WO2023038100A1 - Environmental power generation device and environmental power generation system - Google Patents

Environmental power generation device and environmental power generation system Download PDF

Info

Publication number
WO2023038100A1
WO2023038100A1 PCT/JP2022/033828 JP2022033828W WO2023038100A1 WO 2023038100 A1 WO2023038100 A1 WO 2023038100A1 JP 2022033828 W JP2022033828 W JP 2022033828W WO 2023038100 A1 WO2023038100 A1 WO 2023038100A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric element
energy harvesting
heat storage
harvesting device
energy
Prior art date
Application number
PCT/JP2022/033828
Other languages
French (fr)
Japanese (ja)
Inventor
博史 後藤
稔 坂田
拓夫 安田
ラーシュ マティアス アンダーソン
誠司 岡田
貴宏 中村
Original Assignee
株式会社Gceインスティチュート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021147809A external-priority patent/JP7011361B1/en
Application filed by 株式会社Gceインスティチュート filed Critical 株式会社Gceインスティチュート
Publication of WO2023038100A1 publication Critical patent/WO2023038100A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an energy harvesting device and an energy harvesting system that convert light energy and thermal energy into electrical energy.
  • Patent Document 1 a solar panel in Patent Document 1 has been proposed as a power generation device that uses a combination of solar cells and thermoelectric elements.
  • Patent Document 1 discloses a honeycomb core sandwiched between a first skin material and a second skin material, a plurality of solar cells provided on a surface of the first skin material opposite to the honeycomb core, and the second skin material. a plurality of thermoelectric conversion elements arranged dispersedly with gaps on the surface of the skin material opposite to the honeycomb core; A photovoltaic panel is disclosed comprising a heat sink provided.
  • thermoelectric element that requires the heat sink disclosed in Patent Document 1
  • the present invention has been devised in view of the problems described above, and its object is to provide an energy harvesting device and an energy harvesting system capable of increasing the amount of power generated by a thermoelectric element. to do.
  • An energy harvesting device is an energy harvesting device that converts light energy and thermal energy into electrical energy, and includes a solar cell panel that converts light energy into electrical energy, and a solar cell panel that converts thermal energy into electrical energy.
  • a thermoelectric element that does not require a temperature difference between electrodes
  • the solar cell panel includes a plurality of solar cells, a support provided on the back side of the plurality of solar cells, and the support and an insulating portion in contact with the solar cell panel, wherein the thermoelectric element includes a pair of electrodes having different work functions, and an intermediate portion provided between the pair of electrodes, the thermoelectric element being the solar cell panel It is characterized by being provided in contact with.
  • An energy harvesting device is characterized in that, in the first aspect of the invention, the energy harvesting device further comprises a thermally conductive portion in contact with the support portion and the thermoelectric element, and the insulating portion covers the thermally conductive portion and the thermoelectric element. do.
  • An energy harvesting device is the energy harvesting device according to the first aspect or the second aspect, wherein the insulating portion includes a sealant filled between the solar cell and the supporting portion, and the thermoelectric element is , provided between the solar cell and the support, and covered with the sealant.
  • An energy harvesting device is the energy harvesting device according to the third invention, characterized in that the area of the solar cell is larger than the area of the thermoelectric element when viewed from the direction from the solar cell toward the support section. do.
  • An energy harvesting device is the energy harvesting device according to the first invention or the second invention, wherein the insulating section includes a heat storage section provided on the back side of the supporting section, and the thermoelectric element includes the supporting section and the It is characterized by being provided in contact with the heat storage section.
  • An energy harvesting device is the energy harvesting device according to the fifth aspect, wherein the heat storage unit includes a first heat storage unit and a second heat storage unit having different heat storage properties, and the thermoelectric element is in contact with the first heat storage unit. , a first element separated from the second heat storage section, and a second element in contact with the second heat storage section and separated from the first heat storage section.
  • An energy harvesting system is an energy harvesting system using the energy harvesting device of the third or fourth aspect of the invention, comprising: and an evaluation unit that evaluates the temperature of the photovoltaic cell based on the measurement result.
  • An energy harvesting system is an energy harvesting system using the energy harvesting device according to any one of the first invention to the sixth invention, comprising: a power measuring unit for measuring power of the thermoelectric element; an estimating unit for estimating electric power generated from the photovoltaic cell based on a measurement result of the measuring unit.
  • the thermoelectric element includes a pair of electrodes with different work functions. That is, even when there is no temperature difference between the electrodes, thermal energy can be converted into electrical energy. Therefore, there is no need to provide a heat dissipation mechanism such as a heat dissipation plate. Also, the thermoelectric element is provided in contact with the solar cell panel. Therefore, the heat that contributes to the power generation of the thermoelectric element is directly transferred from the solar panel in addition to the transfer accompanying the temperature rise around the solar panel. These make it possible to increase the amount of power generated by the thermoelectric element.
  • the heat conducting part is in contact with the support part and the thermoelectric element, and the insulating part covers the heat conducting part and the thermoelectric element. Therefore, the heat generated from the supporting portion is easily transferred to the thermoelectric element via the heat conducting portion. Also, the heat transferred to the thermoelectric element is less likely to be released to the outside. By these, it becomes possible to further increase the amount of power generation.
  • the insulating portion includes a sealant filled between the solar cell and the support portion, and the thermoelectric element is provided between the solar cell and the support portion. , covered with an encapsulant. Therefore, the heat generated from the photovoltaic cell as well as the supporting portion can be easily transferred to the thermoelectric element. This makes it possible to further increase the power generation amount.
  • the area of the solar cell is larger than the area of the thermoelectric element when viewed from the direction from the solar cell toward the support. For this reason, light such as sunlight that has passed between the plurality of solar cells can be reflected by the supporting portion so that the solar cells can be easily irradiated. This makes it possible to suppress a decrease in the amount of power generated by the solar cell panel due to the installation of the thermoelectric elements.
  • the insulating section includes the heat storage section provided on the back side of the support section, and the thermoelectric element is provided between the support section and the heat storage section in contact therewith. Therefore, heat can be easily transferred to the thermoelectric elements via the heat storage unit even in a time zone when sunlight is not irradiated. This makes it possible to extend the power generation possible time of the entire energy harvesting device.
  • the heat storage section includes a first heat storage section and a second heat storage section having different heat storage properties, and the thermoelectric element is in contact with the first heat storage section and separated from the second heat storage section. and a second element that is in contact with the second heat storage unit and separated from the first heat storage unit. Therefore, it is possible to set a different power generation possible time for each element. This makes it possible to further extend the power generation possible time of the entire energy harvesting device.
  • the evaluation unit evaluates the temperature of the photovoltaic cell based on the measurement result of the measurement unit.
  • the thermoelectric element can be used not only for power generation but also as a sensor for determining whether or not heat is generated due to malfunction of the solar battery cell. This makes it possible to increase the amount of power generated by the energy harvesting device as a whole and to increase safety.
  • the energy harvesting device the power measuring unit for measuring the power of the thermoelectric element, and the estimating unit for estimating the power generated from the photovoltaic cell based on the measurement result of the power measuring unit. Prepare. Therefore, it is possible to easily estimate the variation in the amount of power generation due to the temperature of the solar cell panel. This makes it possible to further increase the amount of power generated by the energy harvesting device as a whole.
  • FIG. 1 is a schematic diagram showing an example of an energy harvesting system according to the first embodiment.
  • FIG. 2 is a schematic perspective view showing an example of the energy harvesting device in the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing an example of the energy harvesting device in the first embodiment.
  • FIG. 4 is a schematic cross-sectional view showing an example of the energy harvesting device in the first embodiment.
  • FIG. 5 is a diagram showing an example of the relationship between temperature and power for a solar cell panel and thermoelectric elements.
  • FIG. 6 is a schematic cross-sectional view showing an example of the intermediate portion.
  • FIG. 7A is a schematic cross-sectional view showing a first modified example of the thermoelectric element in the first embodiment, and FIG.
  • FIG. 7B is a schematic cross-sectional view showing a second modified example of the thermoelectric element in the first embodiment. It is a diagram.
  • FIG. 8(a) is a schematic cross-sectional view showing a third modification of the thermoelectric element in the first embodiment
  • FIG. 8(b) is a schematic diagram showing an example of an intermediate portion of the thermoelectric element in FIG. 8(a). It is a sectional view.
  • FIG. 9 is a schematic cross-sectional view showing an example of the energy harvesting device in the second embodiment.
  • FIG. 10 is a schematic cross-sectional view showing an example of an energy harvesting device according to the third embodiment.
  • FIG. 11 is a schematic cross-sectional view showing an example of an energy harvesting device according to the fourth embodiment.
  • FIG. 12 is a schematic cross-sectional view showing an example of an energy harvesting device according to the fifth embodiment.
  • FIG. 13 is a schematic cross-sectional view showing an example of an energy harvesting device according to the sixth embodiment.
  • FIG. 14(a) is a schematic cross-sectional view showing an example of an energy harvesting device according to the seventh embodiment, and
  • FIG. 14(b) shows a first modified example of the insulating portion of the energy harvesting device according to the seventh embodiment.
  • FIG. 14C is a schematic cross-sectional view showing a second modification of the insulating portion of the energy harvesting device according to the seventh embodiment.
  • the height direction in which each electrode is stacked is defined as a first direction Z
  • one planar direction that intersects, for example, is orthogonal to the first direction Z is defined as a second direction X.
  • a third direction Y is another planar direction that intersects, for example, is orthogonal to each of the directions X.
  • the configuration in each drawing is schematically described for explanation, and for example, the size of each configuration and the comparison of the size of each configuration may differ from those in the drawings.
  • FIG. 1 is a schematic diagram showing an example of an energy harvesting system 700 according to the first embodiment.
  • FIG. 2 is a schematic perspective view showing an example of the energy harvesting device 7 in the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing an example of the energy harvesting device 7 in the first embodiment.
  • FIG. 4 is an enlarged view of the dashed frame A in FIG.
  • the energy harvesting system 700 includes an energy harvesting device 7 , a measuring section 71 and an information processing device 75 .
  • the energy harvesting device 7 converts light energy and thermal energy into electrical energy.
  • the energy harvesting device 7 includes a solar cell panel 6 that converts light energy into electrical energy, and a thermoelectric element 1 that does not require a temperature difference between electrodes when converting thermal energy into electrical energy.
  • the energy harvesting device 7 is installed, for example, in the site of the power generation facility, or installed on the ground or on the roof of a building.
  • the energy harvesting device 7 is connected to an information processing device 75 and the like, which will be described later.
  • the energy harvesting device 7 is connected to known devices such as a power conditioner (PCS: Power Conditioning System), a battery, etc., for example, via wiring (not shown).
  • PCS Power Conditioning System
  • the energy harvesting device 7 outputs power to a load via a power conditioner or the like.
  • a load indicates an electrical device, for example.
  • the load is driven using, for example, the energy harvesting device 7 as a primary or auxiliary power source.
  • the solar cell panel 6 converts, for example, light energy such as sunlight and indoor light into electric energy.
  • the solar battery panel 6 includes a plurality of solar battery cells 61, a support portion 62 provided on the back surface 61a side of the plurality of solar battery cells 61, and an insulating portion 63 in contact with the support portion 62. ,including.
  • the solar cell panel 6 may include a known structure such as a protective glass (not shown), a frame, or the like.
  • the surface of the solar cell panel 6 on which light such as sunlight is irradiated is defined as the front surface
  • the surface opposite to the front surface is defined as the rear surface (that is, the rear surface 62a of the support portion 62).
  • the solar cell 61 is an element that absorbs light energy such as sunlight and converts it into electrical energy.
  • a semiconductor such as silicon is used for the solar cell 61 .
  • the plurality of photovoltaic cells 61 are spaced apart from each other, for example, along the surface that absorbs light energy.
  • the area of the solar cell 61 is larger than the area of the thermoelectric element 1 when viewed in the direction from the solar cell 61 toward the support portion 62 .
  • the support portion 62 is a back sheet provided on the back surface 61 a side of the solar cell 61 .
  • the support part 62 not only reflects light energy, but also protects the solar battery cell 61 from high heat of sunlight, ultraviolet rays, wind and rain.
  • a known back sheet such as a plastic material is used.
  • the insulating portion 63 has insulating properties.
  • the insulating portion 63 includes, for example, a sealant 64 provided between the solar cell 61 and the support portion 62 .
  • a known sealing material such as EVA (ethylene-vinyl acetate copolymer resin) is used.
  • the thermoelectric element 1 includes a pair of electrodes (first electrode 11 and second electrode 12) having different work functions, and an intermediate portion 14 provided between the pair of electrodes 11 and 12. ,including.
  • the thermoelectric element 1 may comprise at least one of the first substrate 15 and the second substrate 16, for example.
  • Thermoelectric element 1 is provided in contact with solar cell panel 6 .
  • the thermoelectric element 1 converts, for example, thermal energy absorbed by the solar cell panel 6 into electrical energy to generate current.
  • the thermoelectric element 1 is connected to the solar cell panel 6 via wiring (not shown), for example, in a parallel circuit.
  • the thermoelectric element 1 may be connected to the solar cell panel 6 via wiring (not shown), for example, in a series circuit.
  • the thermoelectric element 1 is provided inside the solar panel 6 .
  • the thermoelectric element 1 is provided, for example, between the solar battery cell 61 and the support portion 62 and covered with a sealant 64 .
  • the surface opposite to the surface of the first substrate 15 facing the first electrode 11 constitutes the first main surface 10a
  • the surface of the second substrate 16 facing the second electrode 12 is the first main surface 10a.
  • the opposite surface constitutes the second major surface 10b.
  • the thermoelectric element 1 is provided, for example, with the first principal surface 10a in contact with the surface 62b of the support portion 62 and with the second principal surface 10b spaced apart from the back surface 61a of the solar cell 61 .
  • the thermoelectric element 1 has, for example, the first main surface 10a provided in contact with the surface 62b of the support portion 62 and the second main surface 10b provided in contact with the back surface 61a of the solar cell 61.
  • thermoelectric element 1 is provided with the first main surface 10 a and the second main surface 10 b along the back surface 61 a of the solar cell 61 . At this time, the contact area between the thermoelectric element 1 and the solar cell 61 can be increased. As a result, the amount of heat transferred from the solar cell 61 to the thermoelectric element 1 increases, and the amount of power generated by the thermoelectric element 1 can be increased. Although illustration is omitted, the thermoelectric element 1 may be provided such that the first main surface 10 a and the second main surface 10 b are perpendicular to the back surface 61 a of the solar cell 61 .
  • the heat transferred from the solar cell 61 to the electrodes 11 and 12 increases compared to when either the first electrode 11 or the second electrode 12 is separated from the solar cell 61 . This makes it possible to increase the amount of power generated by the thermoelectric element 1 .
  • the measurement unit 71 has a power measurement unit 72 and a power generation amount measurement unit 73 .
  • the power measurement unit 72 measures the power of the thermoelectric element 1 .
  • the power measuring unit 72 uses a well-known one that measures power.
  • the power generation amount measurement unit 73 measures the power generation amount of the thermoelectric element 1 .
  • a well-known unit for measuring the amount of power generation is used as the power generation amount measuring unit 73 .
  • the information processing device 75 is installed, for example, in a power plant and functions as a control unit within the power plant.
  • a personal computer or the like is used as the information processing device 75 .
  • the information processing device 75 includes an estimation unit 76 and an evaluation unit 77 .
  • the information processing device 75 may further include an input/output unit for inputting/outputting various types of information and a storage unit for storing various types of information.
  • FIG. 5 is a diagram showing an example of the relationship between temperature and power for the solar cell panel 6 and the thermoelectric element 1.
  • the solar panel 6 tends to decrease the power generated from the solar panel 6 as the temperature of the solar panel 6 increases.
  • the thermoelectric element 1 exhibits a tendency that the electric power generated from the thermoelectric element 1 increases as the temperature of the thermoelectric element 1 increases.
  • the information processing device 75 may store in advance the relationship between temperature and power for the solar panel 6 and the thermoelectric element 1 .
  • the information processing device 75 may store, for example, the relationship between the amount of power generated by the thermoelectric element 1 and the temperature of the solar battery cell 61 in advance.
  • the information processing device 75 may store, for example, the relationship between the power of the thermoelectric element 1 and the temperature of the solar battery cell 61 in advance.
  • the estimating unit 76 refers to the relationship between the temperature and power of the solar panel 6 and the thermoelectric element 1 stored in the information processing device 75, for example, and based on the measurement result of the power measuring unit 72, the power generated from the solar cell 61 Estimate the power to be applied. That is, it is possible to easily estimate the tendency of the electric power to change depending on the temperature of the solar cell panel 6 . For this reason, it is possible to detect in advance that excessive power will be generated from the solar panel 6 due to, for example, a decrease in the outside temperature, and control of the solar panel 6 can be performed. This makes it possible to further increase the amount of power generated by the energy harvesting device 7 as a whole.
  • the evaluation unit 77 refers to the relationship between the power of the thermoelectric element 1 and the temperature of the solar cell 61 stored in the information processing device 75, for example, and calculates the temperature of the solar cell 61 based on the measurement result of the power measurement unit 72. evaluate.
  • the evaluation unit 77 refers to the relationship between the power generation amount of the thermoelectric element 1 and the temperature of the solar cell 61 stored in the information processing device 75, for example, and based on the measurement result of the power generation amount measurement unit 73, the temperature of the solar cell 61. Evaluate the temperature.
  • FIG. 6 is a schematic cross-sectional view showing an example of the intermediate portion 14. As shown in FIG. The first electrode 11 and the second electrode 12 are provided facing each other. The first electrode 11 and the second electrode 12 have different work functions. The intermediate portion 14 is provided in a space 140 including a gap G between the first electrode 11 and the second electrode 12, as shown in FIG. 6, for example.
  • the intermediate portion 14 includes nanoparticles 141 and a solid insulating layer 142 .
  • the nanoparticles 141 are fixed in the insulating layer 142 in a dispersed state. In this case, movement of the nanoparticles 141 in the gap G is suppressed. Therefore, it is possible to prevent the nanoparticles 141 from unevenly distributing toward one of the electrodes 11 and 12 over time and decrease the amount of electron movement. This makes it possible to stabilize the power generation amount.
  • the intermediate portion 14 is provided on the first electrode 11 .
  • the second electrode 12 is provided on the insulating layer 142 .
  • the amount of power generation can be increased.
  • a liquid such as a solvent is used as the intermediate portion, it is necessary to provide a support portion or the like for maintaining the gap G.
  • the gap G may vary greatly with the formation of the supporting portion and the like.
  • thermoelectric element 1 the second electrode 12 is provided on the insulating layer 142, so there is no need to provide a support portion or the like for maintaining the gap G, and the formation of the support portion or the like is unnecessary. Gaps variations due to precision can be eliminated. This makes it possible to increase the amount of power generation.
  • the first electrode 11 and the second electrode 12 are spaced apart in the first direction Z, as shown in FIG. 4, for example.
  • Each of the electrodes 11 and 12 may extend in the second direction X and the third direction Y, for example, and may be provided in plurality.
  • one second electrode 12 may be provided facing the plurality of first electrodes 11 at different positions.
  • one first electrode 11 may be provided facing the plurality of second electrodes 12 at different positions.
  • a conductive material is used as the material of the first electrode 11 and the second electrode 12 .
  • materials for the first electrode 11 and the second electrode 12 for example, materials having different work functions are used. The same material may be used for the electrodes 11 and 12, and in this case, the electrodes 11 and 12 may have different work functions.
  • a metal conductor made of a single element such as iron, aluminum, or copper is used, or an alloy metal conductor made of, for example, two or more elements may be used.
  • a non-metallic conductor for example, may be used as the material of the electrodes 11 and 12 .
  • nonmetallic conductors include silicon (Si: for example, p-type Si or n-type Si) and carbon-based materials such as graphene.
  • the thickness of the first electrode 11 and the second electrode 12 along the first direction Z is, for example, 4 nm or more and 1 ⁇ m or less.
  • the thickness of the first electrode 11 and the second electrode 12 along the first direction Z may be, for example, 4 nm or more and 50 nm or less.
  • a gap G that indicates the distance between the first electrode 11 and the second electrode 12 can be arbitrarily set by changing the thickness of the insulating layer 142 . For example, by narrowing the gap G, the electric field generated between the electrodes 11 and 12 can be increased, so that the amount of power generated by the thermoelectric element 1 can be increased. Also, by narrowing the gap G, for example, the thickness of the thermoelectric element 1 along the first direction Z can be reduced.
  • the gap G is a finite value of 500 ⁇ m or less, for example.
  • the gap G is, for example, 10 nm or more and 1 ⁇ m or less.
  • variations in the gap G on the surfaces along the second direction X and the third direction Y may lead to a decrease in the power generation amount.
  • the gap G is larger than 1 ⁇ m, the electric field generated between the electrodes 11 and 12 may weaken.
  • the gap G is preferably larger than 200 nm and 1 ⁇ m or less.
  • the intermediate portion 14 extends in a plane along the second direction X and the third direction Y. As shown in FIG. The intermediate portion 14 is provided within a space 140 formed between the electrodes 11 , 12 . The intermediate portion 14 may be in contact with the main surfaces of the electrodes 11 and 12 facing each other, and may also be in contact with the side surfaces of the electrodes 11 and 12, for example.
  • the nanoparticles 141 may be dispersed in the insulating layer 142 and partially exposed from the insulating layer 142, for example.
  • the particle diameter of the nanoparticles 141 is smaller than the gap G, for example.
  • the particle diameter of the nanoparticles 141 is set to a finite value of 1/5 or less of the gap G, for example.
  • the particle diameter of the nanoparticles 141 is set to 1 ⁇ 5 or less of the gap G, it becomes easier to form the intermediate portion 14 containing the nanoparticles 141 within the space 140 . Thereby, when the thermoelectric element 1 is produced, workability can be improved.
  • nanoparticles refer to those containing multiple particles.
  • the nanoparticles 141 include particles having a particle diameter of, for example, 2 nm or more and 100 nm or less.
  • the nanoparticles 141 may include, for example, particles having a median diameter (median diameter: D50) of 3 nm or more and 150 nm or less, or particles having an average particle diameter of 3 nm or more and 150 nm or less. good.
  • the median diameter or average particle diameter can be measured, for example, by using a particle size distribution analyzer.
  • a particle size distribution measuring instrument for example, a particle size distribution measuring instrument using a dynamic light scattering method (eg, Zetasizer Ultra manufactured by Malvern Panalytical, etc.) may be used.
  • the nanoparticles 141 include, for example, conductors, and any material is used depending on the application.
  • the nanoparticles 141 may contain one type of material, or may contain a plurality of materials depending on the application.
  • the value of the work function of the nanoparticles 141 is, for example, between the value of the work function of the first electrode 11 and the value of the work function of the second electrode 12, and for example, the value of the work function of the first electrode 11. , and the value of the work function of the second electrode 12, and is optional.
  • Examples of materials for the nanoparticles 141 may include metal.
  • As the nanoparticles 141 for example, in addition to particles containing one type of material such as gold or silver, particles of an alloy containing two or more types of materials may be used. At least one conductive material other than gold and silver can be selected as the material of the nanoparticles 141 .
  • Nanoparticles 141 include, for example, metal oxides.
  • metal oxides examples include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), iron oxides (Fe 2 O 3 , Fe 2 O 5 ).
  • the nanoparticles 141 contain, for example, a dielectric.
  • a known material, for example, is used as the nanoparticles 141 containing a dielectric.
  • the nanoparticles 141 may include, for example, metal oxides other than magnetic substances.
