WO2023037957A1 - Thermoplastic polyester elastomer resin composition and foam molded article - Google Patents

Thermoplastic polyester elastomer resin composition and foam molded article Download PDF

Info

Publication number
WO2023037957A1
WO2023037957A1 PCT/JP2022/032961 JP2022032961W WO2023037957A1 WO 2023037957 A1 WO2023037957 A1 WO 2023037957A1 JP 2022032961 W JP2022032961 W JP 2022032961W WO 2023037957 A1 WO2023037957 A1 WO 2023037957A1
Authority
WO
WIPO (PCT)
Prior art keywords
foamed
polyester elastomer
molded article
thermoplastic polyester
resin composition
Prior art date
Application number
PCT/JP2022/032961
Other languages
French (fr)
Japanese (ja)
Inventor
顕三 大谷
卓也 赤石
恵梨 森尾
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2023037957A1 publication Critical patent/WO2023037957A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a thermoplastic polyester elastomer resin composition suitable for foam molding using counterpressure, and to a foam molded article in which the thermoplastic polyester elastomer resin composition forms a continuous phase. More specifically, the foam-molded article of the present invention is a foam-molded article excellent in rebound resilience and surface smoothness, and it is possible to provide a foam-molded article that has been expanded twice or more.
  • Thermoplastic polyester elastomers have excellent injection moldability and extrusion moldability, high mechanical strength, rubber-like properties such as elastic recovery, impact resistance, and flexibility, as well as excellent cold resistance. It is used in applications such as electronic parts, textiles, films, and sports parts.
  • Thermoplastic polyester elastomers have excellent heat aging resistance, light resistance, and wear resistance, so they are used in automotive parts, especially parts used in high-temperature environments and automotive interior parts. Furthermore, in recent years, the weight reduction of resin parts has been promoted, and one of the means for achieving the purpose is the application of foam molded articles.
  • Patent Document 1 As one of the methods of high-expansion expansion for weight reduction, there is a core-back injection foam molding method in which the mold is moved in the opening direction during foaming. Furthermore, since the cells in the foam layer are fine, the impact resilience is increased (Patent Document 1).
  • a foamed molded product manufactured by the core-back injection molding method has a non-foamed skin layer on the surface layer and the above-mentioned foamed layer on the inner layer, and has a sandwich structure of the non-foamed skin layer and the foamed layer in the thickness direction.
  • the presence of the skin layer of the foam layer reduces the resilience of the foam layer, lowering the rebound resilience.
  • defects such as swirl marks and avatars on the surface of the molded product cause unevenness, resulting in surface smoothness. inferior to
  • Patent Document 2 Japanese Patent Document 2
  • Patent Document 3 proposes a method for producing the same.
  • urethane foam generates cyanide gas and the like when burned, and thus poses a problem of environmental pollution.
  • the present invention has been made in view of the current state of the prior art described above, and an object of the present invention is to provide a thermoplastic polyester elastomer resin composition that is suitable for foamed moldings that are lightweight, have excellent impact resilience, and have excellent surface smoothness. It is in.
  • thermoplastic polyester elastomer has a specific ratio between the hard segment and the soft segment of the thermoplastic polyester elastomer, and is adjusted to a specific cooling crystallization temperature and melt viscosity by blending a crystal nucleating agent and a thickening agent.
  • thermoplastic polyester elastomer resin composition As a resin composition, good foam moldability with both fine foaming and surface smoothness is exhibited, and weight reduction by high expansion ratio foaming is possible, and extremely high It was found that a foam molded article having a modulus of rebound resilience can be obtained.
  • the foam injection molding method by the counter-pressure method in which a gas is injected into the cavity of the mold and the molten thermoplastic resin is injected under pressure, the above-mentioned high-quality polyester elastomer foam molding can be obtained. It has been found that it can be easily manufactured and provided. In other words, the properties (melt tension, crystallization temperature, gas retention, etc.) of the thermoplastic polyester elastomer resin composition are suitable for the foam molding method using the counterpressure method, and the process of pressurizing and releasing the counterpressure pressure is suitable. The inventors have found that it is possible to obtain a foam-molded article that can withstand high-expansion expansion and have the desired surface smoothness, and have completed the present invention.
  • the present invention constitutes the following (1) to (8).
  • thermoplastic polyester elastomer resin composition according to (1) wherein the crystal nucleating agent (B) is an alkali metal salt or alkaline earth metal salt of an organic carboxylic acid having 3 to 40 carbon atoms. .
  • thermoplastic polyester elastomer resin composition according to any one of (1) to (4) which has an MFR of 5 to 30 g/10 min at a load of 2,160 g and a measurement temperature of 230°C.
  • the thermoplastic polyester elastomer resin composition according to any one of (1) to (5) is a foam-molded article having a continuous phase, and the surface layer of the foam-molded article to a depth of 1000 ⁇ m from the surface of the foam-molded article includes: A foamed molded article composed of a surface layer consisting only of a foamed region with no non-foamed portion having a cell density of 10% or less, or a foamed region having the non-foamed portion and the non-foamed portion.
  • the foam molding according to (6) characterized in that a flat cell layer having an average aspect ratio of cells of 4.0 to 15.0 is provided in the foamed region where the non-foamed portion of the surface layer does not exist. body.
  • the foam molded article according to (6) or (7) further comprising a circular cell layer having an average aspect ratio of cells of 1.0 to 2.0 in the inner layer deeper than 1000 ⁇ m from the surface. .
  • the foam molded article made of the thermoplastic polyester elastomer resin composition of the present invention is not only excellent in light weight, but also exhibits extremely high impact resilience and excellent surface smoothness. Furthermore, it has a uniform foaming state, high heat resistance, water resistance, and molding stability in spite of its high expansion ratio. can. Then, by using the foam injection molding method by the counter pressure method, even without post-processing such as cutting, by preparing a corresponding mold, it has the above-mentioned excellent characteristics. A foam molded article can be obtained.
  • FIG. 1 is a schematic view of a foam molded article (B) of the present invention
  • (X) is a view from the surface
  • (Y) is a cross-sectional view taken along the plane ww'
  • (Z) is v. - It is sectional drawing cut by the plane of v'.
  • 1 is a schematic view of a foam molded article (A) of the present invention
  • (X) is a view from the surface
  • (Y) is a cross-sectional view taken along the plane ww'
  • (Z) is v. - It is sectional drawing cut by the plane of v'.
  • thermoplastic polyester elastomer (A) The thermoplastic polyester elastomer (A) used in the present invention is formed by combining hard segments and soft segments.
  • the hard segment consists of polyester.
  • aromatic dicarboxylic acid that constitutes the polyester of the hard segment ordinary aromatic dicarboxylic acids are widely used and are not particularly limited. 2,6-naphthalenedicarboxylic acid is preferred).
  • the content of these aromatic dicarboxylic acids is preferably 70 mol % or more, more preferably 80 mol % or more, of the total dicarboxylic acids constituting the hard segment polyester.
  • dicarboxylic acid components include aromatic dicarboxylic acids such as diphenyldicarboxylic acid, isophthalic acid and 5-sodiumsulfoisophthalic acid, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid and tetrahydrophthalic anhydride, succinic acid, glutaric acid, Aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid, hydrogenated dimer acid, and the like are included. These can be used within a range that does not significantly lower the melting point of the resin, and the amount thereof is preferably 30 mol % or less, more preferably 20 mol % or less of the total acid component.
  • thermoplastic polyester elastomer (A) used in the present invention general aliphatic or alicyclic diols are widely used as the aliphatic or alicyclic diol constituting the hard segment polyester, and are not particularly limited. is preferably an alkylene glycol having 2 to 8 carbon atoms. Specific examples include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol and the like. Among these, ethylene glycol or 1,4-butanediol is preferred.
  • the components constituting the hard segment polyester include butylene terephthalate units (units composed of terephthalic acid and 1,4-butanediol) or butylene naphthalate units (2,6-naphthalenedicarboxylic acid and 1,4-butanediol unit) is preferable from the viewpoint of physical properties, moldability and cost performance.
  • the aromatic polyester when an aromatic polyester suitable as the polyester constituting the hard segment in the thermoplastic polyester elastomer (A) used in the present invention is produced in advance and then copolymerized with the soft segment component, the aromatic polyester is usually can be easily obtained according to the production method of polyester. Moreover, such polyester preferably has a number average molecular weight of 10,000 to 40,000.
  • the soft segment of the thermoplastic polyester elastomer (A) used in the present invention is at least one selected from aliphatic polyethers, aliphatic polyesters, and aliphatic polycarbonates.
  • Aliphatic polyethers include poly(ethylene oxide) glycol, poly(propylene oxide) glycol, poly(tetramethylene oxide) glycol, poly(hexamethylene oxide) glycol, poly(trimethylene oxide) glycol, co-polymer of ethylene oxide and propylene oxide. polymers, ethylene oxide adducts of poly(propylene oxide) glycol, copolymers of ethylene oxide and tetrahydrofuran, and the like. Among these, poly(tetramethylene oxide) glycol and ethylene oxide adducts of poly(propylene oxide) glycol are preferred from the viewpoint of elastic properties.
  • Aliphatic polyesters include poly( ⁇ -caprolactone), polyenantholactone, polycaprylollactone, and polybutylene adipate. Among these, poly( ⁇ -caprolactone) and polybutylene adipate are preferred from the viewpoint of elastic properties.
  • the aliphatic polycarbonate preferably consists mainly of aliphatic diol residues having 2 to 12 carbon atoms.
  • these aliphatic diols include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2, 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8- octanediol and the like.
  • aliphatic diols having 5 to 12 carbon atoms are preferred from the viewpoint of the flexibility and low-temperature properties of the resulting thermoplastic polyester elastomer.
  • These components may be used alone, or two or more of them may be used in combination according to the cases described below.
  • an aliphatic polycarbonate diol having good low-temperature properties which constitutes the soft segment of the thermoplastic polyester elastomer (A) used in the present invention
  • those having a low melting point (for example, 70° C. or lower) and a low glass transition temperature are used. preferable.
  • an aliphatic polycarbonate diol composed of 1,6-hexanediol, which is used to form the soft segment of a thermoplastic polyester elastomer has a low glass transition temperature of around -60°C and a melting point of around 50°C. Good low temperature characteristics are obtained.
  • an aliphatic polycarbonate diol obtained by copolymerizing an appropriate amount of, for example, 3-methyl-1,5-pentanediol with the above aliphatic polycarbonate diol has a glass transition point higher than that of the original aliphatic polycarbonate diol. is slightly higher, but the melting point is lowered or becomes amorphous.
  • an aliphatic polycarbonate diol composed of 1,9-nonanediol and 2-methyl-1,8-octanediol has a melting point of about 30°C and a glass transition temperature of about -70°C, which are sufficiently low. , which corresponds to aliphatic polycarbonate diols with good low-temperature properties.
  • aliphatic polyethers are preferable as the soft segment of the thermoplastic polyester elastomer (A) used in the present invention.
  • thermoplastic polyester elastomer (A) used in the present invention is preferably a copolymer containing terephthalic acid, 1,4-butanediol, and poly(tetramethylene oxide) glycol as main components.
  • terephthalic acid is preferably 40 mol% or more, more preferably 70 mol% or more, further preferably 80 mol% or more, 90 mol % or more is particularly preferred.
  • the total amount of 1,4-butanediol and poly(tetramethylene oxide) glycol in the glycol component constituting the thermoplastic polyester elastomer (A) is preferably 40 mol% or more, more preferably 70 mol% or more. It is preferably 80 mol % or more, and particularly preferably 90 mol % or more.
  • the poly(tetramethylene oxide) glycol preferably has a number average molecular weight of 500-4000. If the number average molecular weight is less than 500, it may be difficult to develop elastomeric properties. On the other hand, if the number average molecular weight exceeds 4,000, the compatibility with the hard segment component may be lowered, making block-like copolymerization difficult.
  • the number average molecular weight of poly(tetramethylene oxide) glycol is more preferably 800 or more and 3000 or less, further preferably 1000 or more and 2500 or less.
  • the soft segment content is 25 to 90% by mass, preferably 40 to 90% by mass, more preferably 55 to 90% by mass, and still more preferably 65% by mass. ⁇ 90% by mass. If the content of the soft segment is less than 25% by mass, the crystallinity is high, resulting in poor impact resilience.
  • thermoplastic polyester elastomer (A) used in the present invention can be produced by known methods. For example, a lower alcohol diester of a dicarboxylic acid, an excessive amount of a low molecular weight glycol, and a soft segment component are transesterified in the presence of a catalyst, and the resulting reaction product is polycondensed. A method of subjecting segment components to an esterification reaction in the presence of a catalyst and polycondensing the resulting reaction product. A hard segment polyester is prepared in advance, and a soft segment component is added to this to randomize it by transesterification. method, a method of linking the hard segment and the soft segment with a chain linking agent, and when poly( ⁇ -caprolactone) is used for the soft segment, a method of adding the ⁇ -caprolactone monomer to the hard segment. .
  • the crystal nucleating agent (B) in the present invention has the effect of forming foam nuclei, which are starting points for cell formation, and suppressing the expansion of cells in the cooling process from the molten state of the thermoplastic polyester elastomer resin composition during the foam molding process. It is not particularly limited as long as it is present, but the one that is highly effective in improving the cooling crystallization temperature (TC2) forms a large number of microcrystals of the thermoplastic polyester elastomer (A) in the foam molding process, It is particularly preferable in that expansion and connection of bubbles can be suppressed.
  • TC2 cooling crystallization temperature
  • crystal nucleating agent (B) an alkali metal salt or alkaline earth metal salt of an organic carboxylic acid having 3 to 40 carbon atoms or an inorganic crystal nucleating agent is used, from the viewpoint of improving foam nucleation and cooling crystallization temperature (TC2). preferred from
  • the alkali metal salt or alkaline earth metal salt of an organic carboxylic acid having 3 to 40 carbon atoms means an alkali metal salt or alkaline earth metal salt of an aliphatic, alicyclic or aromatic carboxylic acid having 3 to 40 carbon atoms.
  • Preferred alkali metals are sodium, potassium and lithium, and preferred alkaline earth metals are magnesium and calcium.
  • alkali metals and alkaline earth metals alkali metals are preferred, and sodium is particularly preferred.
  • the organic carboxylic acid is preferably an aliphatic carboxylic acid, and the aliphatic group may have a linear or branched structure, and may have an unsaturated group.
  • the aliphatic carboxylic acid is more preferably a linear saturated aliphatic carboxylic acid.
  • aliphatic carboxylic acids propionic acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, oleic acid, linoleic acid, Montanic acid and the like are preferred, and among the alkali metal salts, sodium salts are preferred in terms of solubility in the thermoplastic polyester elastomer (A) and good crystal nucleation, as well as compatibility with the terminal carboxyl groups of the thermoplastic polyester elastomer (A).
  • the interaction is particularly preferable from the viewpoint that a pseudo cross-linking effect is produced and the melt viscosity required for foam molding can be obtained.
  • the organic carboxylic acid of an alkali metal salt or an alkaline earth metal salt of an organic carboxylic acid having 3 to 40 carbon atoms is a fatty acid having 3 to 20 carbon atoms from the viewpoint of meltability and compatibility with the thermoplastic polyester elastomer (A). is preferably a group carboxylic acid, more preferably a linear saturated aliphatic carboxylic acid having 3 to 20 carbon atoms. Among these, aliphatic carboxylic acid metal salts having less than 14 carbon atoms are preferable because they can improve the crystallization rate with a small amount.
  • the crystal nucleating agent (B) is an inorganic crystal nucleating agent
  • it is not particularly limited as long as it is unmelted during melt processing and can form crystal nuclei in the cooling process, but talc and calcium carbonate are particularly preferred.
  • the particle size of the inorganic crystal nucleating agent is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 6 ⁇ m. If the particle size exceeds 10 ⁇ m, it may act as a foreign substance and generate voids during foam molding, degrading the quality of the foamed product.
  • the content of the crystal nucleating agent (B) is 0.05 to 9.5 parts by mass, preferably 0.1 to 5 parts by mass, relative to 100 parts by mass of the thermoplastic polyester elastomer (A). It is preferably 0.1 to 3 parts by mass, more preferably 0.1 to 1.5 parts by mass.
  • the content of the crystal nucleating agent (B) is less than 0.05 parts by mass, the effect of forming foam nuclei and the effect of improving the cooling crystallization temperature are small, and the desired cell size miniaturization effect is obtained.
  • the content of the crystal nucleating agent (B) exceeds 9.5 parts by mass, when the crystal nucleating agent (B) is a metal salt of an organic carboxylic acid having 3 to 40 carbon atoms, the metal salt has a pseudo-crosslinking effect on the polyester elastomer. is too high and the melt viscosity during foam molding becomes too high, resulting in poor foam moldability and making it impossible to obtain a foamed product with a low density.
  • the specific gravity of the material increases, and the desired resilience and flexibility cannot be obtained.
  • the thickener (C) in the present invention is a reactive compound (hereinafter sometimes simply referred to as a reactive compound) having a functional group capable of reacting with the hydroxyl group or carboxyl group of the thermoplastic polyester elastomer (A).
  • the reactive functional group is preferably at least one selected from an epoxy group (glycidyl group), an acid anhydride group, a carbodiimide group and an isocyanate group, and the functional group contains two or more per molecule.
  • the functional group is more preferably an epoxy group (glycidyl group).
  • the thickener (C) in the present invention is preferably a reactive compound having an epoxy group (glycidyl group), a reactive compound having a carbodiimide group, and a reactive compound having an epoxy group (glycidyl group). is more preferred.
  • a “reactive compound having an epoxy group (glycidyl group)” may be referred to as a “compound having an epoxy group”.
  • the thickener (C) also acts as a cross-linking agent because it reacts with and bonds to the polymer chains of the thermoplastic polyester elastomer (A).
  • the thickener (C) is a compound having an epoxy group
  • the polyfunctional epoxy compound having two or more epoxy groups specifically 1,6-dihydroxynaphthalenediglycidyl having two epoxy groups Ether, 1,3-bis(oxiranylmethoxy)benzene, 1,3,5-tris(2,3-epoxypropyl)-1,3,5-triazine-2,4,6 with three epoxy groups (1H,3H,5H)-trione, diglycerol triglycidyl ether, 1-chloro-2,3-epoxypropane/formaldehyde/2,7-naphthalenediol polycondensate with four epoxy groups and pentaerythritol polyglycidyl ether is mentioned.
  • a polyfunctional epoxy compound having heat resistance in its skeleton is preferable.
  • Particularly preferred are bifunctional or tetrafunctional epoxy compounds having a naphthalene structure in the skeleton, or trifunctional epoxy compounds having a triazine structure in the skeleton.
  • a copolymer consisting of an acrylate (Y) and a vinyl group-containing monomer (Z) other than the epoxy group-free (X) in an amount of 0 to 79% by mass can be mentioned.
  • a vinyl aromatic monomer (X) containing two or more glycidyl groups per molecule and having a weight average molecular weight of 4000 to 25000 and 20 to 99% by mass, 1 to 80% by mass of glycidyl (meth)acrylate (Y) and 0 to 79% by mass of a vinyl group-containing monomer (Z) other than (X) containing no epoxy group It is preferable because it has good compatibility with the thermoplastic polyester elastomer (A) and widens the molecular weight distribution. More preferably, (X) is 20 to 99% by mass, (Y) is 1 to 80% by mass, and (Z) is 0 to 40% by mass. 10 to 75% by mass of (Y) and 0 to 35% by mass of (Z). Since these compositions affect the concentration of functional groups that contribute to the reaction with the thermoplastic polyester elastomer (A), they are preferably controlled within the above range.
  • Examples of the vinyl aromatic monomer (X) include styrene and ⁇ -methylstyrene.
  • Examples of the glycidyl (meth)acrylate (Y) include glycidyl (meth)acrylate, (meth)acrylic acid esters having a cyclohexene oxide structure, and (meth)acryl glycidyl ethers. glycidyl (meth)acrylate is preferred in terms of high
  • Examples of vinyl group-containing monomers (Z) other than (X) containing no epoxy group include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, and butyl (meth)acrylate.
  • (meth)acrylamide, (meth)acryldialkylamide, vinyl esters such as vinyl acetate, aromatic vinyl monomers such as vinyl ethers and (meth)allyl ethers, ⁇ -olefin monomers such as ethylene and propylene can also be used as the vinyl group-containing monomer (Z) other than the epoxy group-free (X).
  • the weight average molecular weight of the copolymer is preferably 4,000 to 25,000.
  • the weight average molecular weight is more preferably 5000-15000. If the weight-average molecular weight is less than 4,000, the unreacted copolymer may volatilize during the molding process or bleed out onto the surface of the molded article, causing surface contamination. On the other hand, if the weight-average molecular weight exceeds 25,000, the reaction with the thermoplastic polyester elastomer (A) will be slow, resulting in an insufficient effect of increasing the molecular weight. Since the compatibility is deteriorated, there is a high possibility that the properties inherent in the thermoplastic polyester elastomer (A), such as heat resistance, are deteriorated.
  • the epoxy value of the copolymer is preferably 400 to 2500 equivalents/1 ⁇ 10 6 g, more preferably 500 to 1500 equivalents/1 ⁇ 10 6 g, still more preferably 600 to 1000 equivalents/1 ⁇ 10 6 g. If the epoxy value is less than 400 equivalents/1 ⁇ 10 6 g, the effect of thickening may not be exhibited. May have adverse effects.
  • a polycarbodiimide compound can be used.
  • a polycarbodiimide compound is advantageous in that it efficiently reduces the acid value.
  • a polycarbodiimide compound can be obtained, for example, by a decarbonization reaction of a diisocyanate compound.
  • Diisocyanate compounds that can be used here include, for example, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, and 2,4-tolylene diisocyanate.
  • 2,6-tolylene diisocyanate 1,5-naphthylene diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, methylcyclohexane diisocyanate, tetramethylxylylene diisocyanate, 1,3,5-triisopropylphenylene-2,4-diisocyanate and the like. These may be used alone, or two or more may be copolymerized and used.
  • a branched structure may be introduced, or a functional group other than a carbodiimide group or an isocyanate group may be introduced by copolymerization.
  • the terminal isocyanate can be used as it is, the degree of polymerization may be controlled by reacting the terminal isocyanate, or a portion of the terminal isocyanate may be blocked.
  • polycarbodiimide compound alicyclic polycarbodiimides derived from dicyclohexylmethane diisocyanate, cyclohexane-1,4-diisocyanate, isophorone diisocyanate, etc. are particularly preferred, and polycarbodiimides derived from dicyclohexylmethane diisocyanate and isophorone diisocyanate are particularly preferred.
  • the polycarbodiimide compound preferably contains 2 to 50 carbodiimide groups per molecule in terms of stability and handleability. More preferably, it contains 5 to 30 carbodiimide groups per molecule.
  • the number of carbodiimides in a polycarbodiimide molecule corresponds to the degree of polymerization in the case of polycarbodiimide obtained from a diisocyanate compound. For example, the degree of polymerization of polycarbodiimide obtained by connecting 21 diisocyanate compounds in a chain is 20, and the number of carbodiimide groups in the molecular chain is 20.
  • polycarbodiimide compounds are mixtures of molecules of various lengths and the number of carbodiimide groups is expressed as an average value. If it has the number of carbodiimide groups in the above range and is solid at around room temperature, it can be pulverized, so that it has excellent workability and compatibility when mixed with the thermoplastic polyester elastomer (A), uniform reactivity, and bleed-out resistance. is also preferable.
  • the number of carbodiimide groups can be measured, for example, by a conventional method (method of dissolving with amine and performing back titration with hydrochloric acid).
  • the polycarbodiimide compound preferably has an isocyanate group at its end and an isocyanate group content of 0.5 to 4% by mass in terms of stability and handleability. More preferably, the isocyanate group content is 1-3% by mass.
  • polycarbodiimide derived from dicyclohexylmethane diisocyanate or isophorone diisocyanate and having an isocyanate group content within the above range is preferred.
  • the isocyanate group content can be measured by a conventional method (method of dissolving with amine and performing back titration with hydrochloric acid).
  • the thickener (C) is a compound having an isocyanate group
  • the above polycarbodiimide compound containing the isocyanate group and the isocyanate compound that is the raw material of the above polycarbodiimide compound can be mentioned.
  • the thickener (C) is a compound having an acid anhydride group
  • a compound containing 2 to 4 anhydride groups per molecule is preferable in terms of stability and handling.
  • examples of such compounds include phthalic anhydride, trimellitic anhydride, and pyromellitic anhydride.
  • the thickener (C) is a component necessary for imparting the melt viscosity necessary for foam molding. , it may not contain the thickener (C).
  • the content of the thickener (C) is 0 to 4.5 parts by mass with respect to 100 parts by mass of the thermoplastic polyester elastomer (A), and when included, preferably 0.05 to 4.5 parts by mass. parts, more preferably 0.1 to 4 parts by mass, and still more preferably 0.1 to 3 parts by mass.
  • the thickener is contained, if it is less than 0.05 parts by mass, the targeted molecular chain elongation effect is insufficient, and if it exceeds 4.5 parts by mass, the thickening effect becomes excessive and adversely affects moldability. and affect the mechanical properties of the molded product.
  • the thickener (C) is an epoxy compound, if it exceeds 4.5 parts by mass, the surface of the molded product may become uneven due to cohesive hardening of the epoxy compound.
  • the thickener (C) is a carbodiimide compound, if it exceeds 4.5 parts by mass, the thermoplastic polyester elastomer (A) is hydrolyzed due to the basicity of the polycarbodiimide compound, which tends to affect the mechanical properties. .
  • the thickener (C) a compound having an epoxy group, in particular, a vinyl aromatic monomer containing two or more glycidyl groups per molecule, a weight average molecular weight of 4000 to 25000, and 20 to 99% by mass.
  • Polymers are preferred.
  • a compound having a highly reactive functional group such as a carbodiimide group is used in combination with an epoxy compound, the resin composition tends to have a narrow molecular weight distribution after thickening.
  • the resin composition of the present invention it is preferable not to use both an epoxy compound and a carbodiimide compound as the thickener (C).
  • thermoplastic polyester elastomer resin composition Furthermore, the thermoplastic polyester elastomer (A) used in the present invention is blended with various additives, fillers, and other polymers in addition to the crystal nucleating agent (B) and the thickening agent (C) according to the purpose. can do.
  • the type of additive is not particularly limited, and various additives commonly used in foam molding can be used.
  • additives include known hindered phenol-based, sulfur-based, phosphorus-based, and amine-based antioxidants, hindered amine-based antioxidants, benzotriazole-based, benzophenone-based, benzoate-based, triazole-based, nickel-based, and salicylic acid antioxidants.
  • light stabilizers such as systems, ultraviolet light absorbers, lubricants, fillers, flame retardants, flame retardant aids, release agents, antistatic agents, molecular modifiers such as peroxides, metal deactivators, organic and inorganic Nucleating agents, neutralizers, antacids, antibacterial agents, fluorescent whitening agents, organic and inorganic pigments and dyes, as well as organic and inorganic compounds used for flame retardancy and heat stability. Examples include inorganic phosphorus compounds.
  • the blending amount (content) of additives, fillers, and other types of polymers can be appropriately selected within a range that does not impair the formation of air bubbles, etc., and the blending amount (content) used for molding ordinary thermoplastic resins can be adopted.
  • the total of the thermoplastic polyester elastomer (A), the crystal nucleating agent (B) and the thickening agent (C) preferably accounts for 80% by mass or more, and preferably 90% by mass. % or more, more preferably 95 mass % or more.
  • thermoplastic polyester elastomer resin composition of the present invention can be produced by mixing the components described above and, if necessary, various additives, fillers, and other polymers, followed by melt-kneading. Any melt-kneading method known to those skilled in the art may be used, and a single-screw extruder, twin-screw extruder, pressure kneader, Banbury mixer, or the like can be used. Among them, it is preferable to use a twin-screw extruder.
  • thermoplastic polyester elastomer (A) used in the present invention it is also possible to calculate from the proton integral ratio of 1 H-NMR measured by dissolving the sample in a solvent such as heavy chloroform. It is possible.
