WO2016093278A1 - Method for manufacturing polarizing film, and polarizing film - Google Patents

Method for manufacturing polarizing film, and polarizing film Download PDF

Info

Publication number
WO2016093278A1
WO2016093278A1 PCT/JP2015/084534 JP2015084534W WO2016093278A1 WO 2016093278 A1 WO2016093278 A1 WO 2016093278A1 JP 2015084534 W JP2015084534 W JP 2015084534W WO 2016093278 A1 WO2016093278 A1 WO 2016093278A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
temperature
polarizing film
polarizing
humidity
Prior art date
Application number
PCT/JP2015/084534
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 北河
勉 古谷
武藤 清
浩 濱松
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201580067338.1A priority Critical patent/CN107111035B/en
Priority to JP2016563715A priority patent/JP6346307B2/en
Priority to KR1020177018648A priority patent/KR102645999B1/en
Publication of WO2016093278A1 publication Critical patent/WO2016093278A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for producing a polarizing film that can be used as a constituent member of a polarizing plate.
  • the present invention also relates to a polarizing film and a polarizing plate including the polarizing film.
  • a polarizing film obtained by adsorbing and orienting a dichroic dye such as iodine or a dichroic dye on a uniaxially stretched polyvinyl alcohol resin film.
  • a polarizing film is produced by sequentially performing a dyeing treatment for dyeing a polyvinyl alcohol-based resin film with a dichroic dye, a crosslinking treatment with a crosslinking agent, and a uniaxial stretching treatment during the production process [for example, JP, 7-325218, A (patent documents 1)].
  • the polarizing film is used in an image display device typified by a liquid crystal display device.
  • a polarizing film is usually a polarizing plate obtained by laminating a protective film on one side or both sides thereof, and is incorporated into an image display device.
  • a liquid crystal display device includes a liquid crystal panel in which polarizing plates are bonded to both surfaces of a liquid crystal cell as an image display element.
  • MD shrinkage force the shrinkage force in the absorption axis direction of the polarizing film used for the polarizing plate.
  • the optical properties (for example, the degree of polarization) of the polarizing film become insufficient. .
  • An object of the present invention is to provide a method for producing a polarizing film having good optical properties and low MD shrinkage. Another object of the present invention is to provide a polarizing film having good optical properties and a small MD shrinkage force, and a polarizing plate including the polarizing film.
  • This invention provides the manufacturing method of a polarizing film, a polarizing film, and a polarizing plate shown below.
  • a dyeing step of dyeing a polyvinyl alcohol-based resin film with a dichroic dye A crosslinking step of treating the film after the dyeing step with a crosslinking agent;
  • the manufacturing method of a polarizing film containing The manufacturing method of a polarizing film containing.
  • the method further includes a washing step of washing the film after the crosslinking step using a washing solution containing water,
  • the manufacturing method according to [1] wherein the high-temperature and high-humidity treatment step is performed on the film after the washing step and in a wet state.
  • the polarizing film has a degree of orientation determined in accordance with the following: 71% or less when the thickness of the polarizing film is 20 ⁇ m or more, and 74.0% or less when the thickness of the polarizing film is 10 ⁇ m or more and less than 20 ⁇ m.
  • a polarizing plate comprising the polarizing film according to [6] and a protective film laminated on at least one surface thereof.
  • the present invention it is possible to provide a polarizing film having good optical properties and a small MD shrinkage force and a method for producing the same.
  • the polarizing plate and the liquid crystal panel using the polarizing film according to the present invention are less likely to warp in a high temperature environment or a high humidity environment.
  • the manufacturing method of the polarizing film which concerns on this invention is the following processes: Dyeing step S20 for dyeing a polyvinyl alcohol resin film with a dichroic dye, A cross-linking step S30 in which the film after the dyeing step is treated with a cross-linking agent, and the film after the cross-linking step and in a wet state is placed in an atmosphere having a temperature of 40 to 100 ° C. and an absolute humidity of 40 g / m 3 or more. Place high temperature and high humidity treatment process S50 including.
  • the manufacturing method of the polarizing film which concerns on this invention can further include other processes other than the above,
  • the specific example is the swelling process S10 performed before dyeing process S20, and bridge
  • the polyvinyl alcohol-based resin film is uniaxially stretched at any one or more stages of the polarizing film manufacturing process, more specifically, at any one or more stages from the swelling process S10 to the crosslinking process S30. (Extension process).
  • the various processing steps included in the production method according to the present invention can be carried out continuously by continuously conveying a polyvinyl alcohol-based resin film, which is a raw film, along the film conveyance path of the polarizing film production apparatus.
  • the film transport path includes equipment (processing bath, furnace, etc.) for performing the various processing steps in the order of execution.
  • the treatment bath refers to a bath containing a treatment liquid for treating a polyvinyl alcohol resin film, such as a swelling bath, a dyeing bath, a crosslinking bath, and a washing bath.
  • the film transport path can be constructed by arranging guide rolls, nip rolls and the like at appropriate positions in addition to the above equipment.
  • the guide roll can be arranged before and after each treatment bath or in the treatment bath, whereby the film can be introduced and immersed in the treatment bath and pulled out from the treatment bath.
  • two or more guide rolls are provided in each treatment bath, and the film can be immersed in each treatment bath by transporting the film along these guide rolls.
  • a saponified polyvinyl acetate-based resin As the polyvinyl alcohol-based resin constituting the polyvinyl alcohol-based resin film that is a raw fabric film, a saponified polyvinyl acetate-based resin can be used.
  • the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth) acrylamides having an ammonium group.
  • the degree of saponification of the polyvinyl alcohol-based resin is usually about 85 mol% or more, preferably about 90 mol% or more, more preferably about 99 mol% or more.
  • (meth) acryl means at least one selected from acryl and methacryl. The same applies to “(meth) acryloyl”.
  • the polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal modified with aldehydes, polyvinyl acetal, polyvinyl butyral, and the like may be used.
  • the average degree of polymerization of the polyvinyl alcohol-based resin is preferably 100 to 10,000, more preferably 1500 to 8000, and further preferably 2000 to 5000.
  • the average degree of polymerization of the polyvinyl alcohol resin can be determined according to JIS K 6726 (1994). If the average degree of polymerization is less than 100, it is difficult to obtain preferable polarization performance, and if it exceeds 10,000, film processability may be inferior.
  • the thickness of the polyvinyl alcohol-based resin film is, for example, about 10 to 150 ⁇ m, and is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, further preferably 50 ⁇ m or less, and still more preferably 40 ⁇ m or less from the viewpoint of thinning the polarizing film. is there.
  • the polyvinyl alcohol-based resin film which is a raw film, can be prepared, for example, as a roll (rolled product) of a long unstretched polyvinyl alcohol-based resin film.
  • the polarizing film is also obtained as a long object.
  • the swelling treatment in this step is a treatment that is carried out as necessary for the purpose of removing foreign matter from the polyvinyl alcohol-based resin film that is the raw fabric film, removing the plasticizer, imparting easy dyeability, plasticizing the film, Specifically, it can be a treatment of immersing a polyvinyl alcohol-based resin film in a swelling bath containing water.
  • the film may be immersed in one swelling bath or sequentially in two or more swelling baths. You may perform a uniaxial stretching process with respect to a film before a swelling process, a swelling process, or before a swelling process and a swelling process.
  • the swelling bath may be water (for example, pure water) or an aqueous solution to which a water-soluble organic solvent such as alcohol is added.
  • the temperature of the swelling bath when dipping the film is usually about 10 to 70 ° C., preferably about 15 to 50 ° C., and the dipping time of the film is usually about 10 to 600 seconds, preferably about 20 to 300 seconds. is there.
  • the dyeing process in this step is a process performed for the purpose of adsorbing and orienting the dichroic dye to the polyvinyl alcohol resin film, and specifically, the polyvinyl alcohol resin film in a dye bath containing the dichroic dye. It can be a process of immersing. The film may be immersed in one dyeing bath or sequentially in two or more dyeing baths. In order to improve the dyeability of the dichroic dye, the film subjected to the dyeing process may be subjected to at least some uniaxial stretching treatment. Instead of the uniaxial stretching process before the dyeing process, or in addition to the uniaxial stretching process before the dyeing process, the uniaxial stretching process may be performed during the dyeing process.
  • the dichroic dye can be iodine or a dichroic organic dye.
  • the dichroic organic dye include: Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Includes Sky Blue, Direct First Orange S and First Black.
  • a dichroic dye may be used individually by 1 type, and may use 2 or more types together.
  • an aqueous solution containing iodine and potassium iodide can be used for the dyeing bath.
  • potassium iodide other iodides such as zinc iodide may be used, or potassium iodide and other iodides may be used in combination.
  • compounds other than iodide for example, boric acid, zinc chloride, cobalt chloride and the like may coexist.
  • boric acid it is distinguished from the crosslinking treatment described later in that it contains iodine.
  • the iodine content in the aqueous solution is usually about 0.01 to 1 part by weight per 100 parts by weight of water.
  • the content of iodide such as potassium iodide is usually about 0.5 to 20 parts by weight per 100 parts by weight of water.
  • the temperature of the dyeing bath when dipping the film is usually about 10 to 45 ° C., preferably about 10 to 40 ° C., more preferably about 20 to 35 ° C., and the dipping time for the film is usually 30 to 600 ° C. About 2 seconds, preferably about 60 to 300 seconds.
  • an aqueous solution containing the dichroic organic dye can be used for the dyeing bath.
  • the content of the dichroic organic dye in the aqueous solution is usually about 1 ⁇ 10 ⁇ 4 to 10 parts by weight, preferably about 1 ⁇ 10 ⁇ 3 to 1 part by weight per 100 parts by weight of water.
  • a dyeing assistant or the like may coexist, and for example, an inorganic salt such as sodium sulfate or a surfactant may be contained.
  • a dichroic organic dye may be used individually by 1 type, and may use 2 or more types together.
  • the temperature of the dyeing bath when dipping the film is, for example, about 20 to 80 ° C., preferably about 30 to 70 ° C., and the dipping time of the film is usually about 30 to 600 seconds, preferably about 60 to 300 seconds. is there.
  • the cross-linking treatment for treating the polyvinyl alcohol-based resin film after the dyeing step with a cross-linking agent is a treatment performed for the purpose of water resistance and hue adjustment by cross-linking, specifically, a dyeing step in a cross-linking bath containing a cross-linking agent. It can be a process of immersing the later film. The film may be immersed in one crosslinking bath or sequentially in two or more crosslinking baths. You may perform a uniaxial stretching process at the time of a crosslinking process.
  • crosslinking agent examples include boric acid, glyoxal, and glutaraldehyde, and boric acid is preferably used. Two or more crosslinking agents can be used in combination.
  • the content of boric acid in the crosslinking bath is usually about 0.1 to 15 parts by weight, preferably about 1 to 10 parts by weight per 100 parts by weight of water.
  • the crosslinking bath preferably contains iodide in addition to boric acid.
  • the iodide content in the crosslinking bath is usually about 0.1 to 15 parts by weight, preferably about 5 to 12 parts by weight per 100 parts by weight of water.
  • examples of iodide include potassium iodide and zinc iodide.
  • compounds other than iodide such as zinc chloride, cobalt chloride, zirconium chloride, sodium thiosulfate, potassium sulfite, sodium sulfate, and the like, may coexist in the crosslinking bath.
  • the temperature of the crosslinking bath when dipping the film is usually about 50 to 85 ° C., preferably about 50 to 70 ° C., and the dipping time for the film is usually about 10 to 600 seconds, preferably about 20 to 300 seconds. is there.
  • the polyvinyl alcohol-based resin film is uniaxially stretched in any one or two or more stages from before the swelling step S10 to the crosslinking step S30 (stretching step, FIG. 1).
  • the film subjected to the dyeing process is preferably a film subjected to at least some uniaxial stretching treatment, or instead of the uniaxial stretching treatment before the dyeing treatment, or In addition to the uniaxial stretching process before the dyeing process, it is preferable to perform the uniaxial stretching process during the dyeing process.
  • the uniaxial stretching treatment may be either dry stretching for stretching in the air or wet stretching for stretching in the bath, or both of them.
  • the uniaxial stretching treatment may be inter-roll stretching, hot roll stretching, tenter stretching, or the like, in which longitudinal uniaxial stretching is performed with a difference in peripheral speed between two nip rolls, and preferably includes inter-roll stretching.
  • the draw ratio based on the raw film (the cumulative draw ratio in the case where the drawing process is performed in two or more stages) is about 3 to 8 times. In order to impart good polarization characteristics, the draw ratio is preferably 4 times or more, more preferably 5 times or more.
  • the cleaning process in this step is a process performed as necessary for the purpose of removing chemicals such as excess cross-linking agent and dichroic dye attached to the polyvinyl alcohol-based resin film, and uses a cleaning solution containing water.
  • This is a treatment for washing the polyvinyl alcohol-based resin film after the crosslinking step.
  • it can be a treatment of immersing the polyvinyl alcohol-based resin film after the crosslinking step in a cleaning bath (cleaning liquid).
  • cleaning liquid cleaning liquid
  • the film may be immersed in one cleaning bath or sequentially in two or more cleaning baths.
  • the cleaning process may be a process of spraying the cleaning liquid as a shower on the polyvinyl alcohol-based resin film after the crosslinking step, or a combination of the above immersion and spraying.
  • the cleaning liquid may be water (for example, pure water) or an aqueous solution to which a water-soluble organic solvent such as alcohol is added.
  • the temperature of the cleaning liquid can be about 5 to 40 ° C., for example.
  • the cleaning step S40 is an optional step and may be omitted, and as will be described later, the cleaning process may be performed during the high-temperature and high-humidity processing step S50 (the high-temperature and high-humidity process may also serve as the cleaning process). ).
  • the high-temperature and high-humidity treatment step S50 is performed on the film after the washing step S40.
  • High temperature and high humidity treatment step S50 The high temperature and high humidity treatment in this step is a treatment in which the film after the crosslinking step S30 or the washing step S40 is placed in an atmosphere having a temperature of 40 to 100 ° C. and an absolute humidity of 40 g / m 3 or more.
  • high temperature treatment drying treatment
  • an absolute humidity of less than 40 g / m 3 instead of high temperature high humidity treatment while suppressing deterioration of the optical properties of the polarizing film by performing high temperature high humidity treatment.
  • MD contraction force can be reduced. It is considered that this is because the orientation of the molecular chain of the polyvinyl alcohol resin constituting the polarizing film is lowered without disturbing the orientation of the dichroic dye.
  • the high temperature and high humidity treatment is performed on the film after the crosslinking step S30 or the cleaning step S40 in a wet state.
  • “In a wet state” means that a film having a high moisture content after the crosslinking step S30 or after the washing step S40 (without performing a conventional high-temperature treatment (drying treatment) at an absolute humidity of less than 40 g / m 3 )
  • This means that the film is subjected to a high-temperature and high-humidity treatment. More specifically, it means that the moisture content of the film is 13% by weight or more (preferably 15% by weight or more).
  • the moisture content of the film is measured according to the method described in the Examples section described later.
  • the high-temperature and high-humidity treatment can be a treatment for introducing the film after the crosslinking step S30 or the cleaning step S40 into a furnace (heating furnace), a booth or a room where the temperature and humidity can be adjusted.
  • heating means such as a far-infrared heater or a heat roll may be used in combination.
  • the high-temperature and high-humidity treatment is preferably performed after the cleaning step S40.
  • the high-temperature and high-humidity treatment and the cleaning treatment may be performed at the same time, such as spraying a cleaning liquid in a predetermined high-temperature and high-humidity atmosphere.
  • the high-temperature and high-humidity process may also serve as the cleaning process.
  • the temperature of the high-temperature and high-humidity treatment is 40 ° C. or higher as described above, and preferably 55 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of more effectively reducing the MD shrinkage force.
  • the temperature of the high temperature and high humidity treatment is 100 ° C. or lower as described above, and is preferably 90 ° C. or lower from the viewpoint of more effectively suppressing the deterioration of optical characteristics.
  • the absolute humidity in the high-temperature and high-humidity treatment is 40 g / m 3 or more as described above, and preferably 75 g / m 3 or more, more preferably 85 g / m 3 or more, from the viewpoint of more effectively reducing the MD shrinkage force. More preferably, it is 100 g / m 3 or more.
  • the absolute humidity is preferably 550 g / m 3 or less, more preferably 400 g / m 2. m 3 or less, more preferably 300 g / m 3 or less, and particularly preferably 160 g / m 3 or less.
  • the time for the high-temperature and high-humidity treatment is preferably 5 seconds or more, more preferably 10 seconds or more, from the viewpoint of effectively reducing the MD contraction force. Further, although the time depends on the temperature, if it is too long, there is a concern about deterioration of optical characteristics. Therefore, it is preferably 60 minutes or less, more preferably 30 minutes or less, and even more preferably 10 minutes or less. Especially preferably, it is 5 minutes or less.
  • the high-temperature and high-humidity treatment can be a treatment in which a long polyvinyl alcohol-based resin film is conveyed along the film conveyance path, and is continuously introduced and passed through the furnace or the like.
  • the film tension is preferably 50 to 1000 N / m from the viewpoint of more effectively reducing the MD shrinkage force. From the viewpoint of suppressing wrinkling of the film, the film tension is more preferably 300 N / m or more.
  • the high-temperature and high-humidity treatment may also serve as a treatment for drying the polyvinyl alcohol-based resin film, i.e., a treatment for reducing the moisture content, and the drying treatment is usually performed at the same time unless extreme high-temperature and high-humidity conditions are adopted.
  • the This eliminates the need for a separate drying process after the high-temperature and high-humidity treatment, so that it is compared with the conventional method in which the high-temperature and high-humidity process is performed after the high-temperature treatment (drying process) at an absolute humidity of less than 40 g / m 3. Thus, this is advantageous in terms of simplification and efficiency of the manufacturing process.
  • the moisture content of the film subjected to the high temperature and high humidity treatment depends on the thickness of the film, but is usually about 13 to 50% by weight.
  • the degree of reduction in moisture content due to high-temperature and high-humidity treatment that is, the difference between the moisture content before high-temperature and high-humidity treatment and the moisture content after high-temperature and high-humidity treatment (moisture content difference ⁇ S) also depends on the thickness of the film. It is 5 to 45% by weight, preferably 8 to 35% by weight. For example, when the thickness of the raw film is about 40 ⁇ m or less, the moisture content difference ⁇ S can be less than 15% by weight.
  • the moisture content of the film after high-temperature and high-humidity treatment is also 5 to 30% by weight, although it depends on the thickness of the film. From the viewpoint of properties, it is preferably 6 to 15% by weight. If the moisture content is too low, the film tends to tear during conveyance, and if the moisture content is too high, curling tends to occur at the film edge due to moisture release.
  • the thinner the film the more easily the moisture is dissipated. Therefore, the thinner the original film, the lower the moisture content before and during the high temperature and high humidity treatment. If the moisture content is too low, the film transportability tends to be lowered. Therefore, when the thickness of the raw film is about 40 ⁇ m or less, it is preferable to set the temperature of the high-temperature and high-humidity treatment to be low and to be 40 to 70 ° C.
  • a polarizing film in which a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol-based resin film can be obtained.
  • the thickness of the polarizing film is usually 5 to 40 ⁇ m, preferably 30 ⁇ m or less. According to the polarizing film obtained by the present invention, even when the thickness is as thin as 30 ⁇ m or less, and even 25 ⁇ m or less, the MD shrinkage is small, so that the warpage when used as a polarizing plate or a liquid crystal panel is effectively suppressed. can do.
  • a drying process (a high temperature process at an absolute humidity of less than 40 g / m 3 ) may be performed after the high temperature and high humidity process step S50.
  • this drying treatment is performed as necessary.
  • the obtained polarizing film can also be conveyed, for example, to the next polarizing plate production step (step of bonding a protective film on one or both sides of the polarizing film) as it is.
  • the polarizing film according to the present invention is a film in which a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol-based resin film, and wide angle X-ray diffraction (WAXD: Wide Angle X-ray Diffraction). ), The degree of orientation (%) representing the orientation of the polyvinyl alcohol resin constituting the polarizing film in the MD, measured by the through method.
  • WAXD Wide Angle X-ray Diffraction
  • the degree of orientation is preferably 71% or less, more preferably 70% or less, and 67% or less. More preferably.
  • the degree of orientation of the polarizing film is usually 60% or more, preferably 65% or more when the thickness is 20 ⁇ m or more.
  • the thickness of the polarizing film having a thickness of 20 ⁇ m or more is usually 30 ⁇ m or less, preferably 25 ⁇ m or less, and preferably 22 ⁇ m or more.
  • the degree of orientation is preferably 74.0% or less, more preferably 73% or less, and 72% or less. More preferably it is.
  • the orientation degree of the polarizing film is usually 65% or more, preferably 70% or more.
  • the thickness of the polarizing film having a thickness of 10 ⁇ m or more and less than 20 ⁇ m is preferably 15 ⁇ m or less, more preferably 13 ⁇ m or less, and preferably 11 ⁇ m or more, more preferably 12 ⁇ m or more.
  • the degree of orientation is preferably 75% or less, and more preferably 74% or less.
  • the degree of orientation of the polarizing film is usually 70% or more when the thickness is less than 10 ⁇ m.
  • the thickness of the polarizing film having a thickness of less than 10 ⁇ m is usually 3 ⁇ m or more, preferably 7 ⁇ m or more, and preferably 9 ⁇ m or less.
  • the polarizing film exhibiting the degree of orientation as described above can be preferably manufactured by the above-described manufacturing method of the polarizing film according to the present invention.
  • the degree of orientation referred to here is measured according to the method described in the Examples section described later.
  • the polarizing film according to the present invention is a film in which a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol-based resin film, and the wave number representing a crosslinked state of the polarizing film by a crosslinking agent. It can be characterized by the ratio of the Raman scattered light intensity in the absorption axis direction and the Raman scattered light intensity in the transmission axis direction at 775 cm ⁇ 1 (hereinafter also referred to as “Raman scattered light intensity ratio”). By having this characteristic, it is presumed that the polarizing film according to the present embodiment can exhibit the characteristics and effects that the MD contraction force is small while having good optical characteristics.
  • the Raman scattered light intensity ratio is preferably 0.86 or more, and more preferably 0.89 or more.
  • the Raman scattered light intensity ratio is usually 1.00 or less, preferably 0.95 or less.
  • the polarizing film showing the Raman scattered light intensity ratio as described above can be preferably manufactured by the above-described manufacturing method of the polarizing film according to the present invention.
  • the Raman scattered light intensity ratio here is measured according to the method described in the section of Examples described later.
  • the polarizing film according to the present invention is a film in which a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol-based resin film, exhibits an orientation degree within the above range, and the above range.
  • the Raman scattered light intensity ratio is shown. The degree of orientation within the above range and the Raman scattered light intensity ratio within the above range are advantageous for reducing the MD shrinkage force while having good optical properties.
  • Polarized light is produced by bonding (laminating) a protective film via an adhesive to at least one surface of a polarizing film produced as described above or exhibiting at least one of the degree of orientation and the Raman scattered light intensity ratio.
  • a board can be obtained.
  • thermoplastic resins for example, polyolefin resins such as chain polyolefin resins (polypropylene resins, etc.), cyclic polyolefin resins (norbornene resins, etc.); celluloses such as triacetyl cellulose and diacetyl cellulose Ester resins; Polyester resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; Polycarbonate resins; (Meth) acrylic resins such as polymethyl methacrylate resins; or a mixture or copolymer thereof It can be a transparent resin film.
  • polyolefin resins such as chain polyolefin resins (polypropylene resins, etc.), cyclic polyolefin resins (norbornene resins, etc.); celluloses such as triacetyl cellulose and diacetyl cellulose Ester resins; Polyester resins such as polyethylene terephthalate, polyethylene na
  • the protective film may be a protective film having both optical functions such as a retardation film and a brightness enhancement film.
  • a retardation film provided with an arbitrary retardation value by stretching a transparent resin film made of the above material (uniaxial stretching or biaxial stretching) or forming a liquid crystal layer or the like on the film. It can be.
  • a surface treatment layer such as a hard coat layer, an antiglare layer, an antireflection layer, an antistatic layer, or an antifouling layer can be formed on the surface of the protective film opposite to the polarizing film.
  • the thickness of the protective film is preferably thin from the viewpoint of reducing the thickness of the polarizing plate, but if it is too thin, the strength is lowered and the workability is poor, so that it is preferably 5 to 150 ⁇ m, more preferably 5 to 100 ⁇ m, and still more preferably. 10 to 50 ⁇ m.
  • an active energy ray curable adhesive such as an ultraviolet curable adhesive, an aqueous solution of a polyvinyl alcohol resin, or an aqueous solution in which a crosslinking agent is blended.
  • water-based adhesives such as urethane emulsion adhesives.
  • the ultraviolet curable adhesive can be a mixture of a radical polymerizable (meth) acrylic compound and a photo radical polymerization initiator, a mixture of a cationic polymerizable epoxy compound and a photo cationic polymerization initiator, or the like. Further, a cationic polymerizable epoxy compound and a radical polymerizable (meth) acrylic compound may be used in combination, and a photo cationic polymerization initiator and a photo radical polymerization initiator may be used in combination as an initiator.
  • the adhesive When using an active energy ray-curable adhesive, the adhesive is cured by irradiating active energy rays after bonding.
  • the light source of the active energy ray is not particularly limited, but an active energy ray (ultraviolet ray) having a light emission distribution at a wavelength of 400 nm or less is preferable.
  • a black light lamp, a microwave excitation mercury lamp, a metal halide lamp or the like is preferably used.
  • the bonding surface of the polarizing film and / or the protective film is subjected to corona treatment, flame treatment, plasma treatment, ultraviolet light.
  • Surface treatments such as irradiation treatment, primer coating treatment, and saponification treatment may be applied.
  • the polarizing plate of the present invention can also be produced by laminating a protective film on a polarizing film that is a single layer film, but is not limited to this method, and is described in, for example, JP-A-2009-98653. It can also be produced by a method using a base film. The latter method is advantageous for obtaining a polarizing plate having a thin polarizing film (polarizer layer), and can include, for example, the following steps.
  • a resin layer forming step of forming a polyvinyl alcohol-based resin layer by drying to obtain a laminated film A stretching step of stretching a laminated film to obtain a stretched film;
  • the 1st bonding process of bonding a protective film using the adhesive agent on the polarizer layer of a light-polarizing laminated film, and obtaining a bonding film The peeling process which peels and removes a base film from a bonding film, and obtains the polarizing plate with a single-sided protective film.
  • protective films are laminated on both sides of the polarizer layer (polarizing film)
  • it further includes a second bonding step in which the protective film is bonded to the polarizer surface of the polarizing plate with a single-side protective film using an adhesive.
  • a high-temperature and high-humidity treatment step is included in the dyeing step for obtaining a polarizing laminated film (for example, after the crosslinking step or the washing step in the dyeing step for obtaining the polarizing laminated film).
  • a polarizing film contained in the polarizing laminate film, a polarizing plate with a single-sided protective film, and a polarizing plate with a double-sided protective film obtained through the second laminating step, or a polarizing film isolated therefrom are also included in the present invention.
  • the polarizing film belongs, and preferably exhibits at least one of the orientation degree within the above range and the Raman scattered light intensity ratio within the above range.
  • Example 1 A 60- ⁇ m long polyvinyl alcohol (PVA) raw film (trade name “Kuraray Poval Film VF-PE # 6000” manufactured by Kuraray Co., Ltd., average polymerization degree 2400, saponification degree 99.9 mol% or more) It was continuously conveyed while being unwound from the roll, and immersed in a swelling bath made of pure water at 30 ° C. for a residence time of 81 seconds (swelling step). Thereafter, the film drawn out from the swelling bath was immersed in a dye bath at 30 ° C. containing iodine having a potassium iodide / water ratio of 2/100 (weight ratio) for a residence time of 143 seconds (dyeing step).
  • PVA polyvinyl alcohol
  • the film drawn from the dyeing bath was immersed in a 56 ° C. crosslinking bath having potassium iodide / boric acid / water of 12 / 4.1 / 100 (weight ratio) for a residence time of 67 seconds. It was immersed in a crosslinking bath at 40 ° C. in which potassium fluoride / boric acid / water was 9 / 2.9 / 100 (weight ratio) with a residence time of 11 seconds (crosslinking step).
  • longitudinal uniaxial stretching was performed by stretching between rolls in a bath. The total draw ratio based on the original film was 5.7 times.
  • the film drawn from the crosslinking bath was immersed in a cleaning bath made of pure water at 5 ° C. for a residence time of 3 seconds (cleaning step), and subsequently introduced into the first heating furnace capable of adjusting the humidity.
  • a high temperature and high humidity treatment was performed at a residence time of 161 seconds (high temperature and high humidity treatment step) to obtain a polarizing film having a thickness of 22.9 ⁇ m and a width of 207 mm.
  • the temperature and absolute humidity in the first heating furnace were 80 ° C. and 88 g / m 3 , respectively, and the film tension during the high temperature and high humidity treatment was 565 N / m.
  • the moisture content of the film immediately before and after the introduction of the first heating furnace (high temperature and high humidity treatment) was 33.3% by weight and 7.9% by weight, respectively, and the moisture content difference ⁇ S was 25.4% by weight.
  • Example 2 A thickness of 23.7 ⁇ m and a width of 200 mm were obtained in the same manner as in Example 1 except that the temperature and absolute humidity in the first heating furnace and the film tension during the treatment in the first heating furnace were changed as shown in Table 1. A polarizing film was prepared.
  • Example 1 Similar to Example 1, except that the temperature and absolute humidity in the first heating furnace and the film tension during the treatment in the first heating furnace were changed as shown in Table 1, the thickness was 23.2 ⁇ m and the width was 206 mm. A polarizing film was prepared. The temperature and absolute humidity in the first heating furnace were 76 ° C. and 8 g / m 3 , respectively. In the first heating furnace, only the heating (drying) process was performed instead of the high-temperature and high-humidity process.
  • Residence time is achieved by performing heating (drying) treatment in a first heating furnace having a temperature and an absolute humidity of 76 ° C. and 8 g / m 3 , respectively, and then introducing it into a second heating furnace capable of adjusting the humidity.
  • a polarizing film having a thickness of 23.4 ⁇ m and a width of 208 mm was produced in the same manner as in Comparative Example 1 except that the high temperature and high humidity treatment was performed in 161 seconds.
  • the temperature and absolute humidity in the second heating furnace were 80 ° C. and 88 g / m 3 , respectively, and the film tension during the high temperature and high humidity treatment in the second heating furnace was 2 N / m.
  • Example 3> A long polyvinyl alcohol (PVA) raw film having a thickness of 30 ⁇ m (trade name “Kuraray Poval Film VF-PE # 3000” manufactured by Kuraray Co., Ltd., average polymerization degree 2400, saponification degree 99.9 mol% or more) It was continuously conveyed while being unwound from the roll, and immersed in a swelling bath made of pure water at 20 ° C. for a residence time of 31 seconds (swelling step). Thereafter, the film drawn out from the swelling bath was immersed in a dye bath at 30 ° C.
  • PVA polyvinyl alcohol
  • the film drawn from the dyeing bath was immersed in a 56 ° C. crosslinking bath having a potassium iodide / boric acid / water ratio of 12 / 4.1 / 100 (weight ratio) with a residence time of 70 seconds. It was immersed in a crosslinking bath at 40 ° C. in which potassium fluoride / boric acid / water was 9 / 2.9 / 100 (weight ratio) with a residence time of 13 seconds (crosslinking step).
  • longitudinal uniaxial stretching was performed by stretching between rolls in a bath. The total draw ratio based on the original film was 5.4 times.
  • the film drawn from the crosslinking bath was immersed in a cleaning bath made of pure water at 5 ° C. for a residence time of 3 seconds (cleaning step), and subsequently introduced into the first heating furnace capable of adjusting the humidity.
  • a high temperature and high humidity treatment was performed with a residence time of 190 seconds (high temperature and high humidity treatment step) to obtain a polarizing film having a thickness of 12.1 ⁇ m and a width of 208 mm.
  • the temperature and absolute humidity in the first heating furnace were 73 ° C. and 89 g / m 3 , respectively, and the film tension during the high temperature and high humidity treatment was 601 N / m.
  • the moisture content of the film immediately before and after the introduction of the first heating furnace (high temperature and high humidity treatment) was 19.4 wt% and 8.0 wt%, respectively, and the moisture content difference ⁇ S was 11.4 wt%.
  • Examples 4 to 8> A polarizing film was produced in the same manner as in Example 3 except that the temperature and absolute humidity in the first heating furnace and the film tension during the high-temperature and high-humidity treatment in the first heating furnace were changed as shown in Table 1. did.
  • Residence time is achieved by performing heating (drying) treatment in a first heating furnace having a temperature and absolute humidity of 59 ° C. and 10 g / m 3 , respectively, and then introducing it into a second heating furnace in which further humidity control is possible.
  • the thickness was 12.9 ⁇ m and the width was the same as in Comparative Example 4 except that the high-temperature and high-humidity treatment was performed in 161 seconds and the film tension during the treatment in the first heating furnace was changed as shown in Table 1.
  • a polarizing film of 204 mm was produced.
  • the temperature and absolute humidity in the second heating furnace were 73 ° C. and 89 g / m 3 , respectively, and the film tension during the high temperature and high humidity treatment in the second heating furnace was 1 N / m.
  • Table 1 summarizes the production conditions of the polarizing film in each example and comparative example, the moisture content of the film immediately before and after the introduction of the first heating furnace (high-temperature and high-humidity treatment), and the moisture content difference ⁇ S, which is the difference therebetween.
  • the absolute humidity in the heating furnace was calculated from the measured values of the furnace temperature and relative humidity.
  • the thickness of the obtained polarizing film was measured using a digital micrometer “MH-15M” manufactured by Nikon Corporation. Moreover, the moisture content of the film (polarizing film) was calculated
  • the moisture content shown in Table 1 is obtained by obtaining a measured value using the moisture meter and substituting it into the calibration curve (conversion formula) to convert the moisture content (% by weight) by the dry weight method. .
  • the moisture content difference ⁇ S was calculated by subtracting the moisture content immediately after introduction from the moisture content immediately before introducing the first heating furnace.
  • MD transmittance is the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is parallel to the transmission axis of the polarizing film sample, and is represented by “MD” in the above formula.
  • the “TD transmittance” is the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is orthogonal to the transmission axis of the polarizing film sample, and is represented by “TD” in the above formula.
  • the obtained single transmittance and degree of polarization are corrected for visibility by JIS Z 8701: 1999 “color display method—XYZ color system and X 10 Y 10 Z 10 color system” with a two-degree field of view (C light source).
  • the visibility corrected single transmittance (Ty) and the visibility corrected polarization degree (Py) were obtained.
  • the “degree of orientation” representing the orientation of the polyvinyl alcohol resin constituting the polarizing film in the MD was determined by a through method of wide angle X-ray diffraction (WAXD: Wide Angle X-ray Diffraction).
  • WAXD Wide Angle X-ray Diffraction
  • a plurality of rectangular films having a long side in the absorption axis direction (MD, stretching direction) were cut out from the obtained polarizing film.
  • a plurality of cut out films were fixed so that their MDs (long sides) were parallel, and this was used as a measurement sample.
  • the thickness of the measurement sample was about 0.1 mm.
  • X-ray diffractometer “NANO-Viewer” manufactured by Rigaku Corporation, X-ray output conditions: Cu target, 40 kV, 20 mA.
  • the uncorrected azimuth distribution curve refers to an azimuth distribution curve before performing background correction.
  • measurement was performed under the same conditions except that the measurement sample was removed from the X-ray optical axis, and the background of the azimuth distribution curve was calculated.
  • FIG. 2 shows an example of the azimuth distribution curve after background correction.
  • the peak in this azimuth distribution curve is an orientation peak.
  • the MD of the measurement sample was installed in the vertical direction, and the ⁇ angle at the maximum intensity of the orientation peak appearing in the horizontal direction was 0 °.
  • the ⁇ angle (0 ° and 180 °) at the maximum intensity of the orientation peak is derived from the component oriented in the MD of the polarizing film.
  • Degree of orientation (%) (360 ⁇ W) / 360
  • the degree of orientation was determined according to W is the sum of these when the total peak width at which the integrated value is 50% when the integrated value of the entire peak of the azimuth distribution curve is 100% is obtained for all orientation peaks.
  • the center position (°) in the full width of the peak coincides with the ⁇ angle (°) at which the peak shows the maximum intensity.
  • the Raman scattered light intensity in the stretching direction of the analytical film at a wave number of 775 cm ⁇ 1 is such that the laser beam is perpendicular to the surface of the analytical film so that the polarization plane of the laser light is parallel to the stretching direction of the analytical film. Incidence was measured by making the plane of polarization of the analyzer parallel to the plane of polarization of the laser light.
  • the intensity of Raman scattered light in the direction orthogonal to the stretching direction of the analytical film at a wave number of 775 cm ⁇ 1 is the surface of the analytical film so that the polarization plane of the laser light is perpendicular to the stretching direction of the analytical film. Measurement was performed such that the plane of incidence was more perpendicular and the plane of polarization of the analyzer was parallel to the plane of polarization of the laser light.
  • Example 9 A long polyvinyl alcohol (PVA) raw film (trade name “Kuraray Poval Film VF-PE # 2000” manufactured by Kuraray Co., Ltd., average polymerization degree 2400, saponification degree 99.9 mol% or more) having a thickness of 20 ⁇ m While being continuously unwound from the roll, it was uniaxially stretched 4.1 times in a dry manner, and further immersed in a swelling bath made of pure water at 30 ° C. with a residence time of 50 seconds while maintaining the tension state ( Swelling step). Thereafter, the film drawn out from the swelling bath was immersed in a dye bath at 30 ° C.
  • PVA polyvinyl alcohol
  • the film drawn from the crosslinking bath was immersed in a cleaning bath made of pure water at 4 ° C. for a residence time of 7 seconds (cleaning step), and subsequently introduced into the first heating furnace capable of adjusting the humidity.
  • a high temperature and high humidity treatment was performed with a residence time of 97 seconds (high temperature and high humidity treatment step) to obtain a polarizing film having a thickness of 8.1 ⁇ m and a width of 216 mm.
  • the temperature and absolute humidity in the first heating furnace were 71 ° C. and 135 g / m 3 , respectively, and the film tension during the high temperature and high humidity treatment was 208 N / m.
  • the moisture content of the film immediately before and after the introduction of the first heating furnace (high temperature and high humidity treatment step) was 15.5 wt% and 9.7 wt%, respectively, and the moisture content difference ⁇ S was 5.8 wt%.
  • Example 6 A polarizing film was produced in the same manner as in Example 9 except that the temperature and absolute humidity in the first heating furnace and the film tension during the high-temperature and high-humidity treatment in the first heating furnace were changed as shown in Table 2. did.
  • Table 2 summarizes the production conditions of the polarizing film in Example 9 and Comparative Example 6, the moisture content of the film immediately before and after the introduction of the first heating furnace (high temperature and high humidity treatment), and the moisture content difference ⁇ S, which is the difference therebetween. . Moreover, about the said item, the characteristic of the polarizing film in Example 9 and Comparative Example 6 was measured. The results are shown in Table 2.
  • a base film having a three-layer structure in which a resin layer made of homopolypropylene (trade name “Sumitomo Nobrene FLX80E4” manufactured by Sumitomo Chemical Co., Ltd., melting point Tm 163 ° C.), which is a homopolymer of propylene, is disposed on both sides of It was produced by coextrusion using a multilayer extruder.
  • the total thickness of the obtained base film was 100 ⁇ m, and the thickness ratio (FLX80E4 / W151 / FLX80E4) of each layer was 3/4/3.
  • first PVA layer a 9.5 ⁇ m-thick polyvinyl alcohol-based resin layer
  • a primer layer having a thickness of 0.2 ⁇ m is formed on the surface of the base film opposite to the surface on which the first PVA layer is formed in the same manner as described above, and a polyvinyl alcohol resin layer is formed on the primer layer.
  • a forming coating solution is applied and dried at 90 ° C. for 4 minutes to form a 9.4 ⁇ m-thick polyvinyl alcohol-based resin layer (hereinafter referred to as “second PVA layer”) on the primer layer.
  • second PVA layer a 9.4 ⁇ m-thick polyvinyl alcohol-based resin layer
  • the stretched film produced in (5) above contains 30 iodine containing potassium iodide / water of 7.5 / 100 (weight ratio). It was immersed in a dyeing bath at 0 ° C. for a residence time of 230 seconds (dyeing step). Next, the film drawn from the dyeing bath was immersed in a 78 ° C. crosslinking bath having potassium iodide / boric acid / water of 10 / 9.5 / 100 (weight ratio) for a residence time of 240 seconds. It was immersed in a crosslinking bath at 70 ° C. in which potassium fluoride / boric acid / water was 4.5 / 5.0 / 100 (weight ratio) for a residence time of 77 seconds (crosslinking step).
  • a film was obtained.
  • the temperature and absolute humidity in the first heating furnace were 80 ° C. and 117 g / m 3 , respectively, and the film tension during the high temperature and high humidity treatment was 1290 N / m.
  • the moisture content of the film immediately before and after the introduction of the first heating furnace (high temperature and high humidity treatment) was 18.2 wt% and 10.7 wt%, respectively, and the moisture content difference ⁇ S was 7.5 wt%.
  • Example 7 Similar to Example 10 except that the temperature and absolute humidity in the first heating furnace and the film tension during the treatment in the first heating furnace were changed as shown in Table 3, the thickness was 5.3 ⁇ m and the width was 210 mm.
  • a polarizing laminated film including a polarizing film (polarizer layer) was prepared.
  • the temperature and absolute humidity in the first heating furnace were 65 ° C. and 8 g / m 3 , respectively. In the first heating furnace, only the heating (drying) process was performed instead of the high-temperature and high-humidity process.
  • Table 3 shows the production conditions of the polarizing laminated film in Example 10 and Comparative Example 7, the moisture content of the polarizing film immediately before and after the introduction of the first heating furnace (high-temperature and high-humidity treatment), and the moisture content difference ⁇ S, which is the difference therebetween. Summarized in Moreover, about the said item (excluding orientation degree), the characteristic of the polarizing film in Example 10 and Comparative Example 7 was measured. The results are shown in Table 3. For the measurement of Ty and Py using a spectrophotometer with an integrating sphere (“V7100” manufactured by JASCO Corporation), the polarized light formed from the first PVA layer was obtained from the obtained polarizing laminated film.
  • V7100 integrating sphere
  • a laminated film from which the film was peeled and removed was used as a measurement sample. At this time, measurement was performed by entering light from the side of the polarizing film (polarizing film formed from the second PVA layer). Moreover, MD contraction force took out only the polarizing film formed from the 2nd PVA layer from the obtained polarizing laminated film, and made this into the measurement sample.