  • the nanoparticles 141 contain a metal oxide exhibiting a magnetic substance, the movement of the nanoparticles 141 can be restricted by the magnetic field generated due to the environment in which the thermoelectric element 1 is installed. Therefore, the nanoparticles 141 contain a metal oxide other than a magnetic material, so that it is possible to suppress the decrease in the power generation amount over time without being affected by the magnetic field caused by the external environment.
  • the nanoparticles 141 include, for example, a coating 141a on the surface.
  • the thickness of the coating 141a is, for example, a finite value of 20 nm or less.
  • aggregation can be suppressed when the nanoparticles are dispersed in the insulating layer 142, for example.
  • electrons can move between the first electrode 11 and the nanoparticles 141, between the plurality of nanoparticles 141, and between the second electrode 12 and the nanoparticles 141 using hopping conduction or the like. It is possible to improve the quality.
  • a material having, for example, a thiol group or a disulfide group is used as the coating 141a.
  • Alkanethiol such as dodecanethiol is used as the material having a thiol group.
  • a material having a disulfide group for example, an alkane disulfide or the like is used.
  • the insulating layer 142 is provided between the electrodes 11 and 12 and is in contact with the electrodes 11 and 12, for example.
  • the thickness of the insulating layer 142 is, for example, a finite value of 500 ⁇ m or less.
  • the thickness of the insulating layer 142 affects the value and variation of the gap G described above. Therefore, for example, when the thickness of the insulating layer 142 is 200 nm or less, variations in the gap G in the planes along the second direction X and the third direction Y may lead to a decrease in the power generation amount. Also, if the thickness of the insulating layer 142 is greater than 1 ⁇ m, the electric field generated between the electrodes 11 and 12 may weaken. For these reasons, the thickness of the insulating layer 142 is preferably greater than 200 nm and equal to or less than 1 ⁇ m.
  • the insulating layer 142 may contain, for example, one type of material, or may contain a plurality of materials depending on the application.
  • the insulating layer 142 may include a plurality of layers containing different materials, for example, and may include a structure in which each layer is laminated. When the insulating layer 142 includes multiple layers, for example, nanoparticles 141 containing different materials may be dispersed in each layer.
  • the insulating layer 142 has insulating properties.
  • the material used for the insulating layer 142 is arbitrary as long as it is an insulating material that can fix the nanoparticles 141 in a dispersed state, but an organic polymer compound is preferable.
  • the insulating layer 142 contains an organic polymer compound, the insulating layer 142 can be formed flexibly, so that the thermoelectric element 1 can be formed in a shape such as curved or bent depending on the application.
  • organic polymer compounds include polyimides, polyamides, polyesters, polycarbonates, poly(meth)acrylates, radically polymerizable photo- or thermosetting resins, photo-cationically polymerizable photo- or thermosetting resins, epoxy resins, and acrylonitrile components.
  • an inorganic material may be used as the insulating layer 142, for example.
  • inorganic substances include porous inorganic substances such as zeolite and diatomaceous earth, as well as cage-like molecules.
  • the first substrate 15 and the second substrate 16 are spaced apart in the first direction Z with the electrodes 11 and 12 and the intermediate portion 14 interposed therebetween, as shown in FIG. 4, for example.
  • the first substrate 15 is, for example, in contact with the first electrode 11 and separated from the second electrode 12 .
  • the first substrate 15 fixes the first electrode 11 .
  • the second substrate 16 is in contact with the second electrode 12 and separated from the first electrode 11 .
  • a second substrate 16 fixes the second electrode 12 .
  • each of the substrates 15 and 16 along the first direction Z is, for example, 3 ⁇ m or more and 2 mm or less.
  • the thickness of each substrate 15, 16 can be set arbitrarily.
  • the shape of each of the substrates 15 and 16 may be, for example, square, rectangular, or disk-like, and can be arbitrarily set according to the application.
  • the substrates 15 and 16 for example, plate-shaped members having insulation properties can be used, and known members such as silicon, quartz, and Pyrex (registered trademark) can be used.
  • a film-like member may be used, and for example, a known film-like member such as PET (polyethylene terephthalate), PC (polycarbonate), polyimide, or the like may be used.
  • a member having conductivity can be used, such as iron, aluminum, copper, or an alloy of aluminum and copper.
  • a member such as a conductive polymer may be used in addition to a conductive semiconductor such as Si or GaN. If conductive members are used for the substrates 15 and 16, wiring for connecting to the electrodes 11 and 12 becomes unnecessary.
  • thermoelectric element 1 may include only the first substrate 15 as shown in FIG. 7(a), or may include only the second substrate 16, for example. Further, as shown in FIG. 7B, the thermoelectric element 1 has a laminated structure in which a plurality of the first electrodes 11, the intermediate portions 14, and the second electrodes 12 are laminated in this order without the respective substrates 15 and 16. (e.g. 1a, 1b, 1c, etc.), for example, a laminated structure comprising at least one of the substrates 15, 16 may be indicated.
  • the thermoelectric element 1 may further have a support portion 13 as shown in FIG. 8, for example.
  • the support portion 13 is provided in contact between a first substrate 15 and a second substrate 16, which are a pair of substrates, or between a first electrode 11 and a second electrode 12, which are a pair of electrodes.
  • the support portion 13 is in contact with the first electrode 11 and the second electrode 12 in the second direction X, but may be separated from the first electrode 11 and the second electrode 12 .
  • a material having insulating properties can be selected as the material for the support portion 13 .
  • insulating materials include silicon, silicon oxide films, glass such as quartz, and insulating resins.
  • the supporting portion 13 may be, for example, a flexible film, and may be made of PET (polyethylene terephthalate), PC (polycarbonate), polyimide, or the like.
  • the middle part 14 of the thermoelectric element 1 may contain the solvent 143 instead of the insulating layer 142, for example.
  • nanoparticles 141 are dispersed in the solvent.
  • the intermediate portion 14 is obtained, for example, by filling the space 140 with a solvent 143 in which nanoparticles 141 are dispersed.
  • the solvent 143 for example, a liquid with a boiling point of 60°C or higher can be used. Therefore, vaporization of the solvent 143 can be suppressed even when the thermoelectric element 1 is used in an environment of room temperature (for example, 15° C. to 35° C.) or higher. As a result, deterioration of the thermoelectric element 1 due to evaporation of the solvent 143 can be suppressed.
  • At least one of an organic solvent and water can be selected as an example of the liquid. Examples of organic solvents include methanol, ethanol, toluene, xylene, tetradecane, alkanethiols, and the like. It should be noted that the solvent 143 is preferably a liquid having a high electrical resistance value and an insulating property.
  • thermoelectric element 1 For example, when thermal energy is applied to the thermoelectric element 1, electrons move between the first electrode 11 and the second electrode 12, converting the thermal energy into electrical energy. The amount of electrons that move between the first electrode 11 and the second electrode 12 depends on thermal energy and on the difference between the work function of the second electrode 12 and the work function of the first electrode 11 .
  • the amount of electrons moving between the first electrode 11 and the second electrode 12 is increased by, for example, increasing the work function difference between the first electrode 11 and the second electrode 12 and decreasing the gap G. be able to.
  • the amount of electrical energy generated by the thermoelectric element 1 can be increased by considering at least one of increasing the work function difference and decreasing the gap G.
  • the nanoparticles 141 between the electrodes 11 and 12 the amount of electrons moving between the electrodes 11 and 12 can be increased, which can lead to an increase in the amount of current. .
  • the "work function” indicates the minimum energy required to extract electrons in a solid into a vacuum.
  • the work function is measured using, for example, ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), or Auger electron spectroscopy (AES). can be done.
  • UPS ultraviolet photoelectron spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • AES Auger electron spectroscopy
  • the thermoelectric element 1 includes a pair of electrodes 11 and 12 having different work functions. That is, even when there is no temperature difference between the electrodes, thermal energy can be converted into electrical energy. Therefore, there is no need to provide a heat dissipation mechanism such as a heat dissipation plate. Also, the thermoelectric element 1 is provided in contact with the solar cell panel 6 . Therefore, the heat that contributes to the power generation of the thermoelectric element 1 is directly transmitted from the solar cell panel 6 in addition to the heat that accompanies the temperature rise around the solar cell panel. As a result, the amount of power generated by the thermoelectric element 1 can be increased.
  • the insulating portion 63 includes the sealant 64 filled between the solar cell 61 and the support portion 62 , and the thermoelectric element 1 is formed between the solar cell 61 and the support portion 62 . and covered with a sealant 64 . Therefore, the heat generated from the photovoltaic cells 61 in addition to the support portions 62 can be easily transferred to the thermoelectric elements 1 . This makes it possible to further increase the power generation amount.
  • the area of the solar battery cell 61 is larger than the area of the thermoelectric element 1 when viewed from the direction from the solar battery cell 61 toward the support portion 62 . Therefore, light such as sunlight that has passed between the plurality of photovoltaic cells 61 can be reflected by the support portion 62 to facilitate irradiation of the photovoltaic cells 61 . This makes it possible to suppress a decrease in the amount of power generated by the solar cell panel 6 due to the installation of the thermoelectric elements 1 .
  • the energy harvesting device 7 the power measuring unit 72 that measures the power of the thermoelectric element 1, and the estimating unit that estimates the power generated from the photovoltaic cell 61 based on the measurement result of the power measuring unit 72. 76 and. Therefore, it is possible to easily estimate variations in the amount of power generated due to the temperature of the solar cell panel 6 . This makes it possible to further increase the amount of power generated by the energy harvesting device 7 as a whole.
  • the evaluation unit 77 evaluates the temperature of the photovoltaic cell 61 based on the measurement result of the measurement unit 71 . Therefore, the thermoelectric element 1 can be used not only for power generation but also as a sensor for determining whether or not heat is generated due to a failure of the solar battery cell 61 . As a result, it is possible to increase the amount of power generated by the energy harvesting device 7 as a whole and to increase safety.
  • FIG. 9 is a schematic cross-sectional view showing an example of the energy harvesting device 7 in the second embodiment.
  • the thermoelectric element 1 is provided inside the solar panel 6 .
  • the thermoelectric element 1 is provided, for example, between the solar battery cell 61 and the support portion 62 and covered with a sealant 64 .
  • thermoelectric element 1 is provided, for example, with the first principal surface 10a spaced from the surface 62b of the support portion 62 and the second principal surface 10b in contact with the back surface 61a of the solar cell 61 .
  • a plurality of thermoelectric elements 1 are provided in one solar cell 61 with a gap therebetween.
  • one solar cell 61 is provided with a plurality of thermoelectric elements 1 . Therefore, when the thermoelectric element 1 is used as a sensor for determining whether or not heat is generated due to the failure of the solar battery cell 61, the location of the failure of the solar battery cell 61 can be grasped in detail. This makes it possible to further improve safety.
  • thermoelectric elements 1 are provided in contact with the solar cells 61 . Therefore, when the thermoelectric element 1 is used as a sensor for determining whether or not heat is generated due to the failure of the solar battery cell 61, the occurrence of the failure of the solar battery cell 61 can be detected with higher accuracy. This makes it possible to further improve safety.
  • FIG. 10 is a schematic cross-sectional view showing an example of the energy harvesting device 7 in the third embodiment.
  • the thermoelectric element 1 is provided outside the solar panel 6 .
  • the thermoelectric element 1 is provided so that the second main surface 10b is in contact with the back surface 62a of the support portion 62 of the solar cell panel 6, for example.
  • the thermoelectric element 1 is provided in contact between the support portion 62 and a heat storage portion 65 which will be described later.
  • the insulating portion 63 includes a heat storage portion 65 provided on the back surface 62 a side of the support portion 62 .
  • the heat storage part 65 has heat storage properties.
  • the heat storage unit 65 has, for example, a sensible heat storage material that utilizes the specific heat of a substance (amount of heat required to raise the temperature of a substance by a unit temperature).
  • the specific heat of the heat storage section 65 is higher than the specific heat of each of the substrates 15 and 16 . Therefore, the heat accumulated in the heat storage section 65 can be easily transferred to the electrodes 11 and 12 of the thermoelectric element 1 .
  • the specific heat of the heat storage portion 65 is higher than the specific heat of the support portion 62 . Therefore, heat can be accumulated in the heat storage portion 65 for a longer period of time than in the support portion 62 .
  • Airgel for example, airgel, bricks, etc. are used as sensible heat storage materials.
  • Airgel has nano-sized porosity smaller than the mean free path of air molecules, and is made of silica, carbon, alumina, or the like.
  • the sensible heat storage material for example, a material exhibiting a specific heat higher than that of glass (for example, 0.67 J/g ⁇ K at 10 to 50° C.) is used.
  • the value of specific heat in addition to referring to literature values, measurement results according to JIS K 7123 may be used.
  • the heat storage section 65 may have a latent heat storage material that utilizes transition heat (latent heat) associated with phase change or transition of substances, for example.
  • latent heat a known material such as water, sodium chloride, etc. that utilizes phase conversion is used.
  • the heat storage unit may have, for example, a chemical heat storage material that utilizes endothermic heat generated during a chemical reaction.
  • the chemical heat storage material for example, a known material is used.
  • the thermoelectric element 1 includes a pair of electrodes 11 and 12 having different work functions. That is, even when there is no temperature difference between the electrodes, thermal energy can be converted into electrical energy. Therefore, there is no need to provide a heat dissipation mechanism such as a heat dissipation plate. Also, the thermoelectric element 1 is provided in contact with the rear surface 62 a of the support portion 62 of the solar panel 6 . Therefore, heat transferred to the thermoelectric element 1 is transferred from the solar cell panel 6 . As a result, the amount of power generated by the thermoelectric element 1 can be increased.
  • the insulating portion 63 includes the heat storage portion 65 provided on the back surface 62 a side of the support portion 62 , and the thermoelectric element 1 is provided between the support portion 62 and the heat storage portion 65 in contact therewith. . Therefore, heat can be easily transferred to the thermoelectric element 1 via the heat storage unit 65 even in a time zone when sunlight is not irradiated. This makes it possible to extend the power generation possible time of the energy harvesting device 7 as a whole.
  • the heat storage section 65 has a sensible heat storage material. Therefore, the temperature range during use can be widened compared to the latent heat storage material. This makes it possible to realize energy harvesting suitable for various uses.
  • FIG. 11 is a schematic cross-sectional view showing an example of the energy harvesting device 7 in the third embodiment.
  • the thermoelectric element 1 is provided outside the solar panel 6 .
  • the thermoelectric element 1 is provided so that the second main surface 10b is in contact with the back surface 62a of the support portion 62 of the solar cell panel 6, for example.
  • the insulating portion 63 includes a heat storage portion 65 provided on the back surface 62 a side of the support portion 62 .
  • the heat storage unit 65 includes a first heat storage unit 651 and a second heat storage unit 652 having different heat storage properties.
  • thermoelectric element 1 is provided in contact between the support portion 62 and the heat storage portion 65 .
  • the thermoelectric elements 1 include a first element 1-1 in contact with the first heat storage section 651 and separated from the second heat storage section 652, and a second element 1-1 in contact with the second heat storage section 652 and separated from the first heat storage section 651. 2 and
  • the heat storage unit 65 includes the first heat storage unit 651 and the second heat storage unit 652, which have different heat storage properties, and the thermoelectric element 1 is in contact with the first heat storage unit 651 and the second heat storage unit 651.
  • a first element 1-1 separated from the portion 652 and a second element 1-2 in contact with the second heat storage portion 652 and separated from the first heat storage portion 651 are included. Therefore, it is possible to set a different power generation possible time for each element. This makes it possible to further extend the power generation possible time of the energy harvesting device 7 as a whole.
  • the heat storage unit 65 may include three or more heat storage units.
  • the heat storage unit 65 may include a first heat storage unit 651, a second heat storage unit 652, and a third heat storage unit having different heat storage properties.
  • the thermoelectric element 1 is provided in contact between the support portion 62 and the heat storage portion 65 .
  • the thermoelectric element 1 is in contact with the first heat storage unit 651 and separated from the second heat storage unit 652 and the third heat storage unit.
  • a second element 1-2 separated from the heat storage unit and a third element in contact with the third heat storage unit and separated from the first heat storage unit 651 and the second heat storage unit 652 may be included. Even in this case, a different power generation possible time can be set for each element. This makes it possible to further extend the power generation possible time of the energy harvesting device 7 as a whole.
  • FIG. 12 is a schematic cross-sectional view showing an example of the energy harvesting device 7 in the fifth embodiment.
  • the thermoelectric element 1 is provided outside the solar panel 6 .
  • the thermoelectric element 1 is provided with the first electrode 11 and the second electrode 12 perpendicular to the back surface 62 a of the support portion 62 .
  • the first element 1-1 is provided between the pair of first heat storage units 651 and in contact therewith.
  • the second element 1-2 is provided in contact between the pair of second heat storage portions 652. As shown in FIG.
  • the heat storage unit 65 includes the first heat storage unit 651 and the second heat storage unit 652, which have different heat storage properties, and the thermoelectric element 1 is in contact with the first heat storage unit 651 and the second heat storage unit 651.
  • a first element 1-1 separated from the portion 652 and a second element 1-2 in contact with the second heat storage portion 652 and separated from the first heat storage portion 651 are included. Therefore, it is possible to set a different power generation possible time for each element. This makes it possible to further extend the power generation possible time of the energy harvesting device 7 as a whole.
  • the first electrode 11 and the second electrode 12 are provided perpendicular to the back surface 62 a of the support portion 62 .
  • the heat accumulators 651 and 652 can be provided in contact with the support 62 in addition to the thermoelectric element 1, and the amount of heat accumulated in the heat accumulators 651 and 652 can be increased. This makes it possible to increase the amount of power generated by the thermoelectric element 1 using the heat storage unit 65 .
  • FIG. 13 is a schematic cross-sectional view showing an example of the energy harvesting device 7 in the sixth embodiment.
  • the energy harvesting device 7 according to the sixth embodiment further includes a heat conducting section 20 .
  • thermoelectric element 1 is provided inside the solar panel 6 .
  • the thermoelectric element 1 is provided, for example, between the solar battery cell 61 and the support portion 62 and covered with a sealant 64 .
  • the thermoelectric element 1 is provided, for example, with the first principal surface 10 a in contact with the surface 62 b of the support portion 62 and with the second principal surface 10 b spaced apart from the solar cell 61 .
  • the heat conducting part 20 is in contact with the supporting part 62 and the thermoelectric element 1 .
  • the thermally conductive portion 20 has a higher thermal conductivity than the insulating portion 63, for example.
  • the heat conducting portion 20 is provided, for example, between the solar cell 61 and the supporting portion 62 and covered with a sealant 64 .
  • the heat transferred from the support portion 62 to the thermoelectric element 1 includes heat transferred via the heat conduction portion 20 in addition to the heat transferred directly from the support portion 62 . Therefore, the contact area between the heat conducting portion 20 and the thermoelectric element 1 affects the amount of heat transferred to the thermoelectric element 1 . Therefore, in order to increase the amount of power generated by the thermoelectric element 1, it is desirable that the contact area between the heat conducting portion 20 and the thermoelectric element 1 is large. For example, when the length of the heat conducting portion 20 is equal to or longer than the length of the thermoelectric element 1 along the third direction Y, compared to the case where the length of the heat conducting portion 20 is less than the length of the thermoelectric element 1, Large contact area. As a result, the amount of heat transferred to the thermoelectric element 1 can be increased, and the amount of power generated by the thermoelectric element 1 can be increased.
  • the thermal conductivity of the heat conducting portion 20 may be higher than the thermal conductivity of the substrates 15 and 16.
  • the heat conduction portion 20 may be made of copper having a higher thermal conductivity than the substrates 15 and 16.
  • a material having relatively higher thermal conductivity than that of 16 may be used. This makes it difficult for the heat transferred from the solar cell panel 6 to the thermoelectric element 1 to be released to the outside, and the amount of power generated by the thermoelectric element 1 can be increased.
  • the thermal conductivity of the heat conductive portion 20 may be higher than that of the support portion 13 so that the heat transferred from the solar cell panel 6 to the thermoelectric element 1 is less likely to be released to the outside. Also, the thermal conductivity of the thermally conductive portion 20 may be higher than that of at least one of the pair of the first electrode 11 and the second electrode 12 .
  • the heat conducting part 20 has electrical conductivity and is made of, for example, a metal material.
  • the heat conducting portion 20 is not limited to a metal material, and may be made of any material as long as it has a high electrical conductivity.
  • the material with high conductivity preferably has a thermal conductivity of 10 W/(m ⁇ k) or more as measured according to ASTM E1530.
  • the material having high conductivity may be, for example, a metal material such as gold, silver, copper, or aluminum, and is preferably made of copper or aluminum.
  • the insulating portion 63 includes a sealant 64 provided between the solar cell 61 and the support portion 62 .
  • a sealant 64 covers the heat conducting portion 20 and the thermoelectric elements 1 .
  • the heat conducting portion 20 is in contact with the supporting portion 62 and the thermoelectric element 1, and the insulating portion 63 covers the heat conducting portion 20 and the thermoelectric element 1. Therefore, heat generated from the support portion 62 is easily transferred to the thermoelectric element 1 via the heat conduction portion 20 . Also, the heat transferred to the thermoelectric element 1 is less likely to be released to the outside. By these, it becomes possible to further increase the amount of power generation.
  • FIG. 14 is a schematic cross-sectional view showing an example of the energy harvesting device 7 in the seventh embodiment.
  • the energy harvesting device 7 according to the seventh embodiment further includes a heat conducting section 20 .
  • thermoelectric element 1 is provided outside the solar cell panel 6 .
  • the thermoelectric element 1 is provided so that the second main surface 10b is in contact with the back surface 62a of the support portion 62 of the solar cell panel 6, for example.
  • the heat conducting part 20 is in contact with the supporting part 62 and the thermoelectric element 1 .
  • the heat conducting portion 20 is provided in contact with the rear surface 62a of the support portion 62, for example.
  • the insulating portion 63 includes a sealant 64 provided between the solar cell 61 and the support portion 62 .
  • the insulating portion 63 may include a protective portion 66 provided on the back surface 62 a side of the support portion 62 .
  • the protection part 66 has, for example, insulating properties, and suppresses deterioration of the thermoelectric element 1 caused by the external environment.
  • As the protective portion 66 in addition to using a known insulating material, for example, the same material as the heat storage portion 65 described above may be used.
  • the protection part 66 covers part of the heat conduction part 20 and part of the thermoelectric element 1 .
  • the protective portion 66 covers the rear surface of the heat conductive portion 20 and the first main surface 10 a of the thermoelectric element 1 .
  • the protection part 66 covers the entire heat conduction part 20 and the thermoelectric element 1. In this case, a state in which heat can be easily transferred to the thermoelectric element 1 can be maintained, and deterioration over time of the thermoelectric element 1 and the heat conducting portion 20 can be suppressed.
  • the protective portion 66 may include a first protective portion 66a and a second protective portion 66b.
  • the first protection part 66 a covers part of the heat conducting part 20 and part of the thermoelectric element 1 .
  • the second protection portion 66b covers the other portion of the heat conducting portion 20 and the other portion of the thermoelectric element 1.
  • Different materials are used for the protection portions 66a and 66b. In this case, it is possible to arbitrarily change the degree of increase in heat transfer or increase in durability according to the application of the energy harvesting device 7 .
  • the heat conducting portion 20 is in contact with the supporting portion 62 and the thermoelectric element 1, and the insulating portion 63 covers the heat conducting portion 20 and the thermoelectric element 1. Therefore, heat generated from the support portion 62 is easily transferred to the thermoelectric element 1 via the heat conduction portion 20 . Also, the heat transferred to the thermoelectric element 1 is less likely to be released to the outside. By these, it becomes possible to further increase the amount of power generation.
  • thermoelectric element 10a first main surface 10b: second main surface 11: first electrode 12: second electrode 13: support portion 14: intermediate portion 140: space 141: nanoparticles 141a: coating 142: insulating layer 143: Solvent 15 : First substrate 16 : Second substrate 20 : Thermal conductive part 6 : Solar battery panel 61 : Solar battery cell 62 : Support part 63 : Insulating part 64 : Sealant 65 : Heat storage part 66 : Protective part 7 : Environment Power generation device 71 : Measurement unit 72 : Power measurement unit 73 : Power generation amount measurement unit 75 : Information processing device 76 : Estimation unit 77 : Evaluation unit 700 : Energy harvesting system Z : First direction X : Second direction Y : Third direction

