WO2023038076A1 - Polarizing film and polarizing plate - Google Patents

Polarizing film and polarizing plate Download PDF

Info

Publication number
WO2023038076A1
WO2023038076A1 PCT/JP2022/033656 JP2022033656W WO2023038076A1 WO 2023038076 A1 WO2023038076 A1 WO 2023038076A1 JP 2022033656 W JP2022033656 W JP 2022033656W WO 2023038076 A1 WO2023038076 A1 WO 2023038076A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing film
polarizing
treatment
temperature
Prior art date
Application number
PCT/JP2022/033656
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 住田
泰紀 丹羽
智康 竹内
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022140840A external-priority patent/JP7475403B2/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023038076A1 publication Critical patent/WO2023038076A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to polarizing films and polarizing plates.
  • Polarizing films are used in display devices such as liquid crystal display devices and organic electroluminescence (EL) display devices.
  • EL organic electroluminescence
  • a polarizing film it is known to use a stretched polyvinyl alcohol-based resin film in which a dichroic dye is adsorbed and oriented (for example, Patent Document 1).
  • the stretch ratio of the polyvinyl alcohol resin film may be increased.
  • the shrinkage force in the direction of the absorption axis tended to differ greatly between the central portion and the end portions in the direction of the transmission axis.
  • the transmission axis direction is the direction perpendicular to the stretching direction of the polarizing film
  • the absorption axis direction is the stretching direction of the polarizing film.
  • a polarizing film is usually used in a display device or the like as a polarizing plate with a protective film laminated on one or both sides thereof.
  • a polarizing plate applied to a display device from the viewpoint of production efficiency, etc., a polarizing plate cut out so that one or more products can be obtained from a polarizing plate as a material, a polarizing plate obtained by so-called picking (hereinafter referred to as It is sometimes called a "picked-up polarizing plate.”) may be used.
  • the side of the cutting polarizing plate has a cut A side formed from or near the center in the transmission axis direction of the polarizing film of the previous polarizing plate and a side formed from or near the end may be included. Therefore, if the contraction force in the absorption axis direction of the polarizing plate before trimming is different in the transmission axis direction, the contraction force in the absorption axis direction is different on each side of the trimmed polarizing plate.
  • the shrinkage force on each side of the trimmed polarizing plate is distributed, such that the shrinkage force increases only on one side of the trimmed polarizing plate.
  • Such a shrinkage force distribution is not limited to the case of obtaining a trimmed polarizing plate by multiple trimming. The same can occur when obtaining a polarizing plate.
  • heat unevenness may occur in the polarizing plate.
  • the heat unevenness described above does not occur uniformly over the entire trimmed polarizing plate, but occurs non-uniformly. Non-uniform heat unevenness is conspicuous, and may cause deterioration in appearance quality of the display device.
  • the distribution of the shrinkage force as described above causes a distribution of warpage occurring on each side of the polarizing plate for picking, for example, the warp of only one side of the polarizing plate for picking increases. It can also be a cause of lowering the handleability of the polarizing plate.
  • An object of the present invention is to provide a polarizing film having excellent uniformity of contraction force in the direction of the absorption axis in the direction of the transmission axis while having excellent optical properties, and a polarizing plate including the same.
  • the present invention provides the following polarizing film and polarizing plate.
  • the polarizing film according to [1] wherein the difference between the maximum film thickness in the end regions in the transmission axis direction and the maximum film thickness in the central region in the transmission axis direction is 2.1 ⁇ m or less.
  • [3] The polarizing film according to [1] or [2], wherein the length in the transmission axis direction is 800 mm or more and 2500 mm or less.
  • [4] The polarizing film according to any one of [1] to [3], wherein the average film thickness in the central region in the transmission axis direction is 5 ⁇ m or more and 30 ⁇ m or less.
  • [5] The polarizing film according to any one of [1] to [4], wherein the average film thickness in the central region in the transmission axis direction is 16 ⁇ m or more and 29 ⁇ m or less.
  • a polarizing film and a polarizing plate including the same which have excellent optical properties and excellent uniformity of contraction force in the direction of the absorption axis in the direction of the transmission axis.
  • the polarizing film and polarizing plate of the present invention are described below.
  • the polarizing film of the present embodiment is a polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film (hereinafter sometimes referred to as "PVA-based film”).
  • the luminosity correction single transmittance Ty of the polarizing film is 43.20% or more, and the luminosity correction polarization degree Py of the polarizing film is 99.9970% or more.
  • the difference ⁇ t1 between the maximum value and the minimum value of the film thickness is 2.1 ⁇ m or less.
  • the transmission axis direction of the polarizing film is a direction perpendicular to the stretching direction of the PVA-based film.
  • the later-described absorption axis direction of the polarizing film is the stretching direction of the PVA-based film.
  • the luminosity correction single transmittance Ty of the polarizing film is 43.20% or more, may be 43.25% or more, may be 43.30% or more, and may be 43.32% or more. good too.
  • the luminosity correction single transmittance Ty of the polarizing film is usually 43.80% or less, may be 43.70 or less, or may be 43.60% or less.
  • Visibility correction polarization degree Py of the polarizing film is 99.9970% or more, may be 99.9975% or more, may be 99.9980% or more, or may be 99.9985% or more good.
  • the visibility correction polarization degree Py of the polarizing film is usually 99.9999% or less, may be 99.9990% or less, or may be 99.9987% or less.
  • a polarizing film in which the visibility-corrected single transmittance Ty and the visibility-corrected degree of polarization Py are within the above ranges has excellent optical properties.
  • the luminosity-corrected single transmittance Ty and the luminosity-corrected polarization degree Py are values measured at the center (middle) position in the transmission axis direction of the polarizing film, and can be measured by the method described in the examples below. .
  • a polarizing film having a luminosity-corrected single transmittance Ty and a luminosity-corrected polarization degree Py within the above ranges can be obtained, for example, in the method for producing a polarizing film described later, by stretching the PVA-based film, and in each step of producing the polarizing film. It can be obtained by adjusting the processing conditions and the like.
  • the difference ⁇ t1 (maximum value ⁇ minimum value) between the maximum value and the minimum value of the film thickness in the transmission axis direction of the polarizing film is 2.1 ⁇ m or less, may be 2.0 ⁇ m or less, or is 1.9 ⁇ m or less. may be, usually 0 ⁇ m or more, 0.1 ⁇ m or more, 1.0 ⁇ m or more, 1.5 ⁇ m or more, or 1.8 ⁇ m or more good.
  • the difference ⁇ t1 is obtained by measuring the film thickness of the polarizing film in each of 26 regions divided by dividing the polarizing film into 26 equal parts in the direction of the transmission axis, and measuring the maximum value and This value is calculated based on the minimum value.
  • the difference ⁇ t1 can be measured by the method described in Examples below.
  • the contraction force in the direction of the absorption axis is suppressed from being distributed in the direction of the transmission axis. Excellent uniformity. Therefore, even when a polarizing film or a polarizing plate containing a polarizing film is used as a material and one or more products are obtained from this material by so-called picking, the polarizing film or polarizing plate obtained by picking (hereinafter each referred to as It is sometimes referred to as a "pick-up polarizing film” or "pick-up polarizing plate”), the shrinkage force in the direction of the absorption axis in the direction of the transmission axis can be made uniform.
  • the cut polarizing film or the cut polarizing plate is made flat. Easy to use. If the cut-off polarizing film or the cut-off polarizing plate is warped, it interferes with the production equipment of the display device and falls off the production line. Cheap. On the other hand, a flat cut-off polarizing film or cut-off polarizing plate is less likely to cause the above problems and is excellent in handleability.
  • the region having the maximum film thickness is usually located at the end of the polarizing film in the transmission axis direction, and among the above 26 regions, from one or both ends of the polarizing film in the transmission axis direction.
  • Each may be in the range of 1 region or more and 8 regions or less, each may be in the range of 1 region or more and 6 regions or less, or each may be in the range of 1 region or more and 4 regions or less.
  • the region having the minimum film thickness is usually located in the center of the polarizing film in the transmission axis direction, and among the 26 regions, the center (middle) in the transmission axis direction Towards both ends, each may be in the range of 1 to 5 regions (2 to 10 regions in total), and the range of 1 to 4 regions (2 to 8 regions in total). may be within the range of 1 to 3 regions (total of 2 to 6 regions), respectively, and may be within the range of 1 to 2 regions (total of 2 to 4 regions) may be inside.
  • the difference ⁇ t2 between the maximum film thickness in the end regions in the transmission axis direction and the maximum film thickness in the central region in the transmission axis direction is preferably 2.1 ⁇ m or less, may be 2.0 ⁇ m or less, may be 1.8 ⁇ m or less, may be 1.7 ⁇ m or less, and is usually 0.5 ⁇ m 1.0 ⁇ m or more, or 1.2 ⁇ m or more.
  • the difference ⁇ t2 is obtained by measuring the film thickness of the polarizing film in each of the 26 regions described above divided by dividing the polarizing film into 26 equal parts in the direction of the transmission axis, and dividing the regions included in the 26 regions according to their positions. It is a value calculated based on the maximum film thickness of the polarizing film in each of the edge region and the central region, classified into the edge region and the central region.
  • the difference ⁇ t2 can be measured by the method described in Examples below. Out of the 26 regions, the end region is a range of 8 regions from both ends in the transmission axis direction of the polarizing film, and the central region is out of the 26 regions described above, in the direction of the transmission axis of the polarizing film. 5 areas (10 areas in total) from the center (middle) to both ends in the transmission axis direction.
  • a polarizing film in which the difference ⁇ t2 is within the above range can suppress the occurrence of distribution in the contraction force in the direction of the absorption axis in the transmission axis direction of the polarizing film, and the contraction force in the direction of the absorption axis in the direction of the transmission axis can be uniform. Excellent in nature.
  • the shrinkage force of the cut-off polarizing film or the cut-off polarizing plate, particularly in the direction of the transmission axis and in the direction of the absorption axis can be made uniform. This makes it easier to provide a display device with excellent appearance quality using the cut-off polarizing film or cut-off polarizing plate, and to improve the handleability of the cut-off polarizing film or the pick-up polarizing plate.
  • a polarizing film in which the difference ⁇ t1 and the difference ⁇ t2 are within the above ranges can be obtained by adjusting the processing conditions and the like in the process of manufacturing the polarizing film in the method for manufacturing the polarizing film described later.
  • the difference ⁇ t1 and the difference ⁇ t2 of the polarizing film for example, the temperature of the crosslinking step, the temperature of the high-temperature, high-humidity step, the absolute humidity, the cumulative draw ratio up to the crosslinking step, and the high-temperature, high-humidity
  • the draw ratio and the like in the process may be adjusted.
  • “until the cross-linking step” refers to a step until the cross-linking treatment is completed.
  • the average thickness of the polarizing film in the central region in the transmission axis direction is preferably 5 ⁇ m or more, may be 7 ⁇ m or more, may be 9 ⁇ m or more, may be 10 ⁇ m or more, or may be 16 ⁇ m or more. 18 ⁇ m or more, preferably 30 ⁇ m or less, 29 ⁇ m or less, 25 ⁇ m or less, 22 ⁇ m or less, or 21 ⁇ m or less. may be 20 ⁇ m or less.
  • the central region in the transmission axis direction of the polarizing film is within the range described above.
  • the average film thickness in the central region is the average value of film thicknesses measured in each of the regions included in the central region among the 26 regions. The average film thickness can be measured by the method described in Examples below.
  • the average film thickness in the end regions of the polarizing film in the transmission axis direction is preferably within the range described for the average film thickness in the central region.
  • the average thickness of the edge regions of the polarizing film may be the same as or different from the average thickness of the central region, or may be greater than the average thickness of the central region.
  • the end region of the polarizing film in the transmission axis direction is the region within the range described above, and the average film thickness of the end region is the average value of the film thicknesses measured in each of the regions included in the end region among the 26 regions. be.
  • the polarizing film of the present embodiment can be suitably used as a polarizing film as a material for obtaining a cut polarizing film or a cut polarizing plate as described above. Therefore, the length of the polarizing film in the transaxial direction is preferably 800 mm or more, more preferably 1000 mm or more, and more preferably 1200 mm or more, so as to enable cutting, preferably multiple cutting. Also, it is preferably 2500 mm or less, more preferably 2300 mm or less, may be 2000 mm or less, or may be 1500 mm or less.
  • the method for producing the polarizing film of this embodiment includes, for example, A dyeing step of dyeing the PVA-based film with a dichroic dye, A cross-linking step of treating the film after the dyeing step with a cross-linking bath containing a cross-linking agent, A high-temperature and high-humidity process of subjecting the film after the cross-linking process to a high-temperature and high-humidity treatment, and a stretching step of uniaxially stretching the PVA-based film.
  • the cross-linking step includes a step of treating with a cross-linking bath having a temperature of 58.0 ° C. or higher
  • the high temperature and high humidity step includes a step of exposing to an atmosphere with a temperature of 70.0 ° C or higher and an absolute humidity of 40.0 g / m 3 or higher
  • the cumulative draw ratio of the PVA-based film up to the cross-linking step is 5.50 times or more and 5.90 times or less
  • the stretch ratio of the PVA-based film in the high temperature and high humidity process is 1.02 times or more and 1.20 times or less
  • the total draw ratio of the PVA-based film is 5.60 times or more.
  • the manufacturing method of the polarizing film can further include other steps than the above.
  • Other processes include a swelling process performed before the dyeing process, a washing process performed after the cross-linking process, and a drying process performed during or after the high-temperature and high-humidity process.
  • processing steps included in the manufacturing method of the polarizing film can be continuously performed by continuously transporting the PVA-based film, which is the original film, along the film transport path of the polarizing film manufacturing apparatus.
  • the film transport path is provided with facilities (processing baths, furnaces, etc.) for performing the various processing steps described above in order of implementation.
  • treatment bath refers to a bath containing a treatment liquid for treating the PVA-based film, such as a swelling bath, a dyeing bath, a cross-linking bath, and a washing bath.
  • the film transport route can be constructed by arranging guide rolls, nip rolls, etc. at appropriate positions.
  • guide rolls can be placed before, after, and within each treatment bath to allow introduction, immersion, and withdrawal of the film into and out of the treatment bath.
  • the film can be immersed in each treatment bath by providing two or more guide rolls in each treatment bath and conveying the film along these guide rolls.
  • polyvinyl alcohol-based resin (hereinafter sometimes referred to as "PVA-based resin") that constitutes the PVA-based film, which is the original film
  • saponified polyvinyl acetate-based resin can be used.
  • polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate with other monomers copolymerizable therewith.
  • Other monomers copolymerizable with vinyl acetate include, for example, unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth)acrylamides having an ammonium group.
  • the degree of saponification of the PVA-based resin is generally about 85 mol% or more, preferably about 90 mol% or more, more preferably about 99 mol% or more.
  • (Meth)acryl means at least one selected from acryl and methacryl. The same applies to "(meth)acryloyl”.
  • the PVA-based resin may be modified, for example, aldehyde-modified polyvinyl formal, polyvinyl acetal, polyvinyl butyral, etc. may be used.
  • the average degree of polymerization of the PVA-based resin is preferably 100-10000, more preferably 1500-8000, still more preferably 2000-5000.
  • the average degree of polymerization of the PVA-based resin can be obtained according to JIS K 6726 (1994). If the average degree of polymerization is less than 100, it is difficult to obtain preferable polarizing performance, and if it exceeds 10,000, film workability may be poor.
  • the thickness of the PVA-based film as the original film is, for example, about 10 ⁇ m or more and 150 ⁇ m or less, and from the viewpoint of thinning the polarizing film, it is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, still more preferably 50 ⁇ m or less, and even more preferably 50 ⁇ m or less. is 40 ⁇ m or less.
  • a PVA-based film which is a raw film, can be prepared, for example, as a roll (wound product) of a long unstretched PVA-based film.
  • the polarizing film is also obtained as an elongated product.
  • the swelling treatment in the swelling step is performed as necessary for the purpose of removing foreign substances from the original PVA-based film, removing the plasticizer, imparting easy dyeability, plasticizing the film, and the like.
  • it can be a treatment in which the PVA-based film is immersed in a swelling bath containing water.
  • the PVA-based film may be immersed in one swelling bath or sequentially immersed in two or more swelling baths.
  • the film Before the swelling treatment, during the swelling treatment, or before and during the swelling treatment, the film may or may not be uniaxially stretched.
  • the swelling bath may be water (for example, pure water), or may be an aqueous solution to which a water-soluble organic solvent such as alcohol is added.
  • the temperature of the swelling bath when the PVA-based film is immersed is usually about 10 to 70° C., preferably about 15 to 50° C., and the film immersion time is usually about 10 to 600 seconds, preferably 20 to 300 seconds. degree.
  • the dyeing process in the dyeing process is a process performed for the purpose of adsorbing and orienting the dichroic dye on the PVA-based film, and specifically, a process of immersing the PVA-based film in a dyeing bath containing the dichroic dye.
  • the PVA-based film may be immersed in one dyeing bath, or may be immersed in two or more dyeing baths sequentially.
  • the PVA-based film subjected to the dyeing process may be subjected to at least some uniaxial stretching treatment. Instead of the uniaxial stretching treatment before the dyeing treatment, or in addition to the uniaxial stretching treatment before the dyeing treatment, the uniaxial stretching treatment may be performed during the dyeing treatment.
  • the dichroic dye can be iodine or a dichroic organic dye.
  • Dichroic organic dyes include Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, and Violet B. , Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Supra Blue G, Supra Blue GL, Supra Orange GL, Direct Sky Blue , Direct Fast Orange S, Fast Black, and the like.
  • a dichroic dye may be used individually by 1 type, and may use 2 or more types together.
  • an aqueous solution containing iodine and potassium iodide can be used for the dyeing bath.
  • potassium iodide other iodides such as zinc iodide may be used, or potassium iodide and other iodides may be used in combination.
  • Compounds other than iodide, such as boric acid, zinc chloride, and cobalt chloride, may coexist.
  • boric acid is distinguished from the cross-linking treatment described later in that it contains iodine.
  • the content of iodine in the aqueous solution is usually about 0.003 to 1 part by mass per 100 parts by mass of water.
  • the content of iodides such as potassium iodide is usually about 0.1 to 20 parts by mass per 100 parts by mass of water.
  • the temperature of the dyeing bath when the PVA-based film is immersed is usually about 10 to 45°C, preferably about 10 to 40°C, more preferably about 20 to 35°C, and the immersion time of the film is usually 30°C. It is about 600 seconds, preferably about 60 to 300 seconds.
  • an aqueous solution containing the dichroic organic dye can be used for the dyeing bath.
  • the content of the dichroic organic dye in the aqueous solution is usually about 1 ⁇ 10 ⁇ 4 to 10 parts by weight, preferably about 1 ⁇ 10 ⁇ 3 to 1 part by weight, per 100 parts by weight of water.
  • This dyeing bath may contain a dyeing assistant or the like, and may contain, for example, an inorganic salt such as sodium sulfate, a surfactant, or the like.
  • a dichroic organic dye may be used individually by 1 type, and may use 2 or more types together.
  • the temperature of the dyeing bath when the film is immersed is, for example, about 20 to 80° C., preferably about 30 to 70° C., and the immersion time of the film is usually about 20 to 600 seconds, preferably about 30 to 300 seconds. be.
  • a cross-linking treatment is performed by treating the PVA-based film after the dyeing step with a cross-linking agent.
  • the cross-linking treatment is performed for the purpose of water resistance by cross-linking, color adjustment, etc. Specifically, it can be a treatment of immersing the film after the dyeing step in a cross-linking bath containing a cross-linking agent.
  • the film may be immersed in one cross-linking bath or sequentially immersed in two or more cross-linking baths.
  • a uniaxial stretching treatment may be performed during the cross-linking treatment.
  • the cross-linking agent includes boric acid, and may further include other cross-linking agents such as glyoxal and glutaraldehyde.
  • the content of boric acid in the cross-linking bath is usually about 0.1 to 15 parts by mass, preferably about 1 to 10 parts by mass, per 100 parts by mass of water.
  • the cross-linking bath preferably contains iodide in addition to boric acid.
  • the content of iodide in the cross-linking bath is usually about 0.1 to 20 parts by mass, preferably about 5 to 15 parts by mass, per 100 parts by mass of water. Examples of iodides include potassium iodide and zinc iodide.
  • Compounds other than iodides such as zinc chloride, cobalt chloride, zirconium chloride, sodium thiosulfate, potassium sulfite, sodium sulfate, etc., may coexist in the cross-linking bath.
  • the composition and content of the components contained in the cross-linking baths may be the same, but preferably different.
  • the temperature of the cross-linking bath when the PVA-based film is immersed has the luminosity correction single transmittance Ty and the luminosity correction degree of polarization Py in the above ranges, and the film thickness difference ⁇ t1 in the above ranges.
  • the temperature is preferably 58.0°C or higher, more preferably 58.3°C or higher, and may be 58.5°C or higher, usually 85.0°C or lower, preferably 70°C. 0° C. or lower, may be 65.0° C. or lower, may be 63.0° C. or lower, or may be 61.0° C. or lower.
  • the immersion time in the cross-linking bath at this temperature is usually about 10 to 600 seconds, preferably about 20 to 300 seconds.
  • the temperature and cross-linking time in at least one cross-linking bath may be within the above ranges, and the temperature and cross-linking time in the other cross-linking baths may be within the above-described temperatures and cross-linking baths. It may be within the range of the cross-linking time or may be outside the range.
  • a cross-linking bath having a temperature of 58.0° C. or higher as the first cross-linking bath.
  • the temperature in other cross-linking baths may be, for example, about 50 to 85° C., or about 50 to 70° C.
  • the film immersion time may be, for example, about 10 to 600 seconds, or about 20 to 300 seconds.
  • the washing treatment in the washing step is a treatment carried out as necessary for the purpose of removing excess crosslinking agents and dichroic dyes adhering to the PVA-based film, and crosslinking is performed using a washing solution containing water.
  • This is a treatment for washing the PVA-based film after the process.
  • it can be a treatment in which the PVA-based film after the cross-linking step is immersed in a cleaning bath (cleaning liquid).
  • cleaning liquid cleaning liquid
