastic geogrid is manufactured by passing a polymer sheet that has passed through an extruder through a roller, punching holes in a lattice-like grid shape, and then stretching the polymer sheet uniaxially or biaxially. The textile geogrid is manufactured by supplying high-strength fibers in warp and weft directions, respectively, to form a lattice-shaped fabric, and coating with polyvinyl chloride, bitumen, acrylic, latex, and rubber-based resin. In this embodiment, the type of geogrid 300 is not limited.
본 실시예에서, 상기 지오그리드(130)가 상기 기둥 요소(4)의 상하(U-D) 분리된 부분(절개된 측면부, 4s 또는 4ps)을 통과하는 형태로 설치된다. In this embodiment, the geogrid 130 is installed in a form passing through the upper and lower (U-D) separated parts (cut side parts, 4s or 4ps) of the pillar element 4.
일예로, 상기 기둥 요소(4)는, 내부에 상하(U-D) 방향을 따라 보강 철근(50)이 삽입 배치되고 채움재(4a)로 내부 공간의 채움이 이뤄진 관형(管形) 부재이며, 상기 보강 철근(50)이 상기 지오그리드(130)를 구성하는 어느 하나의 격자를 관통하도록 설치된다(도 4g의 (a) 참조). For example, the pillar element 4 is a tubular member in which rebar 50 is inserted and disposed along the vertical (U-D) direction and the internal space is filled with a filler 4a, and the reinforcement The reinforcing bars 50 are installed to pass through any one grid constituting the geogrid 130 (see (a) in FIG. 4g).
이러한 구성을 통해 상기 기둥 요소(4)는 상기 보강 철근(50)을 통해 상기 지오그리드(130)와 걸림 결합되고 채움재(4a)를 통해 마찰력 또는 결합력이 부여되는 상태로 결합하여, 상기 지오그리드(130)로부터 후방(B)을 향한 인장력(TF)을 제공받는다. Through this configuration, the pillar element 4 is engaged with the geogrid 130 through the reinforcing bars 50 and coupled in a state in which friction or bonding force is applied through the filler 4a, the geogrid 130 It receives a tensile force (TF) toward the rear (B) from
다른예로, 상기 기둥 요소(4)는, 채움재(4a)로 내부 공간의 채움이 이뤄진 관형(管形) 부재이며, 상기 채움재(4a)를 구성하는 골재가 상기 지오그리드(130)를 구성하는 격자를 적어도 부분적으로 관통하여 격자에 골재(또는 골재의 일부)가 걸림이 가능하도록 설치된다(도 4g의 (b) 참조). As another example, the pillar element 4 is a tubular member in which the inner space is filled with a filler material 4a, and the aggregate constituting the filler material 4a is a lattice constituting the geogrid 130 It is installed so that the aggregate (or part of the aggregate) can be caught on the grid by at least partially penetrating the grid (see (b) of FIG. 4g).
이러한 구성을 통해 상기 기둥 요소(4)는 골재를 포함하는 채움재(4a)를 통해 상기 지오그리드(130)의 격자 부분과 걸림 결합되고 채움재(4a)를 통해 마찰력 또는 결합력이 부여되는 상태로 결합하여, 상기 지오그리드(130)로부터 후방(B)을 향한 인장력(TF)을 제공받는다. Through this configuration, the pillar element 4 is engaged with the lattice portion of the geogrid 130 through the filler material 4a containing aggregate and coupled in a state in which frictional force or bonding force is applied through the filler material 4a, A tensile force (TF) toward the rear (B) is provided from the geogrid (130).
도 4a, 도 4b 및 도 4c의 실시예의 경우, 하나의 지오그리드(130)를 후방에서 상하로 접어서 상측 지오그리드(130U)와 하측 지오그리드(130D)의 형태로 배치하고, 고정용 봉재(40)를 이용하여 고정 설치한다. In the case of the embodiment of Figures 4a, 4b and 4c, one geogrid 130 is folded up and down from the rear and arranged in the form of an upper geogrid (130U) and a lower geogrid (130D), using a fixing rod 40 and install it fixedly.
이를 위해, 토목 경사면(102)에 천공(穿孔)된 구멍(104)에 그라우팅(106)으로 고정되며 상기 구멍(104) 외부로 일단부가 노출된 2 이상의 고정용 봉재(40,40')가 설치된다. 일예로, 천공(穿孔)은 천공 위치 측량에 의해 선정된 위치를 크롤러 드릴(crawler drill)로 0~20도 정도의 각도를 유지하며 이뤄질 수 있다. To this end, two or more fixing rods 40 and 40' are fixed to a hole 104 drilled in a civil engineering slope 102 by grouting 106 and one end exposed to the outside of the hole 104 is installed. do. For example, perforation (穿孔) can be made while maintaining an angle of about 0 to 20 degrees with a crawler drill (crawler drill) the position selected by the perforation position survey.
천공된 구멍(104)에 고정용 봉재(40)를 삽입하고 그라우팅(106)으로 고정한다. 이때, 상기 고정용 봉재(40)의 일단부가 상기 구멍(104) 외부로 노출되도록 고정한다. 그라우팅(106)은 그라우팅 호스를 이용하여 선단부터 시멘트 밀크 그라우팅(cement milk grouting)을 할 수 있다.A fixing rod 40 is inserted into the drilled hole 104 and fixed with grouting 106. At this time, one end of the fixing bar 40 is fixed so as to be exposed to the outside of the hole 104 . For the grouting 106, cement milk grouting may be performed from the tip using a grouting hose.
상기 지오그리드(130)는 서로 다른 상하(U-D) 위치에 설치된 상측 지오그리드(130U)의 펼침부의 후단부와 하측 지오그리드(130D)의 펼침부의 후단부가 연결부(130C)를 통해 상호 일체로 연결된 형태를 이룬다. In the geogrid 130, the rear end of the expanded part of the upper geogrid 130U and the rear end of the expanded part of the lower geogrid 130D installed at different up and down (U-D) positions are integrally connected to each other through a connection part 130C.
상기 연결부(130C)의 전방(F)측을 가로 질러 설치된 지지봉(150)의 일단부가 하나의 고정용 봉재(40)에 결합되고, 상기 지지봉(150)의 타단부가 또다른 하나의 고정용 봉재(40')에 결합되어, 상기 상측 지오그리드(130U)의 펼침부와 하측 지오그리드(130D)의 펼침부가 상기 지지봉(150)을 개재하여 상기 고정용 봉재(40,40')로부터 인장력(TF)을 전달받는다. One end of the support rod 150 installed across the front (F) side of the connecting portion 130C is coupled to one fixing rod 40, and the other end of the support rod 150 is another fixing rod (40 '), the expansion part of the upper geogrid (130U) and the expansion part of the lower geogrid (130D) through the support bar 150, the tensile force (TF) from the fixing rods (40, 40') be delivered
상기 결합을 위해, 상기 고정용 봉재(40)의 노출된 일단부(40a)에는 관통공(40h)이 구비되며, 상기 지지봉(150)의 일단부(150a)는 하나의 고정용 봉재(40')에 구비된 관통공(40h)에 삽입 결합되고, 상기 지지봉(150)의 타단부(150a)는 또다른 하나의 고정용 봉재(40)에 구비된 관통공(40h)에 삽입 결합된다.For the coupling, a through hole 40h is provided in the exposed end 40a of the fixing rod 40, and one end 150a of the support rod 150 has one fixing rod 40'. ), and is inserted into and coupled to the through hole 40h provided in the support bar 150, and the other end 150a of the support bar 150 is inserted into and coupled to the through hole 40h provided in another fixing bar 40.
도 4d 및 도 4e의 실시예의 경우, 블록 형상 저항체(20)를 이용하여 횡방향 저항력을 증가시킨 형태로 지오그리드(130)를 설치한다. 4d and 4e, the geogrid 130 is installed in the form of increasing lateral resistance by using the block-shaped resistor 20.
이를 위해, 내부에 토사(S) 채움이 이뤄진 지오셀(10)의 단위 셀(12) 상부에 블록 형상 저항체(20)가 적치된다. To this end, a block-shaped resistor 20 is placed on top of the unit cell 12 of the geocell 10 filled with soil (S).
상기 지오그리드(130)는 상하(U-D)로 적층된 복수의 지오셀(10)의 중간에 위치하도록 설치되고, 상기 블록 형상 저항체(20)의 전방(F)측, 상부(U)측 및 후방(B)측을 감싸는 형태로 굴곡 변형되어 상기 블록 형상 저항체(20)를 커버하는 형태로 설치된다. The geogrid 130 is installed to be positioned in the middle of the plurality of geocells 10 stacked vertically (U-D), and the front (F) side, upper (U) side and rear ( It is bent and deformed in the form of wrapping the B) side and installed in the form of covering the block-shaped resistor 20 .
도 4f를 참조하면, 상기 지오그리드(130)는, 상기 블록 형상 저항체(20)의 전방측(20f) 및 상부측(20u)의 적어도 일부를 감싸는 형태로 상기 블록 형상 저항체(20)를 커버하는 커버부(30')와 상기 토목 경사면(102) 측으로 횡방향으로 연장되어 펼쳐진 상태를 이루는 펼침부(30'')를 포함한다. 커버부(30')는 지오그리드(130)의 굴곡 변형에 의해 형성될 수 있다.Referring to FIG. 4F, the geogrid 130 is a cover covering the block-shaped resistor 20 in a form surrounding at least a portion of the front side 20f and the upper side 20u of the block-shaped resistor 20 It includes a portion 30 'and an expanding portion 30'' extending in the transverse direction toward the civil engineering slope 102 to form an unfolded state. The cover part 30' may be formed by bending deformation of the geogrid 130.
일예로, 블록 형상 저항체(20)는 도 4f와 같이 하부 지오셀(10)의 토사층(Sd) 상부에 적치되고 상부 지오셀(10)의 토사층(Su) 내부에 위치할 수 있다. 변형예로, 블록 형상 저항체(20)의 일부는 하부 지오셀(10)의 토사층(Sd) 내부에 부분적으로 위치할 수도 있다. For example, the block-shaped resistor 20 may be stacked on top of the soil layer Sd of the lower geocell 10 and located inside the soil layer Su of the upper geocell 10, as shown in FIG. 4F. As a modified example, a part of the block-shaped resistor 20 may be partially positioned inside the soil layer Sd of the lower geocell 10.
상기 지오그리드(130)는, 메쉬 면적에 대해 상부로부터 가해지는 토압(SP)에 기초하여 생성된 인장력(TF)을 상기 블록 형상 저항체(20)로 전달하게 된다. 토압(SP)에 기초하여 생성된 인장력(TF)은 일종의 마찰 저항력 및/또는 인장 저항력으로 볼 수 있다.The geogrid 130 transmits the tensile force TF generated based on the earth pressure SP applied from above to the mesh area to the block-shaped resistor 20. The tensile force (TF) generated based on the earth pressure (SP) can be regarded as a kind of frictional resistance force and/or tensile resistance force.
이러한 구조를 통해 본 실시예의 옹벽구조는, 상기 블록 형상 저항체(20)가 상기 지오그리드(130)으로부터 인장력(TF)을 전달받으며, 상기 블록 형상 저항체(20)의 상부 및 하부에 적층 상태를 이루며 토사(S) 채움이 이뤄진 지오셀(10)의 횡방향 이동을 블록 형상 저항체(20)의 마찰 저항력을 통해 방지하게 된다.Through this structure, in the retaining wall structure of this embodiment, the block-shaped resistor 20 receives the tensile force TF from the geogrid 130, and the block-shaped resistor 20 is stacked on top and bottom of the soil (S) The lateral movement of the filled geocell 10 is prevented through the friction resistance of the block-shaped resistor 20.
도 6a 및 도 6b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도, 측면 방향 모식도 및 사시도 방향 모식도이다. 6A and 6B are a schematic plan view, a side view schematic view, and a perspective view view of a retaining wall structure according to an embodiment of the present invention.
본 실시예의 경우에도, 상기 기둥 요소(4)는 상기 지오셀 옹벽체(2) 후면에 위치한 토사(S')에 일부가 매립되어 토압(SP)과 마찰력을 받는 토목용 보강재로부터 후방(B)을 향한 인장력(TF)을 제공받는다. Even in the case of this embodiment, the pillar element 4 is partially embedded in the soil S' located on the rear side of the geocell retaining wall 2, and the rear (B) is provided with a tensile force (TF) toward
본 실시예에서, 상기 토목용 보강재는 격자 형상으로 철근이 배치되어 결합된 철근그리드(230)이다. In this embodiment, the reinforcing material for civil engineering is a reinforcing bar grid 230 in which reinforcing bars are arranged in a lattice shape and combined.
본 실시예에서는, 횡방향(L-R)을 따라 간격을 갖고 설치된 2 이상의 기둥 요소(4)를 횡방향(L-R)으로 관통하여 설치된 횡방향 철근(60)에 상기 철근그리드(230)의 전단부가 결합되도록 구성된다. 일예로, 횡방향 철근(60)의 걸림 결합이 가능하도록 철근그리드(230)의 전단부는 도 6a의 (b)와 같이 "ㄷ"자형으로 절곡 형성될 수 있다. In this embodiment, the front end of the reinforcing bar grid 230 is coupled to the transverse reinforcing bars 60 installed through two or more column elements 4 installed at intervals along the transverse direction L-R in the transverse direction L-R It is composed so that For example, the front end of the reinforcing bar grid 230 may be formed bent in a "c" shape as shown in (b) of FIG.
도 7a 및 도 7b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 사시도 방향 모식도, 도 7c는 본 발명의 실시예에 따른 지지 플레이트의 사시도 방향 모식도, 도 7d는 본 발명의 실시예에 따른 커플러의 사시도 방향 모식도이다. 7a and 7b are a planar and perspective view schematic diagram of a retaining wall structure according to an embodiment of the present invention, FIG. 7c is a perspective view direction schematic diagram of a support plate according to an embodiment of the present invention, and FIG. It is a schematic diagram of the perspective view direction of the coupler according to.