  • the cooling crystallization temperature TC2 of the thermoplastic polyester elastomer resin composition of the present invention is preferably 105°C to 200°C.
  • TC2 is measured by the method described in the Examples section below. When TC2 is within this range, uniform fine foaming becomes possible during foam molding of the thermoplastic polyester elastomer resin composition, and the impact resilience of the obtained foam molded product can be further improved.
  • TC2 is more preferably 108 to 190°C, even more preferably 110 to 185°C.
  • the MFR (melt flow rate) of the thermoplastic polyester elastomer resin composition of the present invention is 5 to 30 g when measured at a load of 2,160 g and a measurement temperature of 230° C. according to the measurement method described in ASTM D1238. /10 min is preferred. Further, since the MFR is 5 to 30 g/10 min, when the thermoplastic polyester elastomer resin composition is foam-molded, the cell walls are less likely to be broken, and a foam-molded product having a high expansion ratio and having fine cells formed therein can be obtained. Obtainable. In particular, it is effective in foam molding using counter pressure, which will be described later. When the MFR is less than 5 g/10 min, the fluidity tends to be low and the foam followability tends to be low. MFR is more preferably 8 to 30 g/10 min.
  • the thermoplastic polyester elastomer resin composition of the present invention may contain a reaction product obtained by reacting the thermoplastic polyester elastomer (A) and the thickener (C).
  • the thermoplastic polyester elastomer (A) that has not reacted with the thickener (C) or the free thickener (C) may be contained. This is because it is difficult to completely react the thermoplastic polyester elastomer (A) and the thickener (C).
  • thermoplastic polyester elastomer (A) and the thickener (C) described above are such that in the thermoplastic polyester elastomer resin composition, the thickener (C ) is considered in terms of the mass derived from This content relationship is the same for the foam molded article described later.
  • the foam molded article of the present invention is obtained using the thermoplastic polyester elastomer resin composition described above, and is not subjected to any post-processing such as cutting. In other words, it is a compact having no cutting surface.
  • the cut surface means the surface obtained by cutting the non-foamed skin layer, etc. from the foam molded product, and does not refer to the surface generated when unnecessary parts such as gates derived from the mold are removed. do not have.
  • the foamed molded article of the present invention has a surface layer (hereinafter referred to as a surface layer ( A)), or a surface layer ( Hereinafter, it is a foam molded article (B) having a surface layer (B).
  • surface layer refers to a surface layer consisting of a single surface.
  • the foamed molded article (A) consists of the surface layer (A) on all six sides
  • the foamed molded article (B) consists of the surface layer (B) on at least one side. .
  • the foamed molded article having a non-foamed skin layer produced by the method does not correspond to the above foamed molded article (B).
  • the area of the foamed region where the non-foamed portion exists is preferably 60% or less, more preferably 50% or less, and even more preferably 30% or less, out of the area of the single surface.
  • the foamed molded article (A) is obtained.
  • the area of the foamed region where the non-foamed portion exists is preferably 50% or less, more preferably 40% or less, and even more preferably 25% or less, relative to the total surface area of the foamed molded article.
  • the foam molded article (A) has an improved impact resilience because the surface layer of the foam molded article does not have a non-foamed portion where no air bubbles are present.
  • the foamed region in which the non-foamed portion exists has few cells, so the rebound resilience is low, and the foamed region in which the non-foamed portion does not exist has a high rebound resilience. It is possible to have different impact resilience depending on the location.
  • the surface of the foam molded article of the present invention does not necessarily have to be flat, and may be curved or have projections.
  • One of the points of the present invention is that a foam molded article having any desired shape can be obtained by preparing a corresponding mold.
  • the above-mentioned non-foamed portion refers to a phase formed of a thermoplastic polyester elastomer resin composition with almost no cells, and is a portion with a cell density of 10% or less.
  • the cell density is calculated by image-processing a cross-sectional photograph of a sample for cross-sectional observation of the surface layer of the foam molded article taken with a scanning electron microscope. Specifically, it is as described in the section of Examples.
  • the portion that does not correspond to the non-foamed portion is called a foamed portion or a foamed layer.
  • the surface of the foamed portion is made of an extremely thin resin layer (so-called skin) formed by the contact of the molten resin composition before foaming or the foamed molten resin composition with the mold surface, and the thickness thereof is 50 ⁇ m or less.
  • the non-foamed portion with a cell density of 10% or less is measured in an area of 200 ⁇ m ⁇ 200 ⁇ m, so the thin resin layer on the surface of the foamed portion is “a non-foamed portion with a cell density of 10% or less”. does not fall under
  • the foamed molded article of the present invention does not have a sandwich structure in which non-foamed layers are provided on both sides of a foamed layer (in other words, a structure in which a foamed layer is sandwiched between non-foamed layers from both sides).
  • the foam-molded article of the present invention is the foam-molded article (A) or the foam-molded article (B) described above.
  • the foamed molded article (A) is a foamed molded article that has no non-foamed layer and is composed of a single foamed layer. It becomes a foamed molded article in which a non-foamed portion (non-foamed skin layer) exists only in the part.
  • the size of the foam-molded article of the present invention is not particularly limited, and a foam-molded article of a desired size can be obtained as long as the mold can be manufactured.
  • bubbles with an aspect ratio of 2.0 or less are considered circular bubbles, and bubbles with an aspect ratio of more than 2.0 are considered flat bubbles.
  • a flat cell layer having a large average aspect ratio of cells exists in the foamed region where the non-foamed portion of the surface layer does not exist.
  • the average aspect ratio of the flat cell layer is preferably 4.0 to 15.0, because the flat cells in the surface layer have a large aspect ratio, so that the surface of the foamed molded product becomes smooth and excellent in appearance. If it is less than 4.0, unevenness will occur on the surface of the molded product, and the surface smoothness will be impaired. and the surface smoothness tends to be impaired.
  • the average aspect ratio of the flat cell layer is more preferably 4.0 to 10.0. Furthermore, it is preferable that a circular cell layer with a small average aspect ratio of cells exists in the inner layer deeper than 1000 ⁇ m from the surface. Since the circular cells in the inner layer improve rebound resilience by reducing the aspect ratio, the average aspect ratio of the circular cell layer is preferably 1.0 to 2.0. tend to decline. The reason why the cells in the surface layer become flat cells is that the resin composition flows along the surface of the mold during foam molding.
  • the foamed molded article of the present invention preferably has a flat cell layer having an average aspect ratio of cells of 4.0 to 15.0 in the foamed region where the non-foamed portion of the surface layer does not exist. It is a preferred embodiment to have a circular cell layer with an average aspect ratio of cells of 1.0 to 2.0 in the inner layer deeper than 1000 ⁇ m.
  • the foam layer is composed of a resin continuous phase and independent cells.
  • the resin continuous phase means a portion having no cavities formed by the cured thermoplastic polyester elastomer resin composition.
  • the bubbles in the circular bubble layer in the inner layer deeper than 1000 ⁇ m from the surface described above have different characteristics depending on their size, as long as their diameters (cell diameters) are uniform and without variation. A smaller cell diameter is more advantageous for developing high impact resilience, and specifically, an average cell diameter of 10 to 350 ⁇ m is preferable. When the average cell diameter is less than 10 ⁇ m, the internal pressure of the molded product is low, and the pressure during the formation of the non-foamed skin layer is insufficient, which tends to deteriorate the appearance such as sink marks.
  • the load resistance tends to be low and the impact resilience tends to be low.
  • the rebound resilience is inferior if the density is high. It is preferably 100-300 ⁇ m, particularly preferably 130-300 ⁇ m.
  • most of the circular bubble layer is composed of fine bubbles having an average cell diameter of 10 to 350 ⁇ m as described above, but also includes coarse bubbles having a slightly larger cell diameter.
  • the maximum cell diameter of coarse cells is preferably 100 to 1000 ⁇ m. If the maximum cell diameter exceeds 1000 ⁇ m, the load resistance tends to be low and the impact resilience tends to be low. Also, the maximum cell diameter is more preferably 200 to 1000 ⁇ m, still more preferably 400 to 950 ⁇ m, in order to achieve a density for exhibiting high impact resilience, which will be described later.
  • the density of the foam molded article of the present invention is preferably 0.01 to 0.70 g/cm 3 . Since the density of general polyester elastomers is about 1.0 to 1.4 g/cm 3 , it can be said that the foamed molded article of the present invention is sufficiently lightweight. More preferably 0.1 to 0.60 g/cm 3 , still more preferably 0.1 to 0.45 g/cm 3 , particularly preferably 0.1 to 0.35 g/cm 3 . If the density is less than 0.01 g/cm 3 , sufficient strength cannot be obtained and mechanical properties tend to be poor, and if it exceeds 0.70 g/cm 3 , impact resilience tends to be poor.
  • the foam molded article of the present invention has an average cell diameter within a specific range and a density within a specific range, and as a result, can achieve a high impact resilience. Furthermore, by appropriately selecting the configuration described above, it is possible to achieve a higher impact resilience of 50 to 90%. In order to develop high resilience characteristics, the rebound resilience of the foam molded product is preferably 60 to 90%.
  • the foam molded article of the present invention is not only excellent in light weight, but also exhibits an extremely high impact resilience and is excellent in surface smoothness. Furthermore, it is intended to provide a polyester-based foam-molded article that can be applied to parts that require high reliability because it has a uniform foaming state, high heat resistance, water resistance, and molding stability in spite of its high expansion ratio. can be done. Therefore, for example, it can be used for the following purposes.
  • the uses of the foamed molded article of the present invention are not limited to the following uses. Applications include automotive materials, civil engineering supplies, building supplies, home appliances, OA equipment, sporting goods, stationery, toys, medical supplies, food containers, and agricultural materials.
  • automotive mechanical members engine components, automotive exterior materials, automotive interior materials, cushioning materials, sealing materials, car seats, deadening, door trims, sun visors, vibration damping materials, sound absorbing materials, and heat insulating materials for automobiles (heat insulation materials), anti-vibration materials, cushioning materials, civil engineering joints, icicle prevention panels, protective materials, lightweight soil, embankments, artificial soil, tatami mat core materials, construction heat insulation materials, construction joint materials, side door materials, construction curing materials, reflections materials, industrial trays, tubes, pipe covers, air conditioner insulation pipes, gasket core materials, concrete formwork, televisions, refrigerators, freezers, cooking equipment, washing machines, air conditioning equipment, lighting fixtures, computers, magneto-optical discs, copiers, facsimiles , printers, shoes, protectors, gloves, and sports equipment.
  • a foaming method of impregnating the thermoplastic polyester elastomer resin composition with a high-pressure gas and then reducing the pressure (releasing the pressure) is preferable.
  • gas is injected into the cavity of the mold when melt-mixing the foaming agent and the thermoplastic polyester elastomer resin composition and performing injection molding.
  • a foam injection molding method based on a counterpressure method in which a molten thermoplastic polyester elastomer resin composition is injected under pressure is preferred. Specifically, as shown in FIG.
  • a pressurizing nitrogen gas is injected into a cavity 3 formed by a plurality of clamped molds 1 and 2 using a counter pressure device 8 to obtain a predetermined pressure.
  • Pressure is applied to create a pressurized state, and a molten thermoplastic polyester elastomer resin composition is added thereto as a chemical foaming agent and/or a supercritical inert gas (hereinafter collectively referred to as "foaming agent").
  • the gas applied to the cavity is rapidly discharged from the electromagnetic valve 10 by counterpressure, and the thermoplastic polyester elastomer resin is injected.
  • the composition foams.
  • the predetermined pressure is preferably 0.01 MPa to 29.0 MPa.
  • the pressure referred to here is gauge pressure.
  • the predetermined time is preferably 1 to 60 seconds.
  • thermoplastic polyester elastomer resin composition and the foaming agent can be mixed in the plasticizing region 4 a of the injection molding machine 4 before filling the cavity 3 .
  • the gas pressure of the counter pressure affects the fineness of the bubbles and the foaming ratio, and by applying even a low pressure to the cavity, the decompression speed is improved and high foaming ratio can be achieved.
  • gas escape of the foaming agent from the resin composition is suppressed, and the cells tend to become finer. .
  • the counter pressure is preferably 0.01 MPa to 29.0 MPa, more preferably 0.05 MPa to 15.0 MPa, still more preferably 0.5 MPa to 10.0 MPa.
  • the pressure referred to here is gauge pressure.
  • the filling amount of the resin composition is preferably 10% to 55% of the cavity volume, more preferably 10% to 50%, still more preferably 10% to 40%, and particularly preferably 10% to 30%. %.
  • FIG. 2 shows a schematic structure of the foam molded article (B).
  • the foamed molded article (A) does not have the foamed region 25 where the non-foamed portion 21 exists in the foamed molded article (B), and has a structure consisting only of the foamed region 24 where the non-foamed portion 21 does not exist.
  • the cavity of the mold pressurized by counter pressure is filled with the thermoplastic polyester elastomer resin composition in a molten state together with a foaming agent within a range of 10% to 55% of the cavity volume.
  • the chemical foaming agent that can be used to obtain the foamed molded article of the present invention is added to the resin composition that is melted in the resin melting zone of the molding machine as a gas component that serves as foam nuclei or as a source of the gas.
  • a gas component that serves as foam nuclei or as a source of the gas.
  • inorganic compounds such as ammonium carbonate, sodium bicarbonate, and azide compounds
  • organic compounds such as azo compounds, sulfhydrazide compounds, and nitroso compounds, and the like can be used.
  • the azide compound include terephthalazide and p-tert-butylbenzazide.
  • examples of the azo compound include diazocarbonamide (ADCA), 2,2-azoisobutyronitrile, azohexahydrobenzonitrile, and diazoaminobenzene, among which ADCA is preferred and utilized.
  • examples of the sulfohydrazide compounds include benzenesulfohydrazide, benzene 1,3-disulfohydrazide, diphenylsulfone-3,3-disulfonehydrazide and diphenyloxide-4,4-disulfonehydrazide.
  • examples of the nitroso compounds include , N,N-dinitrosopentaethylenetetramine (DNPT) and the like.
  • the chemical foaming agent is based on a thermoplastic resin having a lower melting point than the decomposition temperature of the chemical foaming agent in order to be uniformly dispersed in the thermoplastic polyester elastomer resin composition. It can also be used as a blowing agent masterbatch.
  • the base thermoplastic resin is not particularly limited as long as it has a melting point lower than the decomposition temperature of the chemical foaming agent. Examples thereof include polystyrene (PS), polyethylene (PE), and polypropylene (PP).
  • the mixing ratio of the chemical foaming agent and the thermoplastic resin is preferably 10 to 100 parts by mass of the chemical foaming agent per 100 parts by mass of the thermoplastic resin.
  • the amount of the chemical blowing agent is less than 10 parts by mass, the amount of the masterbatch to be added to the thermoplastic polyester elastomer resin composition may become too large, resulting in deterioration of physical properties. If it exceeds 100 parts by mass, it becomes difficult to form a masterbatch due to the problem of dispersibility of the chemical blowing agent.
  • carbon dioxide and/or nitrogen can be used as the inert gas.
  • the amount thereof is preferably 0.05 to 30 parts by mass, preferably 0.1 to 20 parts by mass, per 100 parts by mass of the thermoplastic polyester elastomer resin composition. Parts by mass are more preferred. If the amount of supercritical carbon dioxide and/or nitrogen is less than 0.05 parts by mass, it will be difficult to obtain uniform and fine bubbles, and if it exceeds 30 parts by mass, the surface appearance of the molded article will tend to be impaired.
  • carbon dioxide or nitrogen in a supercritical state used as a blowing agent can be used alone, carbon dioxide and nitrogen may be mixed and used.
  • Nitrogen tends to be suitable for forming finer cells with respect to the thermoplastic polyester elastomer resin composition, and carbon dioxide allows a relatively large amount of gas to be injected, thereby obtaining a higher expansion ratio. Therefore, they may be mixed arbitrarily depending on the state of the foamed structure prepared, and the mixing ratio in the case of mixing is preferably in the range of 1:9 to 9:1 in terms of molar ratio.
  • foaming agent used in the present invention nitrogen in a supercritical state is more preferable from the viewpoint of uniform fine foaming.
  • the molten thermoplastic polyester elastomer resin composition and the foaming agent are mixed in the plasticizing region 4a of the injection molding machine 4. do it.
  • supercritical carbon dioxide and/or nitrogen is used as the foaming agent, for example, as shown in FIG. A method of injecting into the injection molding machine 4 or the like can be adopted.
  • carbon dioxide and/or nitrogen must be in a supercritical state inside the molding machine from the viewpoint of solubility, permeability, and diffusibility in the molten thermoplastic polyester elastomer resin composition. .
  • the supercritical state means that when the temperature and pressure of a substance that produces a gas phase and a liquid phase are increased, the distinction between the gas phase and the liquid phase can be lost in a certain temperature range and pressure range.
  • the temperature and pressure at this time are called critical temperature and critical pressure.
  • a substance in a supercritical state has the properties of both gas and liquid, so the fluid produced in this state is called a critical fluid.
  • Such a critical fluid has a higher density than a gas and a lower viscosity than a liquid, so it has the property of diffusing in a substance very easily.
  • thermoplastic polyester elastomer (A); (Polyester elastomer A-1) According to the method described in JP-A-9-59491, dimethyl terephthalate, 1,4-butanediol, and poly (tetramethylene oxide) glycol having a number average molecular weight of 2000 are used as raw materials, and the soft segment content is 76% by mass. to produce polyester elastomer A-1.
  • polyester elastomer A-2 According to the method described in JP-A-9-59491, dimethyl terephthalate, 1,4-butanediol, and poly (tetramethylene oxide) glycol having a number average molecular weight of 2000 are used as raw materials, and the soft segment content is 83% by mass. to produce polyester elastomer A-2.
  • polyester elastomer A-3 According to the method described in JP-A-9-59491, dimethyl terephthalate, 1,4-butanediol, and poly (tetramethylene oxide) glycol having a number average molecular weight of 1000 as raw materials, the soft segment content is 67% by mass. to produce polyester elastomer A-3.
  • polyester elastomer A-4 According to the method described in JP-A-9-59491, using dimethyl terephthalate, 1,4-butanediol, and poly(tetramethylene oxide) glycol having a number average molecular weight of 1000 as raw materials, the soft segment content is 55% by mass. to produce polyester elastomer A-4.
  • polyester elastomer A-5 According to the method described in JP-A-9-59491, dimethyl terephthalate, 1,4-butanediol, and poly (tetramethylene oxide) glycol having a number average molecular weight of 1000 as raw materials, the soft segment content is 28% by mass. to produce polyester elastomer A-5.
  • C Compound with epoxy group: styrene copolymer
  • the oil jacket temperature of a 1 liter pressurized stirred tank reactor equipped with an oil jacket was kept at 200°C.
  • a monomer mixture consisting of 89 parts by weight of styrene (St), 11 parts by weight of glycidyl methacrylate (GMA), 15 parts by weight of xylene (Xy) and 0.5 parts by weight of ditertiarybutyl peroxide (DTBP) as a polymerization initiator.
  • the liquid was charged into the raw material tank.
  • This styrene-based copolymer had a mass average molecular weight of 8,500 and a number average molecular weight of 3,300 according to GPC analysis (converted to polystyrene).
  • the epoxy value is 670 equivalents/1 ⁇ 10 6 g, the epoxy value (average number of epoxy groups per molecule) is 2.2, and two or more glycidyl groups are present in one molecule.
  • TEPIC-S Commercially available epoxy compounds
  • TEPIC-S Commercially available epoxy compounds
  • TEPIC-S Commercially available epoxy compounds
  • TEPIC-S Commercially available epoxy compounds
  • thermoplastic polyester elastomer resin composition According to the formulation shown in Table 1, a thermoplastic polyester elastomer, a crystal nucleating agent, and a thickening agent are melt-kneaded using a twin-screw extruder, and then pelletized to obtain pellets of the thermoplastic polyester elastomer resin composition. Obtained. The physical properties of each resin composition were measured by the method described later and were as shown in Table 1.
  • MFR Melt flow rate
  • the MFR (melt flow rate) of the thermoplastic polyester elastomer resin composition was measured at a load of 2,160 g and a measurement temperature of 230° C. according to the measurement method described in ASTM D1238.
  • a thermoplastic polyester elastomer resin composition dried (100° C., 3 to 5 hours) so that the moisture content was 0.1% by mass or less was used.
  • thermoplastic polyester elastomer resin composition obtained above a foam molded article was produced by the above-described counterpressure method.
  • the mold used had a mold clamping force of 10000 kN and formed a cavity with a width of 360 mm, a length of 190 mm and a thickness of 15.0 mm when clamped. Nitrogen gas at the pressure shown in Table 1 (counterpressure pressure) was injected into the cavity of this mold using a counterpressure.
  • thermoplastic polyester elastomer resin composition In the plasticizing area of an electric injection molding machine having a screw with a screw diameter of 60 mm and a screw stroke of 300 mm, nitrogen in a supercritical state was injected into the molten thermoplastic polyester elastomer resin composition to control the surface temperature to 50°C.
  • a short shot of the resin composition shown in Table 1 (filling amount of resin composition relative to cavity volume) was injected into the cavity of the mold from the gate (the center of the surface with a width of 360 mm and a length of 190 mm).
  • the thermoplastic polyester elastomer resin composition was foamed to obtain a foam-molded article by quickly releasing the nitrogen gas pressurized by counter pressure.
  • Comparative example 5 A foam molded article was produced by a mold expansion method (core-back injection foam molding method).
  • a mold As for the mold, when the mold is clamped, a cavity with a width of 360 mm, a length of 190 mm, and a thickness of 3.0 mm can be formed.
  • a mold for making a flat plate was used, which consisted of a fixed mold and a working mold capable of forming a cavity with an amount (mm). Specifically, in the plasticizing region of an electric injection molding machine having a screw with a mold clamping force of 10,000 kN, a screw diameter of 60 mm, and a screw stroke of 300 mm, nitrogen in a supercritical state was injected to bring the surface temperature to 50 ° C.
  • the working mold After injection filling a full pack into a temperature-controlled mold, at the stage where a non-foamed skin layer of about 700 ⁇ m is formed by the external injection pressure and the foaming pressure from the inside, the working mold is moved in the mold opening direction by 12.0 mm. It was moved to expand the volume of the cavity to obtain a foamed molding.
  • composition of foam The surface of the foam molded article was visually observed, and the presence or absence of unevenness (sink marks) due to molding shrinkage and the occurrence of burrs were estimated as to whether or not there was a non-foamed portion.
  • cut the foamed molded body along the plane where the non-foamed portion is in the center (the ww' plane in FIG. 2) and observe the cross section. was used as a sample. Further, the foamed molded product was cut along a plane (vv' plane in FIG. 2) perpendicular to the cut plane to obtain a sample for cross-sectional observation.
  • the foamed molded article is cut at the center plane of the foamed article (the ww' plane in FIG. 3) and used as a sample for cross-sectional observation. bottom. Further, the foam molded product was cut along a plane (vv' plane in FIG. 3) perpendicular to the cut plane to obtain a sample for cross-sectional observation. Using a scanning electron microscope SU1510 manufactured by Hitachi High-Technologies Corporation, a cross-sectional photograph of a sample for cross-sectional observation of the surface layer of the foam molded product was taken.
  • the cross-sectional photograph is image-processed, and in the surface layer from the surface of the foamed molding to a depth of 1000 ⁇ m, the cell density is calculated by the following formula in an area of 200 ⁇ m ⁇ 200 ⁇ m. It was made into a foaming part.
  • Bubble density (%) [Total area of bubbles ( ⁇ m 2 )/40,000 ( ⁇ m 2 )] ⁇ 100
  • the observation area of 200 ⁇ m ⁇ 200 ⁇ m is the surface layer from the surface to a depth of 1000 ⁇ m in the case of a foamed molded article that is assumed to have a non-foamed portion, near the surface, near the depth of 500 ⁇ m, and near the depth of 1000 ⁇ m (surface in FIG.
  • the surface layer from the surface to a depth of 1000 ⁇ m is located near the surface, at a depth of 500 ⁇ m, and at a depth of 500 ⁇ m. Measurements were taken at five locations near 1000 ⁇ m (the depth of the white squares on the surface layer 22 in FIG. 3). When it was determined that no non-foamed portion existed in all three locations in the depth direction from the surface by this measurement, the region was defined as a region consisting only of a foamed region in which no non-foamed portion existed.
  • the foamed molded article (A) composed of a surface layer consisting of only foamed regions without non-foamed portions, and the presence of foamed regions with non-foamed portions and non-foamed portions.
  • Ratio (%) of area of foamed region in which non-foamed portion exists [Area of foamed region in which non-foamed portion exists (mm 2 )/Area of surface of foamed molded product (mm 2 )] ⁇ 100
  • the ratio of the area of the foamed region where the non-foamed portion exists to the total surface area (%) [area of the foamed region where the non-foamed portion exists (mm 2 )/surface area of the foamed molded product (mm 2 )] ⁇ 100
  • the average aspect ratio (long axis length/short axis length) of 100 of them is obtained, and this is performed at any three points on each layer, and the average value of the three average values obtained at three points are the average aspect ratios of the flat cell layer and the circular cell layer, respectively.
  • Rebound resilience Measurement was carried out by the method described in JIS K 6400. Using a manual measurement tester, a steel ball was dropped from a prescribed drop height (H) onto the foam molded body, the maximum rebound height (h) was read, and the rebound resilience was calculated using the following formula. .
  • Rebound resilience (%) (maximum rebound height (h) / drop height (H)) x 100 The measurement was performed three times within one minute, the median value was obtained, and the rebound resilience was calculated.
  • the rebound resilience of the foamed region without the non-foamed portion was defined as the rebound resilience (A), and the rebound resilience of the foamed region with the non-foamed portion was defined as the rebound resilience (B).
  • any of Examples 1 to 12 within the scope of the present invention is a foamed molded article (A) composed of a surface layer consisting only of a foamed region with no non-foamed portion, or
  • the foam molded article (B) has a surface layer in which a foamed region with a non-foamed portion and a foamed region without a non-foamed portion are mixed. Since the average cell diameter and the maximum cell diameter of the cells of the foam have predetermined sizes, the foam exhibits light weight and high impact resilience.
  • the foamed molded articles (B) of Examples 3 to 8, 10 to 12, and Comparative Examples 1 to 4 all had a non-foamed portion with the maximum area on the surface opposite to the surface with the gate.
  • the surface also had a non-foamed portion of approximately the same area.
  • the foamed regions without non-foamed portions have a higher rebound resilience than the foamed regions with non-foamed portions.
  • the entire foamed molded article is composed only of foamed regions without non-foamed portions, and the vicinity of the surface of the entire foamed molded article is composed of flat cells, resulting in excellent surface smoothness. .
  • Comparative Example 1 a polyester elastomer containing no crystal nucleating agent or thickening agent was foam-molded, and in Comparative Example 2, a thermoplastic polyester elastomer resin composition containing a small amount of crystal nucleating agent was foam-molded.
  • the coefficient of rebound resilience shows a high value, the maximum cell diameter of the cells in the circular cell layer is increased, so that compared with Examples 3 to 8 using the same polyester elastomer A-1, the rebound Elastic modulus is reduced.
  • Comparative Example 3 with a large amount of crystal nucleating agent and Comparative Example 4 with a large amount of thickener the values are lower than the predetermined MFR. Mold conformability deteriorates.
  • the foamed molded article of the present invention not only excels in lightness, but also exhibits an extremely high rebound resilience and excellent surface smoothness. Furthermore, it is intended to provide a polyester foam molded article that can be applied to parts that require high reliability because it has a uniform foaming state, high heat resistance, water resistance, and molding stability in spite of its high expansion ratio. can be done.

