WO2018143185A1 - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
WO2018143185A1
WO2018143185A1 PCT/JP2018/002943 JP2018002943W WO2018143185A1 WO 2018143185 A1 WO2018143185 A1 WO 2018143185A1 JP 2018002943 W JP2018002943 W JP 2018002943W WO 2018143185 A1 WO2018143185 A1 WO 2018143185A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion element
heat
conversion module
substrate
Prior art date
Application number
PCT/JP2018/002943
Other languages
French (fr)
Japanese (ja)
Inventor
内田 秀樹
聡 阿部
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2018565556A priority Critical patent/JPWO2018143185A1/en
Publication of WO2018143185A1 publication Critical patent/WO2018143185A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Definitions

  • the present invention relates to a thermoelectric conversion module.
  • thermoelectric conversion modules that convert heat into electricity using temperature differences have attracted attention.
  • a thermoelectric conversion module a thermoelectric conversion module including a joined body formed by joining a p (Positive) type semiconductor material and an n (Negative) type semiconductor material has attracted attention because of its large electromotive force. ing.
  • the thermoelectric conversion module is anticipated as an effective means for utilizing an unused thermal energy.
  • thermoelectric conversion module a thermoelectric conversion module configured by a thin film p-type element and an n-type element in which film-like substrates are arranged on both upper and lower surfaces in the thickness direction has been proposed (for example, Patent Documents). 1).
  • the film-like substrate of the thermoelectric conversion module described in Patent Document 1 has flexibility and is made of two or more types of materials having different thermal conductivities. Further, such a substrate is configured such that a material with high thermal conductivity is located on a portion of the outer surface of the substrate. For this reason, the thermoelectric conversion module described in Patent Document 1 can efficiently convert the temperature gradient in the thickness direction into the temperature gradient in the surface direction.
  • thermoelectric conversion module is required to further improve the thermoelectric conversion efficiency.
  • a thin-film thermoelectric conversion module in which a temperature gradient is formed in the surface direction of the thin film is said to increase the temperature gradient in the surface direction of the module and increase the thermoelectric conversion efficiency. There was room for improvement.
  • an object of the present invention is to provide a thermoelectric conversion module having high thermoelectric conversion efficiency.
  • thermoelectric conversion module includes a p-type thermoelectric conversion element and an n-type thermoelectric conversion joined along one in-plane direction.
  • a film-like thermoelectric conversion element body having an element; a thermal conductor coupled to a junction of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element on one surface of the thermoelectric conversion element body;
  • the thermoelectric conversion module has a radiation reflector and / or a radiation prevention body arranged at a predetermined position, the temperature gradient in the surface direction of the thermoelectric conversion element body is large, and the thermoelectric conversion efficiency is excellent.
  • thermoelectric conversion module of the present invention includes the radiation reflector and the radiation prevention body, and the radiation prevention body is disposed at a position closer to the heat source than the radiation reflector. If the thermoelectric conversion module includes a radiation preventer disposed closer to the heat source than the radiation reflector, the temperature gradient in the surface direction of the thermoelectric conversion element body is further increased, and the thermoelectric conversion efficiency is further improved.
  • thermoelectric conversion module of the present invention that can advantageously solve the above-described problem is a film-like thermoelectric element having a p-type thermoelectric conversion element and an n-type thermoelectric conversion element joined along one in-plane direction.
  • a conversion element body; a thermal conductor coupled to a junction of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element on one surface of the thermoelectric conversion element body; and both sides of the thermal conductor in the one direction And having a foam material on the heat source side of the thermoelectric conversion element body when installed on a heat source. If the thermoelectric conversion module has a foam material at a specific position, the temperature gradient in the surface direction of the thermoelectric conversion element body is large, and the thermoelectric conversion efficiency is excellent.
  • thermoelectric conversion module of the present invention that can advantageously solve the above-described problem is a film-like thermoelectric element having a p-type thermoelectric conversion element and an n-type thermoelectric conversion element joined along one in-plane direction.
  • a heat insulating region adjacent to the heat source and when it is installed on a heat source, contacts the heat conductor on the heat source side with respect to the thermoelectric conversion element body and is not in contact with the thermoelectric conversion element body. It is characterized by having a heat storage material. If the thermoelectric conversion module has a heat storage material at a specific position, the temperature gradient in the surface direction of the thermoelectric conversion element body is large, and the thermoelectric conversion efficiency is excellent.
  • thermoelectric conversion module of the present invention that can advantageously solve the above-described problem is a film-like thermoelectric element having a p-type thermoelectric conversion element and an n-type thermoelectric conversion element joined along one in-plane direction.
  • the heat conductor has a connection surface connected to the film-like thermoelectric conversion element body and a bottom surface opposite to the connection surface, and the area of the bottom surface Is larger than the area of the connection surface. If the bottom surface of the heat conductor of the thermoelectric conversion module is larger than the connection surface, the temperature gradient in the surface direction of the thermoelectric conversion element body is large and the thermoelectric conversion efficiency is excellent.
  • the thermal conductor preferably has a thermal conductivity of 10 W / m ⁇ K or more.
  • the thermal conductivity of the thermal conductor is 10 W / m ⁇ K or more, the temperature gradient in the surface direction of the thermoelectric conversion element can be further increased, and the thermoelectric conversion efficiency can be further increased.
  • thermal conductivity is a value that can be measured for a measurement object such as a thermal conductor, for example, using a laser flash method.
  • thermoelectric conversion module of the present invention further includes at least one substrate, and the thermal conductor connects the at least one substrate and the film-like thermoelectric conversion element body. If at least one board
  • the at least one substrate comprises a resin material. If the substrate connected to the thermoelectric conversion element body and the thermal conductor is a substrate containing a resin material, flexibility can be given to the thermoelectric conversion module, and the installation ease of the thermoelectric conversion module is improved. Because it can.
  • the installation location of the thermoelectric conversion module is not necessarily flat, so if flexibility can be given to the thermoelectric conversion module, the thermoelectric conversion module can be freely deformed according to the shape of the installation location, and power generation efficiency Can be raised.
  • the at least one substrate includes a metal material. If the thermoelectric conversion element body and the substrate connected via the heat conductor include a metal material, the temperature gradient in the surface direction of the thermoelectric conversion element body can be further increased, and the thermoelectric conversion efficiency can be further increased.
  • thermoelectric conversion module of the present invention it is preferable that the at least one substrate disposed on the opposite side of the heat source when the thermoelectric conversion module is installed on the heat source is a heat sink. If the substrate disposed on the side farther from the heat source when disposed on the heat source is a heat sink, the temperature gradient in the surface direction of the thermoelectric conversion element body can be further increased to further increase the thermoelectric conversion efficiency.
  • the thermal conductor is an anisotropic thermal conductor, and the thermal conductivity in the thickness direction of the thermal conductor is transverse to the thickness direction of the thermal conductor. It is preferably higher than the thermal conductivity. This is because, if the heat conductor is an anisotropic heat conductor rich in heat conductivity in the thickness direction, loss that can occur when conducting heat can be reduced, and thermoelectric conversion efficiency can be further improved.
  • the at least one substrate is an anisotropic heat conductive substrate, and the heat conductivity in the transverse direction with respect to the thickness direction of the substrate is the heat conductivity in the thickness direction of the substrate. Higher than that. This is because if the substrate is an anisotropic heat conductive substrate having a high thermal conductivity in the plane direction, the temperature gradient in the plane direction of the thermoelectric conversion element can be further increased, and the thermoelectric conversion efficiency can be further improved.
  • thermoelectric conversion module with high thermoelectric conversion efficiency can be provided.
  • thermoelectric conversion module for demonstrating the structure used as the base of the thermoelectric conversion module of this invention. It is sectional drawing which shows schematic structure of an example of the thermoelectric conversion module provided with a heat sink as an upper board
  • thermoelectric conversion module of the present invention a structure serving as a base of the thermoelectric conversion module of the present invention and an embodiment of the present invention will be described in detail with reference to the drawings.
  • symbol shall show the same component.
  • thermoelectric conversion module of the present invention is not particularly limited, and is a temperature control element that can be used in a cold storage or the like, a power generation element for waste heat power generation or snow ice power generation, and a lithium ion battery or the like. Can be used as an electrode. Moreover, it does not specifically limit as a heat source of the thermoelectric conversion module of this invention, For example, it can be heat sources, such as an electric equipment, and cold heat sources, such as liquefied natural gas, snow, and ice.
  • the temperature of the heat source is higher than the temperature on the high temperature side of the temperature gradient to be formed in the thermoelectric conversion element, that is, the heat source is a heat source other than the cold heat source. I will explain.
  • FIG. 1 is a cross-sectional view for explaining a structure serving as a base of the thermoelectric conversion module 100 of the present invention.
  • One surface of the thermoelectric conversion module 100 may be disposed adjacent to the heat source.
  • the thermoelectric conversion module 100 is illustrated as being disposed on a heat source, and in the drawing, the lower side is illustrated as the heat source side and the upper side is illustrated as the heat dissipation side.
  • the thermoelectric conversion module 100 includes a film-like thermoelectric conversion element body 10 in which a p-type thermoelectric conversion element 1 and an n-type thermoelectric conversion element 2 are joined along one direction in the plane.
  • the thermoelectric conversion element body 10 is shown as having three pairs of p-type thermoelectric conversion elements 1 and n-type thermoelectric conversion elements 2.
  • the thermoelectric conversion element body 10 is not limited to this, It is only necessary to have a pair of p-type thermoelectric conversion elements 1 and n-type thermoelectric conversion elements 2.
  • the thermoelectric conversion element body 10 is provided with the heat conductor 4 couple
  • region 5 is arrange
  • the heat insulating region 5 adjacent to the heat conductor 4 can be configured by a material having a lower thermal conductivity than the heat conductor 4 or by a vacuum.
  • the substance having a lower thermal conductivity than the thermal conductor 4 is preferably a substance having a lower thermal conductivity than thermoelectric conversion element substrates 11 and 12 described later, and more preferably a heat insulating substance.
  • such a substance is not particularly limited, and has a thermal conductivity of less than 0.1 W / m ⁇ K, such as an inorganic fiber-based heat insulating material, a foamed plastic-based heat insulating material, and air,
  • a heat insulating material of less than 0.06 W / m ⁇ K is used.
  • the heat insulating material is air. This is because the heat insulation effect is enhanced by the fluidity of the air, and the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be increased.
  • air is contained in the heat insulating region 5 adjacent to the heat conductor 4.
  • thermoelectric conversion module 100 A schematic scheme of power generation by the thermoelectric conversion module 100 is as follows. First, the heat released from the heat source is transmitted to each end of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 joined at the joint 3 via the heat conductor 4. Thereby, a temperature gradient in the surface direction of the thermoelectric conversion module 100 is generated in each of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. An electromotive force is generated by the Seebeck effect resulting from the temperature gradient, and the thermoelectric conversion module 100 generates power. If the temperature gradient is large, the electromotive force generated increases, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 can be improved.
  • thermoelectric conversion material for forming the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 constituting the thermoelectric conversion element body 10 is not particularly limited, and is a bismuth tellurium compound, antimony compound, silicon-based material.
  • a compound, a metal oxide compound, a Heusler alloy compound, a conductive polymer compound, a conductive fiber, a composite material thereof, and the like can be used.
  • conductive fibers it is preferable to use conductive fibers, and it is more preferable to use fibrous carbon nanostructures such as carbon nanotubes (hereinafter also referred to as CNT). This is because if CNTs are used, the mechanical strength of the thermoelectric conversion module 100 of the present invention can be further improved and the weight can be reduced.
  • the CNT is not particularly limited, and single-wall CNT and / or multi-wall CNT can be used, and the CNT is preferably single-wall CNT. This is because single-walled CNTs tend to have superior thermoelectric properties (Seebeck coefficient).
  • CVD chemical vapor deposition
  • oxidizing agent catalyst activating substance
  • the produced CNT can be used (hereinafter, the CNT produced according to such a method may be referred to as “SGCNT”). Furthermore, SGCNT has a feature that it is bent a lot. Here, although CNT has high thermal conductivity due to electron transfer, it is considered that the effect of lowering thermal conductivity due to phonon vibration is also high. However, SGCNT is more bent than CNTs manufactured according to other general methods, and thus has a structure in which phonon vibration is less likely to be amplified, and can suppress a decrease in thermal conductivity due to phonon vibration. . Therefore, SGCNT can be a material more advantageous as a thermoelectric conversion material than other general CNTs.
  • thermoelectric conversion material for comprising the thermoelectric conversion element body 10
  • CNTs have characteristics as p-type thermoelectric conversion elements as they are. Therefore, it is necessary to apply a process for obtaining the n-type thermoelectric conversion element 2 (hereinafter also referred to as “n-treatment”) to the CNTs.
  • n-treatment a process for obtaining the n-type thermoelectric conversion element 2
  • a bucky paper which is a CNT formed into a thin film, which is produced by a known method or is commercially available, is described in a general method, for example, as described in International Publication No. 2015/198980.
  • the thickness of the thermoelectric conversion module 100 provided with the thermoelectric conversion element body 10 is 10 mm or less, and it is more preferable that it is 6 mm or less. This is because the ease of attachment of the thermoelectric conversion module 100 can be improved.
  • thermoelectric conversion material for forming the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 constituting the thermoelectric conversion element body 10 it is preferable to use a thermoelectric conversion material having a structure having a void inside.
  • thermoelectric conversion material having a structure having voids therein include a conductive structure having a density of 0.1 g / cm 3 or less and a fibrous network structure.
  • a conductive structure can be specifically composed of a fibrous carbon nanostructure such as CNT.
  • thermoelectric conversion material having a void inside is used as the thermoelectric conversion material for forming the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2, the thermal conductivity of the thermoelectric conversion element body 10 is lowered.
  • the temperature gradient in the surface direction of the thermoelectric conversion element can be further increased, and the thermoelectric conversion efficiency can be further improved.
  • thermoelectric conversion material having a structure having voids therein is not particularly limited, and can be formed by using, for example, a fibrous carbon nanostructure containing CNTs and unexpanded expanded particles in combination.
  • the respective thermal conductivities in two directions orthogonal (crossing) to each other may be different. Therefore, the direction in which the thermal conductivity is high can be formed so as to coincide with the thickness direction of the thermoelectric conversion module 100.
  • a sheet containing a non-foamed expanded particle and a fibrous carbon nanostructure containing CNTs is formed, and the obtained sheet is sandwiched between upper and lower or left and right molds, It can be produced by foaming.
  • the junction 3 that electrically connects the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 is not particularly limited, and can be formed of a metal having conductivity and thermal conductivity.
  • the metal having conductivity and thermal conductivity include a metal material having an electrical conductivity (JIS K 0130: 2008) of 10 S / m or more and a thermal conductivity of 10 W / m ⁇ K or more, more specifically. , Ag, Cu and the like. Among these, Ag is preferable from the viewpoint that there is an easily available paste-like material, the cost of the process can be reduced, and the ease of the process can be imparted.
  • the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 can be electrically connected to each other without interposing a conductive material at the interface, the above-described conductive material is not interposed. It may be a junction.
  • the junction 3 can be formed by connecting the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 using a paste-like resin material containing Ag as a conductive material.
  • the resin material is not particularly limited, and is a general resin such as (meth) acrylic resin, epoxy resin, fluorine resin, silicone resin, olefin resin, polyamide resin, and polyimide resin. Materials can be used. Preferably, a polyimide resin having high flexibility and high heat resistance is used as the resin material.
  • (meth) acryl means “acryl” or “methacryl”.
  • the heat conductor 4 connected to the thermoelectric conversion element body 10 is coupled to the joint 3 as described above.
  • the heat conductor 4 is disposed so that the heat insulating regions 5 adjacent to the heat conductor 4 communicate with each other. This is because air flows between the heat insulating regions 5 to further enhance the heat insulating properties of the heat insulating regions 5 and to increase the temperature gradient in the surface direction of the thermoelectric conversion element body 10.