Abstract

Provided are a method for manufacturing a polarizing film, including a dyeing step for dyeing a polyvinyl alcohol-based resin film with a dichroic pigment, a crosslinking step for treating the film from the dyeing step with a crosslinking agent, and a high-temperature, high-humidity treatment step in which the film from the crosslinking step, in a wet state, is placed in an atmosphere having a temperature of 40-100°C and relative humidity of 40 g/m3 or above; a polarizing film having a dichroic pigment adsorption-oriented on a polyvinyl alcohol-based resin film, the polarizing film having a specific degree of orientation (%); and a polarizing plate including the same.

Description

偏光フィルムの製造方法及び偏光フィルムManufacturing method of polarizing film and polarizing film
 本発明は、偏光板の構成部材として用いることのできる偏光フィルムの製造方法に関する。また本発明は、偏光フィルム及びそれを含む偏光板に関する。 The present invention relates to a method for producing a polarizing film that can be used as a constituent member of a polarizing plate. The present invention also relates to a polarizing film and a polarizing plate including the polarizing film.
 偏光フィルムには、一軸延伸されたポリビニルアルコール系樹脂フィルムにヨウ素や二色性染料のような二色性色素を吸着配向させたものが従来用いられている。一般に偏光フィルムは、ポリビニルアルコール系樹脂フィルムを二色性色素で染色する染色処理、架橋剤で処理する架橋処理を順次施すとともに、製造工程の間に一軸延伸処理を施すことによって製造される〔例えば、特開平7-325218号公報(特許文献1)〕。 Conventionally used is a polarizing film obtained by adsorbing and orienting a dichroic dye such as iodine or a dichroic dye on a uniaxially stretched polyvinyl alcohol resin film. In general, a polarizing film is produced by sequentially performing a dyeing treatment for dyeing a polyvinyl alcohol-based resin film with a dichroic dye, a crosslinking treatment with a crosslinking agent, and a uniaxial stretching treatment during the production process [for example, JP, 7-325218, A (patent documents 1)].
特開平7-325218号公報JP 7-325218 A
 偏光フィルムは、液晶表示装置に代表される画像表示装置に用いられている。偏光フィルムは通常、その片面又は両面に保護フィルムを貼合して偏光板とされ、画像表示装置に組み込まれる。例えば液晶表示装置は、画像表示素子としての液晶セルの両面に偏光板を貼合してなる液晶パネルを搭載する。 The polarizing film is used in an image display device typified by a liquid crystal display device. A polarizing film is usually a polarizing plate obtained by laminating a protective film on one side or both sides thereof, and is incorporated into an image display device. For example, a liquid crystal display device includes a liquid crystal panel in which polarizing plates are bonded to both surfaces of a liquid crystal cell as an image display element.
 近年益々、偏光板の薄型化が要求されているが、偏光板は、薄型である場合にはとりわけ、高温環境下及び高湿環境下で反り(湾曲)を生じやすい。反りを生じる偏光板を液晶セルに貼合して液晶パネルを構築すると、場合によっては液晶パネルにも反りが生じてしまう。液晶パネルの反りは、液晶表示装置の視認性に悪影響を与えるおそれがある。 In recent years, there has been an increasing demand for thinner polarizing plates. However, especially when the polarizing plate is thin, warpage (curvature) is likely to occur in a high-temperature environment and a high-humidity environment. When a polarizing plate that causes warpage is bonded to a liquid crystal cell to construct a liquid crystal panel, the liquid crystal panel also warps in some cases. The warpage of the liquid crystal panel may adversely affect the visibility of the liquid crystal display device.
 偏光板の反り、ひいては液晶パネルの反りを抑制するためには、偏光板に用いる偏光フィルムの吸収軸方向における収縮力(以下、「MD収縮力」ともいう。)を低下させることが有効である。MD収縮力を低下させる方法としては、偏光フィルム製造時の延伸倍率を低くすることが挙げられるが、しかしこの方法の場合、偏光フィルムの光学特性(例えば、偏光度)が不十分となってしまう。 In order to suppress the warpage of the polarizing plate, and hence the warpage of the liquid crystal panel, it is effective to reduce the shrinkage force (hereinafter also referred to as “MD shrinkage force”) in the absorption axis direction of the polarizing film used for the polarizing plate. . As a method for reducing the MD shrinkage force, there is a method of lowering the stretching ratio at the time of producing the polarizing film, but in this case, the optical properties (for example, the degree of polarization) of the polarizing film become insufficient. .
 本発明の目的は、良好な光学特性を有しながらもMD収縮力が小さい偏光フィルムを製造するための方法を提供することにある。また本発明の他の目的は、良好な光学特性を有しながらもMD収縮力が小さい偏光フィルム、及びそれを含む偏光板を提供することにある。 An object of the present invention is to provide a method for producing a polarizing film having good optical properties and low MD shrinkage. Another object of the present invention is to provide a polarizing film having good optical properties and a small MD shrinkage force, and a polarizing plate including the polarizing film.
 本発明は、以下に示す偏光フィルムの製造方法、偏光フィルム及び偏光板を提供する。
 [1] ポリビニルアルコール系樹脂フィルムを二色性色素で染色する染色工程と、
 染色工程後のフィルムを架橋剤で処理する架橋工程と、
 架橋工程後のフィルムであって、かつ湿潤状態にあるフィルムを、温度40~100℃、絶対湿度40g/m3以上の雰囲気下に置く高温高湿処理工程と、
を含む、偏光フィルムの製造方法。
This invention provides the manufacturing method of a polarizing film, a polarizing film, and a polarizing plate shown below.
[1] A dyeing step of dyeing a polyvinyl alcohol-based resin film with a dichroic dye;
A crosslinking step of treating the film after the dyeing step with a crosslinking agent;
A high-temperature and high-humidity treatment step in which a film after the crosslinking step and in a wet state is placed in an atmosphere having a temperature of 40 to 100 ° C. and an absolute humidity of 40 g / m 3 or more;
The manufacturing method of a polarizing film containing.
 [2] 前記架橋工程後のフィルムを、水を含有する洗浄液を用いて洗浄する洗浄工程をさらに含み、
 前記高温高湿処理工程は、前記洗浄工程後のフィルムであって、かつ湿潤状態にあるフィルムに対して実施される、[1]に記載の製造方法。
[2] The method further includes a washing step of washing the film after the crosslinking step using a washing solution containing water,
The manufacturing method according to [1], wherein the high-temperature and high-humidity treatment step is performed on the film after the washing step and in a wet state.
 [3] 前記高温高湿処理工程の処理時間は、5秒~60分である、[1]又は[2]に記載の製造方法。 [3] The manufacturing method according to [1] or [2], wherein a processing time of the high-temperature and high-humidity processing step is 5 seconds to 60 minutes.
 [4] 前記高温高湿処理工程によってフィルムの水分率を低下させる、[1]~[3]のいずれかに記載の製造方法。 [4] The manufacturing method according to any one of [1] to [3], wherein the moisture content of the film is reduced by the high-temperature and high-humidity treatment step.
 [5] 前記高温高湿処理工程前後のフィルムの水分率の差は、15重量%未満である、[4]に記載の製造方法。 [5] The manufacturing method according to [4], wherein the difference in moisture content of the film before and after the high-temperature and high-humidity treatment step is less than 15% by weight.
 [6] ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向されている偏光フィルムであって、
 広角X線回折測定により得られる方位角分布曲線に基づき、下記式:
 配向度(%)=(360-W)/360
〔式中、Wは、前記方位角分布曲線のピーク全体の積分値を100%とするときに積分値が50%となるピーク全幅を、すべてのピークについて求めたときのこれらの和である。〕
に従って求められる配向度が、前記偏光フィルムの厚みが20μm以上であるとき71%以下であり、前記偏光フィルムの厚みが10μm以上20μm未満であるとき74.0%以下である、偏光フィルム。
[6] A polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film,
Based on the azimuth distribution curve obtained by wide-angle X-ray diffraction measurement, the following formula:
Degree of orientation (%) = (360−W) / 360
[Wherein, W is the sum of all the peaks when the total width of the peak is 50% when the integrated value of the entire peak of the azimuth distribution curve is 100%. ]
The polarizing film has a degree of orientation determined in accordance with the following: 71% or less when the thickness of the polarizing film is 20 μm or more, and 74.0% or less when the thickness of the polarizing film is 10 μm or more and less than 20 μm.
 [7] [6]に記載の偏光フィルムと、その少なくとも一方の面に積層される保護フィルムとを含む、偏光板。 [7] A polarizing plate comprising the polarizing film according to [6] and a protective film laminated on at least one surface thereof.
 本発明によれば、良好な光学特性を有しながらもMD収縮力が小さい偏光フィルム及びその製造方法を提供することができる。本発明に係る偏光フィルムを用いた偏光板及び液晶パネルは、高温環境下又は高湿環境下において反りを生じにくい。 According to the present invention, it is possible to provide a polarizing film having good optical properties and a small MD shrinkage force and a method for producing the same. The polarizing plate and the liquid crystal panel using the polarizing film according to the present invention are less likely to warp in a high temperature environment or a high humidity environment.
本発明に係る偏光フィルムの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the polarizing film which concerns on this invention. バックグラウンド補正後の方位角分布曲線の一例を示す図である。It is a figure which shows an example of the azimuth distribution curve after background correction | amendment.
 <偏光フィルムの製造方法>
 図1を参照して、本発明に係る偏光フィルムの製造方法は、以下の工程:
 ポリビニルアルコール系樹脂フィルムを二色性色素で染色する染色工程S20、
 染色工程後のフィルムを架橋剤で処理する架橋工程S30、及び
 架橋工程後のフィルムであって、かつ湿潤状態にあるフィルムを、温度40~100℃、絶対湿度40g/m3以上の雰囲気下に置く高温高湿処理工程S50
を含む。
<Production method of polarizing film>
With reference to FIG. 1, the manufacturing method of the polarizing film which concerns on this invention is the following processes:
Dyeing step S20 for dyeing a polyvinyl alcohol resin film with a dichroic dye,
A cross-linking step S30 in which the film after the dyeing step is treated with a cross-linking agent, and the film after the cross-linking step and in a wet state is placed in an atmosphere having a temperature of 40 to 100 ° C. and an absolute humidity of 40 g / m 3 or more. Place high temperature and high humidity treatment process S50
including.
 本発明に係る偏光フィルムの製造方法は、上記以外の他の工程をさらに含むことができ、その具体例は、図1に示されるように、染色工程S20の前に行う膨潤工程S10、及び架橋工程S30の後に行う洗浄工程S40である。また、ポリビニルアルコール系樹脂フィルムは、偏光フィルム製造工程のいずれか1以上の段階、より具体的には、膨潤工程S10の前から架橋工程S30までのいずれか1以上の段階で一軸延伸処理される(延伸工程)。 The manufacturing method of the polarizing film which concerns on this invention can further include other processes other than the above, The specific example is the swelling process S10 performed before dyeing process S20, and bridge | crosslinking, as FIG. 1 shows. This is a cleaning step S40 performed after step S30. In addition, the polyvinyl alcohol-based resin film is uniaxially stretched at any one or more stages of the polarizing film manufacturing process, more specifically, at any one or more stages from the swelling process S10 to the crosslinking process S30. (Extension process).
 本発明に係る製造方法に含まれる各種の処理工程は、偏光フィルム製造装置のフィルム搬送経路に沿って原反フィルムであるポリビニルアルコール系樹脂フィルムを連続的に搬送させることによって連続的に実施できる。フィルム搬送経路は、上記各種の処理工程を実施するための設備(処理浴や炉等)を、それらの実施順に備えている。処理浴とは、膨潤浴、染色浴、架橋浴、洗浄浴のような、ポリビニルアルコール系樹脂フィルムに対して処理を施す処理液を収容する浴をいう。 The various processing steps included in the production method according to the present invention can be carried out continuously by continuously conveying a polyvinyl alcohol-based resin film, which is a raw film, along the film conveyance path of the polarizing film production apparatus. The film transport path includes equipment (processing bath, furnace, etc.) for performing the various processing steps in the order of execution. The treatment bath refers to a bath containing a treatment liquid for treating a polyvinyl alcohol resin film, such as a swelling bath, a dyeing bath, a crosslinking bath, and a washing bath.
 フィルム搬送経路は、上記設備の他、ガイドロールやニップロール等を適宜の位置に配置することによって構築することができる。例えば、ガイドロールは、各処理浴の前後や処理浴中に配置することができ、これにより処理浴へのフィルムの導入・浸漬及び処理浴からの引き出しを行うことができる。より具体的には、各処理浴中に2以上のガイドロールを設け、これらのガイドロールに沿ってフィルムを搬送させることにより、各処理浴にフィルムを浸漬させることができる。 The film transport path can be constructed by arranging guide rolls, nip rolls and the like at appropriate positions in addition to the above equipment. For example, the guide roll can be arranged before and after each treatment bath or in the treatment bath, whereby the film can be introduced and immersed in the treatment bath and pulled out from the treatment bath. More specifically, two or more guide rolls are provided in each treatment bath, and the film can be immersed in each treatment bath by transporting the film along these guide rolls.
 原反フィルムであるポリビニルアルコール系樹脂フィルムを構成するポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルとこれに共重合可能な他の単量体との共重合体が例示される。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有する(メタ)アクリルアミド類等が挙げられる。ポリビニルアルコール系樹脂のケン化度は、通常約85モル%以上、好ましくは約90モル%以上、より好ましくは約99モル%以上である。本明細書において「(メタ)アクリル」とは、アクリル及びメタクリルから選択される少なくとも一方を意味する。「(メタ)アクリロイル」についても同様である。 As the polyvinyl alcohol-based resin constituting the polyvinyl alcohol-based resin film that is a raw fabric film, a saponified polyvinyl acetate-based resin can be used. Examples of the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth) acrylamides having an ammonium group. The degree of saponification of the polyvinyl alcohol-based resin is usually about 85 mol% or more, preferably about 90 mol% or more, more preferably about 99 mol% or more. In the present specification, “(meth) acryl” means at least one selected from acryl and methacryl. The same applies to “(meth) acryloyl”.
 ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール等も使用し得る。 The polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal modified with aldehydes, polyvinyl acetal, polyvinyl butyral, and the like may be used.
 ポリビニルアルコール系樹脂の平均重合度は、好ましくは100~10000であり、より好ましくは1500~8000であり、さらに好ましくは2000~5000である。ポリビニルアルコール系樹脂の平均重合度は、JIS K 6726(1994)に準拠して求めることができる。平均重合度が100未満では好ましい偏光性能を得ることが困難であり、10000超ではフィルム加工性に劣ることがある。 The average degree of polymerization of the polyvinyl alcohol-based resin is preferably 100 to 10,000, more preferably 1500 to 8000, and further preferably 2000 to 5000. The average degree of polymerization of the polyvinyl alcohol resin can be determined according to JIS K 6726 (1994). If the average degree of polymerization is less than 100, it is difficult to obtain preferable polarization performance, and if it exceeds 10,000, film processability may be inferior.
 ポリビニルアルコール系樹脂フィルムの厚みは、例えば10~150μm程度であり、偏光フィルムの薄型化の観点から、好ましくは100μm以下、より好ましくは70μm以下、さらに好ましくは50μm以下、なおさらに好ましくは40μm以下である。 The thickness of the polyvinyl alcohol-based resin film is, for example, about 10 to 150 μm, and is preferably 100 μm or less, more preferably 70 μm or less, further preferably 50 μm or less, and still more preferably 40 μm or less from the viewpoint of thinning the polarizing film. is there.
 原反フィルムであるポリビニルアルコール系樹脂フィルムは、例えば、長尺の未延伸ポリビニルアルコール系樹脂フィルムのロール(巻回品)として用意することができる。この場合、偏光フィルムもまた、長尺物として得られる。以下、各工程について詳細に説明する。 The polyvinyl alcohol-based resin film, which is a raw film, can be prepared, for example, as a roll (rolled product) of a long unstretched polyvinyl alcohol-based resin film. In this case, the polarizing film is also obtained as a long object. Hereinafter, each step will be described in detail.
 (1)膨潤工程S10
 本工程における膨潤処理は、原反フィルムであるポリビニルアルコール系樹脂フィルムの異物除去、可塑剤除去、易染色性の付与、フィルムの可塑化等の目的で必要に応じて実施される処理であり、具体的には、水を含有する膨潤浴にポリビニルアルコール系樹脂フィルムを浸漬させる処理であることができる。当該フィルムは、1つの膨潤浴に浸漬されてもよいし、2以上の膨潤浴に順次浸漬されてもよい。膨潤処理前、膨潤処理時、又は膨潤処理前及び膨潤処理時に、フィルムに対して一軸延伸処理を行ってもよい。
(1) Swelling step S10
The swelling treatment in this step is a treatment that is carried out as necessary for the purpose of removing foreign matter from the polyvinyl alcohol-based resin film that is the raw fabric film, removing the plasticizer, imparting easy dyeability, plasticizing the film, Specifically, it can be a treatment of immersing a polyvinyl alcohol-based resin film in a swelling bath containing water. The film may be immersed in one swelling bath or sequentially in two or more swelling baths. You may perform a uniaxial stretching process with respect to a film before a swelling process, a swelling process, or before a swelling process and a swelling process.
 膨潤浴は、水(例えば純水)であることができる他、アルコール類のような水溶性有機溶媒を添加した水溶液であってもよい。 The swelling bath may be water (for example, pure water) or an aqueous solution to which a water-soluble organic solvent such as alcohol is added.
 フィルムを浸漬するときの膨潤浴の温度は、通常10~70℃程度、好ましくは15~50℃程度であり、フィルムの浸漬時間は、通常10~600秒程度、好ましくは20~300秒程度である。 The temperature of the swelling bath when dipping the film is usually about 10 to 70 ° C., preferably about 15 to 50 ° C., and the dipping time of the film is usually about 10 to 600 seconds, preferably about 20 to 300 seconds. is there.
 (2)染色工程S20
 本工程における染色処理は、ポリビニルアルコール系樹脂フィルムに二色性色素を吸着、配向させる目的で行われる処理であり、具体的には、二色性色素を含有する染色浴にポリビニルアルコール系樹脂フィルムを浸漬させる処理であることができる。当該フィルムは、1つの染色浴に浸漬されてもよいし、2以上の染色浴に順次浸漬されてもよい。二色性色素の染色性を高めるために、染色工程に供されるフィルムは、少なくともある程度の一軸延伸処理が施されていてもよい。染色処理前の一軸延伸処理の代わりに、あるいは染色処理前の一軸延伸処理に加えて、染色処理時に一軸延伸処理を行ってもよい。
(2) Dyeing step S20
The dyeing process in this step is a process performed for the purpose of adsorbing and orienting the dichroic dye to the polyvinyl alcohol resin film, and specifically, the polyvinyl alcohol resin film in a dye bath containing the dichroic dye. It can be a process of immersing. The film may be immersed in one dyeing bath or sequentially in two or more dyeing baths. In order to improve the dyeability of the dichroic dye, the film subjected to the dyeing process may be subjected to at least some uniaxial stretching treatment. Instead of the uniaxial stretching process before the dyeing process, or in addition to the uniaxial stretching process before the dyeing process, the uniaxial stretching process may be performed during the dyeing process.
 二色性色素は、ヨウ素又は二色性有機染料であることができる。二色性有機染料の具体例は、レッドBR、レッドLR、レッドR、ピンクLB、ルビンBL、ボルドーGS、スカイブルーLG、レモンイエロー、ブルーBR、ブルー2R、ネイビーRY、グリーンLG、バイオレットLB、バイオレットB、ブラックH、ブラックB、ブラックGSP、イエロー3G、イエローR、オレンジLR、オレンジ3R、スカーレットGL、スカーレットKGL、コンゴーレッド、ブリリアントバイオレットBK、スプラブルーG、スプラブルーGL、スプラオレンジGL、ダイレクトスカイブルー、ダイレクトファーストオレンジS、ファーストブラックを含む。二色性色素は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。 The dichroic dye can be iodine or a dichroic organic dye. Specific examples of the dichroic organic dye include: Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Includes Sky Blue, Direct First Orange S and First Black. A dichroic dye may be used individually by 1 type, and may use 2 or more types together.
 二色性色素としてヨウ素を用いる場合、染色浴には、ヨウ素及びヨウ化カリウムを含有する水溶液を用いることができる。ヨウ化カリウムに代えて、ヨウ化亜鉛等の他のヨウ化物を用いてもよく、ヨウ化カリウムと他のヨウ化物を併用してもよい。また、ヨウ化物以外の化合物、例えば、ホウ酸、塩化亜鉛、塩化コバルト等を共存させてもよい。ホウ酸を添加する場合は、ヨウ素を含む点で後述する架橋処理と区別される。上記水溶液におけるヨウ素の含有量は通常、水100重量部あたり0.01~1重量部程度である。また、ヨウ化カリウム等のヨウ化物の含有量は通常、水100重量部あたり0.5~20重量部程度である。 When iodine is used as the dichroic dye, an aqueous solution containing iodine and potassium iodide can be used for the dyeing bath. Instead of potassium iodide, other iodides such as zinc iodide may be used, or potassium iodide and other iodides may be used in combination. In addition, compounds other than iodide, for example, boric acid, zinc chloride, cobalt chloride and the like may coexist. When boric acid is added, it is distinguished from the crosslinking treatment described later in that it contains iodine. The iodine content in the aqueous solution is usually about 0.01 to 1 part by weight per 100 parts by weight of water. The content of iodide such as potassium iodide is usually about 0.5 to 20 parts by weight per 100 parts by weight of water.