Abstract

[Problem] The present invention provides a thermoplastic polyester elastomer resin composition that is suitable for a foam molded article having excellent lightness of weight, impact resilience, and surface smoothness. Provided are: a thermoplastic polyester elastomer resin composition for foam molding using a counter-pressure, said thermoplastic polyester elastomer resin composition being characterized by containing 0.05-9.5 parts by mass of a crystal nucleating agent and 0-4.5 parts by mass of a thickener relative to 100 parts by mass of a thermoplastic polyester elastomer in which a hard segment that comprises a polyester including an aromatic dicarboxylic acid and an aliphatic and/or alicyclic diol as constituent components and at least one soft segment selected from an aliphatic polyether, an aliphatic polyester, and an aliphatic polycarbonate are bonded to each other such that the soft segment is contained in an amount of 25-90 mass%; and a foam molded article in which the thermoplastic polyester elastomer resin composition forms a continuous phase.

Description

熱可塑性ポリエステルエラストマー樹脂組成物及び発泡成形体THERMOPLASTIC POLYESTER ELASTOMER RESIN COMPOSITION AND EXPANDED MOLDED PRODUCT
 本発明は、カウンタープレッシャーを用いた発泡成形に適した熱可塑性ポリエステルエラストマー樹脂組成物に関するものであり、また該熱可塑性ポリエステルエラストマー樹脂組成物が連続相をなす発泡成形体に関するものである。さらに詳しくは、本発明の発泡成形体は、反発弾性及び表面平滑性に優れた発泡成形体であり、2倍発泡以上の高倍発泡した発泡成形体の提供が可能である。 The present invention relates to a thermoplastic polyester elastomer resin composition suitable for foam molding using counterpressure, and to a foam molded article in which the thermoplastic polyester elastomer resin composition forms a continuous phase. More specifically, the foam-molded article of the present invention is a foam-molded article excellent in rebound resilience and surface smoothness, and it is possible to provide a foam-molded article that has been expanded twice or more.
 熱可塑性ポリエステルエラストマーは、射出成形性、押出成形性に優れ、機械的強度が高く、弾性回復性、耐衝撃性、柔軟性などのゴム的性質、耐寒性に優れる材料として、自動車部品、電気・電子部品、繊維、フィルム、スポーツ部品などの用途に使用されている。 Thermoplastic polyester elastomers have excellent injection moldability and extrusion moldability, high mechanical strength, rubber-like properties such as elastic recovery, impact resistance, and flexibility, as well as excellent cold resistance. It is used in applications such as electronic parts, textiles, films, and sports parts.
 熱可塑性ポリエステルエラストマーは、耐熱老化性、耐光性、耐摩耗性に優れていることから、自動車部品、特に高温環境下で使用される部品や自動車内装部品に採用されている。さらに近年樹脂部品の軽量化が進められており、目的を達成する手段の一つとして発泡成形体の適用を挙げることができる。 Thermoplastic polyester elastomers have excellent heat aging resistance, light resistance, and wear resistance, so they are used in automotive parts, especially parts used in high-temperature environments and automotive interior parts. Furthermore, in recent years, the weight reduction of resin parts has been promoted, and one of the means for achieving the purpose is the application of foam molded articles.
 軽量化のための高倍発泡化の工法のひとつとして、金型を発泡時に型開き方向に移動させるコアバック射出発泡成形法があり、この工法だと2倍以上の高倍発泡が可能となるうえ、さらには発泡層の気泡が微細となるため反発弾性が高くなる(特許文献1)。 As one of the methods of high-expansion expansion for weight reduction, there is a core-back injection foam molding method in which the mold is moved in the opening direction during foaming. Furthermore, since the cells in the foam layer are fine, the impact resilience is increased (Patent Document 1).
 しかしながら、コアバック射出発泡成形法で製造した発泡成形体は、表層に非発泡スキン層、内層に前記の発泡層を有し、厚み方向に非発泡スキン層と発泡層のサンドイッチ構造を持ち、非発泡層のスキン層が存在することで、発泡層の反発性が緩和され、反発弾性が低下してしまううえ、成形体表面にスワルマークやアバタなどの不良により、凹凸が発生することで表面平滑性に劣る。 However, a foamed molded product manufactured by the core-back injection molding method has a non-foamed skin layer on the surface layer and the above-mentioned foamed layer on the inner layer, and has a sandwich structure of the non-foamed skin layer and the foamed layer in the thickness direction. The presence of the skin layer of the foam layer reduces the resilience of the foam layer, lowering the rebound resilience. In addition, defects such as swirl marks and avatars on the surface of the molded product cause unevenness, resulting in surface smoothness. inferior to
 また、ショートショット射出発泡成形法であれば、スキン層が薄い発泡成形体の作製が可能であるが、発泡倍率が低く、軽量性には劣るといった課題があった(特許文献2)。 Also, with the short shot injection foam molding method, it is possible to produce a foam molded product with a thin skin layer, but there are problems such as a low foaming ratio and poor lightness (Patent Document 2).
 ところで、自動車シートに好適に使用される発泡体としては、反発弾性率が60%以上の高反発のウレタン発泡体が好適に採用されており、特許文献3では、その製造方法に関して提案されているものの、ウレタン発泡体には、燃焼時にシアン化ガス等が発生するため、環境汚染の課題がある。 By the way, as a foam that is suitably used for automobile seats, a highly resilient urethane foam having a modulus of rebound resilience of 60% or more is suitably employed, and Patent Document 3 proposes a method for producing the same. However, urethane foam generates cyanide gas and the like when burned, and thus poses a problem of environmental pollution.
特許第6358369号公報Japanese Patent No. 6358369 特開2011-68819号公報JP 2011-68819 A 特開2003-342343号公報Japanese Patent Application Laid-Open No. 2003-342343
 本発明は、上記従来技術の現状に鑑みなされたものであり、その目的は、軽量性、反発弾性及び表面平滑性に優れた発泡成形体に適した熱可塑性ポリエステルエラストマー樹脂組成物を提供することにある。 The present invention has been made in view of the current state of the prior art described above, and an object of the present invention is to provide a thermoplastic polyester elastomer resin composition that is suitable for foamed moldings that are lightweight, have excellent impact resilience, and have excellent surface smoothness. It is in.
 本発明者は、上記目的を達成するため、熱可塑性ポリエステルエラストマーの組成と配合する添加剤について鋭意検討した。その結果、熱可塑性ポリエステルエラストマーのハードセグメントとソフトセグメントが特定の比率であり、かつ結晶核剤と増粘剤を配合することで、特定の降温結晶化温度と溶融粘度に調整した熱可塑性ポリエステルエラストマー樹脂組成物とし、この熱可塑性ポリエステルエラストマー樹脂組成物を用いることで、微細発泡と表面平滑性を兼ね備えた良好な発泡成形性が発現し、高倍率発泡による軽量化が可能となり、かつ、極めて高い反発弾性率を有する発泡成形体が得られることを見出した。さらに、金型のキャビティ内にガスを注入し、加圧状態下に溶融した熱可塑性樹脂を射出するカウンタープレッシャー法による発泡射出成形方法を適用することで、前述した良質なポリエステルエラストマー発泡成形体を容易に製造し提供できることを見出した。つまり、熱可塑性ポリエステルエラストマー樹脂組成物の特性(溶融張力、結晶化温度、ガス保持性など)が、カウンタープレッシャー法による発泡成形方法に適しており、カウンタープレッシャー圧力の加圧・放圧の工程に耐えることができ、目的とする高倍発泡、及び表面平滑性を有する発泡成形体が得られることを見出し、本発明の完成に至った。 In order to achieve the above object, the present inventors diligently studied the composition of the thermoplastic polyester elastomer and the additives to be blended. As a result, the thermoplastic polyester elastomer has a specific ratio between the hard segment and the soft segment of the thermoplastic polyester elastomer, and is adjusted to a specific cooling crystallization temperature and melt viscosity by blending a crystal nucleating agent and a thickening agent. By using this thermoplastic polyester elastomer resin composition as a resin composition, good foam moldability with both fine foaming and surface smoothness is exhibited, and weight reduction by high expansion ratio foaming is possible, and extremely high It was found that a foam molded article having a modulus of rebound resilience can be obtained. Furthermore, by applying the foam injection molding method by the counter-pressure method in which a gas is injected into the cavity of the mold and the molten thermoplastic resin is injected under pressure, the above-mentioned high-quality polyester elastomer foam molding can be obtained. It has been found that it can be easily manufactured and provided. In other words, the properties (melt tension, crystallization temperature, gas retention, etc.) of the thermoplastic polyester elastomer resin composition are suitable for the foam molding method using the counterpressure method, and the process of pressurizing and releasing the counterpressure pressure is suitable. The inventors have found that it is possible to obtain a foam-molded article that can withstand high-expansion expansion and have the desired surface smoothness, and have completed the present invention.
 即ち、本発明は、以下の(1)~(8)を構成するものである。
(1) 芳香族ジカルボン酸と脂肪族及び/又は脂環族ジオールとを構成成分とするポリエステルからなるハードセグメントと、脂肪族ポリエーテル、脂肪族ポリエステル、及び脂肪族ポリカーボネートから選ばれる少なくとも1種のソフトセグメントが結合され、ソフトセグメントの含有量が25~90質量%である熱可塑性ポリエステルエラストマー(A)100質量部に対して、結晶核剤(B)0.05~9.5質量部、及び増粘剤(C)0~4.5質量部の割合で含有することを特徴とするカウンタープレッシャーを用いた発泡成形用熱可塑性ポリエステルエラストマー樹脂組成物。
(2) 結晶核剤(B)が炭素数3~40の有機カルボン酸のアルカリ金属塩またはアルカリ土類金属塩であることを特徴とする、(1)に記載の熱可塑性ポリエステルエラストマー樹脂組成物。
(3) 増粘剤(C)がエポキシ基を有する反応性化合物であることを特徴とする、(1)または(2)に記載の熱可塑性ポリエステルエラストマー樹脂組成物。
(4) 降温結晶化温度TC2が105℃~200℃であることを特徴とする、(1)~(3)のいずれかに記載の熱可塑性ポリエステルエラストマー樹脂組成物。
(5) 荷重2,160g、測定温度230℃におけるMFRが、5~30g/10minであることを特徴とする、(1)~(4)のいずれかに記載の熱可塑性ポリエステルエラストマー樹脂組成物。
(6) (1)~(5)のいずれかに記載の熱可塑性ポリエステルエラストマー樹脂組成物が連続相をなす発泡成形体であり、該発泡成形体の表面から1000μmの深さまでの表面層として、気泡密度が10%以下である非発泡部分が存在しない発泡領域のみからなる表面層で構成される発泡成形体であるか、もしくは、前記非発泡部分が存在する発泡領域と前記非発泡部分が存在しない発泡領域が混在する表面層を有する発泡成形体であり、密度が0.01~0.70g/cmである発泡成形体。
(7) 前記表面層の非発泡部分が存在しない発泡領域に、気泡の平均アスペクト比が4.0~15.0である扁平気泡層を有することを特徴とする(6)に記載の発泡成形体。
(8) さらに、表面から1000μmより深い内層に気泡の平均アスペクト比が1.0~2.0である円形気泡層を有することを特徴とする(6)または(7)に記載の発泡成形体。
(9) 反発弾性率が50~90%であることを特徴とする、(6)~(8)のいずれかに記載の発泡成形体。
(10) 内層の円形気泡層の気泡における、平均セル径が10~350μmであり、最大セル径が100~1000μmである、(8)または(9)に記載の発泡成形体。
That is, the present invention constitutes the following (1) to (8).
(1) A hard segment made of a polyester composed of an aromatic dicarboxylic acid and an aliphatic and / or alicyclic diol, and at least one selected from aliphatic polyethers, aliphatic polyesters, and aliphatic polycarbonates 0.05 to 9.5 parts by mass of a crystal nucleating agent (B) with respect to 100 parts by mass of a thermoplastic polyester elastomer (A) having a soft segment content of 25 to 90% by mass, and A thermoplastic polyester elastomer resin composition for foam molding using counterpressure, characterized by containing 0 to 4.5 parts by mass of a thickener (C).
(2) The thermoplastic polyester elastomer resin composition according to (1), wherein the crystal nucleating agent (B) is an alkali metal salt or alkaline earth metal salt of an organic carboxylic acid having 3 to 40 carbon atoms. .
(3) The thermoplastic polyester elastomer resin composition according to (1) or (2), wherein the thickener (C) is a reactive compound having an epoxy group.
(4) The thermoplastic polyester elastomer resin composition according to any one of (1) to (3), which has a cooling crystallization temperature TC2 of 105°C to 200°C.
(5) The thermoplastic polyester elastomer resin composition according to any one of (1) to (4), which has an MFR of 5 to 30 g/10 min at a load of 2,160 g and a measurement temperature of 230°C.
(6) The thermoplastic polyester elastomer resin composition according to any one of (1) to (5) is a foam-molded article having a continuous phase, and the surface layer of the foam-molded article to a depth of 1000 μm from the surface of the foam-molded article includes: A foamed molded article composed of a surface layer consisting only of a foamed region with no non-foamed portion having a cell density of 10% or less, or a foamed region having the non-foamed portion and the non-foamed portion. A foamed molded article having a surface layer in which non-foamed regions are mixed, and having a density of 0.01 to 0.70 g/cm 3 .
(7) The foam molding according to (6), characterized in that a flat cell layer having an average aspect ratio of cells of 4.0 to 15.0 is provided in the foamed region where the non-foamed portion of the surface layer does not exist. body.
(8) The foam molded article according to (6) or (7), further comprising a circular cell layer having an average aspect ratio of cells of 1.0 to 2.0 in the inner layer deeper than 1000 μm from the surface. .
(9) The foam molded article according to any one of (6) to (8), which has a rebound resilience of 50 to 90%.
(10) The foam molded article according to (8) or (9), wherein the cells of the circular cell layer of the inner layer have an average cell diameter of 10 to 350 μm and a maximum cell diameter of 100 to 1000 μm.
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物からなる発泡成形体は、軽量性に優れるのみならず、極めて高い反発弾性を発現し、なおかつ表面平滑性に優れる。さらに、高い発泡倍率にもかかわらず均一な発泡状態と、高い耐熱性、耐水性、成形安定性を持つため、高い信頼性の必要な部品にも適用の可能な発泡成形体を提供することができる。そして、カウンタープレッシャー法による発泡射出成形方法を用いることにより、切削などの後加工を施さなくても、対応した金型を準備することで任意の所望する形状を有する、上記の優れた特性を持つ発泡成形体を得ることができる。 The foam molded article made of the thermoplastic polyester elastomer resin composition of the present invention is not only excellent in light weight, but also exhibits extremely high impact resilience and excellent surface smoothness. Furthermore, it has a uniform foaming state, high heat resistance, water resistance, and molding stability in spite of its high expansion ratio. can. Then, by using the foam injection molding method by the counter pressure method, even without post-processing such as cutting, by preparing a corresponding mold, it has the above-mentioned excellent characteristics. A foam molded article can be obtained.
本発明の発泡成形体の製造方法の一例を説明するための概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram for demonstrating an example of the manufacturing method of the foam molding of this invention. 本発明の発泡成形体(B)の概略図であり、(X)は表面から見た図であり、(Y)はw-w’の面で切った断面図であり、(Z)はv-v’の面で切った断面図である。1 is a schematic view of a foam molded article (B) of the present invention, (X) is a view from the surface, (Y) is a cross-sectional view taken along the plane ww', and (Z) is v. - It is sectional drawing cut by the plane of v'. 本発明の発泡成形体(A)の概略図であり、(X)は表面から見た図であり、(Y)はw-w’の面で切った断面図であり、(Z)はv-v’の面で切った断面図である。1 is a schematic view of a foam molded article (A) of the present invention, (X) is a view from the surface, (Y) is a cross-sectional view taken along the plane ww', and (Z) is v. - It is sectional drawing cut by the plane of v'.
 以下、本発明の発泡成形体について詳述する。 The foam molded article of the present invention will be described in detail below.
[熱可塑性ポリエステルエラストマー(A)]
 本発明で使用する熱可塑性ポリエステルエラストマー(A)は、ハードセグメントとソフトセグメントが結合してなる。ハードセグメントは、ポリエステルからなる。ハードセグメントのポリエステルを構成する芳香族ジカルボン酸としては、通常の芳香族ジカルボン酸が広く用いられ、特に限定されないが、主たる芳香族ジカルボン酸としては、テレフタル酸又はナフタレンジカルボン酸(異性体の中では2,6-ナフタレンジカルボン酸が好ましい)であることが望ましい。これらの芳香族ジカルボン酸の含有量は、ハードセグメントのポリエステルを構成する全ジカルボン酸中、70モル%以上であることが好ましく、80モル%以上であることがより好ましい。その他のジカルボン酸成分としては、ジフェニルジカルボン酸、イソフタル酸、5-ナトリウムスルホイソフタル酸などの芳香族ジカルボン酸、シクロヘキサンジカルボン酸、テトラヒドロ無水フタル酸などの脂環族ジカルボン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸、水添ダイマー酸などの脂肪族ジカルボン酸などが挙げられる。これらは、樹脂の融点を大きく低下させない範囲で用いられることができ、その量は全酸成分の30モル%以下が好ましく、より好ましくは20モル%以下である。
[Thermoplastic polyester elastomer (A)]
The thermoplastic polyester elastomer (A) used in the present invention is formed by combining hard segments and soft segments. The hard segment consists of polyester. As the aromatic dicarboxylic acid that constitutes the polyester of the hard segment, ordinary aromatic dicarboxylic acids are widely used and are not particularly limited. 2,6-naphthalenedicarboxylic acid is preferred). The content of these aromatic dicarboxylic acids is preferably 70 mol % or more, more preferably 80 mol % or more, of the total dicarboxylic acids constituting the hard segment polyester. Other dicarboxylic acid components include aromatic dicarboxylic acids such as diphenyldicarboxylic acid, isophthalic acid and 5-sodiumsulfoisophthalic acid, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid and tetrahydrophthalic anhydride, succinic acid, glutaric acid, Aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid, hydrogenated dimer acid, and the like are included. These can be used within a range that does not significantly lower the melting point of the resin, and the amount thereof is preferably 30 mol % or less, more preferably 20 mol % or less of the total acid component.
 また、本発明で使用する熱可塑性ポリエステルエラストマー(A)において、ハードセグメントのポリエステルを構成する脂肪族又は脂環族ジオールとしては、一般の脂肪族又は脂環族ジオールが広く用いられ、特に限定されないが、主として炭素数2~8のアルキレングリコール類であることが望ましい。具体的には、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノールなどが挙げられる。これらの中でも、エチレングリコール、1,4-ブタンジオールのいずれかであることが好ましい。 In addition, in the thermoplastic polyester elastomer (A) used in the present invention, general aliphatic or alicyclic diols are widely used as the aliphatic or alicyclic diol constituting the hard segment polyester, and are not particularly limited. is preferably an alkylene glycol having 2 to 8 carbon atoms. Specific examples include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol and the like. Among these, ethylene glycol or 1,4-butanediol is preferred.
 上記のハードセグメントのポリエステルを構成する成分としては、ブチレンテレフタレート単位(テレフタル酸と1,4-ブタンジオールからなる単位)あるいはブチレンナフタレート単位(2,6-ナフタレンジカルボン酸と1,4-ブタンジオールからなる単位)よりなるものが、物性、成形性、コストパフォーマンスの点から好ましい。 The components constituting the hard segment polyester include butylene terephthalate units (units composed of terephthalic acid and 1,4-butanediol) or butylene naphthalate units (2,6-naphthalenedicarboxylic acid and 1,4-butanediol unit) is preferable from the viewpoint of physical properties, moldability and cost performance.
 また、本発明で使用する熱可塑性ポリエステルエラストマー(A)におけるハードセグメントを構成するポリエステルとして好適な芳香族ポリエステルを事前に製造し、その後ソフトセグメント成分と共重合させる場合、該芳香族ポリエステルは、通常のポリエステルの製造法に従って容易に得ることができる。また、かかるポリエステルは、数平均分子量10000~40000を有しているものが望ましい。 Further, when an aromatic polyester suitable as the polyester constituting the hard segment in the thermoplastic polyester elastomer (A) used in the present invention is produced in advance and then copolymerized with the soft segment component, the aromatic polyester is usually can be easily obtained according to the production method of polyester. Moreover, such polyester preferably has a number average molecular weight of 10,000 to 40,000.
 本発明で使用する熱可塑性ポリエステルエラストマー(A)のソフトセグメントは、脂肪族ポリエーテル、脂肪族ポリエステル、及び脂肪族ポリカーボネートから選ばれる少なくとも1種である。 The soft segment of the thermoplastic polyester elastomer (A) used in the present invention is at least one selected from aliphatic polyethers, aliphatic polyesters, and aliphatic polycarbonates.
 脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、ポリ(トリメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、エチレンオキシドとテトラヒドロフランの共重合体などが挙げられる。これらの中でも、弾性特性の点から、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物が好ましい。 Aliphatic polyethers include poly(ethylene oxide) glycol, poly(propylene oxide) glycol, poly(tetramethylene oxide) glycol, poly(hexamethylene oxide) glycol, poly(trimethylene oxide) glycol, co-polymer of ethylene oxide and propylene oxide. polymers, ethylene oxide adducts of poly(propylene oxide) glycol, copolymers of ethylene oxide and tetrahydrofuran, and the like. Among these, poly(tetramethylene oxide) glycol and ethylene oxide adducts of poly(propylene oxide) glycol are preferred from the viewpoint of elastic properties.
 脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペートなどが挙げられる。これらの中でも、弾性特性の点から、ポリ(ε-カプロラクトン)、ポリブチレンアジペートが好ましい。 Aliphatic polyesters include poly(ε-caprolactone), polyenantholactone, polycaprylollactone, and polybutylene adipate. Among these, poly(ε-caprolactone) and polybutylene adipate are preferred from the viewpoint of elastic properties.
 脂肪族ポリカーボネートは、主として炭素数2~12の脂肪族ジオール残基からなるものであることが好ましい。これらの脂肪族ジオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2,2-ジメチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオールなどが挙げられる。特に、得られる熱可塑性ポリエステルエラストマーの柔軟性や低温特性の点から、炭素数5~12の脂肪族ジオールが好ましい。これらの成分は、以下に説明する事例に基づき、単独で用いてもよいし、必要に応じて2種以上を併用してもよい。 The aliphatic polycarbonate preferably consists mainly of aliphatic diol residues having 2 to 12 carbon atoms. Examples of these aliphatic diols include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2, 2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8- octanediol and the like. In particular, aliphatic diols having 5 to 12 carbon atoms are preferred from the viewpoint of the flexibility and low-temperature properties of the resulting thermoplastic polyester elastomer. These components may be used alone, or two or more of them may be used in combination according to the cases described below.
 本発明で使用する熱可塑性ポリエステルエラストマー(A)のソフトセグメントを構成する、低温特性が良好な脂肪族ポリカーボネートジオールとしては、融点が低く(例えば、70℃以下)かつ、ガラス転移温度が低いものが好ましい。一般に、熱可塑性ポリエステルエラストマーのソフトセグメントを形成するのに用いられる1,6-ヘキサンジオールからなる脂肪族ポリカーボネートジオールは、ガラス転移温度が-60℃前後と低く、融点も50℃前後となるため、低温特性が良好なものとなる。その他にも、上記脂肪族ポリカーボネートジオールに、例えば、3-メチル-1,5-ペンタンジオールを適当量共重合して得られる脂肪族ポリカーボネートジオールは、元の脂肪族ポリカーボネートジオールに対してガラス転移点が若干高くなるものの、融点が低下もしくは非晶性となるため、低温特性が良好な脂肪族ポリカーボネートジオールに相当する。また、また、例えば、1,9-ノナンジオールと2-メチル-1,8-オクタンジオールからなる脂肪族ポリカーボネートジオールは、融点が30℃程度、ガラス転移温度が-70℃前後と十分に低いため、低温特性が良好な脂肪族ポリカーボネートジオールに相当する。 As the aliphatic polycarbonate diol having good low-temperature properties, which constitutes the soft segment of the thermoplastic polyester elastomer (A) used in the present invention, those having a low melting point (for example, 70° C. or lower) and a low glass transition temperature are used. preferable. In general, an aliphatic polycarbonate diol composed of 1,6-hexanediol, which is used to form the soft segment of a thermoplastic polyester elastomer, has a low glass transition temperature of around -60°C and a melting point of around 50°C. Good low temperature characteristics are obtained. In addition, an aliphatic polycarbonate diol obtained by copolymerizing an appropriate amount of, for example, 3-methyl-1,5-pentanediol with the above aliphatic polycarbonate diol has a glass transition point higher than that of the original aliphatic polycarbonate diol. is slightly higher, but the melting point is lowered or becomes amorphous. In addition, for example, an aliphatic polycarbonate diol composed of 1,9-nonanediol and 2-methyl-1,8-octanediol has a melting point of about 30°C and a glass transition temperature of about -70°C, which are sufficiently low. , which corresponds to aliphatic polycarbonate diols with good low-temperature properties.
 本発明で使用する熱可塑性ポリエステルエラストマー(A)のソフトセグメントとしては、本発明の課題を解決する観点から、脂肪族ポリエーテルが好ましい。 From the viewpoint of solving the problems of the present invention, aliphatic polyethers are preferable as the soft segment of the thermoplastic polyester elastomer (A) used in the present invention.
 本発明で使用する熱可塑性ポリエステルエラストマー(A)は、テレフタル酸、1,4-ブタンジオール、及びポリ(テトラメチレンオキシド)グリコールを主たる成分とする共重合体であることが好ましい。熱可塑性ポリエステルエラストマー(A)を構成するジカルボン酸成分中、テレフタル酸が40モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることが特に好ましい。熱可塑性ポリエステルエラストマー(A)を構成するグリコール成分中、1,4-ブタンジオールとポリ(テトラメチレンオキシド)グリコールの合計が40モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることが特に好ましい。 The thermoplastic polyester elastomer (A) used in the present invention is preferably a copolymer containing terephthalic acid, 1,4-butanediol, and poly(tetramethylene oxide) glycol as main components. Among the dicarboxylic acid components constituting the thermoplastic polyester elastomer (A), terephthalic acid is preferably 40 mol% or more, more preferably 70 mol% or more, further preferably 80 mol% or more, 90 mol % or more is particularly preferred. The total amount of 1,4-butanediol and poly(tetramethylene oxide) glycol in the glycol component constituting the thermoplastic polyester elastomer (A) is preferably 40 mol% or more, more preferably 70 mol% or more. It is preferably 80 mol % or more, and particularly preferably 90 mol % or more.