  • the heat insulating regions 5 adjacent to the heat conductor 4 communicate with each other, and each of the plurality of heat insulating regions 5 communicates directly or indirectly with the outside atmosphere of the thermoelectric conversion module 100. It is preferable to arrange so as to. It is because the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be further increased by further increasing the heat insulating property of the heat insulating region 5.
  • the heat conductor 4 can be formed of a heat conductive material including a heat conductive inorganic material such as Al and Cu, and a heat conductive organic material such as a heat conductive resin without any particular limitation.
  • Al is preferable from the viewpoint of lightness.
  • the thermal conductivity of the heat conductor 4 is preferably 10 W / m ⁇ K or more, more preferably 50 W / m ⁇ K or more, further preferably 100 W / m ⁇ K or more, and 200 W / m Particularly preferred is m ⁇ K or more.
  • the heat conductor 4 has the thickness direction length of the thermoelectric conversion module 100 of 1 mm or more.
  • thermoelectric conversion element body 10 This is because the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be further increased. Furthermore, the heat conductor 4 is in contact with the thermoelectric conversion element body 10 in a region that is 1/5 or less of the length in each plane direction of the junction 3 and the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. Is preferred.
  • FIG. 1 exemplifies a configuration in which the heat conductor 4 is disposed on both sides of the thermoelectric conversion element body 10.
  • the heat conductor 4 is connected to at least the heat source side surface of the thermoelectric conversion element body 10. This is because a temperature gradient can be generated if heat is input to one end of each p-type thermoelectric conversion element 1 and n-type thermoelectric conversion element 2 that are continuously joined. If the heat conductor 4 is also connected to the side opposite to the heat source side, that is, the heat radiating side, each p-type thermoelectric conversion is performed in a region near the end opposite to the heated end. Heat may be released from the element 1 and the n-type thermoelectric conversion element 2, and the temperature gradient in the surface direction of the thermoelectric conversion element body 10 may be further increased.
  • the heat conductor 4 is preferably an anisotropic heat conductor.
  • the thermal conductivity in the thickness direction is higher than the thermal conductivity in the transverse direction with respect to the thickness direction. If the heat conductor 4 is an anisotropic heat conductor rich in heat conductivity in the thickness direction, loss that may occur when the heat conductor 4 conducts heat is reduced, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 is reduced. It is because it can improve further.
  • the thermal conductivity of the thickness direction of this anisotropic heat conductor is 10 W / m * K or more, and is 50 W / m *. It is more preferably K or higher, more preferably 100 W / m ⁇ K or higher, and particularly preferably 200 W / m ⁇ K or higher.
  • the anisotropic heat conductor is not particularly limited, and is formed using, for example, a graphite sheet, an organic anisotropic heat conductive material such as CNT, and an inorganic anisotropic heat conductive material such as flat metal particles. can do.
  • the flat metal particles mean, for example, flat metal particles having an aspect ratio of 3 or more. It is preferable to use an organic anisotropic heat conductive material from the viewpoint of imparting flexibility to the thermoelectric conversion element body 10 and reducing the weight. Furthermore, from the viewpoint of further improving the thermoelectric conversion efficiency of the thermoelectric conversion module 100, it is preferable to form the anisotropic heat conductor constituting the heat conductor 4 using CNTs.
  • the anisotropic heat conductor is not particularly limited, and is formed by using these anisotropic heat conductive materials and a general resin material that can also be used for forming the joint portion 3. Can do.
  • the anisotropic heat conductor includes a coating process, a pressurizing process, and the like so that the direction of high thermal conductivity of the anisotropic heat conductive material matches the thickness direction of the thermoelectric conversion module 100 using these. It can be produced by a known production method.
  • thermoelectric conversion module 100 has a structure as shown in the figure having the heat conductors 4 on both sides of the thermoelectric conversion element body 10
  • the thermoelectric conversion modules 100 are arranged on the heat source side with a plurality of heat conductors 4 arranged on the heat dissipation side.
  • the plurality of heat conductors 4 are arranged so that the heat radiation side and the heat source side are alternately arranged at every other junction 3 of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. It is preferable.
  • thermoelectric conversion module 100 has at least one substrate.
  • the heat conductor 4 preferably connects at least one substrate and the film-like thermoelectric conversion element body 10. If at least one board
  • the thermoelectric conversion module 100 includes a lower substrate 6 disposed on the heat source side and an upper substrate 7 disposed on the heat dissipation side.
  • These lower substrate 6 and upper substrate 7 are preferably a resin substrate and / or a metal substrate.
  • a so-called flexible substrate which is a substrate including a flexible resin material, can be used.
  • a flexible substrate include a substrate formed using a resin having low thermal conductivity and excellent heat resistance and flexibility, and specifically, a polyimide substrate.
  • a resin substrate and a metal substrate can each be used independently, both can be laminated
  • thermoelectric conversion module When a resin substrate is employed as the lower substrate 6 or the upper substrate 7, flexibility can be imparted to the thermoelectric conversion module, and the ease of installation of the thermoelectric conversion module can be improved. This is because the installation location of the thermoelectric conversion module is not necessarily a flat place, so if flexibility can be given to the thermoelectric conversion module, the thermoelectric conversion module can be freely deformed according to the shape of the installation location, This is because the power generation efficiency can be increased. On the other hand, when a metal substrate is used as the lower substrate 6 or the upper substrate 7, the temperature gradient in the surface direction of the thermoelectric conversion element can be further increased, and the thermoelectric conversion efficiency can be further increased.
  • the lower substrate 6 and the upper substrate 7 do not need to be formed of the same material.
  • the lower substrate 6 may be a resin substrate and the upper substrate 7 may be a metal substrate.
  • the heat dissipation effect in the upper substrate can be improved, the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 can be further increased.
  • a metal substrate may be used for the lower substrate 6 in order to distribute heat uniformly throughout the thermoelectric conversion module.
  • the upper substrate 7 may be a metal substrate or a resin substrate.
  • an anisotropic heat conductive substrate formed using an anisotropic heat conductive material similar to the heat conductor 4 can be used.
  • the thermal conductivity in the transverse direction with respect to the thickness direction of the substrate is higher than the thermal conductivity in the thickness direction of the substrate. Therefore, if at least the lower substrate 6 is an anisotropic heat conductive substrate having a high thermal conductivity in the plane direction, the heat collection efficiency from the heat source is increased and the heat is input to the thermoelectric conversion element body 10 via the heat conductor 4. The amount of heat generated can be increased.
  • thermoelectric conversion element body 10 can be further increased, and the thermoelectric conversion efficiency can be further improved.
  • the upper substrate 7 is also an anisotropic heat conductive substrate rich in surface direction heat conductivity in addition to the lower substrate 6, the heat radiation efficiency from the upper substrate 7 can be improved. Also by this, the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 can be further improved.
  • an organic anisotropic heat conductive material is used from the viewpoint of flexibility and weight reduction in the same manner as the heat conductor 4. It is preferable to use it.
  • the film-like thermoelectric conversion element body 10 may include at least one thermoelectric conversion element substrate that supports the thermoelectric conversion element body 10.
  • the thermoelectric conversion element body 10 is supported on both surfaces by thermoelectric conversion element substrates 11 and 12. If the thermoelectric conversion element includes at least one thermoelectric conversion element substrate, the mechanical strength of the thermoelectric conversion module 100 can be further improved.
  • the thermoelectric conversion element substrates 11 and 12 are not particularly limited as long as the materials have low thermal conductivity, and are formed of a resin material similar to the resin material that can be used for forming the lower substrate 6 and / or the upper substrate 7. Can do.
  • thermoelectric conversion module 100 is configured such that conductive wires are connected to both ends of the thermoelectric conversion element body 10, and electric power generated by the thermoelectric conversion element body 10 can be taken out.
  • FIG. 2 shows a schematic structure of an example of a thermoelectric conversion module including a heat sink as an upper substrate.
  • the thermoelectric conversion module 101 shown in FIG. 2 when installed on a heat source, it is preferable that the upper substrate 7 'disposed on the opposite side of the heat source, that is, on the heat dissipation side shown in FIG. If the upper substrate 7 ′ arranged on the side far from the heat source when arranged on the heat source, that is, the heat radiating side shown in FIG. Thus, the thermoelectric conversion efficiency can be further increased.
  • the heat sink that can constitute the upper substrate 7 ' is not particularly limited, and is a plate having a plurality of plate-like or rod-like fins on the surface, which is made of a highly thermally conductive metal material such as Al, Fe, and Cu. A state body is mentioned. Such a heat sink is excellent in heat dissipation because of its high thermal conductivity and large surface area. Optionally, a fan or the like can be attached to the heat sink to further improve heat dissipation.
  • the structure serving as the base of the thermoelectric conversion module of the present invention follows the above description.
  • each thermoelectric conversion module according to each embodiment of the present invention will be described in detail, also in these embodiments, each component described as an essential or optional configuration in the above description may be provided as an essential or optional. .
  • FIG. 3 shows a schematic structure of the thermoelectric conversion module according to the first embodiment of the present invention.
  • the thermoelectric conversion module 102 according to the first embodiment of the present invention includes a radiation reflector 21 and / or a radiation prevention body 22 on the heat source side of the thermoelectric conversion element body 10 when installed on a heat source.
  • the region closer to the heat source than the thermoelectric conversion element body 10 is, for example, an air gap that is partitioned by the two heat conductors 4, the lower substrate 6, and the heat source side surfaces of the thermoelectric conversion element body 10.
  • Such voids can coincide with the heat insulating region 5.
  • the radiation reflector 21 is not in contact with the lower substrate 6, it can be disposed at any position within the gap.
  • the radiation reflector 21 having such a specific arrangement, the radiation from the heat source is reflected and the direct heating of the thermoelectric conversion element without passing through the heat conductor 4 is suppressed, whereby the surface direction of the thermoelectric conversion element The temperature gradient in can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module can be further increased.
  • the radiation reflector 21 may have a radiation reflectance of 90% or more. More preferably, from the viewpoint of maximizing the radiation reflection effect, the radiation reflector 21 is disposed adjacent to the surface of the thermoelectric conversion element body 10 facing the heat source, and the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element.
  • thermoelectric conversion module 102 does not include the lower substrate 6, the radiation reflector 21 has two heat conductors 4, a heat source, and a heat source side surface of the thermoelectric conversion element body 10 as long as it is not in contact with the heat source. Can be arranged at any position within the gap defined by the four sides.
  • the radiation reflector 21 is not particularly limited, and may be, for example, a sheet-like structure formed by blending flat metal particles with a general resin as described above. In such a sheet-like structure, the flat metal particles are preferably oriented so as to be substantially parallel to the surface direction.
  • the radiation preventing body 22 can be arranged at any position in the gap as long as it is not in contact with the thermoelectric conversion element body 10 and the radiation reflector 21.
  • the thermoelectric conversion module 102 includes the above-described radiation reflector 21, the radiation preventing body 22 is arranged on the heat source side of the radiation reflector 21 (that is, the radiation reflector 21 with the thermoelectric conversion element body 10 as a standard). Rather than a position farther in the thickness direction of the thermoelectric conversion module).
  • the radiation preventing body 22 prevents radiation from the heat source and suppresses the direct heating of the thermoelectric conversion element body 10 without passing through the heat conductor 4, thereby the surface direction of the thermoelectric conversion element body 10.
  • the temperature gradient in can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 102 can be further increased.
  • the radiation prevention body 22 is disposed adjacent to the lower substrate 6 and both ends of the radiation prevention body 22 in the connection direction of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2.
  • the part can be arranged so as to be in contact with the two heat conductors 4 that define the gap.
  • the radiation preventing body 22 can be disposed directly adjacent to the heat source.
  • the radiation preventing body 22 is not particularly limited, and is the same material as the radiation reflecting body 21 or, for example, a commercially available heat shielding film (manufactured by Nippon Shokubai Co., Ltd. “Top Heat Barrier (registered trademark) THB-WBE1”). ) And a general material with low radiation.
  • FIG. 4 shows a schematic structure of a thermoelectric conversion module according to the second embodiment of the present invention.
  • the thermoelectric conversion module 103 according to the second embodiment of the present invention preferably has the foam material 23 on the heat source side of the thermoelectric conversion element body 10 when installed on the heat source. Due to the heat insulating effect and the radiation preventing effect of the foam material 23, it is possible to suppress the thermoelectric conversion element body 10 from being heated in a region where the heat conductor 4 is not connected. Thereby, the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 103 can be further increased.
  • the foam material 23 is divided into four sides by the heat source side surfaces of the two heat conductors 4, the lower substrate 6, and the thermoelectric conversion element body 10, for example, similarly to the radiation reflector 21 and the radiation prevention body 22 described above. Can be disposed within the gap. And unlike the radiation reflector 21 and the radiation prevention body 22 which were mentioned above, the foaming material 23 needs to be non-contact with the two heat conductors 4 which divide the said space
  • the foam material 23 is not particularly limited, and examples thereof include a foam resin material such as foam plastic.
  • the thermal conductivity of the foam material 23 can be, for example, less than 0.1 W / m ⁇ K.
  • FIG. 5 shows a schematic structure of a thermoelectric conversion module according to the third embodiment of the present invention.
  • the thermoelectric conversion element body 10 is in contact with the heat conductor 4 on the heat source side of the thermoelectric conversion element body 10 and is not separated from the thermoelectric conversion element body 10. It is preferable to have a contact heat storage material 24.
  • the heat storage effect of the heat storage material 24 can reduce radiant heat from the heat source and can supply heat to the thermoelectric conversion element body 10 even when the heat source is not in operation.
  • the heat storage material 24 is disposed adjacent to the lower substrate 6, and two heat conductors 4 in which both end portions in the plane direction partition the gap. It is preferable to arrange so that it contacts.
  • the thermoelectric conversion module 104 does not include the lower substrate 6, the heat storage material 24 can be disposed directly adjacent to the heat source.
  • the heat storage material 24 is not particularly limited, and examples thereof include a phase change material whose phase changes according to a temperature change.
  • phase change materials include hydrocarbons including paraffin, organic phase change materials such as fatty acids including stearic acid and acetic acid, and MgCl 2 (H 2 O) 6 , Ba (OH) 2 (H 2 O ) 8 , and inorganic phase change substances including CaCl 2 (H 2 O) 6 and the like.
  • FIG. 6 shows a schematic structure of a thermoelectric conversion module according to the fourth embodiment of the present invention.
  • the heat conductor 4 ′ has the connection surface 25 connected to the film-like thermoelectric conversion element body 10 and the bottom surface 26 opposite to the connection surface 25. It is preferable that the area of the bottom surface 26 is larger than the area of the connection surface 25. If the bottom surface 26 of the heat conductor 4 ′ connected to the lower substrate 6 is larger than the connection surface 25, the heat collection efficiency from the heat source can be increased. Further, if the bottom surface 26 of the heat conductor 4 ′ connected to the upper substrate 7 is larger than the connection surface 25, the heat dissipation efficiency through the upper substrate 7 can be increased.
  • thermoelectric conversion module 105 includes the radiation reflector 21 and / or the radiation preventing body 22, the thermoelectric conversion element body 10 is heated via the portion other than the connection surface 25 by radiation that can be emitted from the surface of the heat conductor 4 ′. Can be suppressed. Thereby, the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 105 can be further increased.
  • the heat conductor 4 ′ can be formed using the same heat conductive material as that of the heat conductor 4.
  • thermoelectric conversion module having high thermoelectric conversion efficiency can be provided.
  • thermoelectric conversion module 1 DESCRIPTION OF SYMBOLS 1 p-type thermoelectric conversion element 2 n-type thermoelectric conversion element 3 Junction part 4, 4 'Thermal conductor 5 Thermal insulation area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The thermoelectric conversion module 102 according to the present invention comprises: a film-type thermoelectric conversion element body 10 having p-type thermoelectric conversion elements 1 and n-type thermoelectric conversion elements 2 joined in one direction in a plane; and heat conductors 4 joined to where the p-type thermoelectric conversion elements 1 and the n-type thermoelectric conversion elements 2 are joined on one surface of the thermoelectric conversion element body. Insulation regions 5 are disposed adjoining both sides of the heat conductors 4 in said one direction and, if disposed on the heat source, have radiation reflecting bodies 21 and/or radiation prevention bodies 22 closer to the heat source than the thermoelectric conversion element body 10.