  • the PVA-based film may be immersed in one cleaning bath, or may be immersed in two or more cleaning baths sequentially.
  • the washing treatment may be a treatment of spraying a washing solution as a shower onto the PVA-based film after the cross-linking step, or a combination of the above immersion and spraying.
  • the cleaning liquid may be water (for example, pure water), or may be an aqueous solution to which a water-soluble organic solvent such as alcohol is added.
  • the temperature of the cleaning liquid can be, for example, about 1 to 40° C., and the cleaning time can be, for example, about 1 to 60 seconds.
  • the cleaning step is an optional step and may be omitted, or the cleaning treatment may be performed during the high temperature and high humidity step (the high temperature and high humidity treatment may also serve as the cleaning treatment).
  • the film after the washing step is subjected to a high-temperature and high-humidity treatment.
  • a stretching treatment may be applied within a range that does not affect the performance of the film.
  • the high-temperature, high-humidity treatment in the high-temperature, high-humidity process is a treatment in which the PVA-based film after the cross-linking process or after the washing process is exposed to an atmosphere with a temperature of 70.0° C. or higher and an absolute humidity of 40.0 g/m 3 or higher.
  • high temperature treatment drying treatment
  • an absolute humidity of less than 40.0 g/m 3 instead of high temperature and high humidity treatment
  • the high-temperature and high-humidity treatment is preferably applied to the PVA-based film after the cross-linking step or after the washing step in a wet state.
  • “In a wet state” means that the PVA-based film with a high moisture content after the cross-linking step or after the washing step is left as it is (without performing a high-temperature treatment (drying treatment) at an absolute humidity of less than 40.0 g/m 3 ). It means subjecting to high temperature and high humidity treatment.
  • the high-temperature and high-humidity treatment can be a treatment in which the PVA-based film after the cross-linking process or after the washing process is introduced into a furnace (heating furnace), booth, or room in which temperature and humidity can be adjusted.
  • a heating means such as a far-infrared heater or a heat roll may be used in combination.
  • the high-temperature and high-humidity treatment is preferably carried out after the washing step, but the high-temperature and high-humidity treatment and the washing treatment may be performed at the same time, such as by spraying a washing solution in a predetermined high-temperature and high-humidity atmosphere.
  • the high-temperature and high-humidity treatment may also serve as the cleaning treatment, as in the case where the PVA-based film is substantially cleaned by exposing it to a moist atmosphere.
  • the temperature of the high-temperature and high-humidity treatment has the visibility-corrected single transmittance Ty and the visibility-corrected degree of polarization Py in the above ranges, and from the viewpoint of obtaining a polarizing film having the film thickness difference ⁇ t1 in the above ranges, 70.0° C. or higher, preferably 75.0° C. or higher, more preferably 78.0° C. or higher, still more preferably 80.0° C. or higher, usually 100.0° C. or lower, preferably 95.0° C. or higher 0°C or less, more preferably 90.0°C or less.
  • the absolute humidity in the high-temperature and high-humidity treatment has the luminosity-corrected single transmittance Ty and the luminosity-corrected degree of polarization Py in the above ranges, and from the viewpoint of obtaining a polarizing film having the film thickness difference ⁇ t1 in the above ranges. , 40.0 g/m 3 or more, preferably 75.0 g/m 3 or more, more preferably 80.0 g/m 3 or more, and still more preferably 85.0 g/m 3 or more.
  • the absolute humidity is excessively high, there is a concern that dew condensation will occur in the treatment zone and the PVA-based film will be contaminated by the condensed water.
  • the time for the high-temperature and high-humidity treatment is, from the viewpoint of obtaining a polarizing film having the visibility-corrected single transmittance Ty and the visibility-corrected degree of polarization Py in the above ranges and the film thickness difference ⁇ t1 in the above ranges, It is preferably 5 seconds or longer, more preferably 10 seconds or longer.
  • the time depends on the temperature, if it is too long, the optical properties may deteriorate, so it is preferably 60 minutes or less, more preferably 30 minutes or less, and still more preferably 10 minutes or less. , particularly preferably 5 minutes or less.
  • the high-temperature and high-humidity treatment can be a treatment in which a long PVA-based film is conveyed along the film conveying route and continuously introduced into and passed through the furnace or the like.
  • the tension of the film in such a high-temperature and high-humidity treatment has the luminosity-correction single transmittance Ty and the luminosity-correction polarization degree Py in the above ranges, and a polarizing film having a film thickness difference ⁇ t1 in the above ranges.
  • the film tension is preferably 200 N/m or more, more preferably 500 N/m or more.
  • the high-temperature, high-humidity treatment may also serve as a treatment for drying the PVA-based film, that is, a treatment for lowering its moisture content, and unless extreme high-temperature, high-humidity conditions are employed, the drying treatment is usually performed at the same time.
  • it is not always necessary to perform a separate drying treatment after the high-temperature and high-humidity treatment so compared to the method of performing the high-temperature and high-humidity treatment after the high-temperature treatment (drying treatment) at an absolute humidity of less than 40 g / m 3 , which is advantageous in terms of simplification and efficiency of the manufacturing process.
  • a drying process for drying the PVA-based film is performed.
  • the drying treatment may be performed during the high-temperature and high-humidity process as described above, but may be performed after the high-temperature and high-humidity process.
  • the high temperature treatment may be performed at an absolute humidity of less than 40 g/m 3 .
  • the drying treatment may be performed as necessary, and the drying treatment may not be performed.
  • the stretching step is a step of stretching the PVA-based film, and the PVA-based film is preferably uniaxially stretched.
  • a PVA-based film is uniaxially stretched in one or more steps of a swelling process, a dyeing process, a cross-linking process, a washing process, a high-temperature high-humidity process, and a drying process.
  • the uniaxial stretching includes the dyeing step, the cross-linking It is preferable to perform a uniaxial stretching treatment in the process and the high-temperature, high-humidity process.
  • the uniaxial stretching treatment may be either dry stretching in air or wet stretching in a bath, or both.
  • the uniaxial stretching treatment can be inter-roll stretching, hot roll stretching, tenter stretching, etc., in which longitudinal uniaxial stretching is performed with a difference in peripheral speed between two nip rolls, but preferably includes roll-to-roll stretching.
  • the cumulative stretch ratio up to the cross-linking step when the raw film is used as a reference has the luminosity correction single transmittance Ty and the luminosity correction polarization degree Py in the above range, and the film thickness difference in the above range. From the viewpoint of obtaining a polarizing film having ⁇ t1, it is preferably 5.50 times or more and 5.90 times or less, and may be 5.50 times or more and 5.80 times or less.
  • the total draw ratio including the cumulative draw ratio up to the cross-linking process when based on the raw film and the subsequent treatment process (mainly the high temperature and high humidity process) Cumulative draw ratio) is preferable from the viewpoint of obtaining a polarizing film having the luminosity correction single transmittance Ty and the luminosity correction degree of polarization Py in the above range and having the film thickness difference ⁇ t1 in the above range.
  • the draw ratio in the above step and the draw ratio in the high-temperature and high-humidity process is preferably 1.02 times or more and 1.20 times or less, and may be 1.02 times or more and 1.17 times or less.
  • the cumulative draw ratio up to the cross-linking step and the total draw ratio including the subsequent treatment steps are within a certain range or more in order to increase the optical performance of the polarizing film, such as the visibility correction single transmittance Ty and the visibility correction polarization degree Py.
  • stretching more than necessary may cause breakage of the PVA-based film or poor appearance.
  • the cumulative draw ratio up to the cross-linking step exceeds 5.90 times, the room for stretching the PVA-based film in the subsequent processing steps (especially the high-temperature and high-humidity step) becomes small, and the optical performance is rather reduced.
  • the film thickness distribution in the PVA-based film may become large, and the difference in shrinkage force of the polarizing film may become large.
  • the cumulative draw ratio up to the cross-linking step is in the above range (5.50 times or more and 5.90 times or less)
  • excessive stretching in the high-temperature and high-humidity step stretching at a draw ratio exceeding 1.20 times
  • the film thickness distribution in the PVA-based film becomes large, and there is a possibility that the difference in shrinkage force of the polarizing film becomes large.
  • the stretching process in the high-temperature and high-humidity process is performed by, for example, introducing the PVA-based film after the cross-linking process into a furnace (heating furnace), booth, or room in which the temperature and humidity can be adjusted, while performing the high-temperature and high-humidity process. It can be a process to In the high-temperature and high-humidity treatment, heating means such as a far-infrared heater and heat rolls may be used in combination with the treatment introduced into a furnace (heating furnace), booth, or room.
  • the stretching treatment in the high-temperature and high-humidity process may be carried out simultaneously in a high-temperature and high-humidity atmosphere, such as by spraying a cleaning solution while stretching the PVA-based film in a predetermined high-temperature and high-humidity atmosphere. Also, when the PVA-based film is substantially washed by being placed in a high-temperature and high-humidity atmosphere, the high-temperature and high-humidity treatment and the stretching treatment may also serve as the washing treatment.
  • the polarizing plate of this embodiment is obtained by laminating a protective film on one side or both sides of the polarizing film described above.
  • the protective film may be laminated on the polarizing film via a bonding layer, or may be laminated so as to be in direct contact with the polarizing film.
  • the lamination layer is a pressure-sensitive adhesive layer or an adhesive layer.
  • Protective films include thermoplastic resins such as linear polyolefin resins (polypropylene resins, etc.), polyolefin resins such as cyclic polyolefin resins (norbornene resins, etc.); cellulose esters such as triacetyl cellulose and diacetyl cellulose. Resin; polyester resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; polycarbonate resins; (meth)acrylic resins such as polymethyl methacrylate resins; Can be film.
  • thermoplastic resins such as linear polyolefin resins (polypropylene resins, etc.), polyolefin resins such as cyclic polyolefin resins (norbornene resins, etc.); cellulose esters such as triacetyl cellulose and diacetyl cellulose. Resin; polyester resins such as polyethylene terephthalate, polyethylene naphthalate, and poly
  • the protective film can also be a protective film that has optical functions such as a retardation film and a brightness enhancement film.
  • a retardation film provided with an arbitrary retardation value by stretching (uniaxially or biaxially stretching, etc.) a transparent resin film made of the above materials, or by forming a liquid crystal layer or the like on the film.
  • a retardation film provided with an arbitrary retardation value by stretching (uniaxially or biaxially stretching, etc.) a transparent resin film made of the above materials, or by forming a liquid crystal layer or the like on the film.
  • a surface treatment layer such as a hard coat layer, an antiglare layer, an antireflection layer, an antistatic layer, and an antifouling layer may be formed on the surface of the protective film opposite to the polarizing film.
  • the thickness of the protective film is preferably thin from the viewpoint of thinning the polarizing plate. 10 to 50 ⁇ m.
  • the adhesive used for bonding the polarizing film and the protective film examples include an active energy ray-curable adhesive such as an ultraviolet-curable adhesive, an aqueous solution of a polyvinyl alcohol-based resin, or an aqueous solution containing a cross-linking agent.
  • an active energy ray-curable adhesive such as an ultraviolet-curable adhesive, an aqueous solution of a polyvinyl alcohol-based resin, or an aqueous solution containing a cross-linking agent.
  • Water-based adhesives such as urethane-based emulsion adhesives can be used.
  • the adhesives forming the two adhesive layers may be of the same type or of different types. For example, when laminating protective films on both sides, one side may be laminated using a water-based adhesive, and the other side may be laminated using an active energy ray-curable adhesive.
  • the UV-curable adhesive may be a mixture of a radically polymerizable (meth)acrylic compound and a photoradical polymerization initiator, a mixture of a cationic polymerizable epoxy compound and a photocationic polymerization initiator, or the like.
  • a cationic polymerizable epoxy compound and a radically polymerizable (meth)acrylic compound can be used together, and a photocationic polymerization initiator and a photoradical polymerization initiator can also be used together as initiators.
  • the adhesive When using an active energy ray-curable adhesive, the adhesive is cured by irradiating it with an active energy ray after lamination.
  • the light source of the active energy ray is not particularly limited, but the active energy ray (ultraviolet rays) having an emission distribution at a wavelength of 400 nm or less is preferable. Black light lamps, microwave excited mercury lamps, metal halide lamps and the like are preferably used.
  • corona treatment flame treatment, plasma treatment, ultraviolet Surface treatments such as irradiation treatment, primer coating treatment, and saponification treatment may be applied.
  • the adhesive used for bonding the polarizing film and the protective film conventionally known adhesives having excellent optical transparency can be used without particular limitation. Examples include acrylic polymers, urethane polymers, silicone polymers, and polyvinyl ethers.
  • a pressure-sensitive adhesive containing a base polymer such as can be used. Adhesives using acrylic resin as a base polymer, which are excellent in transparency, adhesive strength, removability (reworkability), weather resistance, heat resistance, etc., are suitable.
  • the pressure-sensitive adhesive layer preferably comprises a reaction product of a pressure-sensitive adhesive composition containing a (meth)acrylic resin, a cross-linking agent and a silane compound, and may contain other components.
  • Example 1 A long polyvinyl alcohol (PVA) resin film with a thickness of 45 ⁇ m and a width of 2900 mm as a raw film [degree of saponification of 99.9 mol% or more] is continuously conveyed while being unwound from a roll, and a pure film at a temperature of 30 ° C. It was immersed in a swelling bath made of water for a residence time of 81 seconds (swelling step). Thereafter, the film pulled out from the swelling bath was immersed in a dyeing bath containing iodine with a potassium iodide/water ratio of 2/100 (mass ratio) at a temperature of 30°C for a residence time of 143 seconds (dyeing step).
  • PVA polyvinyl alcohol
  • the film pulled out from the dyeing bath is immersed in a crosslinking bath with a potassium iodide/boric acid/water ratio of 12/3.8/100 (mass ratio) at a temperature of 58.5°C for a residence time of 67 seconds, followed by Then, it was immersed in a crosslinking bath containing potassium iodide/boric acid/water at a ratio of 9/2.4/100 (mass ratio) at a temperature of 40°C for a residence time of 11 seconds (crosslinking step).
  • longitudinal uniaxial stretching was performed by stretching between rolls in a bath.
  • the cumulative draw ratio up to the cross-linking step was 5.74 times based on the raw film.
  • the film pulled out from the cross-linking bath is immersed in a cleaning bath made of pure water at a temperature of 4° C. for a retention time of 3 seconds (cleaning step), and then introduced into a heating furnace capable of controlling humidity for retention.
  • a high-temperature and high-humidity treatment was performed for 161 seconds (high-temperature and high-humidity process) to obtain a polarizing film.
  • the temperature and absolute humidity in the heating furnace were set to 80.0° C. and 88.0 g/m 3 respectively, and the film tension during high temperature and high humidity treatment was set to 1300 N/m.
  • the absolute humidity in the heating furnace was calculated from the measured values of the temperature and relative humidity in the furnace.
  • the total stretch ratio based on the original film of the polarizing film was 5.83 times. rice field.
  • the length (width) in the transmission axis direction of the polarizing film obtained above was 1242 mm. This polarizing film was evaluated as described later. Table 1 shows the results.
  • Example 1 except that the temperature and absolute humidity of the heating furnace used in the high temperature and high humidity treatment of Example 1 were 40.0 ° C. and 1.5 g / m 3 , respectively, and the stretching treatment in the heating furnace was not performed.
  • a polarizing film was obtained in the same manner as in 1.
  • the treatment in the heating furnace is heat treatment (dry treatment) rather than high temperature and high humidity treatment.
  • the final total draw ratio based on the raw film of the polarizing film was 5.74 times (the draw ratio in the high temperature and high humidity process was 1.00 times).
  • the length (width) in the transmission axis direction of the polarizing film obtained above was 1270 mm. Evaluation mentioned later was performed about the polarizing film obtained above. Table 1 shows the results.
  • Comparative Example 2 A polarizing film was obtained in the same manner as in Comparative Example 1, except that the longitudinal uniaxial stretching ratio in the inter-roll stretching in the bath was increased in the crosslinking step (cumulative stretching ratio up to the crosslinking step: 5.81 times). The final total draw ratio based on the raw film of the polarizing film was also 5.81 times (the draw ratio in the high temperature and high humidity process was 1.00 times).
  • the length (width) of the polarizing film obtained above in the transmission axis direction was 1280 mm. Evaluation mentioned later was performed about the polarizing film obtained above. Table 1 shows the results.
  • Example 2 A long polyvinyl alcohol (PVA) resin film with a thickness of 45 ⁇ m and a width of 450 mm as a raw film [degree of saponification of 99.9 mol% or more] is continuously conveyed while being unwound from a roll, and a pure film at a temperature of 30 ° C. It was immersed in a swelling bath made of water for a residence time of 45 seconds (swelling step). Thereafter, the film pulled out from the swelling bath was immersed in a dyeing bath containing iodine with a potassium iodide/water ratio of 2/100 (mass ratio) at a temperature of 30°C for a residence time of 57 seconds (dyeing step).
  • PVA polyvinyl alcohol
  • the film pulled out from the dyeing bath is immersed in a crosslinking bath containing potassium iodide/boric acid/water at a ratio of 12/4.1/100 (mass ratio) at a temperature of 59°C for a residence time of 40 seconds, followed by It was immersed in a cross-linking bath at a temperature of 60° C. in which potassium iodide/boric acid/water were 11.7/4.1/100 (mass ratio) for a residence time of 6 seconds (cross-linking step).
  • longitudinal uniaxial stretching was performed by stretching between rolls in a bath.
  • the cumulative draw ratio up to the cross-linking step was 5.54 times based on the original film.
  • the film pulled out from the cross-linking bath is immersed in a cleaning bath made of pure water at a temperature of 5° C. for a residence time of 1 second (washing step), and subsequently introduced into a heating furnace capable of controlling humidity for residence.
  • a high temperature and high humidity treatment was performed for 93 seconds (high temperature and high humidity process) to obtain a polarizing film.
  • the temperature and absolute humidity in the heating furnace were set to 80.0° C. and 175 g/m 3 respectively, and the film tension during high temperature and high humidity treatment was set to 200 N/m.
  • the absolute humidity in the heating furnace was calculated from the measured values of the temperature and relative humidity in the furnace.
  • the length (width) in the transmission axis direction of the polarizing film obtained above was 188 mm. This polarizing film was evaluated as described later. Table 2 shows the results.
  • Example 3 The temperature and absolute humidity of the heating furnace used in the high-temperature and high-humidity treatment of Example 2 were set to 70.0° C. and 120 g/m 3 respectively, and the path of the film in the heating furnace was made shorter than in Example 2 to reduce the residence time.
  • a polarizing film was obtained in the same manner as in Example 2, except that the time was set to 31 seconds and the draw ratio in the high-temperature and high-humidity process was set to 1.02 times. The final total draw ratio based on the raw film of the polarizing film was 5.77 times.
  • the length (width) in the transmission axis direction of the polarizing film obtained above was 205 mm. Evaluation mentioned later was performed about the polarizing film obtained above. Table 2 shows the results.
  • Example 4 Based on the original film, the cumulative draw ratio until the cross-linking step was 5.70 times, and the temperature and absolute humidity of the heating furnace used in the high temperature and high humidity treatment of Example 2 were 80.0 ° C. and 203 g / m 3 respectively.
  • a polarizing film was obtained in the same manner as in Example 2, except that the draw ratio in the high-temperature, high-humidity process was 1.16 times.
  • the final total draw ratio based on the raw film of the polarizing film was 6.75 times.
  • the length (width) in the transmission axis direction of the polarizing film obtained above was 186 mm. Evaluation mentioned later was performed about the polarizing film obtained above. Table 2 shows the results.
  • the length (width) in the transmission axis direction of the polarizing film obtained above was 199 mm. Evaluation mentioned later was performed about the polarizing film obtained above. Table 3 shows the results.
  • the length (width) in the transmission axis direction of the polarizing film obtained above was 207 mm. Evaluation mentioned later was performed about the polarizing film obtained above. Table 3 shows the results.
  • MD transmittance is the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is parallel to the transmission axis of the polarizing film sample, and is represented by “MD” in the above formula.
  • TD transmittance is the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is perpendicular to the transmission axis of the polarizing film sample, and is expressed as "TD” in the above formula.
  • the region where the film thickness is the minimum value is one or more regions from the center (middle) in the transmission axis direction toward both ends in the transmission axis direction among the 26 regions described above. It is a region within the range of 5 regions or less (a total of 2 regions or more and 10 regions or less), and regions other than these regions include regions where the film thickness reaches the maximum value.
  • the average value of the film thickness of the region included in the central region and the average value of the film thickness of the regions included in the end region are calculated as the average film thickness in the central region in the transmission axis direction of the polarizing film. It was calculated as an average value in the thickness and the end region in the transmission axis direction of the polarizing film.
  • MD shrinkage force of polarizing film From each of the 26 regions obtained by dividing the polarizing film into 26 equal parts in the transmission axis direction, a measurement sample of 2 mm in width and 10 mm in length was cut out with the long side in the absorption axis direction (MD direction, stretching direction). This sample for measurement was set in a thermomechanical analyzer (TMA) ["EXSTAR-6000" manufactured by SII Nanotechnology Co., Ltd.] and held at a temperature of 80° C. for 4 hours while keeping the dimensions constant. The MD contractile force, which is the contractile force in the longitudinal direction (MD direction, absorption axis direction) that sometimes occurs, was measured. The difference between the maximum and minimum MD contractile forces of the measurement samples prepared for each of the 26 regions was determined.
  • the measurement sample with the minimum MD shrinkage force was oriented from the center (middle) in the transmission axis direction to both ends in the transmission axis direction in the 26 regions described above.
  • a measurement sample made from a region within the range of 1 region or more and 5 regions or less (a total of 2 regions or more and 10 regions or less). It contained a different measurement sample.
  • the polarizing films of Examples have large luminosity-correction single transmittance Ty and luminosity-correction polarization degree Py and are excellent in optical properties. Excellent uniformity of shrinkage force in the absorption axis direction of the polarizing film in the transmission axis direction.