 前記ポリ(テトラメチレンオキシド)グリコールの数平均分子量は、500~4000であることが好ましい。数平均分子量が500未満であると、エラストマー特性を発現しにくい場合がある。一方、数平均分子量が4000を超えると、ハードセグメント成分との相溶性が低下し、ブロック状に共重合することが難しくなる場合がある。ポリ(テトラメチレンオキシド)グリコールの数平均分子量は、800以上3000以下であることがより好ましく、1000以上2500以下であることがさらに好ましい。 The poly(tetramethylene oxide) glycol preferably has a number average molecular weight of 500-4000. If the number average molecular weight is less than 500, it may be difficult to develop elastomeric properties. On the other hand, if the number average molecular weight exceeds 4,000, the compatibility with the hard segment component may be lowered, making block-like copolymerization difficult. The number average molecular weight of poly(tetramethylene oxide) glycol is more preferably 800 or more and 3000 or less, further preferably 1000 or more and 2500 or less.
 本発明で使用する熱可塑性ポリエステルエラストマー(A)において、ソフトセグメントの含有量は、25~90質量%であり、好ましくは40~90質量%、より好ましくは55~90質量%、さらに好ましくは65~90質量%である。ソフトセグメントの含有量が25質量%よりも低いと、結晶性が高いため反発弾性に劣り、90質量%を超えると、結晶性が低下しすぎるため、発泡成形性に劣る傾向にある。 In the thermoplastic polyester elastomer (A) used in the present invention, the soft segment content is 25 to 90% by mass, preferably 40 to 90% by mass, more preferably 55 to 90% by mass, and still more preferably 65% by mass. ~90% by mass. If the content of the soft segment is less than 25% by mass, the crystallinity is high, resulting in poor impact resilience.
 本発明で使用する熱可塑性ポリエステルエラストマー(A)は、公知の方法で製造することができる。例えば、ジカルボン酸の低級アルコールジエステル、過剰量の低分子量グリコール、およびソフトセグメント成分を触媒の存在下エステル交換反応させ、得られる反応生成物を重縮合する方法、ジカルボン酸と過剰量のグリコールおよびソフトセグメント成分を触媒の存在下でエステル化反応させ、得られる反応生成物を重縮合する方法、あらかじめハードセグメントのポリエステルを作っておき、これにソフトセグメント成分を添加してエステル交換反応によりランダム化させる方法、ハードセグメントとソフトセグメントを鎖連結剤でつなぐ方法、さらにポリ(ε-カプロラクトン)をソフトセグメントに用いる場合は、ハードセグメントにε-カプロラクトンモノマーを付加反応させる方法などのいずれの方法をとってもよい。 The thermoplastic polyester elastomer (A) used in the present invention can be produced by known methods. For example, a lower alcohol diester of a dicarboxylic acid, an excessive amount of a low molecular weight glycol, and a soft segment component are transesterified in the presence of a catalyst, and the resulting reaction product is polycondensed. A method of subjecting segment components to an esterification reaction in the presence of a catalyst and polycondensing the resulting reaction product. A hard segment polyester is prepared in advance, and a soft segment component is added to this to randomize it by transesterification. method, a method of linking the hard segment and the soft segment with a chain linking agent, and when poly(ε-caprolactone) is used for the soft segment, a method of adding the ε-caprolactone monomer to the hard segment. .
[結晶核剤(B)]
 本発明における結晶核剤(B)は、熱可塑性ポリエステルエラストマー樹脂組成物の発泡成形工程の溶融状態から冷却過程において、気泡形成の起点となる発泡核を形成させてかつ気泡の拡張を抑制する効果があるものであれば、特に限定しないが、降温結晶化温度(TC2)を向上させる効果の高いものが、発泡成形工程において、熱可塑性ポリエステルエラストマー(A)の微結晶を多数形成することとなり、気泡の拡張や連結を抑制出来る点から特に好ましい。結晶核剤(B)としては、炭素数3~40の有機カルボン酸のアルカリ金属塩またはアルカリ土類金属塩や無機結晶核剤が、発泡核形成と降温結晶化温度(TC2)を向上させる観点から好ましい。
[Crystal nucleating agent (B)]
The crystal nucleating agent (B) in the present invention has the effect of forming foam nuclei, which are starting points for cell formation, and suppressing the expansion of cells in the cooling process from the molten state of the thermoplastic polyester elastomer resin composition during the foam molding process. It is not particularly limited as long as it is present, but the one that is highly effective in improving the cooling crystallization temperature (TC2) forms a large number of microcrystals of the thermoplastic polyester elastomer (A) in the foam molding process, It is particularly preferable in that expansion and connection of bubbles can be suppressed. As the crystal nucleating agent (B), an alkali metal salt or alkaline earth metal salt of an organic carboxylic acid having 3 to 40 carbon atoms or an inorganic crystal nucleating agent is used, from the viewpoint of improving foam nucleation and cooling crystallization temperature (TC2). preferred from
 炭素数3~40の有機カルボン酸のアルカリ金属塩またはアルカリ土類金属塩とは、炭素数3~40の脂肪族、脂環族または芳香族のカルボン酸のアルカリ金属塩またはアルカリ土類金属塩である。アルカリ金属としては、ナトリウム、カリウム、リチウムが好ましく、アルカリ土類金属としては、マグネシウム、カルシウムが好ましい。アルカリ金属とアルカリ土類金属では、アルカリ金属が好ましく、特に好ましくはナトリウムである。
 有機カルボン酸は、脂肪族カルボン酸であることが好ましく、脂肪族基は、直鎖状であっても分岐した構造であっても良く、不飽和基を有していても良い。また、脂肪族基に脂環族基、芳香族基あるいは水酸基、リン酸エステル基などのその他の置換基が結合した有機カルボン酸であっても良い。脂肪族カルボン酸としては、直鎖状の飽和脂肪族カルボン酸であることがより好ましい。
The alkali metal salt or alkaline earth metal salt of an organic carboxylic acid having 3 to 40 carbon atoms means an alkali metal salt or alkaline earth metal salt of an aliphatic, alicyclic or aromatic carboxylic acid having 3 to 40 carbon atoms. is. Preferred alkali metals are sodium, potassium and lithium, and preferred alkaline earth metals are magnesium and calcium. Among alkali metals and alkaline earth metals, alkali metals are preferred, and sodium is particularly preferred.
The organic carboxylic acid is preferably an aliphatic carboxylic acid, and the aliphatic group may have a linear or branched structure, and may have an unsaturated group. It may also be an organic carboxylic acid in which an aliphatic group is bonded to an alicyclic group, an aromatic group, or other substituents such as a hydroxyl group and a phosphoric acid ester group. The aliphatic carboxylic acid is more preferably a linear saturated aliphatic carboxylic acid.
 脂肪族カルボン酸の中で、プロピオン酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミスチリン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸、モンタン酸などが好ましく、アルカリ金属塩の中では、ナトリウム塩が熱可塑性ポリエステルエラストマー(A)に対する溶解性、良結晶核形成性の点、さらには熱可塑性ポリエステルエラストマー(A)の末端カルボキシル基との相互作用により、擬似架橋効果が生じ、発泡成形に必要とされる溶融粘度が得られる点から特に好ましい。 Among the aliphatic carboxylic acids, propionic acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, oleic acid, linoleic acid, Montanic acid and the like are preferred, and among the alkali metal salts, sodium salts are preferred in terms of solubility in the thermoplastic polyester elastomer (A) and good crystal nucleation, as well as compatibility with the terminal carboxyl groups of the thermoplastic polyester elastomer (A). The interaction is particularly preferable from the viewpoint that a pseudo cross-linking effect is produced and the melt viscosity required for foam molding can be obtained.
 炭素数3~40の有機カルボン酸のアルカリ金属塩またはアルカリ土類金属塩の有機カルボン酸は、融解性、熱可塑性ポリエステルエラストマー(A)との相溶性の観点より、炭素数3~20の脂肪族カルボン酸であることが好ましく、炭素数3~20の直鎖状の飽和脂肪族カルボン酸であることがより好ましい。
 これらの中でも、炭素数が14未満の脂肪族カルボン酸金属塩は、少量の配合で結晶化速度を向上させることができる点で好ましい。
The organic carboxylic acid of an alkali metal salt or an alkaline earth metal salt of an organic carboxylic acid having 3 to 40 carbon atoms is a fatty acid having 3 to 20 carbon atoms from the viewpoint of meltability and compatibility with the thermoplastic polyester elastomer (A). is preferably a group carboxylic acid, more preferably a linear saturated aliphatic carboxylic acid having 3 to 20 carbon atoms.
Among these, aliphatic carboxylic acid metal salts having less than 14 carbon atoms are preferable because they can improve the crystallization rate with a small amount.
 結晶核剤(B)が無機結晶核剤の場合、溶融加工時に未溶融であり、冷却過程において結晶の核となり得るものであれば、特に限定されないが、中でもタルク、炭酸カルシウムが好ましい。無機結晶核剤の粒子径は、0.1~10μmが好ましく、0.5~6μmがより好ましい。粒子径が10μmを超える場合は、異物として作用し発泡成形時にボイドを発生させ、発泡品の品質を低下させるおそれがある。 When the crystal nucleating agent (B) is an inorganic crystal nucleating agent, it is not particularly limited as long as it is unmelted during melt processing and can form crystal nuclei in the cooling process, but talc and calcium carbonate are particularly preferred. The particle size of the inorganic crystal nucleating agent is preferably 0.1 to 10 μm, more preferably 0.5 to 6 μm. If the particle size exceeds 10 μm, it may act as a foreign substance and generate voids during foam molding, degrading the quality of the foamed product.
 結晶核剤(B)の含有量は、熱可塑性ポリエステルエラストマー(A)100質量部に対して、0.05~9.5質量部であり、好ましくは0.1~5質量部であり、より好ましくは0.1~3質量部であり、さらに好ましくは0.1~1.5質量部である。
 結晶核剤(B)の含有量が0.05質量部未満であると、発泡核を形成する効果、及び降温結晶化温度を向上させる効果が少なく、目的とする気泡サイズの微細化効果が得られない。結晶核剤(B)の含有量は、9.5質量部を超えると、結晶核剤(B)が炭素数3~40の有機カルボン酸金属塩の場合、金属塩によるポリエステルエラストマーの擬似架橋作用が高く、発泡成形時の溶融粘度が高くなりすぎるため、発泡成形性に劣り、低密度の発泡品を得る事ができず、結晶核剤(B)が無機結晶核剤の場合、発泡成形体の比重が高くなったり、目的とする反発性や柔軟性が得られない。
The content of the crystal nucleating agent (B) is 0.05 to 9.5 parts by mass, preferably 0.1 to 5 parts by mass, relative to 100 parts by mass of the thermoplastic polyester elastomer (A). It is preferably 0.1 to 3 parts by mass, more preferably 0.1 to 1.5 parts by mass.
When the content of the crystal nucleating agent (B) is less than 0.05 parts by mass, the effect of forming foam nuclei and the effect of improving the cooling crystallization temperature are small, and the desired cell size miniaturization effect is obtained. can't When the content of the crystal nucleating agent (B) exceeds 9.5 parts by mass, when the crystal nucleating agent (B) is a metal salt of an organic carboxylic acid having 3 to 40 carbon atoms, the metal salt has a pseudo-crosslinking effect on the polyester elastomer. is too high and the melt viscosity during foam molding becomes too high, resulting in poor foam moldability and making it impossible to obtain a foamed product with a low density. The specific gravity of the material increases, and the desired resilience and flexibility cannot be obtained.
[増粘剤(C)]
 本発明における増粘剤(C)は、熱可塑性ポリエステルエラストマー(A)の持つヒドロキシル基あるいはカルボキシル基と反応し得る官能基を有する反応性化合物(以下、単に反応性化合物と称することがある)であり、反応し得る官能基としては、エポキシ基(グリシジル基)、酸無水物基、カルボジイミド基およびイソシアネート基から選ばれる少なくとも一種であることが好ましく、該官能基は1分子あたり2個以上含有する。該官能基は、エポキシ基(グリシジル基)がより好ましい。本発明における増粘剤(C)は、エポキシ基(グリシジル基)を有する反応性化合物、カルボジイミド基を有する反応性化合物であることが好ましく、エポキシ基(グリシジル基)を有する反応性化合物であることがより好ましい。以下、例えば、「エポキシ基(グリシジル基)を有する反応性化合物」は、「エポキシ基を持つ化合物」のように称することもある。増粘剤(C)は、熱可塑性ポリエステルエラストマー(A)のポリマー鎖と反応して結合することから、架橋剤の働きもする。
[Thickener (C)]
The thickener (C) in the present invention is a reactive compound (hereinafter sometimes simply referred to as a reactive compound) having a functional group capable of reacting with the hydroxyl group or carboxyl group of the thermoplastic polyester elastomer (A). The reactive functional group is preferably at least one selected from an epoxy group (glycidyl group), an acid anhydride group, a carbodiimide group and an isocyanate group, and the functional group contains two or more per molecule. . The functional group is more preferably an epoxy group (glycidyl group). The thickener (C) in the present invention is preferably a reactive compound having an epoxy group (glycidyl group), a reactive compound having a carbodiimide group, and a reactive compound having an epoxy group (glycidyl group). is more preferred. Hereinafter, for example, a “reactive compound having an epoxy group (glycidyl group)” may be referred to as a “compound having an epoxy group”. The thickener (C) also acts as a cross-linking agent because it reacts with and bonds to the polymer chains of the thermoplastic polyester elastomer (A).
 増粘剤(C)が、エポキシ基を持つ化合物の場合、2つ以上のエポキシ基を持つ多官能エポキシ化合物として、具体的には、2つのエポキシ基を持つ1,6-ジハイドロキシナフタレンジグリシジルエーテルや1,3-ビス(オキシラニルメトキシ)ベンゼン、3つのエポキシ基を持つ1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンやジグリセロールトリグリシジルエーテル、4つのエポキシ基を持つ1-クロロ-2,3-エポキシプロパン・ホルムアルデヒド・2,7-ナフタレンジオール重縮合物やペンタエリスリトールポリグリシジルエーテルが挙げられる。中でも、骨格に耐熱性を保有した多官能のエポキシ化合物であることが好ましい。特に、ナフタレン構造を骨格にもつ2官能、もしくは4官能のエポキシ化合物、またはトリアジン構造を骨格にもつ3官能のエポキシ化合物が好ましい。熱可塑性ポリエステルエラストマー(A)の溶液粘度上昇の程度や、熱可塑性ポリエステルエラストマー(A)の酸価を効率良く低下させることができる効果や、エポキシ自身の凝集・固化によるゲル化の発生程度を考慮すると、2官能または3官能のエポキシ化合物が好ましい。 When the thickener (C) is a compound having an epoxy group, the polyfunctional epoxy compound having two or more epoxy groups, specifically 1,6-dihydroxynaphthalenediglycidyl having two epoxy groups Ether, 1,3-bis(oxiranylmethoxy)benzene, 1,3,5-tris(2,3-epoxypropyl)-1,3,5-triazine-2,4,6 with three epoxy groups (1H,3H,5H)-trione, diglycerol triglycidyl ether, 1-chloro-2,3-epoxypropane/formaldehyde/2,7-naphthalenediol polycondensate with four epoxy groups and pentaerythritol polyglycidyl ether is mentioned. Among them, a polyfunctional epoxy compound having heat resistance in its skeleton is preferable. Particularly preferred are bifunctional or tetrafunctional epoxy compounds having a naphthalene structure in the skeleton, or trifunctional epoxy compounds having a triazine structure in the skeleton. Consider the degree of increase in the solution viscosity of the thermoplastic polyester elastomer (A), the effect of efficiently lowering the acid value of the thermoplastic polyester elastomer (A), and the degree of gelation due to aggregation and solidification of the epoxy itself. Difunctional or trifunctional epoxy compounds are then preferred.
 その他にも、グリシジル基を1分子あたり2個以上含有し重量平均分子量が4000~25000であり、かつ20~99質量%のビニル芳香族モノマー(X)、1~80質量%のグリシジル(メタ)アクリレート(Y)、および0~79質量%のエポキシ基を含有していない(X)以外のビニル基含有モノマー(Z)からなる共重合体を挙げることができる。 In addition, a vinyl aromatic monomer (X) containing 2 or more glycidyl groups per molecule and having a weight average molecular weight of 4000 to 25000, and 20 to 99% by mass of glycidyl (X) and 1 to 80% by mass of glycidyl (meth) A copolymer consisting of an acrylate (Y) and a vinyl group-containing monomer (Z) other than the epoxy group-free (X) in an amount of 0 to 79% by mass can be mentioned.
 本発明で使用する増粘剤(C)としては、グリシジル基を1分子あたり2個以上含有し重量平均分子量が4000~25000であり、かつ20~99質量%のビニル芳香族モノマー(X)、1~80質量%のグリシジル(メタ)アクリレート(Y)、および0~79質量%のエポキシ基を含有していない(X)以外のビニル基含有モノマー(Z)からなるスチレン系共重合体が、熱可塑性ポリエステルエラストマー(A)との相溶性が良く、分子量分布がより広くなる点から好ましい。より好ましくは(X)が20~99質量%、(Y)が1~80質量%、(Z)が0~40質量%からなる共重合体であり、さらに好ましくは(X)が25~90質量%、(Y)が10~75質量%、(Z)が0~35質量%からなる共重合体である。これらの組成は、熱可塑性ポリエステルエラストマー(A)との反応に寄与する官能基濃度に影響するため、前記範囲に適切に制御することが好ましい。 As the thickening agent (C) used in the present invention, a vinyl aromatic monomer (X) containing two or more glycidyl groups per molecule and having a weight average molecular weight of 4000 to 25000 and 20 to 99% by mass, 1 to 80% by mass of glycidyl (meth)acrylate (Y) and 0 to 79% by mass of a vinyl group-containing monomer (Z) other than (X) containing no epoxy group, It is preferable because it has good compatibility with the thermoplastic polyester elastomer (A) and widens the molecular weight distribution. More preferably, (X) is 20 to 99% by mass, (Y) is 1 to 80% by mass, and (Z) is 0 to 40% by mass. 10 to 75% by mass of (Y) and 0 to 35% by mass of (Z). Since these compositions affect the concentration of functional groups that contribute to the reaction with the thermoplastic polyester elastomer (A), they are preferably controlled within the above range.
 前記ビニル芳香族モノマー(X)としては、スチレン、α-メチルスチレン等が挙げられる。前記グリシジル(メタ)アクリレート(Y)としては、例えば、(メタ)アクリル酸グリシジルやシクロヘキセンオキシド構造を有する(メタ)アクリル酸エステル、(メタ)アクリルグリシジルエーテル等が挙げられ、これらの中でも、反応性の高い点で(メタ)アクリル酸グリシジルが好ましい。前記エポキシ基を含有していない(X)以外のビニル基含有モノマー(Z)としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸メトキシエチル等の炭素数が1~22のアルキル基(アルキル基は直鎖、分岐鎖でもよい)を有する(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ポリアルキレングリコールエステル、(メタ)アクリル酸アルコキシアルキルエステル、(メタ)アクリル酸ヒドロキシアルキルエステル、(メタ)アクリル酸ジアルキルアミノアルキルエステル、(メタ)アクリル酸ベンジルエステル、(メタ)アクリル酸フェノキシアルキルエステル、(メタ)アクリル酸イソボルニルエステル、(メタ)アクリル酸アルコキシシリルアルキルエステル等が挙げられる。また(メタ)アクリルアミド、(メタ)アクリルジアルキルアミド、酢酸ビニル等のビニルエステル類、ビニルエーテル類、(メタ)アリルエーテル類等の芳香族系ビニル系単量体、エチレン、プロピレン等のα-オレフィンモノマーなども前記エポキシ基を含有していない(X)以外のビニル基含有モノマー(Z)として使用可能である。 Examples of the vinyl aromatic monomer (X) include styrene and α-methylstyrene. Examples of the glycidyl (meth)acrylate (Y) include glycidyl (meth)acrylate, (meth)acrylic acid esters having a cyclohexene oxide structure, and (meth)acryl glycidyl ethers. glycidyl (meth)acrylate is preferred in terms of high Examples of vinyl group-containing monomers (Z) other than (X) containing no epoxy group include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, and butyl (meth)acrylate. , 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, stearyl (meth)acrylate, methoxyethyl (meth)acrylate, etc. chain) (meth)acrylic acid alkyl esters, (meth)acrylic acid polyalkylene glycol esters, (meth)acrylic acid alkoxyalkyl esters, (meth)acrylic acid hydroxyalkyl esters, (meth)acrylic acid dialkylaminoalkyl esters esters, benzyl (meth)acrylates, phenoxyalkyl (meth)acrylates, isobornyl (meth)acrylates, alkoxysilylalkyl (meth)acrylates, and the like. In addition, (meth)acrylamide, (meth)acryldialkylamide, vinyl esters such as vinyl acetate, aromatic vinyl monomers such as vinyl ethers and (meth)allyl ethers, α-olefin monomers such as ethylene and propylene can also be used as the vinyl group-containing monomer (Z) other than the epoxy group-free (X).
 前記共重合体の重量平均分子量は、4000~25000であることが好ましい。重量平均分子量は、より好ましくは5000~15000である。重量平均分子量が4000未満であると、未反応の共重合体が成形工程で揮発し、もしくは成形品表面にブリードアウトし、表面の汚染を引き起こす虞がある。一方、重量平均分子量が25000を超えると、熱可塑性ポリエステルエラストマー(A)との反応が遅くなって分子量増大効果が不充分になるだけでなく、共重合体と熱可塑性ポリエステルエラストマー(A)との相溶性が悪くなるため、熱可塑性ポリエステルエラストマー(A)が本来持つ耐熱性などの特性が低下する可能性が大きくなる。 The weight average molecular weight of the copolymer is preferably 4,000 to 25,000. The weight average molecular weight is more preferably 5000-15000. If the weight-average molecular weight is less than 4,000, the unreacted copolymer may volatilize during the molding process or bleed out onto the surface of the molded article, causing surface contamination. On the other hand, if the weight-average molecular weight exceeds 25,000, the reaction with the thermoplastic polyester elastomer (A) will be slow, resulting in an insufficient effect of increasing the molecular weight. Since the compatibility is deteriorated, there is a high possibility that the properties inherent in the thermoplastic polyester elastomer (A), such as heat resistance, are deteriorated.
 前記共重合体のエポキシ価は、400~2500当量/1×10gである事が好ましく、より好ましくは500~1500当量/1×10g、さらに好ましくは600~1000当量/1×10gである。エポキシ価が400当量/1×10g未満であると、増粘の効果が発現しないことがあり、一方、2500当量/1×10gを超えると、増粘効果が過剰となり成形性に悪影響を与えることがある。 The epoxy value of the copolymer is preferably 400 to 2500 equivalents/1×10 6 g, more preferably 500 to 1500 equivalents/1×10 6 g, still more preferably 600 to 1000 equivalents/1×10 6 g. If the epoxy value is less than 400 equivalents/1×10 6 g, the effect of thickening may not be exhibited. May have adverse effects.
 増粘剤(C)が、カルボジイミド基を持つ化合物の場合、ポリカルボジイミド化合物を使用することができる。ポリカルボジイミド化合物は、効率良く酸価を低減させる点で有利である。 When the thickener (C) is a compound having a carbodiimide group, a polycarbodiimide compound can be used. A polycarbodiimide compound is advantageous in that it efficiently reduces the acid value.
 発明で用いることができるポリカルボジイミド化合物とは、1分子内にカルボジイミド基(-N=C=N-の構造)を2つ以上有するポリカルボジイミドであればよく、例えば、脂肪族ポリカルボジイミド、脂環族ポリカルボジイミド、芳香族ポリカルボジイミドやこれらの共重合体などが挙げられる。好ましくは脂肪族ポリカルボジイミド化合物又は脂環族ポリカルボジイミド化合物である。 The polycarbodiimide compound that can be used in the invention may be any polycarbodiimide having two or more carbodiimide groups (structure of -N=C=N-) in one molecule, for example, aliphatic polycarbodiimide, alicyclic polycarbodiimides, aromatic polycarbodiimides and copolymers thereof. Aliphatic polycarbodiimide compounds or alicyclic polycarbodiimide compounds are preferred.
 ポリカルボジイミド化合物としては、例えば、ジイソシアネート化合物の脱二酸化炭素反応により得ることができる。ここで使用できるジイソシアネート化合物としては、例えば、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,5-ナフチレンジイソシアネート、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネート、1,3,5-トリイソプロピルフェニレン-2,4-ジイソシアネートなどが挙げられる。これらは1種のみを用いてもよいし、2種以上を共重合させて用いることもできる。また、分岐構造を導入したり、カルボジイミド基やイソシアネート基以外の官能基を共重合により導入したりしてもよい。さらに、末端のイソシアネートはそのままでも使用可能であるが、末端のイソシアネートを反応させることにより重合度を制御してもよいし、末端イソシアネートの一部を封鎖してもよい。 A polycarbodiimide compound can be obtained, for example, by a decarbonization reaction of a diisocyanate compound. Diisocyanate compounds that can be used here include, for example, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, and 2,4-tolylene diisocyanate. , 2,6-tolylene diisocyanate, 1,5-naphthylene diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, methylcyclohexane diisocyanate, tetramethylxylylene diisocyanate, 1,3,5-triisopropylphenylene-2,4-diisocyanate and the like. These may be used alone, or two or more may be copolymerized and used. Also, a branched structure may be introduced, or a functional group other than a carbodiimide group or an isocyanate group may be introduced by copolymerization. Furthermore, although the terminal isocyanate can be used as it is, the degree of polymerization may be controlled by reacting the terminal isocyanate, or a portion of the terminal isocyanate may be blocked.
 ポリカルボジイミド化合物としては、特に、ジシクロヘキシルメタンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネートなどに由来する脂環族ポリカルボジイミドが好ましく、特に、ジシクロヘキシルメタンジイソシアネートやイソホロンジイソシアネートに由来するポリカルボジイミドがよい。 As the polycarbodiimide compound, alicyclic polycarbodiimides derived from dicyclohexylmethane diisocyanate, cyclohexane-1,4-diisocyanate, isophorone diisocyanate, etc. are particularly preferred, and polycarbodiimides derived from dicyclohexylmethane diisocyanate and isophorone diisocyanate are particularly preferred.
 ポリカルボジイミド化合物は、1分子あたり2~50個のカルボジイミド基を含有することが、安定性と取り扱い性の点で好ましい。より好ましくは1分子あたりカルボジイミド基を5~30個含有するのがよい。ポリカルボジイミド分子中のカルボジイミドの個数(すなわちカルボジイミド基数)は、ジイソシアネート化合物から得られたポリカルボジイミドであれば、重合度に相当する。例えば、21個のジイソシアネート化合物が鎖状につながって得られたポリカルボジイミドの重合度は20であり、分子鎖中のカルボジイミド基数は20である。通常、ポリカルボジイミド化合物は、種々の長さの分子の混合物であり、カルボジイミド基数は、平均値で表される。前記範囲のカルボジイミド基数を有し、室温付近で固形であると、粉末化できるので、熱可塑性ポリエステルエラストマー(A)との混合時の作業性や相溶性に優れ、均一反応性、耐ブリードアウト性の点でも好ましい。なお、カルボジイミド基数は、例えば、常法(アミンで溶解して塩酸で逆滴定を行う方法)を用いて測定できる。 The polycarbodiimide compound preferably contains 2 to 50 carbodiimide groups per molecule in terms of stability and handleability. More preferably, it contains 5 to 30 carbodiimide groups per molecule. The number of carbodiimides in a polycarbodiimide molecule (that is, the number of carbodiimide groups) corresponds to the degree of polymerization in the case of polycarbodiimide obtained from a diisocyanate compound. For example, the degree of polymerization of polycarbodiimide obtained by connecting 21 diisocyanate compounds in a chain is 20, and the number of carbodiimide groups in the molecular chain is 20. Generally, polycarbodiimide compounds are mixtures of molecules of various lengths and the number of carbodiimide groups is expressed as an average value. If it has the number of carbodiimide groups in the above range and is solid at around room temperature, it can be pulverized, so that it has excellent workability and compatibility when mixed with the thermoplastic polyester elastomer (A), uniform reactivity, and bleed-out resistance. is also preferable. The number of carbodiimide groups can be measured, for example, by a conventional method (method of dissolving with amine and performing back titration with hydrochloric acid).