본 실시예의 경우, 상기 기둥 요소(4)는 채움재(4a)로 내부 공간의 채움이 가능한 관형(管形) 부재이다. In the case of this embodiment, the pillar element 4 is a tubular member capable of filling the internal space with a filling material 4a.
본 실시예에서, 토목 경사면(102)에 천공(穿孔)된 구멍(104)에 그라우팅(106)으로 고정되며 상기 구멍(104) 외부로 일단부가 노출된 고정용 봉재(40)가 설치되며, 상기 기둥 요소(4)를 관통하여 삽입된 상기 고정용 봉재(40)의 일단부(40a)가 기둥 요소(4)의 내부 공간에서 지지 플레이트(120)에 체결되도록 구성된다. In this embodiment, a fixing rod 40 is fixed to a hole 104 drilled in a civil engineering slope 102 by grouting 106 and one end exposed to the outside of the hole 104 is installed. One end (40a) of the fixing bar 40 inserted through the pillar element 4 is configured to be fastened to the support plate 120 in the inner space of the pillar element 4.
일예로, 상기 지지 플레이트(120)는, 기둥 요소(4) 내에 전방을 향하는 상태로 배치되어 채움재(4a)에 의해 매립되며, 바람직하게는, 기둥 요소(4) 내에 설치된 보강 철근(50)에 의해 후방 이동에 대한 저항력을 받도록 걸림 결합 상태를 이루도록 설치된다. 지지 플레이트(120)는 금속 판재를 가공하여 형성될 수 있다.For example, the support plate 120 is disposed in a forward facing state in the pillar element 4 and is buried by the filling material 4a, preferably, to the reinforcing bar 50 installed in the pillar element 4. It is installed to achieve an engaging state so as to receive resistance against backward movement by The support plate 120 may be formed by processing a metal plate.
상기 고정용 봉재(40)는, 토목 경사면(102)에 천공(穿孔)된 구멍(104)에 그라우팅(106)으로 고정되며, 상기 구멍(104) 외부로 일단부가 노출된다. 일예로, 고정용 봉재(40)는 25~35 mm의 직경을 갖는 통상의 철근 봉재 또는 스크류형 철근 봉재가 사용될 수 있다. 구멍(104)은 예를 들어 75~105 mm의 내경을 갖도록 형성될 수 있다. 고정용 봉재(40)의 중간에는 구멍(104) 내측면과의 간극을 유지하기 위해 스페이서(미도시)가 삽입될 수도 있다.The fixing bar 40 is fixed to a hole 104 drilled in a civil engineering slope 102 by grouting 106, and one end is exposed to the outside of the hole 104. For example, the fixing bar 40 may be a conventional reinforcing bar or screw-type reinforcing bar having a diameter of 25 to 35 mm. The hole 104 may be formed to have an inner diameter of 75 to 105 mm, for example. A spacer (not shown) may be inserted in the middle of the fixing bar 40 to maintain a gap with the inner surface of the hole 104 .
상기 고정용 봉재(40)의 일단부와 상기 지지 플레이트(120)의 체결은, 볼트부가 형성된 상기 고정용 봉재(40)의 일단부가 지지 플레이트(120)의 관통홀(미도시)을 관통한 상태에서 전방에 위치한 체결 너트(125)와 나사 결합되어 이뤄진다.Fastening of one end of the fixing rod 40 and the support plate 120 is a state in which one end of the fixing rod 40 having a bolt portion passes through a through hole (not shown) of the support plate 120. It is made by screwing with the fastening nut 125 located in the front.
체결 너트(125)는 복수개가 결합되거나, 지지 플레이트(120)의 전방 및 후방에 2중으로 결합될 수도 있다.A plurality of fastening nuts 125 may be coupled or double coupled to the front and rear of the support plate 120 .
변형예로서, 상기 고정용 봉재(40)는 2 이상의 봉재 요소(40,40')가 커플러(42)를 통해 연결 구성되어, 길이 연장 및/또는 각도 조절이 이뤄질 수 있다. As a modification, the fixing bar 40 is configured by connecting two or more bar elements 40 and 40' through a coupler 42, so that the length can be extended and/or the angle adjusted.
상기 커플러(42)는, 하나의 고정용 봉재(40)의 타단부(40a)와 체결되는 제1 체결 수단(423)과 또다른 고정용 봉재(40')의 일단부(40a')와 체결되는 제2 체결 수단(424)이 일체로 형성되어 하나의 고정용 봉재(40)와 또다른 고정용 봉재(40')를 상호 연결한다. 커플러(42)는 금속 소재로 이뤄질 수 있다. The coupler 42 is fastened with the first fastening means 423 fastened to the other end 40a of one fixing rod 40 and one end 40a' of another fixing rod 40'. The second fastening means 424 is integrally formed to interconnect one fixing bar 40 and another fixing bar 40 '. The coupler 42 may be made of a metal material.
상기 커플러(42)의 제1 체결 수단(423)과 제2 체결 수단(424)은 각각 너트부(425)를 포함한다. 상기 제1 체결 수단(423)의 너트부(425)의 중심축선과 제2 체결 수단(424)의 너트부(425)의 중심축선은 상호 간에 경사각을 갖는 상태로 일체로 형성된다.The first fastening means 423 and the second fastening means 424 of the coupler 42 each include a nut part 425 . The central axis of the nut portion 425 of the first fastening means 423 and the central axis of the nut portion 425 of the second fastening means 424 are integrally formed with an inclination angle therebetween.
상기 구성을 통해, 상기 지지 플레이트(120)가 토목 경사면(102)에 고정된 상기 고정용 봉재(40)로부터 지지력을 전달받아, 상기 지지 플레이트(120)가 기둥 요소(4) 및 지오셀(10)의 횡방향 이동(전방으로의 전단 방향 이동)을 방지할 수 있다. Through the above configuration, the support plate 120 receives the bearing force from the fixing bar 40 fixed to the civil slope 102, so that the support plate 120 supports the pillar element 4 and the geocell 10 ) can be prevented from transverse movement (forward shear movement).
도 8a 및 도 8b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 사시도 방향 모식도이다. 8A and 8B are planar and perspective view schematic views of a retaining wall structure according to an embodiment of the present invention.
본 실시예의 경우, 상기 기둥 요소(4)는, 상기 지오셀 옹벽체(2) 후면에 위치한 토사(S') 측으로 연장되며 상기 기둥 요소(4)의 적어도 일부분(전방측 일부분)을 감싸는 형태로 상기 기둥 요소(4)에 결합되는 후방용 철근(330)에 의해 후방(B)을 향한 인장력(TF)을 제공받는다. 일예로, 후방용 철근(330)은 이형 철근보강재 또는 원형 철근보강재가 사용될 수 있다. In the case of this embodiment, the pillar element 4 extends toward the soil S' located on the rear surface of the geocell retaining wall 2 and surrounds at least a portion (front side portion) of the column element 4 A tensile force (TF) toward the rear (B) is provided by the reinforcing bars 330 for the rear coupled to the pillar element 4. For example, a deformed reinforcing bar or a circular reinforcing bar may be used as the rear reinforcing bar 330.
후방용 철근(330)은 다음과 같은 구조를 통해 후방(B)을 향한 인장력(TF)을 제공받을 수 있다. Rebar 330 for the rear may be provided with a tensile force (TF) toward the rear (B) through the following structure.
일예로, 상기 후방용 철근(330)의 후단부에 지지 플레이트(120)가 체결되며, 상기 지지 플레이트(120)는 상기 지오셀 옹벽체(2) 후면에 위치한 토사(S')에 매립되도록 구성된다. 지지 플레이트(120)의 체결은 도 7c의 실시예와 동일/유사한 형태로 이뤄질 수 있으므로, 중복 설명은 생략한다. For example, the support plate 120 is fastened to the rear end of the reinforcing bar 330 for the rear, and the support plate 120 is located on the back of the geocell retaining wall 2. Configured to be buried in soil S' do. Since the fastening of the support plate 120 may be performed in the same/similar form to that of the embodiment of FIG. 7C, redundant description will be omitted.
변형예로, 토목 경사면(102)에 천공(穿孔)된 구멍(104)에 그라우팅(106)으로 고정되며 상기 구멍(104) 외부로 일단부가 노출된 고정용 봉재(40)가 설치되며, 상기 후방용 철근(330)의 후단부가 커플러(42)를 통해 상기 고정용 봉재(40)에 연결 구성된다. 커플러(42)를 통한 고정용 봉재(40)의 연결은 도 7d의 실시예와 동일/유사한 형태로 이뤄질 수 있으므로, 중복 설명은 생략한다. As a modified example, a fixing bar 40 is fixed to a hole 104 drilled in a civil engineering slope 102 by grouting 106 and one end exposed to the outside of the hole 104 is installed, and the rear The rear end of the reinforcing bar 330 is connected to the fixing bar 40 through a coupler 42. Since the connection of the fixing bar 40 through the coupler 42 may be performed in the same/similar form to that of the embodiment of FIG. 7d, redundant description will be omitted.
도 9a 및 도 9b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 사시도 방향 모식도이다. 9A and 9B are schematic views of a planar direction and a perspective view of a retaining wall structure according to an embodiment of the present invention.
본 실시예의 경우, 상기 기둥 요소(4)는, 채움재(4a)로 내부 공간의 채움이 가능한 관형(管形) 부재이고, 상기 기둥 요소(4)의 내부에 상하(U-D) 방향을 따라 삽입 배치된 보강 철근(50)을 구비한다. In the case of the present embodiment, the pillar element 4 is a tubular member capable of filling the inner space with a filler 4a, and is inserted and disposed inside the pillar element 4 along the vertical (U-D) direction. Rebar 50 is provided.
또한 상기 기둥 요소(4)는, 상기 지오셀 옹벽체(2) 후면에 위치한 토사(S') 측으로 후단부가 연장되며 상기 기둥 요소(4)를 관통하여 상기 기둥 요소(4)의 내부 공간에서 상기 보강 철근(50)에 전단부가 결합되는 밴드 형태의 강판보강재(430)에 의해 후방(B)을 향한 인장력(TF)을 제공받는다. 일예로, 보강 철근(50)은 강판보강재(430)의 전단부에 관통 형성된 관통공(부호 미도시)에 상하방향으로 관통 결합될 수 있다. In addition, the rear end of the pillar element 4 extends toward the soil S' located on the rear surface of the geocell retaining wall 2 and penetrates the pillar element 4 to The tensile force TF toward the rear (B) is provided by the steel plate reinforcement 430 in the form of a band to which the front end is coupled to the reinforcing bar 50. For example, the reinforcing bar 50 may be coupled through a through hole (not shown) formed through the front end of the steel plate reinforcement 430 in the vertical direction.
일예로, 강판보강재(430)는 5~7 cm 의 폭을 가지며 4~5 mm의 두께를 가질 수 있으며, 아연도금 강판보강재로 구성될 수 있다. For example, the steel plate reinforcement 430 may have a width of 5 to 7 cm and a thickness of 4 to 5 mm, and may be composed of a galvanized steel plate reinforcement.
강판보강재(430)는 5~7 cm 의 폭에 해당하는 면이 상측 및 하측을 향하도록 설치되어 지오셀 옹벽체(2) 후면에 위치한 토사(S')로부터 토압 및 마찰저항력을 받도록 설치하는 것이 바람직하다. The steel plate reinforcement 430 is installed so that the surface corresponding to the width of 5 ~ 7 cm faces the upper and lower sides to receive earth pressure and frictional resistance from the soil S 'located on the back of the geocell retaining wall 2 desirable.
도 9c 및 도 9d는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도, 측면 방향 모식도 및 사시도 방향 모식도이다. 9c and 9d are a schematic plan view, a side view schematic view, and a perspective view view of a retaining wall structure according to an embodiment of the present invention.
본 실시예의 경우, 상기 기둥 요소(4)는 2 이상이 횡방향(L-R)을 따라 간격을 갖고 설치된다. In the case of this embodiment, two or more of the pillar elements 4 are installed at intervals along the transverse direction (L-R).
또한, 상기 2 이상의 기둥 요소(4)를 횡방향(L-R)으로 관통하는 횡방향 철근(60)이 설치된다. In addition, transverse reinforcing bars 60 penetrating the two or more pillar elements 4 in the transverse direction (L-R) are installed.
본 실시예에서, 상기 지오셀 옹벽체(2) 후면에 위치한 토사(S') 측으로 후단부가 연장되는 밴드 형태의 강판보강재(430)의 전단부에 상기 횡방향 철근(60)이 결합되어, 상기 강판보강재(430)에 의해 후방(B)을 향한 인장력(TF)을 제공받는다. In this embodiment, the transverse reinforcement 60 is coupled to the front end of the band-shaped steel plate reinforcement 430 whose rear end extends toward the soil S' located on the back side of the geocell retaining wall 2, A tensile force (TF) toward the rear (B) is provided by the steel plate reinforcement 430 .
일예로, 횡방향 철근(60)의 걸림 결합이 가능하도록 강판보강재(430)의 전단부는 도 9c의 (b)와 같이 "ㄷ"자형으로 절곡 형성될 수 있으며, 견고한 설치 상태를 이루도록 강판보강재(430)의 전단부 본체와 절곡부를 볼트(BT)로 체결할 수도 있다. For example, the front end of the steel plate reinforcement 430 may be formed in a "c" shape as shown in (b) of FIG. 430), the front end body and the bent portion may be fastened with bolts BT.
도 10a 및 도 10b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 측면 방향 모식도이다. 10A and 10B are planar and lateral schematic views of a retaining wall structure according to an embodiment of the present invention.