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

[Problem] To provide an environmental power generation device and an environmental power generation system which make it possible to increase the power generation amount of a thermoelectric element. [Solution] Provided is an environmental power generation device 7 which converts light energy and thermal energy into electrical energy, wherein the device comprises: a solar battery panel 6 that converts the light energy into the electrical energy; and a thermoelectric element 1 which, when the thermal energy is converted into the electrical energy, does not require a temperature difference between electrodes. The solar battery panel 6 includes a plurality of solar battery cells 61, a support unit 62 that is provided on a rear surface 61a side of the plurality of solar battery cell 61, and an insulation unit 63 that is in contact with the support unit 62. The thermoelectric element 61 includes a pair of electrodes 11, 12 having different work functions, respectively, and an intermediate unit 14 provided between the pair of electrodes 11, 12, and is arranged in contact with the solar battery panel 6.

Description

環境発電装置、及び環境発電システムEnergy harvesting device and energy harvesting system
 この発明は、光エネルギー及び熱エネルギーを電気エネルギーに変換する環境発電装置、及び環境発電システムに関する。 The present invention relates to an energy harvesting device and an energy harvesting system that convert light energy and thermal energy into electrical energy.
 太陽電池と、熱電素子との組合せを利用した発電装置として、例えば特許文献1の太陽光パネルが提案されている。 For example, a solar panel in Patent Document 1 has been proposed as a power generation device that uses a combination of solar cells and thermoelectric elements.
 特許文献1には、第1表皮材と第2表皮材とに挟まれたハニカムコアと、前記第1表皮材の前記ハニカムコアと反対面に設けられた複数の太陽電池セルと、前記第2表皮材の前記ハニカムコアと反対面に空隙を隔てられ分散して配置された複数の熱電変換素子と、前記複数の熱電変換素子の第2表皮材と反対面で接し、前記空隙を覆うように設けられた放熱板と、を備える太陽光発電パネルが開示される。 Patent Document 1 discloses a honeycomb core sandwiched between a first skin material and a second skin material, a plurality of solar cells provided on a surface of the first skin material opposite to the honeycomb core, and the second skin material. a plurality of thermoelectric conversion elements arranged dispersedly with gaps on the surface of the skin material opposite to the honeycomb core; A photovoltaic panel is disclosed comprising a heat sink provided.
国際公開第2018/230031号WO2018/230031
 ここで、太陽電池を利用する際、太陽電池パネルが高温になる傾向を示す。このため、特許文献1に開示された放熱板を必要とする熱電素子を用いた場合、太陽電池パネル周辺や放熱板の温度上昇により、熱電素子の発電に必要な温度差の維持が困難となり得る。これにより、熱電素子の発電量の低下が懸念として挙げられる。 Here, when solar cells are used, the solar cell panel tends to become hot. Therefore, when using the thermoelectric element that requires the heat sink disclosed in Patent Document 1, it may be difficult to maintain the temperature difference required for power generation by the thermoelectric element due to the temperature rise around the solar cell panel and the heat sink. . As a result, there is a concern that the amount of power generated by the thermoelectric element will decrease.
 そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、熱電素子の発電量を増加させることが可能となる環境発電装置、及び環境発電システムを提供することにある。 SUMMARY OF THE INVENTION Accordingly, the present invention has been devised in view of the problems described above, and its object is to provide an energy harvesting device and an energy harvesting system capable of increasing the amount of power generated by a thermoelectric element. to do.
 第1発明に係る環境発電装置は、光エネルギー及び熱エネルギーを電気エネルギーに変換する環境発電装置であって、光エネルギーを電気エネルギーに変換する太陽電池パネルと、熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする熱電素子と、を備え、前記太陽電池パネルは、複数の太陽電池セルと、複数の前記太陽電池セルの裏面側に設けられた支持部と、前記支持部に接する絶縁部と、を含み、前記熱電素子は、それぞれ仕事関数の異なる一対の電極と、前記一対の電極の間に設けられた中間部と、を含み、前記熱電素子は、前記太陽電池パネルに接して設けられることを特徴とする。 An energy harvesting device according to a first aspect of the invention is an energy harvesting device that converts light energy and thermal energy into electrical energy, and includes a solar cell panel that converts light energy into electrical energy, and a solar cell panel that converts thermal energy into electrical energy. , and a thermoelectric element that does not require a temperature difference between electrodes, and the solar cell panel includes a plurality of solar cells, a support provided on the back side of the plurality of solar cells, and the support and an insulating portion in contact with the solar cell panel, wherein the thermoelectric element includes a pair of electrodes having different work functions, and an intermediate portion provided between the pair of electrodes, the thermoelectric element being the solar cell panel It is characterized by being provided in contact with.
 第2発明に係る環境発電装置は、第1発明において、前記支持部及び前記熱電素子に接する熱伝導部をさらに備え、前記絶縁部は、前記熱伝導部及び前記熱電素子を覆うことを特徴とする。 An energy harvesting device according to a second aspect of the invention is characterized in that, in the first aspect of the invention, the energy harvesting device further comprises a thermally conductive portion in contact with the support portion and the thermoelectric element, and the insulating portion covers the thermally conductive portion and the thermoelectric element. do.
 第3発明に係る環境発電装置は、第1発明又は第2発明において、前記絶縁部は、前記太陽電池セルと、前記支持部との間に充填される封止剤を含み、前記熱電素子は、前記太陽電池セルと、前記支持部との間に設けられ、前記封止剤に覆われることを特徴とする。 An energy harvesting device according to a third aspect is the energy harvesting device according to the first aspect or the second aspect, wherein the insulating portion includes a sealant filled between the solar cell and the supporting portion, and the thermoelectric element is , provided between the solar cell and the support, and covered with the sealant.
 第4発明に係る環境発電装置は、第3発明において、前記太陽電池セルから前記支持部に向かう方向から見て、前記太陽電池セルの面積は、前記熱電素子の面積よりも大きいことを特徴とする。 An energy harvesting device according to a fourth invention is the energy harvesting device according to the third invention, characterized in that the area of the solar cell is larger than the area of the thermoelectric element when viewed from the direction from the solar cell toward the support section. do.
 第5発明に係る環境発電装置は、第1発明又は第2発明において、前記絶縁部は、前記支持部の裏面側に設けられた蓄熱部を含み、前記熱電素子は、前記支持部と、前記蓄熱部との間に接して設けられることを特徴とする。 An energy harvesting device according to a fifth invention is the energy harvesting device according to the first invention or the second invention, wherein the insulating section includes a heat storage section provided on the back side of the supporting section, and the thermoelectric element includes the supporting section and the It is characterized by being provided in contact with the heat storage section.
 第6発明に係る環境発電装置は、第5発明において、前記蓄熱部は、それぞれ蓄熱性の異なる第1蓄熱部、及び第2蓄熱部を含み、前記熱電素子は、前記第1蓄熱部と接し、前記第2蓄熱部と離間する第1素子と、前記第2蓄熱部と接し、前記第1蓄熱部と離間する第2素子と、を含むことを特徴とする。 An energy harvesting device according to a sixth aspect is the energy harvesting device according to the fifth aspect, wherein the heat storage unit includes a first heat storage unit and a second heat storage unit having different heat storage properties, and the thermoelectric element is in contact with the first heat storage unit. , a first element separated from the second heat storage section, and a second element in contact with the second heat storage section and separated from the first heat storage section.
 第7発明に係る環境発電システムは、第3発明又は第4発明の環境発電装置を用いた環境発電システムであって、前記熱電素子の発電量又は電力を計測する計測部と、前記計測部の計測結果に基づき、前記太陽電池セルの温度を評価する評価部と、を備えることを特徴とする。 An energy harvesting system according to a seventh aspect of the invention is an energy harvesting system using the energy harvesting device of the third or fourth aspect of the invention, comprising: and an evaluation unit that evaluates the temperature of the photovoltaic cell based on the measurement result.
 第8発明に係る環境発電システムは、第1発明~第6発明の何れか1つの環境発電装置を用いた環境発電システムであって、前記熱電素子の電力を計測する電力計測部と、前記電力計測部の計測結果に基づき、前記太陽電池セルから発生する電力を推定する推定部と、を備えることを特徴とする。 An energy harvesting system according to an eighth invention is an energy harvesting system using the energy harvesting device according to any one of the first invention to the sixth invention, comprising: a power measuring unit for measuring power of the thermoelectric element; an estimating unit for estimating electric power generated from the photovoltaic cell based on a measurement result of the measuring unit.
 第1発明~第6発明によれば、熱電素子は、それぞれ仕事関数の異なる一対の電極を含む。即ち、電極間の温度差が無い場合においても、熱エネルギーを電気エネルギーに変換することができる。このため、放熱板等の放熱機構を備える必要が無い。また、熱電素子は、太陽電池パネルに接して設けられる。このため、熱電素子の発電に寄与する熱は、太陽電池パネル周辺の温度上昇に伴う伝達に加え、太陽電池パネルから直接伝達される。これらにより、熱電素子の発電量を増加させることが可能となる。 According to the first to sixth inventions, the thermoelectric element includes a pair of electrodes with different work functions. That is, even when there is no temperature difference between the electrodes, thermal energy can be converted into electrical energy. Therefore, there is no need to provide a heat dissipation mechanism such as a heat dissipation plate. Also, the thermoelectric element is provided in contact with the solar cell panel. Therefore, the heat that contributes to the power generation of the thermoelectric element is directly transferred from the solar panel in addition to the transfer accompanying the temperature rise around the solar panel. These make it possible to increase the amount of power generated by the thermoelectric element.
 特に、第2発明によれば、熱伝導部は、支持部及び熱電素子に接し、絶縁部は、熱伝導部及び熱電素子を覆う。このため、支持部から発生した熱が、熱伝導部を介して熱電素子に伝達され易くなる。また、熱電素子に伝達された熱が、外部に放出され難くなる。これらにより、発電量をさらに増加させることが可能となる。 In particular, according to the second invention, the heat conducting part is in contact with the support part and the thermoelectric element, and the insulating part covers the heat conducting part and the thermoelectric element. Therefore, the heat generated from the supporting portion is easily transferred to the thermoelectric element via the heat conducting portion. Also, the heat transferred to the thermoelectric element is less likely to be released to the outside. By these, it becomes possible to further increase the amount of power generation.
 特に、第3発明によれば、絶縁部は、太陽電池セルと、支持部との間に充填される封止剤を含み、熱電素子は、太陽電池セルと、支持部との間に設けられ、封止剤に覆われる。このため、支持部に加えて太陽電池セルから発生した熱を、熱電素子に伝達し易くすることができる。これにより、発電量をさらに増加させることが可能となる。 In particular, according to the third invention, the insulating portion includes a sealant filled between the solar cell and the support portion, and the thermoelectric element is provided between the solar cell and the support portion. , covered with an encapsulant. Therefore, the heat generated from the photovoltaic cell as well as the supporting portion can be easily transferred to the thermoelectric element. This makes it possible to further increase the power generation amount.
 特に、第4発明によれば、太陽電池セルから支持部に向かう方向から見て、太陽電池セルの面積は、熱電素子の面積よりも大きい。このため、複数の太陽電池セルの間を通過した太陽光等の光を、支持部に反射させて太陽電池セルに照射し易くすることができる。これにより、熱電素子の設置に伴う太陽電池パネルの発電量の低下を抑制することが可能となる。 In particular, according to the fourth invention, the area of the solar cell is larger than the area of the thermoelectric element when viewed from the direction from the solar cell toward the support. For this reason, light such as sunlight that has passed between the plurality of solar cells can be reflected by the supporting portion so that the solar cells can be easily irradiated. This makes it possible to suppress a decrease in the amount of power generated by the solar cell panel due to the installation of the thermoelectric elements.
 特に、第5発明によれば、絶縁部は、支持部の裏面側に設けられた蓄熱部を含み、熱電素子は、支持部と、蓄熱部との間に接して設けられる。このため、太陽光が照射されない時間帯においても、蓄熱部を介して熱電素子に熱を伝達し易くすることができる。これにより、環境発電装置全体における発電可能時間の延長を図ることが可能となる。 In particular, according to the fifth invention, the insulating section includes the heat storage section provided on the back side of the support section, and the thermoelectric element is provided between the support section and the heat storage section in contact therewith. Therefore, heat can be easily transferred to the thermoelectric elements via the heat storage unit even in a time zone when sunlight is not irradiated. This makes it possible to extend the power generation possible time of the entire energy harvesting device.
 特に、第6発明によれば、蓄熱部は、それぞれ蓄熱性の異なる第1蓄熱部、及び第2蓄熱部を含み、熱電素子は、第1蓄熱部と接し、第2蓄熱部と離間する第1素子と、第2蓄熱部と接し、第1蓄熱部と離間する第2素子と、を含む。このため、素子毎に異なる発電可能時間を設定することができる。これにより、環境発電装置全体における発電可能時間のさらなる延長を図ることが可能となる。 In particular, according to the sixth invention, the heat storage section includes a first heat storage section and a second heat storage section having different heat storage properties, and the thermoelectric element is in contact with the first heat storage section and separated from the second heat storage section. and a second element that is in contact with the second heat storage unit and separated from the first heat storage unit. Therefore, it is possible to set a different power generation possible time for each element. This makes it possible to further extend the power generation possible time of the entire energy harvesting device.
 特に、第7発明によれば、評価部は、計測部の計測結果に基づき、太陽電池セルの温度を評価する。このため、熱電素子を発電に用いるほか、太陽電池セルの不具合に伴う発熱の発生有無を判断する際のセンサとして用いることができる。これにより、環境発電装置全体の発電量の増加、及び安全性増加を図ることが可能となる。 In particular, according to the seventh invention, the evaluation unit evaluates the temperature of the photovoltaic cell based on the measurement result of the measurement unit. For this reason, the thermoelectric element can be used not only for power generation but also as a sensor for determining whether or not heat is generated due to malfunction of the solar battery cell. This makes it possible to increase the amount of power generated by the energy harvesting device as a whole and to increase safety.
 特に、第8発明によれば、環境発電装置と、熱電素子の電力を計測する電力計測部と、電力計測部の計測結果に基づき、太陽電池セルから発生する電力を推定する推定部と、を備える。このため、太陽電池パネルの温度に起因する発電量のバラつきを、容易に推定することができる。これにより、環境発電装置全体の発電量のさらなる増加を図ることが可能となる。 In particular, according to the eighth invention, the energy harvesting device, the power measuring unit for measuring the power of the thermoelectric element, and the estimating unit for estimating the power generated from the photovoltaic cell based on the measurement result of the power measuring unit. Prepare. Therefore, it is possible to easily estimate the variation in the amount of power generation due to the temperature of the solar cell panel. This makes it possible to further increase the amount of power generated by the energy harvesting device as a whole.
図1は、第1実施形態における環境発電システムの一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of an energy harvesting system according to the first embodiment. 図2は、第1実施形態における環境発電装置の一例を示す模式斜視図である。FIG. 2 is a schematic perspective view showing an example of the energy harvesting device in the first embodiment. 図3は、第1実施形態における環境発電装置の一例を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing an example of the energy harvesting device in the first embodiment. 図4は、第1実施形態における環境発電装置の一例を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing an example of the energy harvesting device in the first embodiment. 図5は、太陽電池パネルと熱電素子とについて、温度と電力との関係の一例を示す図である。FIG. 5 is a diagram showing an example of the relationship between temperature and power for a solar cell panel and thermoelectric elements. 図6は、中間部の一例を示す模式断面図である。FIG. 6 is a schematic cross-sectional view showing an example of the intermediate portion. 図7(a)は、第1実施形態における熱電素子の第1変形例を示す模式断面図であり、図7(b)は、第1実施形態における熱電素子の第2変形例を示す模式断面図である。FIG. 7A is a schematic cross-sectional view showing a first modified example of the thermoelectric element in the first embodiment, and FIG. 7B is a schematic cross-sectional view showing a second modified example of the thermoelectric element in the first embodiment. It is a diagram. 図8(a)は、第1実施形態における熱電素子の第3変形例を示す模式断面図であり、図8(b)は、図8(a)の熱電素子の中間部の一例を示す模式断面図である。FIG. 8(a) is a schematic cross-sectional view showing a third modification of the thermoelectric element in the first embodiment, and FIG. 8(b) is a schematic diagram showing an example of an intermediate portion of the thermoelectric element in FIG. 8(a). It is a sectional view. 図9は、第2実施形態における環境発電装置の一例を示す模式断面図である。FIG. 9 is a schematic cross-sectional view showing an example of the energy harvesting device in the second embodiment. 図10は、第3実施形態における環境発電装置の一例を示す模式断面図である。FIG. 10 is a schematic cross-sectional view showing an example of an energy harvesting device according to the third embodiment. 図11は、第4実施形態における環境発電装置の一例を示す模式断面図である。FIG. 11 is a schematic cross-sectional view showing an example of an energy harvesting device according to the fourth embodiment. 図12は、第5実施形態における環境発電装置の一例を示す模式断面図である。FIG. 12 is a schematic cross-sectional view showing an example of an energy harvesting device according to the fifth embodiment. 図13は、第6実施形態における環境発電装置の一例を示す模式断面図である。FIG. 13 is a schematic cross-sectional view showing an example of an energy harvesting device according to the sixth embodiment. 図14(a)は、第7実施形態における環境発電装置の一例を示す模式断面図であり、図14(b)は、第7実施形態における環境発電装置の絶縁部の第1変形例を示す模式断面図であり、図14(c)は、第7実施形態における環境発電装置の絶縁部の第2変形例を示す模式断面図である。FIG. 14(a) is a schematic cross-sectional view showing an example of an energy harvesting device according to the seventh embodiment, and FIG. 14(b) shows a first modified example of the insulating portion of the energy harvesting device according to the seventh embodiment. FIG. 14C is a schematic cross-sectional view showing a second modification of the insulating portion of the energy harvesting device according to the seventh embodiment.
 以下、本発明の実施形態としての環境発電装置及び環境発電システムの一例について、図面を参照しながら説明する。なお、各図において、各電極が積層される高さ方向を第1方向Zとし、第1方向Zと交差、例えば直交する1つの平面方向を第2方向Xとし、第1方向Z及び第2方向Xのそれぞれと交差、例えば直交する別の平面方向を第3方向Yとする。また、各図における構成は、説明のため模式的に記載されており、例えば各構成の大きさや、構成毎における大きさの対比等については、図とは異なってもよい。 An example of an energy harvesting device and an energy harvesting system as an embodiment of the present invention will be described below with reference to the drawings. In each figure, the height direction in which each electrode is stacked is defined as a first direction Z, and one planar direction that intersects, for example, is orthogonal to the first direction Z is defined as a second direction X. A third direction Y is another planar direction that intersects, for example, is orthogonal to each of the directions X. As shown in FIG. Also, the configuration in each drawing is schematically described for explanation, and for example, the size of each configuration and the comparison of the size of each configuration may differ from those in the drawings.
(第1実施形態:環境発電装置7、環境発電システム700)
 図1は、第1実施形態における環境発電システム700の一例を示す模式図である。図2は、第1実施形態における環境発電装置7の一例を示す模式斜視図である。図3は、第1実施形態における環境発電装置7の一例を示す模式断面図である。図4は、図3の破線枠Aにおける拡大図である。
(First embodiment: energy harvesting device 7, energy harvesting system 700)
FIG. 1 is a schematic diagram showing an example of an energy harvesting system 700 according to the first embodiment. FIG. 2 is a schematic perspective view showing an example of the energy harvesting device 7 in the first embodiment. FIG. 3 is a schematic cross-sectional view showing an example of the energy harvesting device 7 in the first embodiment. FIG. 4 is an enlarged view of the dashed frame A in FIG.
 図1に示すように、環境発電システム700は、環境発電装置7と、計測部71と、情報処理装置75と、を備える。環境発電装置7は、光エネルギー及び熱エネルギーを電気エネルギーに変換する。環境発電装置7は、光エネルギーを電気エネルギーに変換する太陽電池パネル6と、熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする熱電素子1と、を備える。 As shown in FIG. 1 , the energy harvesting system 700 includes an energy harvesting device 7 , a measuring section 71 and an information processing device 75 . The energy harvesting device 7 converts light energy and thermal energy into electrical energy. The energy harvesting device 7 includes a solar cell panel 6 that converts light energy into electrical energy, and a thermoelectric element 1 that does not require a temperature difference between electrodes when converting thermal energy into electrical energy.
 <環境発電装置7>
 環境発電装置7は、例えば発電施設の敷地内に設けられるほか、地面や建物の屋根等に設けられる。環境発電装置7は、後述する情報処理装置75等に接続される。環境発電装置7は、例えば図示しない配線を介して、パワーコンディショナ(PCS:Power Conditioning System)、バッテリー等のような公知の機器に接続される。環境発電装置7は、パワーコンディショナ等を介して負荷へ出力する。負荷は、例えば電気的な機器を示す。負荷は、例えば環境発電装置7を主電源又は補助電源に用いて駆動される。
<Energy Harvester 7>
The energy harvesting device 7 is installed, for example, in the site of the power generation facility, or installed on the ground or on the roof of a building. The energy harvesting device 7 is connected to an information processing device 75 and the like, which will be described later. The energy harvesting device 7 is connected to known devices such as a power conditioner (PCS: Power Conditioning System), a battery, etc., for example, via wiring (not shown). The energy harvesting device 7 outputs power to a load via a power conditioner or the like. A load indicates an electrical device, for example. The load is driven using, for example, the energy harvesting device 7 as a primary or auxiliary power source.
 <太陽電池パネル6>
 太陽電池パネル6は、例えば太陽光の他、室内光等の光エネルギーを電気エネルギーに変換する。例えば図3に示すように、太陽電池パネル6は、複数の太陽電池セル61と、複数の太陽電池セル61の裏面61a側に設けられた支持部62と、支持部62に接する絶縁部63と、を含む。太陽電池パネル6は、例えば図示しない保護ガラスや、フレーム等のような公知の構成を含んでもよい。ここで、太陽電池パネル6の太陽光等の光が照射される側の面を表面とし、表面とは反対側の面を裏面(すなわち、支持部62の裏面62a)とする。
<Solar panel 6>
The solar cell panel 6 converts, for example, light energy such as sunlight and indoor light into electric energy. For example, as shown in FIG. 3, the solar battery panel 6 includes a plurality of solar battery cells 61, a support portion 62 provided on the back surface 61a side of the plurality of solar battery cells 61, and an insulating portion 63 in contact with the support portion 62. ,including. The solar cell panel 6 may include a known structure such as a protective glass (not shown), a frame, or the like. Here, the surface of the solar cell panel 6 on which light such as sunlight is irradiated is defined as the front surface, and the surface opposite to the front surface is defined as the rear surface (that is, the rear surface 62a of the support portion 62).
 <太陽電池セル61>
 太陽電池セル61は、例えば太陽光等の光エネルギーを吸収して電気エネルギーに変換する素子である。太陽電池セル61は、例えばシリコン等の半導体が用いられる。複数の太陽電池セル61は、例えば光エネルギーを吸収する面に沿って、それぞれ離間して設けられる。例えば太陽電池セル61から支持部62に向かう方向から見て、太陽電池セル61の面積は、熱電素子1の面積よりも大きい。
<Solar battery cell 61>
The solar cell 61 is an element that absorbs light energy such as sunlight and converts it into electrical energy. A semiconductor such as silicon is used for the solar cell 61 . The plurality of photovoltaic cells 61 are spaced apart from each other, for example, along the surface that absorbs light energy. For example, the area of the solar cell 61 is larger than the area of the thermoelectric element 1 when viewed in the direction from the solar cell 61 toward the support portion 62 .
 <支持部62>
 支持部62は、太陽電池セル61の裏面61a側に設けられるバックシートである。支持部62は、光エネルギーを反射するほか、太陽光の高熱や紫外線、風雨から太陽電池セル61を保護する。支持部62として、例えばプラスチック材等の公知のバックシートが用いられる。
<Support portion 62>
The support portion 62 is a back sheet provided on the back surface 61 a side of the solar cell 61 . The support part 62 not only reflects light energy, but also protects the solar battery cell 61 from high heat of sunlight, ultraviolet rays, wind and rain. As the support portion 62, for example, a known back sheet such as a plastic material is used.
 <絶縁部63>
 絶縁部63は、絶縁性を有する。絶縁部63は、例えば太陽電池セル61と支持部62との間に設けられる封止剤64を含む。封止剤64として、例えばEVA(エチレン酢酸ビニル共重合樹脂)等の公知の封止材料が用いられる。
<Insulator 63>
The insulating portion 63 has insulating properties. The insulating portion 63 includes, for example, a sealant 64 provided between the solar cell 61 and the support portion 62 . As the sealing agent 64, a known sealing material such as EVA (ethylene-vinyl acetate copolymer resin) is used.
 <熱電素子1>
 例えば図4に示すように、熱電素子1は、それぞれ仕事関数の異なる一対の電極(第1電極11、第2電極12)と、一対の電極11、12の間に設けられた中間部14と、を含む。熱電素子1は、例えば第1基板15、及び第2基板16の少なくとも何れかを備えてもよい。熱電素子1は、太陽電池パネル6に接して設けられる。熱電素子1は、例えば太陽電池パネル6に吸収された熱エネルギーを電気エネルギーに変換し、電流を生成する。熱電素子1は、太陽電池パネル6に図示しない配線を介して例えば並列回路で接続される。熱電素子1は、太陽電池パネル6に図示しない配線を介して例えば直列回路で接続されてもよい。
<Thermoelectric element 1>
For example, as shown in FIG. 4, the thermoelectric element 1 includes a pair of electrodes (first electrode 11 and second electrode 12) having different work functions, and an intermediate portion 14 provided between the pair of electrodes 11 and 12. ,including. The thermoelectric element 1 may comprise at least one of the first substrate 15 and the second substrate 16, for example. Thermoelectric element 1 is provided in contact with solar cell panel 6 . The thermoelectric element 1 converts, for example, thermal energy absorbed by the solar cell panel 6 into electrical energy to generate current. The thermoelectric element 1 is connected to the solar cell panel 6 via wiring (not shown), for example, in a parallel circuit. The thermoelectric element 1 may be connected to the solar cell panel 6 via wiring (not shown), for example, in a series circuit.
 熱電素子1は、太陽電池パネル6の内部に設けられる。熱電素子1は、例えば太陽電池セル61と支持部62との間に設けられ、封止剤64に覆われる。熱電素子1は、例えば第1基板15の第1電極11に対向する面とは反対側の面が第1主面10aを構成し、第2基板16の第2電極12に対向する面とは反対側の面が第2主面10bを構成する。熱電素子1は、例えば第1主面10aが支持部62の表面62bに接して設けられ、第2主面10bが太陽電池セル61の裏面61aから離間して設けられる。なお、図示は省略するが、熱電素子1は、例えば第1主面10aが支持部62の表面62bに接して設けられ、第2主面10bが太陽電池セル61の裏面61aに接して設けられてもよい。 The thermoelectric element 1 is provided inside the solar panel 6 . The thermoelectric element 1 is provided, for example, between the solar battery cell 61 and the support portion 62 and covered with a sealant 64 . In the thermoelectric element 1, for example, the surface opposite to the surface of the first substrate 15 facing the first electrode 11 constitutes the first main surface 10a, and the surface of the second substrate 16 facing the second electrode 12 is the first main surface 10a. The opposite surface constitutes the second major surface 10b. The thermoelectric element 1 is provided, for example, with the first principal surface 10a in contact with the surface 62b of the support portion 62 and with the second principal surface 10b spaced apart from the back surface 61a of the solar cell 61 . Although illustration is omitted, the thermoelectric element 1 has, for example, the first main surface 10a provided in contact with the surface 62b of the support portion 62 and the second main surface 10b provided in contact with the back surface 61a of the solar cell 61. may
 熱電素子1は、第1主面10aと第2主面10bとが、太陽電池セル61の裏面61aに沿って設けられる。このとき、熱電素子1と、太陽電池セル61との接する面積を大きくすることができる。これにより、太陽電池セル61から熱電素子1に伝達される熱が増加し、熱電素子1の発電量を増加させることが可能となる。なお、図示は省略するが、熱電素子1は、第1主面10aと第2主面10bとが、太陽電池セル61の裏面61aに対して垂直に設けられてもよい。このとき、第1電極11及び第2電極12の何れかが太陽電池セル61と離間する場合に比べて、太陽電池セル61から各電極11、12に伝達される熱が増加する。これにより、熱電素子1における発電量を増加させることが可能となる。 The thermoelectric element 1 is provided with the first main surface 10 a and the second main surface 10 b along the back surface 61 a of the solar cell 61 . At this time, the contact area between the thermoelectric element 1 and the solar cell 61 can be increased. As a result, the amount of heat transferred from the solar cell 61 to the thermoelectric element 1 increases, and the amount of power generated by the thermoelectric element 1 can be increased. Although illustration is omitted, the thermoelectric element 1 may be provided such that the first main surface 10 a and the second main surface 10 b are perpendicular to the back surface 61 a of the solar cell 61 . At this time, the heat transferred from the solar cell 61 to the electrodes 11 and 12 increases compared to when either the first electrode 11 or the second electrode 12 is separated from the solar cell 61 . This makes it possible to increase the amount of power generated by the thermoelectric element 1 .
 <計測部71>
 計測部71は、電力計測部72と、発電量計測部73と、を有する。
<Measurement unit 71>
The measurement unit 71 has a power measurement unit 72 and a power generation amount measurement unit 73 .
 <電力計測部72>
 電力計測部72は、熱電素子1の電力を計測する。電力計測部72は、電力を計測する周知のものが用いられる。
<Power measurement unit 72>
The power measurement unit 72 measures the power of the thermoelectric element 1 . The power measuring unit 72 uses a well-known one that measures power.
 <発電量計測部73>
 発電量計測部73は、熱電素子1の発電量を計測する。発電量計測部73は、発電量を計測する周知のものが用いられる。
<Power generation amount measurement unit 73>
The power generation amount measurement unit 73 measures the power generation amount of the thermoelectric element 1 . A well-known unit for measuring the amount of power generation is used as the power generation amount measuring unit 73 .
 <情報処理装置75>
 情報処理装置75は、例えば発電所に設置され、発電所内の制御部として機能する。情報処理装置75は、例えばパーソナルコンピュータ等が用いられる。情報処理装置75は、推定部76と、評価部77と、を備える。情報処理装置75は、さらに、各種情報の入出力を行う入出力部と、各種情報の記憶を行う記憶部を更に備えてもよい。
<Information processing device 75>
The information processing device 75 is installed, for example, in a power plant and functions as a control unit within the power plant. For example, a personal computer or the like is used as the information processing device 75 . The information processing device 75 includes an estimation unit 76 and an evaluation unit 77 . The information processing device 75 may further include an input/output unit for inputting/outputting various types of information and a storage unit for storing various types of information.
 図5は、太陽電池パネル6と熱電素子1とについて、温度と電力との関係の一例を示す図である。図5に示すように、太陽電池パネル6は、太陽電池パネル6の温度が上昇すると、太陽電池パネル6から発生する電力が低下する傾向を示す。また、熱電素子1は、熱電素子1の温度が上昇すると、熱電素子1から発生する電力が上昇する傾向を示す。情報処理装置75には、例えば予め太陽電池パネル6と熱電素子1とについて、温度と電力との関係が記憶されてもよい。 FIG. 5 is a diagram showing an example of the relationship between temperature and power for the solar cell panel 6 and the thermoelectric element 1. FIG. As shown in FIG. 5, the solar panel 6 tends to decrease the power generated from the solar panel 6 as the temperature of the solar panel 6 increases. Also, the thermoelectric element 1 exhibits a tendency that the electric power generated from the thermoelectric element 1 increases as the temperature of the thermoelectric element 1 increases. For example, the information processing device 75 may store in advance the relationship between temperature and power for the solar panel 6 and the thermoelectric element 1 .
 また、情報処理装置75には、例えば予め熱電素子1の発電量と太陽電池セル61の温度との関係が記憶されてもよい。また、情報処理装置75には、例えば予め熱電素子1の電力と太陽電池セル61の温度との関係が記憶されてもよい。 The information processing device 75 may store, for example, the relationship between the amount of power generated by the thermoelectric element 1 and the temperature of the solar battery cell 61 in advance. The information processing device 75 may store, for example, the relationship between the power of the thermoelectric element 1 and the temperature of the solar battery cell 61 in advance.
 <推定部76>
 推定部76は、例えば情報処理装置75に記憶された太陽電池パネル6と熱電素子1との温度と電力との関係を参照し、電力計測部72の計測結果に基づき、太陽電池セル61から発生する電力を推定する。即ち、太陽電池パネル6の温度によって変化する電力の傾向を、容易に推定することができる。このため、例えば外気温の低下に伴い、太陽電池パネル6から過大な電力の発生を予め把握でき、太陽電池パネル6の制御を施すことができる。これにより、環境発電装置7全体の発電量のさらなる増加を図ることが可能となる。
<Estimating unit 76>
The estimating unit 76 refers to the relationship between the temperature and power of the solar panel 6 and the thermoelectric element 1 stored in the information processing device 75, for example, and based on the measurement result of the power measuring unit 72, the power generated from the solar cell 61 Estimate the power to be applied. That is, it is possible to easily estimate the tendency of the electric power to change depending on the temperature of the solar cell panel 6 . For this reason, it is possible to detect in advance that excessive power will be generated from the solar panel 6 due to, for example, a decrease in the outside temperature, and control of the solar panel 6 can be performed. This makes it possible to further increase the amount of power generated by the energy harvesting device 7 as a whole.
 <評価部77>
 評価部77は、例えば情報処理装置75に記憶された熱電素子1の電力と太陽電池セル61の温度との関係を参照し、電力計測部72の計測結果に基づき、太陽電池セル61の温度を評価する。評価部77は、例えば情報処理装置75に記憶された熱電素子1の発電量と太陽電池セル61の温度との関係を参照し、発電量計測部73の計測結果に基づき、太陽電池セル61の温度を評価する。
<Evaluation unit 77>
The evaluation unit 77 refers to the relationship between the power of the thermoelectric element 1 and the temperature of the solar cell 61 stored in the information processing device 75, for example, and calculates the temperature of the solar cell 61 based on the measurement result of the power measurement unit 72. evaluate. The evaluation unit 77 refers to the relationship between the power generation amount of the thermoelectric element 1 and the temperature of the solar cell 61 stored in the information processing device 75, for example, and based on the measurement result of the power generation amount measurement unit 73, the temperature of the solar cell 61. Evaluate the temperature.
 以下、各構成についての詳細を説明する。
 <熱電素子1>
 図6は、中間部14の一例を示す模式断面図である。第1電極11及び第2電極12は、互いに対向して設けられる。第1電極11及び第2電極12は、それぞれ異なる仕事関数を有する。中間部14は、例えば図6に示すように、第1電極11と、第2電極12との間(ギャップG)を含む空間140に設けられる。
Details of each configuration will be described below.
<Thermoelectric element 1>
FIG. 6 is a schematic cross-sectional view showing an example of the intermediate portion 14. As shown in FIG. The first electrode 11 and the second electrode 12 are provided facing each other. The first electrode 11 and the second electrode 12 have different work functions. The intermediate portion 14 is provided in a space 140 including a gap G between the first electrode 11 and the second electrode 12, as shown in FIG. 6, for example.
 中間部14は、ナノ粒子141と、固体の絶縁層142とを含む。ナノ粒子141は、絶縁層142に分散された状態で固定される。この場合、ギャップGにおけるナノ粒子141の移動が抑制される。このため、経時に伴いナノ粒子141が一方の電極11、12側に偏在し、電子の移動量が減少することを抑制することができる。これにより、発電量の安定化を図ることが可能となる。 The intermediate portion 14 includes nanoparticles 141 and a solid insulating layer 142 . The nanoparticles 141 are fixed in the insulating layer 142 in a dispersed state. In this case, movement of the nanoparticles 141 in the gap G is suppressed. Therefore, it is possible to prevent the nanoparticles 141 from unevenly distributing toward one of the electrodes 11 and 12 over time and decrease the amount of electron movement. This makes it possible to stabilize the power generation amount.
 中間部14は、第1電極11の上に設けられる。また、第2電極12は、絶縁層142の上に設けられる。ここで、熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする熱電素子1では、第2方向X及び第3方向Yに沿った面におけるギャップGのバラつきを抑制することで、発電量の増加を図ることができる。この点、中間部として溶媒等の液体を用いる場合、ギャップGを維持するための支持部等を設ける必要がある。しかしながら、支持部等の形成に伴い、上記ギャップGのバラつきを大きくし得ることが懸念されていた。これに対し、本実施形態における熱電素子1では、第2電極12は、絶縁層142の上に設けられるため、ギャップGを維持するための支持部等を設ける必要がなく、支持部等の形成精度に起因するギャップのバラつきを除くことができる。これにより、発電量の増加を図ることが可能となる。 The intermediate portion 14 is provided on the first electrode 11 . Also, the second electrode 12 is provided on the insulating layer 142 . Here, in the thermoelectric element 1 that does not require a temperature difference between the electrodes when converting thermal energy into electrical energy, by suppressing variations in the gap G on the surfaces along the second direction X and the third direction Y, , the amount of power generation can be increased. In this regard, when a liquid such as a solvent is used as the intermediate portion, it is necessary to provide a support portion or the like for maintaining the gap G. However, there has been a concern that the gap G may vary greatly with the formation of the supporting portion and the like. On the other hand, in the thermoelectric element 1 according to the present embodiment, the second electrode 12 is provided on the insulating layer 142, so there is no need to provide a support portion or the like for maintaining the gap G, and the formation of the support portion or the like is unnecessary. Gaps variations due to precision can be eliminated. This makes it possible to increase the amount of power generation.
 <第1電極11、第2電極12>
 第1電極11及び第2電極12は、例えば図4に示すように、第1方向Zに離間する。各電極11、12は、例えば第2方向X及び第3方向Yに延在し、複数設けられてもよい。例えば1つの第2電極12は、複数の第1電極11とそれぞれ異なる位置で対向して設けられてもよい。また、例えば1つの第1電極11は、複数の第2電極12とそれぞれ異なる位置で対向して設けられてもよい。
<First Electrode 11, Second Electrode 12>
The first electrode 11 and the second electrode 12 are spaced apart in the first direction Z, as shown in FIG. 4, for example. Each of the electrodes 11 and 12 may extend in the second direction X and the third direction Y, for example, and may be provided in plurality. For example, one second electrode 12 may be provided facing the plurality of first electrodes 11 at different positions. Also, for example, one first electrode 11 may be provided facing the plurality of second electrodes 12 at different positions.
 第1電極11及び第2電極12の材料として、導電性を有する材料が用いられる。第1電極11及び第2電極12の材料として、例えばそれぞれ異なる仕事関数を有する材料が用いられる。なお、各電極11、12に同一の材料を用いてもよく、この場合、それぞれ異なる仕事関数を有していればよい。 A conductive material is used as the material of the first electrode 11 and the second electrode 12 . As materials for the first electrode 11 and the second electrode 12, for example, materials having different work functions are used. The same material may be used for the electrodes 11 and 12, and in this case, the electrodes 11 and 12 may have different work functions.
 各電極11、12の材料として、例えば鉄、アルミニウム、銅等の単一元素からなる金属導電物が用いられるほか、例えば2種類以上の元素からなる合金の金属導電物が用いられてもよい。各電極11、12の材料として、例えば非金属導電物が用いられてもよい。非金属導電物の例としては、シリコン(Si:例えばp型Si、あるいはn型Si)、及びグラフェン等のカーボン系材料等を挙げることができる。 As the material of the electrodes 11 and 12, for example, a metal conductor made of a single element such as iron, aluminum, or copper is used, or an alloy metal conductor made of, for example, two or more elements may be used. A non-metallic conductor, for example, may be used as the material of the electrodes 11 and 12 . Examples of nonmetallic conductors include silicon (Si: for example, p-type Si or n-type Si) and carbon-based materials such as graphene.
 第1電極11及び第2電極12の第1方向Zに沿った厚さは、例えば4nm以上1μm以下である。第1電極11及び第2電極12の第1方向Zに沿った厚さは、例えば4nm以上50nm以下でもよい。 The thickness of the first electrode 11 and the second electrode 12 along the first direction Z is, for example, 4 nm or more and 1 μm or less. The thickness of the first electrode 11 and the second electrode 12 along the first direction Z may be, for example, 4 nm or more and 50 nm or less.
 第1電極11と、第2電極12との間の距離を示すギャップGは、絶縁層142の厚さを変更することで任意に設定することができる。例えばギャップGを狭くすることで、各電極11、12の間に発生する電界を大きくすることができるため、熱電素子1の発電量を増加させることができる。また、例えばギャップGを狭くすることで、熱電素子1の第1方向Zに沿った厚さを薄くすることができる。 A gap G that indicates the distance between the first electrode 11 and the second electrode 12 can be arbitrarily set by changing the thickness of the insulating layer 142 . For example, by narrowing the gap G, the electric field generated between the electrodes 11 and 12 can be increased, so that the amount of power generated by the thermoelectric element 1 can be increased. Also, by narrowing the gap G, for example, the thickness of the thermoelectric element 1 along the first direction Z can be reduced.
 ギャップGは、例えば500μm以下の有限値である。ギャップGは、例えば10nm以上1μm以下である。例えばギャップGが200nm以下の場合、第2方向X及び第3方向Yに沿った面におけるギャップGのバラつきに起因する発電量の低下につながり得る。また、ギャップGが1μmよりも大きい場合、各電極11、12の間に発生する電界が弱まる可能性がある。これらのため、ギャップGは、200nmよりも大きく、1μm以下であることが好ましい。 The gap G is a finite value of 500 μm or less, for example. The gap G is, for example, 10 nm or more and 1 μm or less. For example, if the gap G is 200 nm or less, variations in the gap G on the surfaces along the second direction X and the third direction Y may lead to a decrease in the power generation amount. Also, if the gap G is larger than 1 μm, the electric field generated between the electrodes 11 and 12 may weaken. For these reasons, the gap G is preferably larger than 200 nm and 1 μm or less.
 <中間部14>
 中間部14は、第2方向X及び第3方向Yに沿った平面に延在する。中間部14は、各電極11、12の間に形成された空間140内に設けられる。中間部14は、各電極11、12の互いに対向する主面に接するほか、例えば各電極11、12の側面に接してもよい。
<Intermediate part 14>
The intermediate portion 14 extends in a plane along the second direction X and the third direction Y. As shown in FIG. The intermediate portion 14 is provided within a space 140 formed between the electrodes 11 , 12 . The intermediate portion 14 may be in contact with the main surfaces of the electrodes 11 and 12 facing each other, and may also be in contact with the side surfaces of the electrodes 11 and 12, for example.
 ナノ粒子141は、絶縁層142に分散され、例えば一部が絶縁層142から露出してもよい。ナノ粒子141の粒子径は、例えばギャップGよりも小さい。ナノ粒子141の粒子径は、例えばギャップGの1/5以下の有限値とされる。ナノ粒子141の粒子径を、ギャップGの1/5以下とすると、空間140内にナノ粒子141を含む中間部14を、形成しやすくなる。これにより、熱電素子1を生成する際、作業性を向上させることが可能となる。 The nanoparticles 141 may be dispersed in the insulating layer 142 and partially exposed from the insulating layer 142, for example. The particle diameter of the nanoparticles 141 is smaller than the gap G, for example. The particle diameter of the nanoparticles 141 is set to a finite value of 1/5 or less of the gap G, for example. When the particle diameter of the nanoparticles 141 is set to ⅕ or less of the gap G, it becomes easier to form the intermediate portion 14 containing the nanoparticles 141 within the space 140 . Thereby, when the thermoelectric element 1 is produced, workability can be improved.
 ここで、「ナノ粒子」とは、複数の粒子を含んだものを示す。ナノ粒子141は、例えば2nm以上100nm以下の粒子径を有する粒子を含む。ナノ粒子141は、例えば、メディアン径(中央径:D50)が3nm以上150nm以下の粒子径を有する粒子を含んでもよいほか、例えば平均粒径が3nm以上150nm以下の粒子径を有する粒子を含んでもよい。メディアン径又は平均粒径は、例えば粒度分布計測器を用いることで、測定することができる。粒度分布計測器としては、例えば、動的光散乱法を用いた粒度分布計測器(例えばMalvern Panalytical 製ゼータサイザーUltra等)を用いればよい。 Here, "nanoparticles" refer to those containing multiple particles. The nanoparticles 141 include particles having a particle diameter of, for example, 2 nm or more and 100 nm or less. The nanoparticles 141 may include, for example, particles having a median diameter (median diameter: D50) of 3 nm or more and 150 nm or less, or particles having an average particle diameter of 3 nm or more and 150 nm or less. good. The median diameter or average particle diameter can be measured, for example, by using a particle size distribution analyzer. As the particle size distribution measuring instrument, for example, a particle size distribution measuring instrument using a dynamic light scattering method (eg, Zetasizer Ultra manufactured by Malvern Panalytical, etc.) may be used.
 ナノ粒子141は、例えば導電物を含み、用途に応じて任意の材料が用いられる。ナノ粒子141は、1種類の材料を含むほか、用途に応じて複数の材料を含んでもよい。ナノ粒子141の仕事関数の値は、例えば、第1電極11の仕事関数の値と、第2電極12の仕事関数の値との間にあるほか、例えば第1電極11の仕事関数の値と、第2電極12の仕事関数の値との間以外であってもよく、任意である。 The nanoparticles 141 include, for example, conductors, and any material is used depending on the application. The nanoparticles 141 may contain one type of material, or may contain a plurality of materials depending on the application. The value of the work function of the nanoparticles 141 is, for example, between the value of the work function of the first electrode 11 and the value of the work function of the second electrode 12, and for example, the value of the work function of the first electrode 11. , and the value of the work function of the second electrode 12, and is optional.
 ナノ粒子141の材料の例としては、金属を含んでもよい。ナノ粒子141として、例えば金、銀等の1種類の材料を含有する粒子のほか、2種類以上の材料を含有した合金の粒子が用いられてもよい。なお、ナノ粒子141の材料には、金及び銀以外の少なくとも1種類の導電性材料を選ぶことも可能である。 Examples of materials for the nanoparticles 141 may include metal. As the nanoparticles 141, for example, in addition to particles containing one type of material such as gold or silver, particles of an alloy containing two or more types of materials may be used. At least one conductive material other than gold and silver can be selected as the material of the nanoparticles 141 .
 ナノ粒子141は、例えば金属酸化物を含む。金属酸化物を含むナノ粒子141として、例えばジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化鉄(Fe、Fe)、酸化銅(CuO)、酸化亜鉛(ZnO)、イットリア(Y)、酸化ニオブ(Nb)、酸化モリブデン(MoO)、酸化インジウム(In)、酸化スズ(SnO)、酸化タンタル(Ta)、酸化タングステン(WO)、酸化鉛(PbO)、酸化ビスマス(Bi)、セリア(CeO)、酸化アンチモン(Sb、Sb)などの、金属及びSiからなる群より選ばれる少なくとも何れか1つの元素の金属酸化物が用いられる。 Nanoparticles 141 include, for example, metal oxides. Examples of nanoparticles 141 containing metal oxides include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), iron oxides (Fe 2 O 3 , Fe 2 O 5 ). , copper oxide (CuO), zinc oxide (ZnO), yttria (Y2O3), niobium oxide (Nb2O5 ) , molybdenum oxide ( MoO3 ), indium oxide ( In2O3 ), tin oxide (SnO 2 ), tantalum oxide ( Ta2O5 ), tungsten oxide ( WO3 ), lead oxide ( PbO ), bismuth oxide ( Bi2O3 ), ceria ( CeO2 ) , antimony oxide ( Sb2O5 , Sb2 ) . A metal oxide of at least one element selected from the group consisting of metals and Si, such as O 3 ), is used.
 ナノ粒子141は、例えば誘電体を含む。誘電体を含むナノ粒子141としては、例えば公知の材料が用いられる。 The nanoparticles 141 contain, for example, a dielectric. A known material, for example, is used as the nanoparticles 141 containing a dielectric.
 ナノ粒子141は、例えば磁性体を除く金属酸化物を含んでもよい。例えばナノ粒子141が、磁性体を示す金属酸化物を含む場合、熱電素子1の設置された環境に起因して発生する磁場により、ナノ粒子141の移動が制限され得る。このため、ナノ粒子141は、磁性体を除く金属酸化物を含むことで、外部環境に起因する磁場の影響を受けずに、経時に伴う発電量の低下を抑制することが可能となる。 The nanoparticles 141 may include, for example, metal oxides other than magnetic substances. For example, if the nanoparticles 141 contain a metal oxide exhibiting a magnetic substance, the movement of the nanoparticles 141 can be restricted by the magnetic field generated due to the environment in which the thermoelectric element 1 is installed. Therefore, the nanoparticles 141 contain a metal oxide other than a magnetic material, so that it is possible to suppress the decrease in the power generation amount over time without being affected by the magnetic field caused by the external environment.
 ナノ粒子141は、例えば被膜141aを表面に含む。被膜141aの厚さは、例えば20nm以下の有限値である。このような被膜141aをナノ粒子141の表面に設けることで、例えば絶縁層142に分散させる際の凝集を抑制することができる。また、例えば電子が、第1電極11とナノ粒子141との間、複数のナノ粒子141の間、及び第2電極12とナノ粒子141との間を、ホッピング伝導等を利用して移動する可能性を高めることが可能となる。 The nanoparticles 141 include, for example, a coating 141a on the surface. The thickness of the coating 141a is, for example, a finite value of 20 nm or less. By providing such a film 141a on the surfaces of the nanoparticles 141, aggregation can be suppressed when the nanoparticles are dispersed in the insulating layer 142, for example. Further, for example, electrons can move between the first electrode 11 and the nanoparticles 141, between the plurality of nanoparticles 141, and between the second electrode 12 and the nanoparticles 141 using hopping conduction or the like. It is possible to improve the quality.
 被膜141aとして、例えばチオール基又はジスルフィド基を有する材料が用いられる。チオール基を有する材料として、例えばドデカンチオール等のアルカンチオールが用いられる。ジスルフィド基を有する材料として、例えばアルカンジスルフィド等が用いられる。 A material having, for example, a thiol group or a disulfide group is used as the coating 141a. Alkanethiol such as dodecanethiol is used as the material having a thiol group. As a material having a disulfide group, for example, an alkane disulfide or the like is used.
 絶縁層142は、各電極11、12の間に設けられ、例えば各電極11、12に接する。絶縁層142の厚さは、例えば500μm以下の有限値である。絶縁層142の厚さは、上述したギャップGの値やバラつきに影響する。このため、例えば絶縁層142の厚さが200nm以下の場合、第2方向X及び第3方向Yに沿った面におけるギャップGのバラつきに起因する発電量の低下につながり得る。また、絶縁層142の厚さが1μmよりも大きい場合、各電極11、12の間に発生する電界が弱まる可能性がある。これらのため、絶縁層142の厚さは、200nmよりも大きく、1μm以下であることが好ましい。 The insulating layer 142 is provided between the electrodes 11 and 12 and is in contact with the electrodes 11 and 12, for example. The thickness of the insulating layer 142 is, for example, a finite value of 500 μm or less. The thickness of the insulating layer 142 affects the value and variation of the gap G described above. Therefore, for example, when the thickness of the insulating layer 142 is 200 nm or less, variations in the gap G in the planes along the second direction X and the third direction Y may lead to a decrease in the power generation amount. Also, if the thickness of the insulating layer 142 is greater than 1 μm, the electric field generated between the electrodes 11 and 12 may weaken. For these reasons, the thickness of the insulating layer 142 is preferably greater than 200 nm and equal to or less than 1 μm.
 絶縁層142は、例えば1種類の材料を含むほか、用途に応じて複数の材料を含んでもよい。絶縁層142は、例えば異なる材料を含む複数の層を含み、各層を積層した構成を含んでもよい。絶縁層142が複数の層を含む場合、例えば各層にはそれぞれ異なる材料を含むナノ粒子141が分散されてもよい。 The insulating layer 142 may contain, for example, one type of material, or may contain a plurality of materials depending on the application. The insulating layer 142 may include a plurality of layers containing different materials, for example, and may include a structure in which each layer is laminated. When the insulating layer 142 includes multiple layers, for example, nanoparticles 141 containing different materials may be dispersed in each layer.
 絶縁層142は、絶縁性を有する。絶縁層142に用いられる材料は、ナノ粒子141を分散した状態で固定できる絶縁性材料であれば、任意であるが、有機高分子化合物が好ましい。絶縁層142が有機高分子化合物を含む場合、絶縁層142をフレキシブルに形成できるため、湾曲や屈曲等の用途に応じた形状を有する熱電素子1を形成することができる。 The insulating layer 142 has insulating properties. The material used for the insulating layer 142 is arbitrary as long as it is an insulating material that can fix the nanoparticles 141 in a dispersed state, but an organic polymer compound is preferable. When the insulating layer 142 contains an organic polymer compound, the insulating layer 142 can be formed flexibly, so that the thermoelectric element 1 can be formed in a shape such as curved or bent depending on the application.
 有機高分子化合物としては、ポリイミド、ポリアミド、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレート、ラジカル重合系の光または熱硬化性樹脂、光カチオン重合系の光または熱硬化性樹脂、あるいはエポキシ樹脂、アクリロニトリル成分を含有する共重合体、ポリビニルフェノール、ポリビニルアルコール、ポリスチレン、ノボラック樹脂、ポリフッ化ビニリデンなどを用いることができる。 Examples of organic polymer compounds include polyimides, polyamides, polyesters, polycarbonates, poly(meth)acrylates, radically polymerizable photo- or thermosetting resins, photo-cationically polymerizable photo- or thermosetting resins, epoxy resins, and acrylonitrile components. can be used, such as copolymers containing
 なお、例えば絶縁層142として、無機物質が用いられてもよい。無機物質として、例えばゼオライトや珪藻土等の多孔無機物質のほか、籠状分子等が挙げられる。 Note that an inorganic material may be used as the insulating layer 142, for example. Examples of inorganic substances include porous inorganic substances such as zeolite and diatomaceous earth, as well as cage-like molecules.
 <第1基板15、第2基板16>
 第1基板15及び第2基板16は、例えば図4に示すように、各電極11、12及び中間部14を挟み、第1方向Zに離間して設けられる。第1基板15は、例えば第1電極11と接し、第2電極12と離間する。第1基板15は、第1電極11を固定する。第2基板16は、第2電極12と接し、第1電極11と離間する。第2基板16は、第2電極12を固定する。
<First Substrate 15, Second Substrate 16>
The first substrate 15 and the second substrate 16 are spaced apart in the first direction Z with the electrodes 11 and 12 and the intermediate portion 14 interposed therebetween, as shown in FIG. 4, for example. The first substrate 15 is, for example, in contact with the first electrode 11 and separated from the second electrode 12 . The first substrate 15 fixes the first electrode 11 . The second substrate 16 is in contact with the second electrode 12 and separated from the first electrode 11 . A second substrate 16 fixes the second electrode 12 .
 各基板15、16の第1方向Zに沿った厚さは、例えば3μm以上2mm以下である。各基板15、16の厚さは、任意に設定することができる。各基板15、16の形状は、例えば正方形や長方形の四角形のほか、円盤状等でもよく、用途に応じて任意に設定することができる。 The thickness of each of the substrates 15 and 16 along the first direction Z is, for example, 3 μm or more and 2 mm or less. The thickness of each substrate 15, 16 can be set arbitrarily. The shape of each of the substrates 15 and 16 may be, for example, square, rectangular, or disk-like, and can be arbitrarily set according to the application.
 各基板15、16として、例えば絶縁性を有する板状の部材を用いることができ、例えばシリコン、石英、パイレックス(登録商標)等の公知の部材を用いることができる。各基板15、16は、例えばフィルム状の部材が用いられてもよく、例えばPET(polyethylene terephthalate)、PC(polycarbonate)、及びポリイミド等の公知のフィルム状部材が用いられてもよい。 As the substrates 15 and 16, for example, plate-shaped members having insulation properties can be used, and known members such as silicon, quartz, and Pyrex (registered trademark) can be used. For each of the substrates 15 and 16, for example, a film-like member may be used, and for example, a known film-like member such as PET (polyethylene terephthalate), PC (polycarbonate), polyimide, or the like may be used.
 各基板15、16として、例えば導電性を有する部材を用いることができ、例えば鉄、アルミニウム、銅、又はアルミニウムと銅との合金等を挙げることができる。また、各基板15、16としては、例えばSi、GaN等の導電性を有する半導体の他、導電性高分子等の部材を用いてもよい。各基板15、16に導電性を有する部材を用いる場合、各電極11、12に接続するための配線が不要となる。 For the substrates 15 and 16, for example, a member having conductivity can be used, such as iron, aluminum, copper, or an alloy of aluminum and copper. As the substrates 15 and 16, for example, a member such as a conductive polymer may be used in addition to a conductive semiconductor such as Si or GaN. If conductive members are used for the substrates 15 and 16, wiring for connecting to the electrodes 11 and 12 becomes unnecessary.
 なお、熱電素子1は、例えば図7(a)に示すように第1基板15のみを備えるほか、第2基板16のみを備えてもよい。また、熱電素子1は、例えば図7(b)に示すように、各基板15、16を備えずに、第1電極11、中間部14、及び第2電極12の順に複数積層された積層構造(例えば1a、1b、1c等)を示すほか、例えば各基板15、16の少なくとも何れかを備えた積層構造を示してもよい。 Note that the thermoelectric element 1 may include only the first substrate 15 as shown in FIG. 7(a), or may include only the second substrate 16, for example. Further, as shown in FIG. 7B, the thermoelectric element 1 has a laminated structure in which a plurality of the first electrodes 11, the intermediate portions 14, and the second electrodes 12 are laminated in this order without the respective substrates 15 and 16. (e.g. 1a, 1b, 1c, etc.), for example, a laminated structure comprising at least one of the substrates 15, 16 may be indicated.
 <支持部13>
 熱電素子1は、例えば図8に示すように、更に支持部13を有してもよい。支持部13は、一対の基板である第1基板15及び第2基板16、又は一対の電極である第1電極11及び第2電極12の間に接して設けられる。支持部13は、例えば第2方向Xにおいて第1電極11及び第2電極12と接しているが、第1電極11及び第2電極12と離間してもよい。
<Support portion 13>
The thermoelectric element 1 may further have a support portion 13 as shown in FIG. 8, for example. The support portion 13 is provided in contact between a first substrate 15 and a second substrate 16, which are a pair of substrates, or between a first electrode 11 and a second electrode 12, which are a pair of electrodes. For example, the support portion 13 is in contact with the first electrode 11 and the second electrode 12 in the second direction X, but may be separated from the first electrode 11 and the second electrode 12 .
 支持部13の材料としては、絶縁性を有する材料を選ぶことができる。絶縁性の材料の例としては、シリコン、シリコン酸化膜、石英等のガラス、及び絶縁性樹脂等を挙げることができる。上記のほか、支持部13は、例えば、フレキシブルなフィルム状でもよく、PET(polyethylene terephthalate)、PC(polycarbonate)、及びポリイミド等を用いることができる。 A material having insulating properties can be selected as the material for the support portion 13 . Examples of insulating materials include silicon, silicon oxide films, glass such as quartz, and insulating resins. In addition to the above, the supporting portion 13 may be, for example, a flexible film, and may be made of PET (polyethylene terephthalate), PC (polycarbonate), polyimide, or the like.
 熱電素子1の中間部14は、例えば、絶縁層142の代わりに溶媒143を含んでもよい。この場合、ナノ粒子141は、溶媒内に分散される。中間部14は、例えば、ナノ粒子141が分散された溶媒143を、空間140内に充填することで得られる。 The middle part 14 of the thermoelectric element 1 may contain the solvent 143 instead of the insulating layer 142, for example. In this case, nanoparticles 141 are dispersed in the solvent. The intermediate portion 14 is obtained, for example, by filling the space 140 with a solvent 143 in which nanoparticles 141 are dispersed.
 溶媒143には、例えば、沸点が60℃以上の液体を用いることができる。このため、室温(例えば15℃~35℃)以上の環境下において、熱電素子1を用いた場合であっても、溶媒143の気化を抑制することができる。これにより、溶媒143の気化に伴う熱電素子1の劣化を抑制することができる。液体の例としては、有機溶媒及び水の少なくとも1つを選ぶことができる。有機溶媒の例としては、メタノール、エタノール、トルエン、キシレン、テトラデカン、及びアルカンチオール等を挙げることができる。なお、溶媒143は、電気的抵抗値が高く、絶縁性である液体がよい。 For the solvent 143, for example, a liquid with a boiling point of 60°C or higher can be used. Therefore, vaporization of the solvent 143 can be suppressed even when the thermoelectric element 1 is used in an environment of room temperature (for example, 15° C. to 35° C.) or higher. As a result, deterioration of the thermoelectric element 1 due to evaporation of the solvent 143 can be suppressed. At least one of an organic solvent and water can be selected as an example of the liquid. Examples of organic solvents include methanol, ethanol, toluene, xylene, tetradecane, alkanethiols, and the like. It should be noted that the solvent 143 is preferably a liquid having a high electrical resistance value and an insulating property.
 <熱電素子1の動作例>
 例えば、熱エネルギーが熱電素子1に与えられると、第1電極11と第2電極12との間に電子の移動が発生し、熱エネルギーが電気エネルギーに変換される。第1電極11と第2電極12との間を移動する電子の量は、熱エネルギーに依存する他、第2電極12の仕事関数と、第1電極11の仕事関数との差に依存する。
<Example of operation of thermoelectric element 1>
For example, when thermal energy is applied to the thermoelectric element 1, electrons move between the first electrode 11 and the second electrode 12, converting the thermal energy into electrical energy. The amount of electrons that move between the first electrode 11 and the second electrode 12 depends on thermal energy and on the difference between the work function of the second electrode 12 and the work function of the first electrode 11 .
 第1電極11と第2電極12との間を移動する電子の量は、例えば第1電極11と第2電極12との仕事関数差を大きくすること、及びギャップGを小さくすることで、増やすことができる。例えば、熱電素子1が発生させる電気エネルギーの量は、上記仕事関数差を大きくすること、及び上記ギャップGを小さくすること、の少なくとも何れか1つを考慮することで、増加させることができる。また、各電極11、12の間に、ナノ粒子141を設けることで、各電極11、12の間を移動する電子の量を増大させることができ、電流量の増加に繋げることが可能となる。 The amount of electrons moving between the first electrode 11 and the second electrode 12 is increased by, for example, increasing the work function difference between the first electrode 11 and the second electrode 12 and decreasing the gap G. be able to. For example, the amount of electrical energy generated by the thermoelectric element 1 can be increased by considering at least one of increasing the work function difference and decreasing the gap G. In addition, by providing the nanoparticles 141 between the electrodes 11 and 12, the amount of electrons moving between the electrodes 11 and 12 can be increased, which can lead to an increase in the amount of current. .
 なお、「仕事関数」とは、固体内にある電子を真空中に取出すために必要な最小限のエネルギーを示す。仕事関数は、例えば、紫外光電子分光法(UPS:Ultraviolet Photoelectron Spectroscopy)、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)やオージェ電子分光法(AES:Auger Electron Spectroscopy)を用いて測定することができる。  The "work function" indicates the minimum energy required to extract electrons in a solid into a vacuum. The work function is measured using, for example, ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), or Auger electron spectroscopy (AES). can be done.
 本実施形態によれば、熱電素子1は、それぞれ仕事関数の異なる一対の電極11、12を含む。即ち、電極間の温度差が無い場合においても、熱エネルギーを電気エネルギーに変換することができる。このため、放熱板等の放熱機構を備える必要が無い。また、熱電素子1は、太陽電池パネル6に接して設けられる。このため、熱電素子1の発電に寄与する熱は、太陽電池パネル周辺の温度上昇に伴う伝達に加え、太陽電池パネル6から直接伝達される。これらにより、熱電素子1の発電量を増加させることが可能となる。 According to this embodiment, the thermoelectric element 1 includes a pair of electrodes 11 and 12 having different work functions. That is, even when there is no temperature difference between the electrodes, thermal energy can be converted into electrical energy. Therefore, there is no need to provide a heat dissipation mechanism such as a heat dissipation plate. Also, the thermoelectric element 1 is provided in contact with the solar cell panel 6 . Therefore, the heat that contributes to the power generation of the thermoelectric element 1 is directly transmitted from the solar cell panel 6 in addition to the heat that accompanies the temperature rise around the solar cell panel. As a result, the amount of power generated by the thermoelectric element 1 can be increased.
 本実施形態によれば、絶縁部63は、太陽電池セル61と、支持部62との間に充填される封止剤64を含み、熱電素子1は、太陽電池セル61と、支持部62との間に設けられ、封止剤64に覆われる。このため、支持部62に加えて太陽電池セル61から発生した熱を、熱電素子1に伝達し易くすることができる。これにより、発電量をさらに増加させることが可能となる。 According to the present embodiment, the insulating portion 63 includes the sealant 64 filled between the solar cell 61 and the support portion 62 , and the thermoelectric element 1 is formed between the solar cell 61 and the support portion 62 . and covered with a sealant 64 . Therefore, the heat generated from the photovoltaic cells 61 in addition to the support portions 62 can be easily transferred to the thermoelectric elements 1 . This makes it possible to further increase the power generation amount.
 本実施形態によれば、太陽電池セル61から支持部62に向かう方向から見て、太陽電池セル61の面積は、熱電素子1の面積よりも大きい。このため、複数の太陽電池セル61の間を通過した太陽光等の光を、支持部62に反射させて太陽電池セル61に照射し易くすることができる。これにより、熱電素子1の設置に伴う太陽電池パネル6の発電量の低下を抑制することが可能となる。 According to this embodiment, the area of the solar battery cell 61 is larger than the area of the thermoelectric element 1 when viewed from the direction from the solar battery cell 61 toward the support portion 62 . Therefore, light such as sunlight that has passed between the plurality of photovoltaic cells 61 can be reflected by the support portion 62 to facilitate irradiation of the photovoltaic cells 61 . This makes it possible to suppress a decrease in the amount of power generated by the solar cell panel 6 due to the installation of the thermoelectric elements 1 .
 本実施形態によれば、環境発電装置7と、熱電素子1の電力を計測する電力計測部72と、電力計測部72の計測結果に基づき、太陽電池セル61から発生する電力を推定する推定部76と、を備える。このため、太陽電池パネル6の温度に起因する発電量のバラつきを、容易に推定することができる。これにより、環境発電装置7全体の発電量のさらなる増加を図ることが可能となる。 According to this embodiment, the energy harvesting device 7, the power measuring unit 72 that measures the power of the thermoelectric element 1, and the estimating unit that estimates the power generated from the photovoltaic cell 61 based on the measurement result of the power measuring unit 72. 76 and. Therefore, it is possible to easily estimate variations in the amount of power generated due to the temperature of the solar cell panel 6 . This makes it possible to further increase the amount of power generated by the energy harvesting device 7 as a whole.
 ここで、太陽電池セル61の不具合により電流が流れにくくなったとき、太陽電池セル61が局所的に発熱し、破損する場合がある。この点、本実施形態によれば、評価部77は、計測部71の計測結果に基づき、太陽電池セル61の温度を評価する。このため、熱電素子1を発電に用いるほか、太陽電池セル61の不具合に伴う発熱の発生有無を判断する際のセンサとして用いることができる。これにより、環境発電装置7全体の発電量の増加、及び安全性増加を図ることが可能となる。 Here, when it becomes difficult for the current to flow due to a defect in the solar cell 61, the solar cell 61 may locally generate heat and be damaged. In this regard, according to the present embodiment, the evaluation unit 77 evaluates the temperature of the photovoltaic cell 61 based on the measurement result of the measurement unit 71 . Therefore, the thermoelectric element 1 can be used not only for power generation but also as a sensor for determining whether or not heat is generated due to a failure of the solar battery cell 61 . As a result, it is possible to increase the amount of power generated by the energy harvesting device 7 as a whole and to increase safety.
(第2実施形態:環境発電装置7、環境発電システム700)
 次に、他の実施形態について説明する。上述した実施形態と同様の構成については、以下での詳細な説明を省略する。図9は、第2実施形態における環境発電装置7の一例を示す模式断面図である。第2実施形態に係る環境発電装置7では、熱電素子1は、太陽電池パネル6の内部に設けられる。熱電素子1は、例えば太陽電池セル61と支持部62との間に設けられ、封止剤64に覆われる。熱電素子1は、例えば第1主面10aが支持部62の表面62bから離間して設けられ、第2主面10bが太陽電池セル61の裏面61aに接して設けられる。1つの太陽電池セル61には、例えば複数の熱電素子1が互いに隙間を空けて設けられる。
(Second Embodiment: Energy Harvesting Device 7, Energy Harvesting System 700)
Next, another embodiment will be described. Detailed descriptions of configurations similar to those of the above-described embodiment are omitted below. FIG. 9 is a schematic cross-sectional view showing an example of the energy harvesting device 7 in the second embodiment. In the energy harvesting device 7 according to the second embodiment, the thermoelectric element 1 is provided inside the solar panel 6 . The thermoelectric element 1 is provided, for example, between the solar battery cell 61 and the support portion 62 and covered with a sealant 64 . The thermoelectric element 1 is provided, for example, with the first principal surface 10a spaced from the surface 62b of the support portion 62 and the second principal surface 10b in contact with the back surface 61a of the solar cell 61 . For example, a plurality of thermoelectric elements 1 are provided in one solar cell 61 with a gap therebetween.
 特に、本実施形態によれば、1つの太陽電池セル61には、複数の熱電素子1が設けられる。このため、熱電素子1を太陽電池セル61の不具合に伴う発熱の発生有無を判断する際のセンサとして用いたとき、太陽電池セル61の不具合の箇所を詳細に把握することができる。これにより、更なる安全性向上を図ることが可能となる。 In particular, according to this embodiment, one solar cell 61 is provided with a plurality of thermoelectric elements 1 . Therefore, when the thermoelectric element 1 is used as a sensor for determining whether or not heat is generated due to the failure of the solar battery cell 61, the location of the failure of the solar battery cell 61 can be grasped in detail. This makes it possible to further improve safety.
 特に、本実施形態によれば、熱電素子1は、太陽電池セル61に接して設けられる。このため、熱電素子1を太陽電池セル61の不具合に伴う発熱の発生有無を判断する際のセンサとして用いたとき、太陽電池セル61の不具合の発生をより精度よく把握することができる。これにより、更なる安全性向上を図ることが可能となる。 In particular, according to this embodiment, the thermoelectric elements 1 are provided in contact with the solar cells 61 . Therefore, when the thermoelectric element 1 is used as a sensor for determining whether or not heat is generated due to the failure of the solar battery cell 61, the occurrence of the failure of the solar battery cell 61 can be detected with higher accuracy. This makes it possible to further improve safety.
(第3実施形態:環境発電装置7、環境発電システム700)
 図10は、第3実施形態における環境発電装置7の一例を示す模式断面図である。第3実施形態に係る環境発電装置7では、熱電素子1は、太陽電池パネル6の外部に設けられる。熱電素子1は、例えば第2主面10bが太陽電池パネル6の支持部62の裏面62aに接して設けられる。熱電素子1は、支持部62と、後述する蓄熱部65との間に接して設けられる。
(Third Embodiment: Energy Harvesting Device 7, Energy Harvesting System 700)
FIG. 10 is a schematic cross-sectional view showing an example of the energy harvesting device 7 in the third embodiment. In the energy harvesting device 7 according to the third embodiment, the thermoelectric element 1 is provided outside the solar panel 6 . The thermoelectric element 1 is provided so that the second main surface 10b is in contact with the back surface 62a of the support portion 62 of the solar cell panel 6, for example. The thermoelectric element 1 is provided in contact between the support portion 62 and a heat storage portion 65 which will be described later.
 絶縁部63は、支持部62の裏面62a側に設けられた蓄熱部65を含む。蓄熱部65は、蓄熱性を有する。蓄熱部65は、例えば物質の比熱(物質の温度を単位温度だけ上昇させるのに必要な熱量)を利用した顕熱蓄熱材料を有する。 The insulating portion 63 includes a heat storage portion 65 provided on the back surface 62 a side of the support portion 62 . The heat storage part 65 has heat storage properties. The heat storage unit 65 has, for example, a sensible heat storage material that utilizes the specific heat of a substance (amount of heat required to raise the temperature of a substance by a unit temperature).
 例えば蓄熱部65が顕熱蓄熱材料を有する場合、蓄熱部65の比熱は、各基板15、16の比熱よりも高い。このため、蓄熱部65に蓄積された熱を、熱電素子1の各電極11、12に伝達し易くすることができる。また、例えば蓄熱部65の比熱は、支持部62の比熱よりも高い。このため、蓄熱部65には、支持部62に比べて長時間に亘って熱を蓄積させることができる。 For example, when the heat storage section 65 has a sensible heat storage material, the specific heat of the heat storage section 65 is higher than the specific heat of each of the substrates 15 and 16 . Therefore, the heat accumulated in the heat storage section 65 can be easily transferred to the electrodes 11 and 12 of the thermoelectric element 1 . Also, for example, the specific heat of the heat storage portion 65 is higher than the specific heat of the support portion 62 . Therefore, heat can be accumulated in the heat storage portion 65 for a longer period of time than in the support portion 62 .
 顕熱蓄熱材料として、例えばエアロゲル、レンガ等が用いられる。エアロゲルとは、空気分子の平均自由行程よりも小さなナノサイズの多孔性を有するものであり、シリカ、カーボン、アルミナ等を素材とする。顕熱蓄熱材料として、例えばガラスの比熱(例えば10~50℃のときに0.67J/g・K)よりも高い比熱を示す材料が用いられる。なお、比熱の値は、文献値を参照するほか、JIS K 7123に準ずる測定結果を用いてもよい。 For example, airgel, bricks, etc. are used as sensible heat storage materials. Airgel has nano-sized porosity smaller than the mean free path of air molecules, and is made of silica, carbon, alumina, or the like. As the sensible heat storage material, for example, a material exhibiting a specific heat higher than that of glass (for example, 0.67 J/g·K at 10 to 50° C.) is used. As for the value of specific heat, in addition to referring to literature values, measurement results according to JIS K 7123 may be used.
 蓄熱部65は、例えば物質の相変化、転移に伴う転移熱(潜熱)を利用した潜熱蓄熱材料を有してもよい。潜熱蓄熱材料として、水、塩化ナトリウム等の相変換を利用する公知のものが用いられる。蓄熱部は、例えば化学反応時の吸熱発熱を利用した化学蓄熱材料を有してもよい。化学蓄熱材料として、例えば公知のものが用いられる。 The heat storage section 65 may have a latent heat storage material that utilizes transition heat (latent heat) associated with phase change or transition of substances, for example. As the latent heat storage material, a known material such as water, sodium chloride, etc. that utilizes phase conversion is used. The heat storage unit may have, for example, a chemical heat storage material that utilizes endothermic heat generated during a chemical reaction. As the chemical heat storage material, for example, a known material is used.
 本実施形態によれば、熱電素子1は、それぞれ仕事関数の異なる一対の電極11、12を含む。即ち、電極間の温度差が無い場合においても、熱エネルギーを電気エネルギーに変換することができる。このため、放熱板等の放熱機構を備える必要が無い。また、熱電素子1は、太陽電池パネル6の支持部62の裏面62aに接して設けられる。このため、熱電素子1に伝達される熱は、太陽電池パネル6から伝達される。これらにより、熱電素子1の発電量を増加させることが可能となる。 According to this embodiment, the thermoelectric element 1 includes a pair of electrodes 11 and 12 having different work functions. That is, even when there is no temperature difference between the electrodes, thermal energy can be converted into electrical energy. Therefore, there is no need to provide a heat dissipation mechanism such as a heat dissipation plate. Also, the thermoelectric element 1 is provided in contact with the rear surface 62 a of the support portion 62 of the solar panel 6 . Therefore, heat transferred to the thermoelectric element 1 is transferred from the solar cell panel 6 . As a result, the amount of power generated by the thermoelectric element 1 can be increased.
 本実施形態によれば、絶縁部63は、支持部62の裏面62a側に設けられた蓄熱部65を含み、熱電素子1は、支持部62と、蓄熱部65との間に接して設けられる。このため、太陽光が照射されない時間帯においても、蓄熱部65を介して熱電素子1に熱を伝達し易くすることができる。これにより、環境発電装置7全体における発電可能時間の延長を図ることが可能となる。 According to the present embodiment, the insulating portion 63 includes the heat storage portion 65 provided on the back surface 62 a side of the support portion 62 , and the thermoelectric element 1 is provided between the support portion 62 and the heat storage portion 65 in contact therewith. . Therefore, heat can be easily transferred to the thermoelectric element 1 via the heat storage unit 65 even in a time zone when sunlight is not irradiated. This makes it possible to extend the power generation possible time of the energy harvesting device 7 as a whole.
 本実施形態によれば、蓄熱部65は、顕熱蓄熱材料を有する。このため、潜熱蓄熱材料と比べて、利用時の温度範囲を広くすることができる。これにより、様々な用途に応じた環境発電の実現が可能となる。 According to this embodiment, the heat storage section 65 has a sensible heat storage material. Therefore, the temperature range during use can be widened compared to the latent heat storage material. This makes it possible to realize energy harvesting suitable for various uses.
(第4実施形態:環境発電装置7、環境発電システム700)
 図11は、第3実施形態における環境発電装置7の一例を示す模式断面図である。第4実施形態に係る環境発電装置7では、熱電素子1は、太陽電池パネル6の外部に設けられる。熱電素子1は、例えば第2主面10bが太陽電池パネル6の支持部62の裏面62aに接して設けられる。
(Fourth Embodiment: Energy Harvesting Device 7, Energy Harvesting System 700)
FIG. 11 is a schematic cross-sectional view showing an example of the energy harvesting device 7 in the third embodiment. In the energy harvesting device 7 according to the fourth embodiment, the thermoelectric element 1 is provided outside the solar panel 6 . The thermoelectric element 1 is provided so that the second main surface 10b is in contact with the back surface 62a of the support portion 62 of the solar cell panel 6, for example.
 絶縁部63は、支持部62の裏面62a側に設けられた蓄熱部65を含む。蓄熱部65は、それぞれ蓄熱性の異なる第1蓄熱部651、及び第2蓄熱部652を含む。 The insulating portion 63 includes a heat storage portion 65 provided on the back surface 62 a side of the support portion 62 . The heat storage unit 65 includes a first heat storage unit 651 and a second heat storage unit 652 having different heat storage properties.
 熱電素子1は、支持部62と、蓄熱部65との間に接して設けられる。熱電素子1は、第1蓄熱部651と接し、第2蓄熱部652と離間する第1素子1-1と、第2蓄熱部652と接し、第1蓄熱部651と離間する第2素子1-2と、を含む。 The thermoelectric element 1 is provided in contact between the support portion 62 and the heat storage portion 65 . The thermoelectric elements 1 include a first element 1-1 in contact with the first heat storage section 651 and separated from the second heat storage section 652, and a second element 1-1 in contact with the second heat storage section 652 and separated from the first heat storage section 651. 2 and
 特に、本実施形態によれば、蓄熱部65は、それぞれ蓄熱性の異なる第1蓄熱部651、及び第2蓄熱部652を含み、熱電素子1は、第1蓄熱部651と接し、第2蓄熱部652と離間する第1素子1-1と、第2蓄熱部652と接し、第1蓄熱部651と離間する第2素子1-2と、を含む。このため、素子毎に異なる発電可能時間を設定することができる。これにより、環境発電装置7全体における発電可能時間のさらなる延長を図ることが可能となる。 In particular, according to the present embodiment, the heat storage unit 65 includes the first heat storage unit 651 and the second heat storage unit 652, which have different heat storage properties, and the thermoelectric element 1 is in contact with the first heat storage unit 651 and the second heat storage unit 651. A first element 1-1 separated from the portion 652 and a second element 1-2 in contact with the second heat storage portion 652 and separated from the first heat storage portion 651 are included. Therefore, it is possible to set a different power generation possible time for each element. This makes it possible to further extend the power generation possible time of the energy harvesting device 7 as a whole.
 なお、図示は省略するが、蓄熱部65は、3以上の蓄熱部を含んでもよい。例えば蓄熱部65は、それぞれ蓄熱性の異なる第1蓄熱部651、第2蓄熱部652、及び第3蓄熱部を含んでもよい。このとき、熱電素子1は、支持部62と、蓄熱部65との間に接して設けられる。熱電素子1は、第1蓄熱部651と接し、第2蓄熱部652及び第3蓄熱部と離間する第1素子1-1と、第2蓄熱部652と接し、第1蓄熱部651及び第3蓄熱部と離間する第2素子1-2と、第3蓄熱部と接し、第1蓄熱部651及び第2蓄熱部652と離間する第3素子と、を含んでもよい。この場合であっても、素子毎に異なる発電可能時間を設定することができる。これにより、環境発電装置7全体における発電可能時間のより一層の延長を図ることが可能となる。 Although illustration is omitted, the heat storage unit 65 may include three or more heat storage units. For example, the heat storage unit 65 may include a first heat storage unit 651, a second heat storage unit 652, and a third heat storage unit having different heat storage properties. At this time, the thermoelectric element 1 is provided in contact between the support portion 62 and the heat storage portion 65 . The thermoelectric element 1 is in contact with the first heat storage unit 651 and separated from the second heat storage unit 652 and the third heat storage unit. A second element 1-2 separated from the heat storage unit and a third element in contact with the third heat storage unit and separated from the first heat storage unit 651 and the second heat storage unit 652 may be included. Even in this case, a different power generation possible time can be set for each element. This makes it possible to further extend the power generation possible time of the energy harvesting device 7 as a whole.
(第5実施形態:環境発電装置7、環境発電システム700)
 図12は、第5実施形態における環境発電装置7の一例を示す模式断面図である。第5実施形態に係る環境発電装置7では、熱電素子1は、太陽電池パネル6の外部に設けられる。熱電素子1は、第1電極11と第2電極12とが、支持部62の裏面62aに対して垂直に設けられる。
(Fifth Embodiment: Energy Harvesting Device 7, Energy Harvesting System 700)
FIG. 12 is a schematic cross-sectional view showing an example of the energy harvesting device 7 in the fifth embodiment. In the energy harvesting device 7 according to the fifth embodiment, the thermoelectric element 1 is provided outside the solar panel 6 . The thermoelectric element 1 is provided with the first electrode 11 and the second electrode 12 perpendicular to the back surface 62 a of the support portion 62 .
 第1素子1-1は、一対の第1蓄熱部651の間に接して設けられる。第2素子1-2は、一対の第2蓄熱部652の間に接して設けられる。 The first element 1-1 is provided between the pair of first heat storage units 651 and in contact therewith. The second element 1-2 is provided in contact between the pair of second heat storage portions 652. As shown in FIG.
 特に、本実施形態によれば、蓄熱部65は、それぞれ蓄熱性の異なる第1蓄熱部651、及び第2蓄熱部652を含み、熱電素子1は、第1蓄熱部651と接し、第2蓄熱部652と離間する第1素子1-1と、第2蓄熱部652と接し、第1蓄熱部651と離間する第2素子1-2と、を含む。このため、素子毎に異なる発電可能時間を設定することができる。これにより、環境発電装置7全体における発電可能時間のさらなる延長を図ることが可能となる。 In particular, according to the present embodiment, the heat storage unit 65 includes the first heat storage unit 651 and the second heat storage unit 652, which have different heat storage properties, and the thermoelectric element 1 is in contact with the first heat storage unit 651 and the second heat storage unit 651. A first element 1-1 separated from the portion 652 and a second element 1-2 in contact with the second heat storage portion 652 and separated from the first heat storage portion 651 are included. Therefore, it is possible to set a different power generation possible time for each element. This makes it possible to further extend the power generation possible time of the energy harvesting device 7 as a whole.
 特に、本実施形態によれば、第1電極11と第2電極12とが、支持部62の裏面62aに対して垂直に設けられる。この場合、各蓄熱部651、652は、熱電素子1に加え、支持部62に接して設けることができ、各蓄熱部651、652に蓄積される熱量を増大させることができる。これにより、蓄熱部65を利用した熱電素子1の発電量を増加させることが可能となる。 In particular, according to this embodiment, the first electrode 11 and the second electrode 12 are provided perpendicular to the back surface 62 a of the support portion 62 . In this case, the heat accumulators 651 and 652 can be provided in contact with the support 62 in addition to the thermoelectric element 1, and the amount of heat accumulated in the heat accumulators 651 and 652 can be increased. This makes it possible to increase the amount of power generated by the thermoelectric element 1 using the heat storage unit 65 .
(第6実施形態:環境発電装置7、環境発電システム700)
 図13は、第6実施形態における環境発電装置7の一例を示す模式断面図である。第6実施形態に係る環境発電装置7では、更に熱伝導部20を備える。
(Sixth embodiment: energy harvesting device 7, energy harvesting system 700)
FIG. 13 is a schematic cross-sectional view showing an example of the energy harvesting device 7 in the sixth embodiment. The energy harvesting device 7 according to the sixth embodiment further includes a heat conducting section 20 .
 熱電素子1は、太陽電池パネル6の内部に設けられる。熱電素子1は、例えば太陽電池セル61と支持部62との間に設けられ、封止剤64に覆われる。熱電素子1は、例えば第1主面10aが支持部62の表面62bに接して設けられ、第2主面10bが太陽電池セル61から離間して設けられる。 The thermoelectric element 1 is provided inside the solar panel 6 . The thermoelectric element 1 is provided, for example, between the solar battery cell 61 and the support portion 62 and covered with a sealant 64 . The thermoelectric element 1 is provided, for example, with the first principal surface 10 a in contact with the surface 62 b of the support portion 62 and with the second principal surface 10 b spaced apart from the solar cell 61 .
 熱伝導部20は、支持部62及び熱電素子1に接する。熱伝導部20は、例えば絶縁部63よりも熱伝導率が高い。熱伝導部20は、例えば太陽電池セル61と支持部62との間に設けられ、封止剤64に覆われる。 The heat conducting part 20 is in contact with the supporting part 62 and the thermoelectric element 1 . The thermally conductive portion 20 has a higher thermal conductivity than the insulating portion 63, for example. The heat conducting portion 20 is provided, for example, between the solar cell 61 and the supporting portion 62 and covered with a sealant 64 .
 ここで、支持部62から熱電素子1に伝達される熱は、支持部62から直接伝達される熱に加え、熱伝導部20を介して伝達される熱を含む。このため、熱伝導部20と、熱電素子1との接触面積は、熱電素子1に伝達される熱量に影響する。従って、熱電素子1の発電量を増加させるためには、熱伝導部20と熱電素子1の接触面積が大きいことが望ましい。例えば第3方向Yに沿って、熱伝導部20の長さが熱電素子1の長さ以上とした場合、熱伝導部20の長さが熱電素子1の長さ未満である場合に比べて、接触面積が大きい。これにより、熱電素子1に伝達される熱量を増大させることができ、熱電素子1の発電量を増加させることが可能となる。 Here, the heat transferred from the support portion 62 to the thermoelectric element 1 includes heat transferred via the heat conduction portion 20 in addition to the heat transferred directly from the support portion 62 . Therefore, the contact area between the heat conducting portion 20 and the thermoelectric element 1 affects the amount of heat transferred to the thermoelectric element 1 . Therefore, in order to increase the amount of power generated by the thermoelectric element 1, it is desirable that the contact area between the heat conducting portion 20 and the thermoelectric element 1 is large. For example, when the length of the heat conducting portion 20 is equal to or longer than the length of the thermoelectric element 1 along the third direction Y, compared to the case where the length of the heat conducting portion 20 is less than the length of the thermoelectric element 1, Large contact area. As a result, the amount of heat transferred to the thermoelectric element 1 can be increased, and the amount of power generated by the thermoelectric element 1 can be increased.
 熱伝導部20の熱伝導率は、基板15、16の熱伝導率よりも高くてもよい。例えば、基板15、16の材料がステンレス(SUS)である場合には、熱伝導部20には基板15,16よりも熱伝導率の高い銅を使用する等、熱伝導部20には基板15、16よりも相対的にも熱伝導率の高い材料を用いればよい。これにより、太陽電池パネル6から熱電素子1に伝わる熱が外部に放出し難くなり、熱電素子1の発電量の増加を図ることができる。 The thermal conductivity of the heat conducting portion 20 may be higher than the thermal conductivity of the substrates 15 and 16. For example, if the material of the substrates 15 and 16 is stainless steel (SUS), the heat conduction portion 20 may be made of copper having a higher thermal conductivity than the substrates 15 and 16. , 16, a material having relatively higher thermal conductivity than that of 16 may be used. This makes it difficult for the heat transferred from the solar cell panel 6 to the thermoelectric element 1 to be released to the outside, and the amount of power generated by the thermoelectric element 1 can be increased.
 なお、太陽電池パネル6から熱電素子1に伝わる熱が外部に放出し難くなるためには、熱伝導部20の熱伝導率は、支持部13の熱伝導率よりも高くてもよい。また、熱伝導部20の熱伝導率は、一対の第1電極11、第2電極12の少なくとも何れかの熱伝導率よりも高くてもよい。 It should be noted that the thermal conductivity of the heat conductive portion 20 may be higher than that of the support portion 13 so that the heat transferred from the solar cell panel 6 to the thermoelectric element 1 is less likely to be released to the outside. Also, the thermal conductivity of the thermally conductive portion 20 may be higher than that of at least one of the pair of the first electrode 11 and the second electrode 12 .
 熱伝導部20は、導電性を有し、例えば金属材料により構成されている。なお、熱伝導部20は、金属材料に限定されることなく、導電率が高い材料であれば如何なる材料により構成されてもよい。導電率が高い材料とは、具体的にはASTM E1530に準拠して測定された熱伝導率が、10W/(m・k)以上の値であることが望ましい。導電率が高い材料としては、例えば、金、銀、銅、アルミ等の金属材料であればよく、銅又はアルミより構成されていることが好ましい。 The heat conducting part 20 has electrical conductivity and is made of, for example, a metal material. In addition, the heat conducting portion 20 is not limited to a metal material, and may be made of any material as long as it has a high electrical conductivity. Specifically, the material with high conductivity preferably has a thermal conductivity of 10 W/(m·k) or more as measured according to ASTM E1530. The material having high conductivity may be, for example, a metal material such as gold, silver, copper, or aluminum, and is preferably made of copper or aluminum.
 絶縁部63は、太陽電池セル61と支持部62との間に設けられる封止剤64を含む。封止剤64は、熱伝導部20及び熱電素子1を覆う。 The insulating portion 63 includes a sealant 64 provided between the solar cell 61 and the support portion 62 . A sealant 64 covers the heat conducting portion 20 and the thermoelectric elements 1 .
 特に、本実施形態によれば、熱伝導部20は、支持部62及び熱電素子1に接し、絶縁部63は、熱伝導部20及び熱電素子1を覆う。このため、支持部62から発生した熱が、熱伝導部20を介して熱電素子1に伝達され易くなる。また、熱電素子1に伝達された熱が、外部に放出され難くなる。これらにより、発電量をさらに増加させることが可能となる。 In particular, according to the present embodiment, the heat conducting portion 20 is in contact with the supporting portion 62 and the thermoelectric element 1, and the insulating portion 63 covers the heat conducting portion 20 and the thermoelectric element 1. Therefore, heat generated from the support portion 62 is easily transferred to the thermoelectric element 1 via the heat conduction portion 20 . Also, the heat transferred to the thermoelectric element 1 is less likely to be released to the outside. By these, it becomes possible to further increase the amount of power generation.
(第7実施形態:環境発電装置7、環境発電システム700)
 図14は、第7実施形態における環境発電装置7の一例を示す模式断面図である。第7実施形態に係る環境発電装置7では、更に熱伝導部20を備える。
(Seventh embodiment: energy harvesting device 7, energy harvesting system 700)
FIG. 14 is a schematic cross-sectional view showing an example of the energy harvesting device 7 in the seventh embodiment. The energy harvesting device 7 according to the seventh embodiment further includes a heat conducting section 20 .
 熱電素子1は、太陽電池パネル6の外部に設けられる。熱電素子1は、例えば第2主面10bが太陽電池パネル6の支持部62の裏面62aに接して設けられる。 The thermoelectric element 1 is provided outside the solar cell panel 6 . The thermoelectric element 1 is provided so that the second main surface 10b is in contact with the back surface 62a of the support portion 62 of the solar cell panel 6, for example.
 熱伝導部20は、支持部62及び熱電素子1に接する。熱伝導部20は、例えば支持部62の裏面62aに接して設けられる。 The heat conducting part 20 is in contact with the supporting part 62 and the thermoelectric element 1 . The heat conducting portion 20 is provided in contact with the rear surface 62a of the support portion 62, for example.
 絶縁部63は、太陽電池セル61と支持部62との間に設けられる封止剤64を含む。絶縁部63は、支持部62の裏面62a側に設けられる保護部66を含んでもよい。保護部66は、例えば絶縁性を有し、外部環境に起因する熱電素子1の劣化を抑制する。保護部66として、公知の絶縁性を有する材料が用いられるほか、例えば上述した蓄熱部65と同様の材料が用いられてもよい。 The insulating portion 63 includes a sealant 64 provided between the solar cell 61 and the support portion 62 . The insulating portion 63 may include a protective portion 66 provided on the back surface 62 a side of the support portion 62 . The protection part 66 has, for example, insulating properties, and suppresses deterioration of the thermoelectric element 1 caused by the external environment. As the protective portion 66, in addition to using a known insulating material, for example, the same material as the heat storage portion 65 described above may be used.
 図14(a)に示すように、保護部66は、熱伝導部20の一部及び熱電素子1の一部を覆う。保護部66は、熱伝導部20の裏面と熱電素子1の第1主面10aを覆う。 As shown in FIG. 14( a ), the protection part 66 covers part of the heat conduction part 20 and part of the thermoelectric element 1 . The protective portion 66 covers the rear surface of the heat conductive portion 20 and the first main surface 10 a of the thermoelectric element 1 .
 例えば図14(b)に示すように、保護部66は、熱伝導部20の全部及び熱電素子1の全部を覆う。この場合、熱電素子1に熱を伝達し易くした状態を維持できるとともに、熱電素子1及び熱伝導部20の経時劣化を抑制することが可能となる。 For example, as shown in FIG. 14(b), the protection part 66 covers the entire heat conduction part 20 and the thermoelectric element 1. In this case, a state in which heat can be easily transferred to the thermoelectric element 1 can be maintained, and deterioration over time of the thermoelectric element 1 and the heat conducting portion 20 can be suppressed.
 例えば図14(c)に示すように、保護部66は、第1保護部66aと、第2保護部66bとを含んでもよい。第1保護部66aは、熱伝導部20の一部及び熱電素子1の一部を覆う。また、第2保護部66bは、熱伝導部20の他部及び熱電素子1の他部を覆う。各保護部66a、66bは、それぞれ異なる材料が用いられる。この場合、環境発電装置7の用途に応じて、熱伝達の増加、又は耐久性の増加の度合いを任意に変更することが可能となる。 For example, as shown in FIG. 14(c), the protective portion 66 may include a first protective portion 66a and a second protective portion 66b. The first protection part 66 a covers part of the heat conducting part 20 and part of the thermoelectric element 1 . In addition, the second protection portion 66b covers the other portion of the heat conducting portion 20 and the other portion of the thermoelectric element 1. As shown in FIG. Different materials are used for the protection portions 66a and 66b. In this case, it is possible to arbitrarily change the degree of increase in heat transfer or increase in durability according to the application of the energy harvesting device 7 .
 特に、本実施形態によれば、熱伝導部20は、支持部62及び熱電素子1に接し、絶縁部63は、熱伝導部20及び熱電素子1を覆う。このため、支持部62から発生した熱が、熱伝導部20を介して熱電素子1に伝達され易くなる。また、熱電素子1に伝達された熱が、外部に放出され難くなる。これらにより、発電量をさらに増加させることが可能となる。 In particular, according to the present embodiment, the heat conducting portion 20 is in contact with the supporting portion 62 and the thermoelectric element 1, and the insulating portion 63 covers the heat conducting portion 20 and the thermoelectric element 1. Therefore, heat generated from the support portion 62 is easily transferred to the thermoelectric element 1 via the heat conduction portion 20 . Also, the heat transferred to the thermoelectric element 1 is less likely to be released to the outside. By these, it becomes possible to further increase the amount of power generation.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.
1     :熱電素子
10a   :第1主面
10b   :第2主面
11    :第1電極
12    :第2電極
13    :支持部
14    :中間部
140   :空間
141   :ナノ粒子
141a  :被膜
142   :絶縁層
143   :溶媒
15    :第1基板
16    :第2基板
20    :熱伝導部
6     :太陽電池パネル
61    :太陽電池セル
62    :支持部
63    :絶縁部
64    :封止剤
65    :蓄熱部
66    :保護部
7     :環境発電装置
71    :計測部
72    :電力計測部
73    :発電量計測部
75    :情報処理装置
76    :推定部
77    :評価部
700   :環境発電システム
Z     :第1方向
X     :第2方向
Y     :第3方向
Reference Signs List 1: thermoelectric element 10a: first main surface 10b: second main surface 11: first electrode 12: second electrode 13: support portion 14: intermediate portion 140: space 141: nanoparticles 141a: coating 142: insulating layer 143: Solvent 15 : First substrate 16 : Second substrate 20 : Thermal conductive part 6 : Solar battery panel 61 : Solar battery cell 62 : Support part 63 : Insulating part 64 : Sealant 65 : Heat storage part 66 : Protective part 7 : Environment Power generation device 71 : Measurement unit 72 : Power measurement unit 73 : Power generation amount measurement unit 75 : Information processing device 76 : Estimation unit 77 : Evaluation unit 700 : Energy harvesting system Z : First direction X : Second direction Y : Third direction

Claims (8)

  1.  光エネルギー及び熱エネルギーを電気エネルギーに変換する環境発電装置であって、
     光エネルギーを電気エネルギーに変換する太陽電池パネルと、
     熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする熱電素子と、
     を備え、
     前記太陽電池パネルは、
      複数の太陽電池セルと、
      複数の前記太陽電池セルの裏面側に設けられた支持部と、
      前記支持部に接する絶縁部と、
     を含み、
     前記熱電素子は、
      それぞれ仕事関数の異なる一対の電極と、
      前記一対の電極の間に設けられた中間部と、
     を含み、
     前記熱電素子は、前記太陽電池パネルに接して設けられること
     を特徴とする環境発電装置。
    An energy harvesting device that converts light energy and thermal energy into electrical energy,
    a solar panel that converts light energy into electrical energy;
    a thermoelectric element that does not require a temperature difference between electrodes when converting thermal energy into electrical energy;
    with
    The solar panel is
    a plurality of solar cells;
    a support provided on the back surface side of the plurality of solar cells;
    an insulating portion in contact with the support;
    including
    The thermoelectric element is
    a pair of electrodes each having a different work function;
    an intermediate portion provided between the pair of electrodes;
    including
    The energy harvesting device, wherein the thermoelectric element is provided in contact with the solar panel.
  2.  前記支持部及び前記熱電素子に接する熱伝導部をさらに備え、
     前記絶縁部は、前記熱伝導部及び前記熱電素子を覆うこと
     を特徴とする請求項1記載の環境発電装置。
    further comprising a heat conducting part in contact with the support part and the thermoelectric element,
    The energy harvesting device according to claim 1, wherein the insulating portion covers the heat conducting portion and the thermoelectric element.
  3.  前記絶縁部は、前記太陽電池セルと、前記支持部との間に充填される封止剤を含み、
     前記熱電素子は、前記太陽電池セルと、前記支持部との間に設けられ、前記封止剤に覆われること
     を特徴とする請求項1又は2記載の環境発電装置。
    The insulating portion includes a sealant filled between the solar cell and the support portion,
    3. The energy harvesting device according to claim 1, wherein the thermoelectric element is provided between the solar battery cell and the support and is covered with the sealant.
  4.  前記太陽電池セルから前記支持部に向かう方向から見て、前記太陽電池セルの面積は、前記熱電素子の面積よりも大きいこと
     を特徴とする請求項3記載の環境発電装置。
    4. The energy harvesting device according to claim 3, wherein the area of the solar cell is larger than the area of the thermoelectric element when viewed from the solar cell toward the support.
  5.  前記絶縁部は、前記支持部の裏面側に設けられた蓄熱部を含み、
     前記熱電素子は、前記支持部と、前記蓄熱部との間に接して設けられること
     を特徴とする請求項1又は2記載の環境発電装置。 
    The insulating section includes a heat storage section provided on the back side of the supporting section,
    3. The energy harvesting device according to claim 1, wherein the thermoelectric element is provided in contact between the support portion and the heat storage portion.
  6.  前記蓄熱部は、それぞれ蓄熱性の異なる第1蓄熱部、及び第2蓄熱部を含み、
     前記熱電素子は、
      前記第1蓄熱部と接し、前記第2蓄熱部と離間する第1素子と、
      前記第2蓄熱部と接し、前記第1蓄熱部と離間する第2素子と、
     を含むこと
     を特徴とする請求項5記載の環境発電装置。
    The heat storage unit includes a first heat storage unit and a second heat storage unit with different heat storage properties,
    The thermoelectric element is
    a first element in contact with the first heat storage unit and separated from the second heat storage unit;
    a second element in contact with the second heat storage unit and separated from the first heat storage unit;
    6. The energy harvesting device of claim 5, comprising:
  7.  請求項3又は4記載の環境発電装置を用いた環境発電システムであって、
     前記熱電素子の発電量又は電力を計測する計測部と、
     前記計測部の計測結果に基づき、前記太陽電池セルの温度を評価する評価部と、
     を備えること
     を特徴とする環境発電システム。
    An energy harvesting system using the energy harvesting device according to claim 3 or 4,
    a measuring unit that measures the amount of power generated or electric power of the thermoelectric element;
    an evaluation unit that evaluates the temperature of the solar battery cell based on the measurement result of the measurement unit;
    An energy harvesting system comprising:
  8.  請求項1~6の何れか1項記載の環境発電装置を用いた環境発電システムであって、
     前記熱電素子の電力を計測する電力計測部と、
     前記電力計測部の計測結果に基づき、前記太陽電池セルから発生する電力を推定する推定部と、
     を備えること
     を特徴とする環境発電システム。
    An energy harvesting system using the energy harvesting device according to any one of claims 1 to 6,
    a power measuring unit that measures the power of the thermoelectric element;
    an estimating unit that estimates the power generated from the solar cell based on the measurement result of the power measuring unit;
    An energy harvesting system comprising:
PCT/JP2022/033828 2021-09-10 2022-09-09 Environmental power generation device and environmental power generation system WO2023038100A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-147809 2021-09-10
JP2021147809A JP7011361B1 (en) 2021-09-10 2021-09-10 Manufacturing method of power generation element, power generation element, power generation device, and electronic device
JP2021-151268 2021-09-16
JP2021151268 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023038100A1 true WO2023038100A1 (en) 2023-03-16

Family

ID=85506380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033828 WO2023038100A1 (en) 2021-09-10 2022-09-09 Environmental power generation device and environmental power generation system

Country Status (1)

Country Link
WO (1) WO2023038100A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437212A (en) * 2011-11-22 2012-05-02 北京航空航天大学 Photoelectric-thermoelectric integrated battery pack
CN106208814A (en) * 2016-09-18 2016-12-07 电子科技大学 A kind of method utilizing satellite external surface thermograde to carry out generating electricity
WO2018143185A1 (en) * 2017-01-31 2018-08-09 日本ゼオン株式会社 Thermoelectric conversion module
WO2019216426A1 (en) * 2018-05-11 2019-11-14 ヤンマー株式会社 Thermoelectric generation system
JP2020047632A (en) * 2018-09-14 2020-03-26 株式会社Gceインスティチュート Thermoelectric element, power generation device, electronic device, and manufacturing method of thermoelectric element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437212A (en) * 2011-11-22 2012-05-02 北京航空航天大学 Photoelectric-thermoelectric integrated battery pack
CN106208814A (en) * 2016-09-18 2016-12-07 电子科技大学 A kind of method utilizing satellite external surface thermograde to carry out generating electricity
WO2018143185A1 (en) * 2017-01-31 2018-08-09 日本ゼオン株式会社 Thermoelectric conversion module
WO2019216426A1 (en) * 2018-05-11 2019-11-14 ヤンマー株式会社 Thermoelectric generation system
JP2020047632A (en) * 2018-09-14 2020-03-26 株式会社Gceインスティチュート Thermoelectric element, power generation device, electronic device, and manufacturing method of thermoelectric element

Similar Documents

Publication Publication Date Title
JP5031935B2 (en) Solar cell module
US11258379B2 (en) Quantum noise power devices
US9324896B2 (en) Thermal receiver for high power solar concentrators and method of assembly
US9385065B2 (en) Solid state thermal rectifier
WO2020262149A1 (en) Thermoelectric generation device
WO2023038100A1 (en) Environmental power generation device and environmental power generation system
WO2023038101A1 (en) Energy-harvesting device, and energy-harvesting system
JP7083202B1 (en) Energy harvesting equipment and energy harvesting system
US10580957B2 (en) Thermoelectric material structure
Naskar et al. Preparation and properties of nano zinc oxide doped ethylene vinyl acetate nanocomposites for solar cell encapsulation
JPWO2012140800A1 (en) Air conditioning
WO2017051699A1 (en) Thermoelectric conversion element
EP4401299A1 (en) Power generation function-equipped secondary battery
US20110308569A1 (en) Multi-terminal solar panel
WO2022097419A1 (en) Power generation element, control system, power generation device, electronic apparatus, and power generation method
JP4856282B1 (en) Air conditioning
EP4401537A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
Li et al. MgZnO High‐Voltage Transparent Thin‐Film Transistors Built on Glass
Suen et al. Multilayer thin film barrier for protection of flex-electronics.
WO2023038106A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic device
EP3966926A1 (en) Quantum noise power devices
KR101942625B1 (en) Two-dimensional nano sheet thermoelectric material and thermoelectric elements module
TW201519460A (en) Heat conduction sealed composite layer and solar module including the same
JP2023100560A (en) Secondary battery with power generation function
US20190150315A1 (en) Topological insulator thermal management systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22867421

Country of ref document: EP

Kind code of ref document: A1