 ポリカルボジイミド化合物は、末端にイソシアネート基を有し、イソシアネート基含有率が0.5~4質量%であることが、安定性と取り扱い性の点で好ましい。より好ましくは、イソシアネート基含有率は1~3質量%である。特に、ジシクロヘキシルメタンジイソシアネートやイソホロンジイソシアネートに由来するポリカルボジイミドであって、前記範囲のイソシアネート基含有率を有することが好ましい。なお、イソシアネート基含有率は常法(アミンで溶解して塩酸で逆滴定を行う方法)を用いて測定できる。 The polycarbodiimide compound preferably has an isocyanate group at its end and an isocyanate group content of 0.5 to 4% by mass in terms of stability and handleability. More preferably, the isocyanate group content is 1-3% by mass. In particular, polycarbodiimide derived from dicyclohexylmethane diisocyanate or isophorone diisocyanate and having an isocyanate group content within the above range is preferred. The isocyanate group content can be measured by a conventional method (method of dissolving with amine and performing back titration with hydrochloric acid).
 増粘剤(C)が、イソシアネート基を持つ化合物の場合、上記したイソシアネート基を含有するポリカルボジイミド化合物や、上記したポリカルボジイミド化合物の原料となるイソシアネート化合物を挙げることができる。 When the thickener (C) is a compound having an isocyanate group, the above polycarbodiimide compound containing the isocyanate group and the isocyanate compound that is the raw material of the above polycarbodiimide compound can be mentioned.
 増粘剤(C)が、酸無水物基を持つ化合物の場合、1分子あたり、2~4個の無水物を含有する化合物が、安定性と取り扱い性の点で好ましい。このような化合物として例えば、フタル酸無水物や、トリメリット酸無水物、ピロメリット酸無水物などが挙げられる。 When the thickener (C) is a compound having an acid anhydride group, a compound containing 2 to 4 anhydride groups per molecule is preferable in terms of stability and handling. Examples of such compounds include phthalic anhydride, trimellitic anhydride, and pyromellitic anhydride.
 本発明において、増粘剤(C)は、発泡成形時に必要な溶融粘度を与えるために必要な成分であり、上述の結晶核剤(B)の含有により、発泡成形時に必要な溶融粘度が得られる場合は、増粘剤(C)を含有しなくても良い。 In the present invention, the thickener (C) is a component necessary for imparting the melt viscosity necessary for foam molding. , it may not contain the thickener (C).
 増粘剤(C)の含有量は、熱可塑性ポリエステルエラストマー(A)100質量部に対して、0~4.5質量部であり、含有する場合は、好ましくは0.05~4.5質量部であり、より好ましくは0.1~4質量部であり、さらに好ましくは0.1~3質量部である。
 増粘剤を含有する場合、0.05質量部未満であると、目標とした分子鎖延長効果が不十分であり、4.5質量部を超えると、増粘効果が過剰となり成形性に悪影響を与えたり、成形品の機械的特性に影響を与える傾向がある。増粘剤(C)がエポキシ化合物の場合、4.5質量部を超えると、エポキシ化合物の凝集硬化によって成形品表面に凸凹が生じることがある。増粘剤(C)がカルボジイミド化合物の場合、4.5質量部を超えると、ポリカルボジイミド化合物の塩基性により熱可塑性ポリエステルエラストマー(A)の加水分解が生じ機械的特性に影響を与える傾向がある。
The content of the thickener (C) is 0 to 4.5 parts by mass with respect to 100 parts by mass of the thermoplastic polyester elastomer (A), and when included, preferably 0.05 to 4.5 parts by mass. parts, more preferably 0.1 to 4 parts by mass, and still more preferably 0.1 to 3 parts by mass.
When the thickener is contained, if it is less than 0.05 parts by mass, the targeted molecular chain elongation effect is insufficient, and if it exceeds 4.5 parts by mass, the thickening effect becomes excessive and adversely affects moldability. and affect the mechanical properties of the molded product. When the thickener (C) is an epoxy compound, if it exceeds 4.5 parts by mass, the surface of the molded product may become uneven due to cohesive hardening of the epoxy compound. When the thickener (C) is a carbodiimide compound, if it exceeds 4.5 parts by mass, the thermoplastic polyester elastomer (A) is hydrolyzed due to the basicity of the polycarbodiimide compound, which tends to affect the mechanical properties. .
 増粘剤(C)としては、エポキシ基を持つ化合物、特に、グリシジル基を1分子あたり2個以上含有し、重量平均分子量が4000~25000であり、かつ20~99質量%のビニル芳香族モノマー(X)、1~80質量%のグリシジル(メタ)アクリレート(Y)、および0~79質量%のエポキシ基を含有していない(X)以外のビニル基含有モノマー(Z)からなるスチレン系共重合体が好ましい。カルボジイミド基等の反応性の速い官能基を有する化合物をエポキシ化合物と併用して用いた場合は、増粘後の樹脂組成物の分子量分布が狭くなる傾向にある。そのため、射出成形時の射出圧が高くなり、発泡核が消失し、発泡倍率が低くなる可能性がある。したがって、本発明の樹脂組成物においては、増粘剤(C)としてエポキシ化合物とカルボジイミド化合物を併用しないことが好ましい。 As the thickener (C), a compound having an epoxy group, in particular, a vinyl aromatic monomer containing two or more glycidyl groups per molecule, a weight average molecular weight of 4000 to 25000, and 20 to 99% by mass. (X), 1 to 80% by mass of glycidyl (meth)acrylate (Y), and 0 to 79% by mass of a vinyl group-containing monomer (Z) other than (X) that does not contain an epoxy group. Polymers are preferred. When a compound having a highly reactive functional group such as a carbodiimide group is used in combination with an epoxy compound, the resin composition tends to have a narrow molecular weight distribution after thickening. Therefore, there is a possibility that the injection pressure during injection molding increases, the foam nuclei disappear, and the expansion ratio decreases. Therefore, in the resin composition of the present invention, it is preferable not to use both an epoxy compound and a carbodiimide compound as the thickener (C).
[熱可塑性ポリエステルエラストマー樹脂組成物]
 さらに、本発明に用いる熱可塑性ポリエステルエラストマー(A)には、上記結晶核剤(B)、増粘剤(C)以外にも、目的に応じて種々の添加剤やフィラー、他種ポリマーを配合することができる。添加剤の種類は特に限定されず、発泡成形に通常使用される各種添加剤を用いることができる。具体的には、添加剤として、公知のヒンダードフェノール系、硫黄系、燐系、アミン系の酸化防止剤、ヒンダードアミン系のほかベンゾトリアゾール系、ベンゾフェノン系、ベンゾエート系、トリアゾール系、ニッケル系、サリチル酸系等の光安定剤、紫外光吸収剤、滑剤、充填剤、難燃剤、難燃助剤、離型剤、帯電防止剤、過酸化物等の分子調整剤、金属不活性剤、有機および無機系の核剤、中和剤、制酸剤、防菌剤、蛍光増白剤、有機および無機系の顔料や染料のほか、難燃性付与や熱安定性付与の目的で使用される有機および無機系の燐化合物などが挙げられる。添加剤やフィラー、他種ポリマーの配合量(含有量)は、気泡の形成等を損なわない範囲で適宜選択することができ、通常の熱可塑性樹脂の成形に用いられる配合量(含有量)を採用することができる。本発明の熱可塑性ポリエステルエラストマー樹脂組成物としては、熱可塑性ポリエステルエラストマー(A)と結晶核剤(B)と増粘剤(C)の合計で、80質量%以上を占めることが好ましく、90質量%以上を占めることがより好ましく、95質量%以上を占めることがさらに好ましい。
[Thermoplastic polyester elastomer resin composition]
Furthermore, the thermoplastic polyester elastomer (A) used in the present invention is blended with various additives, fillers, and other polymers in addition to the crystal nucleating agent (B) and the thickening agent (C) according to the purpose. can do. The type of additive is not particularly limited, and various additives commonly used in foam molding can be used. Specifically, additives include known hindered phenol-based, sulfur-based, phosphorus-based, and amine-based antioxidants, hindered amine-based antioxidants, benzotriazole-based, benzophenone-based, benzoate-based, triazole-based, nickel-based, and salicylic acid antioxidants. light stabilizers such as systems, ultraviolet light absorbers, lubricants, fillers, flame retardants, flame retardant aids, release agents, antistatic agents, molecular modifiers such as peroxides, metal deactivators, organic and inorganic Nucleating agents, neutralizers, antacids, antibacterial agents, fluorescent whitening agents, organic and inorganic pigments and dyes, as well as organic and inorganic compounds used for flame retardancy and heat stability. Examples include inorganic phosphorus compounds. The blending amount (content) of additives, fillers, and other types of polymers can be appropriately selected within a range that does not impair the formation of air bubbles, etc., and the blending amount (content) used for molding ordinary thermoplastic resins can be adopted. In the thermoplastic polyester elastomer resin composition of the present invention, the total of the thermoplastic polyester elastomer (A), the crystal nucleating agent (B) and the thickening agent (C) preferably accounts for 80% by mass or more, and preferably 90% by mass. % or more, more preferably 95 mass % or more.
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物は、上述した各成分および必要に応じて各種添加剤やフィラー、他種ポリマーを混合し、溶融混練することによって製造することができる。溶融混練方法は、当業者に公知のいずれの方法を用いてもよく、単軸押出機、二軸押出機、加圧ニーダー、バンバリーミキサー等を使用することができる。なかでも二軸押出機を使用することが好ましい。 The thermoplastic polyester elastomer resin composition of the present invention can be produced by mixing the components described above and, if necessary, various additives, fillers, and other polymers, followed by melt-kneading. Any melt-kneading method known to those skilled in the art may be used, and a single-screw extruder, twin-screw extruder, pressure kneader, Banbury mixer, or the like can be used. Among them, it is preferable to use a twin-screw extruder.
 本発明に用いる熱可塑性ポリエステルエラストマー(A)の組成、及び組成比を決定する方法としては、試料を重クロロホルム等の溶剤に溶解して測定するH-NMRのプロトン積分比から算出することも可能である。 As a method for determining the composition and composition ratio of the thermoplastic polyester elastomer (A) used in the present invention, it is also possible to calculate from the proton integral ratio of 1 H-NMR measured by dissolving the sample in a solvent such as heavy chloroform. It is possible.
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物の降温結晶化温度TC2は、105℃~200℃であることが好ましい。TC2は、後記の実施例の項に記載の方法で測定する。TC2がこの範囲にあることで、熱可塑性ポリエステルエラストマー樹脂組成物の発泡成形時に均一な微細発泡が可能となり、得られる発泡成形体の反発弾性率をより向上させることができる。TC2は、108~190℃であることがより好ましく、110~185℃であることがさらに好ましい。 The cooling crystallization temperature TC2 of the thermoplastic polyester elastomer resin composition of the present invention is preferably 105°C to 200°C. TC2 is measured by the method described in the Examples section below. When TC2 is within this range, uniform fine foaming becomes possible during foam molding of the thermoplastic polyester elastomer resin composition, and the impact resilience of the obtained foam molded product can be further improved. TC2 is more preferably 108 to 190°C, even more preferably 110 to 185°C.
 本発明の熱可塑性ポリエステルエラストマー樹脂組成物のMFR(メルトフローレート)は、ASTM D1238に記載されている測定法に準じて、荷重2,160g、測定温度230℃にて測定した場合、5~30g/10minであることが好ましい。そして、MFRが5~30g/10minであるため、熱可塑性ポリエステルエラストマー樹脂組成物を発泡成形する際、気泡壁の破壊が生じにくくなり、微細な気泡が形成された高発泡倍率の発泡成形体を得ることができる。特に後述するカウンタープレッシャーを用いた発泡成形の際に、効果を発揮する。なお、MFRが5g/10minより低いと流動性が低下するとともに、発泡追従性が低下する傾向にあり、30g/10minより高いと、粗大な気泡が発生し、発泡特性が低下する傾向にある。MFRは、8~30g/10minであることがより好ましい。 The MFR (melt flow rate) of the thermoplastic polyester elastomer resin composition of the present invention is 5 to 30 g when measured at a load of 2,160 g and a measurement temperature of 230° C. according to the measurement method described in ASTM D1238. /10 min is preferred. Further, since the MFR is 5 to 30 g/10 min, when the thermoplastic polyester elastomer resin composition is foam-molded, the cell walls are less likely to be broken, and a foam-molded product having a high expansion ratio and having fine cells formed therein can be obtained. Obtainable. In particular, it is effective in foam molding using counter pressure, which will be described later. When the MFR is less than 5 g/10 min, the fluidity tends to be low and the foam followability tends to be low. MFR is more preferably 8 to 30 g/10 min.
 増粘剤(C)を含む場合、本発明の熱可塑性ポリエステルエラストマー樹脂組成物は、熱可塑性ポリエステルエラストマー(A)と増粘剤(C)が反応して得られた反応物を含むものもあるが、増粘剤(C)と反応していない熱可塑性ポリエステルエラストマー(A)や遊離の増粘剤(C)が含まれていても良い。これは、熱可塑性ポリエステルエラストマー(A)と増粘剤(C)を完全に反応させることが、困難であるからである。上述した熱可塑性ポリエステルエラストマー(A)と増粘剤(C)の含有量の関係は、熱可塑性ポリエステルエラストマー樹脂組成物中では、熱可塑性ポリエステルエラストマー(A)に由来する質量に対する増粘剤(C)に由来する質量で考える。この含有量の関係は、後述する発泡成形体中でも同様である。 When the thickener (C) is included, the thermoplastic polyester elastomer resin composition of the present invention may contain a reaction product obtained by reacting the thermoplastic polyester elastomer (A) and the thickener (C). However, the thermoplastic polyester elastomer (A) that has not reacted with the thickener (C) or the free thickener (C) may be contained. This is because it is difficult to completely react the thermoplastic polyester elastomer (A) and the thickener (C). The relationship between the contents of the thermoplastic polyester elastomer (A) and the thickener (C) described above is such that in the thermoplastic polyester elastomer resin composition, the thickener (C ) is considered in terms of the mass derived from This content relationship is the same for the foam molded article described later.
[発泡成形体]
 本発明の発泡成形体は、前述した熱可塑性ポリエステルエラストマー樹脂組成物を用いて得られたものであり、切削などの後加工は一切していないものになる。すわなち、切削面を有さない成形体である。この場合の切削面とは、発泡成形体から非発泡スキン層等を切削した面を意味するものであり、ゲート部等の金型由来の不要個所を除いた際に発生する面を指すものではない。
[Foam molding]
The foam molded article of the present invention is obtained using the thermoplastic polyester elastomer resin composition described above, and is not subjected to any post-processing such as cutting. In other words, it is a compact having no cutting surface. In this case, the cut surface means the surface obtained by cutting the non-foamed skin layer, etc. from the foam molded product, and does not refer to the surface generated when unnecessary parts such as gates derived from the mold are removed. do not have.
 本発明の発泡成形体は、発泡成形体の表面から1000μmの深さまでの表面層として、気泡密度が10%以下である非発泡部分が存在しない発泡領域のみからなる表面層(以下、表面層(A)と略記する場合がある)で構成される発泡成形体(A)であるか、もしくは、前記非発泡部分が存在する発泡領域と前記非発泡部分が存在しない発泡領域が混在する表面層(以下、表面層(B)と略記する場合がある)を有する発泡成形体(B)である。なお、ここで表面層とは、単一の表面からなる表面層を指し、例えば、直方体形状の発泡成形体の場合、6個の表面層を有することになり、その内の1つを指す。直方体形状の発泡成形体の場合、前記発泡成形体(A)は、6面全てが表面層(A)からなり、前記発泡成形体(B)は、少なくとも1面が表面層(B)からなる。したがって、直方体形状の発泡成形体であって、上面と下面は非発泡部分が存在する発泡領域のみからなり、側面は非発泡部分が存在しない発泡領域のみからなる発泡体(いわゆるコアバック射出発泡成形法で製造した、非発泡スキン層を持つ発泡成形体)は、上記の発泡成形体(B)には該当しない。発泡成形体(B)において、単一の表面の面積の内、非発泡部分が存在する発泡領域の面積は、60%以下が好ましく、50%以下がより好ましく、30%以下がさらに好ましい。非発泡部分が存在する発泡領域の面積が0%であれば、上記発泡成形体(A)となる。また、発泡成形体(B)において、発泡成形体の全表面積に対する、非発泡部分が存在する発泡領域の面積は、50%以下が好ましく、40%以下がより好ましく、25%以下がさらに好ましい。上記の発泡成形体(A)は、気泡が存在しない非発泡部分が発泡成形体の表面層に存在しないことで、反発弾性が向上する。上記の発泡成形体(B)は、非発泡部分が存在する発泡領域は気泡が少ないため反発弾性が低く、非発泡部分が存在しない発泡領域は反発弾性が高くなり、一つの発泡成形体において、場所によって異なる反発弾性を有することが可能となる。なお、本発明の発泡成形体の表面は、必ずしも平面である必要はなく、曲面であっても、突起等がある面であっても構わない。対応した金型を準備することで任意の所望する形状を有する発泡成形体を得られることが、本発明の一つのポイントである。 The foamed molded article of the present invention has a surface layer (hereinafter referred to as a surface layer ( A)), or a surface layer ( Hereinafter, it is a foam molded article (B) having a surface layer (B). Here, the term "surface layer" refers to a surface layer consisting of a single surface. For example, in the case of a rectangular parallelepiped foam molded article, there are six surface layers, one of which is referred to. In the case of a cuboid-shaped foamed molded article, the foamed molded article (A) consists of the surface layer (A) on all six sides, and the foamed molded article (B) consists of the surface layer (B) on at least one side. . Therefore, it is a cuboid-shaped foamed molded product, in which the upper and lower surfaces consist only of foamed regions with non-foamed parts, and the side faces consist only of foamed regions without non-foamed parts (so-called core-back injection foam molding). The foamed molded article having a non-foamed skin layer produced by the method) does not correspond to the above foamed molded article (B). In the foamed molded article (B), the area of the foamed region where the non-foamed portion exists is preferably 60% or less, more preferably 50% or less, and even more preferably 30% or less, out of the area of the single surface. If the area of the foamed region in which the non-foamed portion exists is 0%, the foamed molded article (A) is obtained. In addition, in the foamed molded article (B), the area of the foamed region where the non-foamed portion exists is preferably 50% or less, more preferably 40% or less, and even more preferably 25% or less, relative to the total surface area of the foamed molded article. The foam molded article (A) has an improved impact resilience because the surface layer of the foam molded article does not have a non-foamed portion where no air bubbles are present. In the foamed molded article (B) described above, the foamed region in which the non-foamed portion exists has few cells, so the rebound resilience is low, and the foamed region in which the non-foamed portion does not exist has a high rebound resilience. It is possible to have different impact resilience depending on the location. The surface of the foam molded article of the present invention does not necessarily have to be flat, and may be curved or have projections. One of the points of the present invention is that a foam molded article having any desired shape can be obtained by preparing a corresponding mold.
 上述した非発泡部分とは、気泡がほとんどなく熱可塑性ポリエステルエラストマー樹脂組成物で形成された相のことを指し、気泡密度が10%以下の部分である。ここで、気泡密度は走査電子顕微鏡により撮影した発泡成形体の表面層における断面観察用サンプルの断面写真を画像処理して算出する。具体的には、実施例の項で記載の通りである。本発明の発泡成形体においては、非発泡部分に該当しない部分を、発泡部分または発泡層と称する。発泡部分の表面は、発泡前の溶融樹脂組成物または発泡した溶融樹脂組成物が金型表面に触れることで形成される極めて薄い樹脂層(いわゆる薄皮)からできており、その厚みは50μm以下である。本願発明では、気泡密度が10%以下である非発泡部分は、200μm×200μmの領域で測定することから、発泡部分表面の薄い樹脂層は、「気泡密度が10%以下である非発泡部分」に該当しない。 The above-mentioned non-foamed portion refers to a phase formed of a thermoplastic polyester elastomer resin composition with almost no cells, and is a portion with a cell density of 10% or less. Here, the cell density is calculated by image-processing a cross-sectional photograph of a sample for cross-sectional observation of the surface layer of the foam molded article taken with a scanning electron microscope. Specifically, it is as described in the section of Examples. In the foamed molded article of the present invention, the portion that does not correspond to the non-foamed portion is called a foamed portion or a foamed layer. The surface of the foamed portion is made of an extremely thin resin layer (so-called skin) formed by the contact of the molten resin composition before foaming or the foamed molten resin composition with the mold surface, and the thickness thereof is 50 μm or less. be. In the present invention, the non-foamed portion with a cell density of 10% or less is measured in an area of 200 μm × 200 μm, so the thin resin layer on the surface of the foamed portion is “a non-foamed portion with a cell density of 10% or less”. does not fall under
 本発明の発泡成形体は、発泡層の両面全体に非発泡層が設けられたサンドイッチ構造(換言すれば、発泡層が両面から非発泡層に挟まれた構造)を有さないものとなる。本発明の発泡成形体は、上記で説明した、発泡成形体(A)であるか、または、発泡成形体(B)である。発泡成形体(A)は表現を変えると、非発泡層がなく発泡層単体で構成されている発泡成形体であり、発泡成形体(B)は表現を変えると、発泡成形体の表面の一部のみに非発泡部分(非発泡スキン層)が存在している発泡成形体となる。本発明の発泡成形体のサイズに関しては、特に制限は無く、金型が製造可能であれば、所望するサイズの発泡成形体が得られる。 The foamed molded article of the present invention does not have a sandwich structure in which non-foamed layers are provided on both sides of a foamed layer (in other words, a structure in which a foamed layer is sandwiched between non-foamed layers from both sides). The foam-molded article of the present invention is the foam-molded article (A) or the foam-molded article (B) described above. In other words, the foamed molded article (A) is a foamed molded article that has no non-foamed layer and is composed of a single foamed layer. It becomes a foamed molded article in which a non-foamed portion (non-foamed skin layer) exists only in the part. The size of the foam-molded article of the present invention is not particularly limited, and a foam-molded article of a desired size can be obtained as long as the mold can be manufactured.
 本発明では、アスペクト比が2.0以下の気泡を円形気泡、アスペクト比が2.0超の気泡を扁平気泡として考える。
 本発明の発泡成形体は、表面層の非発泡部分が存在しない発泡領域に、気泡の平均アスペクト比が大きい扁平気泡層が存在していることが好ましい。表面層の扁平気泡は、アスペクト比が大きくなることで発泡成形体表面が平滑となり外観に優れるため、扁平気泡層の平均アスペクト比は4.0~15.0であることが好ましい。4.0を下回ると、成形体表面に凹凸が発生し、表面平滑性が損なわれ、15.0を上回ると、気泡が引き延ばされることで破泡を起こすことで成形体表面に凹凸が発生し、表面平滑性が損なわれる傾向にある。優れた表面平滑性を有するためには、扁平気泡層の平均アスペクト比は、4.0~10.0であることがより好ましい。さらに、表面から1000μmより深い内層に気泡の平均アスペクト比が小さい円形気泡層が存在していることが好ましい。内層の円形気泡は、アスペクト比が小さくなることで反発弾性が向上するため、円形気泡層の平均アスペクト比は1.0~2.0であることが好ましく、2.0を上回ると反発弾性が低下する傾向にある。表面層の気泡が、扁平気泡となるのは、発泡成形時に樹脂組成物が金型の面に沿って流動するからである。本発明の発泡成形体としては、表面層の非発泡部分が存在しない発泡領域に、気泡の平均アスペクト比が4.0~15.0である扁平気泡層を有することが好ましく、さらに、表面から1000μmより深い内層に気泡の平均アスペクト比が1.0~2.0である円形気泡層を有することが好ましい態様である。
In the present invention, bubbles with an aspect ratio of 2.0 or less are considered circular bubbles, and bubbles with an aspect ratio of more than 2.0 are considered flat bubbles.
In the foamed molded article of the present invention, it is preferable that a flat cell layer having a large average aspect ratio of cells exists in the foamed region where the non-foamed portion of the surface layer does not exist. The average aspect ratio of the flat cell layer is preferably 4.0 to 15.0, because the flat cells in the surface layer have a large aspect ratio, so that the surface of the foamed molded product becomes smooth and excellent in appearance. If it is less than 4.0, unevenness will occur on the surface of the molded product, and the surface smoothness will be impaired. and the surface smoothness tends to be impaired. In order to have excellent surface smoothness, the average aspect ratio of the flat cell layer is more preferably 4.0 to 10.0. Furthermore, it is preferable that a circular cell layer with a small average aspect ratio of cells exists in the inner layer deeper than 1000 μm from the surface. Since the circular cells in the inner layer improve rebound resilience by reducing the aspect ratio, the average aspect ratio of the circular cell layer is preferably 1.0 to 2.0. tend to decline. The reason why the cells in the surface layer become flat cells is that the resin composition flows along the surface of the mold during foam molding. The foamed molded article of the present invention preferably has a flat cell layer having an average aspect ratio of cells of 4.0 to 15.0 in the foamed region where the non-foamed portion of the surface layer does not exist. It is a preferred embodiment to have a circular cell layer with an average aspect ratio of cells of 1.0 to 2.0 in the inner layer deeper than 1000 μm.
 発泡層は、樹脂連続相と独立した気泡とから構成される。ここで、樹脂連続相とは、硬化した熱可塑性ポリエステルエラストマー樹脂組成物で形成される空洞をもたない部分を意味する。上述した表面から1000μmより深い内層の円形気泡層の気泡は、その径(セル径)が、均一でばらつきがない限り、サイズによって特性が異なる。高反発弾性を発現させるには、セル径が小さい方が有利であり、具体的には、平均セル径が10~350μmが好ましい。該平均セル径が10μm未満である場合、成形体の内圧が低く非発泡スキン層形成時の圧力が不足し、ヒケ等の外観が悪くなる傾向にある。一方、該平均セル径が350μmを超える場合、耐荷重性が低く、反発弾性率が低くなる傾向にある。また、平均セル径が小さくても密度が高ければ反発弾性に劣るため、後述する密度範囲の発泡成形体で高反発弾性を発現しようとすると、該平均セル径はより好ましくは50~350μm、さらに好ましくは100~300μm、特に好ましくは130~300μmである。さらに、円形気泡層の大部分は前述した平均セル径が10~350μmの微細な気泡で構成されるが、セル径が少し大きくなる粗大な気泡も含まれる。粗大な気泡は、発泡成形過程において、成形機内にて溶融樹脂組成物と発泡剤を溶融混合させる際に溶融樹脂組成物の溶融粘度が連続成形において減粘するなどの不安定な場合、溶融樹脂組成物と発泡剤が均一に溶融混合させることが困難となり、不均一に分散した発泡剤により形成されていると推測される。高反発弾性を発現させるためには、粗大な気泡の最大セル径は100~1000μmが好ましい。最大セル径が1000μmを超える場合、耐荷重性が低く、反発弾性率が低くなる傾向にある。また、最大セル径は、後述する高反発弾性を発現するための密度を達成するために、より好ましくは200~1000μm、さらに好ましくは、400~950μmである。 The foam layer is composed of a resin continuous phase and independent cells. Here, the resin continuous phase means a portion having no cavities formed by the cured thermoplastic polyester elastomer resin composition. The bubbles in the circular bubble layer in the inner layer deeper than 1000 μm from the surface described above have different characteristics depending on their size, as long as their diameters (cell diameters) are uniform and without variation. A smaller cell diameter is more advantageous for developing high impact resilience, and specifically, an average cell diameter of 10 to 350 μm is preferable. When the average cell diameter is less than 10 μm, the internal pressure of the molded product is low, and the pressure during the formation of the non-foamed skin layer is insufficient, which tends to deteriorate the appearance such as sink marks. On the other hand, when the average cell diameter exceeds 350 μm, the load resistance tends to be low and the impact resilience tends to be low. In addition, even if the average cell diameter is small, the rebound resilience is inferior if the density is high. It is preferably 100-300 μm, particularly preferably 130-300 μm. Further, most of the circular bubble layer is composed of fine bubbles having an average cell diameter of 10 to 350 μm as described above, but also includes coarse bubbles having a slightly larger cell diameter. In the process of foam molding, when the molten resin composition and the foaming agent are melt-mixed in the molding machine, the melt viscosity of the molten resin composition decreases during continuous molding. It is presumed that the composition and the foaming agent are difficult to melt and mix uniformly, and that the foaming agent is unevenly dispersed. In order to develop high impact resilience, the maximum cell diameter of coarse cells is preferably 100 to 1000 μm. If the maximum cell diameter exceeds 1000 μm, the load resistance tends to be low and the impact resilience tends to be low. Also, the maximum cell diameter is more preferably 200 to 1000 μm, still more preferably 400 to 950 μm, in order to achieve a density for exhibiting high impact resilience, which will be described later.