본 실시예의 경우, 상기 지오셀 옹벽체(2)는, 토사 적층체(ST)의 일측의 토목 경사면(102)의 전방(F)에 위치한 제1 지오셀 옹벽체(2-1)와 토사 적층체(ST)의 타측의 토목 경사면(102)의 전방(F)에 위치한 제2 지오셀 옹벽체(2-2)를 포함한다. In the case of this embodiment, the geocell retaining wall 2 is a first geocell retaining wall 2-1 located in front (F) of the civil slope 102 on one side of the soil stack ST and the soil stack It includes a second geocell retaining wall 2-2 located in front F of the civil engineering slope 102 on the other side of the body ST.
상기 기둥 요소(4)는, 상기 제1 지오셀 옹벽체(2-1)의 상층 지오셀(10)의 일부 단위 셀(12)과 하층 지오셀(10)의 일부 단위 셀(12)을 관통하여 상하(U-D) 방향을 따라 설치된 제1 기둥 요소(4-1)와, 상기 제2 지오셀 옹벽체(2-2)의 상층 지오셀(10)의 일부 단위 셀(12)과 하층 지오셀(10)의 일부 단위 셀(12)을 관통하여 상하(U-D) 방향을 따라 설치된 제2 기둥 요소(4-2)를 포함한다. The pillar element 4 penetrates some unit cells 12 of the upper geocell 10 and some unit cells 12 of the lower geocell 10 of the first geocell retaining wall 2-1 The first pillar element 4-1 installed along the vertical (U-D) direction, and some unit cells 12 of the upper geocell 10 of the second geocell retaining wall 2-2 and the lower geocell (10) includes second pillar elements 4-2 installed along the vertical (U-D) direction through some unit cells 12.
이러한 구성을 통해, 상기 제1 기둥 요소(4-1)의 적어도 일부분(F 방향 측 일부분)을 감싸는 형태로 상기 제1 기둥 요소(4-1)에 결합한 띠형 보강재(30)가 상기 토사 적층체(ST)를 통과하여 상기 제2 기둥 요소(4-2)의 적어도 일부분(B 방향 측 일부분)을 감싸는 형태로 상기 제2 기둥 요소(4-2)에 결합하여, 상기 제1 기둥 요소(4-1) 및 상기 제2 기둥 요소(4-2)가 상기 토사 적층체(ST)를 향한 인장력(TF)을 제공받는다. Through this configuration, the belt-shaped reinforcing member 30 coupled to the first pillar element 4-1 in a form surrounding at least a part (a part in the F direction) of the first pillar element 4-1 is the soil laminate. Passing through (ST) and coupled to the second pillar element 4-2 in a form surrounding at least a portion (B-direction side portion) of the second pillar element 4-2, the first pillar element 4 -1) and the second pillar element 4-2 receive a tensile force TF toward the soil stack ST.
이러한 구성은 토사 적층체(ST)의 양측에 대칭형으로 지오셀 옹벽체(2)를 설치하는데 좋다. This configuration is good for installing the geocell retaining wall 2 symmetrically on both sides of the soil stack ST.
도 11a 및 도 11b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 측면 방향 모식도이다. 11A and 11B are planar and lateral schematic views of a retaining wall structure according to an embodiment of the present invention.
본 실시예의 경우, 상기 기둥 요소(4)는 2 이상이 횡방향(L-R)을 따라 간격을 갖고 설치되고, 상기 2 이상의 기둥 요소(4)를 횡방향(L-R)으로 관통하는 횡방향 철근(60)이 설치된다. In the case of this embodiment, two or more of the pillar elements 4 are installed at intervals along the transverse direction (L-R), and transverse reinforcing bars 60 penetrating the two or more pillar elements 4 in the transverse direction (L-R) ) is installed.
또한, 상기 횡방향 철근(60)과 또다른 각도의 횡방향(L-R)으로 배치된 보조 횡방향 철근(160)이 상기 횡방향 철근(60)에 결합된다. In addition, auxiliary transverse reinforcing bars 160 disposed in the transverse direction (L-R) at another angle with the transverse reinforcing bars 60 are coupled to the transverse reinforcing bars 60.
횡방향 철근(60)과 보조 횡방향 철근(160)은 도 11a에 예시된 것처럼 평면 형상을 기준으로 다각형을 이루도록 용접 등을 통해 상호 결합되고, 상하로 적층된 복수의 지오셀(10)의 상층 지오셀(10')과 인접하는 하층 지오셀(10'') 사이에 삽입 설치될 수 있다. The transverse reinforcing bars 60 and the auxiliary transverse reinforcing bars 160 are mutually coupled through welding or the like to form a polygon based on a plane shape, as illustrated in FIG. 11A, and the upper layer of the plurality of geocells 10 stacked vertically It may be inserted and installed between the geocell 10' and the adjacent lower geocell 10''.
이러한 구성을 통해, 상기 횡방향 철근(60) 및 보조 횡방향 철근(160) 중의 적어도 어느 하나는 토목 경사면(102)에 천공(穿孔)된 구멍(104)에 그라우팅(106)으로 고정되며 상기 구멍(104) 외부로 일단부가 노출된 고정용 봉재(40)에 결합 설치된다. Through this configuration, at least one of the transverse reinforcing bars 60 and the auxiliary transverse reinforcing bars 160 is fixed to the hole 104 drilled in the civil engineering slope 102 by grouting 106, and the hole (104) is coupled to the fixing bar 40, one end of which is exposed to the outside.
도 11a의 경우, 가장 전방 측에 위치한 보조 횡방향 철근(160)에 지지 플레이트(120)가 고정 설치되고, 보조 횡방향 철근(160)이 지지 플레이트(120)를 통해 고정용 봉재(40)에 결합 설치된다. 지지 플레이트(120)의 설치 위치는 도 11a와 다르게 변경 가능하다. In the case of Figure 11a, the support plate 120 is fixedly installed to the auxiliary transverse reinforcing bar 160 located at the frontmost side, and the auxiliary transverse reinforcing bar 160 is fixed to the bar 40 through the support plate 120 combined installed. The installation position of the support plate 120 can be changed differently from FIG. 11A.
상기 고정용 봉재(40)의 일단부와 상기 지지 플레이트(120)의 체결은, 볼트부가 형성된 상기 고정용 봉재(40)의 일단부가 지지 플레이트(120)의 관통홀(미도시)을 관통한 상태에서 전방에 위치한 체결 너트(125)와 나사 결합되어 이뤄진다(도 7c 참조).Fastening of one end of the fixing rod 40 and the support plate 120 is a state in which one end of the fixing rod 40 having a bolt portion passes through a through hole (not shown) of the support plate 120. It is made by screwing with the fastening nut 125 located at the front in (see FIG. 7c).
바람직하게 본 실시예의 옹벽구조는, 상기 횡방향 철근(60) 및 보조 횡방향 철근(160) 중의 적어도 어느 하나와 중첩되는 위치에 있는 단위 셀(12)의 내부에 상하(U-D) 방향을 따라 삽입 배치된 보조 보강 철근(250)을 구비한다. Preferably, the retaining wall structure of this embodiment is inserted along the up-and-down (U-D) direction into the unit cell 12 at a position overlapping with at least one of the transverse reinforcement 60 and the auxiliary transverse reinforcement 160 It has an auxiliary rebar 250 disposed thereon.
상기 보조 보강 철근(250)은 상기 횡방향 철근(60) 및 보조 횡방향 철근(160) 중의 적어도 어느 하나와 결합된다. The auxiliary reinforcing bars 250 are combined with at least one of the transverse reinforcing bars 60 and the auxiliary transverse reinforcing bars 160.
또한, 상기 보조 보강 철근(250)이 상하(U-D) 방향을 따라 삽입 배치된 단위 셀(12)의 내부에 콘크리트 채움재(4a')로 내부 공간의 채움이 이뤄진다. 일예로, 보조 보강 철근(250)은 2~4개 층 정도의 지오셀(10) 층에 걸쳐서 상하 방향으로 설치되며, 콘크리트 채움재(4a')는 보조 보강 철근(250)이 설치된 지오셀(10) 층의 단위 셀(12)의 내부에 타설 및 양생되어 강성을 갖는 콘크리트 보강 기둥의 역할을 제공한다. In addition, the inside of the unit cell 12 in which the auxiliary reinforcing bars 250 are inserted and disposed along the vertical (U-D) direction is filled with a concrete filling material 4a'. For example, the auxiliary reinforcing bars 250 are installed in the vertical direction over the geocell 10 of about 2 to 4 floors, and the concrete filler 4a' is the geocell 10 in which the auxiliary reinforcing bars 250 are installed. ) is poured and cured inside the unit cell 12 of the layer to provide a role of a concrete reinforcement column having rigidity.
횡방향 철근(60)과 보조 횡방향 철근(160)이 결합하여 이루는 다각형의 구조물은 도 11b에 예시된 것처럼 상하 간격을 두고 복수개가 구비되고 보조 보강 철근(250)을 통해 상하로 결합될 수도 있다. The polygonal structure formed by combining the transverse reinforcing bars 60 and the auxiliary transverse reinforcing bars 160 may be provided with a plurality of them at vertical intervals and coupled vertically through the auxiliary reinforcing bars 250, as illustrated in FIG. 11B. .
이러한 구성을 취하게 되면, 횡방향 철근(60)과 보조 횡방향 철근(160)이 수평으로 다각형을 이루면서 결합 배치된 수평 구조물이 형성되고, 보조 보강 철근(250)이 상하 간격을 갖고 배치된 복수의 수평 구조물을 상하로 결합하여 입체 구조물을 이룬 상태에서, 보조 보강 철근(250)이 상하(U-D) 방향을 따라 삽입 배치된 단위 셀(12)의 내부에 콘크리트 채움재(4a')로 내부 공간의 채움이 이뤄지고, 상기 횡방향 철근(60) 및 보조 횡방향 철근(160) 중의 적어도 어느 하나가 고정용 봉재(40)에 결합 설치되어 토목 경사면(102) 측으로 지지력을 받게 되므로, 옹벽 전체의 구조가 견고하고 안정적으로 구성될 수 있다. 상기 입체 구조물은 지오셀 옹벽체(2)의 높이 및 폭을 고려하여 적절한 위치 및 개수로 설정되어 지오셀 옹벽체(2)의 일부분을 구성하도록 설치될 수 있다. When this configuration is taken, a horizontal structure is formed in which the transverse reinforcing bars 60 and the auxiliary transverse reinforcing bars 160 are combined and disposed while forming a polygon horizontally, and the plurality of auxiliary reinforcing bars 250 are arranged with vertical intervals. In a state in which a three-dimensional structure is formed by combining the horizontal structures of the up and down, the auxiliary reinforcing bars 250 are inserted and arranged along the up and down (U-D) direction to the inside of the unit cell 12 with a concrete filler (4a') to create a space of the interior space. Filling is done, and at least one of the transverse reinforcing bars 60 and the auxiliary transverse reinforcing bars 160 is coupled to the fixing bar 40 to receive a supporting force toward the civil slope 102, so that the entire structure of the retaining wall It can be constructed robustly and stably. The three-dimensional structure may be set to an appropriate position and number in consideration of the height and width of the geocell retaining wall 2 and installed to constitute a part of the geocell retaining wall 2.
변형예로, 콘크리트 대신에 시멘트 그라우팅 및 소일 시멘트(soil cement) 중의 적어도 어느 하나를 채움재(4a')로 할 수도 있다. As a modified example, at least one of cement grouting and soil cement may be used as the filling material 4a' instead of concrete.
도 12a, 도 12b 및 도 12c는 본 발명의 실시예에 따른 옹벽구조의 측면 방향 모식도이다. 12a, 12b and 12c are schematic side views of a retaining wall structure according to an embodiment of the present invention.
본 실시예의 경우, 상기 지오셀 옹벽체(2)는, 서로 다른 높이로 적층된 2 이상의 단위 지오셀 옹벽체(2)가 연접하여 이뤄진 중력식 옹벽체이다. 도 12a, 도 12b 및 도 12c는 1열(2-A), 2열(2-B), 3열(2-C), 4열(2-D)의 총 4열의 지오셀 옹벽체(2)가 설치된 예를 나타낸다. In this embodiment, the geocell retaining wall 2 is a gravity-type retaining wall formed by connecting two or more unit geocell retaining walls 2 stacked at different heights. 12a, 12b and 12c show a total of 4 geocell retaining walls (2 ) is installed.
중력식 옹벽체는 옹벽의 후방 측과 토목 경사면(102)의 사이에 토목 보강재를 설치할만한 공간이 충분하게 확보되지 않는 경우에 설치되는 옹벽체로서, 높이가 서로 다른 복수의 지오셀 옹벽체(2)를 전후방 위치에 따라 순차적으로 설치하는 방식의 옹벽체이다. The gravity type retaining wall is a retaining wall that is installed when a sufficient space for installing civil reinforcing materials is not secured between the rear side of the retaining wall and the civil engineering slope 102, and a plurality of geocell retaining walls (2) having different heights It is a retaining wall of the method of installing sequentially according to the front and rear positions.
지오셀 옹벽체(2)의 분산 설치 구조는 도 12a, 도 12b 또는 도 12c와 같이 다양하게 변형 구성될 수 있다. 도 12b 또는 도 12c는 1열 지오셀 옹벽체(2-A)와 4열 지오셀 옹벽체(2-D) 사이에 지오셀 옹벽체(2)를 일부 삭제하고 일반 토사층을 설치한 구성이며, 도 12c는 일반 토사층의 중간에 중간 지오셀층(부호 미도시)을 설치한 구성이다. 도 12a, 도 12b 또는 도 12c의 실시예에서는 지오그리드, 띠형 보강재, 강판, 철근 등의 토목 보강재를 설치하는 것도 가능하다. The distributed installation structure of the geocell retaining wall 2 may be modified in various ways as shown in FIG. 12a, FIG. 12b or FIG. 12c. 12b or 12c shows a structure in which a part of the geocell retaining wall 2 is removed and a general soil layer is installed between the 1-row geocell retaining wall 2-A and the 4-column geocell retaining wall 2-D, 12c shows a configuration in which an intermediate geocell layer (not shown) is installed in the middle of a general soil layer. In the embodiment of FIG. 12a, FIG. 12b or FIG. 12c, it is also possible to install civil engineering reinforcing materials such as geogrids, belt-shaped reinforcing materials, steel plates, and reinforcing bars.