 フィルムを浸漬するときの染色浴の温度は、通常10~45℃程度、好ましくは10~40℃程度であり、より好ましくは20~35℃程度であり、フィルムの浸漬時間は、通常30~600秒程度、好ましくは60~300秒程度である。 The temperature of the dyeing bath when dipping the film is usually about 10 to 45 ° C., preferably about 10 to 40 ° C., more preferably about 20 to 35 ° C., and the dipping time for the film is usually 30 to 600 ° C. About 2 seconds, preferably about 60 to 300 seconds.
 二色性色素として二色性有機染料を用いる場合、染色浴には、二色性有機染料を含有する水溶液を用いることができる。当該水溶液における二色性有機染料の含有量は通常、水100重量部あたり1×10-4~10重量部程度であり、好ましくは1×10-3~1重量部程度である。この染色浴には染色助剤等を共存させてもよく、例えば、硫酸ナトリウム等の無機塩や界面活性剤等を含有していてもよい。二色性有機染料は1種のみを単独で用いてもよいし、2種以上を併用してもよい。フィルムを浸漬するときの染色浴の温度は、例えば20~80℃程度、好ましくは30~70℃程度であり、フィルムの浸漬時間は、通常30~600秒程度、好ましくは60~300秒程度である。 When a dichroic organic dye is used as the dichroic dye, an aqueous solution containing the dichroic organic dye can be used for the dyeing bath. The content of the dichroic organic dye in the aqueous solution is usually about 1 × 10 −4 to 10 parts by weight, preferably about 1 × 10 −3 to 1 part by weight per 100 parts by weight of water. In this dyeing bath, a dyeing assistant or the like may coexist, and for example, an inorganic salt such as sodium sulfate or a surfactant may be contained. A dichroic organic dye may be used individually by 1 type, and may use 2 or more types together. The temperature of the dyeing bath when dipping the film is, for example, about 20 to 80 ° C., preferably about 30 to 70 ° C., and the dipping time of the film is usually about 30 to 600 seconds, preferably about 60 to 300 seconds. is there.
 (3)架橋工程S30
 染色工程後のポリビニルアルコール系樹脂フィルムを架橋剤で処理する架橋処理は、架橋による耐水化や色相調整等の目的で行う処理であり、具体的には、架橋剤を含有する架橋浴に染色工程後のフィルムを浸漬させる処理であることができる。当該フィルムは、1つの架橋浴に浸漬されてもよいし、2以上の架橋浴に順次浸漬されてもよい。架橋処理時に一軸延伸処理を行ってもよい。
(3) Crosslinking step S30
The cross-linking treatment for treating the polyvinyl alcohol-based resin film after the dyeing step with a cross-linking agent is a treatment performed for the purpose of water resistance and hue adjustment by cross-linking, specifically, a dyeing step in a cross-linking bath containing a cross-linking agent. It can be a process of immersing the later film. The film may be immersed in one crosslinking bath or sequentially in two or more crosslinking baths. You may perform a uniaxial stretching process at the time of a crosslinking process.
 架橋剤としては、ホウ酸、グリオキザール、グルタルアルデヒド等を挙げることができ、ホウ酸が好ましく用いられる。2種以上の架橋剤を併用することもできる。架橋浴におけるホウ酸の含有量は通常、水100重量部あたり0.1~15重量部程度であり、好ましくは1~10重量部程度である。二色性色素がヨウ素の場合、架橋浴は、ホウ酸に加えてヨウ化物を含有することが好ましい。架橋浴におけるヨウ化物の含有量は通常、水100重量部あたり0.1~15重量部程度であり、好ましくは5~12重量部程度である。ヨウ化物としては、ヨウ化カリウム、ヨウ化亜鉛等が挙げられる。また、ヨウ化物以外の化合物、例えば、塩化亜鉛、塩化コバルト、塩化ジルコニウム、チオ硫酸ナトリウム、亜硫酸カリウム、硫酸ナトリウム等を架橋浴に共存させてもよい。 Examples of the crosslinking agent include boric acid, glyoxal, and glutaraldehyde, and boric acid is preferably used. Two or more crosslinking agents can be used in combination. The content of boric acid in the crosslinking bath is usually about 0.1 to 15 parts by weight, preferably about 1 to 10 parts by weight per 100 parts by weight of water. When the dichroic dye is iodine, the crosslinking bath preferably contains iodide in addition to boric acid. The iodide content in the crosslinking bath is usually about 0.1 to 15 parts by weight, preferably about 5 to 12 parts by weight per 100 parts by weight of water. Examples of iodide include potassium iodide and zinc iodide. In addition, compounds other than iodide, such as zinc chloride, cobalt chloride, zirconium chloride, sodium thiosulfate, potassium sulfite, sodium sulfate, and the like, may coexist in the crosslinking bath.
 フィルムを浸漬するときの架橋浴の温度は、通常50~85℃程度、好ましくは50~70℃程度であり、フィルムの浸漬時間は、通常10~600秒程度、好ましくは20~300秒程度である。 The temperature of the crosslinking bath when dipping the film is usually about 50 to 85 ° C., preferably about 50 to 70 ° C., and the dipping time for the film is usually about 10 to 600 seconds, preferably about 20 to 300 seconds. is there.
 上述のように、偏光フィルムの製造にあたり、ポリビニルアルコール系樹脂フィルムは、膨潤工程S10の前から架橋工程S30までのいずれか1又は2以上の段階で一軸延伸処理される(延伸工程、図1)。二色性色素の染色性を高める観点から、染色工程に供されるフィルムは、少なくともある程度の一軸延伸処理を施したフィルムであることが好ましく、又は染色処理前の一軸延伸処理の代わりに、あるいは染色処理前の一軸延伸処理に加えて、染色処理時に一軸延伸処理を行うことが好ましい。 As described above, in the production of the polarizing film, the polyvinyl alcohol-based resin film is uniaxially stretched in any one or two or more stages from before the swelling step S10 to the crosslinking step S30 (stretching step, FIG. 1). . From the viewpoint of enhancing the dyeability of the dichroic dye, the film subjected to the dyeing process is preferably a film subjected to at least some uniaxial stretching treatment, or instead of the uniaxial stretching treatment before the dyeing treatment, or In addition to the uniaxial stretching process before the dyeing process, it is preferable to perform the uniaxial stretching process during the dyeing process.
 一軸延伸処理は、空中で延伸を行う乾式延伸、浴中で延伸を行う湿式延伸のいずれであってもよく、これらの双方を行ってもよい。一軸延伸処理は、2つのニップロール間に周速差をつけて縦一軸延伸を行うロール間延伸、熱ロール延伸、テンター延伸等であることができるが、好ましくはロール間延伸を含む。原反フィルムを基準とする延伸倍率(2以上の段階で延伸処理を行う場合にはそれらの累積延伸倍率)は、3~8倍程度である。良好な偏光特性を付与するために、延伸倍率は、好ましくは4倍以上、より好ましくは5倍以上とされる。 The uniaxial stretching treatment may be either dry stretching for stretching in the air or wet stretching for stretching in the bath, or both of them. The uniaxial stretching treatment may be inter-roll stretching, hot roll stretching, tenter stretching, or the like, in which longitudinal uniaxial stretching is performed with a difference in peripheral speed between two nip rolls, and preferably includes inter-roll stretching. The draw ratio based on the raw film (the cumulative draw ratio in the case where the drawing process is performed in two or more stages) is about 3 to 8 times. In order to impart good polarization characteristics, the draw ratio is preferably 4 times or more, more preferably 5 times or more.
 (4)洗浄工程S40
 本工程における洗浄処理は、ポリビニルアルコール系樹脂フィルムに付着した余分な架橋剤や二色性色素等の薬剤を除去する目的で必要に応じて実施される処理であり、水を含有する洗浄液を用いて架橋工程後のポリビニルアルコール系樹脂フィルムを洗浄する処理である。具体的には、洗浄浴(洗浄液)に架橋工程後のポリビニルアルコール系樹脂フィルムを浸漬させる処理であることができる。当該フィルムは、1つの洗浄浴に浸漬されてもよいし、2以上の洗浄浴に順次浸漬されてもよい。あるいは、洗浄処理は、架橋工程後のポリビニルアルコール系樹脂フィルムに対して洗浄液をシャワーとして噴霧する処理であってもよく、上記の浸漬と噴霧とを組み合わせてもよい。
(4) Cleaning step S40
The cleaning process in this step is a process performed as necessary for the purpose of removing chemicals such as excess cross-linking agent and dichroic dye attached to the polyvinyl alcohol-based resin film, and uses a cleaning solution containing water. This is a treatment for washing the polyvinyl alcohol-based resin film after the crosslinking step. Specifically, it can be a treatment of immersing the polyvinyl alcohol-based resin film after the crosslinking step in a cleaning bath (cleaning liquid). The film may be immersed in one cleaning bath or sequentially in two or more cleaning baths. Alternatively, the cleaning process may be a process of spraying the cleaning liquid as a shower on the polyvinyl alcohol-based resin film after the crosslinking step, or a combination of the above immersion and spraying.
 洗浄液は、水(例えば純水)であることができる他、アルコール類のような水溶性有機溶媒を添加した水溶液であってもよい。洗浄液の温度は、例えば5~40℃程度であることができる。 The cleaning liquid may be water (for example, pure water) or an aqueous solution to which a water-soluble organic solvent such as alcohol is added. The temperature of the cleaning liquid can be about 5 to 40 ° C., for example.
 洗浄工程S40は任意の工程であり省略されてもよいし、後述するように、高温高湿処理工程S50中に洗浄処理を行ってもよい(高温高湿処理が洗浄処理を兼ねていてもよい)。好ましくは、洗浄工程S40を行った後のフィルムに対して高温高湿処理工程S50を行う。 The cleaning step S40 is an optional step and may be omitted, and as will be described later, the cleaning process may be performed during the high-temperature and high-humidity processing step S50 (the high-temperature and high-humidity process may also serve as the cleaning process). ). Preferably, the high-temperature and high-humidity treatment step S50 is performed on the film after the washing step S40.
 (5)高温高湿処理工程S50
 本工程における高温高湿処理は、架橋工程S30後又は洗浄工程S40後のフィルムを温度40~100℃、絶対湿度40g/m3以上の雰囲気下に置く処理である。高温高湿処理を施すことにより、偏光フィルムの光学特性の劣化を抑えながら、高温高湿処理の代わりに絶対湿度40g/m3未満での高温処理(乾燥処理)を行う場合に比べて、そのMD収縮力を小さくすることができる。これは、二色性色素の配向性が乱されることなく、偏光フィルムを構成するポリビニルアルコール系樹脂の分子鎖の配向性が低下することが要因であると考えられる。
(5) High temperature and high humidity treatment step S50
The high temperature and high humidity treatment in this step is a treatment in which the film after the crosslinking step S30 or the washing step S40 is placed in an atmosphere having a temperature of 40 to 100 ° C. and an absolute humidity of 40 g / m 3 or more. Compared to the case of performing high temperature treatment (drying treatment) at an absolute humidity of less than 40 g / m 3 instead of high temperature high humidity treatment while suppressing deterioration of the optical properties of the polarizing film by performing high temperature high humidity treatment. MD contraction force can be reduced. It is considered that this is because the orientation of the molecular chain of the polyvinyl alcohol resin constituting the polarizing film is lowered without disturbing the orientation of the dichroic dye.
 これに対し、上記特許文献1に具体的に記載されている方法のように、洗浄工程後に従来一般的に行われている絶対湿度40g/m3未満での高温処理(乾燥処理)を従来どおり実施し、その後に高温高湿処理を実施する場合には、意外なことにMD収縮力は低下しないばかりか、上昇することさえある。 On the other hand, as in the method specifically described in Patent Document 1 above, conventional high-temperature treatment (drying treatment) at an absolute humidity of less than 40 g / m 3, which is generally performed after the cleaning step, is performed as usual. Surprisingly, when the high temperature and high humidity treatment is performed, the MD shrinkage force is not decreased, but may even increase.
 高温高湿処理は、湿潤状態にある架橋工程S30後又は洗浄工程S40後のフィルムに対して施される。「湿潤状態にある」とは、架橋工程S30後又は洗浄工程S40後の高水分率のフィルムを(従来の絶対湿度40g/m3未満での高温処理(乾燥処理)を行うことなく)そのまま、高温高湿処理に付すことを意味しており、より具体的には、フィルムの水分率が13重量%以上(好ましくは15重量%以上)にあることを意味する。フィルムの水分率は、後述する実施例の項に記載の方法に従って測定される。 The high temperature and high humidity treatment is performed on the film after the crosslinking step S30 or the cleaning step S40 in a wet state. “In a wet state” means that a film having a high moisture content after the crosslinking step S30 or after the washing step S40 (without performing a conventional high-temperature treatment (drying treatment) at an absolute humidity of less than 40 g / m 3 ) This means that the film is subjected to a high-temperature and high-humidity treatment. More specifically, it means that the moisture content of the film is 13% by weight or more (preferably 15% by weight or more). The moisture content of the film is measured according to the method described in the Examples section described later.
 高温高湿処理は、架橋工程S30後又は洗浄工程S40後のフィルムを、温度及び湿度調整の可能な炉(加熱炉)やブース又は室内に導入する処理であることができる。炉(加熱炉)やブース又は室内に導入する処理に加えて、遠赤外線ヒーターや熱ロール等の加熱手段を併用してもよい。高温高湿処理は、好ましくは洗浄工程S40の後に実施されるが、所定の高温高湿雰囲気下で洗浄液を噴霧するなど、高温高湿処理と洗浄処理とを同時に行ってもよく、また、高温高湿雰囲気下に置かれることによって実質的にフィルムの洗浄がなされる場合など、高温高湿処理が洗浄処理を兼ねていてもよい。 The high-temperature and high-humidity treatment can be a treatment for introducing the film after the crosslinking step S30 or the cleaning step S40 into a furnace (heating furnace), a booth or a room where the temperature and humidity can be adjusted. In addition to treatment introduced into a furnace (heating furnace), booth or room, heating means such as a far-infrared heater or a heat roll may be used in combination. The high-temperature and high-humidity treatment is preferably performed after the cleaning step S40. However, the high-temperature and high-humidity treatment and the cleaning treatment may be performed at the same time, such as spraying a cleaning liquid in a predetermined high-temperature and high-humidity atmosphere. In the case where the film is substantially cleaned by being placed in a high-humidity atmosphere, the high-temperature and high-humidity process may also serve as the cleaning process.
 高温高湿処理の温度は、上述のとおり40℃以上であり、MD収縮力をより効果的に低下させる観点から、好ましくは55℃以上、より好ましくは60℃以上である。また高温高湿処理の温度は、上述のとおり100℃以下であり、光学特性の劣化をより効果的に抑制する観点から、好ましくは90℃以下である。 The temperature of the high-temperature and high-humidity treatment is 40 ° C. or higher as described above, and preferably 55 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of more effectively reducing the MD shrinkage force. Moreover, the temperature of the high temperature and high humidity treatment is 100 ° C. or lower as described above, and is preferably 90 ° C. or lower from the viewpoint of more effectively suppressing the deterioration of optical characteristics.
 高温高湿処理における絶対湿度は、上述のとおり40g/m3以上であり、MD収縮力をより効果的に低下させる観点から、好ましくは75g/m3以上、より好ましくは85g/m3以上、さらに好ましくは100g/m3以上である。一方、絶対湿度が過度に高いと、処理ゾーン内での結露の発生や、結露水によるフィルムの汚染が懸念されることから、絶対湿度は、好ましくは550g/m3以下、より好ましくは400g/m3以下、さらに好ましくは300g/m3以下、特に好ましくは160g/m3以下である。 The absolute humidity in the high-temperature and high-humidity treatment is 40 g / m 3 or more as described above, and preferably 75 g / m 3 or more, more preferably 85 g / m 3 or more, from the viewpoint of more effectively reducing the MD shrinkage force. More preferably, it is 100 g / m 3 or more. On the other hand, if the absolute humidity is excessively high, there is concern about the occurrence of condensation in the treatment zone and the contamination of the film with condensed water. Therefore, the absolute humidity is preferably 550 g / m 3 or less, more preferably 400 g / m 2. m 3 or less, more preferably 300 g / m 3 or less, and particularly preferably 160 g / m 3 or less.
 高温高湿処理の時間は、MD収縮力をより効果的に低下させる観点から、好ましくは5秒以上であり、より好ましくは10秒以上である。また当該時間は、温度にもよるが、あまり長いと光学特性の劣化が懸念されることから、好ましくは60分以下であり、より好ましくは30分以下であり、さらに好ましくは10分以下であり、特に好ましくは5分以下である。 The time for the high-temperature and high-humidity treatment is preferably 5 seconds or more, more preferably 10 seconds or more, from the viewpoint of effectively reducing the MD contraction force. Further, although the time depends on the temperature, if it is too long, there is a concern about deterioration of optical characteristics. Therefore, it is preferably 60 minutes or less, more preferably 30 minutes or less, and even more preferably 10 minutes or less. Especially preferably, it is 5 minutes or less.
 高温高湿処理は、長尺のポリビニルアルコール系樹脂フィルムをフィルム搬送経路に沿って搬送し、上記炉等に連続的に導入、通過させる処理であることができるが、このような高温高湿処理におけるフィルムの張力は、MD収縮力をより効果的に低下させる観点から、50~1000N/mであることが好ましい。フィルムのシワが発生することを抑制する観点から、フィルム張力は、300N/m以上であることがより好ましい。 The high-temperature and high-humidity treatment can be a treatment in which a long polyvinyl alcohol-based resin film is conveyed along the film conveyance path, and is continuously introduced and passed through the furnace or the like. The film tension is preferably 50 to 1000 N / m from the viewpoint of more effectively reducing the MD shrinkage force. From the viewpoint of suppressing wrinkling of the film, the film tension is more preferably 300 N / m or more.
 高温高湿処理は、ポリビニルアルコール系樹脂フィルムを乾燥する処理、すなわち、その水分率を低下させる処理を兼ねていてもよく、極端な高温高湿条件を採用しない限り、通常は乾燥処理が同時になされる。これにより、必ずしも高温高湿処理の後に乾燥処理を別途実施する必要がなくなるため、絶対湿度40g/m3未満での高温処理(乾燥処理)の後に高温高湿処理を実施する従来の方法と比較して、製造プロセスの簡略化及び効率化の面で有利となる。 The high-temperature and high-humidity treatment may also serve as a treatment for drying the polyvinyl alcohol-based resin film, i.e., a treatment for reducing the moisture content, and the drying treatment is usually performed at the same time unless extreme high-temperature and high-humidity conditions are adopted. The This eliminates the need for a separate drying process after the high-temperature and high-humidity treatment, so that it is compared with the conventional method in which the high-temperature and high-humidity process is performed after the high-temperature treatment (drying process) at an absolute humidity of less than 40 g / m 3. Thus, this is advantageous in terms of simplification and efficiency of the manufacturing process.
 高温高湿処理に供されるフィルム、すなわち架橋工程S30後又は洗浄工程S40後の湿潤状態にあるフィルムの水分率は、フィルムの厚みに依存するが、通常13~50重量%程度である。高温高湿処理による水分率の低下の程度、すなわち高温高湿処理前の水分率と高温高湿処理後の水分率との差(水分率差ΔS)もまたフィルムの厚みに依存するが、例えば5~45重量%であり、好ましくは8~35重量%である。例えば原反フィルムの厚みが40μm程度以下である場合、水分率差ΔSは15重量%未満であることができる。 The moisture content of the film subjected to the high temperature and high humidity treatment, that is, the film in the wet state after the crosslinking step S30 or the washing step S40 depends on the thickness of the film, but is usually about 13 to 50% by weight. The degree of reduction in moisture content due to high-temperature and high-humidity treatment, that is, the difference between the moisture content before high-temperature and high-humidity treatment and the moisture content after high-temperature and high-humidity treatment (moisture content difference ΔS) also depends on the thickness of the film. It is 5 to 45% by weight, preferably 8 to 35% by weight. For example, when the thickness of the raw film is about 40 μm or less, the moisture content difference ΔS can be less than 15% by weight.
 高温高湿処理後のフィルム(高温高湿処理が最終工程である場合には偏光フィルム)の水分率もまたフィルムの厚みに依存するが、通常5~30重量%であり、その後のフィルムの搬送性の観点から、好ましくは6~15重量%である。水分率があまりに低いと搬送中にフィルムが裂けやすくなり、また水分率があまりに高いと、放湿によりフィルム端部にカールが生じやすくなる。 The moisture content of the film after high-temperature and high-humidity treatment (or polarizing film when high-temperature and high-humidity treatment is the final process) is also 5 to 30% by weight, although it depends on the thickness of the film. From the viewpoint of properties, it is preferably 6 to 15% by weight. If the moisture content is too low, the film tends to tear during conveyance, and if the moisture content is too high, curling tends to occur at the film edge due to moisture release.