 本発明の発泡成形体の密度は、0.01~0.70g/cmであることが好ましい。一般的なポリエステルエラストマーの密度は凡そ1.0~1.4g/cm前後であるから、本発明の発泡成形体は十分に軽量化されていると言える。より好ましくは、0.1~0.60g/cmであり、さらに好ましくは、0.1~0.45g/cmであり、特に好ましくは、0.1~0.35g/cmである。密度が0.01g/cm未満であると十分な強度が得られず、機械的特性に劣る傾向にあり、0.70g/cmを超えると、反発弾性に劣る傾向にある。 The density of the foam molded article of the present invention is preferably 0.01 to 0.70 g/cm 3 . Since the density of general polyester elastomers is about 1.0 to 1.4 g/cm 3 , it can be said that the foamed molded article of the present invention is sufficiently lightweight. More preferably 0.1 to 0.60 g/cm 3 , still more preferably 0.1 to 0.45 g/cm 3 , particularly preferably 0.1 to 0.35 g/cm 3 . If the density is less than 0.01 g/cm 3 , sufficient strength cannot be obtained and mechanical properties tend to be poor, and if it exceeds 0.70 g/cm 3 , impact resilience tends to be poor.
 本発明の発泡成形体は、平均セル径が特定の範囲内であり、密度が特定の範囲内であり、その結果、高い反発弾性率を実現することができる。さらに、上述した構成を適宜選択することで、50~90%のより高い反発弾性率を実現することができる。高反発特性を発現させるには、発泡成形体の反発弾性率は、60~90%が好ましい。 The foam molded article of the present invention has an average cell diameter within a specific range and a density within a specific range, and as a result, can achieve a high impact resilience. Furthermore, by appropriately selecting the configuration described above, it is possible to achieve a higher impact resilience of 50 to 90%. In order to develop high resilience characteristics, the rebound resilience of the foam molded product is preferably 60 to 90%.
 本発明の発泡成形体は、軽量性に優れるのみならず、極めて高い反発弾性率を発現し、表面平滑性にも優れる。さらに、高い発泡倍率にもかかわらず均一な発泡状態と、高い耐熱性、耐水性、成形安定性を持つため、高い信頼性の必要な部品にも適用可能なポリエステル系発泡成形体を提供することができる。したがって、例えば、以下のような用途に利用可能である。但し、本発明の発泡成形体の用途は、下記用途には限定されない。
 用途としては、自動車用材料、土木用品、建築用品、家電、OA機器、スポーツ用品、文具、玩具、医療用品、食品容器、農業用資材などが挙げられる。具体例としては、自動車用機構部材、エンジン構成材、自動車外装材、自動車内装部材、クッション材、シール材カーシート、デッドニング、ドアトリム、サンバイザー、自動車用制振材・吸音材・断熱材(保温材)、防振材、緩衝材、土木目地、つらら防止パネル、保護材、軽量土、盛土、人工土壌、畳芯材、建築用断熱材、建築目地材、面戸材、建築養生材、反射材、工業用トレー、チューブ、パイプカバー、エアコン断熱配管、ガスケット芯材、コンクリート型枠、テレビ、冷凍冷蔵庫、調理機器、洗濯機、空調機器、照明器具、コンピュータ、光磁気ディスク、コピー機、ファクシミリ、プリンター、シューズ、プロテクター、グローブ、運動用具類などが挙げられる。
The foam molded article of the present invention is not only excellent in light weight, but also exhibits an extremely high impact resilience and is excellent in surface smoothness. Furthermore, it is intended to provide a polyester-based foam-molded article that can be applied to parts that require high reliability because it has a uniform foaming state, high heat resistance, water resistance, and molding stability in spite of its high expansion ratio. can be done. Therefore, for example, it can be used for the following purposes. However, the uses of the foamed molded article of the present invention are not limited to the following uses.
Applications include automotive materials, civil engineering supplies, building supplies, home appliances, OA equipment, sporting goods, stationery, toys, medical supplies, food containers, and agricultural materials. Specific examples include automotive mechanical members, engine components, automotive exterior materials, automotive interior materials, cushioning materials, sealing materials, car seats, deadening, door trims, sun visors, vibration damping materials, sound absorbing materials, and heat insulating materials for automobiles (heat insulation materials), anti-vibration materials, cushioning materials, civil engineering joints, icicle prevention panels, protective materials, lightweight soil, embankments, artificial soil, tatami mat core materials, construction heat insulation materials, construction joint materials, side door materials, construction curing materials, reflections materials, industrial trays, tubes, pipe covers, air conditioner insulation pipes, gasket core materials, concrete formwork, televisions, refrigerators, freezers, cooking equipment, washing machines, air conditioning equipment, lighting fixtures, computers, magneto-optical discs, copiers, facsimiles , printers, shoes, protectors, gloves, and sports equipment.
[発泡成形体の製造方法]
 本発明の発泡成形体の発泡方法については、熱可塑性ポリエステルエラストマー樹脂組成物に高圧のガスを含浸させた後、減圧する(圧力を解放する)発泡方法が好ましい。なかでも、成形サイクル性やコスト、均質発泡を得られる成形方法として、発泡剤と熱可塑性ポリエステルエラストマー樹脂組成物を溶融混合して射出成形する際に、金型のキャビティ内にガスを注入し、加圧状態下に溶融した熱可塑性ポリエステルエラストマー樹脂組成物を射出するカウンタープレッシャー法による発泡射出成形方法が好ましい。具体的には、図1に示すように、型締めされた複数の金型1、2で形成されるキャビティ3内に、カウンタープレッシャー装置8を用いて加圧用の窒素ガスを注入し、所定の圧力を掛けて加圧状態にし、そこへ溶融状態の熱可塑性ポリエステルエラストマー樹脂組成物を化学発泡剤および/または超臨界状態の不活性ガス(以下、まとめて「発泡剤」と称することもある)とともに射出を開始し、ついで樹脂組成物の充填が完了した直後、ないし所定の時間をおいてから、急速にカウンタープレッシャーでキャビティに掛けたガスを電磁バルブ10から抜くことで、熱可塑性ポリエステルエラストマー樹脂組成物が発泡するものである。前記の所定の圧力としては、0.01MPa~29.0MPaが好ましい。ここで言う圧力は、ゲージ圧である。前記の所定の時間としては、1~60秒が好ましい。ここで、前述した急速にカウンタープレッシャーでキャビティに掛けたガスを抜く直前、もしくはガスを抜くと同時、もしくはガスを抜いた直後、もしくはガスを抜いて所定の時間をおいてから、一つの金型2を型開き方向へ移動してキャビティ3の容積を拡大させることにより、発泡成形体を得るコアバック射出発泡成形法と組み合わせることも可能である。
[Method for producing foam molded product]
As for the foaming method of the foamed molded article of the present invention, a foaming method of impregnating the thermoplastic polyester elastomer resin composition with a high-pressure gas and then reducing the pressure (releasing the pressure) is preferable. Among them, as a molding method for achieving molding cycleability, cost, and uniform foaming, gas is injected into the cavity of the mold when melt-mixing the foaming agent and the thermoplastic polyester elastomer resin composition and performing injection molding. A foam injection molding method based on a counterpressure method in which a molten thermoplastic polyester elastomer resin composition is injected under pressure is preferred. Specifically, as shown in FIG. 1, a pressurizing nitrogen gas is injected into a cavity 3 formed by a plurality of clamped molds 1 and 2 using a counter pressure device 8 to obtain a predetermined pressure. Pressure is applied to create a pressurized state, and a molten thermoplastic polyester elastomer resin composition is added thereto as a chemical foaming agent and/or a supercritical inert gas (hereinafter collectively referred to as "foaming agent"). Immediately after the filling of the resin composition is completed or after a predetermined period of time, the gas applied to the cavity is rapidly discharged from the electromagnetic valve 10 by counterpressure, and the thermoplastic polyester elastomer resin is injected. The composition foams. The predetermined pressure is preferably 0.01 MPa to 29.0 MPa. The pressure referred to here is gauge pressure. The predetermined time is preferably 1 to 60 seconds. Here, immediately before removing the gas applied to the cavity by the rapid counterpressure described above, at the same time as removing the gas, immediately after removing the gas, or after a predetermined time after removing the gas, one mold is 2 can be moved in the mold opening direction to expand the volume of the cavity 3, thereby combining with a core-back injection foam molding method for obtaining a foam molded product.
 なお、熱可塑性ポリエステルエラストマー樹脂組成物と発泡剤は、キャビティ3内に充填する前に射出成形機4の可塑化領域4aで混合しておくことができる。上記のように発泡成形をする際、カウンタープレッシャーのガス圧力、樹脂組成物の充填量を材料に応じて適宜調整することで、目的の発泡倍率や反発弾性を有する発泡成形体を得ることが出来る。カウンタープレッシャーのガス圧力は、気泡の微細さや発泡倍率に影響し、低い圧力でもキャビティに掛けることで、減圧速度が向上し、高倍発泡化が可能となる。また、高い圧力を掛けると、樹脂組成物から発泡剤のガス抜けが抑制されることで、気泡が微細になる傾向にあるが、ガス圧力が高くなりすぎると、発泡成形性に劣る傾向にある。そのため、カウンタープレッシャーの圧力は0.01MPa~29.0MPaが好ましく、より好ましくは0.05MPa~15.0MPaであり、さらに好ましくは0.5MPa~10.0MPaである。ここで言う圧力は、ゲージ圧である。樹脂組成物の充填量は、多いと発泡倍率が低くなり、少ないと発泡倍率が高くなるうえ、反発弾性が高くなる。そのため、樹脂組成物の充填量は、キャビティ体積の10%~55%が好ましく、より好ましくは10%~50%であり、さらに好ましくは10%~40%であり、特に好ましくは10%~30%である。上記のような条件にて発泡成形することで、軽量かつ高反発弾性率を有する発泡成形体を得ることが出来る。 The thermoplastic polyester elastomer resin composition and the foaming agent can be mixed in the plasticizing region 4 a of the injection molding machine 4 before filling the cavity 3 . When performing foam molding as described above, by appropriately adjusting the counterpressure gas pressure and the filling amount of the resin composition according to the material, it is possible to obtain a foam molded article having the desired expansion ratio and impact resilience. . The gas pressure of the counter pressure affects the fineness of the bubbles and the foaming ratio, and by applying even a low pressure to the cavity, the decompression speed is improved and high foaming ratio can be achieved. In addition, when a high pressure is applied, gas escape of the foaming agent from the resin composition is suppressed, and the cells tend to become finer. . Therefore, the counter pressure is preferably 0.01 MPa to 29.0 MPa, more preferably 0.05 MPa to 15.0 MPa, still more preferably 0.5 MPa to 10.0 MPa. The pressure referred to here is gauge pressure. If the filling amount of the resin composition is large, the expansion ratio will be low, and if it is small, the expansion ratio will be high and the impact resilience will be high. Therefore, the filling amount of the resin composition is preferably 10% to 55% of the cavity volume, more preferably 10% to 50%, still more preferably 10% to 40%, and particularly preferably 10% to 30%. %. By carrying out the foam molding under the conditions as described above, it is possible to obtain a foam molded product that is lightweight and has a high impact resilience.
 本発明の発泡成形体が、上記で説明した、発泡成形体(A)か、または、発泡成形体(B)となる理由について説明する。発泡成形体(B)の概略的な構造を図2に示す。発泡成形体(A)は、発泡成形体(B)における非発泡部分21が存在する発泡領域25が無く、非発泡部分21が存在しない発泡領域24のみからなる構造である。上記で説明したように、カウンタープレッシャーで加圧された金型のキャビティ内に、溶融状態の熱可塑性ポリエステルエラストマー樹脂組成物が発泡剤と共に、キャビティ体積の10%~55%の範囲内で充填されるが、その際、溶融樹脂組成物の一部が金型に触れて冷却されることで非発泡部分が形成される。その後、キャビティ内の圧力を抜くことで、熱可塑性ポリエステルエラストマー樹脂組成物の発泡が起こり、発泡成形体が得られるが、非発泡部分が発泡成形体の表面層の一部に残ってしまい、発泡成形体(B)が得られる。一方、充填時に溶融樹脂組成物が金型に触れなかったり、触れても非常に小さい面積であったり、触れていても十分に冷却される前にキャビティ内の圧力を抜いたりすることで、非発泡部分が表面層に形成されない発泡成形体(A)が得られる。なお、表面層の非発泡部分が存在しない発泡領域の表面近くでは、熱可塑性ポリエステルエラストマー樹脂組成物が発泡する際に、金型の面に沿って流動するため、気泡が扁平気泡となる。 The reason why the foamed molded article of the present invention is the foamed molded article (A) or the foamed molded article (B) described above will be explained. FIG. 2 shows a schematic structure of the foam molded article (B). The foamed molded article (A) does not have the foamed region 25 where the non-foamed portion 21 exists in the foamed molded article (B), and has a structure consisting only of the foamed region 24 where the non-foamed portion 21 does not exist. As described above, the cavity of the mold pressurized by counter pressure is filled with the thermoplastic polyester elastomer resin composition in a molten state together with a foaming agent within a range of 10% to 55% of the cavity volume. However, at that time, a part of the molten resin composition is cooled by contact with the mold to form a non-foamed portion. Then, when the pressure in the cavity is released, foaming occurs in the thermoplastic polyester elastomer resin composition, and a foamed molded article is obtained. A compact (B) is obtained. On the other hand, when the molten resin composition does not touch the mold during filling, even if it touches, the area is very small, and even if it touches, the pressure inside the cavity is released before it is sufficiently cooled. A foam molded article (A) is obtained in which the foamed portion is not formed on the surface layer. When the thermoplastic polyester elastomer resin composition is foamed, it flows along the surface of the mold near the surface of the foamed region where the non-foamed portion of the surface layer does not exist, so the cells become flat cells.
 本発明の発泡成形体を得る際に用いることのできる化学発泡剤は、発泡核となるガス成分もしくはその発生源として成形機の樹脂溶融ゾーンで溶融している樹脂組成物に添加するものである。
 具体的には、化学発泡剤としては、炭酸アンモニウム及び重炭素酸ソーダ、アジド化合物等の無機化合物、並びにアゾ化合物、スルホヒドラジド化合物、ニトロソ化合物等の有機化合物等が使用できる。上記アジド化合物としては、テレフタルアジド及びP-第三ブチルベンズアジド等が例示できる。さらに上記アゾ化合物としては、ジアゾカルボンアミド(ADCA)、2,2-アゾイソブチロニトリル、アゾヘキサヒドロベンゾニトリル、及びジアゾアミノベンゼン等が例示でき、中でもADCAが好まれて活用されている。上記スルホヒドラジド化合物としては、ベンゼンスルホヒドラジド、ベンゼン1,3-ジスルホヒドラジド、ジフェニルスルホン-3,3-ジスルホンヒドラジド及びジフェニルオキシド-4,4-ジスルホンヒドラジド-等が例示でき、上記ニトロソ化合物としては、N,N-ジニトロソペンタエチレンテトラミン(DNPT)等が例示できる。
The chemical foaming agent that can be used to obtain the foamed molded article of the present invention is added to the resin composition that is melted in the resin melting zone of the molding machine as a gas component that serves as foam nuclei or as a source of the gas. .
Specifically, as chemical foaming agents, inorganic compounds such as ammonium carbonate, sodium bicarbonate, and azide compounds, and organic compounds such as azo compounds, sulfhydrazide compounds, and nitroso compounds, and the like can be used. Examples of the azide compound include terephthalazide and p-tert-butylbenzazide. Furthermore, examples of the azo compound include diazocarbonamide (ADCA), 2,2-azoisobutyronitrile, azohexahydrobenzonitrile, and diazoaminobenzene, among which ADCA is preferred and utilized. Examples of the sulfohydrazide compounds include benzenesulfohydrazide, benzene 1,3-disulfohydrazide, diphenylsulfone-3,3-disulfonehydrazide and diphenyloxide-4,4-disulfonehydrazide. Examples of the nitroso compounds include , N,N-dinitrosopentaethylenetetramine (DNPT) and the like.
 発泡剤として化学発泡剤を用いる場合、化学発泡剤は、熱可塑性ポリエステルエラストマー樹脂組成物に均一に分散させるために、当該化学発泡剤の分解温度よりも融点が低い熱可塑性樹脂をベース材とした発泡剤マスターバッチとして使用することもできる。ベースとなる熱可塑性樹脂は、化学発泡剤の分解温度より低い融点であれば特に制限なく、例えばポリスチレン(PS)、ポリエチレン(PE)、ポリプロピレン(PP)、等が挙げられる。この場合、化学発泡剤と熱可塑性樹脂の配合比率は、熱可塑性樹脂100質量部に対して化学発泡剤が10~100質量部であるのが好ましい。化学発泡剤が10質量部未満の場合は、熱可塑性ポリエステルエラストマー樹脂組成物に対するするマスターバッチの量が多くなりすぎて物性低下を起す可能性がある。100質量部を超えると、化学発泡剤の分散性の問題よりマスターバッチ化が困難になる。 When a chemical foaming agent is used as the foaming agent, the chemical foaming agent is based on a thermoplastic resin having a lower melting point than the decomposition temperature of the chemical foaming agent in order to be uniformly dispersed in the thermoplastic polyester elastomer resin composition. It can also be used as a blowing agent masterbatch. The base thermoplastic resin is not particularly limited as long as it has a melting point lower than the decomposition temperature of the chemical foaming agent. Examples thereof include polystyrene (PS), polyethylene (PE), and polypropylene (PP). In this case, the mixing ratio of the chemical foaming agent and the thermoplastic resin is preferably 10 to 100 parts by mass of the chemical foaming agent per 100 parts by mass of the thermoplastic resin. If the amount of the chemical blowing agent is less than 10 parts by mass, the amount of the masterbatch to be added to the thermoplastic polyester elastomer resin composition may become too large, resulting in deterioration of physical properties. If it exceeds 100 parts by mass, it becomes difficult to form a masterbatch due to the problem of dispersibility of the chemical blowing agent.
 発泡剤として超臨界状態の不活性ガスを用いる場合、不活性ガスとしては二酸化炭素および/または窒素が使用可能である。発泡剤として超臨界状態の二酸化炭素および/または窒素を用いる場合、それらの量は、熱可塑性ポリエステルエラストマー樹脂組成物100質量部に対して0.05~30質量部が好ましく、0.1~20質量部であることがより好ましい。超臨界状態の二酸化炭素および/または窒素が0.05質量部未満であると均一かつ微細な気泡が得られにくくなり、30質量部を超えると成形体表面の外観が損なわれる傾向にある。 When using a supercritical inert gas as the foaming agent, carbon dioxide and/or nitrogen can be used as the inert gas. When supercritical carbon dioxide and/or nitrogen is used as a blowing agent, the amount thereof is preferably 0.05 to 30 parts by mass, preferably 0.1 to 20 parts by mass, per 100 parts by mass of the thermoplastic polyester elastomer resin composition. Parts by mass are more preferred. If the amount of supercritical carbon dioxide and/or nitrogen is less than 0.05 parts by mass, it will be difficult to obtain uniform and fine bubbles, and if it exceeds 30 parts by mass, the surface appearance of the molded article will tend to be impaired.
 なお、発泡剤として用いられる超臨界状態の二酸化炭素または窒素は単独で使用できるが、二酸化炭素と窒素を混合して使用してもよい。熱可塑性ポリエステルエラストマー樹脂組成物に対して窒素はより微細なセルを形成するのに適している傾向があり、二酸化炭素はよりガスの注入量を比較的多くでき、より高い発泡倍率を得るのに適しているため、調整した発泡構造体の状態に対して任意で混合してもよく、混合する場合の混合比率はモル比で1:9~9:1の範囲であることが好ましい。 Although carbon dioxide or nitrogen in a supercritical state used as a blowing agent can be used alone, carbon dioxide and nitrogen may be mixed and used. Nitrogen tends to be suitable for forming finer cells with respect to the thermoplastic polyester elastomer resin composition, and carbon dioxide allows a relatively large amount of gas to be injected, thereby obtaining a higher expansion ratio. Therefore, they may be mixed arbitrarily depending on the state of the foamed structure prepared, and the mixing ratio in the case of mixing is preferably in the range of 1:9 to 9:1 in terms of molar ratio.
 本発明で使用する発泡剤としては、均一な微細発泡という観点から、超臨界状態の窒素がより好ましい。 As the foaming agent used in the present invention, nitrogen in a supercritical state is more preferable from the viewpoint of uniform fine foaming.
 溶融状態の熱可塑性ポリエステルエラストマー樹脂組成物を発泡剤とともにキャビティ3内に射出するには、射出成形機4の可塑化領域4a内で溶融状態の熱可塑性ポリエステルエラストマー樹脂組成物と発泡剤とを混合すればよい。特に、発泡剤として超臨界状態の二酸化炭素および/または窒素を用いる場合には、例えば図1に示すようにガスボンベ5から気体状態の二酸化炭素および/または窒素を直接あるいは昇圧ポンプ6で加圧して射出成形機4内に注入する方法等が採用できる。これらの二酸化炭素および/または窒素は、溶融状態の熱可塑性ポリエステルエラストマー樹脂組成物中への溶解性、浸透性、拡散性への観点から、成形機内部で超臨界状態となっている必要がある。 In order to inject the molten thermoplastic polyester elastomer resin composition together with the foaming agent into the cavity 3, the molten thermoplastic polyester elastomer resin composition and the foaming agent are mixed in the plasticizing region 4a of the injection molding machine 4. do it. In particular, when supercritical carbon dioxide and/or nitrogen is used as the foaming agent, for example, as shown in FIG. A method of injecting into the injection molding machine 4 or the like can be adopted. These carbon dioxide and/or nitrogen must be in a supercritical state inside the molding machine from the viewpoint of solubility, permeability, and diffusibility in the molten thermoplastic polyester elastomer resin composition. .
 ここで、超臨界状態とは、気相と液相とを生じている物質の温度および圧力を上昇させていくに際し、ある温度域および圧力域で前記気相と液相との区別をなくし得る状態のことをいい、この時の温度、圧力を臨界温度、臨界圧力という。すなわち超臨界状態において物質は気体と液体の両方の特性を併せ持つので、この状態で生じる流体を臨界流体という。このような臨界流体は気体に比べて密度が高く、液体に比べて粘性が小さいため、物質中をきわめて拡散しやすいという特性を有する。 Here, the supercritical state means that when the temperature and pressure of a substance that produces a gas phase and a liquid phase are increased, the distinction between the gas phase and the liquid phase can be lost in a certain temperature range and pressure range. The temperature and pressure at this time are called critical temperature and critical pressure. In other words, a substance in a supercritical state has the properties of both gas and liquid, so the fluid produced in this state is called a critical fluid. Such a critical fluid has a higher density than a gas and a lower viscosity than a liquid, so it has the property of diffusing in a substance very easily.
 本発明の効果を実証するために以下に実施例を挙げるが、本発明はこれらの実施例によって何ら限定されるものではない。 Examples are given below to demonstrate the effects of the present invention, but the present invention is not limited by these examples.
 以下の実施例、比較例においては下記の原料を用いた。
熱可塑性ポリエステルエラストマー(A);
(ポリエステルエラストマーA-1)
 特開平9-59491号公報に記載の方法に準じて、ジメチルテレフタレート、1,4-ブタンジオール、及び数平均分子量2000のポリ(テトラメチレンオキシド)グリコールを原料として、ソフトセグメント含有量が76質量%の熱可塑性ポリエステルエラストマーを製造して、これをポリエステルエラストマーA-1とした。
(ポリエステルエラストマーA-2)
 特開平9-59491号公報に記載の方法に準じて、ジメチルテレフタレート、1,4-ブタンジオール、及び数平均分子量2000のポリ(テトラメチレンオキシド)グリコールを原料として、ソフトセグメント含有量が83質量%の熱可塑性ポリエステルエラストマーを製造して、これをポリエステルエラストマーA-2とした。
(ポリエステルエラストマーA-3)
 特開平9-59491号公報に記載の方法に準じて、ジメチルテレフタレート、1,4-ブタンジオール、及び数平均分子量1000のポリ(テトラメチレンオキシド)グリコールを原料として、ソフトセグメント含有量が67質量%の熱可塑性ポリエステルエラストマーを製造して、これをポリエステルエラストマーA-3とした。
(ポリエステルエラストマーA-4)
 特開平9-59491号公報に記載の方法に準じて、ジメチルテレフタレート、1,4-ブタンジオール、及び数平均分子量1000のポリ(テトラメチレンオキシド)グリコールを原料として、ソフトセグメント含有量が55質量%の熱可塑性ポリエステルエラストマーを製造して、これをポリエステルエラストマーA-4とした。
(ポリエステルエラストマーA-5)
 特開平9-59491号公報に記載の方法に準じて、ジメチルテレフタレート、1,4-ブタンジオール、及び数平均分子量1000のポリ(テトラメチレンオキシド)グリコールを原料として、ソフトセグメント含有量が28質量%の熱可塑性ポリエステルエラストマーを製造して、これをポリエステルエラストマーA-5とした。
The following raw materials were used in the following examples and comparative examples.
thermoplastic polyester elastomer (A);
(Polyester elastomer A-1)
According to the method described in JP-A-9-59491, dimethyl terephthalate, 1,4-butanediol, and poly (tetramethylene oxide) glycol having a number average molecular weight of 2000 are used as raw materials, and the soft segment content is 76% by mass. to produce polyester elastomer A-1.
(Polyester elastomer A-2)
According to the method described in JP-A-9-59491, dimethyl terephthalate, 1,4-butanediol, and poly (tetramethylene oxide) glycol having a number average molecular weight of 2000 are used as raw materials, and the soft segment content is 83% by mass. to produce polyester elastomer A-2.
(Polyester elastomer A-3)
According to the method described in JP-A-9-59491, dimethyl terephthalate, 1,4-butanediol, and poly (tetramethylene oxide) glycol having a number average molecular weight of 1000 as raw materials, the soft segment content is 67% by mass. to produce polyester elastomer A-3.
(Polyester elastomer A-4)
According to the method described in JP-A-9-59491, using dimethyl terephthalate, 1,4-butanediol, and poly(tetramethylene oxide) glycol having a number average molecular weight of 1000 as raw materials, the soft segment content is 55% by mass. to produce polyester elastomer A-4.
(Polyester elastomer A-5)
According to the method described in JP-A-9-59491, dimethyl terephthalate, 1,4-butanediol, and poly (tetramethylene oxide) glycol having a number average molecular weight of 1000 as raw materials, the soft segment content is 28% by mass. to produce polyester elastomer A-5.
結晶核剤(B);
 以下のものを用意した。
カプリル酸ナトリウム(日東化成工業(株)社製、融点220℃)
ステアリン酸ナトリウム(日本油脂(株)社製、融点230℃)
ステアリン酸マグネシウム(淡南化学工業(株)社製、融点135℃)
タルク(林化成(株)社製、KCM7500、粒径5.8μm)
crystal nucleating agent (B);
I prepared the following:
Sodium caprylate (manufactured by Nitto Kasei Kogyo Co., Ltd., melting point 220°C)
Sodium stearate (manufactured by NOF Corporation, melting point 230°C)
Magnesium stearate (manufactured by Tannan Chemical Industry Co., Ltd., melting point 135°C)
Talc (manufactured by Hayashi Kasei Co., Ltd., KCM7500, particle size 5.8 μm)
増粘剤(C);
(エポキシ基を持つ化合物:スチレン系共重合体)
 オイルジャケットを備えた容量1リットルの加圧式攪拌槽型反応器のオイルジャケット温度を、200℃に保った。一方、スチレン(St)89質量部、グリシジルメタクリレート(GMA)11質量部、キシレン(Xy)15質量部及び重合開始剤としてジターシャリーブチルパーオキサイド(DTBP)0.5質量部からなる単量体混合液を原料タンクに仕込んだ。これを一定の供給速度(48g/分、滞留時間:12分)で原料タンクから反応器に連続供給し、反応器の内容液質量が約580gで一定になるように反応液を反応器の出口から連続的に抜き出した。その時の反応器内温は、約210℃に保った。反応器内部の温度が安定してから36分経過後から、抜き出した反応液を減圧度30kPa、温度250℃に保った薄膜蒸発機に導き、連続的に揮発成分を除去して、スチレン系共重合体を得た。このスチレン系共重合体は、GPC分析(ポリスチレン換算値)によると質量平均分子量8500、数平均分子量3300であった。また、エポキシ価は670当量/1×10g、エポキシ価数(1分子当りの平均エポキシ基の数)は2.2であり、グリシジル基を1分子中に2個以上有するものである。
(エポキシ基を持つ化合物:TEPIC-S)
 市販のエポキシ化合物(日産化学社製「TEPIC-S」、1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン)を用意した。
(カルボジイミド基を持つ化合物:LA-1)
 市販のポリカルボジイミド(日清紡社製「カルボジライト LA-1」)を用意した。
thickener (C);
(Compound with epoxy group: styrene copolymer)
The oil jacket temperature of a 1 liter pressurized stirred tank reactor equipped with an oil jacket was kept at 200°C. On the other hand, a monomer mixture consisting of 89 parts by weight of styrene (St), 11 parts by weight of glycidyl methacrylate (GMA), 15 parts by weight of xylene (Xy) and 0.5 parts by weight of ditertiarybutyl peroxide (DTBP) as a polymerization initiator. The liquid was charged into the raw material tank. This was continuously supplied from the raw material tank to the reactor at a constant supply rate (48 g/min, residence time: 12 minutes), and the reaction liquid was discharged from the outlet of the reactor so that the content liquid mass of the reactor was constant at about 580 g. continuously extracted from The internal temperature of the reactor at that time was kept at about 210°C. After 36 minutes have passed since the temperature inside the reactor has stabilized, the extracted reaction liquid is led to a thin film evaporator kept at a pressure reduction of 30 kPa and a temperature of 250 ° C., and volatile components are continuously removed. A polymer was obtained. This styrene-based copolymer had a mass average molecular weight of 8,500 and a number average molecular weight of 3,300 according to GPC analysis (converted to polystyrene). The epoxy value is 670 equivalents/1×10 6 g, the epoxy value (average number of epoxy groups per molecule) is 2.2, and two or more glycidyl groups are present in one molecule.
(Compound with epoxy group: TEPIC-S)
Commercially available epoxy compounds ("TEPIC-S" manufactured by Nissan Chemical Industries, Ltd., 1,3,5-tris(2,3-epoxypropyl)-1,3,5-triazine-2,4,6(1H,3H,5H )-trione) was prepared.
(Compound with carbodiimide group: LA-1)
A commercially available polycarbodiimide (“Carbodilite LA-1” manufactured by Nisshinbo Co., Ltd.) was prepared.
[熱可塑性ポリエステルエラストマー樹脂組成物]
 表1に記載の配合組成に従って、熱可塑性ポリエステルエラストマー、結晶核剤、増粘剤を、二軸スクリュー式押出機を用いて溶融混練した後、ペレット化して熱可塑性ポリエステルエラストマー樹脂組成物のペレットを得た。各樹脂組成物の物性について、後述する方法で測定したところ表1に示す通りであった。
[Thermoplastic polyester elastomer resin composition]
According to the formulation shown in Table 1, a thermoplastic polyester elastomer, a crystal nucleating agent, and a thickening agent are melt-kneaded using a twin-screw extruder, and then pelletized to obtain pellets of the thermoplastic polyester elastomer resin composition. Obtained. The physical properties of each resin composition were measured by the method described later and were as shown in Table 1.
[降温結晶化温度(TC2)]
 セイコー電子工業株式会社製の示差走査熱量分析計「DSC220型」にて、測定試料5mgをアルミニウムパンに入れ、蓋を押さえて密封し、窒素中にて250℃で2分間溶融した後、降温速度20℃/分で50℃まで降温した際に得られた降温結晶化の発熱ピーク温度を降温結晶化温度(TC2)とした。
[Cooling crystallization temperature (TC2)]
With a differential scanning calorimeter "DSC220 type" manufactured by Seiko Electronics Industry Co., Ltd., 5 mg of the measurement sample is placed in an aluminum pan, the lid is pressed and sealed, melted in nitrogen at 250 ° C. for 2 minutes, and then the temperature is lowered. The exothermic peak temperature of cooling crystallization obtained when the temperature was lowered to 50° C. at 20° C./min was taken as the cooling crystallization temperature (TC2).
[MFR]
 熱可塑性ポリエステルエラストマー樹脂組成物のMFR(メルトフローレート)は、ASTM D1238に記載されている測定法に準じて、荷重2,160g、測定温度230℃にて測定を実施した。測定は、水分率が0.1質量%以下になるように乾燥(100℃、3~5時間)した熱可塑性ポリエステルエラストマー樹脂組成物を用いた。
[MFR]
The MFR (melt flow rate) of the thermoplastic polyester elastomer resin composition was measured at a load of 2,160 g and a measurement temperature of 230° C. according to the measurement method described in ASTM D1238. For the measurement, a thermoplastic polyester elastomer resin composition dried (100° C., 3 to 5 hours) so that the moisture content was 0.1% by mass or less was used.
実施例1~12、比較例1~4
 次に、上記で得られた熱可塑性ポリエステルエラストマー樹脂組成物を用いて上述したカウンタープレッシャー法にて発泡成形体を作製した。金型としては、型締め力が10000kNであり、型締めすると幅360mm、長さ190mm、厚み15.0mmのキャビティを形成するものを用いた。この金型のキャビティ内に、カウンタープレッシャーを用いて表1に記載の圧力(カウンタープレッシャー圧力)の窒素ガスを注入した。スクリュー径60mm、スクリューストローク300mmのスクリューを持つ電動射出成形機の可塑化領域で、溶融状態の熱可塑性ポリエステルエラストマー樹脂組成物に超臨界状態とした窒素を注入し、表面温度50℃に温調した前記の金型のキャビティに、ゲート(幅360mm、長さ190mmの面の中央部)から、表1に記載の樹脂組成物量(キャビティ体積に対する樹脂組成物充填量)をショートショットで射出充填した。充填した直後、急速にカウンタープレッシャーで加圧した窒素ガスを抜くことで、熱可塑性ポリエステルエラストマー樹脂組成物を発泡させて発泡成形体を得た。
Examples 1-12, Comparative Examples 1-4
Next, using the thermoplastic polyester elastomer resin composition obtained above, a foam molded article was produced by the above-described counterpressure method. The mold used had a mold clamping force of 10000 kN and formed a cavity with a width of 360 mm, a length of 190 mm and a thickness of 15.0 mm when clamped. Nitrogen gas at the pressure shown in Table 1 (counterpressure pressure) was injected into the cavity of this mold using a counterpressure. In the plasticizing area of an electric injection molding machine having a screw with a screw diameter of 60 mm and a screw stroke of 300 mm, nitrogen in a supercritical state was injected into the molten thermoplastic polyester elastomer resin composition to control the surface temperature to 50°C. A short shot of the resin composition shown in Table 1 (filling amount of resin composition relative to cavity volume) was injected into the cavity of the mold from the gate (the center of the surface with a width of 360 mm and a length of 190 mm). Immediately after filling, the thermoplastic polyester elastomer resin composition was foamed to obtain a foam-molded article by quickly releasing the nitrogen gas pressurized by counter pressure.
比較例5
 金型拡張法(コアバック射出発泡成形法)にて、発泡成形体を作製した。金型としては、型締めすると幅360mm、長さ190mm、厚み3.0mmのキャビティを形成することができ、型開き方向へコアバックさせると同幅、同長さで厚みが3.0mm+コアバック量(mm)であるキャビティを形成することができる固定用金型および稼働用金型からなる平板作製用の金型を用いた。具体的には、金型の型締め力が10000kN、スクリュー径60mm、スクリューストローク300mmのスクリューを持つ電動射出成形機の可塑化領域で、超臨界状態とした窒素を注入し、表面温度50℃に温調された金型にフルパックで射出充填後、射出外圧と内部からの発泡圧力によって700μm程度の非発泡スキン層が形成された段階で、稼働用金型を型開き方向へ、12.0mm移動させて、キャビティの容積を拡大させて、発泡成形体を得た。
Comparative example 5
A foam molded article was produced by a mold expansion method (core-back injection foam molding method). As for the mold, when the mold is clamped, a cavity with a width of 360 mm, a length of 190 mm, and a thickness of 3.0 mm can be formed. A mold for making a flat plate was used, which consisted of a fixed mold and a working mold capable of forming a cavity with an amount (mm). Specifically, in the plasticizing region of an electric injection molding machine having a screw with a mold clamping force of 10,000 kN, a screw diameter of 60 mm, and a screw stroke of 300 mm, nitrogen in a supercritical state was injected to bring the surface temperature to 50 ° C. After injection filling a full pack into a temperature-controlled mold, at the stage where a non-foamed skin layer of about 700 μm is formed by the external injection pressure and the foaming pressure from the inside, the working mold is moved in the mold opening direction by 12.0 mm. It was moved to expand the volume of the cavity to obtain a foamed molding.
 実施例1~12、比較例1~5で得られた発泡成形体について、下記の評価を行った。結果を表1に示す。 The foam molded articles obtained in Examples 1 to 12 and Comparative Examples 1 to 5 were evaluated as follows. Table 1 shows the results.
[発泡体の構成]
 発泡成形体の表面を目視で観察し、成形収縮による凸凹部(ヒケ)の有無やアバタの発生から非発泡部分の存在があるかどうかを推定した。凸凹部及び/又はアバタがあり非発泡部分が存在すると推定した発泡成形体の場合、非発泡部分が中心にくる面(図2のw-w’面)で発泡成形体を切って、断面観察用サンプルとした。さらにその切断面と垂直な面(図2のv-v’面)で発泡成形体を切って、断面観察用サンプルとした。凸凹部及びアバタがなく非発泡部分が存在しないと推定した発泡成形体の場合、発泡成形体の中心面(図3のw-w’面)で発泡成形体を切って、断面観察用サンプルとした。さらにその切断面と垂直な面(図3のv-v’面)で発泡成形体を切って、断面観察用サンプルとした。
 日立ハイテクノロジーズ製の走査電子顕微鏡SU1510により、発泡成形体の表面層における断面観察用サンプルの断面写真を撮影した。断面写真を画像処理し、発泡成形体の表面から1000μmの深さまでの表面層において、200μm×200μmの領域にて、次式により気泡密度を算出し、気泡密度が10%以下となる部分を非発泡部分とした。
 気泡密度(%)=[気泡の合計面積(μm)/40,000(μm)]×100
 200μm×200μmの観察領域は、非発泡部分が存在すると推定した発泡成形体の場合、表面から1000μmの深さまでの表面層において、表面付近、深さ500μm付近、深さ1000μm付近(図2の表面層22にある白い四角の深さ)でそれぞれ5ヶ所、非発泡部分が存在しないと推定した発泡成形体の場合、表面から1000μmの深さまでの表面層において、表面付近、深さ500μm付近、深さ1000μm付近(図3の表面層22にある白い四角の深さ)でそれぞれ5ヶ所を測定した。この測定で表面から深さ方向の3ヶ所全てが、非発泡部分が存在しないと判断できた場合、その領域は非発泡部分が存在しない発泡領域のみからなる領域であるとした。
 これにより、非発泡部分の有無を判断し、非発泡部分が存在しない発泡領域のみからなる表面層で構成される発泡成形体(A)、非発泡部分が存在する発泡領域と非発泡部分が存在しない発泡領域が混在する表面層を有する発泡成形体(B)、及び非発泡部分(非発泡スキン層)が存在する発泡領域のみからなる表面層を有する発泡成形体(C)の3つに分類した。
[Composition of foam]
The surface of the foam molded article was visually observed, and the presence or absence of unevenness (sink marks) due to molding shrinkage and the occurrence of burrs were estimated as to whether or not there was a non-foamed portion. In the case of a foamed molded article that has unevenness and/or an avatar and is presumed to have a non-foamed portion, cut the foamed molded body along the plane where the non-foamed portion is in the center (the ww' plane in FIG. 2) and observe the cross section. was used as a sample. Further, the foamed molded product was cut along a plane (vv' plane in FIG. 2) perpendicular to the cut plane to obtain a sample for cross-sectional observation. In the case of a foamed molded article that is assumed to have no irregularities or avatars and no non-foamed portions, the foamed molded article is cut at the center plane of the foamed article (the ww' plane in FIG. 3) and used as a sample for cross-sectional observation. bottom. Further, the foam molded product was cut along a plane (vv' plane in FIG. 3) perpendicular to the cut plane to obtain a sample for cross-sectional observation.
Using a scanning electron microscope SU1510 manufactured by Hitachi High-Technologies Corporation, a cross-sectional photograph of a sample for cross-sectional observation of the surface layer of the foam molded product was taken. The cross-sectional photograph is image-processed, and in the surface layer from the surface of the foamed molding to a depth of 1000 μm, the cell density is calculated by the following formula in an area of 200 μm × 200 μm. It was made into a foaming part.
Bubble density (%) = [Total area of bubbles (μm 2 )/40,000 (μm 2 )] × 100
The observation area of 200 μm × 200 μm is the surface layer from the surface to a depth of 1000 μm in the case of a foamed molded article that is assumed to have a non-foamed portion, near the surface, near the depth of 500 μm, and near the depth of 1000 μm (surface in FIG. In the case of a foamed molded product that is assumed to have no non-foamed portions, the surface layer from the surface to a depth of 1000 μm is located near the surface, at a depth of 500 μm, and at a depth of 500 μm. Measurements were taken at five locations near 1000 μm (the depth of the white squares on the surface layer 22 in FIG. 3). When it was determined that no non-foamed portion existed in all three locations in the depth direction from the surface by this measurement, the region was defined as a region consisting only of a foamed region in which no non-foamed portion existed.
As a result, the presence or absence of non-foamed portions is determined, and the foamed molded article (A) composed of a surface layer consisting of only foamed regions without non-foamed portions, and the presence of foamed regions with non-foamed portions and non-foamed portions. Foamed molded article (B) having a surface layer with a mixture of non-foamed foamed areas (B), and foamed molded article (C) having a surface layer consisting of only foamed areas with non-foamed parts (non-foamed skin layer) bottom.
[非発泡部分が存在する発泡領域の面積の割合]
 発泡成形体(B)の表面層(B)において、発泡成形体の表面の面積の内、目視による観察や上記の断面写真から、非発泡部分が存在する発泡領域を特定し、その面積の割合を、次式により算出した。発泡成形体(B)に表面層(B)に相当する面が複数存在する場合は、この割合が大きい方を採用する。
 非発泡部分が存在する発泡領域の面積の割合(%)=[非発泡部分が存在する発泡領域の面積(mm)/発泡成形体の表面の面積(mm)]×100
[Ratio of area of foamed region where non-foamed part exists]
In the surface layer (B) of the foamed molded article (B), a foamed region in which a non-foamed portion exists is specified by visual observation or the above cross-sectional photograph in the area of the surface of the foamed molded article, and the ratio of the area was calculated by the following formula. If the foam molded article (B) has a plurality of surfaces corresponding to the surface layer (B), the one with the larger ratio is adopted.
Ratio (%) of area of foamed region in which non-foamed portion exists = [Area of foamed region in which non-foamed portion exists (mm 2 )/Area of surface of foamed molded product (mm 2 )] × 100
[全表面積に対する非発泡部分が存在する発泡領域の面積の割合]
 上記「非発泡部分が存在する発泡領域の面積の割合」の方法と同様に、「非発泡部分が存在する発泡領域の面積」を特定した。発泡成形体(B)に表面層(B)に相当する面が複数存在する場合は、全ての面の「非発泡部分が存在する発泡領域の面積」を合計した。次式により、発泡成形体(B)の全表面積に対する非発泡部分が存在する発泡領域の面積の割合を算出した。
 全表面積に対する非発泡部分が存在する発泡領域の面積の割合(%)=[非発泡部分が存在する発泡領域の面積(mm)/発泡成形体の表面積(mm)]×100
[Ratio of area of foamed region where non-foamed part exists to total surface area]
The "area of the foamed region where the non-foamed portion exists" was specified in the same manner as in the above-mentioned "ratio of the area of the foamed region where the non-foamed portion exists". When the foam molded article (B) had a plurality of surfaces corresponding to the surface layer (B), the "areas of foamed regions where non-foamed portions exist" of all surfaces were totaled. The ratio of the area of the foamed region where the non-foamed portion exists to the total surface area of the foamed molded article (B) was calculated by the following equation.
The ratio of the area of the foamed region where the non-foamed portion exists to the total surface area (%) = [area of the foamed region where the non-foamed portion exists (mm 2 )/surface area of the foamed molded product (mm 2 )] × 100
[扁平気泡層と円形気泡層の気泡の平均アスペクト比]
 日立ハイテクノロジーズ製の走査電子顕微鏡SU1510により、発泡成形体の断面観察用サンプルの断面写真を撮影した。表面から1000μmの深さまでの表面層に扁平気泡からなる層があること、表面から1000μmより深い内層に円形気泡からなる層があることを確認した。断面写真を画像処理し、少なくとも100個の隣接する扁平気泡及び円形気泡の長軸と短軸をノギスで測定した。それら100個の平均アスペクト比(長軸の長さ/短軸の長さ)を求め、これをそれぞれの層の任意の三箇所において行い、三箇所で得られた3つの平均値を平均した値を、それぞれ扁平気泡層及び円形気泡層の平均アスペクト比とした。
[Average aspect ratio of cells in flat cell layer and circular cell layer]
Using a scanning electron microscope SU1510 manufactured by Hitachi High-Technologies Corporation, a cross-sectional photograph of a sample for cross-sectional observation of a foam molded product was taken. It was confirmed that there was a layer of flat cells in the surface layer up to a depth of 1000 μm from the surface and a layer of circular cells in the inner layer deeper than 1000 μm from the surface. Cross-sectional photographs were image processed and the major and minor axes of at least 100 adjacent flat and circular cells were measured with a vernier caliper. The average aspect ratio (long axis length/short axis length) of 100 of them is obtained, and this is performed at any three points on each layer, and the average value of the three average values obtained at three points are the average aspect ratios of the flat cell layer and the circular cell layer, respectively.
[密度(見かけ密度)]
 発泡成形体の寸法をノギスで測定し、その質量を電子天秤にて測定し、次式により算出した。
  密度(g/cm)=発泡成形体の質量/発泡成形体の体積
[Density (apparent density)]
The dimensions of the foam molded article were measured with vernier calipers, and the mass was measured with an electronic balance and calculated by the following formula.
Density (g/cm 3 )=mass of foamed molded article/volume of foamed molded article
[円形気泡層の気泡の平均セル径/最大セル径]
 上記円形気泡層の気泡の平均アスペクト比の測定の際に、円形気泡の面積円相当径をセル径とし、それら100個の平均値を求めた。これを円形気泡層の任意の三箇所において行い、三箇所で得られた3つの平均値を平均した値を平均セル径とした。
 なお、上記の観察した気泡のセル径の中で最大のセル径を最大セル径とした。
[Average cell diameter/maximum cell diameter of bubbles in circular bubble layer]
When measuring the average aspect ratio of the bubbles in the circular bubble layer, the area circle equivalent diameter of the circular bubbles was taken as the cell diameter, and the average value of 100 of them was determined. This was performed at three arbitrary locations of the circular cell layer, and the average value of the three average values obtained at the three locations was taken as the average cell diameter.
In addition, the largest cell diameter among the observed cell diameters of the bubbles was taken as the maximum cell diameter.
[反発弾性率]
 JIS K 6400に記載されている方法にて測定を実施した。手動計測試験機を用い、規定の落下高さ(H)から発泡成形体に鋼球を落下させ、跳ね返った最大の高さ(h)を読み取り、以下の計算式にて反発弾性率を算出した。
 反発弾性率(%)=(跳ね返った最大高さ(h)/落下高さ(H))×100
 一分間以内に3回の測定を行い、その中央値を求め、反発弾性率を算出した。非発泡部分が存在しない発泡領域の反発弾性率を反発弾性率(A)、非発泡部分が存在する発泡領域の反発弾性率を反発弾性率(B)とした。
[Rebound resilience]
Measurement was carried out by the method described in JIS K 6400. Using a manual measurement tester, a steel ball was dropped from a prescribed drop height (H) onto the foam molded body, the maximum rebound height (h) was read, and the rebound resilience was calculated using the following formula. .
Rebound resilience (%) = (maximum rebound height (h) / drop height (H)) x 100
The measurement was performed three times within one minute, the median value was obtained, and the rebound resilience was calculated. The rebound resilience of the foamed region without the non-foamed portion was defined as the rebound resilience (A), and the rebound resilience of the foamed region with the non-foamed portion was defined as the rebound resilience (B).
[表面平滑性]
 発泡成形体の表面平滑性を目視にて、以下のように3段階の評価を行った。
 〇:成形体表面に凹凸が認められない
 △:成形体表面の一部に凹凸が認められる
 ×:成形体表面の全体に凹凸が認められる
[Surface smoothness]
The surface smoothness of the foamed molding was visually observed and evaluated in three grades as follows.
○: Unevenness is observed on the surface of the molded article △: Unevenness is observed on part of the surface of the molded article ×: Unevenness is observed on the entire surface of the molded article
[金型追従性]
 金型キャビティ形状である幅360mm、長さ190mm、厚み15.0mmの寸法において、発泡後の成形体厚みが、14.0mm以上であれば金型に追従できているとして「〇」、14.0mm未満であれば金型に追従できていないとして「×」とした。
[Mold followability]
14. In the mold cavity shape of width 360 mm, length 190 mm, and thickness 15.0 mm, if the thickness of the molded product after foaming is 14.0 mm or more, it means that it can follow the mold. If it was less than 0 mm, it was regarded as "x" because it could not follow the mold.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明の範囲内である実施例1~12はいずれも、非発泡部分が存在しない発泡領域のみからなる表面層で構成される発泡成形体(A)、もしくは、非発泡部分が存在する発泡領域と非発泡部分が存在しない発泡領域が混在する表面層を有する発泡成形体(B)となっており、金型追従性にも優れるうえに、内層の円形気泡層の気泡の平均セル径及び最大セル径が所定の大きさを有することで、軽量かつ高い反発弾性を示す。実施例3~8、10~12、比較例1~4の発泡成形体(B)は、いずれもゲートのある面の反対側の面に、最大面積の非発泡部分を有し、ゲートのある面にもほぼ同面積の非発泡部分を有していた。また、実施例3~8、10~12から、非発泡部分が存在しない発泡領域は、非発泡部分が存在する発泡領域よりも、反発弾性率が高くなることがわかる。さらに、実施例1、2、9は発泡成形体全体が、非発泡部分が存在しない発泡領域のみで構成され、発泡成形体全体の表面付近が扁平気泡で構成されることで表面平滑性に優れる。これらに対して、比較例1は結晶核剤及び増粘剤を含まないポリエステルエラストマーを発泡成形したものであり、比較例2は結晶核剤の量が少ない熱可塑性ポリエステルエラストマー樹脂組成物を発泡成形したものであり、反発弾性率は高い値を示すものの、円形気泡層の気泡の最大セル径が大きくなることで、同じポリエステルエラストマーA-1を用いた実施例3~8と比較して、反発弾性率が低下している。結晶核剤の量が多い比較例3、及び増粘剤の量が多い比較例4は、所定のMFRよりも低い値となっており、流動性が低下し、発泡成形性に劣ることで、金型追従性が悪くなる。比較例5はコアバック射出発泡成形法にて発泡成形を行ったものであり、軽量化は十分に行えているが、発泡成形体全体は非発泡層と発泡層のサンドイッチ構造で構成されているうえ、これにより成形体表面全体に凹凸が発生し、表面平滑性に劣る。 As is clear from Table 1, any of Examples 1 to 12 within the scope of the present invention is a foamed molded article (A) composed of a surface layer consisting only of a foamed region with no non-foamed portion, or The foam molded article (B) has a surface layer in which a foamed region with a non-foamed portion and a foamed region without a non-foamed portion are mixed. Since the average cell diameter and the maximum cell diameter of the cells of the foam have predetermined sizes, the foam exhibits light weight and high impact resilience. The foamed molded articles (B) of Examples 3 to 8, 10 to 12, and Comparative Examples 1 to 4 all had a non-foamed portion with the maximum area on the surface opposite to the surface with the gate. The surface also had a non-foamed portion of approximately the same area. In addition, from Examples 3 to 8 and 10 to 12, it can be seen that the foamed regions without non-foamed portions have a higher rebound resilience than the foamed regions with non-foamed portions. Furthermore, in Examples 1, 2, and 9, the entire foamed molded article is composed only of foamed regions without non-foamed portions, and the vicinity of the surface of the entire foamed molded article is composed of flat cells, resulting in excellent surface smoothness. . On the other hand, in Comparative Example 1, a polyester elastomer containing no crystal nucleating agent or thickening agent was foam-molded, and in Comparative Example 2, a thermoplastic polyester elastomer resin composition containing a small amount of crystal nucleating agent was foam-molded. Although the coefficient of rebound resilience shows a high value, the maximum cell diameter of the cells in the circular cell layer is increased, so that compared with Examples 3 to 8 using the same polyester elastomer A-1, the rebound Elastic modulus is reduced. In Comparative Example 3 with a large amount of crystal nucleating agent and Comparative Example 4 with a large amount of thickener, the values are lower than the predetermined MFR. Mold conformability deteriorates. In Comparative Example 5, foam molding was performed by the core-back injection foam molding method, and the weight reduction was sufficiently achieved, but the entire foam molded body was composed of a sandwich structure of a non-foam layer and a foam layer. Moreover, as a result, unevenness occurs on the entire surface of the molded product, resulting in poor surface smoothness.
産業上の利用の可能性Possibility of industrial use
 本発明の発泡成形体は、軽量性に優れるのみならず、極めて高い反発弾性率を発現するし、表面平滑性にも優れる。さらに、高い発泡倍率にもかかわらず均一な発泡状態と、高い耐熱性、耐水性、成形安定性を持つため、高い信頼性の必要な部品にも適用の可能なポリエステル発泡成形体を提供することができる。 The foamed molded article of the present invention not only excels in lightness, but also exhibits an extremely high rebound resilience and excellent surface smoothness. Furthermore, it is intended to provide a polyester foam molded article that can be applied to parts that require high reliability because it has a uniform foaming state, high heat resistance, water resistance, and molding stability in spite of its high expansion ratio. can be done.
1   金型(固定用)
2   金型(稼働用)
3   キャビティ
4   射出成形機
4a  可塑化領域
5   ガスボンベ
6   昇圧ポンプ
7   圧力制御バルブ
8   カウンタープレッシャー装置
9   吸気用電磁バルブ
10  排気用電磁バルブ
21  非発泡部分
22  表面層
23  内層
24  非発泡部分が存在しない発泡領域
25  非発泡部分が存在する発泡領域
 
1 mold (for fixing)
2 Mold (for operation)
3 Cavity 4 Injection molding machine 4a Plasticizing region 5 Gas cylinder 6 Boosting pump 7 Pressure control valve 8 Counter pressure device 9 Intake electromagnetic valve 10 Exhaust electromagnetic valve 21 Non-foamed portion 22 Surface layer 23 Inner layer 24 Foam without non-foamed portion Region 25 Foamed region with non-foamed portions

Claims (10)

  1.  芳香族ジカルボン酸と脂肪族及び/又は脂環族ジオールとを構成成分とするポリエステルからなるハードセグメントと、脂肪族ポリエーテル、脂肪族ポリエステル、及び脂肪族ポリカーボネートから選ばれる少なくとも1種のソフトセグメントが結合され、ソフトセグメントの含有量が25~90質量%である熱可塑性ポリエステルエラストマー(A)100質量部に対して、結晶核剤(B)0.05~9.5質量部、及び増粘剤(C)0~4.5質量部の割合で含有することを特徴とするカウンタープレッシャーを用いた発泡成形用熱可塑性ポリエステルエラストマー樹脂組成物。 A hard segment made of a polyester composed of an aromatic dicarboxylic acid and an aliphatic and / or alicyclic diol, and at least one soft segment selected from aliphatic polyethers, aliphatic polyesters, and aliphatic polycarbonates. 0.05 to 9.5 parts by mass of a crystal nucleating agent (B) and a thickener with respect to 100 parts by mass of a thermoplastic polyester elastomer (A) that is bonded and has a soft segment content of 25 to 90% by mass. (C) A thermoplastic polyester elastomer resin composition for foam molding using counterpressure, characterized by containing 0 to 4.5 parts by mass.
  2.  結晶核剤(B)が炭素数3~40の有機カルボン酸のアルカリ金属塩またはアルカリ土類金属塩であることを特徴とする、請求項1に記載の熱可塑性ポリエステルエラストマー樹脂組成物。 The thermoplastic polyester elastomer resin composition according to claim 1, wherein the crystal nucleating agent (B) is an alkali metal salt or alkaline earth metal salt of an organic carboxylic acid having 3 to 40 carbon atoms.
  3.  増粘剤(C)がエポキシ基を有する反応性化合物であることを特徴とする、請求項1に記載の熱可塑性ポリエステルエラストマー樹脂組成物。 The thermoplastic polyester elastomer resin composition according to claim 1, wherein the thickener (C) is a reactive compound having an epoxy group.
  4.  降温結晶化温度TC2が105℃~200℃であることを特徴とする、請求項1に記載の熱可塑性ポリエステルエラストマー樹脂組成物。 The thermoplastic polyester elastomer resin composition according to claim 1, characterized in that the cooling crystallization temperature TC2 is from 105°C to 200°C.
  5.  荷重2,160g、測定温度230℃におけるMFRが、5~30g/10minであることを特徴とする、請求項1に記載の熱可塑性ポリエステルエラストマー樹脂組成物。 The thermoplastic polyester elastomer resin composition according to claim 1, characterized in that the MFR at a load of 2,160 g and a measurement temperature of 230°C is 5 to 30 g/10 min.
  6.  請求項1~5のいずれかに記載の熱可塑性ポリエステルエラストマー樹脂組成物が連続相をなす発泡成形体であり、該発泡成形体の表面から1000μmの深さまでの表面層として、気泡密度が10%以下である非発泡部分が存在しない発泡領域のみからなる表面層で構成される発泡成形体であるか、もしくは、前記非発泡部分が存在する発泡領域と前記非発泡部分が存在しない発泡領域が混在する表面層を有する発泡成形体であり、密度が0.01~0.70g/cmである発泡成形体。 The thermoplastic polyester elastomer resin composition according to any one of claims 1 to 5 is a foam molded article forming a continuous phase, and the surface layer of the foam molded article to a depth of 1000 µm has a cell density of 10%. A foamed molded article composed of a surface layer consisting only of a foamed region without non-foamed portions, or a foamed region with the non-foamed portion and a foamed region without the non-foamed portion. A foamed molded article having a surface layer with a density of 0.01 to 0.70 g/cm 3 .
  7.  前記表面層の非発泡部分が存在しない発泡領域に、気泡の平均アスペクト比が4.0~15.0である扁平気泡層を有することを特徴とする請求項6に記載の発泡成形体。 The foamed molded article according to claim 6, wherein the foamed region of the surface layer where there is no non-foamed portion has a flat cell layer with an average aspect ratio of cells of 4.0 to 15.0.
  8.  さらに、表面から1000μmより深い内層に気泡の平均アスペクト比が1.0~2.0である円形気泡層を有することを特徴とする請求項6に記載の発泡成形体。 The foamed molded article according to claim 6, further comprising a circular cell layer having an average aspect ratio of cells of 1.0 to 2.0 in an inner layer deeper than 1000 µm from the surface.
  9.  反発弾性率が50~90%であることを特徴とする、請求項6に記載の発泡成形体。 The foam molded article according to claim 6, characterized by having a rebound resilience of 50 to 90%.
  10.  内層の円形気泡層の気泡における、平均セル径が10~350μmであり、最大セル径が100~1000μmである、請求項8に記載の発泡成形体。
     
     
    9. The foam molded article according to claim 8, wherein the cells of the circular cell layer of the inner layer have an average cell diameter of 10 to 350 μm and a maximum cell diameter of 100 to 1000 μm.

PCT/JP2022/032961 2021-09-08 2022-09-01 Thermoplastic polyester elastomer resin composition and foam molded article WO2023037957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021146299 2021-09-08
JP2021-146299 2021-09-08

Publications (1)

Publication Number Publication Date
WO2023037957A1 true WO2023037957A1 (en) 2023-03-16

Family

ID=85506664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032961 WO2023037957A1 (en) 2021-09-08 2022-09-01 Thermoplastic polyester elastomer resin composition and foam molded article

Country Status (2)

Country Link
TW (1) TW202328335A (en)
WO (1) WO2023037957A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06506724A (en) * 1991-04-05 1994-07-28 マサチユーセツツ・インステイテユート・オブ・テクノロジー Ultra-microporous foam material
JP2004269583A (en) * 2003-03-05 2004-09-30 Idemitsu Petrochem Co Ltd Thermoplastic resin composition for foaming and its foamed product
JP2008088209A (en) * 2006-09-29 2008-04-17 Asahi Kasei Chemicals Corp Polyester resin composition foam sheet and method for producing the same
WO2017150668A1 (en) * 2016-03-04 2017-09-08 東洋紡株式会社 Polyester elastomer resin composition for blow molding
WO2019065507A1 (en) * 2017-09-27 2019-04-04 東洋紡株式会社 Thermoplastic polyester elastomer resin composition, and molded foam body thereof
JP2019218457A (en) * 2018-06-19 2019-12-26 東洋紡株式会社 Thermoplastic polyester elastomer composition, thermoplastic polyester elastomer foam molding and method for producing the same
JP2020012040A (en) * 2018-07-17 2020-01-23 東洋紡株式会社 Thermoplastic polyester elastomer resin composition and foamed molding thereof
JP2020056009A (en) * 2018-09-26 2020-04-09 Mcppイノベーション合同会社 Polyester thermoplastic elastomer composition and molding thereof
WO2022085592A1 (en) * 2020-10-20 2022-04-28 東洋紡株式会社 Foam molded article and method for producing same
WO2022085593A1 (en) * 2020-10-20 2022-04-28 東洋紡株式会社 Polyester elastomer resin composition and foam molded body

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06506724A (en) * 1991-04-05 1994-07-28 マサチユーセツツ・インステイテユート・オブ・テクノロジー Ultra-microporous foam material
JP2004269583A (en) * 2003-03-05 2004-09-30 Idemitsu Petrochem Co Ltd Thermoplastic resin composition for foaming and its foamed product
JP2008088209A (en) * 2006-09-29 2008-04-17 Asahi Kasei Chemicals Corp Polyester resin composition foam sheet and method for producing the same
WO2017150668A1 (en) * 2016-03-04 2017-09-08 東洋紡株式会社 Polyester elastomer resin composition for blow molding
WO2019065507A1 (en) * 2017-09-27 2019-04-04 東洋紡株式会社 Thermoplastic polyester elastomer resin composition, and molded foam body thereof
JP2019218457A (en) * 2018-06-19 2019-12-26 東洋紡株式会社 Thermoplastic polyester elastomer composition, thermoplastic polyester elastomer foam molding and method for producing the same
JP2020012040A (en) * 2018-07-17 2020-01-23 東洋紡株式会社 Thermoplastic polyester elastomer resin composition and foamed molding thereof
JP2020056009A (en) * 2018-09-26 2020-04-09 Mcppイノベーション合同会社 Polyester thermoplastic elastomer composition and molding thereof
WO2022085592A1 (en) * 2020-10-20 2022-04-28 東洋紡株式会社 Foam molded article and method for producing same
WO2022085593A1 (en) * 2020-10-20 2022-04-28 東洋紡株式会社 Polyester elastomer resin composition and foam molded body

Also Published As

Publication number Publication date
TW202328335A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
JP6358369B1 (en) Thermoplastic polyester elastomer resin foam molding and method for producing the same
JP7103003B2 (en) Thermoplastic polyester elastomer resin composition and foam molded article thereof
JP7256981B2 (en) Sound absorbing material made of thermoplastic polyester elastomer resin foam
JP7054448B2 (en) Thermoplastic polyester elastomer foam molded article and its manufacturing method
JP6358368B1 (en) Thermoplastic polyester elastomer resin composition and foamed molded article thereof
WO2020017450A1 (en) Thermoplastic polyester elastomer resin foam molded body and method for producing same
JP2019218457A (en) Thermoplastic polyester elastomer composition, thermoplastic polyester elastomer foam molding and method for producing the same
TWI770285B (en) Thermoplastic polyester elastomer resin composition and its foam molding
WO2022085593A1 (en) Polyester elastomer resin composition and foam molded body
JP7088398B2 (en) Foam molded product
WO2023037957A1 (en) Thermoplastic polyester elastomer resin composition and foam molded article
JP2022143482A (en) Thermoplastic polyester elastomer resin composition, and foam molding formed from the same
JP7147285B2 (en) Thermoplastic polyester elastomer composition, thermoplastic polyester elastomer foam molded article and method for producing the same
JP7059822B2 (en) Thermoplastic polyester elastomer foam molded article and its manufacturing method
JP7088362B1 (en) Foam molded product and its manufacturing method
CN116583395A (en) Polyester elastomer resin composition and foam molded article
JP2023114927A (en) Polyester elastomer resin composition and foam molding
CN116507471A (en) Foam molded article and method for producing same
JP2022142551A (en) foam molding

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023518470

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867279

Country of ref document: EP

Kind code of ref document: A1