도 12a를 참조하면, 가장 후방 측에 가장 낮은 높이의 지오셀 옹벽체(2-D)가 설치되고 전방으로 갈수록 더욱 높은 높이의 지오셀 옹벽체(2-C,2-B,2-A)를 설치하여 토목 경사면(102)으로부터 가해지는 토압을 분산하여 지지하도록 구성된다. Referring to FIG. 12A, the geocell retaining wall (2-D) with the lowest height is installed at the rearmost side, and the geocell retaining walls (2-C, 2-B, and 2-A) with higher heights are installed toward the front. is installed to distribute and support the earth pressure applied from the civil engineering slope 102.
본 실시예의 경우, 상기 기둥 요소(4)는 각각의 단위 지오셀 옹벽체(2)별로 별도로 설치되어, 토목 경사면(102)으로부터 가해지는 토압을 더욱 견고하게 분산하여 지지할 수 있다. In the case of this embodiment, the pillar element 4 is separately installed for each unit geocell retaining wall 2, so that the earth pressure applied from the civil engineering slope 102 can be more firmly distributed and supported.
도 13a 및 도 13b는 본 발명의 실시예에 따른 기둥 요소의 평면 방향 모식도, 측면 방향 모식도 및 결합 상태의 측면 방향 모식도이다. 13a and 13b are a schematic plan view, a side view schematic diagram, and a side view schematic view of a coupled state of a pillar element according to an embodiment of the present invention.
본 실시예의 경우, 상기 기둥 요소(4)는 2 이상의 단위 기둥 요소(4u)가 길이 방향을 따라 결합하여 구성된다. In the case of this embodiment, the pillar element 4 is configured by combining two or more unit pillar elements 4u along the longitudinal direction.
바람직하게, 상기 단위 기둥 요소(4u)는 미리 설정된 높이(예, 200~300 mm)와 직경(예, 200~300 mm)으로 제작되며 일측 단면에는 돌출부(4u-1)가 형성되고 타측 단면에는 상기 돌출부(4u-1)가 삽입 결합되는 요홈부(4u-2)가 형성되도록 구성된다. 돌출부(4u-1)는 연결핀의 역할을 제공하면서 또한 전단키의 역할을 제공한다. Preferably, the unit pillar element 4u is manufactured with a preset height (eg, 200 to 300 mm) and diameter (eg, 200 to 300 mm), and a protrusion 4u-1 is formed on one end surface and the other end face It is configured to form a concave portion 4u-2 into which the protruding portion 4u-1 is inserted and coupled. The protrusion 4u-1 serves as a connecting pin and also serves as a shear key.
일예로, 단위 기둥 요소(4u)는 원형 단면 형상을 갖는 콘크리트 구조체의 형태로 제작될 수 있으며, 프리캐스트로 제작될 수 있다. 또한, 단위 기둥 요소(4u)는 봉형의 결합용 보강재(미도시)를 관통 삽입하기 위해 중심부에 상하 방향을 따라 중심 관통홀(4u-3)이 형성되며, 적절한 하중 조건을 부여하기 위해 중심 관통홀(4u-3)의 주위에 상하 방향을 따라 더욱 작은 직경을 갖는 보조 관통홀(4u-4)이 하나 이상 형성될 수 있다. For example, the unit pillar element 4u may be manufactured in the form of a concrete structure having a circular cross-sectional shape, and may be manufactured by precasting. In addition, the unit pillar element 4u has a central through hole 4u-3 formed along the vertical direction at the center in order to insert a bar-shaped reinforcing member (not shown) through the center, and to provide an appropriate load condition. One or more auxiliary through holes 4u-4 having a smaller diameter may be formed around the hole 4u-3 along the vertical direction.
이러한 구성을 통해, 도 13b와 같이 2 이상의 단위 기둥 요소(4u)를 길이 방향을 따라 상하로 결합하여 기둥 요소(4)를 구성된다. Through this configuration, as shown in FIG. 13B, two or more unit pillar elements 4u are vertically coupled along the longitudinal direction to form the pillar element 4.
단위 기둥 요소(4u)는 단독으로 결합 사용하는 것도 가능하며, 유공관(有孔管)과 같은 관형(管形) 부재의 내부에 삽입하여 그 내부에서 결합 사용하는 것도 가능하다. 단위 기둥 요소(4u)를 관형(管形) 부재의 내부에 삽입 설치하는 경우, 단위 기둥 요소(4u)의 외경이 관형(管形) 부재의 내경보다 약간 작은 크기 정도(75~85%)로 제작되면 좋다. The unit pillar element 4u can be used singly in combination or inserted inside a tubular member such as a perforated pipe and used in combination therein. When the unit pillar element 4u is inserted into the inside of the tubular member, the outer diameter of the unit pillar element 4u is slightly smaller than the inner diameter of the tubular member (75 to 85%). good if made
도 14a, 도 14b, 도 14c 및 도 14d는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도, 평면 방향 모식도, 측면 방향 모식도 및 기둥 요소의 결합 상태 모식도이다. 14a, 14b, 14c, and 14d are schematic diagrams in a plane direction, a schematic diagram in a plane direction, a schematic diagram in a lateral direction, and a coupled state diagram of column elements of a retaining wall structure according to an embodiment of the present invention.
본 실시예의 경우, 상기 기둥 요소(4)의 내부에는 상하(U-D) 방향을 따라 삽입 배치된 보강 철근(50)이 구비된다. In the case of this embodiment, the inside of the pillar element 4 is provided with a reinforcing bar 50 inserted and disposed along the vertical (U-D) direction.
상기 기둥 요소(4)의 하부에는 하부 지반에 천공 삽입된 강제 파일(350) 또는 강관이 구비된다. 강제 파일(350)은 일예로 H 빔이 사용될 수 있으나, 이에 한정되는 것은 아니다. 일예로, 강제 파일(350) 또는 강관은 지오셀 옹벽체(2)가 설치되는 하부 지반을 드릴로 천공하여 투입하고 레미콘 또는 그라우팅을 타설하는 방식으로 설치될 수 있다. At the bottom of the pillar element 4, a steel pile 350 or a steel pipe is provided with a hole drilled into the lower ground. The forced pile 350 may be used as an example of an H beam, but is not limited thereto. For example, the steel pile 350 or the steel pipe may be installed by drilling the lower ground where the geocell retaining wall 2 is installed, inserting it, and pouring ready-mixed concrete or grouting.
상기 보강 철근(50)은 상기 강제 파일(350) 또는 강관에 고정 결합된다. 강제 파일(350) 또는 강관에 대한 보강 철근(50)의 고정 결합은 용접 또는 공지의 기구적 결합수단(예, 커넥터)을 이용하여 이뤄질 수 있다. The reinforcing bar 50 is fixedly coupled to the steel pile 350 or the steel pipe. The fixed coupling of the reinforcing bar 50 to the steel pile 350 or the steel pipe may be performed using welding or a known mechanical coupling means (eg, connector).
이러한 구성을 취하는 경우, 기둥 요소(4)가 보강 철근(50)에 의해 횡방향 토압에 대한 저항력을 받고, 보강 철근(50)은 강제 파일(350) 또는 강관에 의해 하부 지반에 기초하여 지지력을 받으므로, 지오셀 옹벽체(2)가 더욱 견고하고 안정적인 설치 상태를 유지할 수 있다. In the case of taking this configuration, the column element 4 receives resistance to the transverse earth pressure by the reinforcing bar 50, and the reinforcing bar 50 has a bearing capacity based on the lower ground by the steel pile 350 or the steel pipe Therefore, the geocell retaining wall 2 can maintain a more robust and stable installation state.
변형예로서, 상기 기둥 요소(4)는 2 이상이 횡방향(L-R)을 따라 간격을 갖고 설치되고, 상기 2 이상의 기둥 요소(4)를 횡방향(L-R)으로 관통하는 횡방향 철근(60)이 설치된다. As a modification, two or more of the pillar elements 4 are installed at intervals along the transverse direction (L-R), and transverse reinforcing bars 60 penetrating the two or more pillar elements 4 in the transverse direction (L-R) is installed
하부 지반에 천공 삽입된 강제 파일(350) 또는 강관이 구비되고, 상기 횡방향 철근(60)이 상기 강제 파일(350) 또는 강관에 관통 결합된다. 횡방향 철근(60)의 관통 삽입을 위해, 강제 파일(350) 또는 강관은 현장에서 드릴로 관통 홀을 형성할 수 있다. 관통 삽입된 횡방향 철근(60)은 강제 파일(350) 또는 강관에 용접 결합될 수 있다. A steel pile 350 or a steel pipe drilled into the lower ground is provided, and the transverse reinforcing bar 60 is penetrated and coupled to the steel pile 350 or the steel pipe. For through insertion of the transverse reinforcement 60, the steel pile 350 or the steel pipe may form a through hole with a drill in the field. Transverse reinforcement 60 inserted through can be welded to the steel pile 350 or the steel pipe.
횡방향 철근(60)은 보강 철근(50)의 전방 측에 위치시키고, 보강 철근(50)과 횡방향 철근(60)이 접하는 지점을 용접 또는 고정수단(예, 철사, 커넥터)을 통해 결합시킨 후, 기둥 요소(4)의 내부에 채움재(4a)를 채울 수 있다. 하나의 기둥 요소(4)에 보강 철근(50)은 1개만 설치되거나, 도 14b에 예시된 것처럼 2개 이상이 설치될 수도 있다. The transverse reinforcing bar 60 is located on the front side of the reinforcing bar 50, and the point of contact between the reinforcing bar 50 and the transverse reinforcing bar 60 is welded or coupled through a fixing means (eg, wire, connector) After that, it is possible to fill the inside of the pillar element 4 with a filling material 4a. Only one reinforcing bar 50 may be installed in one column element 4, or two or more may be installed as illustrated in FIG. 14B.
또다른 변형예로서, 상기 기둥 요소(4)는 2 이상이 횡방향(L-R)을 따라 간격을 갖고 설치되며, 상기 기둥 요소(4)의 내부에 상하(U-D) 방향을 따라 삽입 배치된 보강 철근(50)이 구비된다. As another modification, two or more of the pillar elements 4 are installed at intervals along the transverse direction (L-R), and reinforcing bars inserted and disposed along the vertical (U-D) direction inside the pillar element 4 (50) is provided.
하부 지반에 천공 삽입되며 상기 기둥 요소(4)의 내부에 상하(U-D) 방향을 따라 적어도 일부가 삽입 배치된 강제 파일(350)이 구비된다. A steel pile 350 is provided by drilling into the lower ground and having at least a part inserted into the column element 4 along the up-and-down (U-D) direction.
상기 2 이상의 기둥 요소(4)를 횡방향(L-R)으로 관통하는 횡방향 철근(60)이 상기 보강 철근(50) 및 강제 파일(350) 중의 적어도 하나와 결합된다. Transverse reinforcing bars 60 penetrating the two or more column elements 4 in the transverse direction (L-R) are combined with at least one of the reinforcing bars 50 and the steel piles 350.
이러한 구성을 취하는 경우, 횡방향 철근(60)에 의해 복수의 기둥 요소(4)가 일체로 결합된 구조를 갖게 되므로, 지오셀 옹벽체(2)가 더욱 견고하고 안정적인 설치 상태를 유지할 수 있다. In the case of taking this configuration, since the plurality of pillar elements 4 are integrally coupled by the transverse reinforcing bars 60, the geocell retaining wall 2 can maintain a more robust and stable installation state.
도 15a, 도 15b 및 도 15c는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도, 측면 방향 모식도 및 사시도 방향 모식도이다. 15a, 15b and 15c are planar, lateral and perspective schematic views of a retaining wall structure according to an embodiment of the present invention.
본 실시예의 경우, 상기 기둥 요소(4)는 관형(管形) 부재로서 골재로 내부 공간의 채움이 이뤄진다. In the case of this embodiment, the column element 4 is a tubular member, and the internal space is filled with aggregate.
상기 기둥 요소(4)의 절개된 측면부(4s 또는 4ps)를 통해 삽입 설치된 드레인보드 또는 다발관(70)이 상층 지오셀(10)의 일부 단위 셀(12)과 하층 지오셀(10)의 일부 단위 셀(12) 사이에 배치된다. The drain board or bundle pipe 70 installed through the incised side part (4s or 4ps) of the pillar element (4) is part of the upper geocell (10) and part of the unit cell (12) and the lower geocell (10) It is disposed between the unit cells 12.
드레인보드는 진공 성형식 고밀도 폴리스틸렌과 특수성 필터(부직포)를 접합시킨 것으로서 옹벽 및 구조물에 설치하여 배수관 또는 양수관으로 물이 흐르게 하는 공지의 배수시스템이며, 적절한 크기로 재단하여 사용할 수 있다. The drain board is a known drainage system in which vacuum-formed high-density polystyrene and a special filter (non-woven fabric) are bonded, and installed on a retaining wall or structure to allow water to flow through a drainage pipe or pumping pipe. It can be cut to an appropriate size for use.
다발관은 연속된 많은 선상(linear type)의 집수구(集水口)와 배수공간(排水空間)이 마련되어 막힘이 없고 집배수(集排水)의 효과가 우수한 배수관으로서, S형 다발관, 판형다발관 등이 있다. 다발관은 공급되는 유량을 감안하여 적절한 다발수 및 관경을 선택하고 적절한 길이로 절단하여 사용할 수 있다. The bundle pipe is a drainage pipe that has many consecutive linear type catchments and drainage spaces, so there is no blockage and the effect of collecting and draining water is excellent. etc. The bundle pipe can be used by selecting an appropriate number of bundles and pipe diameter in consideration of the supplied flow rate and cutting to an appropriate length.