 概して、フィルムが薄いほど水分は散逸しやすく、従って原反フィルムが薄いほど高温高湿処理前及び高温高湿処理中の水分率が低下しやすい。水分率があまりに低すぎるとフィルムの搬送性が低下しやすくなる。そこで、原反フィルムの厚みが40μm程度以下である場合、高温高湿処理の温度を低めに設定し、40~70℃とすることが好ましい。 In general, the thinner the film, the more easily the moisture is dissipated. Therefore, the thinner the original film, the lower the moisture content before and during the high temperature and high humidity treatment. If the moisture content is too low, the film transportability tends to be lowered. Therefore, when the thickness of the raw film is about 40 μm or less, it is preferable to set the temperature of the high-temperature and high-humidity treatment to be low and to be 40 to 70 ° C.
 以上の工程を経て、一軸延伸されたポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向されている偏光フィルムを得ることができる。偏光フィルムの厚みは、通常5~40μmであり、好ましくは30μm以下である。本発明によって得られる偏光フィルムによれば、厚みが30μm以下、さらには25μm以下と薄い場合であっても、MD収縮力が小さいため、偏光板や液晶パネルとしたときの反りを効果的に抑制することができる。 Through the above steps, a polarizing film in which a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol-based resin film can be obtained. The thickness of the polarizing film is usually 5 to 40 μm, preferably 30 μm or less. According to the polarizing film obtained by the present invention, even when the thickness is as thin as 30 μm or less, and even 25 μm or less, the MD shrinkage is small, so that the warpage when used as a polarizing plate or a liquid crystal panel is effectively suppressed. can do.
 例えば水分率の調整のために、高温高湿処理工程S50の後に乾燥処理(絶対湿度40g/m3未満での高温処理)を施してもよい。ただし、高温高湿処理工程S50によって水分率の調整は可能であるので、この乾燥処理は必要に応じてなされるものである。 For example, in order to adjust the moisture content, a drying process (a high temperature process at an absolute humidity of less than 40 g / m 3 ) may be performed after the high temperature and high humidity process step S50. However, since the moisture content can be adjusted by the high-temperature and high-humidity treatment step S50, this drying treatment is performed as necessary.
 得られた偏光フィルムは、例えば、そのまま次の偏光板作製工程(偏光フィルムの片面又は両面に保護フィルムを貼合する工程)に搬送することもできる。 The obtained polarizing film can also be conveyed, for example, to the next polarizing plate production step (step of bonding a protective film on one or both sides of the polarizing film) as it is.
 1つの実施形態において本発明に係る偏光フィルムは、一軸延伸されたポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向されているフィルムであり、広角X線回折(WAXD:Wide Angle X-ray Diffraction)のスルー法により測定される、偏光フィルムを構成するポリビニルアルコール系樹脂のMDへの配向性を表す配向度(%)に特徴を有するものであることができる。この特徴を有することにより、本実施形態に係る偏光フィルムは、良好な光学特性を有しながらもMD収縮力が小さいという特性・効果を示すことができるものと推定される。 In one embodiment, the polarizing film according to the present invention is a film in which a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol-based resin film, and wide angle X-ray diffraction (WAXD: Wide Angle X-ray Diffraction). ), The degree of orientation (%) representing the orientation of the polyvinyl alcohol resin constituting the polarizing film in the MD, measured by the through method. By having this characteristic, it is presumed that the polarizing film according to the present embodiment can exhibit the characteristics and effects that the MD contraction force is small while having good optical characteristics.
 具体的には、本実施形態に係る偏光フィルムは、その厚みが20μm以上であるとき、上記の配向度が71%以下であることが好ましく、70%以下であることがより好ましく、67%以下であることがさらに好ましい。偏光フィルムの配向度は、その厚みが20μm以上であるとき、通常60%以上であり、好ましくは65%以上である。厚みが20μm以上である偏光フィルムの厚みは、通常30μm以下であり、好ましくは25μm以下であり、また好ましくは22μm以上である。 Specifically, when the thickness of the polarizing film according to this embodiment is 20 μm or more, the degree of orientation is preferably 71% or less, more preferably 70% or less, and 67% or less. More preferably. The degree of orientation of the polarizing film is usually 60% or more, preferably 65% or more when the thickness is 20 μm or more. The thickness of the polarizing film having a thickness of 20 μm or more is usually 30 μm or less, preferably 25 μm or less, and preferably 22 μm or more.
 本実施形態に係る偏光フィルムは、その厚みが10μm以上20μm未満であるとき、上記の配向度が74.0%以下であることが好ましく、73%以下であることがより好ましく、72%以下であることがさらに好ましい。偏光フィルムの配向度は、その厚みが10μm以上20μm未満であるとき、通常65%以上であり、好ましくは70%以上である。厚みが10μm以上20μm未満である偏光フィルムの厚みは、好ましくは15μm以下であり、より好ましくは13μm以下であり、また好ましくは11μm以上であり、より好ましくは12μm以上である。 When the thickness of the polarizing film according to the present embodiment is 10 μm or more and less than 20 μm, the degree of orientation is preferably 74.0% or less, more preferably 73% or less, and 72% or less. More preferably it is. When the thickness is 10 μm or more and less than 20 μm, the orientation degree of the polarizing film is usually 65% or more, preferably 70% or more. The thickness of the polarizing film having a thickness of 10 μm or more and less than 20 μm is preferably 15 μm or less, more preferably 13 μm or less, and preferably 11 μm or more, more preferably 12 μm or more.
 本実施形態に係る偏光フィルムは、その厚みが10μm未満であるとき、上記の配向度が75%以下であることが好ましく、74%以下であることがより好ましい。偏光フィルムの配向度は、その厚みが10μm未満であるとき、通常70%以上である。厚みが10μm未満である偏光フィルムの厚みは、通常3μm以上であり、好ましくは7μm以上であり、また好ましくは9μm以下である。 When the thickness of the polarizing film according to this embodiment is less than 10 μm, the degree of orientation is preferably 75% or less, and more preferably 74% or less. The degree of orientation of the polarizing film is usually 70% or more when the thickness is less than 10 μm. The thickness of the polarizing film having a thickness of less than 10 μm is usually 3 μm or more, preferably 7 μm or more, and preferably 9 μm or less.
 上記のような配向度を示す偏光フィルムは、上述の本発明に係る偏光フィルムの製造方法によって好適に製造することができる。ここでいう配向度は、後述する実施例の項に記載の方法に従って測定される。 The polarizing film exhibiting the degree of orientation as described above can be preferably manufactured by the above-described manufacturing method of the polarizing film according to the present invention. The degree of orientation referred to here is measured according to the method described in the Examples section described later.
 また、他の実施形態において本発明に係る偏光フィルムは、一軸延伸されたポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向されているフィルムであり、偏光フィルムの架橋剤による架橋状態を表す波数775cm-1における吸収軸方向のラマン散乱光強度と透過軸方向のラマン散乱光強度との比(以下、「ラマン散乱光強度比」ともいう。)に特徴を有するものであることができる。この特徴を有することにより、本実施形態に係る偏光フィルムは、良好な光学特性を有しながらもMD収縮力が小さいという特性・効果を示すことができるものと推定される。 In another embodiment, the polarizing film according to the present invention is a film in which a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol-based resin film, and the wave number representing a crosslinked state of the polarizing film by a crosslinking agent. It can be characterized by the ratio of the Raman scattered light intensity in the absorption axis direction and the Raman scattered light intensity in the transmission axis direction at 775 cm −1 (hereinafter also referred to as “Raman scattered light intensity ratio”). By having this characteristic, it is presumed that the polarizing film according to the present embodiment can exhibit the characteristics and effects that the MD contraction force is small while having good optical characteristics.
 具体的には、本実施形態に係る偏光フィルムは、上記のラマン散乱光強度比が0.86以上であることが好ましく、0.89以上であることがより好ましい。ラマン散乱光強度比は、通常1.00以下であり、好ましくは0.95以下である。 Specifically, in the polarizing film according to this embodiment, the Raman scattered light intensity ratio is preferably 0.86 or more, and more preferably 0.89 or more. The Raman scattered light intensity ratio is usually 1.00 or less, preferably 0.95 or less.
 上記のようなラマン散乱光強度比を示す偏光フィルムは、上述の本発明に係る偏光フィルムの製造方法によって好適に製造することができる。ここでいうラマン散乱光強度比は、後述する実施例の項に記載の方法に従って測定される。 The polarizing film showing the Raman scattered light intensity ratio as described above can be preferably manufactured by the above-described manufacturing method of the polarizing film according to the present invention. The Raman scattered light intensity ratio here is measured according to the method described in the section of Examples described later.
 さらに他の実施形態において本発明に係る偏光フィルムは、一軸延伸されたポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向されているフィルムであり、上記範囲内の配向度を示し、かつ上記範囲内のラマン散乱光強度比を示す。上記範囲内の配向度を示し、かつ上記範囲内のラマン散乱光強度比を示すことは、良好な光学特性を有しながらMD収縮力を小さくするうえで有利である。 In still another embodiment, the polarizing film according to the present invention is a film in which a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol-based resin film, exhibits an orientation degree within the above range, and the above range. The Raman scattered light intensity ratio is shown. The degree of orientation within the above range and the Raman scattered light intensity ratio within the above range are advantageous for reducing the MD shrinkage force while having good optical properties.
 <偏光板>
 以上のようにして製造される、又は、上記配向度及び上記ラマン散乱光強度比の少なくとも一方を示す偏光フィルムの少なくとも片面に、接着剤を介して保護フィルムを貼合(積層)することにより偏光板を得ることができる。保護フィルムとしては、熱可塑性樹脂、例えば、鎖状ポリオレフィン系樹脂(ポリプロピレン系樹脂等)、環状ポリオレフィン系樹脂(ノルボルネン系樹脂等)のようなポリオレフィン系樹脂;トリアセチルセルロースやジアセチルセルロースのようなセルロースエステル系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートのようなポリエステル系樹脂;ポリカーボネート系樹脂;ポリメタクリル酸メチル系樹脂のような(メタ)アクリル系樹脂;又はこれらの混合物、共重合物等からなる透明樹脂フィルムであることができる。
<Polarizing plate>
Polarized light is produced by bonding (laminating) a protective film via an adhesive to at least one surface of a polarizing film produced as described above or exhibiting at least one of the degree of orientation and the Raman scattered light intensity ratio. A board can be obtained. As the protective film, thermoplastic resins, for example, polyolefin resins such as chain polyolefin resins (polypropylene resins, etc.), cyclic polyolefin resins (norbornene resins, etc.); celluloses such as triacetyl cellulose and diacetyl cellulose Ester resins; Polyester resins such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; Polycarbonate resins; (Meth) acrylic resins such as polymethyl methacrylate resins; or a mixture or copolymer thereof It can be a transparent resin film.
 保護フィルムは、位相差フィルム、輝度向上フィルムのような光学機能を併せ持つ保護フィルムであることもできる。例えば、上記材料からなる透明樹脂フィルムを延伸(一軸延伸又は二軸延伸等)したり、該フィルム上に液晶層等を形成したりすることにより、任意の位相差値が付与された位相差フィルムとすることができる。 The protective film may be a protective film having both optical functions such as a retardation film and a brightness enhancement film. For example, a retardation film provided with an arbitrary retardation value by stretching a transparent resin film made of the above material (uniaxial stretching or biaxial stretching) or forming a liquid crystal layer or the like on the film. It can be.
 保護フィルムにおける偏光フィルムとは反対側の表面には、ハードコート層、防眩層、反射防止層、帯電防止層、防汚層のような表面処理層(コーティング層)を形成することもできる。 A surface treatment layer (coating layer) such as a hard coat layer, an antiglare layer, an antireflection layer, an antistatic layer, or an antifouling layer can be formed on the surface of the protective film opposite to the polarizing film.
 保護フィルムの厚みは、偏光板の薄型化の観点から薄いことが好ましいが、薄すぎると強度が低下して加工性に劣るから、好ましくは5~150μm、より好ましくは5~100μm、さらに好ましくは10~50μmである。 The thickness of the protective film is preferably thin from the viewpoint of reducing the thickness of the polarizing plate, but if it is too thin, the strength is lowered and the workability is poor, so that it is preferably 5 to 150 μm, more preferably 5 to 100 μm, and still more preferably. 10 to 50 μm.
 偏光フィルムと保護フィルムとの貼合に用いる接着剤としては、紫外線硬化性接着剤のような活性エネルギー線硬化性接着剤や、ポリビニルアルコール系樹脂の水溶液、又はこれに架橋剤が配合された水溶液、ウレタン系エマルジョン接着剤のような水系接着剤を挙げることができる。偏光フィルムの両面に保護フィルムを貼合する場合、2つの接着剤層を形成する接着剤は同種であってもよいし、異種であってもよい。例えば、両面に保護フィルムを貼合する場合、片面は水系接着剤を用いて貼合し、もう片面は活性エネルギー線硬化性接着剤を用いて貼合してもよい。紫外線硬化型接着剤は、ラジカル重合性の(メタ)アクリル系化合物と光ラジカル重合開始剤の混合物や、カチオン重合性のエポキシ化合物と光カチオン重合開始剤の混合物等であることができる。また、カチオン重合性のエポキシ化合物とラジカル重合性の(メタ)アクリル系化合物とを併用し、開始剤として光カチオン重合開始剤と光ラジカル重合開始剤を併用することもできる。 As an adhesive used for laminating a polarizing film and a protective film, an active energy ray curable adhesive such as an ultraviolet curable adhesive, an aqueous solution of a polyvinyl alcohol resin, or an aqueous solution in which a crosslinking agent is blended. And water-based adhesives such as urethane emulsion adhesives. When bonding a protective film on both surfaces of a polarizing film, the adhesive agent which forms two adhesive bond layers may be the same, and a different kind may be sufficient as it. For example, when a protective film is bonded to both surfaces, one surface may be bonded using a water-based adhesive, and the other surface may be bonded using an active energy ray-curable adhesive. The ultraviolet curable adhesive can be a mixture of a radical polymerizable (meth) acrylic compound and a photo radical polymerization initiator, a mixture of a cationic polymerizable epoxy compound and a photo cationic polymerization initiator, or the like. Further, a cationic polymerizable epoxy compound and a radical polymerizable (meth) acrylic compound may be used in combination, and a photo cationic polymerization initiator and a photo radical polymerization initiator may be used in combination as an initiator.
 活性エネルギー線硬化性接着剤を用いる場合、貼合後、活性エネルギー線を照射することによって接着剤を硬化させる。活性エネルギー線の光源は特に限定されないが、波長400nm以下に発光分布を有する活性エネルギー線(紫外線)が好ましく、具体的には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が好ましく用いられる。 When using an active energy ray-curable adhesive, the adhesive is cured by irradiating active energy rays after bonding. The light source of the active energy ray is not particularly limited, but an active energy ray (ultraviolet ray) having a light emission distribution at a wavelength of 400 nm or less is preferable. A black light lamp, a microwave excitation mercury lamp, a metal halide lamp or the like is preferably used.
 偏光フィルムと保護フィルムとの接着性を向上させるために、偏光フィルムと保護フィルムとの貼合に先立ち、偏光フィルム及び/又は保護フィルムの貼合面に、コロナ処理、火炎処理、プラズマ処理、紫外線照射処理、プライマー塗布処理、ケン化処理等の表面処理を施してもよい。 In order to improve the adhesion between the polarizing film and the protective film, prior to the bonding between the polarizing film and the protective film, the bonding surface of the polarizing film and / or the protective film is subjected to corona treatment, flame treatment, plasma treatment, ultraviolet light. Surface treatments such as irradiation treatment, primer coating treatment, and saponification treatment may be applied.
 本発明の偏光板は、上述のとおり、単層フィルムである偏光フィルムに保護フィルムを貼合することによって作製することもできるが、この方法に限らず、例えば特開2009-98653号公報に記載されるような、基材フィルムを利用する方法によっても作製することができる。後者の方法は薄膜の偏光フィルム(偏光子層)を有する偏光板を得るのに有利であり、例えば次の工程を含むことができる。 As described above, the polarizing plate of the present invention can also be produced by laminating a protective film on a polarizing film that is a single layer film, but is not limited to this method, and is described in, for example, JP-A-2009-98653. It can also be produced by a method using a base film. The latter method is advantageous for obtaining a polarizing plate having a thin polarizing film (polarizer layer), and can include, for example, the following steps.
 基材フィルムの少なくとも一方の面にポリビニルアルコール系樹脂を含有する塗工液を塗工した後、乾燥させることによりポリビニルアルコール系樹脂層を形成して積層フィルムを得る樹脂層形成工程、
 積層フィルムを延伸して延伸フィルムを得る延伸工程、
 延伸フィルムのポリビニルアルコール系樹脂層を二色性色素で染色して偏光子層(偏光フィルムに相当)を形成することにより偏光性積層フィルムを得る染色工程、
 偏光性積層フィルムの偏光子層上に接着剤を用いて保護フィルムを貼合して貼合フィルムを得る第1貼合工程、
 貼合フィルムから基材フィルムを剥離除去して片面保護フィルム付の偏光板を得る剥離工程。
After applying a coating liquid containing a polyvinyl alcohol-based resin on at least one surface of the base film, a resin layer forming step of forming a polyvinyl alcohol-based resin layer by drying to obtain a laminated film,
A stretching step of stretching a laminated film to obtain a stretched film;
A dyeing step of obtaining a polarizing laminated film by dyeing a polyvinyl alcohol resin layer of a stretched film with a dichroic dye to form a polarizer layer (corresponding to a polarizing film);
The 1st bonding process of bonding a protective film using the adhesive agent on the polarizer layer of a light-polarizing laminated film, and obtaining a bonding film,
The peeling process which peels and removes a base film from a bonding film, and obtains the polarizing plate with a single-sided protective film.
 偏光子層(偏光フィルム)の両面に保護フィルムを積層する場合には、さらに片面保護フィルム付偏光板の偏光子面に接着剤を用いて保護フィルムを貼合する第2貼合工程を含む。 In the case where protective films are laminated on both sides of the polarizer layer (polarizing film), it further includes a second bonding step in which the protective film is bonded to the polarizer surface of the polarizing plate with a single-side protective film using an adhesive.
 基材フィルムを利用する上記方法においては、偏光性積層フィルムを得る染色工程(例えば、偏光性積層フィルムを得る染色工程中の架橋工程後又は洗浄工程後)に高温高湿処理工程を含ませることができる。上記偏光性積層フィルム、片面保護フィルム付の偏光板、及び第2貼合工程を経て得られる両面保護フィルム付の偏光板に含まれる偏光フィルム又はこれらから単離される偏光フィルムもまた、本発明に属する偏光フィルムであり、好ましくは上記範囲内の配向度及び上記範囲内のラマン散乱光強度比の少なくとも一方を示す。 In the above method using a base film, a high-temperature and high-humidity treatment step is included in the dyeing step for obtaining a polarizing laminated film (for example, after the crosslinking step or the washing step in the dyeing step for obtaining the polarizing laminated film). Can do. A polarizing film contained in the polarizing laminate film, a polarizing plate with a single-sided protective film, and a polarizing plate with a double-sided protective film obtained through the second laminating step, or a polarizing film isolated therefrom are also included in the present invention. The polarizing film belongs, and preferably exhibits at least one of the orientation degree within the above range and the Raman scattered light intensity ratio within the above range.
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 <実施例1>
 厚み60μmの長尺のポリビニルアルコール(PVA)原反フィルム〔(株)クラレ製の商品名「クラレポバールフィルムVF-PE#6000」、平均重合度2400、ケン化度99.9モル%以上〕をロールから巻き出しながら連続的に搬送し、30℃の純水からなる膨潤浴に滞留時間81秒で浸漬させた(膨潤工程)。その後、膨潤浴から引き出したフィルムを、ヨウ化カリウム/水が2/100(重量比)であるヨウ素を含む30℃の染色浴に滞留時間143秒で浸漬させた(染色工程)。次いで、染色浴から引き出したフィルムを、ヨウ化カリウム/ホウ酸/水が12/4.1/100(重量比)である56℃の架橋浴に滞留時間67秒で浸漬させ、続いて、ヨウ化カリウム/ホウ酸/水が9/2.9/100(重量比)である40℃の架橋浴に滞留時間11秒で浸漬させた(架橋工程)。染色工程及び架橋工程において、浴中でのロール間延伸により縦一軸延伸を行った。原反フィルムを基準とする総延伸倍率は5.7倍とした。
<Example 1>
A 60-μm long polyvinyl alcohol (PVA) raw film (trade name “Kuraray Poval Film VF-PE # 6000” manufactured by Kuraray Co., Ltd., average polymerization degree 2400, saponification degree 99.9 mol% or more) It was continuously conveyed while being unwound from the roll, and immersed in a swelling bath made of pure water at 30 ° C. for a residence time of 81 seconds (swelling step). Thereafter, the film drawn out from the swelling bath was immersed in a dye bath at 30 ° C. containing iodine having a potassium iodide / water ratio of 2/100 (weight ratio) for a residence time of 143 seconds (dyeing step). Next, the film drawn from the dyeing bath was immersed in a 56 ° C. crosslinking bath having potassium iodide / boric acid / water of 12 / 4.1 / 100 (weight ratio) for a residence time of 67 seconds. It was immersed in a crosslinking bath at 40 ° C. in which potassium fluoride / boric acid / water was 9 / 2.9 / 100 (weight ratio) with a residence time of 11 seconds (crosslinking step). In the dyeing process and the crosslinking process, longitudinal uniaxial stretching was performed by stretching between rolls in a bath. The total draw ratio based on the original film was 5.7 times.
 次に、架橋浴から引き出したフィルムを5℃の純水からなる洗浄浴に滞留時間3秒で浸漬させた後(洗浄工程)、引き続き、湿度調節が可能な第1加熱炉に導入することにより滞留時間161秒で高温高湿処理を行って(高温高湿処理工程)、厚み22.9μm、幅207mmの偏光フィルムを得た。第1加熱炉内の温度、絶対湿度はそれぞれ80℃、88g/m3とし、高温高湿処理時のフィルム張力は565N/mとした。第1加熱炉導入(高温高湿処理)直前、直後のフィルムの水分率はそれぞれ33.3重量%、7.9重量%であり、水分率差ΔSは25.4重量%であった。 Next, the film drawn from the crosslinking bath was immersed in a cleaning bath made of pure water at 5 ° C. for a residence time of 3 seconds (cleaning step), and subsequently introduced into the first heating furnace capable of adjusting the humidity. A high temperature and high humidity treatment was performed at a residence time of 161 seconds (high temperature and high humidity treatment step) to obtain a polarizing film having a thickness of 22.9 μm and a width of 207 mm. The temperature and absolute humidity in the first heating furnace were 80 ° C. and 88 g / m 3 , respectively, and the film tension during the high temperature and high humidity treatment was 565 N / m. The moisture content of the film immediately before and after the introduction of the first heating furnace (high temperature and high humidity treatment) was 33.3% by weight and 7.9% by weight, respectively, and the moisture content difference ΔS was 25.4% by weight.
 <実施例2>
 第1加熱炉内の温度及び絶対湿度、並びに第1加熱炉による処理時のフィルム張力を表1に示されるとおりに変更したこと以外は実施例1と同様にして、厚み23.7μm、幅200mmの偏光フィルムを作製した。
<Example 2>
A thickness of 23.7 μm and a width of 200 mm were obtained in the same manner as in Example 1 except that the temperature and absolute humidity in the first heating furnace and the film tension during the treatment in the first heating furnace were changed as shown in Table 1. A polarizing film was prepared.
 <比較例1>
 第1加熱炉内の温度及び絶対湿度、並びに第1加熱炉による処理時のフィルム張力を表1に示されるとおりに変更したこと以外は実施例1と同様にして、厚み23.2μm、幅206mmの偏光フィルムを作製した。第1加熱炉内の温度、絶対湿度はそれぞれ76℃、8g/m3であり、第1加熱炉では高温高湿処理ではなく、加熱(乾燥)処理を行ったのみである。
<Comparative Example 1>
Similar to Example 1, except that the temperature and absolute humidity in the first heating furnace and the film tension during the treatment in the first heating furnace were changed as shown in Table 1, the thickness was 23.2 μm and the width was 206 mm. A polarizing film was prepared. The temperature and absolute humidity in the first heating furnace were 76 ° C. and 8 g / m 3 , respectively. In the first heating furnace, only the heating (drying) process was performed instead of the high-temperature and high-humidity process.
 <比較例2>
 温度、絶対湿度がそれぞれ76℃、8g/m3である第1加熱炉にて加熱(乾燥)処理を行った後、さらに別の湿度調節が可能な第2加熱炉に導入することにより滞留時間161秒で高温高湿処理を行ったこと以外は比較例1と同様にして、厚み23.4μm、幅208mmの偏光フィルムを作製した。第2加熱炉内の温度、絶対湿度はそれぞれ80℃、88g/m3とし、第2加熱炉での高温高湿処理時のフィルム張力は2N/mとした。
<Comparative example 2>
Residence time is achieved by performing heating (drying) treatment in a first heating furnace having a temperature and an absolute humidity of 76 ° C. and 8 g / m 3 , respectively, and then introducing it into a second heating furnace capable of adjusting the humidity. A polarizing film having a thickness of 23.4 μm and a width of 208 mm was produced in the same manner as in Comparative Example 1 except that the high temperature and high humidity treatment was performed in 161 seconds. The temperature and absolute humidity in the second heating furnace were 80 ° C. and 88 g / m 3 , respectively, and the film tension during the high temperature and high humidity treatment in the second heating furnace was 2 N / m.
 <比較例3>
 第2加熱炉内の温度及び絶対湿度を表1に示されるとおりに変更したこと以外は比較例2と同様にして、厚み23.3μm、幅207mmの偏光フィルムを作製した。
<Comparative Example 3>
A polarizing film having a thickness of 23.3 μm and a width of 207 mm was produced in the same manner as in Comparative Example 2 except that the temperature and absolute humidity in the second heating furnace were changed as shown in Table 1.
 <実施例3>
 厚み30μmの長尺のポリビニルアルコール(PVA)原反フィルム〔(株)クラレ製の商品名「クラレポバールフィルムVF-PE#3000」、平均重合度2400、ケン化度99.9モル%以上〕をロールから巻き出しながら連続的に搬送し、20℃の純水からなる膨潤浴に滞留時間31秒で浸漬させた(膨潤工程)。その後、膨潤浴から引き出したフィルムを、ヨウ化カリウム/水が2/100(重量比)であるヨウ素を含む30℃の染色浴に滞留時間122秒で浸漬させた(染色工程)。次いで、染色浴から引き出したフィルムを、ヨウ化カリウム/ホウ酸/水が12/4.1/100(重量比)である56℃の架橋浴に滞留時間70秒で浸漬させ、続いて、ヨウ化カリウム/ホウ酸/水が9/2.9/100(重量比)である40℃の架橋浴に滞留時間13秒で浸漬させた(架橋工程)。染色工程及び架橋工程において、浴中でのロール間延伸により縦一軸延伸を行った。原反フィルムを基準とする総延伸倍率は5.4倍とした。
<Example 3>
A long polyvinyl alcohol (PVA) raw film having a thickness of 30 μm (trade name “Kuraray Poval Film VF-PE # 3000” manufactured by Kuraray Co., Ltd., average polymerization degree 2400, saponification degree 99.9 mol% or more) It was continuously conveyed while being unwound from the roll, and immersed in a swelling bath made of pure water at 20 ° C. for a residence time of 31 seconds (swelling step). Thereafter, the film drawn out from the swelling bath was immersed in a dye bath at 30 ° C. containing iodine having a potassium iodide / water ratio of 2/100 (weight ratio) with a residence time of 122 seconds (dyeing step). Next, the film drawn from the dyeing bath was immersed in a 56 ° C. crosslinking bath having a potassium iodide / boric acid / water ratio of 12 / 4.1 / 100 (weight ratio) with a residence time of 70 seconds. It was immersed in a crosslinking bath at 40 ° C. in which potassium fluoride / boric acid / water was 9 / 2.9 / 100 (weight ratio) with a residence time of 13 seconds (crosslinking step). In the dyeing process and the crosslinking process, longitudinal uniaxial stretching was performed by stretching between rolls in a bath. The total draw ratio based on the original film was 5.4 times.
 次に、架橋浴から引き出したフィルムを5℃の純水からなる洗浄浴に滞留時間3秒で浸漬させた後(洗浄工程)、引き続き、湿度調節が可能な第1加熱炉に導入することにより滞留時間190秒で高温高湿処理を行って(高温高湿処理工程)、厚み12.1μm、幅208mmの偏光フィルムを得た。第1加熱炉内の温度、絶対湿度はそれぞれ73℃、89g/m3とし、高温高湿処理時のフィルム張力は601N/mとした。第1加熱炉導入(高温高湿処理)直前、直後のフィルムの水分率はそれぞれ19.4重量%、8.0重量%であり、水分率差ΔSは11.4重量%であった。 Next, the film drawn from the crosslinking bath was immersed in a cleaning bath made of pure water at 5 ° C. for a residence time of 3 seconds (cleaning step), and subsequently introduced into the first heating furnace capable of adjusting the humidity. A high temperature and high humidity treatment was performed with a residence time of 190 seconds (high temperature and high humidity treatment step) to obtain a polarizing film having a thickness of 12.1 μm and a width of 208 mm. The temperature and absolute humidity in the first heating furnace were 73 ° C. and 89 g / m 3 , respectively, and the film tension during the high temperature and high humidity treatment was 601 N / m. The moisture content of the film immediately before and after the introduction of the first heating furnace (high temperature and high humidity treatment) was 19.4 wt% and 8.0 wt%, respectively, and the moisture content difference ΔS was 11.4 wt%.
 <実施例4~8>
 第1加熱炉内の温度及び絶対湿度、並びに第1加熱炉による高温高湿処理時のフィルム張力を表1に示されるとおりに変更したこと以外は実施例3と同様にして、偏光フィルムを作製した。
<Examples 4 to 8>
A polarizing film was produced in the same manner as in Example 3 except that the temperature and absolute humidity in the first heating furnace and the film tension during the high-temperature and high-humidity treatment in the first heating furnace were changed as shown in Table 1. did.
 <比較例4>
 第1加熱炉内の温度及び絶対湿度、並びに第1加熱炉による処理時のフィルム張力を表1に示されるとおりに変更したこと以外は実施例3と同様にして、厚み12.5μm、幅203mmの偏光フィルムを作製した。第1加熱炉内の温度、絶対湿度はそれぞれ60℃、12g/m3であり、第1加熱炉では高温高湿処理ではなく、加熱(乾燥)処理を行ったのみである。
<Comparative example 4>
Similar to Example 3, except that the temperature and absolute humidity in the first heating furnace and the film tension during the treatment in the first heating furnace were changed as shown in Table 1, the thickness was 12.5 μm and the width was 203 mm. A polarizing film was prepared. The temperature and absolute humidity in the first heating furnace were 60 ° C. and 12 g / m 3 , respectively. In the first heating furnace, only the heating (drying) process was performed instead of the high-temperature and high-humidity process.
 <比較例5>
 温度、絶対湿度がそれぞれ59℃、10g/m3である第1加熱炉にて加熱(乾燥)処理を行った後、さらに別の湿度調節が可能な第2加熱炉に導入することにより滞留時間161秒で高温高湿処理を行ったこと、及び第1加熱炉による処理時のフィルム張力を表1に示されるとおりに変更したこと以外は比較例4と同様にして、厚み12.9μm、幅204mmの偏光フィルムを作製した。第2加熱炉内の温度、絶対湿度はそれぞれ73℃、89g/m3とし、第2加熱炉での高温高湿処理時のフィルム張力は1N/mとした。
<Comparative Example 5>
Residence time is achieved by performing heating (drying) treatment in a first heating furnace having a temperature and absolute humidity of 59 ° C. and 10 g / m 3 , respectively, and then introducing it into a second heating furnace in which further humidity control is possible. The thickness was 12.9 μm and the width was the same as in Comparative Example 4 except that the high-temperature and high-humidity treatment was performed in 161 seconds and the film tension during the treatment in the first heating furnace was changed as shown in Table 1. A polarizing film of 204 mm was produced. The temperature and absolute humidity in the second heating furnace were 73 ° C. and 89 g / m 3 , respectively, and the film tension during the high temperature and high humidity treatment in the second heating furnace was 1 N / m.
 各実施例及び比較例における偏光フィルムの製造条件、第1加熱炉導入(高温高湿処理)直前、直後のフィルムの水分率、並びにこれらの差である水分率差ΔSを表1にまとめた。 Table 1 summarizes the production conditions of the polarizing film in each example and comparative example, the moisture content of the film immediately before and after the introduction of the first heating furnace (high-temperature and high-humidity treatment), and the moisture content difference ΔS, which is the difference therebetween.
 なお、加熱炉内の絶対湿度は、炉内温度と相対湿度の測定値から算出した。得られた偏光フィルムの厚みは、(株)ニコン製のデジタルマイクロメーター「MH-15M」を用いて測定した。また、フィルム(偏光フィルム)の水分率は次の方法で求めた。 The absolute humidity in the heating furnace was calculated from the measured values of the furnace temperature and relative humidity. The thickness of the obtained polarizing film was measured using a digital micrometer “MH-15M” manufactured by Nikon Corporation. Moreover, the moisture content of the film (polarizing film) was calculated | required with the following method.
 予め、水分率の異なる複数の偏光フィルム試料を用いて、乾燥重量法による水分率と、赤外線吸収式の水分計(株式会社フジワーク製の「IM 3SCV MODEL-1900L」)の測定値との相関を示す検量線(換算式)を次式:
 厚み60μmPVA原反使用の偏光フィルムの場合:乾燥重量法による水分率(重量%)=0.0600×(水分計測定値)-50.0252
 厚み30μmPVA原反使用の偏光フィルムの場合:
乾燥重量法による水分率(重量%)=0.0495×(水分計測定値)-38.8379のとおり求めた。この際、乾燥重量法による水分率は、105℃で2時間乾燥させたときの偏光フィルムの重量をW1、乾燥前の偏光フィルムの重量をW0とするとき、次式:
 乾燥重量法による水分率(重量%)={(W0-W1)÷W0}×100
に従って求めた。表1に記載の水分率は、上記水分計を用いて測定値を得、これを上記検量線(換算式)に代入して、乾燥重量法による水分率(重量%)に換算したものである。第1加熱炉導入直前の水分率から導入直後の水分率を差し引くことにより、水分率差ΔSを算出した。
Using a plurality of polarizing film samples having different moisture percentages in advance, the correlation between the moisture percentage by the dry weight method and the measured value of an infrared absorption moisture meter (“IM 3SCV MODEL-1900L” manufactured by Fuji Work Co., Ltd.) Show the calibration curve (conversion formula):
In the case of a polarizing film using a thickness of 60 μm PVA: Moisture percentage (% by weight) by dry weight method = 0.0600 × (measured value of moisture meter) −50.0252
In the case of a polarizing film with a thickness of 30 μm PVA:
Moisture content by dry weight method (% by weight) = 0.0495 × (measured value of moisture meter) −38.8379. At this time, the moisture content by the dry weight method is expressed by the following formula when the weight of the polarizing film when dried at 105 ° C. for 2 hours is W1, and the weight of the polarizing film before drying is W0:
Moisture content by dry weight method (wt%) = {(W0−W1) ÷ W0} × 100
Sought according to. The moisture content shown in Table 1 is obtained by obtaining a measured value using the moisture meter and substituting it into the calibration curve (conversion formula) to convert the moisture content (% by weight) by the dry weight method. . The moisture content difference ΔS was calculated by subtracting the moisture content immediately after introduction from the moisture content immediately before introducing the first heating furnace.
 〔偏光フィルムの評価〕
 下記の項目について、各実施例及び比較例で得られた偏光フィルムの特性を測定した。結果を表1に示す。
[Evaluation of polarizing film]
About the following item, the characteristic of the polarizing film obtained by each Example and the comparative example was measured. The results are shown in Table 1.
 (1)視感度補正単体透過率(Ty)及び視感度補正偏光度(Py)
 得られた偏光フィルムについて、積分球付き分光光度計〔日本分光(株)製の「V7100」〕を用いて波長380~780nmの範囲におけるMD透過率とTD透過率を測定し、下記式:
 単体透過率(%)=(MD+TD)/2
 偏光度(%)={(MD-TD)/(MD+TD)}×100
に基づいて各波長における単体透過率及び偏光度を算出した。
(1) Visibility correction single transmittance (Ty) and visibility correction polarization degree (Py)
About the obtained polarizing film, MD transmittance and TD transmittance in a wavelength range of 380 to 780 nm were measured using a spectrophotometer with an integrating sphere (“V7100” manufactured by JASCO Corporation), and the following formula:
Single transmittance (%) = (MD + TD) / 2
Degree of polarization (%) = {(MD−TD) / (MD + TD)} × 100
Based on the above, the single transmittance and the degree of polarization at each wavelength were calculated.
 「MD透過率」とは、グラントムソンプリズムから出る偏光の向きと偏光フィルム試料の透過軸とを平行にしたときの透過率であり、上記式においては「MD」と表す。また、「TD透過率」とは、グラントムソンプリズムから出る偏光の向きと偏光フィルム試料の透過軸とを直交にしたときの透過率であり、上記式においては「TD」と表す。得られた単体透過率及び偏光度について、JIS Z 8701:1999「色の表示方法-XYZ表色系及びX101010表色系」の2度視野(C光源)により視感度補正を行い、視感度補正単体透過率(Ty)及び視感度補正偏光度(Py)を求めた。 “MD transmittance” is the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is parallel to the transmission axis of the polarizing film sample, and is represented by “MD” in the above formula. The “TD transmittance” is the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is orthogonal to the transmission axis of the polarizing film sample, and is represented by “TD” in the above formula. The obtained single transmittance and degree of polarization are corrected for visibility by JIS Z 8701: 1999 “color display method—XYZ color system and X 10 Y 10 Z 10 color system” with a two-degree field of view (C light source). The visibility corrected single transmittance (Ty) and the visibility corrected polarization degree (Py) were obtained.
 (2)MD収縮力
 得られた偏光フィルムから、吸収軸方向(MD、延伸方向)を長辺とする幅2mm、長さ10mmの測定用試料を切り出した。この試料をエスアイアイ・ナノテクノロジー(株)製の熱機械分析装置(TMA)「EXSTAR-6000」にセットし、寸法を一定に保持したまま、80℃で4時間保持したときに発生する長辺方向(吸収軸方向、MD)の収縮力(MD収縮力)を測定した。
(2) MD shrinkage force From the obtained polarizing film, a measurement sample having a width of 2 mm and a length of 10 mm with the absorption axis direction (MD, stretching direction) as the long side was cut out. The long side generated when this sample is set on the thermomechanical analyzer (TMA) “EXSTAR-6000” manufactured by SII Nanotechnology, Inc. and kept at 80 ° C. for 4 hours while keeping the dimensions constant. The contraction force (MD contraction force) in the direction (absorption axis direction, MD) was measured.
 (3)配向度
 偏光フィルムを構成するポリビニルアルコール系樹脂のMDへの配向性を表す「配向度」を、広角X線回折(WAXD:Wide Angle X-ray Diffraction)のスルー法により求めた。まず、得られた偏光フィルムから、吸収軸方向(MD、延伸方向)を長辺とする長方形のフィルムの複数枚切り出した。切り出したフィルムを、それらのMD(長辺)が平行となるように複数枚重ねて固定し、これを測定用試料とした。測定用試料の厚みは0.1mm程度とした。下記のX線回折装置を用い、測定用試料の表面に対して垂直な方向から、下記のX線出力条件でX線を測定用試料の一方の表面に照射し、透過法での回折像を撮像した。
(3) Degree of orientation The “degree of orientation” representing the orientation of the polyvinyl alcohol resin constituting the polarizing film in the MD was determined by a through method of wide angle X-ray diffraction (WAXD: Wide Angle X-ray Diffraction). First, a plurality of rectangular films having a long side in the absorption axis direction (MD, stretching direction) were cut out from the obtained polarizing film. A plurality of cut out films were fixed so that their MDs (long sides) were parallel, and this was used as a measurement sample. The thickness of the measurement sample was about 0.1 mm. Using the following X-ray diffractometer, irradiate one surface of the measurement sample with X-rays from the direction perpendicular to the surface of the measurement sample under the following X-ray output conditions, and obtain a diffraction image by the transmission method. I took an image.
 X線回折装置:(株)リガク製の「NANO-Viewer」、
 X線出力条件:Cuターゲット、40kV、20mA。
X-ray diffractometer: “NANO-Viewer” manufactured by Rigaku Corporation,
X-ray output conditions: Cu target, 40 kV, 20 mA.
 得られた回折像から、回折角度2θ=20°付近のピークに関して、2θ=19.5~20.5°の範囲を円環積分することによって、まず、未補正方位角分布曲線(方位角度(β角度)-強度分布曲線)を算出した。未補正方位角分布曲線とは、バックグラウンド補正を実施する前の方位角分布曲線をいう。次に、X線の光軸上から測定用試料を取り外したこと以外は同じ条件で測定を行い、方位角分布曲線のバックグランドを算出した。透過率補正を行った後、上記の未補正方位角分布曲線からバックグランドを除去して、バックグラウンド補正後の方位角分布曲線(以下、単に「方位角分布曲線」ともいう。)を得た。図2に、バックグラウンド補正後の方位角分布曲線の一例を示す。この方位角分布曲線におけるピークは配向性ピークであり、本測定においては、測定用試料のMDを鉛直方向に設置し、水平方向に現れる配向性ピークの最大強度におけるβ角度を0°とした。配向性ピークの最大強度におけるβ角度(0°と180°)は、偏光フィルムのMDに配向した成分に由来する。得られた方位角分布曲線から、下記式:
 配向度(%)=(360-W)/360
に従って、配向度を求めた。Wは、方位角分布曲線のピーク全体の積分値を100%とするときに積分値が50%となるピーク全幅を、すべての配向性ピークについて求めたときのこれらの和である。上記ピーク全幅における中心位置(°)は、ピークが最大強度を示すβ角度(°)と合致する。
From the obtained diffraction image, an uncorrected azimuth distribution curve (azimuth angle (1) is first obtained by circular integration of the range of 2θ = 19.5 to 20.5 ° with respect to the peak near the diffraction angle 2θ = 20 °. β angle) -intensity distribution curve) was calculated. The uncorrected azimuth distribution curve refers to an azimuth distribution curve before performing background correction. Next, measurement was performed under the same conditions except that the measurement sample was removed from the X-ray optical axis, and the background of the azimuth distribution curve was calculated. After performing the transmittance correction, the background was removed from the above-mentioned uncorrected azimuth distribution curve to obtain an azimuth distribution curve after the background correction (hereinafter also simply referred to as “azimuth distribution curve”). . FIG. 2 shows an example of the azimuth distribution curve after background correction. The peak in this azimuth distribution curve is an orientation peak. In this measurement, the MD of the measurement sample was installed in the vertical direction, and the β angle at the maximum intensity of the orientation peak appearing in the horizontal direction was 0 °. The β angle (0 ° and 180 °) at the maximum intensity of the orientation peak is derived from the component oriented in the MD of the polarizing film. From the obtained azimuth distribution curve, the following formula:
Degree of orientation (%) = (360−W) / 360
The degree of orientation was determined according to W is the sum of these when the total peak width at which the integrated value is 50% when the integrated value of the entire peak of the azimuth distribution curve is 100% is obtained for all orientation peaks. The center position (°) in the full width of the peak coincides with the β angle (°) at which the peak shows the maximum intensity.
 (4)ラマン散乱光強度比
 得られた偏光フィルムのラマン散乱光強度比を求めるために、染色浴がヨウ素を含まないこと以外は各実施例及び各比較例と同様にして分析用フィルムを作製した。得られた偏光フィルムのラマン散乱光強度比は、この分析用フィルムのラマン散乱光強度比と同じであると認められる。
(4) Raman Scattered Light Intensity Ratio In order to obtain the Raman scattered light intensity ratio of the obtained polarizing film, an analytical film was prepared in the same manner as in each Example and each Comparative Example except that the dyeing bath did not contain iodine. did. It is recognized that the Raman scattered light intensity ratio of the obtained polarizing film is the same as the Raman scattered light intensity ratio of the analytical film.
 得られた分析用フィルムについて、日本分光(株)製のレーザーラマン分光光度計「NRS-5100」を用い、波数775cm-1における吸収軸方向のラマン散乱光強度と透過軸方向のラマン散乱光強度との比(ラマン散乱光強度比)を、下記式:
 ラマン散乱光強度比=(波数775cm-1における分析用フィルムの延伸方向のラマン散乱光強度)/(波数775cm-1における分析用フィルムの延伸方向と直交する方向のラマン散乱光強度)
に従って求め、これを、得られた偏光フィルムのラマン散乱光強度比とした。
About the obtained film for analysis, using a laser Raman spectrophotometer “NRS-5100” manufactured by JASCO Corporation, the Raman scattered light intensity in the absorption axis direction and the Raman scattered light intensity in the transmission axis direction at a wave number of 775 cm −1 . And the ratio (Raman scattered light intensity ratio) to the following formula:
Raman scattered light intensity ratio = (Raman scattered light intensity in the stretching direction of the analysis films in wavenumber 775cm -1) / (Raman scattered light intensity in the direction orthogonal to the stretching direction of the analysis films in wavenumber 775cm -1)
This was determined as the Raman scattered light intensity ratio of the obtained polarizing film.
 ここで、波数775cm-1における分析用フィルムの延伸方向のラマン散乱光強度は、レーザー光を、レーザー光の偏光面が分析用フィルムの延伸方向と平行となるように分析用フィルム表面より垂直に入射させ、検光子の偏光面がレーザー光の偏光面と平行となるようにして測定した。同様に、波数775cm-1における分析用フィルムの延伸方向と直交する方向のラマン散乱光強度は、レーザー光を、レーザー光の偏光面が分析用フィルムの延伸方向と直交するように分析用フィルム表面より垂直に入射させ、検光子の偏光面がレーザー光の偏光面と平行となるようにして測定した。 Here, the Raman scattered light intensity in the stretching direction of the analytical film at a wave number of 775 cm −1 is such that the laser beam is perpendicular to the surface of the analytical film so that the polarization plane of the laser light is parallel to the stretching direction of the analytical film. Incidence was measured by making the plane of polarization of the analyzer parallel to the plane of polarization of the laser light. Similarly, the intensity of Raman scattered light in the direction orthogonal to the stretching direction of the analytical film at a wave number of 775 cm −1 is the surface of the analytical film so that the polarization plane of the laser light is perpendicular to the stretching direction of the analytical film. Measurement was performed such that the plane of incidence was more perpendicular and the plane of polarization of the analyzer was parallel to the plane of polarization of the laser light.
 上記のラマン分光測定に用いた条件は以下のとおりである。
 ・励起波長:532nm、
 ・グレーチング:600 l/mm、
 ・スリット幅:100×1000μm、
 ・アパーチャ:φ40μm、
 ・対物レンズ:100倍。
The conditions used for the above Raman spectroscopic measurement are as follows.
Excitation wavelength: 532 nm
・ Grating: 600 l / mm,
・ Slit width: 100 × 1000 μm,
・ Aperture: φ40μm
-Objective lens: 100 times.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <実施例9>
 厚み20μmの長尺のポリビニルアルコール(PVA)原反フィルム〔(株)クラレ製の商品名「クラレポバールフィルムVF-PE#2000」、平均重合度2400、ケン化度99.9モル%以上〕をロールから巻き出しながら連続的に搬送しながら、乾式で4.1倍に一軸延伸し、さらに緊張状態を保ったまま、30℃の純水からなる膨潤浴に滞留時間50秒で浸漬させた(膨潤工程)。その後、膨潤浴から引き出したフィルムを、ヨウ化カリウム/水が5/100(重量比)であるヨウ素を含む30℃の染色浴に滞留時間88秒で浸漬させた(染色工程)。次いで、染色浴から引き出したフィルムを、ヨウ化カリウム/ホウ酸/水が18/5.6/100(重量比)である65℃の架橋浴に滞留時間115秒で浸漬させた(架橋工程)。染色工程及び架橋工程において、浴中でのロール間延伸によりさらに縦一軸延伸を行った。原反フィルムを基準とする総延伸倍率は4.3倍とした。
<Example 9>
A long polyvinyl alcohol (PVA) raw film (trade name “Kuraray Poval Film VF-PE # 2000” manufactured by Kuraray Co., Ltd., average polymerization degree 2400, saponification degree 99.9 mol% or more) having a thickness of 20 μm While being continuously unwound from the roll, it was uniaxially stretched 4.1 times in a dry manner, and further immersed in a swelling bath made of pure water at 30 ° C. with a residence time of 50 seconds while maintaining the tension state ( Swelling step). Thereafter, the film drawn out from the swelling bath was immersed in a dye bath at 30 ° C. containing iodine having a potassium iodide / water ratio of 5/100 (weight ratio) with a residence time of 88 seconds (dyeing step). Next, the film drawn out from the dyeing bath was immersed in a 65 ° C. crosslinking bath in which potassium iodide / boric acid / water was 18 / 5.6 / 100 (weight ratio) with a residence time of 115 seconds (crosslinking step). . In the dyeing process and the crosslinking process, longitudinal uniaxial stretching was further performed by stretching between rolls in a bath. The total draw ratio based on the original film was 4.3 times.
 次に、架橋浴から引き出したフィルムを4℃の純水からなる洗浄浴に滞留時間7秒で浸漬させた後(洗浄工程)、引き続き、湿度調節が可能な第1加熱炉に導入することにより滞留時間97秒で高温高湿処理を行って(高温高湿処理工程)、厚み8.1μm、幅216mmの偏光フィルムを得た。第1加熱炉内の温度、絶対湿度はそれぞれ71℃、135g/m3とし、高温高湿処理時のフィルム張力は208N/mとした。第1加熱炉導入(高温高湿処理工程)直前、直後のフィルムの水分率はそれぞれ15.5重量%、9.7重量%であり、水分率差ΔSは5.8重量%であった。 Next, the film drawn from the crosslinking bath was immersed in a cleaning bath made of pure water at 4 ° C. for a residence time of 7 seconds (cleaning step), and subsequently introduced into the first heating furnace capable of adjusting the humidity. A high temperature and high humidity treatment was performed with a residence time of 97 seconds (high temperature and high humidity treatment step) to obtain a polarizing film having a thickness of 8.1 μm and a width of 216 mm. The temperature and absolute humidity in the first heating furnace were 71 ° C. and 135 g / m 3 , respectively, and the film tension during the high temperature and high humidity treatment was 208 N / m. The moisture content of the film immediately before and after the introduction of the first heating furnace (high temperature and high humidity treatment step) was 15.5 wt% and 9.7 wt%, respectively, and the moisture content difference ΔS was 5.8 wt%.
 <比較例6>
 第1加熱炉内の温度及び絶対湿度、並びに第1加熱炉による高温高湿処理時のフィルム張力を表2に示されるとおりに変更したこと以外は実施例9と同様にして、偏光フィルムを作製した。
<Comparative Example 6>
A polarizing film was produced in the same manner as in Example 9 except that the temperature and absolute humidity in the first heating furnace and the film tension during the high-temperature and high-humidity treatment in the first heating furnace were changed as shown in Table 2. did.
 実施例9及び比較例6における偏光フィルムの製造条件、第1加熱炉導入(高温高湿処理)直前、直後のフィルムの水分率、並びにこれらの差である水分率差ΔSを表2にまとめた。また、上記の項目について、実施例9及び比較例6における偏光フィルムの特性を測定した。結果を表2に示す。 Table 2 summarizes the production conditions of the polarizing film in Example 9 and Comparative Example 6, the moisture content of the film immediately before and after the introduction of the first heating furnace (high temperature and high humidity treatment), and the moisture content difference ΔS, which is the difference therebetween. . Moreover, about the said item, the characteristic of the polarizing film in Example 9 and Comparative Example 6 was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <実施例10>
 (1)基材フィルムの作製
 エチレンユニットを約5重量%含むプロピレン/エチレンのランダム共重合体(住友化学(株)製の商品名「住友ノーブレン W151」、融点Tm=138℃)からなる樹脂層の両側にプロピレンの単独重合体であるホモポリプロピレン(住友化学(株)製の商品名「住友ノーブレンFLX80E4」、融点Tm=163℃)からなる樹脂層を配置した3層構造の基材フィルムを、多層押出成形機を用いた共押出成形により作製した。得られた基材フィルムの合計の厚みは100μmであり、各層の厚み比(FLX80E4/W151/FLX80E4)は3/4/3であった。
<Example 10>
(1) Production of base film Resin layer made of a random copolymer of propylene / ethylene containing about 5% by weight of ethylene unit (trade name “Sumitomo Noblen W151”, melting point Tm = 138 ° C., manufactured by Sumitomo Chemical Co., Ltd.) A base film having a three-layer structure in which a resin layer made of homopolypropylene (trade name “Sumitomo Nobrene FLX80E4” manufactured by Sumitomo Chemical Co., Ltd., melting point Tm = 163 ° C.), which is a homopolymer of propylene, is disposed on both sides of It was produced by coextrusion using a multilayer extruder. The total thickness of the obtained base film was 100 μm, and the thickness ratio (FLX80E4 / W151 / FLX80E4) of each layer was 3/4/3.
 (2)プライマー層形成用塗工液の調製
 ポリビニルアルコール粉末(日本合成化学工業(株)製の商品名「Z-200」、平均重合度1100、ケン化度99.5モル%)を95℃の熱水に溶解し、濃度3重量%のポリビニルアルコール水溶液を調製した。得られた水溶液に架橋剤(田岡化学工業(株)製の商品名「スミレーズレジン650」)をポリビニルアルコール粉末2重量部に対して1重量部の割合で混合して、プライマー層形成用塗工液を得た。
(2) Preparation of primer layer forming coating solution Polyvinyl alcohol powder (trade name “Z-200” manufactured by Nippon Synthetic Chemical Industry Co., Ltd., average polymerization degree 1100, saponification degree 99.5 mol%) is 95 ° C. Was dissolved in hot water to prepare an aqueous polyvinyl alcohol solution having a concentration of 3% by weight. The resulting aqueous solution was mixed with a crosslinking agent (trade name “Smiles Resin 650” manufactured by Taoka Chemical Co., Ltd.) at a ratio of 1 part by weight to 2 parts by weight of the polyvinyl alcohol powder to form a primer layer-forming coating. A working solution was obtained.
 (3)ポリビニルアルコール系樹脂層形成用塗工液の調製
 ポリビニルアルコール粉末((株)クラレ製の商品名「PVA124」、平均重合度2400、平均ケン化度98.0~99.0モル%)を95℃の熱水に溶解し、濃度8重量%のポリビニルアルコール水溶液を調製し、これをポリビニルアルコール系樹脂層形成用塗工液とした。
(3) Preparation of a coating liquid for forming a polyvinyl alcohol resin layer Polyvinyl alcohol powder (trade name “PVA124” manufactured by Kuraray Co., Ltd., average polymerization degree 2400, average saponification degree 98.0 to 99.0 mol%) Was dissolved in hot water at 95 ° C. to prepare an aqueous polyvinyl alcohol solution having a concentration of 8% by weight, which was used as a coating liquid for forming a polyvinyl alcohol-based resin layer.
 (4)ポリビニルアルコール系樹脂層の形成
 上記(1)で作製した基材フィルムを連続的に搬送しながら、その一方の面にコロナ処理を施し、次いでコロナ処理された面に小径グラビアコーターを用いて上記(2)で調製したプライマー層形成用塗工液を連続的に塗工し、60℃で3分間乾燥させることにより、厚み0.2μmのプライマー層を形成した。引き続き、フィルムを搬送しながら、プライマー層上にカンマコーターを用いて上記(3)で調製したポリビニルアルコール系樹脂層形成用塗工液を連続的に塗工し、90℃で4分間乾燥させることにより、プライマー層上に厚み9.5μmのポリビニルアルコール系樹脂層(以下、「第1のPVA層」という。)を形成した。
(4) Formation of polyvinyl alcohol-based resin layer While continuously transporting the substrate film prepared in (1) above, one surface thereof is subjected to corona treatment, and then a corona-treated surface is used with a small-diameter gravure coater. The primer layer-forming coating solution prepared in (2) above was continuously applied and dried at 60 ° C. for 3 minutes to form a primer layer having a thickness of 0.2 μm. Subsequently, while transporting the film, continuously apply the polyvinyl alcohol-based resin layer forming coating solution prepared in (3) above on the primer layer using a comma coater and dry at 90 ° C. for 4 minutes. Thus, a 9.5 μm-thick polyvinyl alcohol-based resin layer (hereinafter referred to as “first PVA layer”) was formed on the primer layer.
 引き続き、基材フィルムの第1のPVA層が形成されている面とは反対側の面に、上記と同様にして厚み0.2μmのプライマー層を形成し、プライマー層上にポリビニルアルコール系樹脂層形成用塗工液を塗工し、90℃で4分間乾燥させることにより、プライマー層上に厚み9.4μmのポリビニルアルコール系樹脂層(以下、「第2のPVA層」という。)を形成し、両面にPVA層を有する積層フィルムを得た。 Subsequently, a primer layer having a thickness of 0.2 μm is formed on the surface of the base film opposite to the surface on which the first PVA layer is formed in the same manner as described above, and a polyvinyl alcohol resin layer is formed on the primer layer. A forming coating solution is applied and dried at 90 ° C. for 4 minutes to form a 9.4 μm-thick polyvinyl alcohol-based resin layer (hereinafter referred to as “second PVA layer”) on the primer layer. A laminated film having a PVA layer on both sides was obtained.
 (5)延伸フィルムの作製
 上記(4)で作製した積層フィルムを連続的に搬送しながら、ニップロール間での延伸方法により延伸温度160℃で縦方向(フィルム搬送方向)に5.3倍の倍率で一軸延伸して延伸フィルムを得た。延伸フィルムにおいて、第1のPVA層の厚みは5.0μm、第2のPVA層の厚みは4.9μmとなった。
(5) Production of stretched film While continuously transporting the laminated film produced in (4) above, a magnification of 5.3 times in the longitudinal direction (film transport direction) at a stretching temperature of 160 ° C. by a stretching method between nip rolls. The film was uniaxially stretched to obtain a stretched film. In the stretched film, the thickness of the first PVA layer was 5.0 μm, and the thickness of the second PVA layer was 4.9 μm.
 (6)偏光フィルム(偏光子層)を含む偏光性積層フィルムの作製
 上記(5)で作製した延伸フィルムを、ヨウ化カリウム/水が7.5/100(重量比)であるヨウ素を含む30℃の染色浴に滞留時間230秒で浸漬させた(染色工程)。次いで、染色浴から引き出したフィルムを、ヨウ化カリウム/ホウ酸/水が10/9.5/100(重量比)である78℃の架橋浴に滞留時間240秒で浸漬させ、続いて、ヨウ化カリウム/ホウ酸/水が4.5/5.0/100(重量比)である70℃の架橋浴に滞留時間77秒で浸漬させた(架橋工程)。
(6) Production of Polarizing Laminated Film Containing Polarizing Film (Polarizer Layer) The stretched film produced in (5) above contains 30 iodine containing potassium iodide / water of 7.5 / 100 (weight ratio). It was immersed in a dyeing bath at 0 ° C. for a residence time of 230 seconds (dyeing step). Next, the film drawn from the dyeing bath was immersed in a 78 ° C. crosslinking bath having potassium iodide / boric acid / water of 10 / 9.5 / 100 (weight ratio) for a residence time of 240 seconds. It was immersed in a crosslinking bath at 70 ° C. in which potassium fluoride / boric acid / water was 4.5 / 5.0 / 100 (weight ratio) for a residence time of 77 seconds (crosslinking step).
 次に、架橋浴から引き出したフィルムを4℃の純水からなる洗浄浴に滞留時間22秒で浸漬させた後(洗浄工程)、引き続き、湿度調節が可能な第1加熱炉に導入することにより滞留時間276秒で高温高湿処理を行って(高温高湿処理工程)、上記第2のPVA層から形成された厚み5.3μm、幅210mmの偏光フィルム(偏光子層)を含む偏光性積層フィルムを得た。第1加熱炉内の温度、絶対湿度はそれぞれ80℃、117g/m3とし、高温高湿処理時のフィルム張力は1290N/mとした。第1加熱炉導入(高温高湿処理)直前、直後のフィルムの水分率はそれぞれ18.2重量%、10.7重量%であり、水分率差ΔSは7.5重量%であった。 Next, the film drawn from the crosslinking bath was immersed in a cleaning bath made of pure water at 4 ° C. for a residence time of 22 seconds (cleaning step), and subsequently introduced into the first heating furnace capable of adjusting the humidity. A polarizing laminate including a polarizing film (polarizer layer) having a thickness of 5.3 μm and a width of 210 mm formed from the second PVA layer by performing a high temperature and high humidity treatment at a residence time of 276 seconds (high temperature and high humidity treatment step). A film was obtained. The temperature and absolute humidity in the first heating furnace were 80 ° C. and 117 g / m 3 , respectively, and the film tension during the high temperature and high humidity treatment was 1290 N / m. The moisture content of the film immediately before and after the introduction of the first heating furnace (high temperature and high humidity treatment) was 18.2 wt% and 10.7 wt%, respectively, and the moisture content difference ΔS was 7.5 wt%.
 <比較例7>
 第1加熱炉内の温度及び絶対湿度、並びに第1加熱炉による処理時のフィルム張力を表3に示されるとおりに変更したこと以外は実施例10と同様にして、厚み5.3μm、幅210mmの偏光フィルム(偏光子層)を含む偏光性積層フィルムを作製した。第1加熱炉内の温度、絶対湿度はそれぞれ65℃、8g/m3であり、第1加熱炉では高温高湿処理ではなく、加熱(乾燥)処理を行ったのみである。
<Comparative Example 7>
Similar to Example 10 except that the temperature and absolute humidity in the first heating furnace and the film tension during the treatment in the first heating furnace were changed as shown in Table 3, the thickness was 5.3 μm and the width was 210 mm. A polarizing laminated film including a polarizing film (polarizer layer) was prepared. The temperature and absolute humidity in the first heating furnace were 65 ° C. and 8 g / m 3 , respectively. In the first heating furnace, only the heating (drying) process was performed instead of the high-temperature and high-humidity process.
 実施例10及び比較例7における偏光性積層フィルムの製造条件、第1加熱炉導入(高温高湿処理)直前、直後の偏光フィルムの水分率、並びにこれらの差である水分率差ΔSを表3にまとめた。また、上記の項目(配向度は除く。)について、実施例10及び比較例7における偏光フィルムの特性を測定した。結果を表3に示す。なお、積分球付き分光光度計〔日本分光(株)製の「V7100」〕を用いたTy及びPyの測定には、得られた偏光性積層フィルムから、第1のPVA層から形成された偏光フィルムを剥離除去した積層フィルムを測定サンプルとして使用した。この際、偏光フィルム(第2のPVA層から形成された偏光フィルム)側から入光して測定を行った。また、MD収縮力は、得られた偏光性積層フィルムから、第2のPVA層から形成された偏光フィルムのみを取り出し、これを測定サンプルとした。 Table 3 shows the production conditions of the polarizing laminated film in Example 10 and Comparative Example 7, the moisture content of the polarizing film immediately before and after the introduction of the first heating furnace (high-temperature and high-humidity treatment), and the moisture content difference ΔS, which is the difference therebetween. Summarized in Moreover, about the said item (excluding orientation degree), the characteristic of the polarizing film in Example 10 and Comparative Example 7 was measured. The results are shown in Table 3. For the measurement of Ty and Py using a spectrophotometer with an integrating sphere (“V7100” manufactured by JASCO Corporation), the polarized light formed from the first PVA layer was obtained from the obtained polarizing laminated film. A laminated film from which the film was peeled and removed was used as a measurement sample. At this time, measurement was performed by entering light from the side of the polarizing film (polarizing film formed from the second PVA layer). Moreover, MD contraction force took out only the polarizing film formed from the 2nd PVA layer from the obtained polarizing laminated film, and made this into the measurement sample.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (7)

  1.  ポリビニルアルコール系樹脂フィルムを二色性色素で染色する染色工程と、
     染色工程後のフィルムを架橋剤で処理する架橋工程と、
     架橋工程後のフィルムであって、かつ湿潤状態にあるフィルムを、温度40~100℃、絶対湿度40g/m3以上の雰囲気下に置く高温高湿処理工程と、
    を含む、偏光フィルムの製造方法。
    A dyeing step of dyeing a polyvinyl alcohol resin film with a dichroic dye;
    A crosslinking step of treating the film after the dyeing step with a crosslinking agent;
    A high-temperature and high-humidity treatment step in which a film after the crosslinking step and in a wet state is placed in an atmosphere having a temperature of 40 to 100 ° C. and an absolute humidity of 40 g / m 3 or more;
    The manufacturing method of a polarizing film containing.
  2.  前記架橋工程後のフィルムを、水を含有する洗浄液を用いて洗浄する洗浄工程をさらに含み、
     前記高温高湿処理工程は、前記洗浄工程後のフィルムであって、かつ湿潤状態にあるフィルムに対して実施される、請求項1に記載の製造方法。
    The film after the cross-linking step further includes a cleaning step of cleaning with a cleaning liquid containing water,
    The manufacturing method according to claim 1, wherein the high-temperature and high-humidity treatment step is performed on the film after the cleaning step and in a wet state.
  3.  前記高温高湿処理工程の処理時間は、5秒~60分である、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein a processing time of the high-temperature and high-humidity processing step is 5 seconds to 60 minutes.
  4.  前記高温高湿処理工程によってフィルムの水分率を低下させる、請求項1~3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the moisture content of the film is reduced by the high-temperature and high-humidity treatment step.
  5.  前記高温高湿処理工程前後のフィルムの水分率の差は、15重量%未満である、請求項4に記載の製造方法。 The manufacturing method according to claim 4, wherein the difference in moisture content of the film before and after the high-temperature and high-humidity treatment step is less than 15% by weight.
  6.  ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向されている偏光フィルムであって、
     広角X線回折測定により得られる方位角分布曲線に基づき、下記式:
     配向度(%)=(360-W)/360
    〔式中、Wは、前記方位角分布曲線のピーク全体の積分値を100%とするときに積分値が50%となるピーク全幅を、すべてのピークについて求めたときのこれらの和である。〕
    に従って求められる配向度が、前記偏光フィルムの厚みが20μm以上であるとき71%以下であり、前記偏光フィルムの厚みが10μm以上20μm未満であるとき74.0%以下である、偏光フィルム。
    A polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film,
    Based on the azimuth distribution curve obtained by wide-angle X-ray diffraction measurement, the following formula:
    Degree of orientation (%) = (360−W) / 360
    [Wherein, W is the sum of all the peaks when the total width of the peak is 50% when the integrated value of the entire peak of the azimuth distribution curve is 100%. ]
    The polarizing film has a degree of orientation determined in accordance with the following: 71% or less when the thickness of the polarizing film is 20 μm or more, and 74.0% or less when the thickness of the polarizing film is 10 μm or more and less than 20 μm.
  7.  請求項6に記載の偏光フィルムと、その少なくとも一方の面に積層される保護フィルムとを含む、偏光板。 A polarizing plate comprising the polarizing film according to claim 6 and a protective film laminated on at least one surface thereof.
PCT/JP2015/084534 2014-12-12 2015-12-09 Method for manufacturing polarizing film, and polarizing film WO2016093278A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580067338.1A CN107111035B (en) 2014-12-12 2015-12-09 Polarizing film manufacturing method and polarizing film
JP2016563715A JP6346307B2 (en) 2014-12-12 2015-12-09 Manufacturing method of polarizing film
KR1020177018648A KR102645999B1 (en) 2014-12-12 2015-12-09 Method for manufacturing polarizing film, and polarizing film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-251791 2014-12-12
JP2014251791 2014-12-12

Publications (1)

Publication Number Publication Date
WO2016093278A1 true WO2016093278A1 (en) 2016-06-16

Family

ID=56107456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084534 WO2016093278A1 (en) 2014-12-12 2015-12-09 Method for manufacturing polarizing film, and polarizing film

Country Status (5)

Country Link
JP (2) JP6346307B2 (en)
KR (1) KR102645999B1 (en)
CN (1) CN107111035B (en)
TW (1) TWI684032B (en)
WO (1) WO2016093278A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107728247A (en) * 2016-08-10 2018-02-23 住友化学株式会社 Polarizing coating
JP2018032023A (en) * 2016-08-18 2018-03-01 住友化学株式会社 Method and device for manufacturing polarizing film
JP2019066747A (en) * 2017-10-03 2019-04-25 日本合成化学工業株式会社 Method of manufacturing polarizing film
JP2020034595A (en) * 2018-08-27 2020-03-05 日東電工株式会社 Method of manufacturing stretched resin film, method of manufacturing polarizer, method of measuring moisture content of stretched resin film, and device for manufacturing stretched resin film
JP2020034596A (en) * 2018-08-27 2020-03-05 日東電工株式会社 Method of manufacturing stretched resin film, method of manufacturing polarizer, and device for manufacturing stretched resin film
WO2020162531A1 (en) * 2019-02-08 2020-08-13 日東電工株式会社 Polarizing film, polarizing plate and method for manufacturing said polarizing film
JP2021043369A (en) * 2019-09-12 2021-03-18 住友化学株式会社 Method of manufacturing polarizing plate
WO2021065107A1 (en) * 2019-09-30 2021-04-08 日東電工株式会社 Retardation-layer-equipped polarizing plate and image display device using same
CN113994243A (en) * 2019-06-19 2022-01-28 日东电工株式会社 Polarizing film, polarizing plate and method for producing the same
WO2023038076A1 (en) * 2021-09-13 2023-03-16 住友化学株式会社 Polarizing film and polarizing plate
JP7475403B2 (en) 2021-09-13 2024-04-26 住友化学株式会社 Polarizing films and plates

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102535102B1 (en) * 2016-08-18 2023-05-19 스미또모 가가꾸 가부시키가이샤 Process for producing polarizing film and apparatus for producing polarizing film
WO2020080859A1 (en) * 2018-10-17 2020-04-23 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
KR102235481B1 (en) * 2018-10-17 2021-04-02 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
WO2020175242A1 (en) * 2019-02-26 2020-09-03 日東電工株式会社 Polarizing film, polarizing plate, and production method for polarizing film
WO2020242117A1 (en) * 2019-05-28 2020-12-03 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display device
TWI727746B (en) * 2020-04-17 2021-05-11 住華科技股份有限公司 System and method for manufacturing polarizer, and polarizer manufactured by the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260402A (en) * 1988-04-11 1989-10-17 Sumitomo Chem Co Ltd Dye system polarizing film
JPH07134210A (en) * 1993-11-12 1995-05-23 Kurabo Ind Ltd Production of polarizing film
JPH07325218A (en) * 1994-04-08 1995-12-12 Sumitomo Chem Co Ltd Production of polarizing film
JPH07325215A (en) * 1994-05-31 1995-12-12 Sumitomo Chem Co Ltd Production of polarizing film
JPH11183726A (en) * 1997-12-18 1999-07-09 Nippon Synthetic Chem Ind Co Ltd:The Polarizing film and polarizing plate using the same
JP2002350638A (en) * 2001-05-28 2002-12-04 Nishi Kogyo Kk Method and apparatus for manufacturing polarizing film
JP2003227927A (en) * 2001-11-30 2003-08-15 Fuji Photo Film Co Ltd Polarizing film, polarizing plate, method for manufacturing polarizing film and liquid crystal display device
JP2004279931A (en) * 2003-03-18 2004-10-07 Fuji Photo Film Co Ltd Polarizing plate and its manufacturing method
JP2005324355A (en) * 2004-05-12 2005-11-24 Kuraray Co Ltd Polyvinyl alcohol-based polymer film and its manufacturing method
JP2009198666A (en) * 2008-02-20 2009-09-03 Fujifilm Corp Method of manufacturing polarizing plate, polarizing plate, and liquid crystal display using the polarizing plate
JP2012058383A (en) * 2010-09-07 2012-03-22 Nitto Denko Corp Method for producing thin polarizing film
JP2012078780A (en) * 2010-09-09 2012-04-19 Nitto Denko Corp Method for producing thin polarizing film

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001100038A (en) * 1999-09-30 2001-04-13 Fuji Photo Film Co Ltd Polarizing sheet consisting of discotic dyestuff liquid crystal film
TWI282013B (en) * 2001-11-07 2007-06-01 Fujifilm Corp Long polarizing film, polarizing plate, production method thereof and liquid crystal display using the same
JP2005049779A (en) * 2003-07-31 2005-02-24 Fuji Photo Film Co Ltd Polarizing plate and liquid crystal display device
CN101200599B (en) * 2003-10-14 2011-07-20 三菱化学株式会社 Dye for anisotropic dye film, dye composition for anisotropic dye film, anisotropic dye film, and polarizing device
JP2009073960A (en) * 2007-09-21 2009-04-09 Sumitomo Chemical Co Ltd Optical film
JP5399082B2 (en) * 2008-01-17 2014-01-29 日東電工株式会社 Polarizing plate and image display device using polarizing plate
JP2010169870A (en) * 2009-01-22 2010-08-05 Sony Corp Method for manufacturing polarizing film and method for manufacturing polarizing plate using the method
WO2010104196A1 (en) * 2009-03-13 2010-09-16 三井化学株式会社 Piezoelectric polymer material, process for producing same, and piezoelectric element
US10160173B2 (en) * 2010-09-09 2018-12-25 Nitto Denko Corporation Method of producing thin polarizing film involving in-air stretching, underwater stretching, and stretching while drying
CN102890301A (en) * 2011-07-20 2013-01-23 富士胶片株式会社 Polarizing film and liquid crystal display device
JP5722255B2 (en) * 2012-02-28 2015-05-20 住友化学株式会社 Manufacturing method of polarizing plate
JP6071459B2 (en) * 2012-11-19 2017-02-01 日東電工株式会社 Polarizing plate, image display device, and manufacturing method thereof
JP6000103B2 (en) * 2012-12-13 2016-09-28 日東電工株式会社 Manufacturing method of polarizing plate
KR20140090430A (en) * 2013-01-09 2014-07-17 동우 화인켐 주식회사 Polarizing plate having improved light-leakage property

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260402A (en) * 1988-04-11 1989-10-17 Sumitomo Chem Co Ltd Dye system polarizing film
JPH07134210A (en) * 1993-11-12 1995-05-23 Kurabo Ind Ltd Production of polarizing film
JPH07325218A (en) * 1994-04-08 1995-12-12 Sumitomo Chem Co Ltd Production of polarizing film
JPH07325215A (en) * 1994-05-31 1995-12-12 Sumitomo Chem Co Ltd Production of polarizing film
JPH11183726A (en) * 1997-12-18 1999-07-09 Nippon Synthetic Chem Ind Co Ltd:The Polarizing film and polarizing plate using the same
JP2002350638A (en) * 2001-05-28 2002-12-04 Nishi Kogyo Kk Method and apparatus for manufacturing polarizing film
JP2003227927A (en) * 2001-11-30 2003-08-15 Fuji Photo Film Co Ltd Polarizing film, polarizing plate, method for manufacturing polarizing film and liquid crystal display device
JP2004279931A (en) * 2003-03-18 2004-10-07 Fuji Photo Film Co Ltd Polarizing plate and its manufacturing method
JP2005324355A (en) * 2004-05-12 2005-11-24 Kuraray Co Ltd Polyvinyl alcohol-based polymer film and its manufacturing method
JP2009198666A (en) * 2008-02-20 2009-09-03 Fujifilm Corp Method of manufacturing polarizing plate, polarizing plate, and liquid crystal display using the polarizing plate
JP2012058383A (en) * 2010-09-07 2012-03-22 Nitto Denko Corp Method for producing thin polarizing film
JP2012078780A (en) * 2010-09-09 2012-04-19 Nitto Denko Corp Method for producing thin polarizing film

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107728247A (en) * 2016-08-10 2018-02-23 住友化学株式会社 Polarizing coating
JP7123532B2 (en) 2016-08-18 2022-08-23 住友化学株式会社 Manufacturing method and manufacturing apparatus for polarizing film
JP2018032023A (en) * 2016-08-18 2018-03-01 住友化学株式会社 Method and device for manufacturing polarizing film
CN107765353A (en) * 2016-08-18 2018-03-06 住友化学株式会社 The manufacture method and manufacture device of polarizing coating
JP2019066747A (en) * 2017-10-03 2019-04-25 日本合成化学工業株式会社 Method of manufacturing polarizing film
JP2020034595A (en) * 2018-08-27 2020-03-05 日東電工株式会社 Method of manufacturing stretched resin film, method of manufacturing polarizer, method of measuring moisture content of stretched resin film, and device for manufacturing stretched resin film
CN110861325A (en) * 2018-08-27 2020-03-06 日东电工株式会社 Method for producing stretched resin film, method for producing polarizing plate, and apparatus for producing stretched resin film
JP2020034596A (en) * 2018-08-27 2020-03-05 日東電工株式会社 Method of manufacturing stretched resin film, method of manufacturing polarizer, and device for manufacturing stretched resin film
WO2020162531A1 (en) * 2019-02-08 2020-08-13 日東電工株式会社 Polarizing film, polarizing plate and method for manufacturing said polarizing film
CN113994243A (en) * 2019-06-19 2022-01-28 日东电工株式会社 Polarizing film, polarizing plate and method for producing the same
JP2021043369A (en) * 2019-09-12 2021-03-18 住友化学株式会社 Method of manufacturing polarizing plate
WO2021049216A1 (en) * 2019-09-12 2021-03-18 住友化学株式会社 Method for producing polarizing plate
JP7397605B2 (en) 2019-09-12 2023-12-13 住友化学株式会社 Manufacturing method of polarizing plate
WO2021065107A1 (en) * 2019-09-30 2021-04-08 日東電工株式会社 Retardation-layer-equipped polarizing plate and image display device using same
WO2023038076A1 (en) * 2021-09-13 2023-03-16 住友化学株式会社 Polarizing film and polarizing plate
JP7475403B2 (en) 2021-09-13 2024-04-26 住友化学株式会社 Polarizing films and plates

Also Published As

Publication number Publication date
CN107111035A (en) 2017-08-29
CN107111035B (en) 2020-05-29
KR20170095924A (en) 2017-08-23
JPWO2016093278A1 (en) 2017-09-21
TW201629543A (en) 2016-08-16
JP6346307B2 (en) 2018-06-20
KR102645999B1 (en) 2024-03-08
JP2017219861A (en) 2017-12-14
TWI684032B (en) 2020-02-01

Similar Documents

Publication Publication Date Title
JP6422507B2 (en) Manufacturing method of polarizing film and polarizing film
JP6346307B2 (en) Manufacturing method of polarizing film
TWI704369B (en) Method for manufacturing polarizing film
JP7202846B2 (en) Polarizer and manufacturing method thereof
JP2018091980A (en) Polarizing film and manufacturing method of polarized laminate film
JP2020071241A (en) Polarizer and manufacturing method therefor
KR20170113367A (en) Method for producing polarizing film, laminated film
KR20170113313A (en) Method for manufacturing a polarizing plate
JP6910931B2 (en) Method for manufacturing polarizing film and polarizing laminated film
JP7474896B2 (en) Polarizer and method for producing same
JP7475403B2 (en) Polarizing films and plates
TWI835886B (en) Polarizer and method of manufacturing the same
WO2021220668A1 (en) Polarizing plate and method for producing same
CN109581569B (en) Polarizing plate, method for producing same, and display device
WO2023038076A1 (en) Polarizing film and polarizing plate
JP2023041638A (en) Polarization film and polarizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563715

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177018648

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15868035

Country of ref document: EP

Kind code of ref document: A1