Description

熱電変換モジュールThermoelectric conversion module
 本発明は、熱電変換モジュールに関するものである。 The present invention relates to a thermoelectric conversion module.
 近年、温度差を利用して熱を電気に変換する熱電変換モジュールが注目されている。なかでも、熱電変換モジュールとしては、起電力が大きいことから、p(Positive)型半導体材料とn(Negative)型半導体材料とを接合して形成した接合体を含んでなる熱電変換モジュールが注目されている。そして、熱電変換モジュールは、未利用の熱エネルギーを活用するための有効な手段として期待されている。 In recent years, thermoelectric conversion modules that convert heat into electricity using temperature differences have attracted attention. In particular, as a thermoelectric conversion module, a thermoelectric conversion module including a joined body formed by joining a p (Positive) type semiconductor material and an n (Negative) type semiconductor material has attracted attention because of its large electromotive force. ing. And the thermoelectric conversion module is anticipated as an effective means for utilizing an unused thermal energy.
 ここで、熱電変換モジュールとしては、厚み方向の上下両面にフィルム状基板が配置された、薄膜状のp型素子及びn型素子により構成された熱電変換モジュールが提案されてきた(例えば、特許文献1参照)。特許文献1に記載の熱電変換モジュールのフィルム状基板は、柔軟性を有すると共に、2種類以上の熱伝導率の異なる材料で構成されている。さらに、かかる基板は、熱伝導率の高い材料が基板の外面の一部分に位置するように構成されている。このため、特許文献1に記載の熱電変換モジュールは、厚み方向の温度勾配を面方向の温度勾配に効率的に変換することが可能であった。 Here, as the thermoelectric conversion module, a thermoelectric conversion module configured by a thin film p-type element and an n-type element in which film-like substrates are arranged on both upper and lower surfaces in the thickness direction has been proposed (for example, Patent Documents). 1). The film-like substrate of the thermoelectric conversion module described in Patent Document 1 has flexibility and is made of two or more types of materials having different thermal conductivities. Further, such a substrate is configured such that a material with high thermal conductivity is located on a portion of the outer surface of the substrate. For this reason, the thermoelectric conversion module described in Patent Document 1 can efficiently convert the temperature gradient in the thickness direction into the temperature gradient in the surface direction.
特開2006-186255号公報JP 2006-186255 A
 ここで、熱電変換モジュールには、熱電変換効率を一層向上させることが求められている。しかし、特許文献1に記載されたような、温度勾配が薄膜の面方向に形成される薄膜状の熱電変換モジュールには、モジュールの面方向における温度勾配を大きくして、熱電変換効率を高めるという点において改善の余地があった。 Here, the thermoelectric conversion module is required to further improve the thermoelectric conversion efficiency. However, as described in Patent Document 1, a thin-film thermoelectric conversion module in which a temperature gradient is formed in the surface direction of the thin film is said to increase the temperature gradient in the surface direction of the module and increase the thermoelectric conversion efficiency. There was room for improvement.
 そこで、本発明は、熱電変換効率の高い熱電変換モジュールを提供することを目的とする。 Therefore, an object of the present invention is to provide a thermoelectric conversion module having high thermoelectric conversion efficiency.
 この発明は、上記課題を有利に解決することを目的とするものであり、本発明の熱電変換モジュールは、面内の一方向に沿って接合された、p型熱電変換素子及びn型熱電変換素子を有する、膜状の熱電変換素子体と、前記熱電変換素子体の一方の面において、前記p型熱電変換素子及び前記n型熱電変換素子の接合部分に結合した熱伝導体と、前記一方向における前記熱伝導体の両側に隣接した断熱領域と、を備え、且つ、熱源上に設置された場合に、前記熱電変換素子体よりも前記熱源側に、輻射反射体及び/又は輻射防止体を有することを特徴とする。このように、熱電変換モジュールが、所定位置に配置された輻射反射体及び/又は輻射防止体を有していれば、熱電変換素子体の面方向における温度勾配が大きく、熱電変換効率に優れる。 An object of the present invention is to advantageously solve the above-described problems, and a thermoelectric conversion module according to the present invention includes a p-type thermoelectric conversion element and an n-type thermoelectric conversion joined along one in-plane direction. A film-like thermoelectric conversion element body having an element; a thermal conductor coupled to a junction of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element on one surface of the thermoelectric conversion element body; A heat insulating region adjacent to both sides of the heat conductor in the direction, and when installed on a heat source, a radiation reflector and / or a radiation preventer on the heat source side of the thermoelectric conversion element body It is characterized by having. Thus, if the thermoelectric conversion module has a radiation reflector and / or a radiation prevention body arranged at a predetermined position, the temperature gradient in the surface direction of the thermoelectric conversion element body is large, and the thermoelectric conversion efficiency is excellent.
 ここで、本発明の熱電変換モジュールは、前記輻射反射体及び前記輻射防止体を備え、前記輻射防止体が、前記輻射反射体よりも前記熱源に近い位置に配置されてなることが好ましい。熱電変換モジュールが、輻射反射体よりも熱源に近い位置に配置された輻射防止体を備えていれば、熱電変換素子体の面方向における温度勾配を一層大きくなり、熱電変換効率に一層優れる。 Here, it is preferable that the thermoelectric conversion module of the present invention includes the radiation reflector and the radiation prevention body, and the radiation prevention body is disposed at a position closer to the heat source than the radiation reflector. If the thermoelectric conversion module includes a radiation preventer disposed closer to the heat source than the radiation reflector, the temperature gradient in the surface direction of the thermoelectric conversion element body is further increased, and the thermoelectric conversion efficiency is further improved.
 また、上記課題を有利に解決することができる本発明の熱電変換モジュールは、面内の一方向に沿って接合された、p型熱電変換素子及びn型熱電変換素子を有する、膜状の熱電変換素子体と、前記熱電変換素子体の一方の面において、前記p型熱電変換素子及び前記n型熱電変換素子の接合部分に結合した熱伝導体と、前記一方向における前記熱伝導体の両側に隣接した断熱領域と、を備え、且つ、熱源上に設置された場合に、前記熱電変換素子体よりも前記熱源側に、発泡材料を有することを特徴とする。熱電変換モジュールが特定位置に発泡材料を有していれば、熱電変換素子体の面方向における温度勾配が大きく、熱電変換効率に優れる。 Moreover, the thermoelectric conversion module of the present invention that can advantageously solve the above-described problem is a film-like thermoelectric element having a p-type thermoelectric conversion element and an n-type thermoelectric conversion element joined along one in-plane direction. A conversion element body; a thermal conductor coupled to a junction of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element on one surface of the thermoelectric conversion element body; and both sides of the thermal conductor in the one direction And having a foam material on the heat source side of the thermoelectric conversion element body when installed on a heat source. If the thermoelectric conversion module has a foam material at a specific position, the temperature gradient in the surface direction of the thermoelectric conversion element body is large, and the thermoelectric conversion efficiency is excellent.
 また、上記課題を有利に解決することができる本発明の熱電変換モジュールは、面内の一方向に沿って接合された、p型熱電変換素子及びn型熱電変換素子を有する、膜状の熱電変換素子体と、前記熱電変換素子体の一方の面において、前記p型熱電変換素子及び前記n型熱電変換素子の接合部分に結合した熱伝導体と、前記一方向における前記熱伝導体の両側に隣接した断熱領域と、を備え、且つ、熱源上に設置された場合に、前記熱電変換素子体よりも前記熱源側に、前記熱伝導体に接触すると共に前記熱電変換素子体とは非接触の蓄熱材を有することを特徴とする。熱電変換モジュールが特定の位置に蓄熱材を有していれば、熱電変換素子体の面方向における温度勾配が大きく、熱電変換効率に優れる。 Moreover, the thermoelectric conversion module of the present invention that can advantageously solve the above-described problem is a film-like thermoelectric element having a p-type thermoelectric conversion element and an n-type thermoelectric conversion element joined along one in-plane direction. A conversion element body; a thermal conductor coupled to a junction of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element on one surface of the thermoelectric conversion element body; and both sides of the thermal conductor in the one direction And a heat insulating region adjacent to the heat source, and when it is installed on a heat source, contacts the heat conductor on the heat source side with respect to the thermoelectric conversion element body and is not in contact with the thermoelectric conversion element body. It is characterized by having a heat storage material. If the thermoelectric conversion module has a heat storage material at a specific position, the temperature gradient in the surface direction of the thermoelectric conversion element body is large, and the thermoelectric conversion efficiency is excellent.
 また、上記課題を有利に解決することができる本発明の熱電変換モジュールは、面内の一方向に沿って接合された、p型熱電変換素子及びn型熱電変換素子を有する、膜状の熱電変換素子体と、前記熱電変換素子体の一方の面において、前記p型熱電変換素子及び前記n型熱電変換素子の接合部分に結合した熱伝導体と、前記一方向における前記熱伝導体の両側に隣接した断熱領域と、を備え、且つ、前記熱伝導体が、前記膜状の熱電変換素子体に対して接続する接続面及び該接続面の反対側の底面を有し、前記底面の面積が前記接続面の面積より大きいことを特徴とする。熱電変換モジュールの熱伝導体の底面が接続面よりも大きければ、熱電変換素子体の面方向における温度勾配が大きく、熱電変換効率に優れる。 Moreover, the thermoelectric conversion module of the present invention that can advantageously solve the above-described problem is a film-like thermoelectric element having a p-type thermoelectric conversion element and an n-type thermoelectric conversion element joined along one in-plane direction. A conversion element body; a thermal conductor coupled to a junction of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element on one surface of the thermoelectric conversion element body; and both sides of the thermal conductor in the one direction And the heat conductor has a connection surface connected to the film-like thermoelectric conversion element body and a bottom surface opposite to the connection surface, and the area of the bottom surface Is larger than the area of the connection surface. If the bottom surface of the heat conductor of the thermoelectric conversion module is larger than the connection surface, the temperature gradient in the surface direction of the thermoelectric conversion element body is large and the thermoelectric conversion efficiency is excellent.
 ここで、本発明の熱電変換モジュールは、前記熱伝導体の熱伝導率が、10W/m・K以上であることが好ましい。熱伝導体の熱伝導率が10W/m・K以上であれば、熱電変換素子の面方向における温度勾配を一層大きくして、熱電変換効率を一層高めることができる。
 なお、本明細書において、「熱伝導率」は、熱伝導体等の測定対象物について、例えば、レーザーフラッシュ法を用いて測定することができる値である。
Here, in the thermoelectric conversion module of the present invention, the thermal conductor preferably has a thermal conductivity of 10 W / m · K or more. When the thermal conductivity of the thermal conductor is 10 W / m · K or more, the temperature gradient in the surface direction of the thermoelectric conversion element can be further increased, and the thermoelectric conversion efficiency can be further increased.
In the present specification, “thermal conductivity” is a value that can be measured for a measurement object such as a thermal conductor, for example, using a laser flash method.
 また、本発明の熱電変換モジュールは、さらに、少なくとも一つの基板を有し、前記熱伝導体は前記少なくとも一つの基板と前記膜状の熱電変換素子体とを接続することが好ましい。熱電変換素子体と熱伝導体を介して接続する少なくとも一つの基板を設ければ、熱電変換モジュールの機械的強度を向上させることができる。また、かかる少なくとも一つの基板は、外部環境からモジュール内部の構成要素を保護する機能も奏しうる。 Moreover, it is preferable that the thermoelectric conversion module of the present invention further includes at least one substrate, and the thermal conductor connects the at least one substrate and the film-like thermoelectric conversion element body. If at least one board | substrate connected via a thermoelectric conversion element body and a heat conductor is provided, the mechanical strength of a thermoelectric conversion module can be improved. Further, the at least one substrate can also have a function of protecting the components inside the module from the external environment.
 また、本発明の熱電変換モジュールは、前記少なくとも一つの基板が樹脂材料を含んでなる、ことが好ましい。熱電変換素子体と、熱伝導体を介して接続する基板が樹脂材料を含んでなる基板であれば、熱電変換モジュールに柔軟性を付与することができ、熱電変換モジュールの設置容易性を向上させることができるからである。該熱電変換モジュールの設置場所は、必ずしも平たんな場所ではないので、熱電変換モジュールに柔軟性を付与することができれば、熱電変換モジュールが設置場所の形状に応じて自在に変形可能となり、発電効率を上げることができる。 In the thermoelectric conversion module of the present invention, it is preferable that the at least one substrate comprises a resin material. If the substrate connected to the thermoelectric conversion element body and the thermal conductor is a substrate containing a resin material, flexibility can be given to the thermoelectric conversion module, and the installation ease of the thermoelectric conversion module is improved. Because it can. The installation location of the thermoelectric conversion module is not necessarily flat, so if flexibility can be given to the thermoelectric conversion module, the thermoelectric conversion module can be freely deformed according to the shape of the installation location, and power generation efficiency Can be raised.
 また、本発明の熱電変換モジュールは、前記少なくとも一つの基板が金属材料を含んでなることが好ましい。熱電変換素子体と、熱伝導体を介して接続する基板が金属材料を含めば、熱電変換素子体の面方向における温度勾配を一層大きくして、熱電変換効率を一層高めることができる。 In the thermoelectric conversion module of the present invention, it is preferable that the at least one substrate includes a metal material. If the thermoelectric conversion element body and the substrate connected via the heat conductor include a metal material, the temperature gradient in the surface direction of the thermoelectric conversion element body can be further increased, and the thermoelectric conversion efficiency can be further increased.
 また、本発明の熱電変換モジュールは、熱源上に設置された場合に該熱源の反対側に配置される前記少なくとも一つの基板がヒートシンクであることが好ましい。熱源上に配置された場合に熱源から遠い側に配置された基板がヒートシンクであれば、熱電変換素子体の面方向における温度勾配を一層大きくして、熱電変換効率を一層高めることができる。 In the thermoelectric conversion module of the present invention, it is preferable that the at least one substrate disposed on the opposite side of the heat source when the thermoelectric conversion module is installed on the heat source is a heat sink. If the substrate disposed on the side farther from the heat source when disposed on the heat source is a heat sink, the temperature gradient in the surface direction of the thermoelectric conversion element body can be further increased to further increase the thermoelectric conversion efficiency.
 また、本発明の熱電変換モジュールは、前記熱伝導体が異方性熱伝導体であり、前記熱伝導体の厚み方向の熱伝導率が、前記熱伝導体の厚み方向に対して横断方向の熱伝導率よりも高いことが好ましい。熱伝導体が厚み方向の熱伝導性に富む異方性熱伝導体であれば、熱を伝導する際に生じうるロスを低減して、熱電変換効率を一層向上させることができるからである。 In the thermoelectric conversion module of the present invention, the thermal conductor is an anisotropic thermal conductor, and the thermal conductivity in the thickness direction of the thermal conductor is transverse to the thickness direction of the thermal conductor. It is preferably higher than the thermal conductivity. This is because, if the heat conductor is an anisotropic heat conductor rich in heat conductivity in the thickness direction, loss that can occur when conducting heat can be reduced, and thermoelectric conversion efficiency can be further improved.
 また、本発明の熱電変換モジュールは、前記少なくとも一つの基板が異方性熱伝導基板であり、前記基板の厚み方向に対して横断方向の熱伝導率が、前記基板の厚み方向の熱伝導率よりも高いことが好ましい。基板が面方向の熱伝導性に富む異方性熱伝導基板であれば、熱電変換素子の面方向における温度勾配を一層大きくして、熱電変換効率を一層向上させることができるからである。 In the thermoelectric conversion module of the present invention, the at least one substrate is an anisotropic heat conductive substrate, and the heat conductivity in the transverse direction with respect to the thickness direction of the substrate is the heat conductivity in the thickness direction of the substrate. Higher than that. This is because if the substrate is an anisotropic heat conductive substrate having a high thermal conductivity in the plane direction, the temperature gradient in the plane direction of the thermoelectric conversion element can be further increased, and the thermoelectric conversion efficiency can be further improved.
 本発明によれば、熱電変換効率の高い熱電変換モジュールを提供することができる。 According to the present invention, a thermoelectric conversion module with high thermoelectric conversion efficiency can be provided.
本発明の熱電変換モジュールのベースとなる構造を説明するための断面図である。It is sectional drawing for demonstrating the structure used as the base of the thermoelectric conversion module of this invention. 上部基板としてヒートシンクを備える熱電変換モジュールの一例の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of an example of the thermoelectric conversion module provided with a heat sink as an upper board | substrate. 本発明の第1実施形態にかかる熱電変換モジュールの概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the thermoelectric conversion module concerning 1st Embodiment of this invention. 本発明の第2実施形態にかかる熱電変換モジュールの概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the thermoelectric conversion module concerning 2nd Embodiment of this invention. 本発明の第3実施形態にかかる熱電変換モジュールの概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the thermoelectric conversion module concerning 3rd Embodiment of this invention. 本発明の第4実施形態にかかる熱電変換モジュールの概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the thermoelectric conversion module concerning 4th Embodiment of this invention.
 以下、本発明の熱電変換モジュールのベースとなる構造、及び本発明の実施形態を、図面に基づき詳細に説明する。なお、各図において、同一の符号を付したものは、同一の構成要素を示すものとする。 Hereinafter, a structure serving as a base of the thermoelectric conversion module of the present invention and an embodiment of the present invention will be described in detail with reference to the drawings. In addition, in each figure, what attached | subjected the same code | symbol shall show the same component.
 ここで、本発明の熱電変換モジュールは、特に限定されることなく、保冷庫等に用いられうる温度調節素子、廃熱発電や雪氷発電等のための発電素子、さらには、リチウムイオン電池等のための電極として用いることができる。また、本発明の熱電変換モジュールの熱源としては、特に限定されることなく、例えば、電気機器等の熱源、並びに液化天然ガス、雪、及び氷等の冷熱源でありうる。なお、以下の説明では、明瞭のために、熱源の温度が熱電変換素子内に形成すべき温度勾配の高熱側の温度よりも高い場合、即ち、熱源が冷熱源以外の熱源であると仮定して説明する。 Here, the thermoelectric conversion module of the present invention is not particularly limited, and is a temperature control element that can be used in a cold storage or the like, a power generation element for waste heat power generation or snow ice power generation, and a lithium ion battery or the like. Can be used as an electrode. Moreover, it does not specifically limit as a heat source of the thermoelectric conversion module of this invention, For example, it can be heat sources, such as an electric equipment, and cold heat sources, such as liquefied natural gas, snow, and ice. In the following description, for the sake of clarity, it is assumed that the temperature of the heat source is higher than the temperature on the high temperature side of the temperature gradient to be formed in the thermoelectric conversion element, that is, the heat source is a heat source other than the cold heat source. I will explain.
 図1は、本発明の熱電変換モジュール100のベースとなる構造を説明するための断面図である。熱電変換モジュール100は一方の面が熱源に隣接して配置されうる。図1では、熱電変換モジュール100が熱源上に配置されたものとして図示し、図上、下側を熱源側、上側を放熱側として示す。 FIG. 1 is a cross-sectional view for explaining a structure serving as a base of the thermoelectric conversion module 100 of the present invention. One surface of the thermoelectric conversion module 100 may be disposed adjacent to the heat source. In FIG. 1, the thermoelectric conversion module 100 is illustrated as being disposed on a heat source, and in the drawing, the lower side is illustrated as the heat source side and the upper side is illustrated as the heat dissipation side.
 熱電変換モジュール100は、p型熱電変換素子1及びn型熱電変換素子2が面内の一方向に沿って接合されてなる、膜状の熱電変換素子体10を備える。なお、図上、熱電変換素子体10は、p型熱電変換素子1及びn型熱電変換素子2を3対有するものとして示すが、これに限定されることなく、熱電変換素子体10は、少なくとも1対のp型熱電変換素子1及びn型熱電変換素子2を有していればよい。そして、熱電変換素子体10は、少なくとも一方の面において、p型熱電変換素子1及びn型熱電変換素子2の接合部分に結合した熱伝導体4を備える。そして、p型熱電変換素子1及びn型熱電変換素子2の接続方向に沿う熱伝導体4の両側には、断熱領域5が隣接して配置されている。 The thermoelectric conversion module 100 includes a film-like thermoelectric conversion element body 10 in which a p-type thermoelectric conversion element 1 and an n-type thermoelectric conversion element 2 are joined along one direction in the plane. In the figure, the thermoelectric conversion element body 10 is shown as having three pairs of p-type thermoelectric conversion elements 1 and n-type thermoelectric conversion elements 2. However, the thermoelectric conversion element body 10 is not limited to this, It is only necessary to have a pair of p-type thermoelectric conversion elements 1 and n-type thermoelectric conversion elements 2. And the thermoelectric conversion element body 10 is provided with the heat conductor 4 couple | bonded with the junction part of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 in the at least one surface. And the heat insulation area | region 5 is arrange | positioned adjacent to the both sides of the heat conductor 4 along the connection direction of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2.
 ここで、熱伝導体4に隣接する断熱領域5は、熱伝導体4よりも熱伝導率が低い物質、或いは真空により構成されうる。さらに、熱伝導体4よりも熱伝導率が低い物質は、後述する熱電変換素子基板11及び12よりも熱伝導率が低い物質であることが好ましく、断熱物質であることがより好ましい。具体的には、そのような物質としては、特に限定されることなく、無機繊維系断熱材、発泡プラスチック系断熱材、及び空気のような、熱伝導率が0.1W/m・K未満、好ましくは0.06W/m・K未満の断熱物質が挙げられる。なかでも、断熱物質は空気であることが好ましい。空気の流動性により断熱効果が高まり、熱電変換素子体10の面方向における温度勾配を高めることができるからである。以下、熱伝導体4に隣接する断熱領域5に空気が含まれるものとして説明する。 Here, the heat insulating region 5 adjacent to the heat conductor 4 can be configured by a material having a lower thermal conductivity than the heat conductor 4 or by a vacuum. Further, the substance having a lower thermal conductivity than the thermal conductor 4 is preferably a substance having a lower thermal conductivity than thermoelectric conversion element substrates 11 and 12 described later, and more preferably a heat insulating substance. Specifically, such a substance is not particularly limited, and has a thermal conductivity of less than 0.1 W / m · K, such as an inorganic fiber-based heat insulating material, a foamed plastic-based heat insulating material, and air, Preferably, a heat insulating material of less than 0.06 W / m · K is used. Among these, it is preferable that the heat insulating material is air. This is because the heat insulation effect is enhanced by the fluidity of the air, and the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be increased. Hereinafter, description will be made assuming that air is contained in the heat insulating region 5 adjacent to the heat conductor 4.
 熱電変換モジュール100による発電の概略スキームは以下の通りである。まず、熱源より放出された熱が熱伝導体4を経て、接合部3にて接合されたp型熱電変換素子1及びn型熱電変換素子2の各端部に伝えられる。これにより、p型熱電変換素子1及びn型熱電変換素子2のそれぞれにて、熱電変換モジュール100の面方向の温度勾配が生じる。この温度勾配に起因するゼーベック効果により起電力が生じ、熱電変換モジュール100が発電する。温度勾配が大きければ、生じる起電力が大きくなり、熱電変換モジュール100の熱電変換効率が向上しうる。 A schematic scheme of power generation by the thermoelectric conversion module 100 is as follows. First, the heat released from the heat source is transmitted to each end of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 joined at the joint 3 via the heat conductor 4. Thereby, a temperature gradient in the surface direction of the thermoelectric conversion module 100 is generated in each of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. An electromotive force is generated by the Seebeck effect resulting from the temperature gradient, and the thermoelectric conversion module 100 generates power. If the temperature gradient is large, the electromotive force generated increases, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 can be improved.
 熱電変換素子体10を構成するp型熱電変換素子1及びn型熱電変換素子2を形成するための熱電変換材料としては、特に限定されることなく、ビスマステルル系化合物、アンチモン系化合物、シリコン系化合物、金属酸化物系化合物、ホイスラー合金系化合物、導電性高分子化合物、導電性繊維、及びこれらの複合材料等を用いることができる。中でも、導電性繊維を用いることが好ましく、カーボンナノチューブ(以下、CNTとも称する)などの繊維状の炭素ナノ構造体を用いることがより好ましい。CNTを使用すれば、本発明の熱電変換モジュール100の機械的強度を更に向上させると共に、軽量化することができるからである。さらに、CNTとしては特に限定されることなく、単層CNTおよび/または多層CNTを用いることができるが、CNTは、単層CNTであることが好ましい。単層CNTの方が、熱電特性(ゼーベック係数)が優位である傾向があるからである。なお、単層カーボンナノチューブとしては、CNT製造用の触媒層を表面に有する基材上に、原料化合物およびキャリアガスを供給して、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)に準じて製造したCNTを用いることができる(以下、かかる方法に準じて製造されたCNTを「SGCNT」と称することがある)。さらにSGCNTは折れ曲がりが多いという特徴を持っている。ここで、CNTは、電子移動による熱伝導性は高いが、フォノン振動による熱伝導性の低下効果も高いと考えられている。しかし、SGCNTは、他の一般的な方法に従って製造したCNTよりも折れ曲がりが多いため、フォノン振動が増幅されにくい構造となっており、フォノン振動に起因した熱伝導性の低下を抑制することができる。よって、SGCNTは、他の一般的なCNTと比較して、熱電変換材料としてより優位な材料でありうる。 The thermoelectric conversion material for forming the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 constituting the thermoelectric conversion element body 10 is not particularly limited, and is a bismuth tellurium compound, antimony compound, silicon-based material. A compound, a metal oxide compound, a Heusler alloy compound, a conductive polymer compound, a conductive fiber, a composite material thereof, and the like can be used. Among these, it is preferable to use conductive fibers, and it is more preferable to use fibrous carbon nanostructures such as carbon nanotubes (hereinafter also referred to as CNT). This is because if CNTs are used, the mechanical strength of the thermoelectric conversion module 100 of the present invention can be further improved and the weight can be reduced. Furthermore, the CNT is not particularly limited, and single-wall CNT and / or multi-wall CNT can be used, and the CNT is preferably single-wall CNT. This is because single-walled CNTs tend to have superior thermoelectric properties (Seebeck coefficient). As single-walled carbon nanotubes, when a raw material compound and a carrier gas are supplied onto a substrate having a catalyst layer for producing CNTs on the surface, CNTs are synthesized by chemical vapor deposition (CVD). In addition, according to the method of dramatically improving the catalytic activity of the catalyst layer by making a small amount of oxidizing agent (catalyst activating substance) present in the system (super growth method; see International Publication No. 2006/011655). The produced CNT can be used (hereinafter, the CNT produced according to such a method may be referred to as “SGCNT”). Furthermore, SGCNT has a feature that it is bent a lot. Here, although CNT has high thermal conductivity due to electron transfer, it is considered that the effect of lowering thermal conductivity due to phonon vibration is also high. However, SGCNT is more bent than CNTs manufactured according to other general methods, and thus has a structure in which phonon vibration is less likely to be amplified, and can suppress a decrease in thermal conductivity due to phonon vibration. . Therefore, SGCNT can be a material more advantageous as a thermoelectric conversion material than other general CNTs.
 そして、熱電変換素子体10を構成するための熱電変換材料としてCNTを使用するにあたり、p型熱電変換素子1及びn型熱電変換素子2をそれぞれ構成するCNTのゼーベック係数を異なるものとする必要がある。ここで、CNTは、そのままではp型熱電変換素子としての特性を有する。よって、n型熱電変換素子2を得るための処理(以下、「n化処理」とも称する)をCNTについて適用する必要がある。具体的には、例えば、既知の方法により作製した、或いは市販されている、薄膜状に成形されたCNTであるバッキーペーパーを、一般的な方法、例えば、国際公開第2015/198980号に記載の方法に従ってn化処理することで、n型熱電変換素子2として機能しうるバッキーペーパーを得ることができる。 And in using CNT as the thermoelectric conversion material for comprising the thermoelectric conversion element body 10, it is necessary to make the Seebeck coefficients of the CNT constituting the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 different from each other. is there. Here, CNTs have characteristics as p-type thermoelectric conversion elements as they are. Therefore, it is necessary to apply a process for obtaining the n-type thermoelectric conversion element 2 (hereinafter also referred to as “n-treatment”) to the CNTs. Specifically, for example, a bucky paper, which is a CNT formed into a thin film, which is produced by a known method or is commercially available, is described in a general method, for example, as described in International Publication No. 2015/198980. By performing n-treatment according to the method, a bucky paper that can function as the n-type thermoelectric conversion element 2 can be obtained.
 なお、熱電変換素子体10を備える熱電変換モジュール100の厚みは、10mm以下であることが好ましく、6mm以下であることがより好ましい。熱電変換モジュール100の取り付け容易性を向上させることができるからである。 In addition, it is preferable that the thickness of the thermoelectric conversion module 100 provided with the thermoelectric conversion element body 10 is 10 mm or less, and it is more preferable that it is 6 mm or less. This is because the ease of attachment of the thermoelectric conversion module 100 can be improved.
 さらに、熱電変換素子体10を構成するp型熱電変換素子1及びn型熱電変換素子2を形成するための熱電変換材料として、内部に空隙を有する構造の熱電変換材料を用いることが好ましい。内部に空隙を有する構造の熱電変換材料としては、密度が0.1g/cm3以下であると共に、繊維状の網目構造を有する導電性構造体が挙げられる。そのような導電性構造体は、具体的には、CNTのような繊維状炭素ナノ構造体により構成されうる。p型熱電変換素子1及びn型熱電変換素子2を形成するための熱電変換材料として、内部に空隙を有する構造の熱電変換材料を用いれば、熱電変換素子体10の熱伝導性を低下させることで、熱電変換素子の面方向における温度勾配を一層大きくして、熱電変換効率を一層向上させることができる。 Furthermore, as a thermoelectric conversion material for forming the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 constituting the thermoelectric conversion element body 10, it is preferable to use a thermoelectric conversion material having a structure having a void inside. Examples of the thermoelectric conversion material having a structure having voids therein include a conductive structure having a density of 0.1 g / cm 3 or less and a fibrous network structure. Such a conductive structure can be specifically composed of a fibrous carbon nanostructure such as CNT. If a thermoelectric conversion material having a void inside is used as the thermoelectric conversion material for forming the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2, the thermal conductivity of the thermoelectric conversion element body 10 is lowered. Thus, the temperature gradient in the surface direction of the thermoelectric conversion element can be further increased, and the thermoelectric conversion efficiency can be further improved.
 なお、内部に空隙を有する構造の熱電変換材料は、特に限定されることなく、例えば、CNTを含む繊維状炭素ナノ構造体と未発泡の発泡粒子とを併用して形成することができる。内部に空隙を有する構造の熱電変換材料では、相互に直交(交差)する2つの方向における各熱伝導率が、相異なり得る。そこで、熱伝導率の高い方向が、熱電変換モジュール100の厚み方向に一致するように形成することができる。具体的には、例えば、未発泡の発泡粒子とCNTを含む繊維状炭素ナノ構造体を含むシートを形成し、得られたシートを上下又は左右が開放された金型にて挟み、発泡粒子を発泡させることにより作製することができる。 In addition, the thermoelectric conversion material having a structure having voids therein is not particularly limited, and can be formed by using, for example, a fibrous carbon nanostructure containing CNTs and unexpanded expanded particles in combination. In the thermoelectric conversion material having a structure having voids inside, the respective thermal conductivities in two directions orthogonal (crossing) to each other may be different. Therefore, the direction in which the thermal conductivity is high can be formed so as to coincide with the thickness direction of the thermoelectric conversion module 100. Specifically, for example, a sheet containing a non-foamed expanded particle and a fibrous carbon nanostructure containing CNTs is formed, and the obtained sheet is sandwiched between upper and lower or left and right molds, It can be produced by foaming.
 p型熱電変換素子1及びn型熱電変換素子2を電気的に接続する接合部3は、特に限定されることなく、導電性及び熱伝導性を有する金属により形成されうる。かかる導電性及び熱伝導性を有する金属としては、導電率(JIS K 0130:2008)が10S/m以上であると共に熱伝導率が10W/m・K以上である金属材料、より具体的には、Ag及びCu等が挙げられる。中でも、入手しやすいペースト状の材料があり、プロセスの低コスト化を実現し、且つプロセスの容易性を付与し得るといった観点から、Agが好ましい。或いは、接合部3は、p型熱電変換素子1及びn型熱電変換素子2が、界面にて導電材料を介在させることなく電気的に接続可能であれば、上述したような導電材料が介在しない接合部であっても良い。
 例えば、p型熱電変換素子1及びn型熱電変換素子2を、導電材料としてAgを含むペースト状の樹脂材料を用いて接続して、接合部3を形成することができる。なお、樹脂材料としては、特に限定されることなく、(メタ)アクリル系樹脂、エポキシ樹脂、フッ素系樹脂、シリコーン系樹脂、オレフィン系樹脂、ポリアミド系樹脂、及びポリイミド系樹脂等の一般的な樹脂材料を用いることができる。好ましくは、樹脂材料として、柔軟性に富むと共に耐熱性の高いポリイミド系樹脂を用いる。なお、本明細書において(メタ)アクリルとは、「アクリル」又は「メタアクリル」を意味する。
The junction 3 that electrically connects the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 is not particularly limited, and can be formed of a metal having conductivity and thermal conductivity. Examples of the metal having conductivity and thermal conductivity include a metal material having an electrical conductivity (JIS K 0130: 2008) of 10 S / m or more and a thermal conductivity of 10 W / m · K or more, more specifically. , Ag, Cu and the like. Among these, Ag is preferable from the viewpoint that there is an easily available paste-like material, the cost of the process can be reduced, and the ease of the process can be imparted. Alternatively, if the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 can be electrically connected to each other without interposing a conductive material at the interface, the above-described conductive material is not interposed. It may be a junction.
For example, the junction 3 can be formed by connecting the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2 using a paste-like resin material containing Ag as a conductive material. The resin material is not particularly limited, and is a general resin such as (meth) acrylic resin, epoxy resin, fluorine resin, silicone resin, olefin resin, polyamide resin, and polyimide resin. Materials can be used. Preferably, a polyimide resin having high flexibility and high heat resistance is used as the resin material. In the present specification, (meth) acryl means “acryl” or “methacryl”.
 熱電変換素子体10に接続する熱伝導体4は、上述したように、接合部3に結合される。ここで、熱伝導体4は、熱伝導体4に隣接する断熱領域5が相互に連通するように配置されることが好ましい。断熱領域5間を空気が流通することで、断熱領域5の断熱性を一層高めて、熱電変換素子体10の面方向における温度勾配を高めることができるからである。さらに、熱伝導体4は、熱伝導体4に隣接する断熱領域5が相互に連通すると共に、各複数の断熱領域5のそれぞれが、熱電変換モジュール100の外側雰囲気と直接的又は間接的に連通するように配置されることが好ましい。断熱領域5の断熱性をより一層高めることで、熱電変換素子体10の面方向における温度勾配を一層高めることができるからである。 The heat conductor 4 connected to the thermoelectric conversion element body 10 is coupled to the joint 3 as described above. Here, it is preferable that the heat conductor 4 is disposed so that the heat insulating regions 5 adjacent to the heat conductor 4 communicate with each other. This is because air flows between the heat insulating regions 5 to further enhance the heat insulating properties of the heat insulating regions 5 and to increase the temperature gradient in the surface direction of the thermoelectric conversion element body 10. Further, in the heat conductor 4, the heat insulating regions 5 adjacent to the heat conductor 4 communicate with each other, and each of the plurality of heat insulating regions 5 communicates directly or indirectly with the outside atmosphere of the thermoelectric conversion module 100. It is preferable to arrange so as to. It is because the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be further increased by further increasing the heat insulating property of the heat insulating region 5.
 熱伝導体4は、特に限定されることなくAlやCu等の熱伝導性無機材料、及び熱伝導性樹脂などの熱伝導性有機材料を含む熱伝導性材料により形成されうる。中でも、軽量性の観点から、Alが好ましい。熱伝導体4の熱伝導率は、10W/m・K以上であることが好ましく、50W/m・K以上であることがより好ましく、100W/m・K以上であることがさらに好ましく、200W/m・K以上であることが特に好ましい。また、熱伝導体4は、熱電変換モジュール100の厚み方向長さが1mm以上であることが好ましい。熱電変換素子体10の面方向における温度勾配を一層大きくすることができるからである。さらに、熱伝導体4は、接合部3と、p型熱電変換素子1及びn型熱電変換素子2の各面方向長さの1/5以下の領域で、熱電変換素子体10に接触することが好ましい。 The heat conductor 4 can be formed of a heat conductive material including a heat conductive inorganic material such as Al and Cu, and a heat conductive organic material such as a heat conductive resin without any particular limitation. Among these, Al is preferable from the viewpoint of lightness. The thermal conductivity of the heat conductor 4 is preferably 10 W / m · K or more, more preferably 50 W / m · K or more, further preferably 100 W / m · K or more, and 200 W / m Particularly preferred is m · K or more. Moreover, it is preferable that the heat conductor 4 has the thickness direction length of the thermoelectric conversion module 100 of 1 mm or more. This is because the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be further increased. Furthermore, the heat conductor 4 is in contact with the thermoelectric conversion element body 10 in a region that is 1/5 or less of the length in each plane direction of the junction 3 and the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. Is preferred.
 図1では、熱電変換素子体10の両面側に熱伝導体4が配置される構成を例示した。しかし、熱電変換モジュール100は、熱電変換素子体10の少なくとも熱源側の面に熱伝導体4が接続されていればよい。連続接合する各p型熱電変換素子1及びn型熱電変換素子2の一端に対して熱が入力されれば温度勾配を生じさせることができるからである。なお、熱源側とは反対側、即ち放熱側にも熱伝導体4が接続されていれば、加熱されて温度上昇した端部とは反対側の端部付近の領域で、各p型熱電変換素子1及びn型熱電変換素子2から熱を放出させることができ、熱電変換素子体10の面方向における温度勾配を一層大きくすることができることがある。 FIG. 1 exemplifies a configuration in which the heat conductor 4 is disposed on both sides of the thermoelectric conversion element body 10. However, in the thermoelectric conversion module 100, it is only necessary that the heat conductor 4 is connected to at least the heat source side surface of the thermoelectric conversion element body 10. This is because a temperature gradient can be generated if heat is input to one end of each p-type thermoelectric conversion element 1 and n-type thermoelectric conversion element 2 that are continuously joined. If the heat conductor 4 is also connected to the side opposite to the heat source side, that is, the heat radiating side, each p-type thermoelectric conversion is performed in a region near the end opposite to the heated end. Heat may be released from the element 1 and the n-type thermoelectric conversion element 2, and the temperature gradient in the surface direction of the thermoelectric conversion element body 10 may be further increased.
 さらに、熱伝導体4は異方性熱伝導体であることが好ましい。異方性熱伝導体では、厚み方向の熱伝導率が、厚み方向に対して横断方向の熱伝導率よりも高い。熱伝導体4が厚み方向の熱伝導性に富む異方性熱伝導体であれば、熱伝導体4が熱を伝導する際に生じうるロスを低減して、熱電変換モジュール100の熱電変換効率を一層向上させることができるからである。そして、熱伝導体4が異方性熱伝導体である場合において、かかる異方性熱伝導体の厚み方向の熱伝導率が、10W/m・K以上であることが好ましく、50W/m・K以上であることがより好ましく、100W/m・K以上であることがさらに好ましく、200W/m・K以上であることが特に好ましい。 Furthermore, the heat conductor 4 is preferably an anisotropic heat conductor. In the anisotropic thermal conductor, the thermal conductivity in the thickness direction is higher than the thermal conductivity in the transverse direction with respect to the thickness direction. If the heat conductor 4 is an anisotropic heat conductor rich in heat conductivity in the thickness direction, loss that may occur when the heat conductor 4 conducts heat is reduced, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 is reduced. It is because it can improve further. And when the heat conductor 4 is an anisotropic heat conductor, it is preferable that the thermal conductivity of the thickness direction of this anisotropic heat conductor is 10 W / m * K or more, and is 50 W / m *. It is more preferably K or higher, more preferably 100 W / m · K or higher, and particularly preferably 200 W / m · K or higher.
 異方性熱伝導体は、特に限定されることなく、例えば、グラファイトシート、及びCNT等の有機系異方性熱伝導材料、並びに扁平金属粒子等の無機異方性熱伝導材料を用いて形成することができる。なお、扁平金属粒子とは、例えば、アスペクト比が3以上である扁平形状の金属粒子を意味する。好ましくは、熱電変換素子体10に柔軟性を付与すると共に、軽量化する観点から、有機系異方性熱伝導材料を用いることが好ましい。さらに、熱電変換モジュール100の熱電変換効率を一層向上させる観点から、熱伝導体4を構成する異方性熱伝導体を、CNTを用いて形成することが好ましい。
 なお、異方性熱伝導体は、特に限定されることなく、これらの異方性熱伝導材料と、接合部3の形成にも用いられうる一般的な樹脂材料とを併用して形成することができる。異方性熱伝導体は、これらを用いて、異方性熱伝導材料の熱伝導率の高い方向が、熱電変換モジュール100の厚み方向に一致するように、塗布工程及び加圧工程等を含む既知の製造方法により作製することができる。
The anisotropic heat conductor is not particularly limited, and is formed using, for example, a graphite sheet, an organic anisotropic heat conductive material such as CNT, and an inorganic anisotropic heat conductive material such as flat metal particles. can do. The flat metal particles mean, for example, flat metal particles having an aspect ratio of 3 or more. It is preferable to use an organic anisotropic heat conductive material from the viewpoint of imparting flexibility to the thermoelectric conversion element body 10 and reducing the weight. Furthermore, from the viewpoint of further improving the thermoelectric conversion efficiency of the thermoelectric conversion module 100, it is preferable to form the anisotropic heat conductor constituting the heat conductor 4 using CNTs.
The anisotropic heat conductor is not particularly limited, and is formed by using these anisotropic heat conductive materials and a general resin material that can also be used for forming the joint portion 3. Can do. The anisotropic heat conductor includes a coating process, a pressurizing process, and the like so that the direction of high thermal conductivity of the anisotropic heat conductive material matches the thickness direction of the thermoelectric conversion module 100 using these. It can be produced by a known production method.
 さらに、熱電変換モジュール100が熱電変換素子体10の両面側に熱伝導体4を有する図示のような構造を有する場合には、放熱側に配置された複数の熱伝導体4と熱源側に配置された複数の熱伝導体4とは、それぞれ、p型熱電変換素子1及びn型熱電変換素子2の接合部3の一つおきに、放熱側と熱源側が相互に互い違いになるように配置されていることが好ましい。 Further, when the thermoelectric conversion module 100 has a structure as shown in the figure having the heat conductors 4 on both sides of the thermoelectric conversion element body 10, the thermoelectric conversion modules 100 are arranged on the heat source side with a plurality of heat conductors 4 arranged on the heat dissipation side. The plurality of heat conductors 4 are arranged so that the heat radiation side and the heat source side are alternately arranged at every other junction 3 of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. It is preferable.
 さらに、熱電変換モジュール100は、少なくとも一つの基板を有することが好ましい。熱伝導体4は、少なくとも一つの基板と膜状の熱電変換素子体10とを接続することが好ましい。熱電変換素子体10と熱伝導体4を介して接続する少なくとも一つの基板を設ければ、熱電変換モジュール100の機械的強度を向上させることができる。また、かかる少なくとも一つの基板は、外部環境からモジュール内部の構成要素を保護する機能も奏しうる。 Furthermore, it is preferable that the thermoelectric conversion module 100 has at least one substrate. The heat conductor 4 preferably connects at least one substrate and the film-like thermoelectric conversion element body 10. If at least one board | substrate connected through the thermoelectric conversion element body 10 and the heat conductor 4 is provided, the mechanical strength of the thermoelectric conversion module 100 can be improved. Further, the at least one substrate can also have a function of protecting the components inside the module from the external environment.
 図1では、熱電変換モジュール100は、熱源側に配置された下部基板6と放熱側に配置された上部基板7とを有する。これらの下部基板6及び上部基板7は、樹脂基板及び/又は金属基板であることが好ましい。樹脂基板としては柔軟性を有する樹脂材料を含んでなる基板である、いわゆるフレキシブル基板が挙げられる。そのようなフレキシブル基板としては、熱伝導性が低く、且つ耐熱性及び柔軟性に優れる樹脂を用いて形成された基板が挙げられ、具体的には、ポリイミド基板が挙げられる。また、金属基板としては、アルミニウム、銅、及び銀等の熱伝導性の高い金属材料を含んでなる基板が挙げられる。なお、樹脂基板及び金属基板は、それぞれ単独で用いることができるが、両方を積層して併用することも可能である。 In FIG. 1, the thermoelectric conversion module 100 includes a lower substrate 6 disposed on the heat source side and an upper substrate 7 disposed on the heat dissipation side. These lower substrate 6 and upper substrate 7 are preferably a resin substrate and / or a metal substrate. As the resin substrate, a so-called flexible substrate, which is a substrate including a flexible resin material, can be used. Examples of such a flexible substrate include a substrate formed using a resin having low thermal conductivity and excellent heat resistance and flexibility, and specifically, a polyimide substrate. Moreover, as a metal substrate, the board | substrate which comprises metal materials with high heat conductivity, such as aluminum, copper, and silver, is mentioned. In addition, although a resin substrate and a metal substrate can each be used independently, both can be laminated | stacked and used together.
 下部基板6又は上部基板7として、樹脂基板を採用した場合には、熱電変換モジュールに柔軟性を付与することができ、熱電変換モジュールの設置容易性を向上させることができる。これは、熱電変換モジュールの設置場所は、必ずしも平たんな場所ではないので、熱電変換モジュールに柔軟性を付与することができれば、熱電変換モジュールが設置場所の形状に応じて自在に変形可能となり、発電効率を上げることができるからである。
 一方、下部基板6又は上部基板7として、金属基板を採用した場合には、熱電変換素子の面方向における温度勾配を一層大きくして、熱電変換効率を一層高めることができる。
When a resin substrate is employed as the lower substrate 6 or the upper substrate 7, flexibility can be imparted to the thermoelectric conversion module, and the ease of installation of the thermoelectric conversion module can be improved. This is because the installation location of the thermoelectric conversion module is not necessarily a flat place, so if flexibility can be given to the thermoelectric conversion module, the thermoelectric conversion module can be freely deformed according to the shape of the installation location, This is because the power generation efficiency can be increased.
On the other hand, when a metal substrate is used as the lower substrate 6 or the upper substrate 7, the temperature gradient in the surface direction of the thermoelectric conversion element can be further increased, and the thermoelectric conversion efficiency can be further increased.
 下部基板6及び上部基板7は同一材料で形成される必要はなく、例えば、下部基板6は樹脂基板、上部基板7は金属基板とすることももちろん可能である。この場合、上部基板における放熱効果を向上させて、熱電変換素子体10の面方向における温度勾配を一層大きくして、熱電変換モジュール100の熱電変換効率を一層高めることができる。
 また、熱源の温度が不均一な場合に、熱電変換モジュール全体に熱を均一に行き渡らせるために、下部基板6に金属基板を用いることもある。その場合、上部基板7は金属基板としても良いし、樹脂基板としても良い。
The lower substrate 6 and the upper substrate 7 do not need to be formed of the same material. For example, the lower substrate 6 may be a resin substrate and the upper substrate 7 may be a metal substrate. In this case, the heat dissipation effect in the upper substrate can be improved, the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 can be further increased.
In addition, when the temperature of the heat source is not uniform, a metal substrate may be used for the lower substrate 6 in order to distribute heat uniformly throughout the thermoelectric conversion module. In that case, the upper substrate 7 may be a metal substrate or a resin substrate.
 さらに、下部基板6及び/又は上部基板7として、熱伝導体4と同様の異方性熱伝導材料を用いて形成した異方性熱伝導基板を用いることができる。異方性熱伝導基板では、基板の厚み方向に対して横断方向の熱伝導率が、基板の厚み方向の熱伝導率よりも高い。よって、少なくとも下部基板6が面方向の熱伝導性に富む異方性熱伝導基板であれば、熱源からの集熱効率を高めて、熱伝導体4を介して熱電変換素子体10へと入力される熱量を増大させることができる。これにより、熱電変換素子体10の面方向における温度勾配を一層大きくして、熱電変換効率を一層向上させることができる。さらに、下部基板6に加えて上部基板7も面方向の熱伝導性に富む異方性熱伝導基板であれば、上部基板7からの放熱効率を向上させることができる。このことによっても、熱電変換素子体10の面方向における温度勾配を一層大きくして、熱電変換モジュール100の熱電変換効率を一層向上させることができる。なお、下部基板6及び/又は上部基板7を異方性熱伝導基板とする場合には、熱伝導体4と同様に、柔軟性及び軽量化の観点から、有機系異方性熱伝導材料を用いることが好ましい。 Furthermore, as the lower substrate 6 and / or the upper substrate 7, an anisotropic heat conductive substrate formed using an anisotropic heat conductive material similar to the heat conductor 4 can be used. In the anisotropic thermal conductive substrate, the thermal conductivity in the transverse direction with respect to the thickness direction of the substrate is higher than the thermal conductivity in the thickness direction of the substrate. Therefore, if at least the lower substrate 6 is an anisotropic heat conductive substrate having a high thermal conductivity in the plane direction, the heat collection efficiency from the heat source is increased and the heat is input to the thermoelectric conversion element body 10 via the heat conductor 4. The amount of heat generated can be increased. Thereby, the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be further increased, and the thermoelectric conversion efficiency can be further improved. Furthermore, if the upper substrate 7 is also an anisotropic heat conductive substrate rich in surface direction heat conductivity in addition to the lower substrate 6, the heat radiation efficiency from the upper substrate 7 can be improved. Also by this, the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 100 can be further improved. In the case where the lower substrate 6 and / or the upper substrate 7 is an anisotropic heat conductive substrate, an organic anisotropic heat conductive material is used from the viewpoint of flexibility and weight reduction in the same manner as the heat conductor 4. It is preferable to use it.
 なお、膜状の熱電変換素子体10は、熱電変換素子体10を支持する少なくとも一つの熱電変換素子基板を備えうる。図1では、熱電変換素子体10は、熱電変換素子基板11及び12により両面が支持されてなる。熱電変換素子が少なくとも一つの熱電変換素子基板を備えれば、熱電変換モジュール100の機械的強度を一層向上させることができる。熱電変換素子基板11及び12は、熱伝導性の低い材料であれば特に限定されることなく、下部基板6及び/又は上部基板7の形成に用いうる樹脂材料と同様の樹脂材料により形成することができる。 The film-like thermoelectric conversion element body 10 may include at least one thermoelectric conversion element substrate that supports the thermoelectric conversion element body 10. In FIG. 1, the thermoelectric conversion element body 10 is supported on both surfaces by thermoelectric conversion element substrates 11 and 12. If the thermoelectric conversion element includes at least one thermoelectric conversion element substrate, the mechanical strength of the thermoelectric conversion module 100 can be further improved. The thermoelectric conversion element substrates 11 and 12 are not particularly limited as long as the materials have low thermal conductivity, and are formed of a resin material similar to the resin material that can be used for forming the lower substrate 6 and / or the upper substrate 7. Can do.
 なお、図1には示さないが、熱電変換モジュール100は、熱電変換素子体10の両端に導電線が接続されてなり、熱電変換素子体10により生じた電力を取り出すことができる。 Although not shown in FIG. 1, the thermoelectric conversion module 100 is configured such that conductive wires are connected to both ends of the thermoelectric conversion element body 10, and electric power generated by the thermoelectric conversion element body 10 can be taken out.
 図2に上部基板としてヒートシンクを備える熱電変換モジュールの一例の概略構造を示す。図2に示す熱電変換モジュール101では、熱源上に設置された場合に該熱源の反対側、即ち、図2に示す放熱側に配置される上部基板7’がヒートシンクであることが好ましい。熱源上に配置された場合に熱源から遠い側、即ち、図2に示す放熱側に配置された上部基板7’がヒートシンクであれば、熱電変換素子体10の面方向における温度勾配を一層大きくして、熱電変換効率を一層高めることができる。 FIG. 2 shows a schematic structure of an example of a thermoelectric conversion module including a heat sink as an upper substrate. In the thermoelectric conversion module 101 shown in FIG. 2, when installed on a heat source, it is preferable that the upper substrate 7 'disposed on the opposite side of the heat source, that is, on the heat dissipation side shown in FIG. If the upper substrate 7 ′ arranged on the side far from the heat source when arranged on the heat source, that is, the heat radiating side shown in FIG. Thus, the thermoelectric conversion efficiency can be further increased.
 上部基板7’を構成しうるヒートシンクとしては、特に限定されることなく、Al、Fe、及びCu等の高熱伝導性金属材料により構成される、板状や棒状の複数のフィンを表面に有する板状体が挙げられる。そのようなヒートシンクは、熱伝導性に富み、表面積が大きいために、放熱性に優れる。任意で、ヒートシンクに対してファン等を取り付けて、放熱性を一層向上させることができる。
 本発明の熱電変換モジュールのベースとなる構造は、上記説明に従うものである。以下、本発明の各実施形態に従う各熱電変換モジュールについて詳述するが、これらの実施形態においても、上記説明にて必須又は任意の構成として説明した各構成部は、必須又は任意に備えられうる。
The heat sink that can constitute the upper substrate 7 'is not particularly limited, and is a plate having a plurality of plate-like or rod-like fins on the surface, which is made of a highly thermally conductive metal material such as Al, Fe, and Cu. A state body is mentioned. Such a heat sink is excellent in heat dissipation because of its high thermal conductivity and large surface area. Optionally, a fan or the like can be attached to the heat sink to further improve heat dissipation.
The structure serving as the base of the thermoelectric conversion module of the present invention follows the above description. Hereinafter, although each thermoelectric conversion module according to each embodiment of the present invention will be described in detail, also in these embodiments, each component described as an essential or optional configuration in the above description may be provided as an essential or optional. .
(第1実施形態)
 図3に、本発明の第1実施形態にかかる熱電変換モジュールの概略構造を示す。本発明の第1実施形態にかかる熱電変換モジュール102は、熱源上に設置された場合に、熱電変換素子体10よりも熱源側に、輻射反射体21及び/又は輻射防止体22を有する。ここで、熱電変換素子体10よりも熱源側の領域は、例えば、2つの熱伝導体4、下部基板6、及び熱電変換素子体10の熱源側面により四方が区画される空隙である。そして、かかる空隙は、断熱領域5に一致しうる。輻射反射体21は、下部基板6に非接触である限りにおいて、上記空隙内の何れかの位置にて配置されうる。かかる特定配置の輻射反射体21によれば、熱源からの輻射を反射して、熱伝導体4を介することなく熱電変換素子が直接加熱されることを抑制することで、熱電変換素子の面方向における温度勾配を一層大きくして、熱電変換モジュールの熱電変換効率を一層高めることができる。好ましくは、輻射反射体21は、輻射反射率が90%以上でありうる。さらに好ましくは、輻射反射効果を最大化する観点から、輻射反射体21は、熱電変換素子体10の熱源に対向する面に対して隣接配置し、p型熱電変換素子1及びn型熱電変換素子2の接続方向の両端部が、上記空隙を区画する2つの熱伝導体4に接するように配置されうる。
 なお、熱電変換モジュール102が下部基板6を備えない場合には、輻射反射体21は、熱源と非接触である限りにおいて、2つの熱伝導体4、熱源、及び熱電変換素子体10の熱源側面により四方が区画される空隙内の何れかの位置にて配置されうる。
(First embodiment)
FIG. 3 shows a schematic structure of the thermoelectric conversion module according to the first embodiment of the present invention. The thermoelectric conversion module 102 according to the first embodiment of the present invention includes a radiation reflector 21 and / or a radiation prevention body 22 on the heat source side of the thermoelectric conversion element body 10 when installed on a heat source. Here, the region closer to the heat source than the thermoelectric conversion element body 10 is, for example, an air gap that is partitioned by the two heat conductors 4, the lower substrate 6, and the heat source side surfaces of the thermoelectric conversion element body 10. Such voids can coincide with the heat insulating region 5. As long as the radiation reflector 21 is not in contact with the lower substrate 6, it can be disposed at any position within the gap. According to the radiation reflector 21 having such a specific arrangement, the radiation from the heat source is reflected and the direct heating of the thermoelectric conversion element without passing through the heat conductor 4 is suppressed, whereby the surface direction of the thermoelectric conversion element The temperature gradient in can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module can be further increased. Preferably, the radiation reflector 21 may have a radiation reflectance of 90% or more. More preferably, from the viewpoint of maximizing the radiation reflection effect, the radiation reflector 21 is disposed adjacent to the surface of the thermoelectric conversion element body 10 facing the heat source, and the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element. The two end portions in the connecting direction of the two can be arranged so as to be in contact with the two heat conductors 4 defining the gap.
When the thermoelectric conversion module 102 does not include the lower substrate 6, the radiation reflector 21 has two heat conductors 4, a heat source, and a heat source side surface of the thermoelectric conversion element body 10 as long as it is not in contact with the heat source. Can be arranged at any position within the gap defined by the four sides.
 輻射反射体21は、特に限定されることなく、例えば、上述したような一般的な樹脂に対して扁平金属粒子を配合してなるシート状の構造体でありうる。かかるシート状の構造体中において、扁平金属粒子は、面方向に略平行になるように配向されていることが好ましい。 The radiation reflector 21 is not particularly limited, and may be, for example, a sheet-like structure formed by blending flat metal particles with a general resin as described above. In such a sheet-like structure, the flat metal particles are preferably oriented so as to be substantially parallel to the surface direction.
 さらに、輻射防止体22は、熱電変換素子体10及び輻射反射体21に非接触である限りにおいて、上記空隙内の何れかの位置にて配置されうる。熱電変換モジュール102が上述した輻射反射体21を備える場合には、輻射防止体22の配置は、かかる輻射反射体21よりも熱源側(即ち、熱電変換素子体10を規準として、輻射反射体21よりも、熱電変換モジュールの厚み方向に遠い位置)である必要がある。そして、輻射防止体22により、熱源からの輻射を防止して、熱伝導体4を介することなく熱電変換素子体10が直接加熱されることを抑制することで、熱電変換素子体10の面方向における温度勾配を一層大きくして、熱電変換モジュール102の熱電変換効率を一層高めることができる。好ましくは、輻射防止効果を最大化する観点から、輻射防止体22は、下部基板6に隣接配置し、p型熱電変換素子1及びn型熱電変換素子2の接続方向における輻射防止体22の両端部が、上記空隙を区画する2つの熱伝導体4に接するように配置することができる。なお、熱電変換モジュール102が下部基板6を備えない場合には、輻射防止体22を熱源に直接隣接して配置することができる。 Furthermore, the radiation preventing body 22 can be arranged at any position in the gap as long as it is not in contact with the thermoelectric conversion element body 10 and the radiation reflector 21. When the thermoelectric conversion module 102 includes the above-described radiation reflector 21, the radiation preventing body 22 is arranged on the heat source side of the radiation reflector 21 (that is, the radiation reflector 21 with the thermoelectric conversion element body 10 as a standard). Rather than a position farther in the thickness direction of the thermoelectric conversion module). The radiation preventing body 22 prevents radiation from the heat source and suppresses the direct heating of the thermoelectric conversion element body 10 without passing through the heat conductor 4, thereby the surface direction of the thermoelectric conversion element body 10. The temperature gradient in can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 102 can be further increased. Preferably, from the viewpoint of maximizing the radiation prevention effect, the radiation prevention body 22 is disposed adjacent to the lower substrate 6 and both ends of the radiation prevention body 22 in the connection direction of the p-type thermoelectric conversion element 1 and the n-type thermoelectric conversion element 2. The part can be arranged so as to be in contact with the two heat conductors 4 that define the gap. In the case where the thermoelectric conversion module 102 does not include the lower substrate 6, the radiation preventing body 22 can be disposed directly adjacent to the heat source.
 輻射防止体22は、特に限定されることなく、輻射反射体21と同様の材料、或いは、例えば、市販の遮熱フィルム(日本遮熱社製、「トップヒートバリアー(登録商標)THB-WBE1」)のような、一般的な輻射の小さい材料により形成することができる。 The radiation preventing body 22 is not particularly limited, and is the same material as the radiation reflecting body 21 or, for example, a commercially available heat shielding film (manufactured by Nippon Shokubai Co., Ltd. “Top Heat Barrier (registered trademark) THB-WBE1”). ) And a general material with low radiation.
(第2実施形態)
 図4に、本発明の第2実施形態にかかる熱電変換モジュールの概略構造を示す。本発明の第2実施形態にかかる熱電変換モジュール103は、熱源上に設置された場合に熱電変換素子体10よりも熱源側に、発泡材料23を有することが好ましい。発泡材料23の断熱効果及び輻射防止効果により、熱伝導体4が接続されていない領域にて熱電変換素子体10が加熱されることを抑制することができる。これにより、熱電変換素子体10の面方向における温度勾配を一層大きくして、熱電変換モジュール103の熱電変換効率を一層高めることができる。
(Second Embodiment)
FIG. 4 shows a schematic structure of a thermoelectric conversion module according to the second embodiment of the present invention. The thermoelectric conversion module 103 according to the second embodiment of the present invention preferably has the foam material 23 on the heat source side of the thermoelectric conversion element body 10 when installed on the heat source. Due to the heat insulating effect and the radiation preventing effect of the foam material 23, it is possible to suppress the thermoelectric conversion element body 10 from being heated in a region where the heat conductor 4 is not connected. Thereby, the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 103 can be further increased.
 ここで、発泡材料23は、上述した輻射反射体21及び輻射防止体22と同様に、例えば、2つの熱伝導体4、下部基板6、及び熱電変換素子体10の熱源側面により四方が区画される空隙内に配置されうる。そして、発泡材料23は、上述した、輻射反射体21及び輻射防止体22とは異なり、断熱効果を保持する観点から、上記空隙を区画する2つの熱伝導体4には非接触である必要がある。また、発泡材料23は、熱電変換素子体10及び任意の下部基板6のうちの少なくとも一方に接していても良いし、双方と非接触であっても良い。なお、発泡材料23としては、特に限定されることなく、発泡プラスチックのような発泡樹脂材料が挙げられる。なお、発泡材料23の熱伝導率は、例えば、0.1W/m・K未満であり得る。 Here, the foam material 23 is divided into four sides by the heat source side surfaces of the two heat conductors 4, the lower substrate 6, and the thermoelectric conversion element body 10, for example, similarly to the radiation reflector 21 and the radiation prevention body 22 described above. Can be disposed within the gap. And unlike the radiation reflector 21 and the radiation prevention body 22 which were mentioned above, the foaming material 23 needs to be non-contact with the two heat conductors 4 which divide the said space | gap from a viewpoint of hold | maintaining a heat insulation effect. is there. Moreover, the foam material 23 may be in contact with at least one of the thermoelectric conversion element body 10 and the arbitrary lower substrate 6, or may be in non-contact with both. The foam material 23 is not particularly limited, and examples thereof include a foam resin material such as foam plastic. The thermal conductivity of the foam material 23 can be, for example, less than 0.1 W / m · K.
(第3実施形態)
 図5に、本発明の第3実施形態にかかる熱電変換モジュールの概略構造を示す。本発明の第3実施形態にかかる熱電変換モジュール104は、熱源上に設置された場合に熱電変換素子体10よりも熱源側に、熱伝導体4に接触すると共に熱電変換素子体10とは非接触の蓄熱材24を有することが好ましい。蓄熱材24の蓄熱効果により、熱源からの輻射熱を低減するとともに、熱源の非稼働時にも熱電変換素子体10に対して熱供給することができる。蓄熱効果を高めて熱電変換モジュール104の熱電変換効率を一層向上させる観点から、蓄熱材24は、下部基板6に隣接配置し、面方向両端部が、上記空隙を区画する2つの熱伝導体4に接するように配置することが好ましい。なお、熱電変換モジュール104が下部基板6を備えない場合には、蓄熱材24を熱源に直接隣接して配置することができる。
(Third embodiment)
FIG. 5 shows a schematic structure of a thermoelectric conversion module according to the third embodiment of the present invention. When the thermoelectric conversion module 104 according to the third embodiment of the present invention is installed on a heat source, the thermoelectric conversion element body 10 is in contact with the heat conductor 4 on the heat source side of the thermoelectric conversion element body 10 and is not separated from the thermoelectric conversion element body 10. It is preferable to have a contact heat storage material 24. The heat storage effect of the heat storage material 24 can reduce radiant heat from the heat source and can supply heat to the thermoelectric conversion element body 10 even when the heat source is not in operation. From the viewpoint of further improving the heat storage effect and further improving the thermoelectric conversion efficiency of the thermoelectric conversion module 104, the heat storage material 24 is disposed adjacent to the lower substrate 6, and two heat conductors 4 in which both end portions in the plane direction partition the gap. It is preferable to arrange so that it contacts. When the thermoelectric conversion module 104 does not include the lower substrate 6, the heat storage material 24 can be disposed directly adjacent to the heat source.
 蓄熱材24としては、特に限定されることなく、温度変化に応じて相が変化する相変化物質が挙げられる。かかる相変化物質としては、パラフィンを含む炭化水素、及びステアリン酸や酢酸を含む脂肪酸のような有機系相変化物質、並びに、MgCl2(H2O)6、Ba(OH)2(H2O)8、及びCaCl2(H2O)6等を含む無機系相変化物質が挙げられる。 The heat storage material 24 is not particularly limited, and examples thereof include a phase change material whose phase changes according to a temperature change. Such phase change materials include hydrocarbons including paraffin, organic phase change materials such as fatty acids including stearic acid and acetic acid, and MgCl 2 (H 2 O) 6 , Ba (OH) 2 (H 2 O ) 8 , and inorganic phase change substances including CaCl 2 (H 2 O) 6 and the like.
(第4実施形態)
 図6に、本発明の第4実施形態にかかる熱電変換モジュールの概略構造を示す。本発明の第4実施形態にかかる熱電変換モジュール105では、熱伝導体4’が、膜状の熱電変換素子体10に対して接続する接続面25及び該接続面25の反対側の底面26を有し、底面26の面積が接続面25の面積より大きいことが好ましい。下部基板6に接続する熱伝導体4’の底面26が接続面25よりも大きければ、熱源からの集熱効率を高めることができる。また、上部基板7に接続する熱伝導体4’の底面26が接続面25よりも大きければ、上部基板7を介した放熱効率を高めることができる。このような構造によれば、熱電変換素子体10の面方向における温度勾配を一層大きくして、熱電変換モジュール105熱電変換効率を一層向上させることができるからである。さらに、図示しないが、第4実施形態にかかる熱電変換モジュール105にて、第1実施形態にて説明したような輻射反射体21及び/又は輻射防止体22を設けることが好ましい。熱電変換モジュール105が輻射反射体21及び/又は輻射防止体22を備えていれば、熱伝導体4’の表面から発せられうる輻射により接続面25以外を介して熱電変換素子体10が加熱されることを抑制することができる。これにより、熱電変換素子体10の面方向における温度勾配を一層大きくして、熱電変換モジュール105の熱電変換効率を一層高めることができる。
(Fourth embodiment)
FIG. 6 shows a schematic structure of a thermoelectric conversion module according to the fourth embodiment of the present invention. In the thermoelectric conversion module 105 according to the fourth embodiment of the present invention, the heat conductor 4 ′ has the connection surface 25 connected to the film-like thermoelectric conversion element body 10 and the bottom surface 26 opposite to the connection surface 25. It is preferable that the area of the bottom surface 26 is larger than the area of the connection surface 25. If the bottom surface 26 of the heat conductor 4 ′ connected to the lower substrate 6 is larger than the connection surface 25, the heat collection efficiency from the heat source can be increased. Further, if the bottom surface 26 of the heat conductor 4 ′ connected to the upper substrate 7 is larger than the connection surface 25, the heat dissipation efficiency through the upper substrate 7 can be increased. This is because, according to such a structure, the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 105 can be further improved. Furthermore, although not shown, it is preferable to provide the radiation reflector 21 and / or the radiation preventer 22 as described in the first embodiment in the thermoelectric conversion module 105 according to the fourth embodiment. If the thermoelectric conversion module 105 includes the radiation reflector 21 and / or the radiation preventing body 22, the thermoelectric conversion element body 10 is heated via the portion other than the connection surface 25 by radiation that can be emitted from the surface of the heat conductor 4 ′. Can be suppressed. Thereby, the temperature gradient in the surface direction of the thermoelectric conversion element body 10 can be further increased, and the thermoelectric conversion efficiency of the thermoelectric conversion module 105 can be further increased.
 熱伝導体4’は、熱伝導体4と同様の熱伝導性材料を用いて形成することができる。 The heat conductor 4 ′ can be formed using the same heat conductive material as that of the heat conductor 4.
 以上説明したように、本発明によれば、熱電変換効率の高い熱電変換モジュールを提供することができる。 As described above, according to the present invention, a thermoelectric conversion module having high thermoelectric conversion efficiency can be provided.
1       p型熱電変換素子
2       n型熱電変換素子
3       接合部
4,4’    熱伝導体
5       断熱領域
6       下部基板
7,7’    上部基板
10      熱電変換素子体
11,12   熱電変換素子基板
21      輻射反射体
22      輻射防止体
23      発泡材料
24      蓄熱材
25      接続面
26      底面
100~105 熱電変換モジュール
DESCRIPTION OF SYMBOLS 1 p-type thermoelectric conversion element 2 n-type thermoelectric conversion element 3 Junction part 4, 4 'Thermal conductor 5 Thermal insulation area | region 6 Lower board | substrate 7, 7' Upper board | substrate 10 Thermoelectric conversion element body 11, 12 Thermoelectric conversion element board | substrate 21 Radiation reflector 22 radiation prevention body 23 foam material 24 heat storage material 25 connection surface 26 bottom surface 100 to 105 thermoelectric conversion module

Claims (12)

  1.  面内の一方向に沿って接合された、p型熱電変換素子及びn型熱電変換素子を有する、膜状の熱電変換素子体と、
     前記熱電変換素子体の一方の面において、前記p型熱電変換素子及び前記n型熱電変換素子の接合部分に結合した熱伝導体と、
     前記一方向における前記熱伝導体の両側に隣接した断熱領域と、を備え、且つ、
     熱源上に設置された場合に、前記熱電変換素子体よりも前記熱源側に、輻射反射体及び/又は輻射防止体を有する、熱電変換モジュール。
    A film-like thermoelectric conversion element body having a p-type thermoelectric conversion element and an n-type thermoelectric conversion element bonded along one direction in the plane;
    On one surface of the thermoelectric conversion element body, a thermal conductor coupled to a joint portion of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element;
    A heat insulating region adjacent to both sides of the heat conductor in the one direction, and
    A thermoelectric conversion module having a radiation reflector and / or a radiation prevention body on a side closer to the heat source than the thermoelectric conversion element body when installed on a heat source.
  2.  前記輻射反射体及び前記輻射防止体を備え、
     前記輻射防止体が、前記輻射反射体よりも前記熱源に近い位置に配置されてなる、請求項1に記載の熱電変換モジュール。
    Comprising the radiation reflector and the radiation preventer;
    The thermoelectric conversion module according to claim 1, wherein the radiation prevention body is disposed at a position closer to the heat source than the radiation reflector.
  3.  面内の一方向に沿って接合された、p型熱電変換素子及びn型熱電変換素子を有する、膜状の熱電変換素子体と、
     前記熱電変換素子体の一方の面において、前記p型熱電変換素子及び前記n型熱電変換素子の接合部分に結合した熱伝導体と、
     前記一方向における前記熱伝導体の両側に隣接した断熱領域と、を備え、且つ、
     熱源上に設置された場合に、前記熱電変換素子体よりも前記熱源側に、発泡材料を有する、熱電変換モジュール。
    A film-like thermoelectric conversion element body having a p-type thermoelectric conversion element and an n-type thermoelectric conversion element bonded along one direction in the plane;
    On one surface of the thermoelectric conversion element body, a thermal conductor coupled to a joint portion of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element;
    A heat insulating region adjacent to both sides of the heat conductor in the one direction, and
    The thermoelectric conversion module which has a foam material in the said heat source side rather than the said thermoelectric conversion element body, when it installs on a heat source.
  4.  面内の一方向に沿って接合された、p型熱電変換素子及びn型熱電変換素子を有する、膜状の熱電変換素子体と、
     前記熱電変換素子体の一方の面において、前記p型熱電変換素子及び前記n型熱電変換素子の接合部分に結合した熱伝導体と、
     前記一方向における前記熱伝導体の両側に隣接した断熱領域と、を備え、且つ、
     熱源上に設置された場合に、前記熱電変換素子体よりも前記熱源側に、前記熱伝導体に接触すると共に前記熱電変換素子体とは非接触の蓄熱材を有する、熱電変換モジュール。
    A film-like thermoelectric conversion element body having a p-type thermoelectric conversion element and an n-type thermoelectric conversion element bonded along one direction in the plane;
    On one surface of the thermoelectric conversion element body, a thermal conductor coupled to a joint portion of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element;
    A heat insulating region adjacent to both sides of the heat conductor in the one direction, and
    A thermoelectric conversion module having a heat storage material that is in contact with the heat conductor and is not in contact with the thermoelectric conversion element body, closer to the heat source side than the thermoelectric conversion element body when installed on a heat source.
  5.  面内の一方向に沿って接合された、p型熱電変換素子及びn型熱電変換素子を有する、膜状の熱電変換素子体と、
     前記熱電変換素子体の一方の面において、前記p型熱電変換素子及び前記n型熱電変換素子の接合部分に結合した熱伝導体と、
     前記一方向における前記熱伝導体の両側に隣接した断熱領域と、を備え、且つ、
     前記熱伝導体が、前記膜状の熱電変換素子体に対して接続する接続面及び該接続面の反対側の底面を有し、前記底面の面積が前記接続面の面積より大きい、熱電変換モジュール。
    A film-like thermoelectric conversion element body having a p-type thermoelectric conversion element and an n-type thermoelectric conversion element bonded along one direction in the plane;
    On one surface of the thermoelectric conversion element body, a thermal conductor coupled to a joint portion of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element;
    A heat insulating region adjacent to both sides of the heat conductor in the one direction, and
    The thermoelectric conversion module, wherein the thermal conductor has a connection surface connected to the film-shaped thermoelectric conversion element body and a bottom surface opposite to the connection surface, and an area of the bottom surface is larger than an area of the connection surface. .
  6.  前記熱伝導体の熱伝導率が、10W/m・K以上である、請求項1~5の何れかに記載の熱電変換モジュール。 The thermoelectric conversion module according to any one of claims 1 to 5, wherein the thermal conductivity of the thermal conductor is 10 W / m · K or more.
  7.  さらに、少なくとも一つの基板を有し、
     前記熱伝導体は前記少なくとも一つの基板と前記膜状の熱電変換素子体とを接続する、請求項1~6の何れかに記載の熱電変換モジュール。
    And having at least one substrate,
    The thermoelectric conversion module according to any one of claims 1 to 6, wherein the heat conductor connects the at least one substrate and the film-like thermoelectric conversion element body.
  8.  前記少なくとも一つの基板が樹脂材料を含んでなる、請求項7に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 7, wherein the at least one substrate includes a resin material.
  9.  前記少なくとも一つの基板が金属材料を含んでなる、請求項7又は8に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 7 or 8, wherein the at least one substrate comprises a metal material.
  10.  熱源上に設置された場合に該熱源の反対側に配置される前記少なくとも一つの基板がヒートシンクである、請求項7~9の何れかに記載の熱電変換モジュール。 10. The thermoelectric conversion module according to claim 7, wherein the at least one substrate disposed on the opposite side of the heat source when installed on the heat source is a heat sink.
  11.  前記熱伝導体が異方性熱伝導体であり、前記熱伝導体の厚み方向の熱伝導率が、前記熱伝導体の厚み方向に対して横断方向の熱伝導率よりも高い、請求項1~10の何れかに記載の熱電変換モジュール。 The thermal conductor is an anisotropic thermal conductor, and the thermal conductivity in the thickness direction of the thermal conductor is higher than the thermal conductivity in a direction transverse to the thickness direction of the thermal conductor. The thermoelectric conversion module according to any one of 1 to 10.
  12.  前記少なくとも一つの基板が異方性熱伝導基板であり、前記基板の厚み方向に対して横断方向の熱伝導率が、前記基板の厚み方向の熱伝導率よりも高い、請求項7~11の何れかに記載の熱電変換モジュール。 The at least one substrate is an anisotropic thermal conductive substrate, and the thermal conductivity in a direction transverse to the thickness direction of the substrate is higher than the thermal conductivity in the thickness direction of the substrate. The thermoelectric conversion module in any one.
PCT/JP2018/002943 2017-01-31 2018-01-30 Thermoelectric conversion module WO2018143185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018565556A JPWO2018143185A1 (en) 2017-01-31 2018-01-30 Thermoelectric conversion module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017015879 2017-01-31
JP2017-015879 2017-07-24

Publications (1)

Publication Number Publication Date
WO2018143185A1 true WO2018143185A1 (en) 2018-08-09

Family

ID=63039605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002943 WO2018143185A1 (en) 2017-01-31 2018-01-30 Thermoelectric conversion module

Country Status (2)

Country Link
JP (1) JPWO2018143185A1 (en)
WO (1) WO2018143185A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020088176A (en) * 2018-11-26 2020-06-04 東洋インキScホールディングス株式会社 Electro-thermal power generation device
WO2021025059A1 (en) * 2019-08-08 2021-02-11 デンカ株式会社 Thermoelectric conversion element
WO2021025060A1 (en) * 2019-08-08 2021-02-11 デンカ株式会社 Thermoelectric conversion element
WO2023038100A1 (en) * 2021-09-10 2023-03-16 株式会社Gceインスティチュート Environmental power generation device and environmental power generation system
WO2023058523A1 (en) * 2021-10-04 2023-04-13 デンカ株式会社 Thermoelectric conversion module and manufacturing method therefor
WO2023248901A1 (en) * 2022-06-24 2023-12-28 デンカ株式会社 Thermoelectric conversion module and production method for same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005117755A (en) * 2003-10-06 2005-04-28 Toyota Motor Corp Generator
JP2008060488A (en) * 2006-09-04 2008-03-13 Kansai Paint Co Ltd One-side electrode thermoelectric conversion module
JP2012114290A (en) * 2010-11-25 2012-06-14 Fujitsu Ltd Thermoelectric module and manufacturing method of the same
WO2013121486A1 (en) * 2012-02-16 2013-08-22 日本電気株式会社 Thermoelectric conversion module unit, and electronic device
WO2015148554A1 (en) * 2014-03-25 2015-10-01 Silicium Energy, Inc. Thermoelectric devices and systems
WO2016175147A1 (en) * 2015-04-27 2016-11-03 株式会社Eサーモジェンテック Thermoelectric conversion module, method for producing same, thermoelectric power generation system, and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065185A1 (en) * 2009-11-27 2011-06-03 富士通株式会社 Thermoelectric conversion module and method for manufacturing same
JP5708174B2 (en) * 2011-04-12 2015-04-30 富士通株式会社 Thermoelectric conversion device and manufacturing method thereof
JP2014154761A (en) * 2013-02-12 2014-08-25 Furukawa Electric Co Ltd:The Thermoelectric conversion module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005117755A (en) * 2003-10-06 2005-04-28 Toyota Motor Corp Generator
JP2008060488A (en) * 2006-09-04 2008-03-13 Kansai Paint Co Ltd One-side electrode thermoelectric conversion module
JP2012114290A (en) * 2010-11-25 2012-06-14 Fujitsu Ltd Thermoelectric module and manufacturing method of the same
WO2013121486A1 (en) * 2012-02-16 2013-08-22 日本電気株式会社 Thermoelectric conversion module unit, and electronic device
WO2015148554A1 (en) * 2014-03-25 2015-10-01 Silicium Energy, Inc. Thermoelectric devices and systems
WO2016175147A1 (en) * 2015-04-27 2016-11-03 株式会社Eサーモジェンテック Thermoelectric conversion module, method for producing same, thermoelectric power generation system, and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020088176A (en) * 2018-11-26 2020-06-04 東洋インキScホールディングス株式会社 Electro-thermal power generation device
WO2021025059A1 (en) * 2019-08-08 2021-02-11 デンカ株式会社 Thermoelectric conversion element
WO2021025060A1 (en) * 2019-08-08 2021-02-11 デンカ株式会社 Thermoelectric conversion element
EP4012787A4 (en) * 2019-08-08 2022-10-05 Denka Company Limited Thermoelectric conversion element
EP4012788A4 (en) * 2019-08-08 2022-10-05 Denka Company Limited Thermoelectric conversion element
WO2023038100A1 (en) * 2021-09-10 2023-03-16 株式会社Gceインスティチュート Environmental power generation device and environmental power generation system
WO2023058523A1 (en) * 2021-10-04 2023-04-13 デンカ株式会社 Thermoelectric conversion module and manufacturing method therefor
WO2023248901A1 (en) * 2022-06-24 2023-12-28 デンカ株式会社 Thermoelectric conversion module and production method for same

Also Published As

Publication number Publication date
JPWO2018143185A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2018143185A1 (en) Thermoelectric conversion module
JP7183794B2 (en) Thermoelectric conversion module
TW201041194A (en) Thermo-electric structures for cooling, heating, and electric current generation
JP5857792B2 (en) Thermoelectric device and manufacturing method thereof
CN104221142B (en) Thermally conductive body and electronic device using same
WO2017038324A1 (en) Thermoelectric conversion module
KR101840734B1 (en) heat pad and system using the same
JP2010192780A (en) Thermoelectric conversion element
JP2014146640A (en) Thermoelectric conversion component
US20110186270A1 (en) Heat transfer device with anisotropic heat dissipating and absorption structures
JP5067352B2 (en) Thermoelectric conversion module and power generator using the same
US10236431B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2019204927A (en) Thermoelectric conversion module and power generation system
JP4202409B1 (en) Radiation sheet and method for producing the radiation sheet
JP2019204926A (en) Thermoelectric conversion module and power generating system
JP5573565B2 (en) Thermoelectric conversion device and manufacturing method thereof
WO2019159776A1 (en) Cooling device
KR102092675B1 (en) Heat discharging sheet and method for manufacturing the same
JP6505585B2 (en) Thermoelectric conversion element
JP6405446B2 (en) Thermoelectric conversion element and thermoelectric conversion module
US20220293843A1 (en) Thermoelectric conversion element
US20220302365A1 (en) Thermoelectric conversion element
JPWO2012140800A1 (en) Air conditioning
CN111417282B (en) Heat sink and electronic device using the same
JP2011082272A (en) Thermoelectric cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748261

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565556

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748261

Country of ref document: EP

Kind code of ref document: A1