드레인보드 또는 다발관(70)은 기둥 요소(4)의 절개된 측면부(4s 또는 4ps)의 한 지점에 2개 이상이 삽입 설치될 수도 있으며, 2개 이상이 설치되는 경우 서로 다른 방향으로 배치되어 지오셀(10) 내부의 토사로 물 공급이 분배 공급 가능하도록 설치된다. Two or more drain boards or bundle pipes 70 may be inserted and installed at one point of the incised side portion (4s or 4ps) of the pillar element 4, and when two or more are installed, they are arranged in different directions It is installed so that water can be distributed and supplied to the soil inside the geocell 10.
이러한 구성을 취하는 경우, 빗물 또는 외부로부터 공급되는 물이 지오셀 옹벽체(2)의 상측 후방에 위치한 수로관(114)을 통해 기둥 요소(4)의 상부 개구면으로 유입되어 기둥 요소(4) 내부에서 하부 측으로 흐르며, 상기 기둥 요소(4)의 내부에 저장되거나 흐르는 물이 상기 드레인보드 또는 다발관(70)을 통해 지오셀 옹벽체(2)의 중간중간에 분배 공급이 가능하다. 이러한 물공급 구조를 통해 지오셀 옹벽체(2)의 전면부에 식재된 식물이 전체 층에 걸쳐서 원활한 물공급을 받을 수 있다. 수로관(114)으로부터 기둥 요소(4)의 내부로 물이 원활하게 공급될 수 있도록 수로관(114) 및/또는 기둥 요소(4)의 상호 대향하는 측면에 관통홀을 형성할 수도 있다. In the case of taking this configuration, rainwater or water supplied from the outside flows into the upper opening of the column element 4 through the water pipe 114 located at the rear of the upper side of the geocell retaining wall 2, and the inside of the column element 4 , and the water stored or flowing inside the pillar element 4 can be distributed and supplied to the middle of the geocell retaining wall 2 through the drain board or the bundle pipe 70. Through this water supply structure, plants planted on the front of the geocell retaining wall 2 can be smoothly supplied with water throughout the entire floor. Through-holes may be formed on mutually opposing sides of the water pipe 114 and/or the pillar element 4 so that water can be smoothly supplied from the water pipe 114 to the inside of the pillar element 4 .
변형예로서, 드레인보드 또는 다발관(70) 대신에 부직포, 부직포 유공관을 사용하는 것도 가능하다. As a modified example, it is also possible to use a non-woven fabric or non-woven perforated pipe instead of the drain board or the bundle pipe 70 .
한편, 상술한 실시예들은 다음과 같은 실시 형태의 관점으로 이해될 수 있다. Meanwhile, the above-described embodiments may be understood in terms of the following embodiments.
하나의 실시 형태의 관점으로서, 상기 기둥 요소(4)는, 채움재(4a)로 내부 공간의 채움이 가능한 관형(管形) 부재이고, 상기 기둥 요소(4)의 내부에 상하(U-D) 방향을 따라 삽입 배치된 보강 철근(50)을 구비하며, 상기 지오셀 옹벽체(2) 후면에 위치한 토사(S') 측으로 후단부가 연장되며 상기 기둥 요소(4)를 관통하여 상기 기둥 요소(4)의 내부 공간에서 상기 보강 철근(50)에 결합되는 토목보강재에 의해 후방(B)을 향한 인장력(TF)을 제공받는다. As a point of view of one embodiment, the pillar element 4 is a tubular member capable of filling the inner space with a filling material 4a, and a vertical (U-D) direction is formed inside the pillar element 4. It has a reinforcing bar 50 inserted and arranged along the geocell retaining wall 2, and the rear end extends toward the soil S' located on the rear side of the pillar element 4 through the pillar element 4. In the inner space, a tensile force (TF) toward the rear (B) is provided by the civil reinforcing material coupled to the reinforcing bar (50).
도 9a 및 도 9b는 토목보강재로서 강판보강재(430)를 사용하는 경우로서 이러한 실시 형태에 해당한다. 도 8a 및 도 8b에 예시된 후방용 철근(330)도 이러한 실시 형태(기둥 요소(4) 관통 및 보강 철근(50)에 결합)로 설치될 수도 있다. 9a and 9b correspond to this embodiment as a case of using a steel plate reinforcement 430 as a civil engineering reinforcement. The rear reinforcing bars 330 illustrated in FIGS. 8A and 8B may also be installed in this embodiment (through the column element 4 and coupled to the reinforcing bar 50).
또다른 실시 형태의 관점으로서, 상기 기둥 요소(4)는 2 이상이 횡방향(L-R)을 따라 간격을 갖고 설치되고, 상기 2 이상의 기둥 요소(4)를 횡방향(L-R)으로 관통하는 횡방향 철근(60)이 설치되며, 상기 지오셀 옹벽체(2) 후면에 위치한 토사(S') 측으로 후단부가 연장되는 토목보강재에 상기 횡방향 철근(60)이 결합되어, 상기 토목보강재에 의해 후방(B)을 향한 인장력(TF)을 제공받는다. As a viewpoint of another embodiment, two or more of the pillar elements 4 are installed at intervals along the transverse direction (L-R), and the transverse direction penetrating the two or more pillar elements 4 in the transverse direction (L-R) Reinforcing bars 60 are installed, and the transverse reinforcing bars 60 are coupled to a civil reinforcing material whose rear end extends toward the soil S' located on the rear side of the geocell retaining wall 2, so that the rear ( A tensile force (TF) toward B) is provided.
도 3a 및 도 3b는 토목보강재로서 띠형 보강재(30)를 사용하는 경우, 도 6a 및 도 6b는 토목보강재로서 철근그리드(230)를 사용하는 경우, 도 9c 및 도 9d는 토목보강재로서 강판보강재(430)를 사용하는 경우를 각각 예시한 것으로 볼 수 있다. 3a and 3b show a case of using a belt-shaped reinforcing material 30 as a civil reinforcing material, FIGS. 6a and 6b show a case of using a reinforcing bar grid 230 as a civil reinforcing material, and FIGS. 9c and 9d show a steel plate reinforcement as a civil reinforcing material ( 430) can be seen as exemplified respectively.
또다른 실시 형태의 관점으로서, 토목 경사면(102)에 천공(穿孔)된 구멍(104)에 그라우팅(106)으로 고정되며 상기 구멍(104) 외부로 일단부가 노출된 고정용 봉재(40)가 설치되며, 상기 기둥 요소(4)는 상기 고정용 봉재(40)에 기초하여 후방(B)을 향한 인장력(TF)을 제공받는다. As a point of view of another embodiment, a fixing bar 40 is fixed to a hole 104 drilled in a civil engineering slope 102 by grouting 106 and one end exposed to the outside of the hole 104 is installed. And, the pillar element 4 is provided with a tensile force (TF) toward the rear (B) based on the fixing bar (40).
도 4a, 도 4b 및 도 4c는 지오그리드(130)가 고정용 봉재(40)에 기초하여 인장력(TF)을 제공받는 경우, 도 7a 및 도 7b는 지지 플레이트(120)가 고정용 봉재(40)에 기초하여 인장력(TF)을 제공받는 경우, 도 8a 및 도 8b는 후방용 철근(330)이 고정용 봉재(40)에 기초하여 인장력(TF)을 제공받는 경우, 도 11a 및 도 11b는 횡방향 철근(60) 또는 보조 횡방향 철근(160)이 고정용 봉재(40)에 기초하여 인장력(TF)을 제공받는 경우를 각각 예시한 것으로 볼 수 있다. 4a, 4b and 4c, when the geogrid 130 is provided with a tensile force (TF) based on the fixing bar 40, FIGS. 7a and 7b show the support plate 120 for fixing the bar 40 When receiving a tensile force (TF) based on, Figures 8a and 8b, when the reinforcement for the rear 330 is provided with a tensile force (TF) based on the bar 40 for fixing, Figures 11a and 11b are transverse Directional reinforcing bars 60 or auxiliary transverse reinforcing bars 160 can be seen as exemplified when receiving a tensile force (TF) based on the fixing bar 40, respectively.
또다른 실시 형태의 관점으로서, 상기 기둥 요소(4)는 2 이상이 횡방향(L-R)을 따라 간격을 갖고 설치되고, 토목 경사면(102)에 천공(穿孔)된 구멍(104)에 그라우팅(106)으로 고정되며 상기 구멍(104) 외부로 일단부가 노출된 고정용 봉재(40)가 설치되며, 상기 2 이상의 기둥 요소(4)를 횡방향(L-R)으로 관통하여 설치된 횡방향 철근(60)의 적어도 일부분이 상기 고정용 봉재(40)에 기초하여 후방(B)을 향한 인장력(TF)을 제공받는다. As a viewpoint of another embodiment, two or more of the pillar elements 4 are installed at intervals along the transverse direction (L-R), and grouting (106) in a hole (104) drilled in a civil engineering slope (102) ) and a fixing bar 40 having one end exposed to the outside of the hole 104 is installed, and the transverse reinforcing bar 60 installed by penetrating the two or more pillar elements 4 in the transverse direction (L-R) At least a portion is provided with a tensile force (TF) toward the rear (B) based on the fixing bar (40).
도 11a 및 도 11b는 횡방향 철근(60) 및 고정용 봉재(40)에 기초하여 인장력(TF)을 제공받는 경우를 예시한 것으로 볼 수 있다. Figures 11a and 11b can be seen as an example of the case where the tensile force (TF) is provided based on the transverse reinforcement 60 and the fixing bar 40.
도 5a 및 도 5b는 본 발명의 실시예에 따른 옹벽구조의 평면 방향 모식도 및 측면 방향 모식도, 도 5c 및 도 5d는 본 발명의 실시예에 따른 블록 형상 저항체의 설치 상태를 나타낸 사시도 방향 모식도 및 단면 방향 모식도이다. 5A and 5B are planar and lateral schematic diagrams of a retaining wall structure according to an embodiment of the present invention, and FIGS. 5C and 5D are perspective and cross-sectional views showing the installation state of a block-shaped resistor according to an embodiment of the present invention. It is a schematic diagram of direction.
본 실시예의 경우, 상기 지오셀 옹벽체(2) 후면에 위치한 토사(S')에 일부가 매립되고 토사(S)의 토압(SP)과 마찰력에 기초하여 후방(B)을 향한 인장력(TF)을 제공받는 토목용 보강재가 설치되며, 상기 토목용 보강재의 전방(F) 측 일부가 상하(U-D)로 적층된 복수의 지오셀(10)의 중간에 위치하도록 설치된다. In the case of this embodiment, a part of the geocell retaining wall (2) is buried in the soil (S') located on the back side, and based on the soil pressure (SP) and the frictional force of the soil (S), the tensile force (TF) toward the rear (B) A reinforcement for civil engineering is installed, and a part of the front (F) side of the reinforcement for civil engineering is installed in the middle of the plurality of geocells 10 stacked vertically (U-D).
일예로, 상기 토목용 보강재는 띠형 보강재(30)일 수 있다. For example, the reinforcing material for civil engineering may be a belt-shaped reinforcing material 30 .
이 경우, 내부에 토사(S) 채움이 이뤄진 지오셀(10)의 단위 셀(12) 상부에 블록 형상 저항체(20)가 적치된다. In this case, the block-shaped resistor 20 is placed on top of the unit cell 12 of the geocell 10 filled with soil (S).
또한, 상기 띠형 보강재(30)가 상기 블록 형상 저항체(20)의 전방(F)측 및 좌우측을 감싸는 상태를 이루는 벤딩부(30a)와 상기 토목 경사면(102) 측으로 횡방향(L-R)으로 연장되어 펼쳐진 상태를 이루는 펼침부(30b)를 포함하며, 상기 벤딩부가 상하(U-D)로 적층된 복수의 지오셀(10)의 중간에 위치하도록 설치된다. In addition, the band-shaped reinforcing member 30 extends in the lateral direction (L-R) toward the bending portion 30a and the civil slope 102 forming a state of wrapping the front (F) side and left and right sides of the block-shaped resistor 20, It includes an expanding portion (30b) forming an unfolded state, and the bending portion is installed so as to be positioned in the middle of the plurality of geocells 10 stacked vertically (U-D).
상기 블록 형상 저항체(20)는, 토목 경사면(102)의 전방 측에 횡방향으로 펼쳐지고 내부에 토사(S) 채움이 이뤄진 지오셀(10)의 단위 셀(12) 상부에 적치된다. 일예로, 상기 블록 형상 저항체(20)는 콘크리트 소재로 제작될 수 있으며, 직육면체 형태의 블록으로 제작될 수 있다. The block-shaped resistor 20 is spread horizontally on the front side of the civil engineering slope 102 and is placed on top of the unit cell 12 of the geocell 10 filled with soil (S). For example, the block-shaped resistor 20 may be made of a concrete material or may be made of a rectangular parallelepiped block.
블록 형상 저항체(20)는 도 5d와 같이 하부 지오셀(10)의 토사층(Sd) 상부에 적치되고 상부 지오셀(10)의 토사층(Su) 내부에 위치할 수 있으며, 변형예로서 일부가 하부 지오셀(10)의 토사층(Sd) 내부에 위치할 수도 있다. As shown in FIG. 5D, the block-shaped resistor 20 is stacked on top of the soil layer Sd of the lower geocell 10 and may be located inside the soil layer Su of the upper geocell 10. It may be located inside the soil layer (Sd) of the geocell (10).
상기 띠형 보강재(30)는, 상기 블록 형상 저항체(20)의 전방측(20f) 및 좌우측(20u)을 감싸는 상태를 이루는 벤딩부(30a)와 상기 토목 경사면(102) 측으로 횡방향으로 연장되어 펼쳐진 상태를 이루는 펼침부(30b)를 포함하며, 상하로 적층된 복수의 지오셀(10)의 중간에 위치하도록 설치된다. The band-shaped reinforcing member 30 extends in the transverse direction toward the bending portion 30a and the civil slope 102 that surrounds the front side 20f and the left and right sides 20u of the block-shaped resistor 20. It includes an expanding part 30b forming a state, and is installed to be located in the middle of a plurality of geocells 10 stacked vertically.