Abstract

A polarizing film is provided that has excellent uniformity of contraction force in the direction of the absorption axis in the transmission axis direction while having excellent optical characteristics. The polarizing film comprises a dichroic dye adsorbed and oriented on a polyvinyl alcohol resin film. In the polarizing film, the luminosity factor-corrected unit transmittance Ty is greater than or equal to 43.20% and the luminosity factor-corrected polarization degree Py is greater than or equal to 99.9970%. In the transmission axis direction of the polarizing film, the difference between the maximum value and the minimum value of the film thickness is less than or equal to 2.1 μm.

Description

偏光フィルム及び偏光板Polarizing film and polarizing plate
 本発明は、偏光フィルム及び偏光板に関する。 The present invention relates to polarizing films and polarizing plates.
 偏光フィルムは、液晶表示装置及び有機エレクトロルミネッセンス(EL)表示装置等の表示装置に用いられている。偏光フィルムとして、延伸したポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向したものを用いることが知られている(例えば、特許文献1)。 Polarizing films are used in display devices such as liquid crystal display devices and organic electroluminescence (EL) display devices. As a polarizing film, it is known to use a stretched polyvinyl alcohol-based resin film in which a dichroic dye is adsorbed and oriented (for example, Patent Document 1).
特開2013-148806号公報JP 2013-148806 A
 偏光フィルムの光学特性を向上するために、ポリビニルアルコール系樹脂フィルムの延伸倍率を高めることがある。延伸倍率を高めた偏光フィルムでは、吸収軸方向の収縮力が透過軸方向の中央部と端部との間で大きく異なる傾向にあった。ここで、透過軸方向は、偏光フィルムの延伸方向に直交する方向であり、吸収軸方向は、偏光フィルムの延伸方向である。 In order to improve the optical properties of the polarizing film, the stretch ratio of the polyvinyl alcohol resin film may be increased. In the polarizing film with a high draw ratio, the shrinkage force in the direction of the absorption axis tended to differ greatly between the central portion and the end portions in the direction of the transmission axis. Here, the transmission axis direction is the direction perpendicular to the stretching direction of the polarizing film, and the absorption axis direction is the stretching direction of the polarizing film.
 偏光フィルムは通常、その片面又は両面に保護フィルムが積層された偏光板として表示装置等に用いられる。表示装置に適用される偏光板として、生産効率等の観点から、材料としての偏光板から1以上の製品が得られるように切り出された偏光板、いわゆる丁取りによって得られた偏光板(以下、「丁取り偏光板」ということがある。)を用いることがある。例えば、丁取り前の偏光板からその透過軸方向に2以上の偏光板が得られるように多丁取りを行って丁取り偏光板を得る場合、丁取り偏光板が有する辺には、丁取り前の偏光板の偏光フィルムの透過軸方向の中央部又はその付近から形成された辺と、端部又はその付近から形成された辺とが含まれることがある。そのため、丁取り前の偏光板の吸収軸方向の収縮力が透過軸方向において異なっていると、丁取り偏光板の各辺において吸収軸方向の収縮力が異なることになる。このような丁取り偏光板では、例えば、丁取り偏光板の一辺の収縮力のみが大きくなる等のように、丁取り偏光板の各辺における収縮力に分布が発生することになる。このような収縮力の分布は、多丁取りによって丁取り偏光板を得る場合に限らず、丁取り前の偏光フィルムの透過軸方向の中央部及びその端部が含まれている1つの丁取り偏光板を得る場合にも同様に発生し得る。 A polarizing film is usually used in a display device or the like as a polarizing plate with a protective film laminated on one or both sides thereof. As a polarizing plate applied to a display device, from the viewpoint of production efficiency, etc., a polarizing plate cut out so that one or more products can be obtained from a polarizing plate as a material, a polarizing plate obtained by so-called picking (hereinafter referred to as It is sometimes called a "picked-up polarizing plate.") may be used. For example, when a cut polarizing plate is obtained by performing multi-cutting so that two or more polarizing plates are obtained in the transmission axis direction from a polarizing plate before cutting, the side of the cutting polarizing plate has a cut A side formed from or near the center in the transmission axis direction of the polarizing film of the previous polarizing plate and a side formed from or near the end may be included. Therefore, if the contraction force in the absorption axis direction of the polarizing plate before trimming is different in the transmission axis direction, the contraction force in the absorption axis direction is different on each side of the trimmed polarizing plate. In such a trimmed polarizing plate, for example, the shrinkage force on each side of the trimmed polarizing plate is distributed, such that the shrinkage force increases only on one side of the trimmed polarizing plate. Such a shrinkage force distribution is not limited to the case of obtaining a trimmed polarizing plate by multiple trimming. The same can occur when obtaining a polarizing plate.
 偏光板を表示パネルに貼合した表示装置を高温条件下に晒すと、偏光板に熱ムラが生じることがある。上記した収縮力に分布を有する丁取り偏光板を表示装置に適用した場合、上記の熱ムラが丁取り偏光板全体に均一に発生せず、不均一に発生する。不均一に発生した熱ムラは目立ちやすいため、表示装置の外観品質を悪化させる原因となり得る。また、上記のような収縮力の分布は、例えば丁取り偏光板の一辺の反りのみが大きくなる等のように、丁取り偏光板の各辺に発生する反りにも分布を生じさせるため、丁取り偏光板の取り扱い性を低下させる原因ともなり得る。 When a display device in which a polarizing plate is attached to a display panel is exposed to high temperature conditions, heat unevenness may occur in the polarizing plate. When the trimmed polarizing plate having the distribution of the shrinkage force is applied to a display device, the heat unevenness described above does not occur uniformly over the entire trimmed polarizing plate, but occurs non-uniformly. Non-uniform heat unevenness is conspicuous, and may cause deterioration in appearance quality of the display device. In addition, the distribution of the shrinkage force as described above causes a distribution of warpage occurring on each side of the polarizing plate for picking, for example, the warp of only one side of the polarizing plate for picking increases. It can also be a cause of lowering the handleability of the polarizing plate.
 本発明は、優れた光学特性を有しながらも、透過軸方向における吸収軸方向の収縮力の均一性に優れた偏光フィルム、及びそれを含む偏光板の提供を目的とする。 An object of the present invention is to provide a polarizing film having excellent uniformity of contraction force in the direction of the absorption axis in the direction of the transmission axis while having excellent optical properties, and a polarizing plate including the same.
 本発明は、以下の偏光フィルム及び偏光板を提供する。
 〔1〕 ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向している偏光フィルムであって、
 視感度補正単体透過率Tyは、43.20%以上であり、
 視感度補正偏光度Pyは、99.9970%以上であり、
 透過軸方向において、膜厚の最大値と最小値との差は、2.1μm以下である、偏光フィルム。
 〔2〕 透過軸方向の端領域における膜厚の最大値と、透過軸方向の中央領域における膜厚の最大値との差は、2.1μm以下である、〔1〕に記載の偏光フィルム。
 〔3〕 透過軸方向の長さが800mm以上2500mm以下である、〔1〕又は〔2〕に記載の偏光フィルム。
 〔4〕 透過軸方向の中央領域における平均膜厚は、5μm以上30μm以下である、〔1〕~〔3〕のいずれかに記載の偏光フィルム。
 〔5〕透過軸方向の中央領域における平均膜厚は、16μm以上29μm以下である、〔1〕~〔4〕のいずれかに記載の偏光フィルム。
 〔6〕 〔1〕~〔5〕のいずれかに記載の偏光フィルムの片面又は両面に、保護フィルムが積層された、偏光板。
The present invention provides the following polarizing film and polarizing plate.
[1] A polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol resin film,
The visibility correction single transmittance Ty is 43.20% or more,
Visibility correction polarization degree Py is 99.9970% or more,
A polarizing film, wherein the difference between the maximum value and the minimum value of film thickness in the transmission axis direction is 2.1 μm or less.
[2] The polarizing film according to [1], wherein the difference between the maximum film thickness in the end regions in the transmission axis direction and the maximum film thickness in the central region in the transmission axis direction is 2.1 μm or less.
[3] The polarizing film according to [1] or [2], wherein the length in the transmission axis direction is 800 mm or more and 2500 mm or less.
[4] The polarizing film according to any one of [1] to [3], wherein the average film thickness in the central region in the transmission axis direction is 5 μm or more and 30 μm or less.
[5] The polarizing film according to any one of [1] to [4], wherein the average film thickness in the central region in the transmission axis direction is 16 μm or more and 29 μm or less.
[6] A polarizing plate in which a protective film is laminated on one or both sides of the polarizing film according to any one of [1] to [5].
 本発明によれば、優れた光学特性を有しながらも、透過軸方向における吸収軸方向の収縮力の均一性に優れた偏光フィルム、及びそれを含む偏光板を提供することができる。 According to the present invention, it is possible to provide a polarizing film and a polarizing plate including the same, which have excellent optical properties and excellent uniformity of contraction force in the direction of the absorption axis in the direction of the transmission axis.
 以下、本発明の偏光フィルム及び偏光板について説明する。
 (偏光フィルム)
 本実施形態の偏光フィルムは、ポリビニルアルコール系樹脂フィルム(以下、「PVA系フィルム」ということがある。)に二色性色素が吸着配向している偏光フィルムである。偏光フィルムの視感度補正単体透過率Tyは43.20%以上であり、偏光フィルムの視感度補正偏光度Pyは99.9970%以上である。偏光フィルムの透過軸方向において、膜厚の最大値と最小値との差Δt1は2.1μm以下である。
The polarizing film and polarizing plate of the present invention are described below.
(polarizing film)
The polarizing film of the present embodiment is a polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film (hereinafter sometimes referred to as "PVA-based film"). The luminosity correction single transmittance Ty of the polarizing film is 43.20% or more, and the luminosity correction polarization degree Py of the polarizing film is 99.9970% or more. In the transmission axis direction of the polarizing film, the difference Δt1 between the maximum value and the minimum value of the film thickness is 2.1 μm or less.
 偏光フィルムの透過軸方向は、PVA系フィルムの延伸方向に直交する方向である。偏光フィルムの後述する吸収軸方向は、PVA系フィルムの延伸方向である。 The transmission axis direction of the polarizing film is a direction perpendicular to the stretching direction of the PVA-based film. The later-described absorption axis direction of the polarizing film is the stretching direction of the PVA-based film.
 偏光フィルムの視感度補正単体透過率Tyは、43.20%以上であり、43.25%以上であってもよく、43.30%以上であってもよく、43.32%以上であってもよい。偏光フィルムの視感度補正単体透過率Tyは、通常43.80%以下であり、43.70以下であってもよく、43.60%以下であってもよい。偏光フィルムの視感度補正偏光度Pyは、99.9970%以上であり、99.9975%以上であってもよく、99.9980%以上であってもよく、99.9985%以上であってもよい。偏光フィルムの視感度補正偏光度Pyは、通常99.9999%以下であり、99.9990%以下であってもよく、99.9987%以下であってもよい。視感度補正単体透過率Ty及び視感度補正偏光度Pyが上記の範囲である偏光フィルムは、光学特性に優れる。視感度補正単体透過率Ty及び視感度補正偏光度Pyは、偏光フィルムの透過軸方向の中心(真ん中)の位置で測定した値であり、後述する実施例に記載の方法によって測定することができる。 The luminosity correction single transmittance Ty of the polarizing film is 43.20% or more, may be 43.25% or more, may be 43.30% or more, and may be 43.32% or more. good too. The luminosity correction single transmittance Ty of the polarizing film is usually 43.80% or less, may be 43.70 or less, or may be 43.60% or less. Visibility correction polarization degree Py of the polarizing film is 99.9970% or more, may be 99.9975% or more, may be 99.9980% or more, or may be 99.9985% or more good. The visibility correction polarization degree Py of the polarizing film is usually 99.9999% or less, may be 99.9990% or less, or may be 99.9987% or less. A polarizing film in which the visibility-corrected single transmittance Ty and the visibility-corrected degree of polarization Py are within the above ranges has excellent optical properties. The luminosity-corrected single transmittance Ty and the luminosity-corrected polarization degree Py are values measured at the center (middle) position in the transmission axis direction of the polarizing film, and can be measured by the method described in the examples below. .
 視感度補正単体透過率Ty及び視感度補正偏光度Pyが上記の範囲内にある偏光フィルムは、例えば後述する偏光フィルムの製造方法において、PVA系フィルムの延伸倍率、偏光フィルムを製造する各工程における処理条件等を調整することによって得ることができる。 A polarizing film having a luminosity-corrected single transmittance Ty and a luminosity-corrected polarization degree Py within the above ranges can be obtained, for example, in the method for producing a polarizing film described later, by stretching the PVA-based film, and in each step of producing the polarizing film. It can be obtained by adjusting the processing conditions and the like.
 偏光フィルムの透過軸方向における膜厚の最大値と最小値との差Δt1(最大値-最小値)は、2.1μm以下であり、2.0μm以下であってもよく、1.9μm以下であってもよく、通常、0μm以上であり、0.1μm以上であってもよく、1.0μm以上であってもよく、1.5μm以上であってもよく、1.8μm以上であってもよい。上記差Δt1は、偏光フィルムを透過軸方向に26等分することにより区分される26領域のそれぞれにおいて偏光フィルムの膜厚を測定し、測定により得られた26の膜厚のうちの最大値及び最小値に基づいて算出した値である。上記差Δt1は、後述する実施例に記載の方法によって測定することができる。 The difference Δt1 (maximum value−minimum value) between the maximum value and the minimum value of the film thickness in the transmission axis direction of the polarizing film is 2.1 μm or less, may be 2.0 μm or less, or is 1.9 μm or less. may be, usually 0 μm or more, 0.1 μm or more, 1.0 μm or more, 1.5 μm or more, or 1.8 μm or more good. The difference Δt1 is obtained by measuring the film thickness of the polarizing film in each of 26 regions divided by dividing the polarizing film into 26 equal parts in the direction of the transmission axis, and measuring the maximum value and This value is calculated based on the minimum value. The difference Δt1 can be measured by the method described in Examples below.
 上記差Δt1が上記した範囲内である偏光フィルムは、その透過軸方向において、吸収軸方向の収縮力に分布が発生することが抑制されているため、透過軸方向における吸収軸方向の収縮力の均一性に優れる。そのため、偏光フィルム又は偏光フィルムを含む偏光板を材料とし、この材料から1以上の製品を得る、いわゆる丁取りを行う場合にも、丁取りによって得られた偏光フィルム又は偏光板(以下、それぞれを「丁取り偏光フィルム」、「丁取り偏光板」ということがある。)において、透過軸方向における吸収軸方向の収縮力を均一にすることができる。これにより、丁取り偏光フィルム又は丁取り偏光板を表示装置に適用した後に高温条件下に晒された場合等に生じることがある熱ムラが不均一に発生することを抑制できる。そのため、表示装置において熱ムラが目立ちやすくなることを抑制することができ、外観品質に優れた表示装置を提供しやすくなる。 In the polarizing film in which the difference Δt1 is within the above range, the contraction force in the direction of the absorption axis is suppressed from being distributed in the direction of the transmission axis. Excellent uniformity. Therefore, even when a polarizing film or a polarizing plate containing a polarizing film is used as a material and one or more products are obtained from this material by so-called picking, the polarizing film or polarizing plate obtained by picking (hereinafter each referred to as It is sometimes referred to as a "pick-up polarizing film" or "pick-up polarizing plate"), the shrinkage force in the direction of the absorption axis in the direction of the transmission axis can be made uniform. As a result, it is possible to prevent non-uniform heat unevenness, which may occur when the polarizing film or polarizing plate is exposed to high temperature conditions after being applied to a display device. Therefore, it is possible to prevent heat unevenness from becoming conspicuous in the display device, and it becomes easy to provide a display device having excellent appearance quality.
 上記差Δt1が上記した範囲内である偏光フィルムを用いることにより、丁取り偏光フィルム又は丁取り偏光板に反りが発生することを抑制し、丁取り偏光フィルム又は丁取り偏光板をフラット(平坦)にしやすい。丁取り偏光フィルム又は丁取り偏光板に反りが発生すると、表示装置の製造設備に干渉して製造ラインから脱落する、表示パネルに貼合する際に気泡を噛み込みやすくなる等の不具合が発生しやすい。これに対し、フラットな丁取り偏光フィルム又は丁取り偏光板は、上記の不具合が発生しにくく取り扱い性に優れる。 By using a polarizing film in which the difference Δt1 is within the above range, the occurrence of warpage in the cut polarizing film or the cut polarizing plate is suppressed, and the cut polarizing film or the cut polarizing plate is made flat. Easy to use. If the cut-off polarizing film or the cut-off polarizing plate is warped, it interferes with the production equipment of the display device and falls off the production line. Cheap. On the other hand, a flat cut-off polarizing film or cut-off polarizing plate is less likely to cause the above problems and is excellent in handleability.
 偏光フィルムにおいて、最大値となる膜厚を有する領域は通常、偏光フィルムの透過軸方向の端部に位置し、上記した26領域のうちの、偏光フィルムの透過軸方向の一方又は両方の端からそれぞれ1領域以上8領域以下の範囲内にあってもよく、それぞれ1領域以上6領域以下の範囲内にあってもよく、それぞれ1領域以上4領域以下の範囲内にあってもよい。 In the polarizing film, the region having the maximum film thickness is usually located at the end of the polarizing film in the transmission axis direction, and among the above 26 regions, from one or both ends of the polarizing film in the transmission axis direction Each may be in the range of 1 region or more and 8 regions or less, each may be in the range of 1 region or more and 6 regions or less, or each may be in the range of 1 region or more and 4 regions or less.
 偏光フィルムにおいて、最小値となる膜厚を有する領域は通常、偏光フィルムの透過軸方向の中央部に位置し、上記した26領域のうちの、透過軸方向の中心(真ん中)から透過軸方向の両方の端に向けて、それぞれ1領域以上5領域以下(合計2領域以上10領域以下)の範囲内にあってもよく、それぞれ1領域以上4領域以下(合計2領域以上8領域以下)の範囲内にあってもよく、それぞれ1領域以上3領域以下(合計2領域以上6領域以下)の範囲内にあってもよく、それぞれ1領域以上2領域以下(合計2領域以上4領域以下)の範囲内にあってもよい。 In the polarizing film, the region having the minimum film thickness is usually located in the center of the polarizing film in the transmission axis direction, and among the 26 regions, the center (middle) in the transmission axis direction Towards both ends, each may be in the range of 1 to 5 regions (2 to 10 regions in total), and the range of 1 to 4 regions (2 to 8 regions in total). may be within the range of 1 to 3 regions (total of 2 to 6 regions), respectively, and may be within the range of 1 to 2 regions (total of 2 to 4 regions) may be inside.
 偏光フィルムにおいて、透過軸方向の端領域における膜厚の最大値と、透過軸方向の中央領域における膜厚の最大値との差Δt2(端領域の膜厚の最大値-中央領域の膜厚の最大値)は、2.1μm以下であることが好ましく、2.0μm以下であってもよく、1.8μm以下であってもよく、1.7μm以下であってもよく、通常、0.5μm以上であり、1.0μm以上であってもよく、1.2μm以上であってもよい。 In the polarizing film, the difference Δt2 between the maximum film thickness in the end regions in the transmission axis direction and the maximum film thickness in the central region in the transmission axis direction (maximum film thickness in the end regions - film thickness in the central region) maximum value) is preferably 2.1 μm or less, may be 2.0 μm or less, may be 1.8 μm or less, may be 1.7 μm or less, and is usually 0.5 μm 1.0 μm or more, or 1.2 μm or more.
 上記差Δt2は、偏光フィルムを透過軸方向に26等分することにより区分される上記した26領域のそれぞれにおいて偏光フィルムの膜厚を測定し、この26領域に含まれる領域をその位置に応じて端領域及び中央領域に分類し、端領域及び中央領域のそれぞれにおける偏光フィルムの膜厚の最大値に基づいて算出した値である。上記差Δt2は、後述する実施例に記載の方法によって測定することができる。端領域は、上記した26領域のうちの、偏光フィルムの透過軸方向の両方の端からそれぞれ8領域分の範囲であり、中央領域は、上記した26領域のうちの、偏光フィルムの透過軸方向の中心(真ん中)から透過軸方向の両方の端に向けて、それぞれ5領域分(合計10領域分)の範囲である。 The difference Δt2 is obtained by measuring the film thickness of the polarizing film in each of the 26 regions described above divided by dividing the polarizing film into 26 equal parts in the direction of the transmission axis, and dividing the regions included in the 26 regions according to their positions. It is a value calculated based on the maximum film thickness of the polarizing film in each of the edge region and the central region, classified into the edge region and the central region. The difference Δt2 can be measured by the method described in Examples below. Out of the 26 regions, the end region is a range of 8 regions from both ends in the transmission axis direction of the polarizing film, and the central region is out of the 26 regions described above, in the direction of the transmission axis of the polarizing film. 5 areas (10 areas in total) from the center (middle) to both ends in the transmission axis direction.
 上記差Δt2が上記した範囲内である偏光フィルムは、偏光フィルムの透過軸方向において、吸収軸方向の収縮力に分布が発生することを抑制でき、透過軸方向における吸収軸方向の収縮力の均一性に優れる。上記差Δt2が上記した範囲内である偏光フィルムを用いることにより、丁取り偏光フィルム又は丁取り偏光板の特に透過軸方向における吸収軸方向の収縮力を均一にすることができる。これにより、丁取り偏光フィルム又は丁取り偏光板を用いて外観品質に優れた表示装置を提供しやすくなり、また、丁取り偏光フィルム又は丁取り偏光板の取り扱い性を向上しやすくなる。 A polarizing film in which the difference Δt2 is within the above range can suppress the occurrence of distribution in the contraction force in the direction of the absorption axis in the transmission axis direction of the polarizing film, and the contraction force in the direction of the absorption axis in the direction of the transmission axis can be uniform. Excellent in nature. By using a polarizing film in which the difference Δt2 is within the above range, the shrinkage force of the cut-off polarizing film or the cut-off polarizing plate, particularly in the direction of the transmission axis and in the direction of the absorption axis, can be made uniform. This makes it easier to provide a display device with excellent appearance quality using the cut-off polarizing film or cut-off polarizing plate, and to improve the handleability of the cut-off polarizing film or the pick-up polarizing plate.
 上記した差Δt1及び差Δt2が上記の範囲内にある偏光フィルムは、後述する偏光フィルムの製造方法において、偏光フィルムを製造する工程における処理条件等を調整することによって得ることができる。偏光フィルムの差Δt1及び差Δt2を調整するためには、偏光フィルムの製造方法において、例えば、架橋工程の温度、高温高湿工程の温度、絶対湿度、架橋工程までの累積延伸倍率及び高温高湿工程における延伸倍率等を調整すればよい。ここで、「架橋工程まで」とは、架橋処理が完了するまでの工程をいう。 A polarizing film in which the difference Δt1 and the difference Δt2 are within the above ranges can be obtained by adjusting the processing conditions and the like in the process of manufacturing the polarizing film in the method for manufacturing the polarizing film described later. In order to adjust the difference Δt1 and the difference Δt2 of the polarizing film, for example, the temperature of the crosslinking step, the temperature of the high-temperature, high-humidity step, the absolute humidity, the cumulative draw ratio up to the crosslinking step, and the high-temperature, high-humidity The draw ratio and the like in the process may be adjusted. Here, "until the cross-linking step" refers to a step until the cross-linking treatment is completed.
 偏光フィルムの透過軸方向の中央領域における平均膜厚は、好ましくは5μm以上であり、7μm以上であってもよく、9μm以上であってもよく、10μm以上であってもよく、16μm以上であってもよく、18μm以上であってもよく、また、好ましくは30μm以下であり、29μm以下であってもよく、25μm以下であってもよく、22μm以下であってもよく、21μm以下であってもよく、20μm以下であってもよい。偏光フィルムの透過軸方向の中央領域は、上記した範囲の領域である。この中央領域における平均膜厚は、上記26領域のうちの中央領域に含まれる領域のそれぞれにおいて測定した膜厚の平均値である。上記平均膜厚は、後述する実施例に記載の方法によって測定することができる。
 偏光フィルムの透過軸方向の端領域における平均膜厚は、上記した中央領域における平均膜厚で説明した範囲であることが好ましい。偏光フィルムの上記した端領域における平均膜厚は、上記した中央領域における平均膜厚と同じあってもよく、異なっていてもよく、中央領域における平均膜厚よりも大きくてもよい。偏光フィルムの透過軸方向の端領域は、上記した範囲の領域であり、端領域の平均膜厚は、上記26領域のうちの端領域に含まれる領域のそれぞれにおいて測定した膜厚の平均値である。
The average thickness of the polarizing film in the central region in the transmission axis direction is preferably 5 μm or more, may be 7 μm or more, may be 9 μm or more, may be 10 μm or more, or may be 16 μm or more. 18 μm or more, preferably 30 μm or less, 29 μm or less, 25 μm or less, 22 μm or less, or 21 μm or less. may be 20 μm or less. The central region in the transmission axis direction of the polarizing film is within the range described above. The average film thickness in the central region is the average value of film thicknesses measured in each of the regions included in the central region among the 26 regions. The average film thickness can be measured by the method described in Examples below.
The average film thickness in the end regions of the polarizing film in the transmission axis direction is preferably within the range described for the average film thickness in the central region. The average thickness of the edge regions of the polarizing film may be the same as or different from the average thickness of the central region, or may be greater than the average thickness of the central region. The end region of the polarizing film in the transmission axis direction is the region within the range described above, and the average film thickness of the end region is the average value of the film thicknesses measured in each of the regions included in the end region among the 26 regions. be.
 本実施形態の偏光フィルムは、上記したように丁取り偏光フィルム又は丁取り偏光板を得るための材料としての偏光フィルムとして好適に用いることができる。そのため、偏光フィルムの過軸方向の長さは、丁取り、好ましくは多丁取りが可能となるように、800mm以上であることが好ましく、1000mm以上であることがより好ましく、1200mm以上であってもよく、また、2500mm以下であることが好ましく、2300mm以下であることがより好ましく、2000mm以下であってもよく、1500mm以下であってもよい。 The polarizing film of the present embodiment can be suitably used as a polarizing film as a material for obtaining a cut polarizing film or a cut polarizing plate as described above. Therefore, the length of the polarizing film in the transaxial direction is preferably 800 mm or more, more preferably 1000 mm or more, and more preferably 1200 mm or more, so as to enable cutting, preferably multiple cutting. Also, it is preferably 2500 mm or less, more preferably 2300 mm or less, may be 2000 mm or less, or may be 1500 mm or less.
 (偏光フィルムの製造方法)
 本実施形態の偏光フィルムの製造方法は、例えば、
 PVA系フィルムを二色性色素で染色する染色工程、
 染色工程後のフィルムを架橋剤を含む架橋浴で処理する架橋工程、
 架橋工程後のフィルムに高温高湿処理を施す高温高湿工程、及び、
 PVA系フィルムを一軸延伸する延伸工程、を含む。
(Method for producing polarizing film)
The method for producing the polarizing film of this embodiment includes, for example,
A dyeing step of dyeing the PVA-based film with a dichroic dye,
A cross-linking step of treating the film after the dyeing step with a cross-linking bath containing a cross-linking agent,
A high-temperature and high-humidity process of subjecting the film after the cross-linking process to a high-temperature and high-humidity treatment, and
a stretching step of uniaxially stretching the PVA-based film.
 上記の偏光フィルムの製造方法において、
 架橋工程は、温度58.0℃以上の架橋浴で処理する工程を含み、
 高温高湿工程は、温度70.0℃以上、絶対湿度40.0g/m以上の雰囲気下に晒す工程を含み、
 架橋工程までのPVA系フィルムの累積延伸倍率は、5.50倍以上5.90倍以下であり、
 高温高湿工程におけるPVA系フィルムの延伸倍率は、1.02倍以上1.20倍以下であり、
 PVA系フィルムの総延伸倍率は、5.60倍以上である。
In the above method for producing a polarizing film,
The cross-linking step includes a step of treating with a cross-linking bath having a temperature of 58.0 ° C. or higher,
The high temperature and high humidity step includes a step of exposing to an atmosphere with a temperature of 70.0 ° C or higher and an absolute humidity of 40.0 g / m 3 or higher,
The cumulative draw ratio of the PVA-based film up to the cross-linking step is 5.50 times or more and 5.90 times or less,
The stretch ratio of the PVA-based film in the high temperature and high humidity process is 1.02 times or more and 1.20 times or less,
The total draw ratio of the PVA-based film is 5.60 times or more.
 偏光フィルムの製造方法は、上記以外の他の工程をさらに含むことができる。他の工程としては、染色工程の前に行う膨潤工程、架橋工程の後に行う洗浄工程、高温高湿工程中又はその後に行う乾燥工程等が挙げられる。 The manufacturing method of the polarizing film can further include other steps than the above. Other processes include a swelling process performed before the dyeing process, a washing process performed after the cross-linking process, and a drying process performed during or after the high-temperature and high-humidity process.
 偏光フィルムの製造方法に含まれる各種の処理工程は、偏光フィルムの製造装置のフィルム搬送経路に沿って原反フィルムであるPVA系フィルムを連続的に搬送させることによって連続的に実施できる。フィルム搬送経路は、上記各種の処理工程を実施するための設備(処理浴や炉等)を、それらの実施順に備えている。処理浴とは、膨潤浴、染色浴、架橋浴、洗浄浴等のPVA系フィルムに対して処理を施す処理液を収容する浴をいう。 Various processing steps included in the manufacturing method of the polarizing film can be continuously performed by continuously transporting the PVA-based film, which is the original film, along the film transport path of the polarizing film manufacturing apparatus. The film transport path is provided with facilities (processing baths, furnaces, etc.) for performing the various processing steps described above in order of implementation. The term "treatment bath" refers to a bath containing a treatment liquid for treating the PVA-based film, such as a swelling bath, a dyeing bath, a cross-linking bath, and a washing bath.
 フィルム搬送経路は、上記設備の他、ガイドロールやニップロール等を適宜の位置に配置することによって構築することができる。例えば、ガイドロールは、各処理浴の前後や処理浴中に配置することができ、これにより処理浴へのフィルムの導入・浸漬及び処理浴からの引き出しを行うことができる。より具体的には、各処理浴中に2以上のガイドロールを設け、これらのガイドロールに沿ってフィルムを搬送させることにより、各処理浴にフィルムを浸漬させることができる。 In addition to the above equipment, the film transport route can be constructed by arranging guide rolls, nip rolls, etc. at appropriate positions. For example, guide rolls can be placed before, after, and within each treatment bath to allow introduction, immersion, and withdrawal of the film into and out of the treatment bath. More specifically, the film can be immersed in each treatment bath by providing two or more guide rolls in each treatment bath and conveying the film along these guide rolls.
 原反フィルムであるPVA系フィルムを構成するポリビニルアルコール系樹脂(以下、「PVA系樹脂」ということがある。)としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルとこれに共重合可能な他の単量体との共重合体が例示される。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有する(メタ)アクリルアミド類等が挙げられる。PVA系樹脂のケン化度は、通常約85モル%以上、好ましくは約90モル%以上、より好ましくは約99モル%以上である。「(メタ)アクリル」とは、アクリル及びメタクリルから選択される少なくとも一方を意味する。「(メタ)アクリロイル」についても同様である。 As the polyvinyl alcohol-based resin (hereinafter sometimes referred to as "PVA-based resin") that constitutes the PVA-based film, which is the original film, saponified polyvinyl acetate-based resin can be used. Examples of polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate with other monomers copolymerizable therewith. Other monomers copolymerizable with vinyl acetate include, for example, unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth)acrylamides having an ammonium group. The degree of saponification of the PVA-based resin is generally about 85 mol% or more, preferably about 90 mol% or more, more preferably about 99 mol% or more. "(Meth)acryl" means at least one selected from acryl and methacryl. The same applies to "(meth)acryloyl".
 PVA系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール等も使用し得る。 The PVA-based resin may be modified, for example, aldehyde-modified polyvinyl formal, polyvinyl acetal, polyvinyl butyral, etc. may be used.
 PVA系樹脂の平均重合度は、好ましくは100~10000であり、より好ましくは1500~8000であり、さらに好ましくは2000~5000である。PVA系樹脂の平均重合度は、JIS K 6726(1994)に準拠して求めることができる。平均重合度が100未満では好ましい偏光性能を得ることが困難であり、10000超ではフィルム加工性に劣ることがある。 The average degree of polymerization of the PVA-based resin is preferably 100-10000, more preferably 1500-8000, still more preferably 2000-5000. The average degree of polymerization of the PVA-based resin can be obtained according to JIS K 6726 (1994). If the average degree of polymerization is less than 100, it is difficult to obtain preferable polarizing performance, and if it exceeds 10,000, film workability may be poor.
 原反フィルムとしてのPVA系フィルムの厚みは、例えば10μm以上150μm以下程度であり、偏光フィルムの薄型化の観点から、好ましくは100μm以下、より好ましくは70μm以下、さらに好ましくは50μm以下、なおさらに好ましくは40μm以下である。 The thickness of the PVA-based film as the original film is, for example, about 10 μm or more and 150 μm or less, and from the viewpoint of thinning the polarizing film, it is preferably 100 μm or less, more preferably 70 μm or less, still more preferably 50 μm or less, and even more preferably 50 μm or less. is 40 μm or less.
 原反フィルムであるPVA系フィルムは、例えば、長尺の未延伸PVA系フィルムのロール(巻回品)として用意することができる。この場合、偏光フィルムもまた、長尺物として得られる。以下、偏光フィルムの製造方法の各工程について詳細に説明する。 A PVA-based film, which is a raw film, can be prepared, for example, as a roll (wound product) of a long unstretched PVA-based film. In this case, the polarizing film is also obtained as an elongated product. Each step of the method for producing a polarizing film will be described in detail below.
 (膨潤工程)
 膨潤工程における膨潤処理は、原反フィルムであるPVA系フィルムの異物除去、可塑剤除去、易染色性の付与、フィルムの可塑化等の目的で必要に応じて実施される処理である。具体的には、水を含有する膨潤浴にPVA系フィルムを浸漬させる処理であることができる。PVA系フィルムは、1つの膨潤浴に浸漬されてもよいし、2以上の膨潤浴に順次浸漬されてもよい。膨潤処理前、膨潤処理時、又は膨潤処理前及び膨潤処理時に、フィルムに対して一軸延伸処理を行ってもよいし、行わなくてもよい。
(Swelling process)
The swelling treatment in the swelling step is performed as necessary for the purpose of removing foreign substances from the original PVA-based film, removing the plasticizer, imparting easy dyeability, plasticizing the film, and the like. Specifically, it can be a treatment in which the PVA-based film is immersed in a swelling bath containing water. The PVA-based film may be immersed in one swelling bath or sequentially immersed in two or more swelling baths. Before the swelling treatment, during the swelling treatment, or before and during the swelling treatment, the film may or may not be uniaxially stretched.
 膨潤浴は、水(例えば純水)であることができる他、アルコール類等の水溶性有機溶媒を添加した水溶液であってもよい。 The swelling bath may be water (for example, pure water), or may be an aqueous solution to which a water-soluble organic solvent such as alcohol is added.
 PVA系フィルムを浸漬するときの膨潤浴の温度は、通常10~70℃程度、好ましくは15~50℃程度であり、フィルムの浸漬時間は、通常10~600秒程度、好ましくは20~300秒程度である。 The temperature of the swelling bath when the PVA-based film is immersed is usually about 10 to 70° C., preferably about 15 to 50° C., and the film immersion time is usually about 10 to 600 seconds, preferably 20 to 300 seconds. degree.
 (染色工程)
 染色工程における染色処理は、PVA系フィルムに二色性色素を吸着、配向させる目的で行われる処理であり、具体的には、二色性色素を含有する染色浴にPVA系フィルムを浸漬させる処理であることができる。PVA系フィルムは、1つの染色浴に浸漬されてもよいし、2以上の染色浴に順次浸漬されてもよい。二色性色素の染色性を高めるために、染色工程に供されるPVA系フィルムは、少なくともある程度の一軸延伸処理が施されていてもよい。染色処理前の一軸延伸処理の代わりに、あるいは染色処理前の一軸延伸処理に加えて、染色処理時に一軸延伸処理を行ってもよい。
(Dyeing process)
The dyeing process in the dyeing process is a process performed for the purpose of adsorbing and orienting the dichroic dye on the PVA-based film, and specifically, a process of immersing the PVA-based film in a dyeing bath containing the dichroic dye. can be The PVA-based film may be immersed in one dyeing bath, or may be immersed in two or more dyeing baths sequentially. In order to enhance the dyeability of the dichroic dye, the PVA-based film subjected to the dyeing process may be subjected to at least some uniaxial stretching treatment. Instead of the uniaxial stretching treatment before the dyeing treatment, or in addition to the uniaxial stretching treatment before the dyeing treatment, the uniaxial stretching treatment may be performed during the dyeing treatment.
 二色性色素は、ヨウ素又は二色性有機染料であることができる。二色性有機染料としては、レッドBR、レッドLR、レッドR、ピンクLB、ルビンBL、ボルドーGS、スカイブルーLG、レモンイエロー、ブルーBR、ブルー2R、ネイビーRY、グリーンLG、バイオレットLB、バイオレットB、ブラックH、ブラックB、ブラックGSP、イエロー3G、イエローR、オレンジLR、オレンジ3R、スカーレットGL、スカーレットKGL、コンゴーレッド、ブリリアントバイオレットBK、スプラブルーG、スプラブルーGL、スプラオレンジGL、ダイレクトスカイブルー、ダイレクトファーストオレンジS、ファーストブラック等が挙げられる。二色性色素は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。 The dichroic dye can be iodine or a dichroic organic dye. Dichroic organic dyes include Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, and Violet B. , Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Supra Blue G, Supra Blue GL, Supra Orange GL, Direct Sky Blue , Direct Fast Orange S, Fast Black, and the like. A dichroic dye may be used individually by 1 type, and may use 2 or more types together.
 二色性色素としてヨウ素を用いる場合、染色浴には、ヨウ素及びヨウ化カリウムを含有する水溶液を用いることができる。ヨウ化カリウムに代えて、ヨウ化亜鉛等の他のヨウ化物を用いてもよく、ヨウ化カリウムと他のヨウ化物を併用してもよい。また、ヨウ化物以外の化合物、例えば、ホウ酸、塩化亜鉛、塩化コバルト等を共存させてもよい。ホウ酸を添加する場合は、ヨウ素を含む点で後述する架橋処理と区別される。上記水溶液におけるヨウ素の含有量は通常、水100質量部あたり0.003~1質量部程度である。また、ヨウ化カリウム等のヨウ化物の含有量は通常、水100質量部あたり0.1~20質量部程度である。 When using iodine as a dichroic dye, an aqueous solution containing iodine and potassium iodide can be used for the dyeing bath. Instead of potassium iodide, other iodides such as zinc iodide may be used, or potassium iodide and other iodides may be used in combination. Compounds other than iodide, such as boric acid, zinc chloride, and cobalt chloride, may coexist. The addition of boric acid is distinguished from the cross-linking treatment described later in that it contains iodine. The content of iodine in the aqueous solution is usually about 0.003 to 1 part by mass per 100 parts by mass of water. The content of iodides such as potassium iodide is usually about 0.1 to 20 parts by mass per 100 parts by mass of water.
 PVA系フィルムを浸漬するときの染色浴の温度は、通常10~45℃程度、好ましくは10~40℃程度であり、より好ましくは20~35℃程度であり、フィルムの浸漬時間は、通常30~600秒程度、好ましくは60~300秒程度である。 The temperature of the dyeing bath when the PVA-based film is immersed is usually about 10 to 45°C, preferably about 10 to 40°C, more preferably about 20 to 35°C, and the immersion time of the film is usually 30°C. It is about 600 seconds, preferably about 60 to 300 seconds.
 二色性色素として二色性有機染料を用いる場合、染色浴には、二色性有機染料を含有する水溶液を用いることができる。当該水溶液における二色性有機染料の含有量は通常、水100質量部あたり1×10-4~10質量部程度であり、好ましくは1×10-3~1質量部程度である。この染色浴には染色助剤等を共存させてもよく、例えば、硫酸ナトリウム等の無機塩や界面活性剤等を含有していてもよい。二色性有機染料は1種のみを単独で用いてもよいし、2種以上を併用してもよい。フィルムを浸漬するときの染色浴の温度は、例えば20~80℃程度、好ましくは30~70℃程度であり、フィルムの浸漬時間は、通常20~600秒程度、好ましくは30~300秒程度である。 When a dichroic organic dye is used as the dichroic dye, an aqueous solution containing the dichroic organic dye can be used for the dyeing bath. The content of the dichroic organic dye in the aqueous solution is usually about 1×10 −4 to 10 parts by weight, preferably about 1×10 −3 to 1 part by weight, per 100 parts by weight of water. This dyeing bath may contain a dyeing assistant or the like, and may contain, for example, an inorganic salt such as sodium sulfate, a surfactant, or the like. A dichroic organic dye may be used individually by 1 type, and may use 2 or more types together. The temperature of the dyeing bath when the film is immersed is, for example, about 20 to 80° C., preferably about 30 to 70° C., and the immersion time of the film is usually about 20 to 600 seconds, preferably about 30 to 300 seconds. be.
 (架橋工程)
 架橋工程では、染色工程後のPVA系フィルムを架橋剤で処理する架橋処理を行う。架橋処理は、架橋による耐水化や色相調整等の目的で行う処理であり、具体的には、架橋剤を含有する架橋浴に染色工程後のフィルムを浸漬させる処理であることができる。当該フィルムは、1つの架橋浴に浸漬されてもよいし、2以上の架橋浴に順次浸漬されてもよい。架橋処理時に一軸延伸処理を行ってもよい。
(Crosslinking step)
In the cross-linking step, a cross-linking treatment is performed by treating the PVA-based film after the dyeing step with a cross-linking agent. The cross-linking treatment is performed for the purpose of water resistance by cross-linking, color adjustment, etc. Specifically, it can be a treatment of immersing the film after the dyeing step in a cross-linking bath containing a cross-linking agent. The film may be immersed in one cross-linking bath or sequentially immersed in two or more cross-linking baths. A uniaxial stretching treatment may be performed during the cross-linking treatment.
 架橋剤としては、ホウ酸が含まれ、さらに他の架橋剤であるグリオキザール、グルタルアルデヒド等を含むものであってもよい。架橋浴におけるホウ酸の含有量は通常、水100質量部あたり0.1~15質量部程度であり、好ましくは1~10質量部程度である。
二色性色素がヨウ素の場合、架橋浴は、ホウ酸に加えてヨウ化物を含有することが好ましい。架橋浴におけるヨウ化物の含有量は通常、水100質量部あたり0.1~20質量部程度であり、好ましくは5~15質量部程度である。ヨウ化物としては、ヨウ化カリウム、ヨウ化亜鉛等が挙げられる。また、ヨウ化物以外の化合物、例えば、塩化亜鉛、塩化コバルト、塩化ジルコニウム、チオ硫酸ナトリウム、亜硫酸カリウム、硫酸ナトリウム等を架橋浴に共存させてもよい。
The cross-linking agent includes boric acid, and may further include other cross-linking agents such as glyoxal and glutaraldehyde. The content of boric acid in the cross-linking bath is usually about 0.1 to 15 parts by mass, preferably about 1 to 10 parts by mass, per 100 parts by mass of water.
When the dichroic dye is iodine, the cross-linking bath preferably contains iodide in addition to boric acid. The content of iodide in the cross-linking bath is usually about 0.1 to 20 parts by mass, preferably about 5 to 15 parts by mass, per 100 parts by mass of water. Examples of iodides include potassium iodide and zinc iodide. Compounds other than iodides, such as zinc chloride, cobalt chloride, zirconium chloride, sodium thiosulfate, potassium sulfite, sodium sulfate, etc., may coexist in the cross-linking bath.
 架橋工程において、PVA系フィルムを2以上の架橋浴に順次浸漬する場合、架橋浴に含まれる成分の組成及び含有量は、互いに同じであってもよいが、互いに異なっていることが好ましい。 In the cross-linking step, when the PVA-based film is sequentially immersed in two or more cross-linking baths, the composition and content of the components contained in the cross-linking baths may be the same, but preferably different.
 PVA系フィルムを浸漬するときの架橋浴の温度は、上記した範囲の視感度補正単体透過率Ty及び視感度補正偏光度Pyを有し、かつ、上記した範囲の膜厚の差Δt1を有する偏光フィルムを得る観点から、好ましくは58.0℃以上であり、より好ましくは58.3℃以上であり、58.5℃以上であってもよく、通常85.0℃以下であり、好ましくは70.0℃以下であり、65.0℃以下であってもよく、63.0℃以下であってもよく、61.0℃以下であってもよい。この温度の架橋浴に浸漬する浸漬時間は、通常10~600秒程度、好ましくは20~300秒程度である。 The temperature of the cross-linking bath when the PVA-based film is immersed has the luminosity correction single transmittance Ty and the luminosity correction degree of polarization Py in the above ranges, and the film thickness difference Δt1 in the above ranges. From the viewpoint of obtaining a film, the temperature is preferably 58.0°C or higher, more preferably 58.3°C or higher, and may be 58.5°C or higher, usually 85.0°C or lower, preferably 70°C. 0° C. or lower, may be 65.0° C. or lower, may be 63.0° C. or lower, or may be 61.0° C. or lower. The immersion time in the cross-linking bath at this temperature is usually about 10 to 600 seconds, preferably about 20 to 300 seconds.
 PVA系フィルムを2以上の架橋浴に順次浸漬する場合、少なくとも1つの架橋浴における温度及び架橋時間が上記の範囲内であればよく、他の架橋浴における温度及び架橋時間は、上記した温度及び架橋時間の範囲内であってもよく範囲外であってもよい。PVA系フィルムを2以上の架橋浴に順次浸漬する場合、最初に浸漬する架橋浴として温度58.0℃以上の架橋浴を用いることが好ましい。他の架橋浴における温度は、例えば50~85℃程度、あるいは50~70℃程度としてもよく、フィルムの浸漬時間は、例えば10~600秒程度、あるいは20~300秒程度としてもよい。 When the PVA-based film is sequentially immersed in two or more cross-linking baths, the temperature and cross-linking time in at least one cross-linking bath may be within the above ranges, and the temperature and cross-linking time in the other cross-linking baths may be within the above-described temperatures and cross-linking baths. It may be within the range of the cross-linking time or may be outside the range. When the PVA-based film is immersed in two or more cross-linking baths in sequence, it is preferable to use a cross-linking bath having a temperature of 58.0° C. or higher as the first cross-linking bath. The temperature in other cross-linking baths may be, for example, about 50 to 85° C., or about 50 to 70° C., and the film immersion time may be, for example, about 10 to 600 seconds, or about 20 to 300 seconds.
 (洗浄工程)
 洗浄工程における洗浄処理は、PVA系フィルムに付着した余分な架橋剤や二色性色素等の薬剤を除去する目的で必要に応じて実施される処理であり、水を含有する洗浄液を用いて架橋工程後のPVA系フィルムを洗浄する処理である。具体的には、洗浄浴(洗浄液)に架橋工程後のPVA系フィルムを浸漬させる処理であることができる。PVA系フィルムは、1つの洗浄浴に浸漬されてもよいし、2以上の洗浄浴に順次浸漬されてもよい。
あるいは、洗浄処理は、架橋工程後のPVA系フィルムに対して洗浄液をシャワーとして噴霧する処理であってもよく、上記の浸漬と噴霧とを組み合わせてもよい。
(Washing process)
The washing treatment in the washing step is a treatment carried out as necessary for the purpose of removing excess crosslinking agents and dichroic dyes adhering to the PVA-based film, and crosslinking is performed using a washing solution containing water. This is a treatment for washing the PVA-based film after the process. Specifically, it can be a treatment in which the PVA-based film after the cross-linking step is immersed in a cleaning bath (cleaning liquid). The PVA-based film may be immersed in one cleaning bath, or may be immersed in two or more cleaning baths sequentially.
Alternatively, the washing treatment may be a treatment of spraying a washing solution as a shower onto the PVA-based film after the cross-linking step, or a combination of the above immersion and spraying.
 洗浄液は、水(例えば純水)であることができる他、アルコール類等の水溶性有機溶媒を添加した水溶液であってもよい。洗浄液の温度は、例えば1~40℃程度であることができ、洗浄時間は、例えば1~60秒程度であることができる。 The cleaning liquid may be water (for example, pure water), or may be an aqueous solution to which a water-soluble organic solvent such as alcohol is added. The temperature of the cleaning liquid can be, for example, about 1 to 40° C., and the cleaning time can be, for example, about 1 to 60 seconds.
 洗浄工程は任意の工程であり省略されてもよいし、高温高湿工程中に洗浄処理を行ってもよい(高温高湿処理が洗浄処理を兼ねていてもよい)。好ましくは、洗浄工程を行った後のフィルムに対して高温高湿処理を行う。
 また、洗浄工程において、フィルムの性能に影響のない範囲で延伸処理を施してもよい。
The cleaning step is an optional step and may be omitted, or the cleaning treatment may be performed during the high temperature and high humidity step (the high temperature and high humidity treatment may also serve as the cleaning treatment). Preferably, the film after the washing step is subjected to a high-temperature and high-humidity treatment.
Further, in the washing process, a stretching treatment may be applied within a range that does not affect the performance of the film.
 (高温高湿工程)
 高温高湿工程における高温高湿処理は、架橋工程後又は洗浄工程後のPVA系フィルムを温度70.0℃以上、絶対湿度40.0g/m以上の雰囲気下に晒す処理である。高温高湿処理を施すことにより、偏光フィルムの光学特性の劣化を抑えながら、高温高湿処理の代わりに絶対湿度40.0g/m未満での高温処理(乾燥処理)を行う場合に比べて、優れた光学特性を有しながらも、透過軸方向において吸収軸方向の収縮力の均一性に優れた偏光フィルムを得ることができる。
(High temperature and high humidity process)
The high-temperature, high-humidity treatment in the high-temperature, high-humidity process is a treatment in which the PVA-based film after the cross-linking process or after the washing process is exposed to an atmosphere with a temperature of 70.0° C. or higher and an absolute humidity of 40.0 g/m 3 or higher. Compared to the case of performing high temperature treatment (drying treatment) at an absolute humidity of less than 40.0 g/m 3 instead of high temperature and high humidity treatment, while suppressing deterioration of the optical properties of the polarizing film by performing high temperature and high humidity treatment. It is possible to obtain a polarizing film having excellent uniformity of shrinkage force in the direction of the absorption axis in the direction of the transmission axis while having excellent optical properties.
 高温高湿処理は、湿潤状態にある架橋工程後又は洗浄工程後のPVA系フィルムに対して施すことが好ましい。「湿潤状態にある」とは、架橋工程後又は洗浄工程後の高水分率のPVA系フィルムを(絶対湿度40.0g/m未満での高温処理(乾燥処理)を行うことなく)そのまま、高温高湿処理に付すことを意味する。 The high-temperature and high-humidity treatment is preferably applied to the PVA-based film after the cross-linking step or after the washing step in a wet state. "In a wet state" means that the PVA-based film with a high moisture content after the cross-linking step or after the washing step is left as it is (without performing a high-temperature treatment (drying treatment) at an absolute humidity of less than 40.0 g/m 3 ). It means subjecting to high temperature and high humidity treatment.
 高温高湿処理は、架橋工程後又は洗浄工程後のPVA系フィルムを、温度及び湿度調整の可能な炉(加熱炉)やブース又は室内に導入する処理であることができる。炉(加熱炉)やブース又は室内に導入する処理に加えて、遠赤外線ヒーターや熱ロール等の加熱手段を併用してもよい。高温高湿処理は、好ましくは洗浄工程の後に実施されるが、所定の高温高湿雰囲気下で洗浄液を噴霧する等、高温高湿処理と洗浄処理とを同時に行ってもよく、また、高温高湿雰囲気下に晒されることによって実質的にPVA系フィルムの洗浄がなされる場合のように、高温高湿処理が洗浄処理を兼ねていてもよい。 The high-temperature and high-humidity treatment can be a treatment in which the PVA-based film after the cross-linking process or after the washing process is introduced into a furnace (heating furnace), booth, or room in which temperature and humidity can be adjusted. In addition to the treatment introduced into the furnace (heating furnace), booth, or room, a heating means such as a far-infrared heater or a heat roll may be used in combination. The high-temperature and high-humidity treatment is preferably carried out after the washing step, but the high-temperature and high-humidity treatment and the washing treatment may be performed at the same time, such as by spraying a washing solution in a predetermined high-temperature and high-humidity atmosphere. The high-temperature and high-humidity treatment may also serve as the cleaning treatment, as in the case where the PVA-based film is substantially cleaned by exposing it to a moist atmosphere.
 高温高湿処理の温度は、上記した範囲の視感度補正単体透過率Ty及び視感度補正偏光度Pyを有し、かつ、上記した範囲の膜厚の差Δt1を有する偏光フィルムを得る観点から、70.0℃以上であり、好ましくは75.0℃以上であり、より好ましくは78.0℃以上、さらに好ましくは80.0℃以上であり、通常100.0℃以下であり、好ましくは95.0℃以下であり、より好ましくは90.0℃以下である。 The temperature of the high-temperature and high-humidity treatment has the visibility-corrected single transmittance Ty and the visibility-corrected degree of polarization Py in the above ranges, and from the viewpoint of obtaining a polarizing film having the film thickness difference Δt1 in the above ranges, 70.0° C. or higher, preferably 75.0° C. or higher, more preferably 78.0° C. or higher, still more preferably 80.0° C. or higher, usually 100.0° C. or lower, preferably 95.0° C. or higher 0°C or less, more preferably 90.0°C or less.
 高温高湿処理における絶対湿度は、上記した範囲の視感度補正単体透過率Ty及び視感度補正偏光度Pyを有し、かつ、上記した範囲の膜厚の差Δt1を有する偏光フィルムを得る観点から、40.0g/m以上であり、好ましくは75.0g/m以上、より好ましくは80.0g/m以上、さらに好ましくは85.0g/m以上である。一方、絶対湿度が過度に高いと、処理ゾーン内での結露の発生や、結露水によるPVA系フィルムの汚染が懸念されることから、絶対湿度は、好ましくは550.0g/m以下、より好ましくは400.0g/m以下、さらに好ましくは300.0g/m以下、250.0g/m以下であってもよく、180.0g/m以下であってもよく、特に好ましくは160.0g/m以下であり、100.0g/m以下であってもよい。 The absolute humidity in the high-temperature and high-humidity treatment has the luminosity-corrected single transmittance Ty and the luminosity-corrected degree of polarization Py in the above ranges, and from the viewpoint of obtaining a polarizing film having the film thickness difference Δt1 in the above ranges. , 40.0 g/m 3 or more, preferably 75.0 g/m 3 or more, more preferably 80.0 g/m 3 or more, and still more preferably 85.0 g/m 3 or more. On the other hand, if the absolute humidity is excessively high, there is a concern that dew condensation will occur in the treatment zone and the PVA-based film will be contaminated by the condensed water. Preferably 400.0 g/m 3 or less, more preferably 300.0 g/m 3 or less, 250.0 g/m 3 or less, or 180.0 g/m 3 or less, particularly preferably It is 160.0 g/m 3 or less, and may be 100.0 g/m 3 or less.
 高温高湿処理の時間は、上記した範囲の視感度補正単体透過率Ty及び視感度補正偏光度Pyを有し、かつ、上記した範囲の膜厚の差Δt1を有する偏光フィルムを得る観点から、好ましくは5秒以上であり、より好ましくは10秒以上である。また当該時間は、温度にもよるが、あまり長いと光学特性の劣化が懸念されることから、好ましくは60分以下であり、より好ましくは30分以下であり、さらに好ましくは10分以下であり、特に好ましくは5分以下である。 The time for the high-temperature and high-humidity treatment is, from the viewpoint of obtaining a polarizing film having the visibility-corrected single transmittance Ty and the visibility-corrected degree of polarization Py in the above ranges and the film thickness difference Δt1 in the above ranges, It is preferably 5 seconds or longer, more preferably 10 seconds or longer. Although the time depends on the temperature, if it is too long, the optical properties may deteriorate, so it is preferably 60 minutes or less, more preferably 30 minutes or less, and still more preferably 10 minutes or less. , particularly preferably 5 minutes or less.
 高温高湿処理は、長尺のPVA系フィルムをフィルム搬送経路に沿って搬送し、上記炉等に連続的に導入、通過させる処理であることができる。このような高温高湿処理におけるフィルムの張力は、上記した範囲の視感度補正単体透過率Ty及び視感度補正偏光度Pyを有し、かつ、上記した範囲の膜厚の差Δt1を有する偏光フィルムを得る観点から、50~3000N/mであることが好ましく、200~2000N/mであることがより好ましく、300~2000N/mであることがより好ましい。フィルムのシワが発生することを抑制する観点から、フィルム張力は、200N/m以上であることが好ましく、500N/m以上であることがより好ましい。 The high-temperature and high-humidity treatment can be a treatment in which a long PVA-based film is conveyed along the film conveying route and continuously introduced into and passed through the furnace or the like. The tension of the film in such a high-temperature and high-humidity treatment has the luminosity-correction single transmittance Ty and the luminosity-correction polarization degree Py in the above ranges, and a polarizing film having a film thickness difference Δt1 in the above ranges. is preferably from 50 to 3000 N/m, more preferably from 200 to 2000 N/m, and more preferably from 300 to 2000 N/m. From the viewpoint of suppressing the occurrence of wrinkles in the film, the film tension is preferably 200 N/m or more, more preferably 500 N/m or more.
 高温高湿処理は、PVA系フィルムを乾燥する処理、すなわち、その水分率を低下させる処理を兼ねていてもよく、極端な高温高湿条件を採用しない限り、通常は乾燥処理が同時になされる。これにより、必ずしも高温高湿処理の後に乾燥処理を別途実施する必要がなくなるため、絶対湿度40g/m未満での高温処理(乾燥処理)の後に高温高湿処理を実施する方法と比較して、製造プロセスの簡略化及び効率化の面で有利となる。 The high-temperature, high-humidity treatment may also serve as a treatment for drying the PVA-based film, that is, a treatment for lowering its moisture content, and unless extreme high-temperature, high-humidity conditions are employed, the drying treatment is usually performed at the same time. As a result, it is not always necessary to perform a separate drying treatment after the high-temperature and high-humidity treatment, so compared to the method of performing the high-temperature and high-humidity treatment after the high-temperature treatment (drying treatment) at an absolute humidity of less than 40 g / m 3 , which is advantageous in terms of simplification and efficiency of the manufacturing process.
 (乾燥工程)
 乾燥工程は、PVA系フィルムを乾燥する乾燥処理を行う。乾燥処理は、上述のとおり高温高湿工程中に行ってもよいが、高温高湿工程後に行ってもよい。高温高湿工程の後に乾燥処理を行う場合は、絶対湿度40g/m未満での高温処理を施してもよい。乾燥処理は必要に応じて行えばよく、乾燥処理を行わなくてもよい。
(Drying process)
In the drying step, a drying process for drying the PVA-based film is performed. The drying treatment may be performed during the high-temperature and high-humidity process as described above, but may be performed after the high-temperature and high-humidity process. When the drying treatment is performed after the high temperature and high humidity process, the high temperature treatment may be performed at an absolute humidity of less than 40 g/m 3 . The drying treatment may be performed as necessary, and the drying treatment may not be performed.
 (延伸工程)
 延伸工程は、PVA系フィルムの延伸処理を行う工程であり、PVA系フィルムは一軸延伸処理されることが好ましい。PVA系フィルムは、膨潤工程、染色工程、架橋工程、洗浄工程、高温高湿工程、及び乾燥工程のうちの1又は2以上の段階で一軸延伸処理される。上記した範囲の視感度補正単体透過率Ty及び視感度補正偏光度Pyを有し、かつ、上記した範囲の膜厚の差Δt1を有する偏光フィルムを得る観点から、一軸延伸は、染色工程、架橋工程、及び高温高湿工程において、一軸延伸処理を行うことが好ましい。
(Stretching process)
The stretching step is a step of stretching the PVA-based film, and the PVA-based film is preferably uniaxially stretched. A PVA-based film is uniaxially stretched in one or more steps of a swelling process, a dyeing process, a cross-linking process, a washing process, a high-temperature high-humidity process, and a drying process. From the viewpoint of obtaining a polarizing film having the luminosity-corrected single transmittance Ty and the luminosity-corrected degree of polarization Py in the above ranges and having the film thickness difference Δt1 in the above ranges, the uniaxial stretching includes the dyeing step, the cross-linking It is preferable to perform a uniaxial stretching treatment in the process and the high-temperature, high-humidity process.
 一軸延伸処理は、空中で延伸を行う乾式延伸、浴中で延伸を行う湿式延伸のいずれであってもよく、これらの双方を行ってもよい。一軸延伸処理は、2つのニップロール間に周速差をつけて縦一軸延伸を行うロール間延伸、熱ロール延伸、テンター延伸等であることができるが、好ましくはロール間延伸を含む。 The uniaxial stretching treatment may be either dry stretching in air or wet stretching in a bath, or both. The uniaxial stretching treatment can be inter-roll stretching, hot roll stretching, tenter stretching, etc., in which longitudinal uniaxial stretching is performed with a difference in peripheral speed between two nip rolls, but preferably includes roll-to-roll stretching.
 原反フィルムを基準とした場合の架橋工程までの累積延伸倍率は、上記した範囲の視感度補正単体透過率Ty及び視感度補正偏光度Pyを有し、かつ、上記した範囲の膜厚の差Δt1を有する偏光フィルムを得る観点から、好ましくは5.50倍以上5.90倍以下であり、5.50倍以上5.80倍以下であってもよい。
 原反フィルムを基準とした場合の架橋工程までの累積延伸倍率とその後の処理工程(主に高温高湿工程)を含めた総延伸倍率(2以上の段階で延伸処理を行う場合にはそれらの累積の延伸倍率)は、上記した範囲の視感度補正単体透過率Ty及び視感度補正偏光度Pyを有し、かつ、上記した範囲の膜厚の差Δt1を有する偏光フィルムを得る観点から、好ましくは5.60倍以上であり、5.70倍以上であってもよく、5.80倍以上であってもよく、5.90倍以上であってもよく、通常7倍以下である。
 特に上記した範囲の視感度補正単体透過率Ty及び視感度補正偏光度Pyを有し、かつ、上記した範囲の膜厚の差Δt1を有する偏光フィルムを得る観点からは、上記工程の延伸倍率とすることに加えて、高温高湿工程における延伸倍率を1.02倍以上1.20倍以下とすることが好ましく、1.02倍以上1.17倍以下としてもよい。
The cumulative stretch ratio up to the cross-linking step when the raw film is used as a reference has the luminosity correction single transmittance Ty and the luminosity correction polarization degree Py in the above range, and the film thickness difference in the above range. From the viewpoint of obtaining a polarizing film having Δt1, it is preferably 5.50 times or more and 5.90 times or less, and may be 5.50 times or more and 5.80 times or less.
The total draw ratio including the cumulative draw ratio up to the cross-linking process when based on the raw film and the subsequent treatment process (mainly the high temperature and high humidity process) Cumulative draw ratio) is preferable from the viewpoint of obtaining a polarizing film having the luminosity correction single transmittance Ty and the luminosity correction degree of polarization Py in the above range and having the film thickness difference Δt1 in the above range. is 5.60 times or more, may be 5.70 times or more, may be 5.80 times or more, may be 5.90 times or more, and is usually 7 times or less.
In particular, from the viewpoint of obtaining a polarizing film having the visibility-corrected single transmittance Ty and the visibility-corrected polarization degree Py in the above ranges and having the film thickness difference Δt1 in the above ranges, the draw ratio in the above step and In addition, the draw ratio in the high-temperature and high-humidity process is preferably 1.02 times or more and 1.20 times or less, and may be 1.02 times or more and 1.17 times or less.
 架橋工程までの累積延伸倍率及びその後の処理工程を含めた総延伸倍率は、偏光フィルムの視感度補正単体透過率Ty及び視感度補正偏光度Py等の光学性能を高めるために、一定以上の範囲とする必要があるが、必要以上に延伸するとPVA系フィルムの破断や外観不良を招く恐れがある。特に架橋工程までの累積延伸倍率が5.90倍を超えて延伸すると、その後の処理工程(特に高温高湿工程)において、PVA系フィルムを延伸できる余地が小さくなり、却って光学性能を低下させ、高温高湿工程等のその後の処理工程で無理に延伸するとPVA系フィルム中の膜厚分布が大きくなり、偏光フィルムの収縮力の差が大きくなってしまう恐れがある。
 また、架橋工程までの累積延伸倍率を上記範囲(5.50倍以上5.90倍以下)としても、高温高湿工程において過度に延伸すると(延伸倍率1.20倍を超えて延伸すると)、却ってPVA系フィルム中の膜厚分布が大きくなり、偏光フィルムの収縮力の差が大きくなってしまう恐れがある。
The cumulative draw ratio up to the cross-linking step and the total draw ratio including the subsequent treatment steps are within a certain range or more in order to increase the optical performance of the polarizing film, such as the visibility correction single transmittance Ty and the visibility correction polarization degree Py. However, stretching more than necessary may cause breakage of the PVA-based film or poor appearance. In particular, if the cumulative draw ratio up to the cross-linking step exceeds 5.90 times, the room for stretching the PVA-based film in the subsequent processing steps (especially the high-temperature and high-humidity step) becomes small, and the optical performance is rather reduced. If the PVA-based film is forcibly stretched in subsequent processing steps such as high-temperature and high-humidity processing, the film thickness distribution in the PVA-based film may become large, and the difference in shrinkage force of the polarizing film may become large.
In addition, even if the cumulative draw ratio up to the cross-linking step is in the above range (5.50 times or more and 5.90 times or less), excessive stretching in the high-temperature and high-humidity step (stretching at a draw ratio exceeding 1.20 times) On the contrary, the film thickness distribution in the PVA-based film becomes large, and there is a possibility that the difference in shrinkage force of the polarizing film becomes large.
 高温高湿工程での延伸処理は、例えば、架橋工程後のPVA系フィルムを、温度及び湿度調整の可能な炉(加熱炉)やブース又は室内に導入することにより高温高湿処理を行いながら延伸する処理であることができる。高温高湿処理においては、炉(加熱炉)やブース又は室内に導入する処理に加えて、遠赤外線ヒーターや熱ロール等の加熱手段を併用してもよい。高温高湿工程での延伸処理は、所定の高温高湿雰囲気下でPVA系フィルムを延伸しながら洗浄液を噴霧する等、高温高湿雰囲気下での延伸処理と洗浄処理とを同時に行ってもよく、また、高温高湿雰囲気下に置かれることによって実質的にPVA系フィルムの洗浄がなされる場合等、高温高湿処理及び延伸処理が洗浄処理を兼ねていてもよい。 The stretching process in the high-temperature and high-humidity process is performed by, for example, introducing the PVA-based film after the cross-linking process into a furnace (heating furnace), booth, or room in which the temperature and humidity can be adjusted, while performing the high-temperature and high-humidity process. It can be a process to In the high-temperature and high-humidity treatment, heating means such as a far-infrared heater and heat rolls may be used in combination with the treatment introduced into a furnace (heating furnace), booth, or room. The stretching treatment in the high-temperature and high-humidity process may be carried out simultaneously in a high-temperature and high-humidity atmosphere, such as by spraying a cleaning solution while stretching the PVA-based film in a predetermined high-temperature and high-humidity atmosphere. Also, when the PVA-based film is substantially washed by being placed in a high-temperature and high-humidity atmosphere, the high-temperature and high-humidity treatment and the stretching treatment may also serve as the washing treatment.
 (偏光板)
 本実施形態の偏光板は、上記した偏光フィルムの片面又は両面に保護フィルムが積層されているものである。保護フィルムは、貼合層を介して偏光フィルムに積層されてもよく、偏光フィルムに直接接するように積層されていてもよい。貼合層は、粘着剤層又は接着剤層である。
(Polarizer)
The polarizing plate of this embodiment is obtained by laminating a protective film on one side or both sides of the polarizing film described above. The protective film may be laminated on the polarizing film via a bonding layer, or may be laminated so as to be in direct contact with the polarizing film. The lamination layer is a pressure-sensitive adhesive layer or an adhesive layer.
 保護フィルムとしては、熱可塑性樹脂、例えば、鎖状ポリオレフィン系樹脂(ポリプロピレン系樹脂等)、環状ポリオレフィン系樹脂(ノルボルネン系樹脂等)等のポリオレフィン系樹脂;トリアセチルセルロースやジアセチルセルロース等のセルロースエステル系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂;ポリメタクリル酸メチル系樹脂等の(メタ)アクリル系樹脂;又はこれらの混合物、共重合物等からなる透明樹脂フィルムであることができる。 Protective films include thermoplastic resins such as linear polyolefin resins (polypropylene resins, etc.), polyolefin resins such as cyclic polyolefin resins (norbornene resins, etc.); cellulose esters such as triacetyl cellulose and diacetyl cellulose. Resin; polyester resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; polycarbonate resins; (meth)acrylic resins such as polymethyl methacrylate resins; Can be film.
 保護フィルムは、位相差フィルム、輝度向上フィルム等の光学機能を併せ持つ保護フィルムであることもできる。例えば、上記材料からなる透明樹脂フィルムを延伸(一軸延伸又は二軸延伸等)したり、該フィルム上に液晶層等を形成したりすることにより、任意の位相差値が付与された位相差フィルムとすることができる。 The protective film can also be a protective film that has optical functions such as a retardation film and a brightness enhancement film. For example, a retardation film provided with an arbitrary retardation value by stretching (uniaxially or biaxially stretching, etc.) a transparent resin film made of the above materials, or by forming a liquid crystal layer or the like on the film. can be
 保護フィルムにおける偏光フィルムとは反対側の表面には、ハードコート層、防眩層、反射防止層、帯電防止層、防汚層等の表面処理層(コーティング層)を形成することもできる。 A surface treatment layer (coating layer) such as a hard coat layer, an antiglare layer, an antireflection layer, an antistatic layer, and an antifouling layer may be formed on the surface of the protective film opposite to the polarizing film.
 保護フィルムの厚みは、偏光板の薄型化の観点から薄いことが好ましいが、薄すぎると強度が低下して加工性に劣るから、好ましくは5~150μm、より好ましくは5~100μm、さらに好ましくは10~50μmである。 The thickness of the protective film is preferably thin from the viewpoint of thinning the polarizing plate. 10 to 50 μm.
 偏光フィルムと保護フィルムとの貼合に用いる接着剤としては、紫外線硬化性接着剤等の活性エネルギー線硬化性接着剤や、ポリビニルアルコール系樹脂の水溶液、又はこれに架橋剤が配合された水溶液、ウレタン系エマルジョン接着剤等の水系接着剤を挙げることができる。偏光フィルムの両面に保護フィルムを貼合する場合、2つの接着剤層を形成する接着剤は同種であってもよいし、異種であってもよい。例えば、両面に保護フィルムを貼合する場合、片面は水系接着剤を用いて貼合し、もう片面は活性エネルギー線硬化性接着剤を用いて貼合してもよい。紫外線硬化型接着剤は、ラジカル重合性の(メタ)アクリル系化合物と光ラジカル重合開始剤の混合物や、カチオン重合性のエポキシ化合物と光カチオン重合開始剤の混合物等であることができる。また、カチオン重合性のエポキシ化合物とラジカル重合性の(メタ)アクリル系化合物とを併用し、開始剤として光カチオン重合開始剤と光ラジカル重合開始剤を併用することもできる。 Examples of the adhesive used for bonding the polarizing film and the protective film include an active energy ray-curable adhesive such as an ultraviolet-curable adhesive, an aqueous solution of a polyvinyl alcohol-based resin, or an aqueous solution containing a cross-linking agent. Water-based adhesives such as urethane-based emulsion adhesives can be used. When the protective films are attached to both sides of the polarizing film, the adhesives forming the two adhesive layers may be of the same type or of different types. For example, when laminating protective films on both sides, one side may be laminated using a water-based adhesive, and the other side may be laminated using an active energy ray-curable adhesive. The UV-curable adhesive may be a mixture of a radically polymerizable (meth)acrylic compound and a photoradical polymerization initiator, a mixture of a cationic polymerizable epoxy compound and a photocationic polymerization initiator, or the like. Moreover, a cationic polymerizable epoxy compound and a radically polymerizable (meth)acrylic compound can be used together, and a photocationic polymerization initiator and a photoradical polymerization initiator can also be used together as initiators.
 活性エネルギー線硬化性接着剤を用いる場合、貼合後、活性エネルギー線を照射することによって接着剤を硬化させる。活性エネルギー線の光源は特に限定されないが、波長400nm以下に発光分布を有する活性エネルギー線(紫外線)が好ましく、具体的には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が好ましく用いられる。 When using an active energy ray-curable adhesive, the adhesive is cured by irradiating it with an active energy ray after lamination. The light source of the active energy ray is not particularly limited, but the active energy ray (ultraviolet rays) having an emission distribution at a wavelength of 400 nm or less is preferable. Black light lamps, microwave excited mercury lamps, metal halide lamps and the like are preferably used.
 偏光フィルムと保護フィルムとの接着性を向上させるために、偏光フィルムと保護フィルムとの貼合に先立ち、偏光フィルム及び/又は保護フィルムの貼合面に、コロナ処理、火炎処理、プラズマ処理、紫外線照射処理、プライマー塗布処理、ケン化処理等の表面処理を施してもよい。 In order to improve the adhesion between the polarizing film and the protective film, prior to laminating the polarizing film and the protective film, corona treatment, flame treatment, plasma treatment, ultraviolet Surface treatments such as irradiation treatment, primer coating treatment, and saponification treatment may be applied.
 偏光フィルムと保護フィルムとの貼合に用いる粘着剤としては、従来公知の光学的な透明性に優れる粘着剤を特に制限なく用いることができ、例えば、アクリルポリマー、ウレタンポリマー、シリコーンポリマー、ポリビニルエーテル等のベースポリマーを含有する粘着剤を用いることができる。透明性、粘着力、再剥離性(リワーク性)、耐候性、耐熱性等に優れるアクリル樹脂をベースポリマーとした粘着剤が好適である。粘着剤層は、(メタ)アクリル樹脂、架橋剤、シラン化合物を含む粘着剤組成物の反応生成物から構成されることが好ましく、その他の成分を含んでいてもよい。 As the adhesive used for bonding the polarizing film and the protective film, conventionally known adhesives having excellent optical transparency can be used without particular limitation. Examples include acrylic polymers, urethane polymers, silicone polymers, and polyvinyl ethers. A pressure-sensitive adhesive containing a base polymer such as can be used. Adhesives using acrylic resin as a base polymer, which are excellent in transparency, adhesive strength, removability (reworkability), weather resistance, heat resistance, etc., are suitable. The pressure-sensitive adhesive layer preferably comprises a reaction product of a pressure-sensitive adhesive composition containing a (meth)acrylic resin, a cross-linking agent and a silane compound, and may contain other components.
 以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。実施例、比較例中の「%」及び「部」は、特記しない限り、質量%及び質量部である。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples. Unless otherwise specified, "%" and "parts" in Examples and Comparative Examples are % by mass and parts by mass.
 〔実施例1〕
 原反フィルムとしての厚み45μm、幅2900mmの長尺のポリビニルアルコール(PVA)系樹脂フィルム〔ケン化度99.9モル%以上〕をロールから巻き出しながら連続的に搬送し、温度30℃の純水からなる膨潤浴に滞留時間81秒で浸漬させた(膨潤工程)。その後、膨潤浴から引き出したフィルムを、ヨウ化カリウム/水が2/100(質量比)であるヨウ素を含む温度30℃の染色浴に滞留時間143秒で浸漬させた(染色工程)。次いで、染色浴から引き出したフィルムを、ヨウ化カリウム/ホウ酸/水が12/3.8/100(質量比)である温度58.5℃の架橋浴に滞留時間67秒で浸漬させ、続いて、ヨウ化カリウム/ホウ酸/水が9/2.4/100(質量比)である温度40℃の架橋浴に滞留時間11秒で浸漬させた(架橋工程)。染色工程及び架橋工程において、浴中でのロール間延伸により縦一軸延伸を行った。原反フィルムを基準として架橋工程までの累積延伸倍率は5.74倍であった。
[Example 1]
A long polyvinyl alcohol (PVA) resin film with a thickness of 45 μm and a width of 2900 mm as a raw film [degree of saponification of 99.9 mol% or more] is continuously conveyed while being unwound from a roll, and a pure film at a temperature of 30 ° C. It was immersed in a swelling bath made of water for a residence time of 81 seconds (swelling step). Thereafter, the film pulled out from the swelling bath was immersed in a dyeing bath containing iodine with a potassium iodide/water ratio of 2/100 (mass ratio) at a temperature of 30°C for a residence time of 143 seconds (dyeing step). Then, the film pulled out from the dyeing bath is immersed in a crosslinking bath with a potassium iodide/boric acid/water ratio of 12/3.8/100 (mass ratio) at a temperature of 58.5°C for a residence time of 67 seconds, followed by Then, it was immersed in a crosslinking bath containing potassium iodide/boric acid/water at a ratio of 9/2.4/100 (mass ratio) at a temperature of 40°C for a residence time of 11 seconds (crosslinking step). In the dyeing process and the cross-linking process, longitudinal uniaxial stretching was performed by stretching between rolls in a bath. The cumulative draw ratio up to the cross-linking step was 5.74 times based on the raw film.
 次に、架橋浴から引き出したフィルムを温度4℃の純水からなる洗浄浴に滞留時間3秒で浸漬させた後(洗浄工程)、引き続き、湿度調節が可能な加熱炉に導入することにより滞留時間161秒で高温高湿処理を行って(高温高湿工程)、偏光フィルムを得た。加熱炉内の温度、絶対湿度はそれぞれ80.0℃、88.0g/mとし、高温高湿処理時のフィルム張力は1300N/mとした。なお、加熱炉内の絶対湿度は、炉内の温度と相対湿度の測定値から算出した。加熱炉への導入(高温高湿処理)によってさらに縦一軸延伸(延伸倍率:1.02倍)を行った結果、偏光フィルムの原反フィルムを基準とする総延伸倍率は5.83倍であった。 Next, the film pulled out from the cross-linking bath is immersed in a cleaning bath made of pure water at a temperature of 4° C. for a retention time of 3 seconds (cleaning step), and then introduced into a heating furnace capable of controlling humidity for retention. A high-temperature and high-humidity treatment was performed for 161 seconds (high-temperature and high-humidity process) to obtain a polarizing film. The temperature and absolute humidity in the heating furnace were set to 80.0° C. and 88.0 g/m 3 respectively, and the film tension during high temperature and high humidity treatment was set to 1300 N/m. The absolute humidity in the heating furnace was calculated from the measured values of the temperature and relative humidity in the furnace. As a result of further longitudinal uniaxial stretching (stretch ratio: 1.02 times) by introduction into a heating furnace (high temperature and high humidity treatment), the total stretch ratio based on the original film of the polarizing film was 5.83 times. rice field.
 上記で得た偏光フィルムの透過軸方向の長さ(幅)は、1242mmであった。この偏光フィルムについて後述する評価を行った。結果を表1に示す。 The length (width) in the transmission axis direction of the polarizing film obtained above was 1242 mm. This polarizing film was evaluated as described later. Table 1 shows the results.
 〔比較例1〕
 実施例1の高温高湿処理で使用した加熱炉の温度及び絶対湿度をそれぞれ40.0℃、1.5g/mとし、加熱炉内での延伸処理を行わなかったこと以外は、実施例1と同様にして偏光フィルムを得た。加熱炉での処理は、高温高湿処理ではなく加熱処理(乾燥処理)である。偏光フィルムの原反フィルムを基準とする最終的な総延伸倍率は5.74倍であった(高温高湿工程における延伸倍率は、1.00倍であった。)。
[Comparative Example 1]
Example 1 except that the temperature and absolute humidity of the heating furnace used in the high temperature and high humidity treatment of Example 1 were 40.0 ° C. and 1.5 g / m 3 , respectively, and the stretching treatment in the heating furnace was not performed. A polarizing film was obtained in the same manner as in 1. The treatment in the heating furnace is heat treatment (dry treatment) rather than high temperature and high humidity treatment. The final total draw ratio based on the raw film of the polarizing film was 5.74 times (the draw ratio in the high temperature and high humidity process was 1.00 times).
 上記で得た偏光フィルムの透過軸方向の長さ(幅)は、1270mmであった。上記で得た偏光フィルムについて後述する評価を行った。結果を表1に示す。 The length (width) in the transmission axis direction of the polarizing film obtained above was 1270 mm. Evaluation mentioned later was performed about the polarizing film obtained above. Table 1 shows the results.
 〔比較例2〕
 架橋工程において浴中でのロール間延伸の縦一軸延伸の倍率を高めたこと以外は、比較例1と同様にして偏光フィルムを得た(架橋工程までの累積延伸倍率:5.81倍)。偏光フィルムの原反フィルムを基準とする最終的な総延伸倍率も5.81倍であった(高温高湿工程における延伸倍率は、1.00倍であった。)。
[Comparative Example 2]
A polarizing film was obtained in the same manner as in Comparative Example 1, except that the longitudinal uniaxial stretching ratio in the inter-roll stretching in the bath was increased in the crosslinking step (cumulative stretching ratio up to the crosslinking step: 5.81 times). The final total draw ratio based on the raw film of the polarizing film was also 5.81 times (the draw ratio in the high temperature and high humidity process was 1.00 times).
 上記で得た偏光フィルムの透過軸方向の長さ(幅)は、幅1280mmであった。上記で得た偏光フィルムについて後述する評価を行った。結果を表1に示す。 The length (width) of the polarizing film obtained above in the transmission axis direction was 1280 mm. Evaluation mentioned later was performed about the polarizing film obtained above. Table 1 shows the results.
 〔実施例2〕
 原反フィルムとしての厚み45μm、幅450mmの長尺のポリビニルアルコール(PVA)系樹脂フィルム〔ケン化度99.9モル%以上〕をロールから巻き出しながら連続的に搬送し、温度30℃の純水からなる膨潤浴に滞留時間45秒で浸漬させた(膨潤工程)。その後、膨潤浴から引き出したフィルムを、ヨウ化カリウム/水が2/100(質量比)であるヨウ素を含む温度30℃の染色浴に滞留時間57秒で浸漬させた(染色工程)。次いで、染色浴から引き出したフィルムを、ヨウ化カリウム/ホウ酸/水が12/4.1/100(質量比)である温度59℃の架橋浴に滞留時間40秒で浸漬させ、続いて、ヨウ化カリウム/ホウ酸/水が11.7/4.1/100(質量比)である温度60℃の架橋浴に滞留時間6秒で浸漬させた(架橋工程)。染色工程及び架橋工程において、浴中でのロール間延伸により縦一軸延伸を行った。原反フィルムを基準として架橋工程までの累積延伸倍率は5.54倍であった。
[Example 2]
A long polyvinyl alcohol (PVA) resin film with a thickness of 45 μm and a width of 450 mm as a raw film [degree of saponification of 99.9 mol% or more] is continuously conveyed while being unwound from a roll, and a pure film at a temperature of 30 ° C. It was immersed in a swelling bath made of water for a residence time of 45 seconds (swelling step). Thereafter, the film pulled out from the swelling bath was immersed in a dyeing bath containing iodine with a potassium iodide/water ratio of 2/100 (mass ratio) at a temperature of 30°C for a residence time of 57 seconds (dyeing step). Then, the film pulled out from the dyeing bath is immersed in a crosslinking bath containing potassium iodide/boric acid/water at a ratio of 12/4.1/100 (mass ratio) at a temperature of 59°C for a residence time of 40 seconds, followed by It was immersed in a cross-linking bath at a temperature of 60° C. in which potassium iodide/boric acid/water were 11.7/4.1/100 (mass ratio) for a residence time of 6 seconds (cross-linking step). In the dyeing process and the cross-linking process, longitudinal uniaxial stretching was performed by stretching between rolls in a bath. The cumulative draw ratio up to the cross-linking step was 5.54 times based on the original film.
 次に、架橋浴から引き出したフィルムを温度5℃の純水からなる洗浄浴に滞留時間1秒で浸漬させた後(洗浄工程)、引き続き、湿度調節が可能な加熱炉に導入することにより滞留時間93秒で高温高湿処理を行って(高温高湿工程)、偏光フィルムを得た。加熱炉内の温度、絶対湿度はそれぞれ80.0℃、175g/mとし、高温高湿処理時のフィルム張力は200N/mとした。なお、加熱炉内の絶対湿度は、炉内の温度と相対湿度の測定値から算出した。加熱炉への導入(高温高湿処理)によってさらに縦一軸延伸を行った結果、偏光フィルムの原反フィルムを基準とする総延伸倍率は6.50倍であった(高温高湿工程における延伸倍率は、1.15倍であった)。 Next, the film pulled out from the cross-linking bath is immersed in a cleaning bath made of pure water at a temperature of 5° C. for a residence time of 1 second (washing step), and subsequently introduced into a heating furnace capable of controlling humidity for residence. A high temperature and high humidity treatment was performed for 93 seconds (high temperature and high humidity process) to obtain a polarizing film. The temperature and absolute humidity in the heating furnace were set to 80.0° C. and 175 g/m 3 respectively, and the film tension during high temperature and high humidity treatment was set to 200 N/m. The absolute humidity in the heating furnace was calculated from the measured values of the temperature and relative humidity in the furnace. As a result of further longitudinal uniaxial stretching by introduction into a heating furnace (high-temperature and high-humidity treatment), the total draw ratio based on the original film of the polarizing film was 6.50 times (stretch ratio in the high-temperature and high-humidity process was 1.15 times).
 上記で得た偏光フィルムの透過軸方向の長さ(幅)は、188mmであった。この偏光フィルムについて後述する評価を行った。結果を表2に示す。 The length (width) in the transmission axis direction of the polarizing film obtained above was 188 mm. This polarizing film was evaluated as described later. Table 2 shows the results.
 〔実施例3〕
 実施例2の高温高湿処理で使用した加熱炉の温度及び絶対湿度をそれぞれ70.0℃、120g/mとし、加熱炉内のフィルムの経路を実施例2よりも短くすることで滞留時間を31秒とし、高温高湿工程における延伸倍率を1.02倍としたこと以外は、実施例2と同様にして偏光フィルムを得た。偏光フィルムの原反フィルムを基準とする最終的な総延伸倍率は5.77倍であった。
[Example 3]
The temperature and absolute humidity of the heating furnace used in the high-temperature and high-humidity treatment of Example 2 were set to 70.0° C. and 120 g/m 3 respectively, and the path of the film in the heating furnace was made shorter than in Example 2 to reduce the residence time. A polarizing film was obtained in the same manner as in Example 2, except that the time was set to 31 seconds and the draw ratio in the high-temperature and high-humidity process was set to 1.02 times. The final total draw ratio based on the raw film of the polarizing film was 5.77 times.
 上記で得た偏光フィルムの透過軸方向の長さ(幅)は、205mmであった。上記で得た偏光フィルムについて後述する評価を行った。結果を表2に示す。 The length (width) in the transmission axis direction of the polarizing film obtained above was 205 mm. Evaluation mentioned later was performed about the polarizing film obtained above. Table 2 shows the results.
 〔実施例4〕
 原反フィルムを基準として架橋工程までの累積延伸倍率は5.70倍とし、実施例2の高温高湿処理で使用した加熱炉の温度及び絶対湿度をそれぞれ80.0℃、203g/mとし、高温高湿工程における延伸倍率を1.16倍としたこと以外は、実施例2と同様にして偏光フィルムを得た。偏光フィルムの原反フィルムを基準とする最終的な総延伸倍率は6.75倍であった。
[Example 4]
Based on the original film, the cumulative draw ratio until the cross-linking step was 5.70 times, and the temperature and absolute humidity of the heating furnace used in the high temperature and high humidity treatment of Example 2 were 80.0 ° C. and 203 g / m 3 respectively. A polarizing film was obtained in the same manner as in Example 2, except that the draw ratio in the high-temperature, high-humidity process was 1.16 times. The final total draw ratio based on the raw film of the polarizing film was 6.75 times.
 上記で得た偏光フィルムの透過軸方向の長さ(幅)は、186mmであった。上記で得た偏光フィルムについて後述する評価を行った。結果を表2に示す。 The length (width) in the transmission axis direction of the polarizing film obtained above was 186 mm. Evaluation mentioned later was performed about the polarizing film obtained above. Table 2 shows the results.
 〔比較例3〕
 原反フィルムを基準として架橋工程までの累積延伸倍率は5.92倍とし、実施例2の高温高湿処理で使用した加熱炉の温度及び絶対湿度をそれぞれ80.0℃、120g/mとし、滞留時間を99秒とし、高温高湿工程における延伸倍率を1.03倍としたこと以外は、実施例2と同様にして偏光フィルムを得た。偏光フィルムの原反フィルムを基準とする最終的な総延伸倍率は6.24倍であった。
[Comparative Example 3]
Based on the original film, the cumulative draw ratio until the cross-linking step was 5.92 times, and the temperature and absolute humidity of the heating furnace used in the high temperature and high humidity treatment in Example 2 were 80.0 ° C. and 120 g / m 3 respectively. A polarizing film was obtained in the same manner as in Example 2, except that the residence time was 99 seconds and the draw ratio in the high-temperature and high-humidity process was 1.03 times. The final total draw ratio based on the raw film of the polarizing film was 6.24 times.
 上記で得た偏光フィルムの透過軸方向の長さ(幅)は、199mmであった。上記で得た偏光フィルムについて後述する評価を行った。結果を表3に示す。 The length (width) in the transmission axis direction of the polarizing film obtained above was 199 mm. Evaluation mentioned later was performed about the polarizing film obtained above. Table 3 shows the results.
 〔比較例4〕
 原反フィルムを基準として架橋工程までの累積延伸倍率は6.35倍とし、実施例2の高温高湿処理で使用した加熱炉の温度及び絶対湿度をそれぞれ80.0℃、10.4g/mとし、滞留時間を103秒とし、高温高湿処理時のフィルム張力は40N/mとし、高温高湿工程における延伸倍率を0.94倍とし、加熱炉内での延伸処理を行わなかったこと以外は、実施例2と同様にして偏光フィルムを得た。偏光フィルムの原反フィルムを基準とする最終的な総延伸倍率は6.10倍であった。
[Comparative Example 4]
Based on the original film, the cumulative draw ratio up to the cross-linking step was 6.35 times, and the temperature and absolute humidity of the heating furnace used in the high temperature and high humidity treatment of Example 2 were 80.0 ° C. and 10.4 g / m 3 , the residence time was 103 seconds, the film tension during the high-temperature and high-humidity treatment was 40 N/m, the draw ratio in the high-temperature and high-humidity treatment was 0.94 times, and the drawing treatment in the heating furnace was not performed. A polarizing film was obtained in the same manner as in Example 2 except for the above. The final total draw ratio based on the raw film of the polarizing film was 6.10 times.
 上記で得た偏光フィルムの透過軸方向の長さ(幅)は、207mmであった。上記で得た偏光フィルムについて後述する評価を行った。結果を表3に示す。 The length (width) in the transmission axis direction of the polarizing film obtained above was 207 mm. Evaluation mentioned later was performed about the polarizing film obtained above. Table 3 shows the results.
 [視感度補正単体透過率(Ty)及び視感度補正偏光度(Py)]
 積分球付き分光光度計〔日本分光(株)製の「V7100」〕を用い、偏光フィルムの透過軸方向の中心(真ん中)の位置において、波長380~780nmの範囲におけるMD透過率とTD透過率を測定した。下記式:
  単体透過率(%)=(MD+TD)/2
  偏光度(%)={(MD-TD)/(MD+TD)}×100
に基づいて、各波長における単体透過率及び偏光度を算出した。
[Visibility correction single transmittance (Ty) and visibility correction polarization degree (Py)]
Using a spectrophotometer with an integrating sphere ["V7100" manufactured by JASCO Corporation], MD transmittance and TD transmittance in the wavelength range of 380 to 780 nm are measured at the center (middle) position of the transmission axis direction of the polarizing film. was measured. The formula below:
Single transmittance (%) = (MD + TD) / 2
Degree of polarization (%) = {(MD-TD) / (MD + TD)} x 100
, the single transmittance and the degree of polarization at each wavelength were calculated.
 「MD透過率」とは、グラントムソンプリズムから出る偏光の向きと偏光フィルム試料の透過軸とを平行にしたときの透過率であり、上記式においては「MD」と表す。「TD透過率」とは、グラントムソンプリズムから出る偏光の向きと偏光フィルム試料の透過軸とを直交にしたときの透過率であり、上記式においては「TD」と表す。 "MD transmittance" is the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is parallel to the transmission axis of the polarizing film sample, and is represented by "MD" in the above formula. The "TD transmittance" is the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is perpendicular to the transmission axis of the polarizing film sample, and is expressed as "TD" in the above formula.
 得られた単体透過率及び偏光度について、JIS Z 8701:1999「色の表示方法-XYZ表色系及びX101010表色系」の2度視野(C光源)により視感度補正を行い、視感度補正単体透過率Ty及び視感度補正偏光度Pyを求めた。 Regarding the obtained single transmittance and degree of polarization, visibility correction was performed with a 2-degree field of view (C light source) of JIS Z 8701: 1999 “Color display method-XYZ color system and X 10 Y 10 Z 10 color system”. Then, the luminosity-corrected single transmittance Ty and the luminosity-corrected polarization degree Py were obtained.
 [膜厚の差Δt1及びΔt2、並びに、平均膜厚]
 偏光フィルムを透過軸方向に26等分することにより区分される26領域のそれぞれの領域について、デジタルマイクロメーター〔(株)ニコン製の「MH-15M」〕を用いて膜厚を測定した。
[Differences in film thickness Δt1 and Δt2, and average film thickness]
The thickness of each of the 26 regions divided by dividing the polarizing film into 26 equal parts in the direction of the transmission axis was measured using a digital micrometer ["MH-15M" manufactured by Nikon Corporation].
 (差Δt1の算出)
 上記の測定により得られた26の膜厚のうちの最大値及び最小値を算出し、両者の差を、偏光フィルムの透過軸方向における膜厚の最大値と最小値との差Δt1として算出した。いずれの偏光フィルムにおいても、膜厚が最小値となった領域は、上記した26領域のうちの、透過軸方向の中心(真ん中)から透過軸方向の両方の端に向けて、それぞれ1領域以上5領域以下(合計2領域以上10領域以下)の範囲内にある領域であり、これらの領域以外の領域に、膜厚が最大値となった領域が含まれていた。
(Calculation of difference Δt1)
The maximum and minimum values of the 26 film thicknesses obtained by the above measurements were calculated, and the difference between the two was calculated as the difference Δt1 between the maximum and minimum film thicknesses in the transmission axis direction of the polarizing film. . In any polarizing film, the region where the film thickness is the minimum value is one or more regions from the center (middle) in the transmission axis direction toward both ends in the transmission axis direction among the 26 regions described above. It is a region within the range of 5 regions or less (a total of 2 regions or more and 10 regions or less), and regions other than these regions include regions where the film thickness reaches the maximum value.
 (差Δt2の算出)
 上記26領域のうちの偏光フィルムの透過軸方向の両方の端からそれぞれ8領域分の範囲を端領域とし、偏光フィルムの透過軸方向の中心(真ん中)から透過軸方向の両方の端に向けてそれぞれ5領域分(合計10領域分)の範囲を中央領域とした。上記端領域に含まれる領域の膜厚のうちの最大値と、上記中央領域に含まれる領域の膜厚のうちの最大値との差(端領域の膜厚の最大値-中央領域の膜厚の最大値)をΔt2として算出した。
(Calculation of difference Δt2)
8 regions from both ends of the polarizing film in the transmission axis direction of the 26 regions are defined as end regions, and from the center (middle) in the transmission axis direction of the polarizing film toward both ends in the transmission axis direction A range of 5 regions (total of 10 regions) was defined as the central region. The difference between the maximum film thickness of the regions included in the edge regions and the maximum film thickness of the regions included in the central region (maximum film thickness of the edge regions - film thickness of the central region) ) was calculated as Δt2.
 (平均膜厚の算出)
 上記26領域のうちの、上記中央領域に含まれる領域の膜厚の平均値、及び上記端領域に含まれる領域の膜厚の平均値を、それぞれ偏光フィルムの透過軸方向の中央領域における平均膜厚、及び偏光フィルムの透過軸方向の端領域における平均値として算出した。
(Calculation of average film thickness)
Of the 26 regions, the average value of the film thickness of the region included in the central region and the average value of the film thickness of the regions included in the end region are calculated as the average film thickness in the central region in the transmission axis direction of the polarizing film. It was calculated as an average value in the thickness and the end region in the transmission axis direction of the polarizing film.
 [偏光フィルムのMD収縮力]
 偏光フィルムを透過軸方向に26等分して得られる26領域のそれぞれにおいて、吸収軸方向(MD方向、延伸方向)を長辺とする幅2mm、長さ10mmの測定用試料を切り出した。この測定用試料を、熱機械分析装置(TMA)〔エスアイアイ・ナノテクノロジー(株)製の「EXSTAR-6000」〕にセットし、寸法を一定に保持したまま、温度80℃で4時間保持したときに発生する長辺方向(MD方向、吸収軸方向)の収縮力であるMD収縮力を測定した。上記26領域のそれぞれついて作製した測定用試料のMD収縮力のうちの最大値と最小値との差を決定した。いずれの偏光フィルムにおいても、MD収縮力が最小値となった測定用試料は、上記した26領域のうちの、透過軸方向の中心(真ん中)から透過軸方向の両方の端に向けて、それぞれ1領域以上5領域以下(合計2領域以上10領域以下)の範囲内にある領域から作製された測定用試料であり、これらの測定用試料以外の測定用試料に、MD収縮力が最大値となった測定用試料が含まれていた。
[MD shrinkage force of polarizing film]
From each of the 26 regions obtained by dividing the polarizing film into 26 equal parts in the transmission axis direction, a measurement sample of 2 mm in width and 10 mm in length was cut out with the long side in the absorption axis direction (MD direction, stretching direction). This sample for measurement was set in a thermomechanical analyzer (TMA) ["EXSTAR-6000" manufactured by SII Nanotechnology Co., Ltd.] and held at a temperature of 80° C. for 4 hours while keeping the dimensions constant. The MD contractile force, which is the contractile force in the longitudinal direction (MD direction, absorption axis direction) that sometimes occurs, was measured. The difference between the maximum and minimum MD contractile forces of the measurement samples prepared for each of the 26 regions was determined. In any polarizing film, the measurement sample with the minimum MD shrinkage force was oriented from the center (middle) in the transmission axis direction to both ends in the transmission axis direction in the 26 regions described above. A measurement sample made from a region within the range of 1 region or more and 5 regions or less (a total of 2 regions or more and 10 regions or less). It contained a different measurement sample.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~表3に示すように、実施例の偏光フィルムでは、視感度補正単体透過率Ty及び視感度補正偏光度Pyが大きく光学特性に優れており、かつ、MD収縮力の差も小さく、偏光フィルムの透過軸方向における吸収軸方向の収縮力の均一性に優れる。 As shown in Tables 1 to 3, the polarizing films of Examples have large luminosity-correction single transmittance Ty and luminosity-correction polarization degree Py and are excellent in optical properties. Excellent uniformity of shrinkage force in the absorption axis direction of the polarizing film in the transmission axis direction.

Claims (6)

  1.  ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向している偏光フィルムであって、
     視感度補正単体透過率Tyは、43.20%以上であり、
     視感度補正偏光度Pyは、99.9970%以上であり、
     透過軸方向において、膜厚の最大値と最小値との差は、2.1μm以下である、偏光フィルム。
    A polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film,
    The visibility correction single transmittance Ty is 43.20% or more,
    Visibility correction polarization degree Py is 99.9970% or more,
    A polarizing film, wherein the difference between the maximum thickness and the minimum thickness in the transmission axis direction is 2.1 μm or less.
  2.  透過軸方向の端領域における膜厚の最大値と、透過軸方向の中央領域における膜厚の最大値との差は、2.1μm以下である、請求項1に記載の偏光フィルム。 The polarizing film according to claim 1, wherein the difference between the maximum film thickness in the end regions in the transmission axis direction and the maximum film thickness in the central region in the transmission axis direction is 2.1 µm or less.
  3.  透過軸方向の長さが800mm以上2500mm以下である、請求項1に記載の偏光フィルム。 The polarizing film according to claim 1, wherein the length in the transmission axis direction is 800 mm or more and 2500 mm or less.
  4.  透過軸方向の中央領域における平均膜厚は、5μm以上30μm以下である、請求項1に記載の偏光フィルム。 The polarizing film according to claim 1, wherein the average film thickness in the central region in the transmission axis direction is 5 µm or more and 30 µm or less.
  5.  透過軸方向の中央領域における平均膜厚は、16μm以上29μm以下である、請求項1に記載の偏光フィルム。 The polarizing film according to claim 1, wherein the average film thickness in the central region in the transmission axis direction is 16 µm or more and 29 µm or less.
  6.  請求項1~5のいずれか1項に記載の偏光フィルムの片面又は両面に、保護フィルムが積層された、偏光板。
     
    A polarizing plate comprising a protective film laminated on one or both sides of the polarizing film according to any one of claims 1 to 5.
PCT/JP2022/033656 2021-09-13 2022-09-08 Polarizing film and polarizing plate WO2023038076A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021148656 2021-09-13
JP2021-148656 2021-09-13
JP2022-140840 2022-09-05
JP2022140840A JP7475403B2 (en) 2021-09-13 2022-09-05 Polarizing films and plates

Publications (1)

Publication Number Publication Date
WO2023038076A1 true WO2023038076A1 (en) 2023-03-16

Family

ID=85506424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033656 WO2023038076A1 (en) 2021-09-13 2022-09-08 Polarizing film and polarizing plate

Country Status (2)

Country Link
TW (1) TW202328306A (en)
WO (1) WO2023038076A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093278A1 (en) * 2014-12-12 2016-06-16 住友化学株式会社 Method for manufacturing polarizing film, and polarizing film
WO2017099017A1 (en) * 2015-12-07 2017-06-15 住友化学株式会社 Method for manufacturing polarizing film
JP2018032024A (en) * 2016-08-18 2018-03-01 住友化学株式会社 Method and device for manufacturing polarizing film
JP6422507B2 (en) * 2014-12-12 2018-11-14 住友化学株式会社 Manufacturing method of polarizing film and polarizing film
JP2020064293A (en) * 2018-10-15 2020-04-23 日東電工株式会社 Polarizing plate with phase difference layer and image display device using the same
JP2020064274A (en) * 2018-10-15 2020-04-23 日東電工株式会社 Polarizing plate with phase difference layer and image display device using the same
JP2021047398A (en) * 2019-09-11 2021-03-25 住友化学株式会社 Method and apparatus for manufacturing polarization film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093278A1 (en) * 2014-12-12 2016-06-16 住友化学株式会社 Method for manufacturing polarizing film, and polarizing film
JP6422507B2 (en) * 2014-12-12 2018-11-14 住友化学株式会社 Manufacturing method of polarizing film and polarizing film
WO2017099017A1 (en) * 2015-12-07 2017-06-15 住友化学株式会社 Method for manufacturing polarizing film
JP2018032024A (en) * 2016-08-18 2018-03-01 住友化学株式会社 Method and device for manufacturing polarizing film
JP2020064293A (en) * 2018-10-15 2020-04-23 日東電工株式会社 Polarizing plate with phase difference layer and image display device using the same
JP2020064274A (en) * 2018-10-15 2020-04-23 日東電工株式会社 Polarizing plate with phase difference layer and image display device using the same
JP2021047398A (en) * 2019-09-11 2021-03-25 住友化学株式会社 Method and apparatus for manufacturing polarization film

Also Published As

Publication number Publication date
TW202328306A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
CN107003464B (en) Polarizing film manufacturing method and polarizing film
CN108292006B (en) Method for producing polarizing film
KR102645999B1 (en) Method for manufacturing polarizing film, and polarizing film
JP7202846B2 (en) Polarizer and manufacturing method thereof
JP2013148806A (en) Polarizing film and manufacturing method thereof and polarizer
JP7474896B2 (en) Polarizer and method for producing same
JP7475403B2 (en) Polarizing films and plates
WO2023038076A1 (en) Polarizing film and polarizing plate
JP2023041638A (en) Polarization film and polarizer
KR20240055837A (en) Polarizing film and polarizer
CN117940812A (en) Polarizing film and polarizing plate
WO2021220668A1 (en) Polarizing plate and method for producing same
JP2022136808A (en) Method of manufacturing polarizing film
JP2023081709A (en) Method of manufacturing polarizer and method of manufacturing polarizing plate
JP2023081708A (en) Method of manufacturing polarizer and method of manufacturing polarizing plate
CN116635762A (en) Polarizing film and method for producing polarizing plate
CN116490335A (en) Method for producing polarizing film and polarizing film
CN114284448A (en) Polarizing plate and organic EL display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867397

Country of ref document: EP

Kind code of ref document: A1