바람직하게, 상기 띠형 보강재(30)는 소정 폭(w)을 갖는 스트립 형태로 형성되며, 상기 벤딩부(30a)를 이루는 구간에서는 상기 블록 형상 저항체(20)의 전방측(20f) 및 좌우측(20u)을 감싸는 상태를 이루도록 부분적으로 직립된 상태를 이룬다. 이러한 직립된 벤딩 상태를 통해 상기 블록 형상 저항체(20)에 대한 접촉면적을 최대한 넓혀 상호 간에 전달되는 힘을 최대한 넓은 면적을 통해 분산된 형태로 전달할 수 있다.Preferably, the band-shaped reinforcing member 30 is formed in a strip shape having a predetermined width w, and in the section forming the bending portion 30a, the front side 20f and the left and right sides 20u of the block-shaped resistor 20 ) to form a partially erect state to achieve a state of enclosing. Through this upright bending state, the contact area with respect to the block-shaped resistor 20 is widened as much as possible, and the mutually transmitted forces can be transmitted in a distributed form through the widest area as possible.
또한, 상기 띠형 보강재(30)는, 상기 펼침부(30b)를 이루는 구간에서는 상부로부터 가해지는 토압(SP)을 최대한 넓은 면적을 통해 받도록 지면과 동일한 방향으로 누운 상태를 유지한다.In addition, the band-shaped reinforcing member 30 maintains a lying state in the same direction as the ground so as to receive earth pressure (SP) applied from the top over a wide area as much as possible in the section constituting the expanding portion 30b.
이러한 구조를 통해 본 실시예의 옹벽구조는, 상기 블록 형상 저항체(20)가 상기 띠형 보강재(30)로부터 인장력(TF)을 전달받아, 상기 블록 형상 저항체(20)의 상부 및 하부에 적층 상태를 이루며 토사(S) 채움이 이뤄진 지오셀(10)의 횡방향 이동을 방지하도록 구성된다.Through this structure, in the retaining wall structure of this embodiment, the block-shaped resistor 20 receives the tensile force TF from the strip-shaped reinforcing member 30, and forms a stacked state on the upper and lower portions of the block-shaped resistor 20, It is configured to prevent the lateral movement of the geocell 10 filled with soil (S).
다른예로, 상기 토목용 보강재는 격자 형상의 네트 형태로 구성된 지오그리드(130)일 수 있다. As another example, the reinforcing material for civil engineering may be a geogrid 130 configured in the form of a lattice net.
이 경우, 내부에 토사(S) 채움이 이뤄진 지오셀(10)의 단위 셀(12) 상부에 블록 형상 저항체(20)가 적치된다. In this case, the block-shaped resistor 20 is placed on top of the unit cell 12 of the geocell 10 filled with soil (S).
또한, 상기 지오그리드(130)는 상하(U-D)로 적층된 복수의 지오셀(10)의 중간에 위치하도록 설치되고, 상기 블록 형상 저항체(20)의 전방(F)측, 상부측 및 후방(B)측을 감싸는 형태로 굴곡 변형되어 상기 블록 형상 저항체(20)를 커버하는 형태로 설치된다. 본 실시예는 도 4d 및 도 4e와 유사한 형태로 지오그리드(130)가 설치되는 것으로 이해될 수 있다. In addition, the geogrid 130 is installed to be located in the middle of the plurality of geocells 10 stacked vertically (U-D), and the front (F) side, upper side and rear side (B) of the block-shaped resistor 20 ) side is bent and deformed to cover the block-shaped resistor 20. In this embodiment, it can be understood that the geogrid 130 is installed in a form similar to FIGS. 4D and 4E.
본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 기술되었지만 당업자라면 이러한 기재로부터 본 발명의 범주를 벗어남이 없이 많은 다양하고 자명한 변형이 가능하다는 것은 명백하다. 따라서 본 발명의 범주는 이러한 많은 변형예들을 포함하도록 기술된 특허청구범위에 의해서 해석돼야 한다.Although the present invention has been described based on preferred embodiments with reference to the accompanying drawings, it is clear that many various and obvious modifications are possible to those skilled in the art from this description without departing from the scope of the present invention. Therefore, the scope of the present invention should be interpreted by the claims described to include these many modifications.

Claims (40)

  1. 복수의 단위 셀이 결합하여 구성된 지오셀을 토목 경사면의 전방 측에 경사도를 갖도록 상하로 적층하여 구성되며, 상기 지오셀 내부에 토사를 채워 설치한 지오셀 옹벽체; 및 A geocell retaining wall constructed by stacking geocells formed by combining a plurality of unit cells up and down to have a gradient on the front side of a civil engineering slope, and installed by filling the inside of the geocell with soil; and
    상층 지오셀의 일부 단위 셀과 하층 지오셀의 일부 단위 셀을 관통하여 상기 지오셀 옹벽체와 동일한 경사도를 갖도록 상하 방향을 따라 설치된 하나 이상의 기둥 요소;를 포함하여 구성된 옹벽구조.A retaining wall structure comprising: one or more column elements installed along the vertical direction to have the same inclination as the geocell retaining wall through some unit cells of the upper geocell and some unit cells of the lower geocell.
  2. 제1항에 있어서, According to claim 1,
    상기 기둥 요소는 채움재로 내부 공간의 채움이 이뤄지는 관형(管形) 부재인 것을 특징으로 하는 옹벽구조. The retaining wall structure, characterized in that the column element is a tubular member in which the inner space is filled with a filling material.
  3. 제2항에 있어서, According to claim 2,
    상기 채움재는 토사 및 골재 중의 적어도 어느 하나인 것을 특징으로 하는 옹벽구조. The retaining wall structure, characterized in that the filling material is at least one of soil and aggregate.
  4. 제2항에 있어서, According to claim 2,
    상기 채움재는 콘크리트, 시멘트 그라우팅 및 소일 시멘트(soil cement) 중의 적어도 어느 하나인 것을 특징으로 하는 옹벽구조. The retaining wall structure, characterized in that the filling material is at least one of concrete, cement grouting and soil cement.
  5. 제2항 내지 제4항 중의 어느 하나의 항에 있어서, According to any one of claims 2 to 4,
    상기 기둥 요소의 내부에 상하 방향을 따라 삽입 배치된 보강 철근을 더욱 구비한 것을 특징으로 하는 옹벽구조. Retaining wall structure, characterized in that further comprising a reinforcing bar inserted and arranged along the vertical direction inside the column element.
  6. 제2항 내지 제4항 중의 어느 하나의 항에 있어서, According to any one of claims 2 to 4,
    상기 관형 부재는 유공관(有孔管)인 것을 특징으로 하는 옹벽구조. Retaining wall structure, characterized in that the tubular member is a perforated pipe.
  7. 제1항에 있어서, According to claim 1,
    상기 기둥 요소는 상기 지오셀 옹벽체 후면에 위치한 토사에 일부가 매립되어 토압과 마찰력을 받는 토목용 보강재로부터 후방을 향한 인장력을 제공받는 것을 특징으로 하는 옹벽구조.The pillar element is a retaining wall structure, characterized in that a part of it is embedded in the soil located on the back side of the geocell retaining wall and receives a tensile force toward the rear from a civil engineering reinforcing material that receives earth pressure and frictional force.
  8. 제7항에 있어서, According to claim 7,
    상기 토목용 보강재는 띠형 보강재이며, The civil reinforcing material is a belt-shaped reinforcing material,
    상기 띠형 보강재가 상기 기둥 요소의 적어도 일부분을 감싸는 형태로 상기 기둥 요소에 결합하는 것을 특징으로 하는 옹벽구조. Retaining wall structure, characterized in that the band-shaped reinforcement is coupled to the column element in a form surrounding at least a portion of the column element.
  9. 제7항에 있어서, According to claim 7,
    상기 기둥 요소는 2 이상이 횡방향을 따라 간격을 갖고 설치되고, Two or more of the pillar elements are installed at intervals along the transverse direction,
    상기 토목용 보강재는 띠형 보강재이며, The civil reinforcing material is a belt-shaped reinforcing material,
    상기 2 이상의 기둥 요소를 횡방향으로 관통하여 설치된 횡방향 철근의 적어도 일부분을 상기 띠형 보강재가 감싸는 형태로 결합하도록 구성된 것을 특징으로 하는 옹벽구조. A retaining wall structure, characterized in that configured to combine at least a portion of the transverse reinforcing bars installed by penetrating the two or more column elements in the transverse direction in a form in which the strip-shaped reinforcing member surrounds.
  10. 제7항에 있어서, According to claim 7,
    상기 토목용 보강재는 격자 형상의 네트 형태로 구성된 지오그리드이며, The civil engineering reinforcing material is a geogrid configured in the form of a lattice net,
    상기 지오그리드가 상기 기둥 요소의 상하 분리된 부분을 통과하는 형태로 설치되는 것을 특징으로 하는 옹벽구조. Retaining wall structure, characterized in that the geogrid is installed in a form passing through the upper and lower separated parts of the column element.
  11. 제10항에 있어서, According to claim 10,
    상기 기둥 요소는, 내부에 상하 방향을 따라 보강 철근이 삽입 배치되고 채움재로 내부 공간의 채움이 이뤄진 관형(管形) 부재이며, The column element is a tubular member in which reinforcing bars are inserted and disposed along the vertical direction therein and the internal space is filled with a filling material,
    상기 보강 철근이 상기 지오그리드를 구성하는 어느 하나의 격자를 관통하도록 설치된 것을 특징으로 하는 옹벽구조. Retaining wall structure, characterized in that the reinforcing bars are installed to penetrate any one grid constituting the geogrid.
  12. 제10항에 있어서, According to claim 10,
    상기 기둥 요소는, 골재를 포함하는 채움재로 내부 공간의 채움이 이뤄진 관형(管形) 부재이며, The column element is a tubular member in which the inner space is filled with a filler containing aggregate,
    상기 채움재를 통해 상기 지오그리드와 걸림 결합되도록, 상기 채움재를 구성하는 골재가 상기 지오그리드를 구성하는 격자를 관통하도록 설치된 것을 특징으로 하는 옹벽구조. A retaining wall structure, characterized in that the aggregate constituting the filling material is installed to pass through the grid constituting the geogrid so as to be engaged with the geogrid through the filling material.
  13. 제10항에 있어서, According to claim 10,
    내부에 토사 채움이 이뤄진 지오셀의 단위 셀 상부에 블록 형상 저항체가 적치되고, A block-shaped resistor is placed on top of the unit cell of the geocell with soil filling inside,
    상기 지오그리드는 상하로 적층된 복수의 지오셀의 중간에 위치하도록 설치되고, 상기 블록 형상 저항체의 전방측, 상부측 및 후방측을 감싸는 형태로 굴곡 변형되어 상기 블록 형상 저항체를 커버하는 형태로 설치되는 것을 특징으로 하는 옹벽구조. The geogrid is installed to be located in the middle of a plurality of geocells stacked vertically, and is bent and deformed in a form surrounding the front side, upper side, and rear side of the block-shaped resistor to cover the block-shaped resistor Installed in a form Retaining wall structure, characterized in that.
  14. 제10항에 있어서, According to claim 10,
    토목 경사면에 천공(穿孔)된 구멍에 그라우팅으로 고정되며 상기 구멍 외부로 일단부가 노출된 2 이상의 고정용 봉재가 설치되며, It is fixed by grouting in a hole drilled in a civil slope and two or more fixing rods having one end exposed to the outside of the hole are installed,
    상기 지오그리드는 서로 다른 상하 위치에 설치된 상측 지오그리드의 펼침부의 후단부와 하측 지오그리드의 펼침부의 후단부가 연결부를 통해 상호 일체로 연결된 형태를 이루고,The geogrid has a form in which the rear end of the expansion part of the upper geogrid and the rear end of the expansion part of the lower geogrid installed at different vertical positions are integrally connected to each other through a connection part,
    상기 연결부의 전방측을 가로 질러 설치된 지지봉의 일단부가 하나의 고정용 봉재에 결합되고, 상기 지지봉의 타단부가 또다른 하나의 고정용 봉재에 결합되어, 상기 상측 지오그리드의 펼침부와 하측 지오그리드의 펼침부가 상기 지지봉을 개재하여 상기 고정용 봉재로부터 인장력을 전달받는 것을 특징으로 하는 옹벽구조. One end of the support rod installed across the front side of the connection part is coupled to one fixing rod, and the other end of the support rod is coupled to another fixing rod, the expansion of the upper geogrid and the lower geogrid A retaining wall structure, characterized in that the portion receives the tensile force from the fixing rod through the support rod.
  15. 제7항에 있어서, According to claim 7,
    상기 토목용 보강재는 격자 형상으로 철근이 배치되어 결합된 철근그리드이며, The civil engineering reinforcing material is a reinforcing bar grid in which reinforcing bars are arranged in a lattice shape and combined,
    횡방향을 따라 간격을 갖고 설치된 2 이상의 기둥 요소를 횡방향으로 관통하여 설치된 횡방향 철근에 상기 철근그리드의 전단부가 결합되도록 구성된 것을 특징으로 하는 옹벽구조. A retaining wall structure characterized in that the front end of the reinforcing bar grid is coupled to transverse reinforcing bars installed by penetrating two or more column elements installed at intervals in the transverse direction in the transverse direction.
  16. 제1항에 있어서, According to claim 1,
    상기 기둥 요소는 채움재로 내부 공간의 채움이 가능한 관형(管形) 부재이며, The column element is a tubular member capable of filling the internal space with a filling material,
    토목 경사면에 천공(穿孔)된 구멍에 그라우팅으로 고정되며 상기 구멍 외부로 일단부가 노출된 고정용 봉재가 설치되며, It is fixed by grouting to a hole drilled in a civil slope and a fixing bar material having one end exposed to the outside of the hole is installed,
    상기 기둥 요소를 관통하여 삽입된 상기 고정용 봉재의 일단부가 기둥 요소의 내부 공간에서 지지 플레이트에 체결되도록 구성된 것을 특징으로 하는 옹벽구조. A retaining wall structure, characterized in that one end of the fixing bar inserted through the pillar element is configured to be fastened to the support plate in the inner space of the pillar element.
  17. 제16항에 있어서, According to claim 16,
    상기 고정용 봉재는 2 이상의 봉재 요소가 커플러를 통해 연결 구성된 것을 특징으로 하는 옹벽구조. The fixing bar is a retaining wall structure, characterized in that two or more bar elements are connected through a coupler.
  18. 제1항에 있어서, According to claim 1,
    상기 기둥 요소는, 상기 지오셀 옹벽체 후면에 위치한 토사 측으로 연장되며 상기 기둥 요소의 적어도 일부분을 감싸는 형태로 상기 기둥 요소에 결합되는 후방용 철근에 의해 후방을 향한 인장력을 제공받는 것을 특징으로 하는 옹벽구조. The column element extends toward the soil side located on the rear surface of the geocell retaining wall and receives a tensile force toward the rear by a rear reinforcing bar coupled to the column element in a form surrounding at least a portion of the column element Retaining wall, characterized in that structure.
  19. 제18항에 있어서, According to claim 18,
    상기 후방용 철근의 후단부에 지지 플레이트가 체결되며, A support plate is fastened to the rear end of the reinforcing bar for the rear,
    상기 지지 플레이트는 상기 지오셀 옹벽체 후면에 위치한 토사에 매립되도록 구성된 것을 특징으로 하는 옹벽구조. The retaining wall structure, characterized in that the support plate is configured to be buried in the soil located on the rear surface of the geocell retaining wall.
  20. 제18항에 있어서, According to claim 18,
    토목 경사면에 천공(穿孔)된 구멍에 그라우팅으로 고정되며 상기 구멍 외부로 일단부가 노출된 고정용 봉재가 설치되며, It is fixed by grouting to a hole drilled in a civil slope and a fixing bar material having one end exposed to the outside of the hole is installed,
    상기 후방용 철근의 후단부가 커플러를 통해 상기 고정용 봉재에 연결 구성된 것을 특징으로 하는 옹벽구조. Retaining wall structure, characterized in that the rear end of the rear reinforcing bar is connected to the fixing bar through a coupler.
  21. 제1항에 있어서, According to claim 1,
    상기 기둥 요소는, The pillar element,
    채움재로 내부 공간의 채움이 가능한 관형(管形) 부재이고, 상기 기둥 요소의 내부에 상하 방향을 따라 삽입 배치된 보강 철근을 구비하며, It is a tubular member capable of filling the internal space with a filling material, and has reinforcing bars inserted and arranged along the vertical direction inside the column element,
    상기 지오셀 옹벽체 후면에 위치한 토사 측으로 후단부가 연장되며 상기 기둥 요소를 관통하여 상기 기둥 요소의 내부 공간에서 상기 보강 철근에 전단부가 결합되는 밴드 형태의 강판보강재에 의해 후방을 향한 인장력을 제공받는 것을 특징으로 하는 옹벽구조. The rear end extends to the soil side located on the back side of the geocell retaining wall and penetrates the column element to receive a tensile force toward the rear by a band-shaped steel plate reinforcement having a front end coupled to the reinforcing bar in the inner space of the column element. Retaining wall structure.
  22. 제1항에 있어서, According to claim 1,
    상기 기둥 요소는 2 이상이 횡방향을 따라 간격을 갖고 설치되고, Two or more of the pillar elements are installed at intervals along the transverse direction,
    상기 2 이상의 기둥 요소를 횡방향으로 관통하는 횡방향 철근이 설치되며, Transverse reinforcing bars penetrating the two or more column elements in the transverse direction are installed,
    상기 지오셀 옹벽체 후면에 위치한 토사 측으로 후단부가 연장되는 밴드 형태의 강판보강재의 전단부에 상기 횡방향 철근이 결합되어, 상기 강판보강재에 의해 후방을 향한 인장력을 제공받는 것을 특징으로 하는 옹벽구조. Retaining wall structure, characterized in that the transverse reinforcement is coupled to the front end of the steel plate reinforcement in the form of a band whose rear end extends toward the soil side located at the back of the geocell retaining wall, and is provided with a tensile force toward the rear by the steel plate reinforcement.
  23. 제1항에 있어서, According to claim 1,
    상기 지오셀 옹벽체는, 토사 적층체의 일측의 토목 경사면의 전방에 위치한 제1 지오셀 옹벽체와 토사 적층체의 타측의 토목 경사면의 전방에 위치한 제2 지오셀 옹벽체를 포함하며, The geocell retaining wall includes a first geocell retaining wall located in front of the civil slope on one side of the soil stack and a second geocell retaining wall located in front of the civil slope on the other side of the soil stack,
    상기 기둥 요소는, 상기 제1 지오셀 옹벽체의 상층 지오셀의 일부 단위 셀과 하층 지오셀의 일부 단위 셀을 관통하여 상하 방향을 따라 설치된 제1 기둥 요소와 상기 제2 지오셀 옹벽체의 상층 지오셀의 일부 단위 셀과 하층 지오셀의 일부 단위 셀을 관통하여 상하 방향을 따라 설치된 제2 기둥 요소를 포함하며, The pillar element is a first pillar element installed along the vertical direction passing through some unit cells of the upper layer geocell and some unit cells of the lower layer geocell of the first geocell retaining wall and an upper layer of the second geocell retaining wall It includes a second pillar element installed along the vertical direction through some unit cells of the geocell and some unit cells of the lower geocell,
    상기 제1 기둥 요소의 적어도 일부분을 감싸는 형태로 상기 제1 기둥 요소에 결합한 띠형 보강재가 상기 토사 적층체를 통과하여 상기 제2 기둥 요소의 적어도 일부분을 감싸는 형태로 상기 제2 기둥 요소에 결합하여, 상기 제1 기둥 요소 및 상기 제2 기둥 요소가 상기 토사 적층체를 향한 인장력을 제공받는 것을 특징으로 하는 옹벽구조. A strip-shaped reinforcing member coupled to the first pillar element in a form surrounding at least a portion of the first pillar element passes through the soil laminate and is coupled to the second pillar element in a form wrapping at least a portion of the second pillar element, The retaining wall structure, characterized in that the first pillar element and the second pillar element are provided with a tensile force toward the soil laminate.
  24. 제1항에 있어서, According to claim 1,
    상기 기둥 요소는 2 이상이 횡방향을 따라 간격을 갖고 설치되고, Two or more of the pillar elements are installed at intervals along the transverse direction,
    상기 2 이상의 기둥 요소를 횡방향으로 관통하는 횡방향 철근이 설치되며, Transverse reinforcing bars penetrating the two or more column elements in the transverse direction are installed,
    상기 횡방향 철근과 또다른 각도의 횡방향으로 배치된 보조 횡방향 철근이 상기 횡방향 철근에 결합되고, Auxiliary transverse reinforcing bars disposed in the transverse direction at another angle with the transverse reinforcing bars are coupled to the transverse reinforcing bars,
    상기 횡방향 철근 및 보조 횡방향 철근 중의 적어도 어느 하나는 토목 경사면에 천공(穿孔)된 구멍에 그라우팅으로 고정되며 상기 구멍 외부로 일단부가 노출된 고정용 봉재에 결합 설치된 것을 특징으로 하는 옹벽구조. At least one of the transverse reinforcing bars and auxiliary transverse reinforcing bars is fixed to a hole drilled in a civil slope by grouting and coupled to a fixing bar having one end exposed to the outside of the hole Retaining wall structure.
  25. 제24항에 있어서, According to claim 24,
    상기 횡방향 철근 및 보조 횡방향 철근 중의 적어도 어느 하나와 중첩되는 위치에 있는 단위 셀의 내부에 상하 방향을 따라 삽입 배치된 보조 보강 철근을 구비하며, Auxiliary reinforcing bars inserted and arranged along the vertical direction inside the unit cell at a position overlapping with at least one of the transverse reinforcing bars and auxiliary transverse reinforcing bars are provided,
    상기 보조 보강 철근은 상기 횡방향 철근 및 보조 횡방향 철근 중의 적어도 어느 하나와 결합되고, The auxiliary reinforcing bars are combined with at least one of the transverse reinforcing bars and auxiliary transverse reinforcing bars,
    상기 보조 보강 철근이 상하 방향을 따라 삽입 배치된 단위 셀의 내부에 콘크리트, 시멘트 그라우팅 및 소일 시멘트(soil cement) 중의 적어도 어느 하나를 채움재로 내부 공간의 채움이 이뤄지는 것을 특징으로 하는 옹벽구조. A retaining wall structure, characterized in that the filling of the internal space with at least one of concrete, cement grouting and soil cement is performed inside the unit cell in which the auxiliary reinforcing bars are inserted and arranged in the vertical direction.
  26. 제1항에 있어서, According to claim 1,
    상기 지오셀 옹벽체는, 서로 다른 높이로 적층된 2 이상의 단위 지오셀 옹벽체가 연접하여 이뤄진 중력식 옹벽체이며, The geocell retaining wall is a gravity retaining wall formed by connecting two or more unit geocell retaining walls stacked at different heights,
    상기 기둥 요소는 각각의 단위 지오셀 옹벽체별로 별도로 설치되는 것을 특징으로 하는 옹벽구조. The pillar element is a retaining wall structure, characterized in that installed separately for each unit geocell retaining wall.
  27. 제1항에 있어서, According to claim 1,
    상기 기둥 요소는 2 이상의 단위 기둥 요소가 길이 방향을 따라 결합하여 구성되며, The pillar element is composed of two or more unit pillar elements coupled along the longitudinal direction,
    상기 단위 기둥 요소는 미리 설정된 높이로 제작되며 일측 단면에는 돌출부가 형성되고 타측 단면에는 상기 돌출부가 삽입 결합되는 요홈부가 형성되도록 구성된 것을 특징으로 하는 옹벽구조. The unit pillar element is manufactured to a predetermined height, and a retaining wall structure is configured such that a protrusion is formed on one end surface and a groove portion into which the protrusion is inserted and coupled is formed on the other end surface.
  28. 제1항에 있어서, According to claim 1,
    상기 기둥 요소의 내부에는 상하 방향을 따라 삽입 배치된 보강 철근이 구비되며, The inside of the column element is provided with reinforcing bars inserted and disposed along the vertical direction,
    상기 기둥 요소의 하부에는 하부 지반에 천공 삽입된 강제 파일 또는 강관이 구비되며, At the lower part of the column element, a steel pile or steel pipe is provided with a perforation inserted into the lower ground,
    상기 보강 철근이 상기 강제 파일 또는 강관에 고정 결합된 것을 특징으로 하는 옹벽구조. Retaining wall structure, characterized in that the reinforcing bar is fixedly coupled to the steel pile or steel pipe.
  29. 제1항에 있어서, According to claim 1,
    상기 기둥 요소는 2 이상이 횡방향을 따라 간격을 갖고 설치되고, Two or more of the pillar elements are installed at intervals along the transverse direction,
    상기 2 이상의 기둥 요소를 횡방향으로 관통하는 횡방향 철근이 설치되며, Transverse reinforcing bars penetrating the two or more column elements in the transverse direction are installed,
    하부 지반에 천공 삽입된 강제 파일 또는 강관이 구비되고, A steel pile or steel pipe drilled into the lower ground is provided,
    상기 횡방향 철근이 상기 강제 파일 또는 강관에 관통 결합된 것을 특징으로 하는 옹벽구조. Retaining wall structure, characterized in that the transverse reinforcing bars are through-coupled to the steel pile or steel pipe.
  30. 제1항에 있어서, According to claim 1,
    상기 기둥 요소는 2 이상이 횡방향을 따라 간격을 갖고 설치되며, Two or more of the pillar elements are installed at intervals along the transverse direction,
    상기 기둥 요소의 내부에 상하 방향을 따라 삽입 배치된 보강 철근이 구비되고, A reinforcing bar inserted and arranged along the vertical direction is provided inside the column element,
    하부 지반에 천공 삽입되며 상기 기둥 요소의 내부에 상하 방향을 따라 적어도 일부가 삽입 배치된 강제 파일이 구비되며, It is drilled into the lower ground and is provided with a steel pile in which at least a part is inserted and disposed inside the column element along the vertical direction,
    상기 2 이상의 기둥 요소를 횡방향으로 관통하는 횡방향 철근이 상기 보강 철근 및 강제 파일 중의 적어도 하나와 결합된 것을 특징으로 하는 옹벽구조. A retaining wall structure, characterized in that the transverse reinforcing bars penetrating the two or more column elements in the transverse direction are combined with at least one of the reinforcing bars and the steel pile.
  31. 제1항에 있어서, According to claim 1,
    상기 기둥 요소는 관형(管形) 부재로서 골재로 내부 공간의 채움이 이뤄지며, The column element is a tubular member, and the internal space is filled with aggregate,
    상기 기둥 요소의 절개된 측면부를 통해 삽입 설치된 드레인보드 또는 다발관이 상층 지오셀의 일부 단위 셀과 하층 지오셀의 일부 단위 셀 사이에 배치되어, A drain board or bundle pipe installed through the incised side part of the column element is disposed between some unit cells of the upper geocell and some unit cells of the lower geocell,
    상기 기둥 요소의 내부에 저장된 수분이 상기 드레인보드 또는 다발관을 통해 지오셀 옹벽체에 공급 가능하도록 구성된 것을 특징으로 하는 옹벽구조. A retaining wall structure, characterized in that configured to supply moisture stored inside the column element to the geocell retaining wall through the drain board or the bundle pipe.
  32. 제1항에 있어서, According to claim 1,
    상기 기둥 요소는, The pillar element,
    채움재로 내부 공간의 채움이 가능한 관형(管形) 부재이고, 상기 기둥 요소의 내부에 상하 방향을 따라 삽입 배치된 보강 철근을 구비하며, It is a tubular member capable of filling the internal space with a filling material, and has reinforcing bars inserted and arranged along the vertical direction inside the column element,
    상기 지오셀 옹벽체 후면에 위치한 토사 측으로 후단부가 연장되며 상기 기둥 요소를 관통하여 상기 기둥 요소의 내부 공간에서 상기 보강 철근에 결합되는 토목보강재에 의해 후방을 향한 인장력을 제공받는 것을 특징으로 하는 옹벽구조. The rear end extends to the soil side located at the back of the geocell retaining wall and penetrates the column element to receive a tensile force toward the rear by a civil reinforcing material coupled to the reinforcing bar in the internal space of the column element Retaining wall structure, characterized in that .
  33. 제1항에 있어서, According to claim 1,
    상기 기둥 요소는 2 이상이 횡방향을 따라 간격을 갖고 설치되고, Two or more of the pillar elements are installed at intervals along the transverse direction,
    상기 2 이상의 기둥 요소를 횡방향으로 관통하는 횡방향 철근이 설치되며, Transverse reinforcing bars penetrating the two or more column elements in the transverse direction are installed,
    상기 지오셀 옹벽체 후면에 위치한 토사 측으로 후단부가 연장되는 토목보강재에 상기 횡방향 철근이 결합되어, 상기 토목보강재에 의해 후방을 향한 인장력을 제공받는 것을 특징으로 하는 옹벽구조. Retaining wall structure, characterized in that the transverse reinforcement is coupled to a civil reinforcing material whose rear end extends toward the soil side located at the rear of the geocell retaining wall, and receives a tensile force toward the rear by the civil reinforcing material.
  34. 제1항에 있어서, According to claim 1,
    토목 경사면에 천공(穿孔)된 구멍에 그라우팅으로 고정되며 상기 구멍 외부로 일단부가 노출된 고정용 봉재가 설치되며, It is fixed by grouting to a hole drilled in a civil slope and a fixing bar material having one end exposed to the outside of the hole is installed,
    상기 기둥 요소는 상기 고정용 봉재에 기초하여 후방을 향한 인장력을 제공받는 것을 특징으로 하는 옹벽구조.The retaining wall structure, characterized in that the pillar element is provided with a rearward tensile force based on the fixing bar.
  35. 제1항에 있어서, According to claim 1,
    상기 기둥 요소는 2 이상이 횡방향을 따라 간격을 갖고 설치되고, Two or more of the pillar elements are installed at intervals along the transverse direction,
    토목 경사면에 천공(穿孔)된 구멍에 그라우팅으로 고정되며 상기 구멍 외부로 일단부가 노출된 고정용 봉재가 설치되며, It is fixed by grouting to a hole drilled in a civil slope and a fixing bar material having one end exposed to the outside of the hole is installed,
    상기 2 이상의 기둥 요소를 횡방향으로 관통하여 설치된 횡방향 철근의 적어도 일부분이 상기 고정용 봉재에 기초하여 후방을 향한 인장력을 제공받는 것을 특징으로 하는 옹벽구조.A retaining wall structure, characterized in that at least a portion of the transverse reinforcing bars installed through the two or more column elements in the transverse direction receive a tensile force toward the rear based on the fixing bar.
  36. 제1항에 있어서, According to claim 1,
    상기 지오셀 옹벽체 후면에 위치한 토사에 일부가 매립되고 토사의 토압과 마찰력에 기초하여 후방을 향한 인장력을 제공받는 토목용 보강재가 설치되며, A part of the soil is buried in the soil located on the back of the geocell retaining wall, and a civil reinforcement is installed that receives a tensile force toward the rear based on the soil pressure and frictional force of the soil,
    상기 토목용 보강재의 전방 측 일부가 상하로 적층된 복수의 지오셀의 중간에 위치하도록 설치되는 것을 특징으로 하는 옹벽구조. A retaining wall structure, characterized in that a part of the front side of the civil engineering reinforcing material is installed to be located in the middle of a plurality of vertically stacked geocells.
  37. 제36항에 있어서, 37. The method of claim 36,
    상기 토목용 보강재는 띠형 보강재이며, The civil reinforcing material is a belt-shaped reinforcing material,
    내부에 토사 채움이 이뤄진 지오셀의 단위 셀 상부에 블록 형상 저항체가 적치되고, A block-shaped resistor is placed on top of the unit cell of the geocell with soil filling inside,
    상기 띠형 보강재가 상기 블록 형상 저항체의 전방측 및 좌우측을 감싸는 상태를 이루는 벤딩부와 상기 토목 경사면 측으로 횡방향으로 연장되어 펼쳐진 상태를 이루는 펼침부를 포함하며, 상기 벤딩부가 상하로 적층된 복수의 지오셀의 중간에 위치하도록 설치되는 것을 특징으로 하는 옹벽구조. A plurality of geocells in which the band-shaped reinforcing member includes a bending portion forming a state of wrapping the front side and left and right sides of the block-shaped resistor and an expanding portion extending in the transverse direction toward the civil slope to form an unfolded state, and the bending portion is stacked vertically Retaining wall structure, characterized in that installed to be located in the middle of.
  38. 제36항에 있어서, 37. The method of claim 36,
    상기 토목용 보강재는 격자 형상의 네트 형태로 구성된 지오그리드이며, The civil engineering reinforcing material is a geogrid configured in the form of a lattice net,
    내부에 토사 채움이 이뤄진 지오셀의 단위 셀 상부에 블록 형상 저항체가 적치되고, A block-shaped resistor is placed on top of the unit cell of the geocell with soil filling inside,
    상기 지오그리드는 상하로 적층된 복수의 지오셀의 중간에 위치하도록 설치되고, 상기 블록 형상 저항체의 전방측, 상부측 및 후방측을 감싸는 형태로 굴곡 변형되어 상기 블록 형상 저항체를 커버하는 형태로 설치되는 것을 특징으로 하는 옹벽구조. The geogrid is installed to be located in the middle of a plurality of geocells stacked vertically, and is bent and deformed in a form surrounding the front side, upper side, and rear side of the block-shaped resistor to cover the block-shaped resistor Installed in a form Retaining wall structure, characterized in that.
  39. 제1항에 있어서, According to claim 1,
    하나의 기둥 요소는 상층 지오셀의 미리 설정된 단위 셀 위치와 하층 지오셀의 미리 설정된 단위 셀 위치를 상하 관통하여 상기 지오셀 옹벽체의 상하 높이 전체에 걸쳐서 설치되도록 구성된 것을 특징으로 하는 옹벽구조. A retaining wall structure, characterized in that one column element is configured to be installed over the entire vertical height of the geocell retaining wall by penetrating the preset unit cell position of the upper geocell and the preset unit cell position of the lower geocell.
  40. 제1항에 있어서, According to claim 1,
    각각의 층을 구성하는 상기 지오셀은 각각 수평 방향으로 펼친 상태에서 적층되고, 각각의 층을 구성하는 상기 지오셀을 상하로 적층하여 구성된 상기 지오셀 옹벽체가 경사도를 갖도록 구성되며, The geocells constituting each layer are stacked in a horizontally spread state, and the geocell retaining wall configured by stacking the geocells constituting each layer vertically has a slope,
    각각의 지오셀 층에 있어서 가장 전면부에 위치하는 단위 셀들은 내부에 토사 및 골재 중의 적어도 어느 하나가 매립된 상태로 상부면이 계단형으로 노출 상태를 이루는 것을 특징으로 하는 옹벽구조. A retaining wall structure characterized in that the upper surface of the unit cells located at the frontmost part of each geocell layer is exposed in a stepped state with at least one of soil and aggregate buried therein.
PCT/KR2022/013495 2021-09-08 2022-09-07 Retaining wall structure WO2023038449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210119461A KR102484636B1 (en) 2021-09-08 2021-09-08 Retain wall structure
KR10-2021-0119461 2021-09-08

Publications (1)

Publication Number Publication Date
WO2023038449A1 true WO2023038449A1 (en) 2023-03-16

Family

ID=84924533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013495 WO2023038449A1 (en) 2021-09-08 2022-09-07 Retaining wall structure

Country Status (2)

Country Link
KR (2) KR102484636B1 (en)
WO (1) WO2023038449A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142117A (en) * 1987-11-26 1989-06-05 Penta Ocean Constr Co Ltd Light-weight banking work
JPH032417A (en) * 1989-05-31 1991-01-08 Kyokado Eng Co Ltd Reinforcing retaining wall method
KR200219072Y1 (en) * 2000-10-16 2001-04-02 한기만 Slope stability structure using the used-tire concrete block
JP2001311168A (en) * 2000-04-26 2001-11-09 Modern Material:Kk Earth retaining wall
KR100662011B1 (en) * 2005-09-02 2006-12-28 (주)현이앤씨 Construction method of shore protector using reinforcing strip
JP2008138446A (en) * 2006-12-01 2008-06-19 Tokyo Printing Ink Mfg Co Ltd Construction method of retaining wall
KR100998502B1 (en) * 2010-06-11 2010-12-07 (주)대우건설 Gravity type precast retaining wall for having shear key and steel pile
KR101201917B1 (en) * 2012-03-20 2012-11-15 이상헌 Panel, Fence using the panel, Construction method of the fence using the panel, and Mounding method of mixture soil
KR20130003008U (en) * 2013-04-15 2013-05-22 정종근 Belt type glass fiber reinforcements and retaining walls using the same
KR102010575B1 (en) * 2018-10-31 2019-08-13 타스산업개발(주) Method for building retaining wall
KR102066728B1 (en) * 2019-05-02 2020-01-15 타스산업개발(주) Apparatus for building retaining wall
KR102132732B1 (en) * 2019-09-03 2020-07-10 타스산업개발(주) Apparatus for building retaining wall using block-shaped resistor and band type reinforcement, and method for building retaining wall using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142117A (en) * 1987-11-26 1989-06-05 Penta Ocean Constr Co Ltd Light-weight banking work
JPH032417A (en) * 1989-05-31 1991-01-08 Kyokado Eng Co Ltd Reinforcing retaining wall method
JP2001311168A (en) * 2000-04-26 2001-11-09 Modern Material:Kk Earth retaining wall
KR200219072Y1 (en) * 2000-10-16 2001-04-02 한기만 Slope stability structure using the used-tire concrete block
KR100662011B1 (en) * 2005-09-02 2006-12-28 (주)현이앤씨 Construction method of shore protector using reinforcing strip
JP2008138446A (en) * 2006-12-01 2008-06-19 Tokyo Printing Ink Mfg Co Ltd Construction method of retaining wall
KR100998502B1 (en) * 2010-06-11 2010-12-07 (주)대우건설 Gravity type precast retaining wall for having shear key and steel pile
KR101201917B1 (en) * 2012-03-20 2012-11-15 이상헌 Panel, Fence using the panel, Construction method of the fence using the panel, and Mounding method of mixture soil
KR20130003008U (en) * 2013-04-15 2013-05-22 정종근 Belt type glass fiber reinforcements and retaining walls using the same
KR102010575B1 (en) * 2018-10-31 2019-08-13 타스산업개발(주) Method for building retaining wall
KR102066728B1 (en) * 2019-05-02 2020-01-15 타스산업개발(주) Apparatus for building retaining wall
KR102132732B1 (en) * 2019-09-03 2020-07-10 타스산업개발(주) Apparatus for building retaining wall using block-shaped resistor and band type reinforcement, and method for building retaining wall using the same

Also Published As

Publication number Publication date
KR20230037004A (en) 2023-03-15
KR102484636B1 (en) 2023-01-03

Similar Documents

Publication Publication Date Title
JP5113290B2 (en) Construction method of semi-integral abut bridge using steel box girder
WO2020197061A1 (en) Subterranean underwater structure using geotextile mold and method for constructing same
KR102159832B1 (en) Construction method of basic construction of buildings
KR20010020365A (en) Retaining wall system
WO2015142017A1 (en) Tunnel having steel rib having concrete filled steel tube structure and method for constructing same
KR101171040B1 (en) Pre-fabricated earth retaining wall structure constructing method using prestressed tendon
WO2023038449A1 (en) Retaining wall structure
KR101098896B1 (en) Drain block for synthetic turf ground, structure and construction method thereof
KR101394208B1 (en) The eco-friendly stone net for protecting riverbank and sloping surface structure
KR20010073504A (en) Reinforced Earth Retaining-Wall for using Sand-Bag
KR101819041B1 (en) Environmental mat assembly for small drainage and construction method thereof
WO2016208934A1 (en) Free-standing retaining wall structure using two rows of h-beams and using high-strength steel plates and method for building same
WO2012165669A1 (en) Earth retaining temporary structure and construction method for same
CN110106915A (en) One kind exempts from that support is inverse to make underground engineering construction method and underground construction structure
WO2020055174A1 (en) Complete drainage gabion-reinforced soil retaining wall and construction method thereof
KR100503871B1 (en) Device for strengthening retaining board
WO2009142397A2 (en) A block for building a revetment and a construction method thereof
WO2023106785A1 (en) Cutting arm for forming enlarged-tip-reinforcing part of pile, and method for constructing pile having enlarged-tip-reinforcing part
KR100889257B1 (en) Precast concrete facing panel using greening of retaining panel's front
KR101840708B1 (en) construction method eco water way including slop side and a irrigation pipe using the method
CN114197502B (en) Recyclable palace laminated green protection grid and construction method thereof
KR101733928B1 (en) panel type retaining wall with a continuous beam structure
KR101725856B1 (en) Stone type retaining wall and construction method thereof
JP7138281B2 (en) Embankment wall structure
JP2550877Y2 (en) Embankment structure in embankment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE