WO2023037925A1 - Elastic wave filter and multiplexer - Google Patents

Elastic wave filter and multiplexer Download PDF

Info

Publication number
WO2023037925A1
WO2023037925A1 PCT/JP2022/032490 JP2022032490W WO2023037925A1 WO 2023037925 A1 WO2023037925 A1 WO 2023037925A1 JP 2022032490 W JP2022032490 W JP 2022032490W WO 2023037925 A1 WO2023037925 A1 WO 2023037925A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
filter
idt electrodes
filter circuit
frequency
Prior art date
Application number
PCT/JP2022/032490
Other languages
French (fr)
Japanese (ja)
Inventor
徹 山路
秀紀 松井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023037925A1 publication Critical patent/WO2023037925A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave filter and a multiplexer provided with this elastic wave filter.
  • Acoustic wave filters with acoustic wave resonators have been known.
  • this type of acoustic wave filter there is a filter circuit whose pass band is a predetermined frequency band, and a cancellation circuit having a canceling component of opposite phase and same amplitude as the above filter circuit in order to improve attenuation characteristics outside the pass band. and an elastic wave filter are disclosed (see Patent Documents 1 and 2).
  • Patent Documents 1 and 2 By providing the acoustic wave filter with the canceling circuit, it is possible to improve the attenuation characteristics and the like of the acoustic wave filter.
  • the acoustic wave filter described in Patent Document 1 has a problem that the resonance frequency of the canceling circuit is far from the passband of the filter circuit, and the attenuation amount in the attenuation band of the filter circuit cannot be sufficiently secured.
  • the acoustic wave filter described in Patent Document 2 has a problem that the resonance frequency of the canceling circuit is too close to the passband of the filter circuit, and the power consumption of the acoustic wave filter increases. When the power consumption increases, the life of the acoustic wave filter may be shortened.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an acoustic wave filter or the like capable of ensuring attenuation in the attenuation band and reducing power consumption.
  • an elastic wave filter provides a first terminal, a second terminal, and a first terminal provided on a first path connecting the first terminal and the second terminal.
  • a filter circuit ; and an additional circuit provided in a second path connected in parallel with at least part of the first path, the additional circuit having a longitudinally coupled elastic wave resonator, and the longitudinally coupled elastic wave resonator.
  • the acoustic wave resonator has a plurality of IDT electrodes arranged along an acoustic wave propagation direction, and among the plurality of IDT electrodes, the first electrodes on the first terminal side when viewed from the longitudinally coupled acoustic wave resonator.
  • an elastic wave filter provides a first terminal, a second terminal, and a first terminal provided on a first path connecting the first terminal and the second terminal.
  • a filter circuit ; and an additional circuit provided in a second path connected in parallel with at least part of the first path, the additional circuit having a longitudinally coupled elastic wave resonator, and the longitudinally coupled elastic wave resonator.
  • the wave resonator has a plurality of IDT electrodes arranged along an elastic wave propagation direction
  • the first filter circuit includes a plurality of other IDTs different from the plurality of IDT electrodes of the longitudinally coupled acoustic wave resonator.
  • a piston mode is applied to at least some of the other plurality of IDT electrodes that are configured with electrodes and included in the first filter circuit, and a piston mode is applied to the plurality of IDT electrodes that are included in the additional circuit.
  • an elastic wave filter provides a first terminal, a second terminal, and a first terminal provided on a first path connecting the first terminal and the second terminal.
  • a filter circuit ; and an additional circuit provided in a second path connected in parallel with at least part of the first path, the additional circuit having a longitudinally coupled elastic wave resonator, and the longitudinally coupled elastic wave resonator.
  • the wave resonator has a plurality of IDT electrodes arranged along an elastic wave propagation direction
  • the first filter circuit includes a plurality of other IDTs different from the plurality of IDT electrodes of the longitudinally coupled acoustic wave resonator.
  • Each of the other plurality of IDT electrodes included in the first filter circuit and the plurality of IDT electrodes included in the additional circuit, each of which is composed of electrodes, includes a pair of first comb-shaped electrodes and a second comb-like electrode.
  • Each of the first comb-shaped electrode and the second comb-shaped electrode includes a bus bar electrode extending in the elastic wave propagation direction and a bus bar electrode connected to the bus bar electrode and perpendicular to the elastic wave propagation direction.
  • intersecting electrode fingers of the first comb-shaped electrode and the offset electrode fingers of the second comb-shaped electrode are The intersecting electrode fingers of the second comb-shaped electrode and the offset electrode fingers of the first comb-shaped electrode, which are opposed to each other in the orthogonal direction, are opposed to each other in the orthogonal direction, and are arranged in the additional circuit.
  • a space between the intersecting electrode fingers and the offset electrode fingers facing each other in the orthogonal direction is wider than a space between the intersecting electrode fingers and the offset electrode fingers facing each other in the orthogonal direction in the first filter circuit.
  • the multiplexer is characterized in that the predetermined frequency within the attenuation band is the highest frequency of the pass band of the second filter circuit different from the first filter circuit. a wave filter and another filter comprising the second filter circuit.
  • an elastic wave filter provides a first terminal, a second terminal, and a first terminal provided on a first path connecting the first terminal and the second terminal.
  • a filter circuit ; and an additional circuit provided in a second path connected in parallel with at least part of the first path, the additional circuit having a longitudinally coupled elastic wave resonator, and the longitudinally coupled elastic wave resonator.
  • the acoustic wave resonator has a plurality of IDT electrodes arranged along an acoustic wave propagation direction, and among the plurality of IDT electrodes, the first electrodes on the first terminal side when viewed from the longitudinally coupled acoustic wave resonator.
  • fiy be the frequency corresponding to the wavelength when the average pitch of the electrode fingers of the IDT electrodes connected to the path is 1/2 wavelength, and the average of the arrangement pitch of the electrode fingers of the IDT electrodes connected to the first path on the second terminal side is assumed to be 1/2 wavelength, and the frequency corresponding to the wavelength is foy, and the frequency passing through the first filter circuit is foy. If fL3 is the lowest frequency of the band and fL4 is a predetermined frequency in the attenuation band located on the lower frequency side than the pass band of the first filter circuit, then there is a relationship of fiy ⁇ 0.945 ⁇ fL3. and fL4 ⁇ foy ⁇ 0.965 ⁇ fL3.
  • the multiplexer according to one aspect of the present invention is characterized in that the predetermined frequency within the attenuation band is the lowest frequency of the pass band of the second filter circuit different from the first filter circuit. a wave filter and another filter comprising the second filter circuit.
  • the acoustic wave filter and the like according to the present invention it is possible to secure the attenuation amount in the attenuation band and reduce the power consumption.
  • FIG. 1 is a circuit configuration diagram of a multiplexer having an elastic wave filter according to Embodiment 1.
  • FIG. FIG. 2 is a diagram showing the layout of each element included in the multiplexer according to the first embodiment.
  • FIG. 3 is a diagram showing passbands and attenuation bands of the elastic wave filter according to Embodiment 1.
  • FIG. 4 is a diagram schematically showing a state in which each element of the acoustic wave filter according to Embodiment 1 is provided on the piezoelectric substrate and the package substrate.
  • FIG. 5 is a diagram showing an additional circuit of the acoustic wave filter according to Embodiment 1.
  • FIG. 6 is a plan view and a cross-sectional view schematically showing the structure of a longitudinally coupled acoustic wave resonator included in the additional circuit.
  • FIG. 7 is a diagram showing power consumption of the acoustic wave filter of Embodiment 1.
  • FIG. 8 is a diagram showing the power consumption of the acoustic wave filter when the frequency ratio on the input side of the longitudinally coupled acoustic wave resonator is changed.
  • FIG. 9 is a diagram showing the power consumption of the acoustic wave filter when the frequency ratio on the output side of the longitudinally coupled acoustic wave resonator is changed.
  • FIG. 10 is a diagram showing the power consumption of the acoustic wave filter when changing the frequency ratio between the input side and the output side of the longitudinally coupled acoustic wave resonator.
  • FIG. 11 is a diagram showing power consumption when the number of reflectors in the additional circuit of the elastic wave filter according to Modification 1 of Embodiment 1 is changed.
  • 12A and 12B are a plan view and a cross-sectional view of an IDT electrode included in a first filter circuit of an acoustic wave filter according to Modification 2 of Embodiment 1.
  • FIG. 13A and 13B are a plan view and a cross-sectional view of an IDT electrode included in an additional circuit of an elastic wave filter according to Modification 2 of Embodiment 1.
  • FIG. 14 is a diagram showing another example of IDT electrodes included in the first filter circuit.
  • FIG. 15 is a diagram showing another example of IDT electrodes included in the first filter circuit.
  • FIG. 16 is a diagram showing another example of IDT electrodes included in the first filter circuit.
  • FIG. 17 is a diagram showing the withstand power of the elastic wave filter according to Modification 2 of Embodiment 1.
  • FIG. 18 is a plan view showing an IDT electrode included in the first filter circuit of the acoustic wave filter according to Modification 3 of Embodiment 1.
  • FIG. 19 is a plan view showing an IDT electrode included in an additional circuit of an acoustic wave filter according to Modification 3 of Embodiment 1.
  • FIG. 20 is a cross-sectional view showing a dielectric layer formed on the IDT electrodes of the first filter circuit and the additional circuit of the elastic wave filter according to Modification 4 of Embodiment 1.
  • FIG. 21 is a circuit configuration diagram of a multiplexer including an elastic wave filter according to Modification 5 of Embodiment 1.
  • FIG. 22 is a circuit configuration diagram of a multiplexer including an acoustic wave filter according to Embodiment 2.
  • FIG. FIG. 23 is a diagram showing passbands and attenuation bands of the elastic wave filter according to the second embodiment.
  • FIG. 1 is a circuit configuration diagram of a multiplexer 5 including an acoustic wave filter 1 according to Embodiment 1.
  • FIG. FIG. 2 is a diagram showing the layout of each element included in the multiplexer 5. As shown in FIG.
  • the multiplexer 5 is a demultiplexer or multiplexer with multiple filters.
  • the multiplexer 5 includes an elastic wave filter 1 having a first filter circuit 10 and an additional circuit 20 and a second filter circuit 50 . Further, the multiplexer 5 is connected to the first terminal T1 connected to the elastic wave filter 1, the second terminal T2 connected to both the elastic wave filter 1 and the second filter circuit 50, and the second filter circuit 50. and a third terminal T3.
  • the first terminal T1 is a terminal on the signal input side of the acoustic wave filter 1.
  • the first terminal T1 is connected to an RF signal processing circuit (not shown) via an amplifier circuit or the like (not shown).
  • the second terminal T2 is a terminal on the signal output side of the acoustic wave filter 1, and a terminal on the signal input side of the second filter circuit 50. That is, the second terminal T2 is a common terminal of the acoustic wave filter 1 and the second filter circuit 50.
  • FIG. The second terminal T2 has a node n0 between the elastic wave filter 1 and the second terminal T2 as a branch point, one branched path is connected to the elastic wave filter 1, and the other branched path is the second filter circuit. 50.
  • the second terminal T2 is connected to an antenna element (not shown).
  • the third terminal T3 is a signal output side terminal of the second filter circuit 50 .
  • the third terminal T3 is connected to an RF signal processing circuit (not shown) via an amplifier circuit or the like (not shown).
  • the elastic wave filter 1 is arranged on the first route r1 connecting the first terminal T1 and the second terminal T2.
  • the acoustic wave filter 1 includes a first filter circuit 10 and an additional circuit 20 additionally connected to the first filter circuit 10 .
  • a high-frequency signal input to the first terminal T1 is output from the second terminal T2 through the parallel-connected first path r1 and second path r2.
  • the first filter circuit 10 is a filter circuit having a passband of a predetermined frequency band defined by communication standards.
  • the elastic wave filter 1 including the first filter circuit 10 is, for example, a transmission filter whose passband is the upstream frequency band (transmission band), and is set so that the passband is lower than that of the second filter circuit 50 .
  • the additional circuit 20 is a canceling circuit having a canceling component of the opposite phase and the same amplitude as the first filter circuit 10 in order to improve the attenuation characteristics outside the passband of the first filter circuit 10 .
  • the additional circuit 20 is provided on a second route r2 connected in parallel to at least part of the first route r1.
  • the additional circuit 20 has a longitudinally coupled acoustic wave resonator 25.
  • the longitudinally coupled acoustic wave resonator 25 comprises a plurality of IDT (InterDigital Transducer) electrodes 31, 32, 33 and 34 arranged along the acoustic wave propagation direction. have.
  • a high-frequency signal transmitted through the second path r2 is input to the IDT electrodes 31 and 33 and output from the IDT electrodes 32 and .
  • the second filter circuit 50 is arranged on a third route r3 connecting the second terminal T2 and the third terminal T3.
  • the second filter circuit 50 has a passband that is different from the passband of the first filter circuit 10 .
  • the second filter circuit 50 is, for example, a reception filter whose passband is the downlink frequency band (reception band).
  • the second filter circuit 50 includes, for example, a series arm resonator S21, a plurality of parallel arm resonators P21 and P22, and an elastic wave resonator Q21.
  • the multiplexer 5 for example, Band 8 (transmitting band: 880 MHz-915 MHz, receiving band: 925 MHz-960 MHz) or Band 3 (transmitting band: 1710 MHz-1785 MHz, receiving band: 1805 MHz-1880 MHz) High frequency signal is input and output. .
  • the elastic wave filter 1 of the present embodiment has the configuration shown below in order to secure the attenuation amount in the attenuation band and to reduce the power consumption.
  • FIG. 3 is a diagram showing the passband and attenuation band of the acoustic wave filter 1.
  • FIG. The figure also shows the pass band of the second filter circuit 50 .
  • FIG. 3 shows the lowest frequency fL1 and the highest frequency fH1 of the passband of the first filter circuit 10.
  • FIG. 3 also shows the predetermined frequency fH2 of the attenuation band located on the higher frequency side than the pass band of the first filter circuit 10.
  • the predetermined frequency fH2 is, for example, the highest frequency of the passband of the second filter circuit 50 .
  • a frequency fL2 within the attenuation band in the figure is, for example, the lowest frequency of the passband of the second filter circuit 50 .
  • the frequency corresponding to the wavelength of the elastic wave when the total average of the arrangement pitch of the electrode fingers of the plurality of IDT electrodes 31 to 34 of the longitudinally coupled acoustic wave resonator 25 is 1/2 wavelength ( ⁇ /2) is Define fx.
  • the arrangement pitch of the electrode fingers is the center-to-center distance between two adjacent electrode fingers in the elastic wave propagation direction.
  • a frequency corresponding to a wavelength is calculated by dividing the speed of sound by the wavelength.
  • the frequency corresponding to the wavelength can also be derived as the resonance frequency by contacting a measurement probe to each IDT electrode and measuring the reflection characteristics.
  • the average arrangement pitch of the electrode fingers of the IDT electrodes 31 and 33 connected to the first path r1 on the first terminal T1 side when viewed from the longitudinally coupled acoustic wave resonator 25 is A frequency corresponding to a wavelength of 1/2 wavelength ( ⁇ /2) is defined as fix.
  • the average arrangement pitch of the electrode fingers of the IDT electrodes 32 and 34 connected to the first path r1 on the second terminal T2 side when viewed from the longitudinally coupled acoustic wave resonator 25 is A frequency corresponding to a wavelength of 1/2 wavelength ( ⁇ /2) is defined as fox.
  • the elastic wave filter 1 is (1) 1.055 ⁇ fH1 ⁇ fix, and (2) 1.035 ⁇ fH1 ⁇ fox ⁇ fH2 It has a relationship of According to this configuration, the attenuation in the attenuation band of the acoustic wave filter 1 can be ensured, and power consumption can be reduced.
  • frequency fix and frequency fox are not too close to the passband of elastic wave filter 1.
  • the attenuation amount in the attenuation band can be ensured by making the frequency fox lower than the predetermined frequency fH2 and within the attenuation band.
  • the frequency fx calculated from the overall average of the arrangement pitches of the electrode fingers of the IDT electrodes 31 to 34 is preferably fx ⁇ 1.15 ⁇ fH1. .
  • the elastic wave filter 1 has the first filter circuit 10 and the additional circuit 20 .
  • the first filter circuit 10 of the acoustic wave filter 1 will be described with reference to FIGS. 1 to 4.
  • FIG. 1 the first filter circuit 10 of the acoustic wave filter 1 will be described with reference to FIGS. 1 to 4.
  • the first filter circuit 10 includes series arm resonators S11, S12, S13, S14 and S15 and parallel arm resonators P11, P12, P13 and P14, which are elastic wave resonators.
  • the series arm resonators S11 to S15 are arranged on a first path r1 connecting the first terminal T1 and the second terminal T2.
  • the series arm resonators S11 to S15 are connected in series in this order from the first terminal T1 toward the second terminal T2.
  • the parallel arm resonators P11 to P14 are arranged on a path connecting each node n1, n2, n3, n4 between the series arm resonators S11 to S15 arranged on the first path r1 and the ground (reference terminal).
  • the parallel arm resonator P11 closest to the series arm resonator S11 has one end connected to the node n1 between the series arm resonators S11 and S12. , and the other end is connected to the ground via an inductor L11.
  • the parallel arm resonator P11 is composed of two resonators connected in parallel, that is, two divided resonators.
  • the parallel arm resonator P12 has one end connected to a node n2 between the series arm resonators S12 and S13, and the other end connected to the ground via the inductor L11.
  • the parallel arm resonator P13 has one end connected to a node n3 between the series arm resonators S13 and S14, and the other end connected to the ground via the inductor L12.
  • the parallel arm resonator P14 has one end connected to a node n4 between the series arm resonators S14 and S15, and the other end connected to the ground via the inductor L12.
  • the other ends of the parallel arm resonators P11 and P12 are made common by wire connection and connected to the inductor L11, and the other ends of the parallel arm resonators P13 and P14 are made common by wire connection and connected to the inductor L12. It is Each element of these elastic wave filters 1 is provided on the piezoelectric substrate 320 and the package substrate 330 .
  • FIG. 4 is a diagram showing a state in which each element of the acoustic wave filter 1 is provided on the piezoelectric substrate 320 and the package substrate 330.
  • FIG. 4 also shows the multiplexer 5 including the elastic wave filter 1 and the second filter circuit 50 .
  • the piezoelectric substrate 320 is the substrate on which the main part of the multiplexer 5 is provided.
  • the piezoelectric substrate 320 is provided with the series arm resonators S11 to S15, the parallel arm resonators P11 to P14, the additional circuit 20, and the second filter circuit 50 described above. Further, the piezoelectric substrate 320 is provided with a meandering resistance element R13 (see FIG. 2).
  • the resistance element R13 is provided on a path connecting the parallel arm resonator P14 and the parallel arm resonator P21 of the second filter circuit 50. As shown in FIG.
  • the package substrate 330 is a substrate on which the piezoelectric substrate 320 is mounted.
  • the package substrate 330 is provided with the inductors L11 and L12 described above.
  • the first filter circuit 10 includes five series arm resonators S11 to S15 arranged on a first path r1 and It has a ⁇ -type ladder filter structure composed of four parallel arm resonators P11 to P14.
  • the number of series arm resonators and parallel arm resonators constituting the first filter circuit 10 is not limited to five or four, and the number of series arm resonators is one or more and the number of parallel arm resonators is one or more. If it is Also, an inductor may be provided between the parallel arm resonator and the ground.
  • FIG. The additional circuit 20 is a circuit that suppresses the unwanted waves from being output from the elastic wave filter 1 by applying an opposite phase to the unwanted waves outside the passband of the first filter circuit 10 .
  • the additional circuit 20 is provided on a second route r2 that is connected in parallel to at least part of the first route r1.
  • the additional circuit 20 is connected to multiple nodes on the first route r1.
  • FIG. 5 is a diagram showing the additional circuit 20 of the elastic wave filter 1.
  • the longitudinally coupled acoustic wave resonator 25 of the additional circuit 20 shown in FIG. 5 has a plurality of IDT electrodes 31, 32, 33 and .
  • a plurality of IDT electrodes 31, 32, 33, 34 are arranged in this order along the elastic wave propagation direction d1.
  • the additional circuit 20 has a plurality of reflectors 41 and 42 .
  • the plurality of reflectors 41 and 42 are positioned on both outer sides of the IDT electrodes 31 to 34 so as to sandwich the plurality of IDT electrodes 31 to 34 in the elastic wave propagation direction d1.
  • the IDT electrodes 31 and 33 are connected to the first path r1 on the first terminal T1 side when viewed from the longitudinally coupled acoustic wave resonator 25.
  • the IDT electrodes 32 and 34 are connected to the first path r1 on the second terminal T2 side when viewed from the longitudinally coupled acoustic wave resonator 25 .
  • the IDT electrodes 31 and 33 are connected to the first path r1 on the first terminal T1 side when viewed from the series arm resonators S14 and S15 connected in parallel to the longitudinally coupled acoustic wave resonator 25, and the IDT electrodes 32 , 34 are connected to the first path r1 on the second terminal T2 side as viewed from the series arm resonators S14 and S15.
  • the second path r2 has two partial paths r21 and r23 connected to the first terminal T1 side when viewed from the longitudinally coupled acoustic wave resonator 25.
  • a partial path r21 is a path connecting the ground and the node n3
  • a partial path r23 is a path connecting the ground and the node n2.
  • a capacitive element C10 is provided on a route connecting the partial route r21 and the partial route r23.
  • An IDT electrode 31 is arranged on the partial route r21, and an IDT electrode 33 is arranged on the partial route r23.
  • the second path r2 has two partial paths r22 and r24 connected to the second terminal T2 side when viewed from the longitudinally coupled acoustic wave resonator 25 .
  • a partial path r22 is a path connecting the ground and the node n5
  • a partial path r24 is a path connecting the ground and the node n5.
  • An IDT electrode 32 and a capacitive element C2 are arranged on the partial route r22, and an IDT electrode 34 and a capacitive element C4 are arranged on the partial route r24.
  • node n5 is a node located on the path connecting the node n0 and the series arm resonator S15.
  • Node n5 may be the same as node n0.
  • the partial paths r22 and r24 may be connected and connected to the node n5, or may be connected to the node n5 respectively without being connected.
  • partial route r21 is connected to node n3
  • partial route r23 is connected to node n2
  • partial routes r22 and r24 are connected to node n5, but the present invention is not limited to this.
  • Each of the partial paths r21, r23 and the partial paths r22, r24 may be connected to both outer nodes of the one or more series arm resonators arranged on the first path r1.
  • partial paths r21 and r23 may be connected to node n1, or may be connected to a node on first path r1 connecting first terminal T1 and series arm resonator S11.
  • partial paths r22 and r24 may be connected to node n4.
  • the longitudinally coupled acoustic wave resonator 25 is composed of, for example, a plurality of SAW (Surface Acoustic Wave) resonators.
  • FIG. 6A and 6B are a plan view and a cross-sectional view schematically showing the structure of the longitudinally coupled acoustic wave resonator 25 included in the additional circuit 20.
  • the longitudinally coupled acoustic wave resonator 25 is composed of a piezoelectric substrate 320 having piezoelectricity and a plurality of IDT electrodes 31 to 34 formed on the piezoelectric substrate 320 .
  • a plurality of reflectors 41 and 42 are provided on both sides of the longitudinally coupled acoustic wave resonator 25 in the acoustic wave propagation direction d1.
  • the longitudinally coupled acoustic wave resonator 25 and the electrodes of the plurality of reflectors 41 and 42 constitute the piezoelectric substrate 320, the IDT electrodes 31-34 and the electrodes of the reflectors 41 and 42. and a dielectric layer 326 provided on the piezoelectric substrate 320 to cover the IDT electrodes 31-34 and the reflectors 41 and .
  • the piezoelectric substrate 320 is, for example, a LiNbO 3 substrate (lithium niobate substrate) with a cut angle of 127.5°.
  • the cut angle of the piezoelectric substrate 320 is desirably 120° ⁇ 20° or 300° ⁇ 20°.
  • the electrode layer 325 has a structure in which a plurality of metal layers are laminated.
  • the electrode layer 325 is formed by stacking, for example, a Ti layer, an Al layer, a Ti layer, a Pt layer, and a NiCr layer in this order from the top.
  • the dielectric layer 326 is, for example, a film whose main component is silicon dioxide (SiO 2 ).
  • the dielectric layer 326 is provided for the purpose of adjusting the frequency-temperature characteristics of the longitudinally coupled acoustic wave resonator 25, protecting the electrode layer 325 from the external environment, or increasing moisture resistance.
  • the dielectric layer 326 may be formed so that the series arm resonators S11 to S15 are thicker than the parallel arm resonators P11 to P14.
  • the dielectric layer 326 has the same thickness for the series arm resonator having the highest antiresonance frequency among the series arm resonators S11 to S15 and the IDT electrodes 31 to 34 of the longitudinally coupled acoustic wave resonator 25. It may be formed so as to be
  • each of the IDT electrodes 31-34 has a comb shape.
  • the IDT electrode 31 has a pair of a first comb-shaped electrode 31a and a second comb-shaped electrode 31b.
  • the IDT electrode 32 has a pair of a first comb-shaped electrode 32a and a second comb-shaped electrode 32b.
  • the IDT electrode 33 has a pair of a first comb-shaped electrode 33a and a second comb-shaped electrode 33b.
  • the IDT electrode 34 has a pair of a first comb-shaped electrode 34a and a second comb-shaped electrode 34b.
  • the first comb-shaped electrode 31a is connected to the node n3 through the partial route r21, and the first comb-shaped electrode 33a is connected to the node n2 through the partial route r23.
  • the first comb-shaped electrode 32a is connected to the node n5 through the partial route r22, and the first comb-shaped electrode 34a is connected to the node n5 through the partial route r24.
  • Each of the second comb-shaped electrodes 31b, 32b, 33b, and 34b is connected to the ground.
  • Each of the first comb-shaped electrodes 31a to 34a includes a busbar electrode 37a extending in the elastic wave propagation direction d1 and a plurality of electrode fingers 36a connected to the busbar electrode 37a and extending in the orthogonal direction d2 orthogonal to the elastic wave propagation direction d1. and
  • Each of the second comb-shaped electrodes 31b to 34b has a busbar electrode 37b extending in the acoustic wave propagation direction d1 and a plurality of electrode fingers 36b connected to the busbar electrode 37b and extending in the orthogonal direction d2.
  • the plurality of electrode fingers 36a and 36b are interposed in the orthogonal direction d2 and face the elastic wave propagation direction d1.
  • both the electrode fingers 36a and 36b may be referred to as the electrode finger 36 in some cases.
  • the resonance frequencies of the IDT electrodes 31 to 34 can be adjusted, for example, by changing the arrangement pitch p, which is the distance between the centers of the electrode fingers 36 adjacent to each other in the elastic wave propagation direction d1.
  • the arrangement pitch p of the electrode fingers 36 of the IDT electrode 31 is obtained by dividing the center-to-center distance between the two electrode fingers located at the outermost ends of the IDT electrode 31 by (the number of electrode fingers 36 of the IDT electrode 31 -1). Calculated by In the present embodiment, by setting the arrangement pitch p of the electrode fingers 36 to a predetermined condition, an increase in the power consumption of the elastic wave filter 1 is suppressed.
  • FIG. 7 is a diagram showing the power consumption of the elastic wave filter 1.
  • FIG. The power consumption shown in this figure and the following figures is the power consumption per unit area.
  • ⁇ in “mW/ ⁇ ”, which is the unit of power consumption, means logarithm ⁇ intersection width.
  • FIG. 7 shows the power consumption of the elastic wave filter 1 when a power of 29 dBm is input to the elastic wave filter 1 .
  • the broken-line waveform in the figure is the power consumption of the elastic wave filter 1 of the first comparative example, and the solid-line waveform is the power consumption of the elastic wave filter 1 of the first embodiment.
  • the figure also shows the lowest frequency fL1 and the highest frequency fH1 of the passband of the acoustic wave filter 1.
  • FIG. 7 shows the electrode parameters of the IDT electrode of the additional circuit 20 of the elastic wave filter 1 of Comparative Example 1, and (c) of FIG. Electrode parameters for 20 IDT electrodes are shown.
  • (b) and (c) of FIG. 7 show, as electrode parameters, the logarithm of the IDT electrodes 31 to 34, the wavelength ⁇ , the arrangement pitch p of the electrode fingers 36, and the like.
  • the wavelength ⁇ of the IDT electrodes 31 to 34 corresponds to twice the arrangement pitch p of the electrode fingers 36 .
  • the IDT electrodes 31 to 34 have a duty of 0.5 and an intersection width of 17.5 ⁇ .
  • the figure also shows the frequency ratio corresponding to each of the IDT electrodes 31-34.
  • Each frequency ratio has the highest frequency fH1 (915 MHz in this example) of the passband as the denominator, and the frequency corresponding to the wavelength when the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 to 34 is 1/2 wavelength. is the value when is the numerator.
  • the frequency corresponding to the wavelength is calculated by dividing the speed of sound (3506 m/s in this example) by the wavelength.
  • the figure shows the input-side frequency ratio (fix/fH1), which is the frequency ratio of the IDT electrodes 31 and 33 to which high-frequency signals are input.
  • the figure also shows the output-side frequency ratio (fox/fH1), which is the frequency ratio of the IDT electrodes 32 and 34 that output high-frequency signals.
  • the frequency fix is a frequency corresponding to the wavelength when the average of the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 and 33 is 1/2 wavelength
  • the frequency fox is the frequency corresponding to the electrode fingers of the IDT electrodes 32 and 34. It is the frequency corresponding to the wavelength when the average of the arrangement pitch p of 36 is set to 1/2 wavelength.
  • the frequency ratio on the input side is (frequency ratio of IDT electrode 31 ⁇ logarithm of IDT electrode 31/sum of logarithms of IDT electrodes 31 and 33). +(Frequency ratio of IDT electrode 33 ⁇ logarithm of IDT electrode 33/sum of logarithms of IDT electrodes 31 and 33).
  • the frequency ratio on the output side is (frequency ratio of IDT electrode 32 ⁇ logarithm of IDT electrode 32/sum of logarithms of IDT electrodes 32 and 34)+(frequency ratio of IDT electrode 34 ⁇ logarithm of IDT electrode 34/IDT electrode 32, 34 logarithms).
  • the excitation response of the longitudinally coupled acoustic wave resonator 25 having the IDT electrodes 31 to 34 is higher than the passband of the acoustic wave filter 1, that is, the power It is located on the high frequency side of the injection point.
  • the elastic wave filter 1 according to the first embodiment can reduce the power consumption at the power input point.
  • the power consumption is smaller than that of the acoustic wave filter 1 of Comparative Example 1 in 900 MHz to 915 MHz, which is part of the passband. Therefore, the difference in power consumption due to the difference in the electrode parameters of the IDT electrodes 31 to 34 will be further described.
  • FIG. 8 is a diagram showing power consumption of the acoustic wave filter 1 when the frequency ratio on the input side of the longitudinally coupled acoustic wave resonator 25 is changed.
  • the power consumption shown in this figure and the following figures is the power consumption at the highest frequency fH1 of the passband.
  • the figure shows the power consumption when the frequency ratio (fox/fH1) on the output side of the longitudinally coupled acoustic wave resonator 25 is fixed at 1.036 and the frequency ratio (fix/fH1) on the input side is changed. It is The logarithm, duty and intersection width of the IDT electrodes 31 to 34 are the same as in FIG. 7(c). In the following evaluation, power consumption of about 5.00E ⁇ 3 dBm was assumed to be low enough to prevent failures such as disconnection.
  • the acoustic wave filter 1 consumes a large amount of power when the frequency ratio on the input side of the longitudinally coupled acoustic wave resonator 25 is 1.044, and consumes a large amount of power when the frequency ratio is 1.055 and 1.066. is getting smaller. That is, in the elastic wave filter 1, power consumption is reduced by setting the frequency fix calculated from the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 and 33 on the input side to a relationship of 1.055 ⁇ fH1 ⁇ fix. can be made smaller.
  • FIG. 9 is a diagram showing power consumption of the acoustic wave filter 1 when the frequency ratio on the output side of the longitudinally coupled acoustic wave resonator 25 is changed.
  • the figure shows the power consumption when the frequency ratio (fix/fH1) on the input side of the longitudinally coupled acoustic wave resonator 25 is fixed at 1.055 and the frequency ratio (fix/fH1) on the output side is changed. It is The logarithm, duty and intersection width of the IDT electrodes 31 to 34 are the same as in FIG. 7(c).
  • the acoustic wave filter 1 consumes a large amount of power when the frequency ratio on the output side of the longitudinally coupled acoustic wave resonator 25 is 1.033, and consumes a large amount of power when the frequency ratio is 1.036 and 1.04. is getting smaller. That is, in the elastic wave filter 1, power consumption is reduced by setting the frequency fox calculated from the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 32 and 34 on the output side to satisfy the relationship of 1.036 ⁇ fH1 ⁇ fox. can be made smaller.
  • FIG. 10 is a diagram showing power consumption of the acoustic wave filter 1 when the frequency ratio between the input side and the output side of the longitudinally coupled acoustic wave resonator 25 is changed.
  • the horizontal axis of FIG. 10 indicates the frequency ratio on the input side.
  • the duty and crossing width of the IDT electrodes 31 to 34 are the same as in FIG. 7(c).
  • the logarithm of the IDT electrodes 31 to 34 is 8.5, and the values are the same.
  • the frequency fx calculated from the total average of the arrangement pitches p of the electrode fingers of the IDT electrodes 31 to 34 is smaller than 1.15 times the frequency fH1 (fx ⁇ 1.15 ⁇ fH1).
  • Modification 1 of Embodiment 1 An acoustic wave filter 1A of Modification 1 of Embodiment 1 will be described.
  • Modification 1 the case where the number of electrode fingers of the reflectors 41 and 42 of the additional circuit 20 is changed will be described.
  • FIG. 11 is a diagram showing power consumption when changing the number of electrode fingers of the reflectors 41 and 42 of the additional circuit 20 of the acoustic wave filter 1A according to Modification 1.
  • FIG. 11 is a diagram showing power consumption when changing the number of electrode fingers of the reflectors 41 and 42 of the additional circuit 20 of the acoustic wave filter 1A according to Modification 1.
  • the frequency ratio (fox/fH1) on the output side of the longitudinally coupled acoustic wave resonator 25 is fixed at 1.036
  • the frequency ratio (fix/fH1) on the input side is fixed at 1.055
  • the reflection Power consumption is shown when the number of electrode fingers of the devices 41 and 42 is changed.
  • the number of electrode fingers of one reflector 41 is changed will be described below, the number of electrode fingers of the other reflector 42 is similarly changed.
  • the logarithm, duty and intersection width of the IDT electrodes 31 to 34 are the same as in FIG. 7(c).
  • the acoustic wave filter 1A consumes less power when the number of electrode fingers of the reflector 41 is 6 and 10, and increases when the number of electrode fingers is 15 or more. That is, in the elastic wave filter 1A, the number of electrode fingers of each of the plurality of reflectors 41 and 42 is reduced, specifically, to 10 or less, thereby reducing multiple reflection of the reflectors 41 and 42, thereby reducing the IDT. The excitation of the electrodes 31-34 can be weakened. Thereby, the power consumption of the elastic wave filter 1A can be reduced.
  • Modification 2 of Embodiment 1 An elastic wave filter 1B according to Modification 2 of Embodiment 1 will be described with reference to FIGS. 12 to 16.
  • FIG. 12A and 12B are a plan view and a cross-sectional view of an IDT electrode included in the first filter circuit 10 of the acoustic wave filter 1B according to Modification 2.
  • FIG. An IDT electrode 61 forming an elastic wave resonator of the first filter circuit 10 is shown.
  • the IDT electrode 61 included in the first filter circuit 10 has a pair of a first comb-shaped electrode 61a and a second comb-shaped electrode 61b.
  • the first comb-shaped electrode 61a has a busbar electrode 67a extending in the elastic wave propagation direction d1 and a plurality of electrode fingers 66a connected to the busbar electrode 67a and extending in the orthogonal direction d2.
  • the second comb-shaped electrode 61b has a busbar electrode 67b extending in the elastic wave propagation direction d1 and a plurality of electrode fingers 66b connected to the busbar electrode 67b and extending in the orthogonal direction d2.
  • the plurality of electrode fingers 66a and 66b are interposed in the orthogonal direction d2 and face the elastic wave propagation direction d1.
  • the piston mode is applied to this IDT electrode 61 .
  • the piston mode is applied to the IDT electrode 61 by forming the load film 62 on each of the electrode fingers 66a and 66b.
  • the load films 62 are electrodes that serve as weights for the electrode fingers 66a and 66b, and are provided at the tips and centers of the electrode fingers 66a and 66b.
  • the center of the electrode finger 66a is a portion excluding both ends (root and tip) of the electrode finger 66a in the extending direction of the electrode finger 66a.
  • FIG. 13A and 13B are a plan view and a cross-sectional view of an IDT electrode included in the additional circuit 20 of the elastic wave filter 1B.
  • FIG. 13 shows the IDT electrodes 31 to 34 forming the longitudinally coupled acoustic wave resonator 25 of the additional circuit 20. As shown in FIG.
  • the piston mode is not applied to the IDT electrodes 31-34 included in the additional circuit 20.
  • the load film 62 is not formed on the electrode fingers 36 of the IDT electrodes 31 to 34, and the electrode fingers 36 have the same thickness along the orthogonal direction d2.
  • the piston mode is applied to at least some of the IDT electrodes 61 included in the first filter circuit 10, but the piston mode is applied to the plurality of IDT electrodes 31 to 34 included in the additional circuit 20. It has not been. With this configuration, it is possible to prevent excessive energy from being trapped in the IDT electrodes 31 to 34 and reduce the power applied to the IDT electrodes 31 to 34 . As a result, shortening of the life of the elastic wave filter 1B can be suppressed.
  • FIG. 14 is a diagram showing another example of the IDT electrodes included in the first filter circuit 10.
  • FIG. 14 also shows the IDT electrodes 61 forming the elastic wave resonators of the first filter circuit 10 .
  • a piston mode is applied to the IDT electrode 61 by forming a wide portion 63 on each of the electrode fingers 66a and 66b.
  • the wide portions 63 are portions that serve as weights for the electrode fingers 66a and 66b, and are provided at the tips and centers of the electrode fingers 66a and 66b.
  • the wide portion 63 has a shape wider than the electrode finger 66a.
  • the wide portion 63 shown in FIG. 14 has a rectangular shape, but is not limited thereto, and may have a T shape, a plus (+) shape, or a convex shape.
  • the piston mode is applied to at least some of the IDT electrodes 61 included in the first filter circuit 10, but the plurality of IDT electrodes 31 to 34 included in the additional circuit 20 are in the piston mode. is not applied.
  • this configuration it is possible to prevent excessive energy from being trapped in the IDT electrodes 31 to 34 and reduce the power applied to the IDT electrodes 31 to 34 . As a result, shortening of the life of the elastic wave filter 1B can be suppressed.
  • FIG. 15 is a diagram showing another example of the IDT electrodes included in the first filter circuit 10.
  • FIG. FIG. 15 also shows the IDT electrodes 61 that form the elastic wave resonators of the first filter circuit 10 .
  • the electrode fingers 66a and 66b are connected by the connecting bar 64, so that the IDT electrode 61 is applied in the piston mode.
  • the connecting bar 64 is an elongated rod-shaped electrode, for example, extends in the orthogonal direction d2 at the central portion of the electrode fingers 66a and connects the plurality of electrode fingers 66a.
  • the width of the connecting bar 64 is equal to or less than the width of the electrode fingers 66a.
  • the piston mode is applied to at least some of the IDT electrodes 61 included in the first filter circuit 10. is not applied.
  • this configuration it is possible to prevent excessive energy from being trapped in the IDT electrodes 31 to 34 and reduce the power applied to the IDT electrodes 31 to 34 .
  • shortening of the life of the elastic wave filter 1B can be suppressed.
  • FIG. 16 is a diagram showing another example of the IDT electrodes included in the first filter circuit 10.
  • FIG. 16 also shows the IDT electrodes 61 forming the elastic wave resonators of the first filter circuit 10 .
  • each of the electrode fingers 66a and 66b has a wide portion 63 and is connected by a connecting bar 64, so that the IDT electrode 61 is applied to the piston mode.
  • the piston mode is applied to at least some of the IDT electrodes 61 included in the first filter circuit 10, but the plurality of IDT electrodes 31 to 34 included in the additional circuit 20 are in the piston mode. is not applied.
  • this configuration it is possible to prevent excessive energy from being trapped in the IDT electrodes 31 to 34 and reduce the power applied to the IDT electrodes 31 to 34 . As a result, shortening of the life of the elastic wave filter 1B can be suppressed.
  • FIG. 17 is a diagram showing the withstand power of the elastic wave filter 1B according to Modification 2 of Embodiment 1.
  • FIG. FIG. 17(a) shows a schematic diagram of the elastic wave filter 1B.
  • the withstand power of the acoustic wave filter 1B of Modification 2 is indicated by circles, and the withstand power of the acoustic wave filter of the comparative example is indicated by triangles.
  • Modification 2 is an example in which the piston mode is not applied to the additional circuit 20
  • Comparative Example is an example in which the piston mode is applied to the additional circuit 20 .
  • Modified Example 2 in which the piston mode is not applied, has a higher power handling capability than the Comparative Example, in which the piston mode is applied.
  • Modification 3 of Embodiment 1 An elastic wave filter 1C according to Modification 3 of Embodiment 1 will be described with reference to FIGS. 18 and 19.
  • FIG. 3 an example in which the distance (gap) g between the intersecting electrode fingers and the offset electrode fingers is larger in the additional circuit 20 than in the first filter circuit 10 will be described.
  • FIG. 18 is a plan view showing the IDT electrode 61 included in the first filter circuit 10 of the elastic wave filter 1C according to Modification 3.
  • FIG. 18 is a plan view showing the IDT electrode 61 included in the first filter circuit 10 of the elastic wave filter 1C according to Modification 3.
  • the IDT electrode 61 of the first filter circuit 10 has a pair of a first comb-shaped electrode 61a and a second comb-shaped electrode 61b.
  • the first comb-shaped electrode 61a has a busbar electrode 67a extending in the elastic wave propagation direction d1, and intersecting electrode fingers 68a and offset electrode fingers 69a connected to the busbar electrode 67a and extending in the orthogonal direction d2 (plus side). are doing.
  • the second comb-shaped electrode 61b has a busbar electrode 67b extending in the acoustic wave propagation direction d1, intersecting electrode fingers 68b and offset electrode fingers 69b connected to the busbar electrode 67b and extending in the orthogonal direction d2 (minus side). are doing.
  • the intersecting electrode fingers 68a and 68b cross each other when viewed from the elastic wave propagation direction d1.
  • the offset electrode fingers 69a are shorter in length than the cross electrode fingers 68a, and the offset electrode fingers 69b are shorter in length than the cross electrode fingers 68b.
  • the intersecting electrode fingers 68a of the first comb-shaped electrode 61a and the offset electrode fingers 69b of the second comb-shaped electrode 61b face each other in the orthogonal direction d2.
  • the offset electrode fingers 69a of one comb-shaped electrode 61a face each other in the orthogonal direction d2.
  • FIG. 19 is a plan view showing the IDT electrode 31 included in the additional circuit 20 of the elastic wave filter 1C according to Modification 3.
  • the IDT electrode 31 of the additional circuit 20 is composed of a first comb-shaped electrode 31a and a second comb-shaped electrode 31b.
  • the first comb-shaped electrode 31a has a busbar electrode 37a extending in the elastic wave propagation direction d1, and intersecting electrode fingers 38a and offset electrode fingers 39a connected to the busbar electrode 37a and extending in the orthogonal direction d2 (plus side). are doing.
  • the second comb-shaped electrode 31b has a busbar electrode 37b extending in the acoustic wave propagation direction d1, intersecting electrode fingers 38b and offset electrode fingers 39b connected to the busbar electrode 37b and extending in the orthogonal direction d2 (minus side). are doing.
  • the intersecting electrode fingers 38a and 38b cross each other when viewed from the elastic wave propagation direction d1.
  • the offset electrode fingers 39a are shorter in length than the cross electrode fingers 38a, and the offset electrode fingers 39b are shorter in length than the cross electrode fingers 38b.
  • the intersecting electrode fingers 38a of the first comb-shaped electrode 31a and the offset electrode fingers 39b of the second comb-shaped electrode 31b face each other in the orthogonal direction d2, and the intersecting electrode fingers 38b of the second comb-shaped electrode 31b and the offset electrode fingers 39b of the second comb-shaped electrode 31b
  • the offset electrode fingers 39a of one comb-shaped electrode 31a face each other in the orthogonal direction d2.
  • the distance g between the intersecting electrode fingers 38a and the offset electrode fingers 39b, which face each other in the orthogonal direction d2 in the IDT electrodes 31 of the additional circuit 20, is the same as that in the IDT electrodes 61 of the first filter circuit 10 in the orthogonal direction d2. is wider than the interval g between the intersecting electrode fingers 68a and the offset electrode fingers 69b facing each other. Further, the distance g between the intersecting electrode fingers 38b and the offset electrode fingers 39a facing each other in the orthogonal direction d2 at the IDT electrodes 31 of the additional circuit 20 is is wider than the interval g between the intersecting electrode finger 68b and the offset electrode finger 69a.
  • Modification 4 of Embodiment 1 An elastic wave filter 1D according to Modification 4 of Embodiment 1 will be described with reference to FIG. In Modified Example 4, an example in which the film thickness of the dielectric layer 326 formed on the IDT electrode is different will be described.
  • FIG. 20 is a cross-sectional view showing dielectric layers 326 formed in the first filter circuit 10 and the additional circuit 20 of the elastic wave filter 1D according to Modification 4.
  • FIG. 20 is a cross-sectional view showing dielectric layers 326 formed in the first filter circuit 10 and the additional circuit 20 of the elastic wave filter 1D according to Modification 4.
  • the dielectric layer 326 is, for example, a film whose main component is silicon dioxide (SiO 2 ).
  • the dielectric layer 326 is provided for the purpose of adjusting the frequency-temperature characteristics of the acoustic wave resonator and the longitudinally coupled acoustic wave resonator 25, protecting the electrode layer 325 from the external environment, or improving moisture resistance. It is In FIG. 20, the dielectric layer 326 is formed so that the IDT electrodes formed on the series arm resonators S11 to S15 are thicker than the IDT electrodes formed on the parallel arm resonators P11 to P14. .
  • the dielectric layer 326 has the same thickness for the series arm resonator having the highest antiresonance frequency among the series arm resonators S11 to S15 and the IDT electrodes 31 to 34 of the longitudinally coupled acoustic wave resonator 25. It is formed to be According to this configuration, in the ladder filter, the temperature characteristics of the series arm resonator having the highest anti-resonance frequency and the additional circuit 20 can be matched.
  • FIG. 21 is a circuit configuration diagram of a multiplexer 5 including an elastic wave filter 1 according to Modification 5 of Embodiment 1.
  • FIG. 21 is a circuit configuration diagram of a multiplexer 5 including an elastic wave filter 1 according to Modification 5 of Embodiment 1.
  • capacitive elements C1 and C3 are provided on the second path r2. Specifically, the IDT electrode 31 and the capacitive element C1 are arranged on the partial route r21, and the IDT electrode 33 and the capacitive element C3 are arranged on the partial route r23.
  • the acoustic wave filter 1 of Modification 5 can also secure the attenuation amount in the attenuation band and reduce the power consumption.
  • Embodiment 2 Embodiment 2 will be described with reference to FIGS. 22 and 23.
  • FIG. 2 an example in which the passband of the elastic wave filter 1E is set to be higher than the passband of the second filter circuit 50 will be described.
  • FIG. 22 is a circuit configuration diagram of a multiplexer 5E including an acoustic wave filter 1E according to Embodiment 2.
  • FIG. 22 is a circuit configuration diagram of a multiplexer 5E including an acoustic wave filter 1E according to Embodiment 2.
  • the multiplexer 5E is a demultiplexer or multiplexer with multiple filters.
  • the multiplexer 5E includes an elastic wave filter 1E having a first filter circuit 10 and an additional circuit 20, and a second filter circuit 50.
  • FIG. Further, the multiplexer 5E is connected to a first terminal T1 connected to the elastic wave filter 1E, a second terminal T2 connected to both the elastic wave filter 1E and the second filter circuit 50, and a second filter circuit 50. and a third terminal T3.
  • the basic configurations of the elastic wave filter 1E, the second filter circuit 50, the first terminal T1, the second terminal T2 and the third terminal T3 are the same as in the first embodiment.
  • High-frequency signals of, for example, Band 13 (transmission band: 777 MHz-787 MHz, reception band: 746 MHz-756 MHz) or Band 20 (transmission band: 832 MHz-862 MHz, reception band: 791 MHz-821 MHz) are input to and output from the multiplexer 5E. .
  • the elastic wave filter 1E of Embodiment 2 has the configuration shown below in order to secure the attenuation amount in the attenuation band and to reduce the power consumption.
  • FIG. 23 is a diagram showing the passband and attenuation band of the elastic wave filter 1E. The figure also shows the pass band of the second filter circuit 50 .
  • FIG. 23 shows the lowest frequency fL3 and the highest frequency fH3 of the passband of the first filter circuit 10.
  • FIG. FIG. 23 also shows the predetermined frequency fL4 of the attenuation band located on the lower frequency side than the pass band of the first filter circuit 10.
  • the predetermined frequency fL4 is, for example, the lowest frequency of the passband of the second filter circuit 50.
  • FIG. A frequency fH4 within the attenuation band in the figure is, for example, the highest frequency of the passband of the second filter circuit 50 .
  • the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 and 33 connected to the first path r1 on the side of the first terminal T1 when viewed from the longitudinally coupled acoustic wave resonator 25 is The frequency corresponding to the wavelength when the average is 1/2 wavelength ( ⁇ /2) is defined as fiy.
  • the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 32 and 34 connected to the first path r1 on the second terminal T2 side when viewed from the longitudinally coupled acoustic wave resonator 25 is The frequency corresponding to the wavelength when the average is 1/2 wavelength ( ⁇ /2) is defined as foy.
  • the elastic wave filter 1E is (3) fiy ⁇ 0.945 ⁇ fL3, and (4) fL4 ⁇ foy ⁇ 0.965 ⁇ fL3 It has a relationship of With this configuration, the attenuation in the attenuation band of the elastic wave filter 1E can be ensured, and the power consumption can be reduced.
  • the frequency fiy and the frequency foy are not too close to the passband of the acoustic wave filter 1E.
  • the attenuation amount in the attenuation band can be ensured by setting the frequency foy higher than the predetermined frequency fL4 to be within the attenuation band.
  • the frequency fy calculated from the total average of the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 to 34 should be 0.85 ⁇ fL3 ⁇ fy so that the frequency fiy and the frequency foy are not too far apart. is desirable. Further, in the elastic wave filter 1E, power consumption can be reduced by setting the frequency fiy and the frequency foy to satisfy the relationship of fiy ⁇ foy.
  • the elastic wave filter 1 includes the first terminal T1 and the second terminal T2, and the first terminal T1 and the second terminal T2 provided in the first route r1 connecting the first terminal T1 and the second terminal T2. 1 filter circuit 10 and an additional circuit 20 provided in a second route r2 connected in parallel with at least part of the first route r1.
  • the additional circuit 20 has a longitudinally coupled acoustic wave resonator 25 .
  • the longitudinally coupled acoustic wave resonator 25 has a plurality of IDT electrodes 31-34 arranged along the acoustic wave propagation direction d1.
  • the average arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 and 33 connected to the first path r1 on the first terminal T1 side when viewed from the longitudinally coupled acoustic wave resonator 25 is Let fix be the frequency corresponding to the wavelength when the wavelength is set to 1/2.
  • fox be the frequency corresponding to the wavelength when the average of the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 32 and 34 is 1/2 wavelength
  • fH1 be the highest frequency of the pass band of the first filter circuit 10
  • fH2 is a predetermined frequency in the attenuation band located on the higher frequency side than the pass band of the first filter circuit 10
  • the acoustic wave filter 1 (1) having a relationship of 1.055 ⁇ fH1 ⁇ fix, and (2) It has a relationship of 1.035 ⁇ fH1 ⁇ fox ⁇ fH2.
  • frequency fix and frequency fox are not too close to the passband of elastic wave filter 1.
  • the attenuation amount in the attenuation band can be ensured by making the frequency fox lower than the predetermined frequency fH2 and within the attenuation band. As a result, the attenuation in the attenuation band of the acoustic wave filter 1 can be ensured, and the power consumption can be reduced.
  • the elastic wave filter 1 may further have a relationship of fox ⁇ fix.
  • the frequency fix on the side of the IDT electrodes 31 and 33 to which the high frequency signal is input can be increased.
  • the above frequency fix can be separated from the passband, and the power consumption of the elastic wave filter 1 can be further reduced.
  • the predetermined frequency within the attenuation band may be the highest frequency of the passband of the second filter circuit 50 different from the first filter circuit 10 .
  • the first filter circuit 10 may be a transmission filter circuit in a predetermined band
  • the second filter circuit 50 may be a reception filter circuit in a predetermined band.
  • the additional circuit 20 has a plurality of reflectors 41 and 42 positioned on both outer sides of the longitudinally coupled acoustic wave resonator 25 in the acoustic wave propagation direction d1.
  • the number may be 10 or less.
  • the additional circuit 20 may further include a capacitive element (at least one of capacitive elements C1, C2, C3 and C4) provided on the second path r2.
  • a capacitive element at least one of capacitive elements C1, C2, C3 and C4 provided on the second path r2.
  • the instantaneous power entering the IDT electrodes 31-34 can be reduced. Thereby, shortening of the life of the elastic wave filter 1 can be suppressed.
  • the acoustic wave filter 1B includes a first terminal T1 and a second terminal T2, a first filter circuit 10 provided on a first route r1 connecting the first terminal T1 and the second terminal T2, and an additional circuit 20 provided in a second route r2 connected in parallel with at least part of the first route r1.
  • the additional circuit 20 has a longitudinally coupled acoustic wave resonator 25 .
  • the longitudinally coupled acoustic wave resonator 25 has a plurality of IDT electrodes 31-34 arranged along the acoustic wave propagation direction d1.
  • the first filter circuit 10 includes a plurality of IDT electrodes 61 different from the plurality of IDT electrodes 31 to 34 of the longitudinally coupled acoustic wave resonator 25, and the other plurality of IDT electrodes 61 included in the first filter circuit 10. , the piston mode is applied to the plurality of IDT electrodes 31 to 34 included in the additional circuit 20, and the piston mode is not applied.
  • the excitation energy in the IDT electrodes 31-34 included in the additional circuit 20 can be reduced. As a result, shortening of the life of the elastic wave filter 1B can be suppressed.
  • the elastic wave filter 1C includes a first terminal T1 and a second terminal T2, a first filter circuit 10 provided on a first route r1 connecting the first terminal T1 and the second terminal T2, and an additional circuit 20 provided in a second route r2 connected in parallel with at least part of the first route r1.
  • the additional circuit 20 has a longitudinally coupled acoustic wave resonator 25 .
  • the longitudinally coupled acoustic wave resonator 25 has a plurality of IDT electrodes 31-34 arranged along the acoustic wave propagation direction d1.
  • the first filter circuit 10 includes a plurality of IDT electrodes 61 different from the plurality of IDT electrodes 31 to 34 of the longitudinally coupled acoustic wave resonator 25, and the other plurality of IDT electrodes 61 included in the first filter circuit 10.
  • the plurality of IDT electrodes 31-34 included in the additional circuit 20 each have a pair of first comb-shaped electrodes 61a, 31a-34a and second comb-shaped electrodes 61b, 31b-34b. .
  • Each of the first comb-shaped electrodes 61a, 31a to 34a and the second comb-shaped electrodes 61b, 31b to 34b includes a busbar electrode extending in the elastic wave propagation direction d1 and a busbar electrode connected to the busbar electrode to extend in the elastic wave propagation direction d1. It has a plurality of intersecting electrode fingers and a plurality of offset electrode fingers extending in an orthogonal direction d2.
  • the intersecting electrode fingers of the first comb-shaped electrode and the offset electrode fingers of the second comb-shaped electrode face each other in the orthogonal direction d2, and the intersecting electrode fingers of the second comb-shaped electrode and the offset electrode fingers of the first comb-shaped electrode face each other.
  • the offset electrode fingers are opposed to each other in the orthogonal direction d2.
  • the distance g between the intersecting electrode fingers 38a (or 38b) and the offset electrode fingers 39b (or 39b) facing each other in the orthogonal direction d2 in the additional circuit 20 is the same as the intersecting electrode fingers 38a (or 38b) facing each other in the orthogonal direction d2 in the first filter circuit 10. It is wider than the interval g between the electrode finger 68a (or 68b) and the offset electrode finger 69b (or 69a).
  • the excitation energy in the IDT electrodes 31-34 included in the additional circuit 20 can be reduced. As a result, shortening of the life of the acoustic wave filter 1C can be suppressed.
  • the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 and 33 connected to the first path r1 on the side of the first terminal T1 when viewed from the longitudinally coupled acoustic wave resonator 25 is Let fix be the frequency corresponding to the wavelength when the average is 1/2 wavelength. Let fox be the frequency corresponding to the wavelength when the average of the arrangement pitch p of the electrode fingers 36 of the connected IDT electrodes 32 and 34 is 1/2 wavelength, and fH1 be the highest frequency of the passband of the first filter circuit 10.
  • the elastic wave filter 1B or 1C is: (1) having a relationship of 1.055 ⁇ fH1 ⁇ fix, and (2) The relationship may be 1.035 ⁇ fH1 ⁇ fox ⁇ fH2.
  • frequency fix and frequency fox are set near the passband of elastic wave filter 1B or 1C. It is possible to prevent the power consumption from increasing more than necessary by setting the power consumption higher than necessary. Further, as indicated by fox ⁇ fH2 in (2), the attenuation amount in the attenuation band can be ensured by making the frequency fox lower than the predetermined frequency fH2 and within the attenuation band. As a result, the attenuation in the attenuation band of the acoustic wave filter 1B or 1C can be ensured, and the power consumption can be reduced.
  • the elastic wave filter 1B or 1C may further have a relationship of fox ⁇ fix.
  • the frequency fix on the side of the IDT electrodes 31 and 33 to which the high frequency signal is input can be increased.
  • the frequency fix can be separated from the passband, and the power consumption of the elastic wave filter 1B or 1C can be further reduced.
  • the predetermined frequency within the attenuation band may be the highest frequency of the passband of the second filter circuit 50 different from the first filter circuit 10 .
  • the first filter circuit 10 may be a transmission filter circuit in a predetermined band
  • the second filter circuit 50 may be a reception filter circuit in a predetermined band.
  • the additional circuit 20 has a plurality of reflectors 41 and 42 positioned on both outer sides of the longitudinally coupled acoustic wave resonator 25 in the acoustic wave propagation direction d1.
  • the number may be 10 or less.
  • the additional circuit 20 may further include a capacitive element (at least one of capacitive elements C1, C2, C3 and C4) provided on the second path r2.
  • a capacitive element at least one of capacitive elements C1, C2, C3 and C4 provided on the second path r2.
  • the instantaneous power entering the IDT electrodes 31-34 can be reduced. Thereby, shortening of the life of the elastic wave filter 1 can be suppressed.
  • the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 and 33 connected to the first path r1 on the side of the first terminal T1 when viewed from the longitudinally coupled acoustic wave resonator 25 is Let fiy be the frequency corresponding to the wavelength when the average is 1/2 wavelength. Let foy be the frequency corresponding to the wavelength when the average of the arrangement pitch p of the electrode fingers 36 of the connected IDT electrodes 32 and 34 is 1/2 wavelength, and fL3 be the lowest frequency of the passband of the first filter circuit 10.
  • the acoustic wave filter 1B or 1C is: (3) having a relationship of fiy ⁇ 0.945 ⁇ fL3, and (4) It has a relationship of fL4 ⁇ foy ⁇ 0.965 ⁇ fL3.
  • frequency fiy and frequency foy are set near the passband of elastic wave filter 1B or 1C.
  • the power consumption low, it is possible to prevent the power consumption from increasing more than necessary.
  • the attenuation amount in the attenuation band can be ensured by setting the frequency foy higher than the predetermined frequency fL4 to be within the attenuation band. As a result, the attenuation in the attenuation band of the acoustic wave filter 1B or 1C can be ensured, and the power consumption can be reduced.
  • the acoustic wave filter 1E includes a first terminal T1 and a second terminal T2, a first filter circuit 10 provided on a first route r1 connecting the first terminal T1 and the second terminal T2, and an additional circuit 20 provided in a second route r2 connected in parallel with at least part of the first route r1.
  • the additional circuit 20 has a longitudinally coupled acoustic wave resonator 25 .
  • the longitudinally coupled acoustic wave resonator 25 has a plurality of IDT electrodes 31-34 arranged along the acoustic wave propagation direction d1.
  • the average arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 and 33 connected to the first path r1 on the first terminal T1 side when viewed from the longitudinally coupled acoustic wave resonator 25 is Let fiy be the frequency corresponding to the wavelength when the wavelength is set to 1/2.
  • fL3 be the lowest frequency of the passband of the first filter circuit 10
  • the elastic wave filter 1E is (3) having a relationship of fiy ⁇ 0.945 ⁇ fL3, and (4) It has a relationship of fL4 ⁇ foy ⁇ 0.965 ⁇ fL3.
  • the frequency fiy and the frequency foy are not too close to the passband of the acoustic wave filter 1E.
  • the attenuation amount in the attenuation band can be ensured by setting the frequency foy higher than the predetermined frequency fL4 to be within the attenuation band.
  • the attenuation in the attenuation band of the elastic wave filter 1E can be ensured, and the power consumption can be reduced.
  • the predetermined frequency within the attenuation band may be the lowest frequency of the passband of the second filter circuit 50 different from the first filter circuit 10 .
  • the first filter circuit 10 may be a transmission filter circuit in a predetermined band
  • the second filter circuit 50 may be a reception filter circuit in a predetermined band.
  • a multiplexer 5 includes the elastic wave filter 1 described above and another filter having a second filter circuit 50 .
  • the multiplexer 5 in which the attenuation in the passband of the second filter circuit 50 is ensured and the power consumption of the acoustic wave filter 1 is suppressed.
  • a multiplexer 5E includes the above elastic wave filter 1E and another filter having a second filter circuit 50.
  • the longitudinally coupled acoustic wave resonator 25 has four IDT electrodes
  • the number of IDT electrodes may be two or more.
  • the elastic wave filter 1 is not limited to this and may be a reception filter.
  • the multiplexer 5 is not limited to a configuration including both a transmission filter and a reception filter, and may be configured to include a plurality of transmission filters or a plurality of reception filters.
  • a multiplexer including two filters has been described as an example. can also be applied. That is, the multiplexer only needs to have two or more filters.
  • the second filter circuit 50 is not limited to the configuration of the filter described above, and can be appropriately designed according to the required filter characteristics and the like.
  • the second filter circuit 50 may have a longitudinal coupling filter structure or a ladder filter structure.
  • each resonator constituting the second filter circuit 50 is not limited to a SAW resonator, and may be, for example, a BAW (Bulk Acoustic Wave) resonator.
  • the second filter circuit 50 may be configured without using resonators, and may be, for example, an LC resonance filter or a dielectric filter.
  • the materials constituting the IDT electrodes 31 to 34 and the electrode layers 325 and dielectric layers 326 of the reflectors 41 and 42 are not limited to the materials described above.
  • the IDT electrodes 31 to 34 may not have the laminated structure described above.
  • the IDT electrodes 31 to 34 may be composed of metals or alloys such as Ti, Al, Cu, Pt, Au, Ag, Pd, etc., or may be composed of a plurality of laminates composed of the above metals or alloys. may be configured.
  • a substrate having piezoelectricity is shown as the piezoelectric substrate 320, but the piezoelectric substrate may be a piezoelectric substrate composed of a single piezoelectric layer.
  • the piezoelectric substrate in this case consists of, for example, a piezoelectric single crystal of LiTaO 3 or another piezoelectric single crystal such as LiNbO 3 .
  • the piezoelectric substrate 320 on which the IDT electrodes 31 to 34 are formed may be entirely composed of a piezoelectric layer as long as it has piezoelectricity, or may have a structure in which a piezoelectric layer is laminated on a support substrate. good.
  • the cut angle of the piezoelectric substrate 320 according to the above embodiment is not limited.
  • the laminated structure, material, and thickness may be changed as appropriate, and the LiTaO3 piezoelectric substrate or A surface acoustic wave filter using a LiNbO 3 piezoelectric substrate or the like can also achieve the same effect.
  • the present invention can be widely used in communication devices such as mobile phones as multiplexers, front-end circuits, and communication devices having acoustic wave filters.
  • first filter circuit 20 additional circuit 25 longitudinally coupled elastic wave resonator 31, 32, 33, 34 IDT electrode 31a, 32a, 33a, 34a 1 comb-shaped electrode 31b, 32b, 33b, 34b 2nd comb-shaped electrode 36, 36a, 36b electrode finger 37a, 37b busbar electrode 38a, 38b intersecting electrode finger 39a, 39b offset electrode finger 41, 42 reflector 50 second second Filter circuit 61 IDT electrode 61a First comb-shaped electrode 61b Second comb-shaped electrode 62 Load film 63 Wide portion 64 Connection bar 66a, 66b Electrode fingers 67a, 67b Bus bar electrodes 68a, 68b Intersecting electrode fingers 69a, 69b Offset electrode fingers 320 Piezoelectric substrate 325 Electrode layer 326 Dielectric layer 330 Package substrate C1, C2, C3, C4, C10 Capacitive element d1 Elastic wave propagation direction

Abstract

This elastic wave filter (1) comprises: a first filter circuit (10) provided to a first route (r1) linking a first terminal (T1) and a second terminal (T2); and an additional circuit (20) provided to a second route (r2) connected in parallel to the first route (r1). A longitudinally-coupled elastic wave resonator (25) of the additional circuit (20) has a plurality of IDT electrodes (31-34). Where a frequency calculated from the arrangement pitch (p) of electrode fingers (36) of the IDT electrodes (31, 33) connected toward the first terminal (T1) is fix, a frequency calculated from the arrangement pitch (p) of electrode fingers (36) of the IDT electrodes (32, 34) connected toward the second terminal (T2) is fox, the highest frequency in a passband of the first filter circuit (10) is fH1, and a prescribed frequency in an attenuation band of the first filter circuit (10) is fH2, the variables have the relationship wherein 1.055 × fH1 < fix and the relationship where 1.035 × fH1 < fox < fH2.

Description

弾性波フィルタおよびマルチプレクサAcoustic Wave Filters and Multiplexers
 本発明は、弾性波フィルタ、および、この弾性波フィルタを備えるマルチプレクサに関する。 The present invention relates to an elastic wave filter and a multiplexer provided with this elastic wave filter.
 従来、弾性波共振子を備える弾性波フィルタが知られている。この種の弾性波フィルタの一例として、所定の周波数帯域を通過帯域とするフィルタ回路と、通過帯域外の減衰特性を改善するため、上記フィルタ回路と逆位相・同振幅の相殺成分を有するキャンセル回路と、を備える弾性波フィルタが開示されている(特許文献1および2参照)。弾性波フィルタがキャンセル回路を備えることで、弾性波フィルタの減衰特性等を改善することが可能となる。 Acoustic wave filters with acoustic wave resonators have been known. As an example of this type of acoustic wave filter, there is a filter circuit whose pass band is a predetermined frequency band, and a cancellation circuit having a canceling component of opposite phase and same amplitude as the above filter circuit in order to improve attenuation characteristics outside the pass band. and an elastic wave filter are disclosed (see Patent Documents 1 and 2). By providing the acoustic wave filter with the canceling circuit, it is possible to improve the attenuation characteristics and the like of the acoustic wave filter.
特開2017-204743号公報JP 2017-204743 A 特開2018-74539号公報JP 2018-74539 A
 しかしながら、特許文献1に記載された弾性波フィルタは、キャンセル回路の共振周波数がフィルタ回路の通過帯域から大きく離れており、フィルタ回路の減衰帯域における減衰量を十分に確保できないという問題がある。 However, the acoustic wave filter described in Patent Document 1 has a problem that the resonance frequency of the canceling circuit is far from the passband of the filter circuit, and the attenuation amount in the attenuation band of the filter circuit cannot be sufficiently secured.
 また、特許文献2に記載された弾性波フィルタは、キャンセル回路の共振周波数がフィルタ回路の通過帯域に近すぎて、弾性波フィルタの消費電力が大きくなるという問題がある。消費電力が大きくなると、弾性波フィルタの寿命が短くなることがある。 In addition, the acoustic wave filter described in Patent Document 2 has a problem that the resonance frequency of the canceling circuit is too close to the passband of the filter circuit, and the power consumption of the acoustic wave filter increases. When the power consumption increases, the life of the acoustic wave filter may be shortened.
 本発明は、上記課題を解決するためになされたものであり、減衰帯域における減衰量を確保し、かつ、消費電力を小さくすることができる弾性波フィルタ等を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an acoustic wave filter or the like capable of ensuring attenuation in the attenuation band and reducing power consumption.
 上記目的を達成するために、本発明の一態様に係る弾性波フィルタは、第1端子および第2端子と、前記第1端子と前記第2端子とを結ぶ第1経路に設けられた第1フィルタ回路と、前記第1経路の少なくとも一部と並列接続される第2経路に設けられた付加回路と、を備え、前記付加回路は、縦結合弾性波共振器を有し、前記縦結合弾性波共振器は、弾性波伝搬方向に沿って配置された複数のIDT電極を有し、前記複数のIDT電極のうち、前記縦結合弾性波共振器から見て前記第1端子側の前記第1経路に接続されるIDT電極の電極指の配列ピッチの平均を1/2波長としたときの波長に対応する周波数をfixとし、前記複数のIDT電極のうち、前記縦結合弾性波共振器から見て前記第2端子側の前記第1経路に接続されるIDT電極の電極指の配列ピッチの平均を1/2波長としたときの波長に対応する周波数をfoxとし、前記第1フィルタ回路の通過帯域の最も高い周波数をfH1とし、前記第1フィルタ回路の通過帯域よりも高周波側に位置する減衰帯域内の所定周波数をfH2とした場合に、1.055×fH1<fixとなる関係を有し、かつ、1.035×fH1<fox<fH2となる関係を有する。 To achieve the above object, an elastic wave filter according to an aspect of the present invention provides a first terminal, a second terminal, and a first terminal provided on a first path connecting the first terminal and the second terminal. a filter circuit; and an additional circuit provided in a second path connected in parallel with at least part of the first path, the additional circuit having a longitudinally coupled elastic wave resonator, and the longitudinally coupled elastic wave resonator. The acoustic wave resonator has a plurality of IDT electrodes arranged along an acoustic wave propagation direction, and among the plurality of IDT electrodes, the first electrodes on the first terminal side when viewed from the longitudinally coupled acoustic wave resonator. Let fix be the frequency corresponding to the wavelength when the average pitch of the electrode fingers of the IDT electrodes connected to the path is 1/2 wavelength, Let fox be the frequency corresponding to the wavelength when the average of the arrangement pitch of the electrode fingers of the IDT electrodes connected to the first path on the second terminal side is set to 1/2 wavelength, and pass through the first filter circuit. If fH1 is the highest frequency in the band and fH2 is a predetermined frequency in the attenuation band located on the higher frequency side than the passband of the first filter circuit, then 1.055×fH1<fix. and 1.035×fH1<fox<fH2.
 上記目的を達成するために、本発明の一態様に係る弾性波フィルタは、第1端子および第2端子と、前記第1端子と前記第2端子とを結ぶ第1経路に設けられた第1フィルタ回路と、前記第1経路の少なくとも一部と並列接続される第2経路に設けられた付加回路と、を備え、前記付加回路は、縦結合弾性波共振器を有し、前記縦結合弾性波共振器は、弾性波伝搬方向に沿って配置された複数のIDT電極を有し、前記第1フィルタ回路は、前記縦結合弾性波共振器の前記複数のIDT電極と異なる他の複数のIDT電極で構成され、前記第1フィルタ回路に含まれる前記他の複数のIDT電極の少なくとも一部は、ピストンモードが適用され、前記付加回路に含まれる前記複数のIDT電極は、ピストンモードが適用されていない。 To achieve the above object, an elastic wave filter according to an aspect of the present invention provides a first terminal, a second terminal, and a first terminal provided on a first path connecting the first terminal and the second terminal. a filter circuit; and an additional circuit provided in a second path connected in parallel with at least part of the first path, the additional circuit having a longitudinally coupled elastic wave resonator, and the longitudinally coupled elastic wave resonator. The wave resonator has a plurality of IDT electrodes arranged along an elastic wave propagation direction, and the first filter circuit includes a plurality of other IDTs different from the plurality of IDT electrodes of the longitudinally coupled acoustic wave resonator. A piston mode is applied to at least some of the other plurality of IDT electrodes that are configured with electrodes and included in the first filter circuit, and a piston mode is applied to the plurality of IDT electrodes that are included in the additional circuit. not
 上記目的を達成するために、本発明の一態様に係る弾性波フィルタは、第1端子および第2端子と、前記第1端子と前記第2端子とを結ぶ第1経路に設けられた第1フィルタ回路と、前記第1経路の少なくとも一部と並列接続される第2経路に設けられた付加回路と、を備え、前記付加回路は、縦結合弾性波共振器を有し、前記縦結合弾性波共振器は、弾性波伝搬方向に沿って配置された複数のIDT電極を有し、前記第1フィルタ回路は、前記縦結合弾性波共振器の前記複数のIDT電極と異なる他の複数のIDT電極で構成され、前記第1フィルタ回路に含まれる前記他の複数のIDT電極、および、前記付加回路に含まれる前記複数のIDT電極のそれぞれは、一対の第1櫛歯状電極および第2櫛歯状電極を有し、前記第1櫛歯状電極および第2櫛歯状電極のそれぞれは、前記弾性波伝搬方向に延びるバスバー電極と、前記バスバー電極に接続されて前記弾性波伝搬方向に直交する直交方向に延びる複数の交差電極指および複数のオフセット電極指と、を有し、前記第1櫛歯状電極の前記交差電極指と前記第2櫛歯状電極の前記オフセット電極指とは、前記直交方向に互いに対向し、前記第2櫛歯状電極の前記交差電極指と前記第1櫛歯状電極の前記オフセット電極指とは、前記直交方向に互いに対向し、前記付加回路にて前記直交方向に互いに対向する前記交差電極指と前記オフセット電極指との間隔は、前記第1フィルタ回路にて前記直交方向に互いに対向する前記交差電極指と前記オフセット電極指との間隔よりも広い。 To achieve the above object, an elastic wave filter according to an aspect of the present invention provides a first terminal, a second terminal, and a first terminal provided on a first path connecting the first terminal and the second terminal. a filter circuit; and an additional circuit provided in a second path connected in parallel with at least part of the first path, the additional circuit having a longitudinally coupled elastic wave resonator, and the longitudinally coupled elastic wave resonator. The wave resonator has a plurality of IDT electrodes arranged along an elastic wave propagation direction, and the first filter circuit includes a plurality of other IDTs different from the plurality of IDT electrodes of the longitudinally coupled acoustic wave resonator. Each of the other plurality of IDT electrodes included in the first filter circuit and the plurality of IDT electrodes included in the additional circuit, each of which is composed of electrodes, includes a pair of first comb-shaped electrodes and a second comb-like electrode. Each of the first comb-shaped electrode and the second comb-shaped electrode includes a bus bar electrode extending in the elastic wave propagation direction and a bus bar electrode connected to the bus bar electrode and perpendicular to the elastic wave propagation direction. a plurality of intersecting electrode fingers and a plurality of offset electrode fingers extending in orthogonal directions, wherein the intersecting electrode fingers of the first comb-shaped electrode and the offset electrode fingers of the second comb-shaped electrode are The intersecting electrode fingers of the second comb-shaped electrode and the offset electrode fingers of the first comb-shaped electrode, which are opposed to each other in the orthogonal direction, are opposed to each other in the orthogonal direction, and are arranged in the additional circuit. A space between the intersecting electrode fingers and the offset electrode fingers facing each other in the orthogonal direction is wider than a space between the intersecting electrode fingers and the offset electrode fingers facing each other in the orthogonal direction in the first filter circuit.
 上記目的を達成するために、本発明の一態様に係るマルチプレクサは、前記減衰帯域内の所定周波数が、前記第1フィルタ回路と異なる第2フィルタ回路の通過帯域の最も高い周波数である上記の弾性波フィルタと、前記第2フィルタ回路を有する他のフィルタと、を備える。 In order to achieve the above object, the multiplexer according to one aspect of the present invention is characterized in that the predetermined frequency within the attenuation band is the highest frequency of the pass band of the second filter circuit different from the first filter circuit. a wave filter and another filter comprising the second filter circuit.
 上記目的を達成するために、本発明の一態様に係る弾性波フィルタは、第1端子および第2端子と、前記第1端子と前記第2端子とを結ぶ第1経路に設けられた第1フィルタ回路と、前記第1経路の少なくとも一部と並列接続される第2経路に設けられた付加回路と、を備え、前記付加回路は、縦結合弾性波共振器を有し、前記縦結合弾性波共振器は、弾性波伝搬方向に沿って配置された複数のIDT電極を有し、前記複数のIDT電極のうち、前記縦結合弾性波共振器から見て前記第1端子側の前記第1経路に接続されるIDT電極の電極指の配列ピッチの平均を1/2波長としたときの波長に対応する周波数をfiyとし、前記複数のIDT電極のうち、前記縦結合弾性波共振器から見て前記第2端子側の前記第1経路に接続されるIDT電極の電極指の配列ピッチの平均を1/2波長としたときの波長に対応する周波数をfoyとし、前記第1フィルタ回路の通過帯域の最も低い周波数をfL3とし、前記第1フィルタ回路の通過帯域よりも低周波側に位置する減衰帯域内の所定周波数をfL4とした場合に、fiy<0.945×fL3となる関係を有し、かつ、fL4<foy<0.965×fL3となる関係を有する。 To achieve the above object, an elastic wave filter according to an aspect of the present invention provides a first terminal, a second terminal, and a first terminal provided on a first path connecting the first terminal and the second terminal. a filter circuit; and an additional circuit provided in a second path connected in parallel with at least part of the first path, the additional circuit having a longitudinally coupled elastic wave resonator, and the longitudinally coupled elastic wave resonator. The acoustic wave resonator has a plurality of IDT electrodes arranged along an acoustic wave propagation direction, and among the plurality of IDT electrodes, the first electrodes on the first terminal side when viewed from the longitudinally coupled acoustic wave resonator. Let fiy be the frequency corresponding to the wavelength when the average pitch of the electrode fingers of the IDT electrodes connected to the path is 1/2 wavelength, and the average of the arrangement pitch of the electrode fingers of the IDT electrodes connected to the first path on the second terminal side is assumed to be 1/2 wavelength, and the frequency corresponding to the wavelength is foy, and the frequency passing through the first filter circuit is foy. If fL3 is the lowest frequency of the band and fL4 is a predetermined frequency in the attenuation band located on the lower frequency side than the pass band of the first filter circuit, then there is a relationship of fiy<0.945×fL3. and fL4<foy<0.965×fL3.
 上記目的を達成するために、本発明の一態様に係るマルチプレクサは、前記減衰帯域内の所定周波数が、前記第1フィルタ回路と異なる第2フィルタ回路の通過帯域の最も低い周波数である上記の弾性波フィルタと、前記第2フィルタ回路を有する他のフィルタと、を備える。 To achieve the above object, the multiplexer according to one aspect of the present invention is characterized in that the predetermined frequency within the attenuation band is the lowest frequency of the pass band of the second filter circuit different from the first filter circuit. a wave filter and another filter comprising the second filter circuit.
 本発明に係る弾性波フィルタ等によれば、減衰帯域における減衰量を確保し、かつ、消費電力を小さくすることができる。 According to the acoustic wave filter and the like according to the present invention, it is possible to secure the attenuation amount in the attenuation band and reduce the power consumption.
図1は、実施の形態1に係る弾性波フィルタを備えるマルチプレクサの回路構成図である。FIG. 1 is a circuit configuration diagram of a multiplexer having an elastic wave filter according to Embodiment 1. FIG. 図2は、実施の形態1に係るマルチプレクサが備える各素子のレイアウトを示す図である。FIG. 2 is a diagram showing the layout of each element included in the multiplexer according to the first embodiment. 図3は、実施の形態1に係る弾性波フィルタの通過帯域および減衰帯域を示す図である。FIG. 3 is a diagram showing passbands and attenuation bands of the elastic wave filter according to Embodiment 1. FIG. 図4は、実施の形態1に係る弾性波フィルタの各素子が圧電性基板およびパッケージ基板に設けられている状態を模式的に示す図である。FIG. 4 is a diagram schematically showing a state in which each element of the acoustic wave filter according to Embodiment 1 is provided on the piezoelectric substrate and the package substrate. 図5は、実施の形態1に係る弾性波フィルタの付加回路を示す図である。FIG. 5 is a diagram showing an additional circuit of the acoustic wave filter according to Embodiment 1. FIG. 図6は、付加回路に含まれる縦結合弾性波共振器の構造を模式的に示す平面図および断面図である。FIG. 6 is a plan view and a cross-sectional view schematically showing the structure of a longitudinally coupled acoustic wave resonator included in the additional circuit. 図7は、実施の形態1の弾性波フィルタの消費電力を示す図である。FIG. 7 is a diagram showing power consumption of the acoustic wave filter of Embodiment 1. FIG. 図8は、縦結合弾性波共振器の入力側の周波数比を変えたときの弾性波フィルタの消費電力を示す図である。FIG. 8 is a diagram showing the power consumption of the acoustic wave filter when the frequency ratio on the input side of the longitudinally coupled acoustic wave resonator is changed. 図9は、縦結合弾性波共振器の出力側の周波数比を変えたときの弾性波フィルタの消費電力を示す図である。FIG. 9 is a diagram showing the power consumption of the acoustic wave filter when the frequency ratio on the output side of the longitudinally coupled acoustic wave resonator is changed. 図10は、縦結合弾性波共振器の入力側および出力側の周波数比を変えたときの弾性波フィルタの消費電力を示す図である。FIG. 10 is a diagram showing the power consumption of the acoustic wave filter when changing the frequency ratio between the input side and the output side of the longitudinally coupled acoustic wave resonator. 図11は、実施の形態1の変形例1に係る弾性波フィルタの付加回路の反射器の本数を変えたときの消費電力を示す図である。FIG. 11 is a diagram showing power consumption when the number of reflectors in the additional circuit of the elastic wave filter according to Modification 1 of Embodiment 1 is changed. 図12は、実施の形態1の変形例2に係る弾性波フィルタの第1フィルタ回路に含まれるIDT電極の平面図および断面図である。12A and 12B are a plan view and a cross-sectional view of an IDT electrode included in a first filter circuit of an acoustic wave filter according to Modification 2 of Embodiment 1. FIG. 図13は、実施の形態1の変形例2に係る弾性波フィルタの付加回路に含まれるIDT電極の平面図および断面図である。13A and 13B are a plan view and a cross-sectional view of an IDT electrode included in an additional circuit of an elastic wave filter according to Modification 2 of Embodiment 1. FIG. 図14は、第1フィルタ回路に含まれるIDT電極の他の例を示す図である。FIG. 14 is a diagram showing another example of IDT electrodes included in the first filter circuit. 図15は、第1フィルタ回路に含まれるIDT電極の他の例を示す図である。FIG. 15 is a diagram showing another example of IDT electrodes included in the first filter circuit. 図16は、第1フィルタ回路に含まれるIDT電極の他の例を示す図である。FIG. 16 is a diagram showing another example of IDT electrodes included in the first filter circuit. 図17は、実施の形態1の変形例2に係る弾性波フィルタの耐電力を示す図である。FIG. 17 is a diagram showing the withstand power of the elastic wave filter according to Modification 2 of Embodiment 1. FIG. 図18は、実施の形態1の変形例3に係る弾性波フィルタの第1フィルタ回路に含まれるIDT電極を示す平面図である。18 is a plan view showing an IDT electrode included in the first filter circuit of the acoustic wave filter according to Modification 3 of Embodiment 1. FIG. 図19は、実施の形態1の変形例3に係る弾性波フィルタの付加回路に含まれるIDT電極を示す平面図である。19 is a plan view showing an IDT electrode included in an additional circuit of an acoustic wave filter according to Modification 3 of Embodiment 1. FIG. 図20は、実施の形態1の変形例4に係る弾性波フィルタの第1フィルタ回路および付加回路のIDT電極に形成される誘電体層を示す断面図である。20 is a cross-sectional view showing a dielectric layer formed on the IDT electrodes of the first filter circuit and the additional circuit of the elastic wave filter according to Modification 4 of Embodiment 1. FIG. 図21は、実施の形態1の変形例5に係る弾性波フィルタを備えるマルチプレクサの回路構成図である。21 is a circuit configuration diagram of a multiplexer including an elastic wave filter according to Modification 5 of Embodiment 1. FIG. 図22は、実施の形態2に係る弾性波フィルタを備えるマルチプレクサの回路構成図である。FIG. 22 is a circuit configuration diagram of a multiplexer including an acoustic wave filter according to Embodiment 2. FIG. 図23は、実施の形態2に係る弾性波フィルタの通過帯域および減衰帯域を示す図である。FIG. 23 is a diagram showing passbands and attenuation bands of the elastic wave filter according to the second embodiment.
 以下、本発明の実施の形態について、実施の形態および図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する場合がある。また、以下の実施の形態において、「接続される」とは、直接接続される場合だけでなく、他の素子等を介して電気的に接続される場合も含まれる。 Hereinafter, embodiments of the present invention will be described in detail using embodiments and drawings. It should be noted that the embodiments described below are all comprehensive or specific examples. Numerical values, shapes, materials, constituent elements, arrangement of constituent elements, connection forms, and the like shown in the following embodiments are examples, and are not intended to limit the present invention. Among the constituent elements in the following embodiments, constituent elements not described in independent claims will be described as optional constituent elements. Also, the sizes, or size ratios, of components shown in the drawings are not necessarily exact. Moreover, in each figure, the same code|symbol is attached|subjected with respect to substantially the same structure, and the overlapping description may be abbreviate|omitted or simplified. In the following embodiments, "connected" includes not only direct connection but also electrical connection via other elements.
 (実施の形態1)
 [本発明の概要]
 本発明の概要について、図1~図3を参照しながら説明する。
(Embodiment 1)
[Overview of the present invention]
An overview of the present invention will be described with reference to FIGS. 1 to 3. FIG.
 図1は、実施の形態1に係る弾性波フィルタ1を備えるマルチプレクサ5の回路構成図である。図2は、マルチプレクサ5が備える各素子のレイアウトを示す図である。 FIG. 1 is a circuit configuration diagram of a multiplexer 5 including an acoustic wave filter 1 according to Embodiment 1. FIG. FIG. 2 is a diagram showing the layout of each element included in the multiplexer 5. As shown in FIG.
 マルチプレクサ5は、複数のフィルタを備える分波器または合波器である。マルチプレクサ5は、第1フィルタ回路10および付加回路20を有する弾性波フィルタ1と、第2フィルタ回路50とを備えている。また、マルチプレクサ5は、弾性波フィルタ1に接続される第1端子T1と、弾性波フィルタ1および第2フィルタ回路50の両方に接続される第2端子T2と、第2フィルタ回路50に接続される第3端子T3とを備えている。 The multiplexer 5 is a demultiplexer or multiplexer with multiple filters. The multiplexer 5 includes an elastic wave filter 1 having a first filter circuit 10 and an additional circuit 20 and a second filter circuit 50 . Further, the multiplexer 5 is connected to the first terminal T1 connected to the elastic wave filter 1, the second terminal T2 connected to both the elastic wave filter 1 and the second filter circuit 50, and the second filter circuit 50. and a third terminal T3.
 第1端子T1は、弾性波フィルタ1の信号入力側の端子である。例えば、第1端子T1は、増幅回路等(図示せず)を介してRF信号処理回路(図示せず)に接続される。 The first terminal T1 is a terminal on the signal input side of the acoustic wave filter 1. For example, the first terminal T1 is connected to an RF signal processing circuit (not shown) via an amplifier circuit or the like (not shown).
 第2端子T2は、弾性波フィルタ1の信号出力側の端子であり、また、第2フィルタ回路50の信号入力側の端子である。すなわち、第2端子T2は、弾性波フィルタ1および第2フィルタ回路50の共通端子である。第2端子T2は、弾性波フィルタ1と第2端子T2との間のノードn0を分岐点とし、分岐した一方の経路が弾性波フィルタ1に接続され、分岐した他方の経路が第2フィルタ回路50に接続されている。例えば、第2端子T2は、アンテナ素子(図示せず)に接続される。 The second terminal T2 is a terminal on the signal output side of the acoustic wave filter 1, and a terminal on the signal input side of the second filter circuit 50. That is, the second terminal T2 is a common terminal of the acoustic wave filter 1 and the second filter circuit 50. FIG. The second terminal T2 has a node n0 between the elastic wave filter 1 and the second terminal T2 as a branch point, one branched path is connected to the elastic wave filter 1, and the other branched path is the second filter circuit. 50. For example, the second terminal T2 is connected to an antenna element (not shown).
 第3端子T3は、第2フィルタ回路50の信号出力側の端子である。例えば、第3端子T3は、増幅回路等(図示せず)を介してRF信号処理回路(図示せず)に接続される。 The third terminal T3 is a signal output side terminal of the second filter circuit 50 . For example, the third terminal T3 is connected to an RF signal processing circuit (not shown) via an amplifier circuit or the like (not shown).
 弾性波フィルタ1は、第1端子T1と第2端子T2とを結ぶ第1経路r1上に配置されている。弾性波フィルタ1は、第1フィルタ回路10と、第1フィルタ回路10に付加接続された付加回路20とを備える。第1端子T1に入力された高周波信号は、並列接続された第1経路r1および第2経路r2を通って第2端子T2から出力される。 The elastic wave filter 1 is arranged on the first route r1 connecting the first terminal T1 and the second terminal T2. The acoustic wave filter 1 includes a first filter circuit 10 and an additional circuit 20 additionally connected to the first filter circuit 10 . A high-frequency signal input to the first terminal T1 is output from the second terminal T2 through the parallel-connected first path r1 and second path r2.
 第1フィルタ回路10は、通信規格により定められた、所定の周波数帯域を通過帯域とするフィルタ回路である。第1フィルタ回路10を含む弾性波フィルタ1は、例えば、上り周波数帯(送信帯域)を通過帯域とする送信フィルタであり、第2フィルタ回路50よりも通過帯域が低くなるように設定される。 The first filter circuit 10 is a filter circuit having a passband of a predetermined frequency band defined by communication standards. The elastic wave filter 1 including the first filter circuit 10 is, for example, a transmission filter whose passband is the upstream frequency band (transmission band), and is set so that the passband is lower than that of the second filter circuit 50 .
 付加回路20は、第1フィルタ回路10の通過帯域外の減衰特性を改善するため、第1フィルタ回路10と逆位相・同振幅の相殺成分を有するキャンセル回路である。付加回路20は、第1経路r1の少なくとも一部に並列接続される第2経路r2に設けられている。付加回路20は、縦結合弾性波共振器25を有し、縦結合弾性波共振器25は、弾性波伝搬方向に沿って配置された複数のIDT(InterDigital Transducer)電極31、32、33および34を有している。第2経路r2を伝送する高周波信号は、IDT電極31および33に入力され、IDT電極32および34から出力される。 The additional circuit 20 is a canceling circuit having a canceling component of the opposite phase and the same amplitude as the first filter circuit 10 in order to improve the attenuation characteristics outside the passband of the first filter circuit 10 . The additional circuit 20 is provided on a second route r2 connected in parallel to at least part of the first route r1. The additional circuit 20 has a longitudinally coupled acoustic wave resonator 25. The longitudinally coupled acoustic wave resonator 25 comprises a plurality of IDT (InterDigital Transducer) electrodes 31, 32, 33 and 34 arranged along the acoustic wave propagation direction. have. A high-frequency signal transmitted through the second path r2 is input to the IDT electrodes 31 and 33 and output from the IDT electrodes 32 and .
 第2フィルタ回路50は、第2端子T2と第3端子T3とを結ぶ第3経路r3上に配置されている。第2フィルタ回路50は、第1フィルタ回路10の通過帯域と異なる周波数帯域を通過帯域とする。第2フィルタ回路50は、例えば、下り周波数帯(受信帯域)を通過帯域とする受信フィルタである。第2フィルタ回路50は、例えば、直列腕共振子S21と、複数の並列腕共振子P21およびP22と、弾性波共振器Q21とによって構成される。 The second filter circuit 50 is arranged on a third route r3 connecting the second terminal T2 and the third terminal T3. The second filter circuit 50 has a passband that is different from the passband of the first filter circuit 10 . The second filter circuit 50 is, for example, a reception filter whose passband is the downlink frequency band (reception band). The second filter circuit 50 includes, for example, a series arm resonator S21, a plurality of parallel arm resonators P21 and P22, and an elastic wave resonator Q21.
 マルチプレクサ5には、例えば、Band8(送信帯域:880MHz-915MHz、受信帯域:925MHz-960MHz)、または、Band3(送信帯域:1710MHz-1785MHz、受信帯域:1805MHz-1880MHz)の高周波信号が入出力される。 The multiplexer 5, for example, Band 8 (transmitting band: 880 MHz-915 MHz, receiving band: 925 MHz-960 MHz) or Band 3 (transmitting band: 1710 MHz-1785 MHz, receiving band: 1805 MHz-1880 MHz) High frequency signal is input and output. .
 本実施の形態の弾性波フィルタ1は、減衰帯域における減衰量を確保し、かつ、消費電力を小さくするため、以下に示す構成を有している。 The elastic wave filter 1 of the present embodiment has the configuration shown below in order to secure the attenuation amount in the attenuation band and to reduce the power consumption.
 図3は、弾性波フィルタ1の通過帯域および減衰帯域を示す図である。なお同図には、第2フィルタ回路50の通過帯域も示されている。 FIG. 3 is a diagram showing the passband and attenuation band of the acoustic wave filter 1. FIG. The figure also shows the pass band of the second filter circuit 50 .
 図3には、第1フィルタ回路10の通過帯域の最も低い周波数fL1および最も高い周波数fH1が示されている。また、図3には、第1フィルタ回路10の通過帯域よりも高周波側に位置する減衰帯域の所定周波数fH2が示されている。所定周波数fH2は、例えば、第2フィルタ回路50の通過帯域の最も高い周波数である。同図における減衰帯域内の周波数fL2は、例えば、第2フィルタ回路50の通過帯域の最も低い周波数である。 FIG. 3 shows the lowest frequency fL1 and the highest frequency fH1 of the passband of the first filter circuit 10. FIG. FIG. 3 also shows the predetermined frequency fH2 of the attenuation band located on the higher frequency side than the pass band of the first filter circuit 10. As shown in FIG. The predetermined frequency fH2 is, for example, the highest frequency of the passband of the second filter circuit 50 . A frequency fL2 within the attenuation band in the figure is, for example, the lowest frequency of the passband of the second filter circuit 50 .
 ここで、縦結合弾性波共振器25の複数のIDT電極31~34の電極指の配列ピッチの総平均を1/2波長(λ/2)としたときの弾性波の波長に対応する周波数をfxと定義する。電極指の配列ピッチとは、弾性波伝搬方向における、隣り合う2つの電極指の中心間距離である。波長に対応する周波数は、音速を波長で除算することで算出される。波長に対応する周波数は、IDT電極毎に測定プローブを接触させて反射特性を測定し、その共振周波数としても導出することができる。 Here, the frequency corresponding to the wavelength of the elastic wave when the total average of the arrangement pitch of the electrode fingers of the plurality of IDT electrodes 31 to 34 of the longitudinally coupled acoustic wave resonator 25 is 1/2 wavelength (λ/2) is Define fx. The arrangement pitch of the electrode fingers is the center-to-center distance between two adjacent electrode fingers in the elastic wave propagation direction. A frequency corresponding to a wavelength is calculated by dividing the speed of sound by the wavelength. The frequency corresponding to the wavelength can also be derived as the resonance frequency by contacting a measurement probe to each IDT electrode and measuring the reflection characteristics.
 また、複数のIDT電極31~34のうち、縦結合弾性波共振器25から見て第1端子T1側の第1経路r1に接続されるIDT電極31および33の電極指の配列ピッチの平均を1/2波長(λ/2)としたときの波長に対応する周波数をfixと定義する。また、複数のIDT電極31~34のうち、縦結合弾性波共振器25から見て第2端子T2側の第1経路r1に接続されるIDT電極32および34の電極指の配列ピッチの平均を1/2波長(λ/2)としたときの波長に対応する周波数をfoxと定義する。 Further, among the plurality of IDT electrodes 31 to 34, the average arrangement pitch of the electrode fingers of the IDT electrodes 31 and 33 connected to the first path r1 on the first terminal T1 side when viewed from the longitudinally coupled acoustic wave resonator 25 is A frequency corresponding to a wavelength of 1/2 wavelength (λ/2) is defined as fix. Further, among the plurality of IDT electrodes 31 to 34, the average arrangement pitch of the electrode fingers of the IDT electrodes 32 and 34 connected to the first path r1 on the second terminal T2 side when viewed from the longitudinally coupled acoustic wave resonator 25 is A frequency corresponding to a wavelength of 1/2 wavelength (λ/2) is defined as fox.
 これらの定義の下、本実施の形態に係る弾性波フィルタ1は、
(1)1.055×fH1<fix、かつ、
(2)1.035×fH1<fox<fH2
となる関係を有している。この構成によれば、弾性波フィルタ1の減衰帯域における減衰量を確保し、かつ、消費電力を小さくすることができる。
Under these definitions, the elastic wave filter 1 according to the present embodiment is
(1) 1.055×fH1<fix, and
(2) 1.035×fH1<fox<fH2
It has a relationship of According to this configuration, the attenuation in the attenuation band of the acoustic wave filter 1 can be ensured, and power consumption can be reduced.
 例えば、(1)の1.055×fH1<fixおよび(2)の1.035×fH1<foxで示すように、周波数fixおよび周波数foxを弾性波フィルタ1の通過帯域に対して、近すぎないように高く設定することで、消費電力が必要以上に大きくなることを抑制できる。また、(2)のfox<fH2で示すように、周波数foxを、所定周波数fH2よりも低くして減衰帯域内に入れることで、減衰帯域における減衰量を確保することができる。なお、周波数fixと周波数foxとが大きく離れすぎないように、IDT電極31~34の電極指の配列ピッチの総平均から算出される周波数fxは、fx≦1.15×fH1であることが望ましい。以下、弾性波フィルタ1の具体的な構成について説明する。 For example, as shown by 1.055×fH1<fix in (1) and 1.035×fH1<fox in (2), frequency fix and frequency fox are not too close to the passband of elastic wave filter 1. By setting the power consumption higher than necessary, it is possible to prevent the power consumption from increasing more than necessary. Further, as indicated by fox<fH2 in (2), the attenuation amount in the attenuation band can be ensured by making the frequency fox lower than the predetermined frequency fH2 and within the attenuation band. In order to prevent the frequency fix and the frequency fox from being too far apart, the frequency fx calculated from the overall average of the arrangement pitches of the electrode fingers of the IDT electrodes 31 to 34 is preferably fx≦1.15×fH1. . A specific configuration of the acoustic wave filter 1 will be described below.
 [弾性波フィルタの構成]
 前述したように、弾性波フィルタ1は、第1フィルタ回路10および付加回路20を備えている。まず、弾性波フィルタ1の第1フィルタ回路10について、図1~図4を参照しながら説明する。
[Configuration of elastic wave filter]
As described above, the elastic wave filter 1 has the first filter circuit 10 and the additional circuit 20 . First, the first filter circuit 10 of the acoustic wave filter 1 will be described with reference to FIGS. 1 to 4. FIG.
 図1に示すように、第1フィルタ回路10は、弾性波共振子である直列腕共振子S11、S12、S13、S14、S15および並列腕共振子P11、P12、P13、P14を備えている。 As shown in FIG. 1, the first filter circuit 10 includes series arm resonators S11, S12, S13, S14 and S15 and parallel arm resonators P11, P12, P13 and P14, which are elastic wave resonators.
 直列腕共振子S11~S15は、第1端子T1と第2端子T2とを結ぶ第1経路r1上に配置されている。直列腕共振子S11~S15は、第1端子T1から第2端子T2に向かって、この順で直列に接続されている。 The series arm resonators S11 to S15 are arranged on a first path r1 connecting the first terminal T1 and the second terminal T2. The series arm resonators S11 to S15 are connected in series in this order from the first terminal T1 toward the second terminal T2.
 並列腕共振子P11~P14は、第1経路r1上に並ぶ直列腕共振子S11~S15の間の各ノードn1、n2、n3、n4とグランド(基準端子)とを結ぶ経路上に配置されている。具体的には、並列腕共振子P11~P14のうち、直列腕共振子S11に最も近い並列腕共振子P11は、一端が直列腕共振子S11と直列腕共振子S12との間のノードn1に接続され、他端がインダクタL11を介してグランドに接続されている。なお、並列腕共振子P11は、互いに並列接続された2つの共振子すなわち分割された2つの共振子によって構成されている。並列腕共振子P12は、一端が直列腕共振子S12と直列腕共振子S13との間のノードn2に接続され、他端がインダクタL11を介してグランドに接続されている。並列腕共振子P13は、一端が直列腕共振子S13と直列腕共振子S14との間のノードn3に接続され、他端がインダクタL12を介してグランドに接続されている。並列腕共振子P14は、一端が直列腕共振子S14と直列腕共振子S15との間のノードn4に接続され、他端がインダクタL12を介してグランドに接続されている。 The parallel arm resonators P11 to P14 are arranged on a path connecting each node n1, n2, n3, n4 between the series arm resonators S11 to S15 arranged on the first path r1 and the ground (reference terminal). there is Specifically, among the parallel arm resonators P11 to P14, the parallel arm resonator P11 closest to the series arm resonator S11 has one end connected to the node n1 between the series arm resonators S11 and S12. , and the other end is connected to the ground via an inductor L11. The parallel arm resonator P11 is composed of two resonators connected in parallel, that is, two divided resonators. The parallel arm resonator P12 has one end connected to a node n2 between the series arm resonators S12 and S13, and the other end connected to the ground via the inductor L11. The parallel arm resonator P13 has one end connected to a node n3 between the series arm resonators S13 and S14, and the other end connected to the ground via the inductor L12. The parallel arm resonator P14 has one end connected to a node n4 between the series arm resonators S14 and S15, and the other end connected to the ground via the inductor L12.
 なお、並列腕共振子P11、P12のそれぞれの他端は結線により共通化されてインダクタL11に接続され、並列腕共振子P13、P14のそれぞれの他端は結線により共通化されてインダクタL12に接続されている。これら弾性波フィルタ1の各素子は、圧電性基板320およびパッケージ基板330に設けられている。 The other ends of the parallel arm resonators P11 and P12 are made common by wire connection and connected to the inductor L11, and the other ends of the parallel arm resonators P13 and P14 are made common by wire connection and connected to the inductor L12. It is Each element of these elastic wave filters 1 is provided on the piezoelectric substrate 320 and the package substrate 330 .
 図4は、弾性波フィルタ1の各素子が圧電性基板320およびパッケージ基板330に設けられている状態を示す図である。なお、図4には、弾性波フィルタ1および第2フィルタ回路50を含むマルチプレクサ5も示されている。 FIG. 4 is a diagram showing a state in which each element of the acoustic wave filter 1 is provided on the piezoelectric substrate 320 and the package substrate 330. FIG. Note that FIG. 4 also shows the multiplexer 5 including the elastic wave filter 1 and the second filter circuit 50 .
 圧電性基板320は、マルチプレクサ5の主要部分が設けられる基板である。圧電性基板320には、前述した直列腕共振子S11~S15、並列腕共振子P11~P14、付加回路20、第2フィルタ回路50が設けられている。また、圧電性基板320には、ミアンダ状の抵抗素子R13(図2参照)が設けられている。この抵抗素子R13は、並列腕共振子P14と、第2フィルタ回路50の並列腕共振子P21とを結ぶ経路上に設けられている。 The piezoelectric substrate 320 is the substrate on which the main part of the multiplexer 5 is provided. The piezoelectric substrate 320 is provided with the series arm resonators S11 to S15, the parallel arm resonators P11 to P14, the additional circuit 20, and the second filter circuit 50 described above. Further, the piezoelectric substrate 320 is provided with a meandering resistance element R13 (see FIG. 2). The resistance element R13 is provided on a path connecting the parallel arm resonator P14 and the parallel arm resonator P21 of the second filter circuit 50. As shown in FIG.
 パッケージ基板330は、圧電性基板320が実装される基板である。パッケージ基板330には、前述したインダクタL11およびL12が設けられている。 The package substrate 330 is a substrate on which the piezoelectric substrate 320 is mounted. The package substrate 330 is provided with the inductors L11 and L12 described above.
 図1および図4に示すように、第1フィルタ回路10は、第1経路r1上に配置された5つの直列腕共振子S11~S15、および、第1経路r1とグランドとを結ぶ経路上に配置された4つの並列腕共振子P11~P14で構成されるπ型のラダーフィルタ構造を有している。なお、第1フィルタ回路10を構成する直列腕共振子および並列腕共振子の数は、5つまたは4つに限定されず、直列腕共振子が1つ以上かつ並列腕共振子が1つ以上であればよい。また、並列腕共振子とグランドとの間には、インダクタが設けられていてもよい。 As shown in FIGS. 1 and 4, the first filter circuit 10 includes five series arm resonators S11 to S15 arranged on a first path r1 and It has a π-type ladder filter structure composed of four parallel arm resonators P11 to P14. The number of series arm resonators and parallel arm resonators constituting the first filter circuit 10 is not limited to five or four, and the number of series arm resonators is one or more and the number of parallel arm resonators is one or more. If it is Also, an inductor may be provided between the parallel arm resonator and the ground.
 次に、弾性波フィルタ1の付加回路20について図1および図5を参照しながら説明する。付加回路20は、第1フィルタ回路10の通過帯域外の不要波に逆位相をかけることで、弾性波フィルタ1から不要波が出力されることを抑制する回路である。 Next, the additional circuit 20 of the acoustic wave filter 1 will be described with reference to FIGS. 1 and 5. FIG. The additional circuit 20 is a circuit that suppresses the unwanted waves from being output from the elastic wave filter 1 by applying an opposite phase to the unwanted waves outside the passband of the first filter circuit 10 .
 図1に示すように、付加回路20は、第1経路r1の少なくとも一部に並列接続される第2経路r2に設けられている。例えば、付加回路20は、第1経路r1上の複数のノードに接続される。 As shown in FIG. 1, the additional circuit 20 is provided on a second route r2 that is connected in parallel to at least part of the first route r1. For example, the additional circuit 20 is connected to multiple nodes on the first route r1.
 図5は、弾性波フィルタ1の付加回路20を示す図である。 FIG. 5 is a diagram showing the additional circuit 20 of the elastic wave filter 1. FIG.
 図5に示す付加回路20の縦結合弾性波共振器25は、複数のIDT電極31、32、33および34を有している。複数のIDT電極31、32、33、34は、弾性波伝搬方向d1に沿ってこの順で配置されている。 The longitudinally coupled acoustic wave resonator 25 of the additional circuit 20 shown in FIG. 5 has a plurality of IDT electrodes 31, 32, 33 and . A plurality of IDT electrodes 31, 32, 33, 34 are arranged in this order along the elastic wave propagation direction d1.
 また、付加回路20は、複数の反射器41、42を有している。複数の反射器41、42は、弾性波伝搬方向d1において、複数のIDT電極31~34を挟み込むように、IDT電極31~34の両外側に位置している。 Also, the additional circuit 20 has a plurality of reflectors 41 and 42 . The plurality of reflectors 41 and 42 are positioned on both outer sides of the IDT electrodes 31 to 34 so as to sandwich the plurality of IDT electrodes 31 to 34 in the elastic wave propagation direction d1.
 複数のIDT電極31~34のうち、IDT電極31、33は、縦結合弾性波共振器25から見て第1端子T1側の第1経路r1に接続されている。IDT電極32、34は、縦結合弾性波共振器25から見て第2端子T2側の第1経路r1に接続されている。言い換えると、IDT電極31、33は、縦結合弾性波共振器25に並列接続されている直列腕共振子S14およびS15から見て第1端子T1側の第1経路r1に接続され、IDT電極32、34は、直列腕共振子S14およびS15から見て第2端子T2側の第1経路r1に接続されている。 Among the plurality of IDT electrodes 31 to 34, the IDT electrodes 31 and 33 are connected to the first path r1 on the first terminal T1 side when viewed from the longitudinally coupled acoustic wave resonator 25. The IDT electrodes 32 and 34 are connected to the first path r1 on the second terminal T2 side when viewed from the longitudinally coupled acoustic wave resonator 25 . In other words, the IDT electrodes 31 and 33 are connected to the first path r1 on the first terminal T1 side when viewed from the series arm resonators S14 and S15 connected in parallel to the longitudinally coupled acoustic wave resonator 25, and the IDT electrodes 32 , 34 are connected to the first path r1 on the second terminal T2 side as viewed from the series arm resonators S14 and S15.
 第2経路r2は、縦結合弾性波共振器25から見て第1端子T1側に接続される2つの部分経路r21およびr23を有している。部分経路r21は、グランドとノードn3とを結ぶ経路であり、部分経路r23は、グランドとノードn2とを結ぶ経路である。部分経路r21と部分経路r23とを結ぶ経路上には、容量素子C10が設けられている。部分経路r21上にはIDT電極31が配置され、部分経路r23上にはIDT電極33が配置されている。 The second path r2 has two partial paths r21 and r23 connected to the first terminal T1 side when viewed from the longitudinally coupled acoustic wave resonator 25. A partial path r21 is a path connecting the ground and the node n3, and a partial path r23 is a path connecting the ground and the node n2. A capacitive element C10 is provided on a route connecting the partial route r21 and the partial route r23. An IDT electrode 31 is arranged on the partial route r21, and an IDT electrode 33 is arranged on the partial route r23.
 また、第2経路r2は、縦結合弾性波共振器25から見て第2端子T2側に接続される2つの部分経路r22およびr24を有している。部分経路r22は、グランドとノードn5とを結ぶ経路であり、部分経路r24は、グランドとノードn5とを結ぶ経路である。部分経路r22上にはIDT電極32および容量素子C2が配置され、部分経路r24上にはIDT電極34および容量素子C4が配置されている。 Also, the second path r2 has two partial paths r22 and r24 connected to the second terminal T2 side when viewed from the longitudinally coupled acoustic wave resonator 25 . A partial path r22 is a path connecting the ground and the node n5, and a partial path r24 is a path connecting the ground and the node n5. An IDT electrode 32 and a capacitive element C2 are arranged on the partial route r22, and an IDT electrode 34 and a capacitive element C4 are arranged on the partial route r24.
 なお、ノードn5は、ノードn0と直列腕共振子S15とを結ぶ経路上に位置するノードである。ノードn5は、ノードn0と同じであってもよい。部分経路r22およびr24は、結線されてノードn5に接続されてもよいし、結線されずにそれぞれノードn5に接続されてもよい。 Note that the node n5 is a node located on the path connecting the node n0 and the series arm resonator S15. Node n5 may be the same as node n0. The partial paths r22 and r24 may be connected and connected to the node n5, or may be connected to the node n5 respectively without being connected.
 上記では、部分経路r21がノードn3に接続され、部分経路r23がノードn2に接続され、部分経路r22およびr24がノードn5に接続されている例を示したが、それに限られない。部分経路r21、r23および部分経路r22、r24のそれぞれは、第1経路r1に配置された1以上の直列腕共振子の両外側のノードに接続されていればよい。例えば、部分経路r21、r23は、ノードn1に接続されてもよいし、第1端子T1と直列腕共振子S11とを結ぶ第1経路r1上のノードに接続されてもよい。例えば、部分経路r22、r24は、ノードn4に接続されてもよい。 In the above example, partial route r21 is connected to node n3, partial route r23 is connected to node n2, and partial routes r22 and r24 are connected to node n5, but the present invention is not limited to this. Each of the partial paths r21, r23 and the partial paths r22, r24 may be connected to both outer nodes of the one or more series arm resonators arranged on the first path r1. For example, partial paths r21 and r23 may be connected to node n1, or may be connected to a node on first path r1 connecting first terminal T1 and series arm resonator S11. For example, partial paths r22 and r24 may be connected to node n4.
 [付加回路に含まれる縦結合弾性波共振器の構造]
 付加回路20に含まれる縦結合弾性波共振器25の構造について、図5および図6を参照しながら説明する。縦結合弾性波共振器25は、例えば、複数の弾性表面波(SAW:Surface Acoustic Wave)共振子によって構成されている。
[Structure of longitudinally coupled acoustic wave resonator included in additional circuit]
The structure of the longitudinally coupled acoustic wave resonator 25 included in the additional circuit 20 will be described with reference to FIGS. 5 and 6. FIG. The longitudinally coupled acoustic wave resonator 25 is composed of, for example, a plurality of SAW (Surface Acoustic Wave) resonators.
 図6は、付加回路20に含まれる縦結合弾性波共振器25の構造を模式的に示す平面図および断面図である。なお、図6に示された縦結合弾性波共振器25は、共振子の典型的な構造を説明するためのものであって、IDT電極および反射器に含まれる電極指の本数や長さなどは、これに限定されない。 6A and 6B are a plan view and a cross-sectional view schematically showing the structure of the longitudinally coupled acoustic wave resonator 25 included in the additional circuit 20. FIG. Note that the longitudinally coupled acoustic wave resonator 25 shown in FIG. 6 is for explaining a typical structure of the resonator, and the number and length of the electrode fingers included in the IDT electrodes and reflectors, etc. is not limited to this.
 縦結合弾性波共振器25は、圧電性を有する圧電性基板320と、圧電性基板320上に形成された複数のIDT電極31~34とによって構成される。弾性波伝搬方向d1における縦結合弾性波共振器25の両外側には、複数の反射器41、42が設けられている。 The longitudinally coupled acoustic wave resonator 25 is composed of a piezoelectric substrate 320 having piezoelectricity and a plurality of IDT electrodes 31 to 34 formed on the piezoelectric substrate 320 . A plurality of reflectors 41 and 42 are provided on both sides of the longitudinally coupled acoustic wave resonator 25 in the acoustic wave propagation direction d1.
 図6の断面図に示すように、縦結合弾性波共振器25および複数の反射器41、42の電極は、圧電性基板320と、IDT電極31~34および反射器41、42の電極を構成する電極層325と、IDT電極31~34および反射器41、42を覆うように圧電性基板320上に設けられた誘電体層326とによって形成される。 As shown in the cross-sectional view of FIG. 6, the longitudinally coupled acoustic wave resonator 25 and the electrodes of the plurality of reflectors 41 and 42 constitute the piezoelectric substrate 320, the IDT electrodes 31-34 and the electrodes of the reflectors 41 and 42. and a dielectric layer 326 provided on the piezoelectric substrate 320 to cover the IDT electrodes 31-34 and the reflectors 41 and .
 圧電性基板320は、例えば、カット角127.5°のLiNbO基板(ニオブ酸リチウム基板)である。圧電性基板320内を伝搬する弾性波としてレイリー波が使用される場合、圧電性基板320のカット角は、120°±20°、または、300°±20°であることが望ましい。 The piezoelectric substrate 320 is, for example, a LiNbO 3 substrate (lithium niobate substrate) with a cut angle of 127.5°. When Rayleigh waves are used as elastic waves propagating in the piezoelectric substrate 320, the cut angle of the piezoelectric substrate 320 is desirably 120°±20° or 300°±20°.
 電極層325は、複数の金属層が積層された構造を有している。電極層325は、例えば、上から順に、Ti層、Al層、Ti層、Pt層、NiCr層が積層されることで形成されている。 The electrode layer 325 has a structure in which a plurality of metal layers are laminated. The electrode layer 325 is formed by stacking, for example, a Ti layer, an Al layer, a Ti layer, a Pt layer, and a NiCr layer in this order from the top.
 誘電体層326は、例えば、二酸化ケイ素(SiO)を主成分とする膜である。誘電体層326は、縦結合弾性波共振器25の周波数温度特性を調整すること、電極層325を外部環境から保護すること、または、耐湿性を高めることなどを目的として設けられている。例えば、誘電体層326の厚みは、並列腕共振子P11~P14よりも直列腕共振子S11~S15のほうが厚くなるように形成されていてもよい。また、誘電体層326は、直列腕共振子S11~S15のうち最も反共振周波数の高い直列腕共振子と、縦結合弾性波共振器25の各IDT電極31~34とで、厚みが同じになるように形成されていてもよい。 The dielectric layer 326 is, for example, a film whose main component is silicon dioxide (SiO 2 ). The dielectric layer 326 is provided for the purpose of adjusting the frequency-temperature characteristics of the longitudinally coupled acoustic wave resonator 25, protecting the electrode layer 325 from the external environment, or increasing moisture resistance. For example, the dielectric layer 326 may be formed so that the series arm resonators S11 to S15 are thicker than the parallel arm resonators P11 to P14. The dielectric layer 326 has the same thickness for the series arm resonator having the highest antiresonance frequency among the series arm resonators S11 to S15 and the IDT electrodes 31 to 34 of the longitudinally coupled acoustic wave resonator 25. It may be formed so as to be
 図6の平面図に示すように、各IDT電極31~34は、櫛歯状の形状を有している。IDT電極31は、一対となる第1櫛歯状電極31aおよび第2櫛歯状電極31bを有している。IDT電極32は、一対となる第1櫛歯状電極32aおよび第2櫛歯状電極32bを有している。IDT電極33は、一対となる第1櫛歯状電極33aおよび第2櫛歯状電極33bを有している。IDT電極34は、一対となる第1櫛歯状電極34aおよび第2櫛歯状電極34bを有している。 As shown in the plan view of FIG. 6, each of the IDT electrodes 31-34 has a comb shape. The IDT electrode 31 has a pair of a first comb-shaped electrode 31a and a second comb-shaped electrode 31b. The IDT electrode 32 has a pair of a first comb-shaped electrode 32a and a second comb-shaped electrode 32b. The IDT electrode 33 has a pair of a first comb-shaped electrode 33a and a second comb-shaped electrode 33b. The IDT electrode 34 has a pair of a first comb-shaped electrode 34a and a second comb-shaped electrode 34b.
 第1櫛歯状電極31aは、部分経路r21を介してノードn3に接続され、第1櫛歯状電極33aは、部分経路r23を介してノードn2に接続される。第1櫛歯状電極32aは、部分経路r22を介してノードn5に接続され、第1櫛歯状電極34aは、部分経路r24を介してノードn5に接続される。第2櫛歯状電極31b、32b、33b、34bのそれぞれは、グランドに接続される。 The first comb-shaped electrode 31a is connected to the node n3 through the partial route r21, and the first comb-shaped electrode 33a is connected to the node n2 through the partial route r23. The first comb-shaped electrode 32a is connected to the node n5 through the partial route r22, and the first comb-shaped electrode 34a is connected to the node n5 through the partial route r24. Each of the second comb-shaped electrodes 31b, 32b, 33b, and 34b is connected to the ground.
 第1櫛歯状電極31a~34aのそれぞれは、弾性波伝搬方向d1に延びるバスバー電極37aと、バスバー電極37aに接続されて弾性波伝搬方向d1に直交する直交方向d2に延びる複数の電極指36aとを有している。第2櫛歯状電極31b~34bのそれぞれは、弾性波伝搬方向d1に延びるバスバー電極37bと、バスバー電極37bに接続されて直交方向d2に延びる複数の電極指36bとを有している。複数の電極指36aおよび36bは、直交方向d2に互いに間挿し合い、弾性波伝搬方向d1に対向している。以下において、電極指36aおよび36bの両方を指して、電極指36と呼ぶ場合がある。 Each of the first comb-shaped electrodes 31a to 34a includes a busbar electrode 37a extending in the elastic wave propagation direction d1 and a plurality of electrode fingers 36a connected to the busbar electrode 37a and extending in the orthogonal direction d2 orthogonal to the elastic wave propagation direction d1. and Each of the second comb-shaped electrodes 31b to 34b has a busbar electrode 37b extending in the acoustic wave propagation direction d1 and a plurality of electrode fingers 36b connected to the busbar electrode 37b and extending in the orthogonal direction d2. The plurality of electrode fingers 36a and 36b are interposed in the orthogonal direction d2 and face the elastic wave propagation direction d1. Hereinafter, both the electrode fingers 36a and 36b may be referred to as the electrode finger 36 in some cases.
 各IDT電極31~34の共振周波数は、例えば、弾性波伝搬方向d1に隣り合う電極指36の中心間距離である配列ピッチpを変えることで調整可能である。例えばIDT電極31の電極指36の配列ピッチpは、IDT電極31の最外端に位置する2つの電極指の中心間距離を(IDT電極31の電極指36の数-1)で除算することで算出される。本実施の形態では、電極指36の配列ピッチpを所定条件に設定することで、弾性波フィルタ1の消費電力が大きくなることを抑制している。 The resonance frequencies of the IDT electrodes 31 to 34 can be adjusted, for example, by changing the arrangement pitch p, which is the distance between the centers of the electrode fingers 36 adjacent to each other in the elastic wave propagation direction d1. For example, the arrangement pitch p of the electrode fingers 36 of the IDT electrode 31 is obtained by dividing the center-to-center distance between the two electrode fingers located at the outermost ends of the IDT electrode 31 by (the number of electrode fingers 36 of the IDT electrode 31 -1). Calculated by In the present embodiment, by setting the arrangement pitch p of the electrode fingers 36 to a predetermined condition, an increase in the power consumption of the elastic wave filter 1 is suppressed.
 [弾性波フィルタの消費電力]
 弾性波フィルタ1の消費電力について、図7~図10を参照しながら説明する。以下では、Band8の高周波信号が入出力されるマルチプレクサ5の弾性波フィルタ1を例に挙げて説明する。
[Electric Wave Filter Power Consumption]
Power consumption of the elastic wave filter 1 will be described with reference to FIGS. 7 to 10. FIG. In the following, the elastic wave filter 1 of the multiplexer 5 to which the high frequency signal of Band 8 is input/output will be described as an example.
 図7は、弾性波フィルタ1の消費電力を示す図である。なお、同図および以下の図に示す消費電力は、単位面積あたりの消費電力である。消費電力の単位である「mW/□」の□は、対数×交差幅を意味する。 FIG. 7 is a diagram showing the power consumption of the elastic wave filter 1. FIG. The power consumption shown in this figure and the following figures is the power consumption per unit area. □ in “mW/□”, which is the unit of power consumption, means logarithm×intersection width.
 図7の(a)には、弾性波フィルタ1に29dBmの電力が入力されたときの弾性波フィルタ1の消費電力が示されている。同図における破線の波形は、比較例1の弾性波フィルタ1の消費電力であり、実線の波形は、実施例1の弾性波フィルタ1の消費電力である。同図には、弾性波フィルタ1の通過帯域の最も低い周波数fL1および最も高い周波数fH1も示されている。 (a) of FIG. 7 shows the power consumption of the elastic wave filter 1 when a power of 29 dBm is input to the elastic wave filter 1 . The broken-line waveform in the figure is the power consumption of the elastic wave filter 1 of the first comparative example, and the solid-line waveform is the power consumption of the elastic wave filter 1 of the first embodiment. The figure also shows the lowest frequency fL1 and the highest frequency fH1 of the passband of the acoustic wave filter 1. FIG.
 図7の(b)には、比較例1の弾性波フィルタ1の付加回路20のIDT電極の電極パラメータが示され、図7の(c)には実施例1の弾性波フィルタ1の付加回路20のIDT電極の電極パラメータが示されている。 (b) of FIG. 7 shows the electrode parameters of the IDT electrode of the additional circuit 20 of the elastic wave filter 1 of Comparative Example 1, and (c) of FIG. Electrode parameters for 20 IDT electrodes are shown.
 図7の(b)および(c)には、電極パラメータとして、IDT電極31~34の対数、波長λ、および、電極指36の配列ピッチpなどが示されている。なお、IDT電極31~34の波長λは、電極指36の配列ピッチpの2倍に相当する。IDT電極31~34のデューティは0.5であり、交差幅は17.5λである。 (b) and (c) of FIG. 7 show, as electrode parameters, the logarithm of the IDT electrodes 31 to 34, the wavelength λ, the arrangement pitch p of the electrode fingers 36, and the like. The wavelength λ of the IDT electrodes 31 to 34 corresponds to twice the arrangement pitch p of the electrode fingers 36 . The IDT electrodes 31 to 34 have a duty of 0.5 and an intersection width of 17.5λ.
 また、同図には、各IDT電極31~34に対応するそれぞれの周波数比が示されている。各周波数比は、通過帯域の最も高い周波数fH1(この例では915MHz)を分母とし、各IDT電極31~34の電極指36の配列ピッチpを1/2波長としたときの波長に対応する周波数を分子としたときの値である。波長に対応する周波数は、音速(この例では3506m/s)を波長で除算することで算出される。 The figure also shows the frequency ratio corresponding to each of the IDT electrodes 31-34. Each frequency ratio has the highest frequency fH1 (915 MHz in this example) of the passband as the denominator, and the frequency corresponding to the wavelength when the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 to 34 is 1/2 wavelength. is the value when is the numerator. The frequency corresponding to the wavelength is calculated by dividing the speed of sound (3506 m/s in this example) by the wavelength.
 同図には、高周波信号が入力されるIDT電極31および33の周波数比である入力側の周波数比(fix/fH1)が示されている。また、同図には、高周波信号を出力するIDT電極32および34の周波数比である出力側の周波数比(fox/fH1)も示されている。なお、周波数fixは、IDT電極31および33の電極指36の配列ピッチpの平均を1/2波長としたときの波長に対応する周波数であり、周波数foxは、IDT電極32および34の電極指36の配列ピッチpの平均を1/2波長としたときの波長に対応する周波数である。 The figure shows the input-side frequency ratio (fix/fH1), which is the frequency ratio of the IDT electrodes 31 and 33 to which high-frequency signals are input. The figure also shows the output-side frequency ratio (fox/fH1), which is the frequency ratio of the IDT electrodes 32 and 34 that output high-frequency signals. Note that the frequency fix is a frequency corresponding to the wavelength when the average of the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 and 33 is 1/2 wavelength, and the frequency fox is the frequency corresponding to the electrode fingers of the IDT electrodes 32 and 34. It is the frequency corresponding to the wavelength when the average of the arrangement pitch p of 36 is set to 1/2 wavelength.
 図7の(b)および(c)に示された値を用いる場合、入力側の周波数比は、(IDT電極31の周波数比×IDT電極31の対数/IDT電極31、33の対数の合計)+(IDT電極33の周波数比×IDT電極33の対数/IDT電極31、33の対数の合計)という式によっても求められる。出力側の周波数比は、(IDT電極32の周波数比×IDT電極32の対数/IDT電極32、34の対数の合計)+(IDT電極34の周波数比×IDT電極34の対数/IDT電極32、34の対数の合計)という式によっても求められる。 When the values shown in (b) and (c) of FIG. 7 are used, the frequency ratio on the input side is (frequency ratio of IDT electrode 31×logarithm of IDT electrode 31/sum of logarithms of IDT electrodes 31 and 33). +(Frequency ratio of IDT electrode 33×logarithm of IDT electrode 33/sum of logarithms of IDT electrodes 31 and 33). The frequency ratio on the output side is (frequency ratio of IDT electrode 32×logarithm of IDT electrode 32/sum of logarithms of IDT electrodes 32 and 34)+(frequency ratio of IDT electrode 34×logarithm of IDT electrode 34/ IDT electrode 32, 34 logarithms).
 図7の(a)に示すように、実施例1では、IDT電極31~34を有する縦結合弾性波共振器25の励振応答が、弾性波フィルタ1の通過帯域よりも高周波側、すなわち、電力投入ポイントよりも高周波側に位置している。これにより実施例1の弾性波フィルタ1では、電力投入ポイントにおける消費電力を小さくすることができる。 As shown in FIG. 7A, in Example 1, the excitation response of the longitudinally coupled acoustic wave resonator 25 having the IDT electrodes 31 to 34 is higher than the passband of the acoustic wave filter 1, that is, the power It is located on the high frequency side of the injection point. As a result, the elastic wave filter 1 according to the first embodiment can reduce the power consumption at the power input point.
 また、実施例1の弾性波フィルタ1では、通過帯域の一部である900MHz~915MHzにおいて、比較例1の弾性波フィルタ1に比べて消費電力が小さくなっている。そこで、IDT電極31~34の電極パラメータの違いによる消費電力の違いついて、さらに説明する。 In addition, in the acoustic wave filter 1 of Example 1, the power consumption is smaller than that of the acoustic wave filter 1 of Comparative Example 1 in 900 MHz to 915 MHz, which is part of the passband. Therefore, the difference in power consumption due to the difference in the electrode parameters of the IDT electrodes 31 to 34 will be further described.
 図8は、縦結合弾性波共振器25の入力側の周波数比を変えたときの弾性波フィルタ1の消費電力を示す図である。同図および以下の図に示す消費電力は、通過帯域の最も高い周波数fH1における消費電力である。 FIG. 8 is a diagram showing power consumption of the acoustic wave filter 1 when the frequency ratio on the input side of the longitudinally coupled acoustic wave resonator 25 is changed. The power consumption shown in this figure and the following figures is the power consumption at the highest frequency fH1 of the passband.
 同図には、縦結合弾性波共振器25の出力側の周波数比(fox/fH1)を1.036に固定し、入力側の周波数比(fix/fH1)を変えた場合の消費電力が示されている。IDT電極31~34の対数、デューティおよび交差幅は、図7の(c)と同様である。なお、以下の評価では、消費電力が約5.00E-3dBmであれば、断線などの故障が発生しない程度の小さな消費電力であるとした。 The figure shows the power consumption when the frequency ratio (fox/fH1) on the output side of the longitudinally coupled acoustic wave resonator 25 is fixed at 1.036 and the frequency ratio (fix/fH1) on the input side is changed. It is The logarithm, duty and intersection width of the IDT electrodes 31 to 34 are the same as in FIG. 7(c). In the following evaluation, power consumption of about 5.00E −3 dBm was assumed to be low enough to prevent failures such as disconnection.
 図8に示すように、弾性波フィルタ1は、縦結合弾性波共振器25の入力側の周波数比が1.044のときに消費電力が大きく、1.055および1.066のときに消費電力が小さくなっている。つまり、弾性波フィルタ1では、入力側のIDT電極31、33の電極指36の配列ピッチpから算出される周波数fixを1.055×fH1<fixとなる関係に設定することで、消費電力を小さくすることができる。 As shown in FIG. 8, the acoustic wave filter 1 consumes a large amount of power when the frequency ratio on the input side of the longitudinally coupled acoustic wave resonator 25 is 1.044, and consumes a large amount of power when the frequency ratio is 1.055 and 1.066. is getting smaller. That is, in the elastic wave filter 1, power consumption is reduced by setting the frequency fix calculated from the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 and 33 on the input side to a relationship of 1.055×fH1<fix. can be made smaller.
 図9は、縦結合弾性波共振器25の出力側の周波数比を変えたときの弾性波フィルタ1の消費電力を示す図である。 FIG. 9 is a diagram showing power consumption of the acoustic wave filter 1 when the frequency ratio on the output side of the longitudinally coupled acoustic wave resonator 25 is changed.
 同図には、縦結合弾性波共振器25の入力側の周波数比(fix/fH1)を1.055に固定し、出力側の周波数比(fix/fH1)を変えた場合の消費電力が示されている。IDT電極31~34の対数、デューティおよび交差幅は、図7の(c)と同様である。 The figure shows the power consumption when the frequency ratio (fix/fH1) on the input side of the longitudinally coupled acoustic wave resonator 25 is fixed at 1.055 and the frequency ratio (fix/fH1) on the output side is changed. It is The logarithm, duty and intersection width of the IDT electrodes 31 to 34 are the same as in FIG. 7(c).
 図9に示すように、弾性波フィルタ1は、縦結合弾性波共振器25の出力側の周波数比が1.033のときに消費電力が大きく、1.036および1.04のときに消費電力が小さくなっている。つまり、弾性波フィルタ1では、出力側のIDT電極32、34の電極指36の配列ピッチpから算出される周波数foxを1.036×fH1<foxとなる関係に設定することで、消費電力を小さくすることができる。 As shown in FIG. 9, the acoustic wave filter 1 consumes a large amount of power when the frequency ratio on the output side of the longitudinally coupled acoustic wave resonator 25 is 1.033, and consumes a large amount of power when the frequency ratio is 1.036 and 1.04. is getting smaller. That is, in the elastic wave filter 1, power consumption is reduced by setting the frequency fox calculated from the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 32 and 34 on the output side to satisfy the relationship of 1.036×fH1<fox. can be made smaller.
 図10は、縦結合弾性波共振器25の入力側および出力側の周波数比を変えたときの弾性波フィルタ1の消費電力を示す図である。 FIG. 10 is a diagram showing power consumption of the acoustic wave filter 1 when the frequency ratio between the input side and the output side of the longitudinally coupled acoustic wave resonator 25 is changed.
 同図には、縦結合弾性波共振器25の入力側の周波数比および出力側の周波数比の合計値を2.09(=1.055+1.035)とし、入力側および出力側の周波数比の値を変えた場合の消費電力が示されている。なお、図10の横軸は、入力側の周波数比を示している。IDT電極31~34のデューティおよび交差幅は、図7の(c)と同様とした。IDT電極31~34の対数は8.5であり、それぞれ同じ値とした。IDT電極31~34の電極指の配列ピッチpの総平均から算出される周波数fxは、周波数fH1の1.15倍よりも小さくなっている(fx<1.15×fH1)。 In the figure, the total value of the frequency ratio on the input side and the frequency ratio on the output side of the longitudinally coupled acoustic wave resonator 25 is 2.09 (=1.055+1.035), and the frequency ratio on the input side and the output side is The power consumption when the value is changed is shown. Note that the horizontal axis of FIG. 10 indicates the frequency ratio on the input side. The duty and crossing width of the IDT electrodes 31 to 34 are the same as in FIG. 7(c). The logarithm of the IDT electrodes 31 to 34 is 8.5, and the values are the same. The frequency fx calculated from the total average of the arrangement pitches p of the electrode fingers of the IDT electrodes 31 to 34 is smaller than 1.15 times the frequency fH1 (fx<1.15×fH1).
 図10に示すように、弾性波フィルタ1では、「入力側の周波数比=1.035(出力側の周波数比=1.056)」のときと「入力側の周波数比=1.044(出力側の周波数比=1.047)」のときとでは、消費電力はほとんど変わっていない。それに対し、出力側よりも入力側の周波数比を大きくし、「入力側の周波数比=1.055(出力側の周波数比=1.036)」としたほうが、弾性波フィルタ1の消費電力が小さくなっている。つまり、弾性波フィルタ1では、周波数fixおよび周波数foxを、fox<fixとなる関係に設定することで、消費電力を小さくすることができる。 As shown in FIG. 10, in the elastic wave filter 1, when "frequency ratio on the input side = 1.035 (frequency ratio on the output side = 1.056)" and "frequency ratio on the input side = 1.044 (output frequency ratio = 1.056)" side frequency ratio=1.047)”, there is almost no change in power consumption. On the other hand, if the frequency ratio on the input side is made larger than that on the output side, and the frequency ratio on the input side is 1.055 (the frequency ratio on the output side is 1.036), the power consumption of the acoustic wave filter 1 is reduced. It's getting smaller. That is, in the elastic wave filter 1, the power consumption can be reduced by setting the frequency fix and the frequency fox in a relationship of fox<fix.
 [実施の形態1の変形例1]
 実施の形態1の変形例1の弾性波フィルタ1Aについて説明する。変形例1では、付加回路20の反射器41、42の電極指の本数を変えた場合について説明する。
[Modification 1 of Embodiment 1]
An acoustic wave filter 1A of Modification 1 of Embodiment 1 will be described. In Modification 1, the case where the number of electrode fingers of the reflectors 41 and 42 of the additional circuit 20 is changed will be described.
 図11は、変形例1に係る弾性波フィルタ1Aの付加回路20の反射器41、42の電極指の本数を変えたときの消費電力を示す図である。 FIG. 11 is a diagram showing power consumption when changing the number of electrode fingers of the reflectors 41 and 42 of the additional circuit 20 of the acoustic wave filter 1A according to Modification 1. FIG.
 同図には、縦結合弾性波共振器25の出力側の周波数比(fox/fH1)を1.036に固定し、入力側の周波数比(fix/fH1)を1.055に固定し、反射器41、42の電極指の本数を変えた場合の消費電力が示されている。以下では、一方の反射器41の電極指の本数を変えた場合について示すが、他方の反射器42の電極指の本数も同様に変えている。IDT電極31~34の対数、デューティおよび交差幅は、図7の(c)と同様である。 In the figure, the frequency ratio (fox/fH1) on the output side of the longitudinally coupled acoustic wave resonator 25 is fixed at 1.036, the frequency ratio (fix/fH1) on the input side is fixed at 1.055, and the reflection Power consumption is shown when the number of electrode fingers of the devices 41 and 42 is changed. Although the case where the number of electrode fingers of one reflector 41 is changed will be described below, the number of electrode fingers of the other reflector 42 is similarly changed. The logarithm, duty and intersection width of the IDT electrodes 31 to 34 are the same as in FIG. 7(c).
 図11に示すように、弾性波フィルタ1Aは、反射器41の電極指の本数が6本および10本のときに消費電力が小さく、15本以上のときに消費電力が大きくなっている。つまり、弾性波フィルタ1Aでは、複数の反射器41、42のそれぞれの電極指の本数を減らし、具体的には10本以下にすることで、反射器41および42の多重反射を低減し、IDT電極31~34の励振を弱めることができる。これにより、弾性波フィルタ1Aの消費電力を小さくすることができる。 As shown in FIG. 11, the acoustic wave filter 1A consumes less power when the number of electrode fingers of the reflector 41 is 6 and 10, and increases when the number of electrode fingers is 15 or more. That is, in the elastic wave filter 1A, the number of electrode fingers of each of the plurality of reflectors 41 and 42 is reduced, specifically, to 10 or less, thereby reducing multiple reflection of the reflectors 41 and 42, thereby reducing the IDT. The excitation of the electrodes 31-34 can be weakened. Thereby, the power consumption of the elastic wave filter 1A can be reduced.
 [実施の形態1の変形例2]
 実施の形態1の変形例2の弾性波フィルタ1Bについて、図12~図16を参照しながら説明する。変形例2では、第1フィルタ回路10のIDT電極61にはピストンモードが適用され、付加回路20のIDT電極31~34にはピストンモードが適用されていない例について説明する。
[Modification 2 of Embodiment 1]
An elastic wave filter 1B according to Modification 2 of Embodiment 1 will be described with reference to FIGS. 12 to 16. FIG. In Modified Example 2, the piston mode is applied to the IDT electrode 61 of the first filter circuit 10 and the IDT electrodes 31 to 34 of the additional circuit 20 are not applied to the piston mode.
 図12は、変形例2に係る弾性波フィルタ1Bの第1フィルタ回路10に含まれるIDT電極の平面図および断面図である。第1フィルタ回路10の弾性波共振子を構成するIDT電極61が示されている。 12A and 12B are a plan view and a cross-sectional view of an IDT electrode included in the first filter circuit 10 of the acoustic wave filter 1B according to Modification 2. FIG. An IDT electrode 61 forming an elastic wave resonator of the first filter circuit 10 is shown.
 図12に示すように、第1フィルタ回路10に含まれるIDT電極61は、一対となる第1櫛歯状電極61aおよび第2櫛歯状電極61bを有している。第1櫛歯状電極61aは、弾性波伝搬方向d1に延びるバスバー電極67aと、バスバー電極67aに接続されて直交方向d2に延びる複数の電極指66aとを有している。第2櫛歯状電極61bは、弾性波伝搬方向d1に延びるバスバー電極67bと、バスバー電極67bに接続されて直交方向d2に延びる複数の電極指66bとを有している。複数の電極指66aおよび66bは、直交方向d2に互いに間挿し合い、弾性波伝搬方向d1に対向している。 As shown in FIG. 12, the IDT electrode 61 included in the first filter circuit 10 has a pair of a first comb-shaped electrode 61a and a second comb-shaped electrode 61b. The first comb-shaped electrode 61a has a busbar electrode 67a extending in the elastic wave propagation direction d1 and a plurality of electrode fingers 66a connected to the busbar electrode 67a and extending in the orthogonal direction d2. The second comb-shaped electrode 61b has a busbar electrode 67b extending in the elastic wave propagation direction d1 and a plurality of electrode fingers 66b connected to the busbar electrode 67b and extending in the orthogonal direction d2. The plurality of electrode fingers 66a and 66b are interposed in the orthogonal direction d2 and face the elastic wave propagation direction d1.
 変形例2では、このIDT電極61にピストンモードが適用されている。図12に示す例では、電極指66aおよび66bのそれぞれに負荷膜62が形成されることで、IDT電極61にピストンモードが適用されている。負荷膜62は、電極指66a、66bの重りとなる電極であり、電極指66a、66bの先端および中央に設けられる。例えば、電極指66aの中央とは、電極指66aが延びる方向において、電極指66aの両端(根元および先端)を除く部分である。 In modification 2, the piston mode is applied to this IDT electrode 61 . In the example shown in FIG. 12, the piston mode is applied to the IDT electrode 61 by forming the load film 62 on each of the electrode fingers 66a and 66b. The load films 62 are electrodes that serve as weights for the electrode fingers 66a and 66b, and are provided at the tips and centers of the electrode fingers 66a and 66b. For example, the center of the electrode finger 66a is a portion excluding both ends (root and tip) of the electrode finger 66a in the extending direction of the electrode finger 66a.
 図13は、弾性波フィルタ1Bの付加回路20に含まれるIDT電極の平面図および断面図である。図13には、付加回路20の縦結合弾性波共振器25を構成するIDT電極31~34が示されている。 13A and 13B are a plan view and a cross-sectional view of an IDT electrode included in the additional circuit 20 of the elastic wave filter 1B. FIG. 13 shows the IDT electrodes 31 to 34 forming the longitudinally coupled acoustic wave resonator 25 of the additional circuit 20. As shown in FIG.
 付加回路20に含まれるIDT電極31~34にはピストンモードが適用されていない。具体的には、図13に示すように、IDT電極31~34の電極指36には負荷膜62が形成されておらず、電極指36は直交方向d2に沿って同じ厚みとなっている。 The piston mode is not applied to the IDT electrodes 31-34 included in the additional circuit 20. Specifically, as shown in FIG. 13, the load film 62 is not formed on the electrode fingers 36 of the IDT electrodes 31 to 34, and the electrode fingers 36 have the same thickness along the orthogonal direction d2.
 変形例2では、第1フィルタ回路10に含まれるIDT電極61の少なくとも一部は、ピストンモードが適用されるが、付加回路20に含まれる複数のIDT電極31~34には、ピストンモードが適用されていない。この構成により、IDT電極31~34にて過度にエネルギーが閉じ込められることを抑制し、IDT電極31~34にかかる電力を低くすることができる。これにより、弾性波フィルタ1Bの寿命が短くなることを抑制できる。 In modification 2, the piston mode is applied to at least some of the IDT electrodes 61 included in the first filter circuit 10, but the piston mode is applied to the plurality of IDT electrodes 31 to 34 included in the additional circuit 20. It has not been. With this configuration, it is possible to prevent excessive energy from being trapped in the IDT electrodes 31 to 34 and reduce the power applied to the IDT electrodes 31 to 34 . As a result, shortening of the life of the elastic wave filter 1B can be suppressed.
 図14は、第1フィルタ回路10に含まれるIDT電極の他の例を示す図である。図14にも、第1フィルタ回路10の弾性波共振子を構成するIDT電極61が示されている。 FIG. 14 is a diagram showing another example of the IDT electrodes included in the first filter circuit 10. FIG. FIG. 14 also shows the IDT electrodes 61 forming the elastic wave resonators of the first filter circuit 10 .
 図14に示す例では、電極指66aおよび66bのそれぞれに幅広部63が形成されることで、IDT電極61にピストンモードが適用されている。幅広部63は、電極指66a、66bの重りとなる部分であり、電極指66a、66bの先端および中央に設けられる。 In the example shown in FIG. 14, a piston mode is applied to the IDT electrode 61 by forming a wide portion 63 on each of the electrode fingers 66a and 66b. The wide portions 63 are portions that serve as weights for the electrode fingers 66a and 66b, and are provided at the tips and centers of the electrode fingers 66a and 66b.
 幅広部63は、電極指66aよりも幅が広い形状を有している。図14に示す幅広部63は、長方形状であるが、それに限られず、T字形状、プラス(+)字形状または凸形状であってもよい。 The wide portion 63 has a shape wider than the electrode finger 66a. The wide portion 63 shown in FIG. 14 has a rectangular shape, but is not limited thereto, and may have a T shape, a plus (+) shape, or a convex shape.
 図14に示す例でも、第1フィルタ回路10に含まれるIDT電極61の少なくとも一部は、ピストンモードが適用されるが、付加回路20に含まれる複数のIDT電極31~34には、ピストンモードが適用されていない。この構成により、IDT電極31~34にて過度にエネルギーが閉じ込められることを抑制し、IDT電極31~34にかかる電力を低くすることができる。これにより、弾性波フィルタ1Bの寿命が短くなることを抑制できる。 In the example shown in FIG. 14 as well, the piston mode is applied to at least some of the IDT electrodes 61 included in the first filter circuit 10, but the plurality of IDT electrodes 31 to 34 included in the additional circuit 20 are in the piston mode. is not applied. With this configuration, it is possible to prevent excessive energy from being trapped in the IDT electrodes 31 to 34 and reduce the power applied to the IDT electrodes 31 to 34 . As a result, shortening of the life of the elastic wave filter 1B can be suppressed.
 図15は、第1フィルタ回路10に含まれるIDT電極の他の例を示す図である。図15にも、第1フィルタ回路10の弾性波共振子を構成するIDT電極61が示されている。 FIG. 15 is a diagram showing another example of the IDT electrodes included in the first filter circuit 10. FIG. FIG. 15 also shows the IDT electrodes 61 that form the elastic wave resonators of the first filter circuit 10 .
 図15に示す例では、電極指66aおよび66bのそれぞれが、連結バー64で連結されていることで、IDT電極61にピストンモードが適用されている。 In the example shown in FIG. 15, the electrode fingers 66a and 66b are connected by the connecting bar 64, so that the IDT electrode 61 is applied in the piston mode.
 連結バー64は、細長い棒状の電極であり、例えば、電極指66aの中央部において直交方向d2に延び、複数の電極指66aを連結している。連結バー64の幅は、電極指66aの幅以下である。 The connecting bar 64 is an elongated rod-shaped electrode, for example, extends in the orthogonal direction d2 at the central portion of the electrode fingers 66a and connects the plurality of electrode fingers 66a. The width of the connecting bar 64 is equal to or less than the width of the electrode fingers 66a.
 図15に示す例でも、第1フィルタ回路10に含まれるIDT電極61の少なくとも一部は、ピストンモードが適用されるが、付加回路20に含まれる複数のIDT電極31~34には、ピストンモードが適用されていない。この構成により、IDT電極31~34にて過度にエネルギーが閉じ込められることを抑制し、IDT電極31~34にかかる電力を低くすることができる。これにより、弾性波フィルタ1Bの寿命が短くなることを抑制できる。 In the example shown in FIG. 15 as well, the piston mode is applied to at least some of the IDT electrodes 61 included in the first filter circuit 10. is not applied. With this configuration, it is possible to prevent excessive energy from being trapped in the IDT electrodes 31 to 34 and reduce the power applied to the IDT electrodes 31 to 34 . As a result, shortening of the life of the elastic wave filter 1B can be suppressed.
 図16は、第1フィルタ回路10に含まれるIDT電極の他の例を示す図である。図16にも、第1フィルタ回路10の弾性波共振子を構成するIDT電極61が示されている。 FIG. 16 is a diagram showing another example of the IDT electrodes included in the first filter circuit 10. FIG. FIG. 16 also shows the IDT electrodes 61 forming the elastic wave resonators of the first filter circuit 10 .
 図16に示す例では、電極指66aおよび66bのそれぞれが、幅広部63を有し、かつ、連結バー64で連結されていることで、IDT電極61にピストンモードが適用されている。 In the example shown in FIG. 16, each of the electrode fingers 66a and 66b has a wide portion 63 and is connected by a connecting bar 64, so that the IDT electrode 61 is applied to the piston mode.
 図16に示す例でも、第1フィルタ回路10に含まれるIDT電極61の少なくとも一部は、ピストンモードが適用されるが、付加回路20に含まれる複数のIDT電極31~34には、ピストンモードが適用されていない。この構成により、IDT電極31~34にて過度にエネルギーが閉じ込められることを抑制し、IDT電極31~34にかかる電力を低くすることができる。これにより、弾性波フィルタ1Bの寿命が短くなることを抑制できる。 In the example shown in FIG. 16 as well, the piston mode is applied to at least some of the IDT electrodes 61 included in the first filter circuit 10, but the plurality of IDT electrodes 31 to 34 included in the additional circuit 20 are in the piston mode. is not applied. With this configuration, it is possible to prevent excessive energy from being trapped in the IDT electrodes 31 to 34 and reduce the power applied to the IDT electrodes 31 to 34 . As a result, shortening of the life of the elastic wave filter 1B can be suppressed.
 図17は、実施の形態1の変形例2に係る弾性波フィルタ1Bの耐電力を示す図である。図17の(a)には弾性波フィルタ1Bの模式図が示されている。図17の(b)には、変形例2の弾性波フィルタ1Bの耐電力が丸印で示され、比較例の弾性波フィルタの耐電力が三角印で示されている。なお、変形例2は、付加回路20にピストンモードを適用しなかった例であり、比較例は、付加回路20にピストンモードを適用した例である。図17の(b)に示すように、ピストンモードを適用しなかった変形例2は、ピストンモードを適用した比較例よりも耐電力が向上している。 FIG. 17 is a diagram showing the withstand power of the elastic wave filter 1B according to Modification 2 of Embodiment 1. FIG. FIG. 17(a) shows a schematic diagram of the elastic wave filter 1B. In (b) of FIG. 17 , the withstand power of the acoustic wave filter 1B of Modification 2 is indicated by circles, and the withstand power of the acoustic wave filter of the comparative example is indicated by triangles. Modification 2 is an example in which the piston mode is not applied to the additional circuit 20 , and Comparative Example is an example in which the piston mode is applied to the additional circuit 20 . As shown in (b) of FIG. 17 , Modified Example 2, in which the piston mode is not applied, has a higher power handling capability than the Comparative Example, in which the piston mode is applied.
 [実施の形態1の変形例3]
 実施の形態1の変形例3の弾性波フィルタ1Cについて、図18および図19を参照しながら説明する。変形例3では、交差電極指とオフセット電極指との間隔(ギャップ)gが、第1フィルタ回路10よりも付加回路20のほうが大きくなっている例について説明する。
[Modification 3 of Embodiment 1]
An elastic wave filter 1C according to Modification 3 of Embodiment 1 will be described with reference to FIGS. 18 and 19. FIG. In Modification 3, an example in which the distance (gap) g between the intersecting electrode fingers and the offset electrode fingers is larger in the additional circuit 20 than in the first filter circuit 10 will be described.
 図18は、変形例3に係る弾性波フィルタ1Cの第1フィルタ回路10に含まれるIDT電極61を示す平面図である。 18 is a plan view showing the IDT electrode 61 included in the first filter circuit 10 of the elastic wave filter 1C according to Modification 3. FIG.
 図18に示すように、第1フィルタ回路10のIDT電極61は、一対となる第1櫛歯状電極61aおよび第2櫛歯状電極61bを有している。第1櫛歯状電極61aは、弾性波伝搬方向d1に延びるバスバー電極67aと、バスバー電極67aに接続されて直交方向d2(プラス側)に延びる交差電極指68aおよびオフセット電極指69aと、を有している。第2櫛歯状電極61bは、弾性波伝搬方向d1に延びるバスバー電極67bと、バスバー電極67bに接続されて直交方向d2(マイナス側)に延びる交差電極指68bおよびオフセット電極指69bと、を有している。 As shown in FIG. 18, the IDT electrode 61 of the first filter circuit 10 has a pair of a first comb-shaped electrode 61a and a second comb-shaped electrode 61b. The first comb-shaped electrode 61a has a busbar electrode 67a extending in the elastic wave propagation direction d1, and intersecting electrode fingers 68a and offset electrode fingers 69a connected to the busbar electrode 67a and extending in the orthogonal direction d2 (plus side). are doing. The second comb-shaped electrode 61b has a busbar electrode 67b extending in the acoustic wave propagation direction d1, intersecting electrode fingers 68b and offset electrode fingers 69b connected to the busbar electrode 67b and extending in the orthogonal direction d2 (minus side). are doing.
 交差電極指68a、68bは、弾性波伝搬方向d1から見て、互いに交差している。オフセット電極指69aは、交差電極指68aよりも長さが短く、オフセット電極指69bは、交差電極指68bよりも長さが短くなっている。第1櫛歯状電極61aの交差電極指68aと第2櫛歯状電極61bのオフセット電極指69bとは、直交方向d2に互いに対向し、第2櫛歯状電極61bの交差電極指68bと第1櫛歯状電極61aのオフセット電極指69aとは、直交方向d2に互いに対向している。 The intersecting electrode fingers 68a and 68b cross each other when viewed from the elastic wave propagation direction d1. The offset electrode fingers 69a are shorter in length than the cross electrode fingers 68a, and the offset electrode fingers 69b are shorter in length than the cross electrode fingers 68b. The intersecting electrode fingers 68a of the first comb-shaped electrode 61a and the offset electrode fingers 69b of the second comb-shaped electrode 61b face each other in the orthogonal direction d2. The offset electrode fingers 69a of one comb-shaped electrode 61a face each other in the orthogonal direction d2.
 図19は、変形例3に係る弾性波フィルタ1Cの付加回路20に含まれるIDT電極31を示す平面図である。以下では、IDT電極31~34のうちIDT電極31を例に挙げて説明する。 19 is a plan view showing the IDT electrode 31 included in the additional circuit 20 of the elastic wave filter 1C according to Modification 3. FIG. Among the IDT electrodes 31 to 34, the IDT electrode 31 will be described below as an example.
 図19に示すように、付加回路20のIDT電極31は、第1櫛歯状電極31aおよび第2櫛歯状電極31bで構成されている。第1櫛歯状電極31aは、弾性波伝搬方向d1に延びるバスバー電極37aと、バスバー電極37aに接続されて直交方向d2(プラス側)に延びる交差電極指38aおよびオフセット電極指39aと、を有している。第2櫛歯状電極31bは、弾性波伝搬方向d1に延びるバスバー電極37bと、バスバー電極37bに接続されて直交方向d2(マイナス側)に延びる交差電極指38bおよびオフセット電極指39bと、を有している。 As shown in FIG. 19, the IDT electrode 31 of the additional circuit 20 is composed of a first comb-shaped electrode 31a and a second comb-shaped electrode 31b. The first comb-shaped electrode 31a has a busbar electrode 37a extending in the elastic wave propagation direction d1, and intersecting electrode fingers 38a and offset electrode fingers 39a connected to the busbar electrode 37a and extending in the orthogonal direction d2 (plus side). are doing. The second comb-shaped electrode 31b has a busbar electrode 37b extending in the acoustic wave propagation direction d1, intersecting electrode fingers 38b and offset electrode fingers 39b connected to the busbar electrode 37b and extending in the orthogonal direction d2 (minus side). are doing.
 交差電極指38a、38bは、弾性波伝搬方向d1から見て、互いに交差している。オフセット電極指39aは、交差電極指38aよりも長さが短く、オフセット電極指39bは、交差電極指38bよりも長さが短くなっている。第1櫛歯状電極31aの交差電極指38aと第2櫛歯状電極31bのオフセット電極指39bとは、直交方向d2に互いに対向し、第2櫛歯状電極31bの交差電極指38bと第1櫛歯状電極31aのオフセット電極指39aとは、直交方向d2に互いに対向している。 The intersecting electrode fingers 38a and 38b cross each other when viewed from the elastic wave propagation direction d1. The offset electrode fingers 39a are shorter in length than the cross electrode fingers 38a, and the offset electrode fingers 39b are shorter in length than the cross electrode fingers 38b. The intersecting electrode fingers 38a of the first comb-shaped electrode 31a and the offset electrode fingers 39b of the second comb-shaped electrode 31b face each other in the orthogonal direction d2, and the intersecting electrode fingers 38b of the second comb-shaped electrode 31b and the offset electrode fingers 39b of the second comb-shaped electrode 31b The offset electrode fingers 39a of one comb-shaped electrode 31a face each other in the orthogonal direction d2.
 変形例3では、付加回路20のIDT電極31にて直交方向d2に互いに対向する交差電極指38aとオフセット電極指39bとの間隔gは、第1フィルタ回路10のIDT電極61にて直交方向d2に互いに対向する交差電極指68aとオフセット電極指69bとの間隔gよりも広い。また、付加回路20のIDT電極31にて直交方向d2に互いに対向する交差電極指38bとオフセット電極指39aとの間隔gは、第1フィルタ回路10のIDT電極61にて直交方向d2に互いに対向する交差電極指68bとオフセット電極指69aとの間隔gよりも広い。この構成により、IDT電極31~34にて過度にエネルギーが閉じ込められることを抑制し、IDT電極31~34にかかる電力を低くすることができる。これにより、弾性波フィルタ1Cの寿命が短くなることを抑制できる。 In Modified Example 3, the distance g between the intersecting electrode fingers 38a and the offset electrode fingers 39b, which face each other in the orthogonal direction d2 in the IDT electrodes 31 of the additional circuit 20, is the same as that in the IDT electrodes 61 of the first filter circuit 10 in the orthogonal direction d2. is wider than the interval g between the intersecting electrode fingers 68a and the offset electrode fingers 69b facing each other. Further, the distance g between the intersecting electrode fingers 38b and the offset electrode fingers 39a facing each other in the orthogonal direction d2 at the IDT electrodes 31 of the additional circuit 20 is is wider than the interval g between the intersecting electrode finger 68b and the offset electrode finger 69a. With this configuration, it is possible to prevent excessive energy from being trapped in the IDT electrodes 31 to 34 and reduce the power applied to the IDT electrodes 31 to 34 . As a result, shortening of the life of the acoustic wave filter 1C can be suppressed.
 [実施の形態1の変形例4]
 実施の形態1の変形例4の弾性波フィルタ1Dについて、図20を参照しながら説明する。変形例4では、IDT電極に形成される誘電体層326の膜厚が異なる例について説明する。
[Modification 4 of Embodiment 1]
An elastic wave filter 1D according to Modification 4 of Embodiment 1 will be described with reference to FIG. In Modified Example 4, an example in which the film thickness of the dielectric layer 326 formed on the IDT electrode is different will be described.
 図20は、変形例4に係る弾性波フィルタ1Dの第1フィルタ回路10および付加回路20に形成される誘電体層326を示す断面図である。 FIG. 20 is a cross-sectional view showing dielectric layers 326 formed in the first filter circuit 10 and the additional circuit 20 of the elastic wave filter 1D according to Modification 4. FIG.
 誘電体層326は、例えば、二酸化ケイ素(SiO)を主成分とする膜である。誘電体層326は、弾性波共振子および縦結合弾性波共振器25の周波数温度特性を調整すること、電極層325を外部環境から保護すること、または、耐湿性を高めることなどを目的として設けられている。図20では、誘電体層326の厚みは、並列腕共振子P11~P14に形成されるIDT電極よりも直列腕共振子S11~S15に形成されるIDT電極のほうが厚くなるように形成されている。また、誘電体層326は、直列腕共振子S11~S15のうち最も反共振周波数の高い直列腕共振子と、縦結合弾性波共振器25の各IDT電極31~34とで、厚みが同じになるように形成されている。この構成によれば、ラダー型フィルタにおいて、直列腕共振子の最も反共振周波数の高い直列腕共振子と付加回路20との温度特性を合わせることができる。 The dielectric layer 326 is, for example, a film whose main component is silicon dioxide (SiO 2 ). The dielectric layer 326 is provided for the purpose of adjusting the frequency-temperature characteristics of the acoustic wave resonator and the longitudinally coupled acoustic wave resonator 25, protecting the electrode layer 325 from the external environment, or improving moisture resistance. It is In FIG. 20, the dielectric layer 326 is formed so that the IDT electrodes formed on the series arm resonators S11 to S15 are thicker than the IDT electrodes formed on the parallel arm resonators P11 to P14. . The dielectric layer 326 has the same thickness for the series arm resonator having the highest antiresonance frequency among the series arm resonators S11 to S15 and the IDT electrodes 31 to 34 of the longitudinally coupled acoustic wave resonator 25. It is formed to be According to this configuration, in the ladder filter, the temperature characteristics of the series arm resonator having the highest anti-resonance frequency and the additional circuit 20 can be matched.
 [実施の形態1の変形例5]
 実施の形態1の変形例5の弾性波フィルタ1について、図21を参照しながら説明する。
[Modification 5 of Embodiment 1]
An elastic wave filter 1 according to Modification 5 of Embodiment 1 will be described with reference to FIG.
 図21は、実施の形態1の変形例5に係る弾性波フィルタ1を備えるマルチプレクサ5の回路構成図である。 FIG. 21 is a circuit configuration diagram of a multiplexer 5 including an elastic wave filter 1 according to Modification 5 of Embodiment 1. FIG.
 図21に示す弾性波フィルタ1では、第2経路r2に容量素子C1およびC3が設けられている。具体的には、部分経路r21上にIDT電極31および容量素子C1が配置され、部分経路r23上にIDT電極33および容量素子C3が配置されている。変形例5の弾性波フィルタ1でも、減衰帯域における減衰量を確保し、かつ、消費電力を小さくすることができる。 In the acoustic wave filter 1 shown in FIG. 21, capacitive elements C1 and C3 are provided on the second path r2. Specifically, the IDT electrode 31 and the capacitive element C1 are arranged on the partial route r21, and the IDT electrode 33 and the capacitive element C3 are arranged on the partial route r23. The acoustic wave filter 1 of Modification 5 can also secure the attenuation amount in the attenuation band and reduce the power consumption.
 (実施の形態2)
 実施の形態2について、図22および図23を参照しながら説明する。実施の形態2では、弾性波フィルタ1Eの通過帯域が、第2フィルタ回路50の通過帯域よりも高くなるように設定されている例について説明する。
(Embodiment 2)
Embodiment 2 will be described with reference to FIGS. 22 and 23. FIG. In the second embodiment, an example in which the passband of the elastic wave filter 1E is set to be higher than the passband of the second filter circuit 50 will be described.
 図22は、実施の形態2に係る弾性波フィルタ1Eを備えるマルチプレクサ5Eの回路構成図である。 FIG. 22 is a circuit configuration diagram of a multiplexer 5E including an acoustic wave filter 1E according to Embodiment 2. FIG.
 マルチプレクサ5Eは、複数のフィルタを備える分波器または合波器である。マルチプレクサ5Eは、第1フィルタ回路10および付加回路20を有する弾性波フィルタ1Eと、第2フィルタ回路50とを備えている。また、マルチプレクサ5Eは、弾性波フィルタ1Eに接続される第1端子T1と、弾性波フィルタ1Eおよび第2フィルタ回路50の両方に接続される第2端子T2と、第2フィルタ回路50に接続される第3端子T3とを備えている。弾性波フィルタ1E、第2フィルタ回路50、第1端子T1、第2端子T2および第3端子T3の基本的な構成は、実施の形態1と同じである。 The multiplexer 5E is a demultiplexer or multiplexer with multiple filters. The multiplexer 5E includes an elastic wave filter 1E having a first filter circuit 10 and an additional circuit 20, and a second filter circuit 50. FIG. Further, the multiplexer 5E is connected to a first terminal T1 connected to the elastic wave filter 1E, a second terminal T2 connected to both the elastic wave filter 1E and the second filter circuit 50, and a second filter circuit 50. and a third terminal T3. The basic configurations of the elastic wave filter 1E, the second filter circuit 50, the first terminal T1, the second terminal T2 and the third terminal T3 are the same as in the first embodiment.
 マルチプレクサ5Eには、例えば、Band13(送信帯域:777MHz-787MHz、受信帯域:746MHz-756MHz)、または、Band20(送信帯域:832MHz-862MHz、受信帯域:791MHz-821MHz)の高周波信号が入出力される。 High-frequency signals of, for example, Band 13 (transmission band: 777 MHz-787 MHz, reception band: 746 MHz-756 MHz) or Band 20 (transmission band: 832 MHz-862 MHz, reception band: 791 MHz-821 MHz) are input to and output from the multiplexer 5E. .
 実施の形態2の弾性波フィルタ1Eは、減衰帯域における減衰量を確保し、かつ、消費電力を小さくするため、以下に示す構成を有している。 The elastic wave filter 1E of Embodiment 2 has the configuration shown below in order to secure the attenuation amount in the attenuation band and to reduce the power consumption.
 図23は、弾性波フィルタ1Eの通過帯域および減衰帯域を示す図である。なお同図には、第2フィルタ回路50の通過帯域も示されている。 FIG. 23 is a diagram showing the passband and attenuation band of the elastic wave filter 1E. The figure also shows the pass band of the second filter circuit 50 .
 図23には、第1フィルタ回路10の通過帯域の最も低い周波数fL3および最も高い周波数fH3が示されている。また、図23には、第1フィルタ回路10の通過帯域よりも低周波側に位置する減衰帯域の所定周波数fL4が示されている。所定周波数fL4は、例えば、第2フィルタ回路50の通過帯域の最も低い周波数である。同図における減衰帯域内の周波数fH4は、例えば、第2フィルタ回路50の通過帯域の最も高い周波数である。 FIG. 23 shows the lowest frequency fL3 and the highest frequency fH3 of the passband of the first filter circuit 10. FIG. FIG. 23 also shows the predetermined frequency fL4 of the attenuation band located on the lower frequency side than the pass band of the first filter circuit 10. As shown in FIG. The predetermined frequency fL4 is, for example, the lowest frequency of the passband of the second filter circuit 50. FIG. A frequency fH4 within the attenuation band in the figure is, for example, the highest frequency of the passband of the second filter circuit 50 .
 ここで、縦結合弾性波共振器25の複数のIDT電極31~34の電極指36の配列ピッチpの総平均を1/2波長(λ/2)としたときの波長に対応する周波数をfyと定義する。 fy defined as
 また、複数のIDT電極31~34のうち、縦結合弾性波共振器25から見て第1端子T1側の第1経路r1に接続されるIDT電極31および33の電極指36の配列ピッチpの平均を1/2波長(λ/2)としたときの波長に対応する周波数をfiyと定義する。また、複数のIDT電極31~34のうち、縦結合弾性波共振器25から見て第2端子T2側の第1経路r1に接続されるIDT電極32および34の電極指36の配列ピッチpの平均を1/2波長(λ/2)としたときの波長に対応する周波数をfoyと定義する。 Further, among the plurality of IDT electrodes 31 to 34, the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 and 33 connected to the first path r1 on the side of the first terminal T1 when viewed from the longitudinally coupled acoustic wave resonator 25 is The frequency corresponding to the wavelength when the average is 1/2 wavelength (λ/2) is defined as fiy. Among the plurality of IDT electrodes 31 to 34, the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 32 and 34 connected to the first path r1 on the second terminal T2 side when viewed from the longitudinally coupled acoustic wave resonator 25 is The frequency corresponding to the wavelength when the average is 1/2 wavelength (λ/2) is defined as foy.
 これらの定義の下、本実施の形態に係る弾性波フィルタ1Eは、
(3)fiy<0.945×fL3、かつ、
(4)fL4<foy<0.965×fL3
となる関係を有している。この構成によれば、弾性波フィルタ1Eの減衰帯域における減衰量を確保し、かつ、消費電力を小さくすることができる。
Under these definitions, the elastic wave filter 1E according to the present embodiment is
(3) fiy<0.945×fL3, and
(4) fL4<foy<0.965×fL3
It has a relationship of With this configuration, the attenuation in the attenuation band of the elastic wave filter 1E can be ensured, and the power consumption can be reduced.
 例えば、(3)のfiy<0.945×fL3および(4)のfoy<0.965×fL3で示すように、周波数fiyおよび周波数foyを弾性波フィルタ1Eの通過帯域に対して、近すぎないように低く設定することで、消費電力が必要以上に大きくなることを抑制できる。また、(4)のfL4<foyで示すように、周波数foyを、所定周波数fL4よりも高くして減衰帯域内に入れることで、減衰帯域における減衰量を確保することができる。なお、周波数fiyと周波数foyとが大きく離れすぎないように、IDT電極31~34の電極指36の配列ピッチpの総平均から算出される周波数fyは、0.85×fL3≦fyであることが望ましい。また、弾性波フィルタ1Eでは、周波数fiyおよび周波数foyを、fiy<foyとなる関係に設定することで、消費電力を小さくすることができる。 For example, as shown by (3) fiy<0.945×fL3 and (4) foy<0.965×fL3, the frequency fiy and the frequency foy are not too close to the passband of the acoustic wave filter 1E. By setting it as low as possible, it is possible to prevent the power consumption from increasing more than necessary. Further, as indicated by fL4<foy in (4), the attenuation amount in the attenuation band can be ensured by setting the frequency foy higher than the predetermined frequency fL4 to be within the attenuation band. Note that the frequency fy calculated from the total average of the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 to 34 should be 0.85×fL3≦fy so that the frequency fiy and the frequency foy are not too far apart. is desirable. Further, in the elastic wave filter 1E, power consumption can be reduced by setting the frequency fiy and the frequency foy to satisfy the relationship of fiy<foy.
 (まとめ)
 以上説明したように、本実施の形態に係る弾性波フィルタ1は、第1端子T1および第2端子T2と、第1端子T1と第2端子T2とを結ぶ第1経路r1に設けられた第1フィルタ回路10と、第1経路r1の少なくとも一部と並列接続される第2経路r2に設けられた付加回路20と、を備える。付加回路20は、縦結合弾性波共振器25を有している。縦結合弾性波共振器25は、弾性波伝搬方向d1に沿って配置された複数のIDT電極31~34を有している。複数のIDT電極31~34のうち、縦結合弾性波共振器25から見て第1端子T1側の第1経路r1に接続されるIDT電極31、33の電極指36の配列ピッチpの平均を1/2波長としたときの波長に対応する周波数をfixとし、複数のIDT電極31~34のうち、縦結合弾性波共振器25から見て第2端子T2側の第1経路r1に接続されるIDT電極32、34の電極指36の配列ピッチpの平均を1/2波長としたときの波長に対応する周波数をfoxとし、第1フィルタ回路10の通過帯域の最も高い周波数をfH1とし、第1フィルタ回路10の通過帯域よりも高周波側に位置する減衰帯域内の所定周波数をfH2とした場合に、弾性波フィルタ1は、
(1)1.055×fH1<fixとなる関係を有し、かつ、
(2)1.035×fH1<fox<fH2となる関係を有する。
(summary)
As described above, the elastic wave filter 1 according to the present embodiment includes the first terminal T1 and the second terminal T2, and the first terminal T1 and the second terminal T2 provided in the first route r1 connecting the first terminal T1 and the second terminal T2. 1 filter circuit 10 and an additional circuit 20 provided in a second route r2 connected in parallel with at least part of the first route r1. The additional circuit 20 has a longitudinally coupled acoustic wave resonator 25 . The longitudinally coupled acoustic wave resonator 25 has a plurality of IDT electrodes 31-34 arranged along the acoustic wave propagation direction d1. Among the plurality of IDT electrodes 31 to 34, the average arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 and 33 connected to the first path r1 on the first terminal T1 side when viewed from the longitudinally coupled acoustic wave resonator 25 is Let fix be the frequency corresponding to the wavelength when the wavelength is set to 1/2. Let fox be the frequency corresponding to the wavelength when the average of the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 32 and 34 is 1/2 wavelength, let fH1 be the highest frequency of the pass band of the first filter circuit 10, When fH2 is a predetermined frequency in the attenuation band located on the higher frequency side than the pass band of the first filter circuit 10, the acoustic wave filter 1
(1) having a relationship of 1.055×fH1<fix, and
(2) It has a relationship of 1.035×fH1<fox<fH2.
 例えば、(1)の1.055×fH1<fixおよび(2)の1.035×fH1<foxで示すように、周波数fixおよび周波数foxを弾性波フィルタ1の通過帯域に対して、近すぎないように高く設定することで、消費電力が必要以上に大きくなることを抑制できる。また、(2)のfox<fH2で示すように、周波数foxを、所定周波数fH2よりも低くして減衰帯域内に入れることで、減衰帯域における減衰量を確保することができる。これらにより、弾性波フィルタ1の減衰帯域における減衰量を確保し、かつ、消費電力を小さくすることができる。 For example, as shown by 1.055×fH1<fix in (1) and 1.035×fH1<fox in (2), frequency fix and frequency fox are not too close to the passband of elastic wave filter 1. By setting the power consumption higher than necessary, it is possible to prevent the power consumption from increasing more than necessary. Further, as indicated by fox<fH2 in (2), the attenuation amount in the attenuation band can be ensured by making the frequency fox lower than the predetermined frequency fH2 and within the attenuation band. As a result, the attenuation in the attenuation band of the acoustic wave filter 1 can be ensured, and the power consumption can be reduced.
 また、弾性波フィルタ1は、さらに、fox<fixとなる関係を有していてもよい。 In addition, the elastic wave filter 1 may further have a relationship of fox<fix.
 この構成によれば、例えば、高周波信号が入力されるIDT電極31、33側の周波数fixを高くすることができる。これにより、上記の周波数fixを通過帯域から離すことができ、弾性波フィルタ1の消費電力をさらに小さくすることができる。 According to this configuration, for example, the frequency fix on the side of the IDT electrodes 31 and 33 to which the high frequency signal is input can be increased. Thereby, the above frequency fix can be separated from the passband, and the power consumption of the elastic wave filter 1 can be further reduced.
 また、減衰帯域内の所定周波数は、第1フィルタ回路10と異なる第2フィルタ回路50の通過帯域の最も高い周波数であってもよい。 Also, the predetermined frequency within the attenuation band may be the highest frequency of the passband of the second filter circuit 50 different from the first filter circuit 10 .
 この構成によれば、第2フィルタ回路50の通過帯域における減衰量を確保することができる。これにより、第2フィルタ回路50の通過特性が低下することを抑制できる。 According to this configuration, attenuation in the passband of the second filter circuit 50 can be ensured. Thereby, it is possible to suppress the deterioration of the pass characteristic of the second filter circuit 50 .
 また、第1フィルタ回路10は、所定バンドにおける送信フィルタの回路であり、第2フィルタ回路50は、所定バンドにおける受信フィルタの回路であってもよい。 Also, the first filter circuit 10 may be a transmission filter circuit in a predetermined band, and the second filter circuit 50 may be a reception filter circuit in a predetermined band.
 この構成によれば、受信フィルタの通過帯域における減衰量を確保することができる。これにより、受信フィルタの通過特性が低下することを抑制できる。 According to this configuration, it is possible to ensure the amount of attenuation in the passband of the reception filter. Thereby, it is possible to suppress the deterioration of the pass characteristic of the reception filter.
 また、付加回路20は、弾性波伝搬方向d1において縦結合弾性波共振器25の両外側に位置する複数の反射器41、42を有し、複数の反射器41、42のそれぞれの電極指の本数は、10本以下であってもよい。 Further, the additional circuit 20 has a plurality of reflectors 41 and 42 positioned on both outer sides of the longitudinally coupled acoustic wave resonator 25 in the acoustic wave propagation direction d1. The number may be 10 or less.
 この構成によれば、反射器41および42の多重反射を低減し、IDT電極31~34の励振を弱めることができる。これにより、弾性波フィルタ1Aの消費電力を小さくすることができる。 According to this configuration, it is possible to reduce the multiple reflections of the reflectors 41 and 42 and weaken the excitation of the IDT electrodes 31-34. Thereby, the power consumption of the elastic wave filter 1A can be reduced.
 また、付加回路20は、第2経路r2上に設けられた容量素子(容量素子C1、C2、C3およびC4の少なくとも1つ)をさらに有していてもよい。 Further, the additional circuit 20 may further include a capacitive element (at least one of capacitive elements C1, C2, C3 and C4) provided on the second path r2.
 この構成によれば、IDT電極31~34に入る瞬時電力を低下させることができる。これにより、弾性波フィルタ1の寿命が短くなることを抑制できる。 According to this configuration, the instantaneous power entering the IDT electrodes 31-34 can be reduced. Thereby, shortening of the life of the elastic wave filter 1 can be suppressed.
 本実施の形態に係る弾性波フィルタ1Bは、第1端子T1および第2端子T2と、第1端子T1と第2端子T2とを結ぶ第1経路r1に設けられた第1フィルタ回路10と、第1経路r1の少なくとも一部と並列接続される第2経路r2に設けられた付加回路20と、を備える。付加回路20は、縦結合弾性波共振器25を有している。縦結合弾性波共振器25は、弾性波伝搬方向d1に沿って配置された複数のIDT電極31~34を有している。第1フィルタ回路10は、縦結合弾性波共振器25の複数のIDT電極31~34と異なる他の複数のIDT電極61で構成され、第1フィルタ回路10に含まれる他の複数のIDT電極61の少なくとも一部は、ピストンモードが適用され、付加回路20に含まれる複数のIDT電極31~34は、ピストンモードが適用されていない。 The acoustic wave filter 1B according to the present embodiment includes a first terminal T1 and a second terminal T2, a first filter circuit 10 provided on a first route r1 connecting the first terminal T1 and the second terminal T2, and an additional circuit 20 provided in a second route r2 connected in parallel with at least part of the first route r1. The additional circuit 20 has a longitudinally coupled acoustic wave resonator 25 . The longitudinally coupled acoustic wave resonator 25 has a plurality of IDT electrodes 31-34 arranged along the acoustic wave propagation direction d1. The first filter circuit 10 includes a plurality of IDT electrodes 61 different from the plurality of IDT electrodes 31 to 34 of the longitudinally coupled acoustic wave resonator 25, and the other plurality of IDT electrodes 61 included in the first filter circuit 10. , the piston mode is applied to the plurality of IDT electrodes 31 to 34 included in the additional circuit 20, and the piston mode is not applied.
 この構成によれば、付加回路20に含まれるIDT電極31~34内の励振エネルギーを低くすることができる。これにより、弾性波フィルタ1Bの寿命が短くなることを抑制できる。 According to this configuration, the excitation energy in the IDT electrodes 31-34 included in the additional circuit 20 can be reduced. As a result, shortening of the life of the elastic wave filter 1B can be suppressed.
 本実施の形態に係る弾性波フィルタ1Cは、第1端子T1および第2端子T2と、第1端子T1と第2端子T2とを結ぶ第1経路r1に設けられた第1フィルタ回路10と、第1経路r1の少なくとも一部と並列接続される第2経路r2に設けられた付加回路20と、を備える。付加回路20は、縦結合弾性波共振器25を有している。縦結合弾性波共振器25は、弾性波伝搬方向d1に沿って配置された複数のIDT電極31~34を有している。第1フィルタ回路10は、縦結合弾性波共振器25の複数のIDT電極31~34と異なる他の複数のIDT電極61で構成され、第1フィルタ回路10に含まれる他の複数のIDT電極61、および、付加回路20に含まれる複数のIDT電極31~34のそれぞれは、一対の第1櫛歯状電極61a、31a~34aおよび第2櫛歯状電極61b、31b~34bを有している。第1櫛歯状電極61a、31a~34aおよび第2櫛歯状電極61b、31b~34bのそれぞれは、弾性波伝搬方向d1に延びるバスバー電極と、バスバー電極に接続されて弾性波伝搬方向d1に直交する直交方向d2に延びる複数の交差電極指および複数のオフセット電極指と、を有している。第1櫛歯状電極の交差電極指と第2櫛歯状電極のオフセット電極指とは、直交方向d2に互いに対向し、第2櫛歯状電極の交差電極指と第1櫛歯状電極のオフセット電極指とは、直交方向d2に互いに対向している。付加回路20にて直交方向d2に互いに対向する交差電極指38a(または38b)とオフセット電極指39b(または39b)との間隔gは、第1フィルタ回路10にて直交方向d2に互いに対向する交差電極指68a(または68b)とオフセット電極指69b(または69a)との間隔gよりも広い。 The elastic wave filter 1C according to the present embodiment includes a first terminal T1 and a second terminal T2, a first filter circuit 10 provided on a first route r1 connecting the first terminal T1 and the second terminal T2, and an additional circuit 20 provided in a second route r2 connected in parallel with at least part of the first route r1. The additional circuit 20 has a longitudinally coupled acoustic wave resonator 25 . The longitudinally coupled acoustic wave resonator 25 has a plurality of IDT electrodes 31-34 arranged along the acoustic wave propagation direction d1. The first filter circuit 10 includes a plurality of IDT electrodes 61 different from the plurality of IDT electrodes 31 to 34 of the longitudinally coupled acoustic wave resonator 25, and the other plurality of IDT electrodes 61 included in the first filter circuit 10. , and the plurality of IDT electrodes 31-34 included in the additional circuit 20 each have a pair of first comb-shaped electrodes 61a, 31a-34a and second comb-shaped electrodes 61b, 31b-34b. . Each of the first comb-shaped electrodes 61a, 31a to 34a and the second comb-shaped electrodes 61b, 31b to 34b includes a busbar electrode extending in the elastic wave propagation direction d1 and a busbar electrode connected to the busbar electrode to extend in the elastic wave propagation direction d1. It has a plurality of intersecting electrode fingers and a plurality of offset electrode fingers extending in an orthogonal direction d2. The intersecting electrode fingers of the first comb-shaped electrode and the offset electrode fingers of the second comb-shaped electrode face each other in the orthogonal direction d2, and the intersecting electrode fingers of the second comb-shaped electrode and the offset electrode fingers of the first comb-shaped electrode face each other. The offset electrode fingers are opposed to each other in the orthogonal direction d2. The distance g between the intersecting electrode fingers 38a (or 38b) and the offset electrode fingers 39b (or 39b) facing each other in the orthogonal direction d2 in the additional circuit 20 is the same as the intersecting electrode fingers 38a (or 38b) facing each other in the orthogonal direction d2 in the first filter circuit 10. It is wider than the interval g between the electrode finger 68a (or 68b) and the offset electrode finger 69b (or 69a).
 この構成によれば、付加回路20に含まれるIDT電極31~34内の励振エネルギーを低くすることができる。これにより、弾性波フィルタ1Cの寿命が短くなることを抑制できる。 According to this configuration, the excitation energy in the IDT electrodes 31-34 included in the additional circuit 20 can be reduced. As a result, shortening of the life of the acoustic wave filter 1C can be suppressed.
 また、複数のIDT電極31~34のうち、縦結合弾性波共振器25から見て第1端子T1側の第1経路r1に接続されるIDT電極31、33の電極指36の配列ピッチpの平均を1/2波長としたときの波長に対応する周波数をfixとし、複数のIDT電極31~34のうち、縦結合弾性波共振器25から見て第2端子T2側の第1経路r1に接続されるIDT電極32、34の電極指36の配列ピッチpの平均を1/2波長としたときの波長に対応する周波数をfoxとし、第1フィルタ回路10の通過帯域の最も高い周波数をfH1とし、第1フィルタ回路10の通過帯域よりも高周波側に位置する減衰帯域内の所定周波数をfH2とした場合に、弾性波フィルタ1Bまたは1Cは、
(1)1.055×fH1<fixとなる関係を有し、かつ、
(2)1.035×fH1<fox<fH2となる関係を有していてもよい。
Among the plurality of IDT electrodes 31 to 34, the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 and 33 connected to the first path r1 on the side of the first terminal T1 when viewed from the longitudinally coupled acoustic wave resonator 25 is Let fix be the frequency corresponding to the wavelength when the average is 1/2 wavelength. Let fox be the frequency corresponding to the wavelength when the average of the arrangement pitch p of the electrode fingers 36 of the connected IDT electrodes 32 and 34 is 1/2 wavelength, and fH1 be the highest frequency of the passband of the first filter circuit 10. and fH2 is a predetermined frequency in the attenuation band located on the higher frequency side than the passband of the first filter circuit 10, the elastic wave filter 1B or 1C is:
(1) having a relationship of 1.055×fH1<fix, and
(2) The relationship may be 1.035×fH1<fox<fH2.
 例えば、(1)の1.055×fH1<fixおよび(2)の1.035×fH1<foxで示すように、周波数fixおよび周波数foxを弾性波フィルタ1Bまたは1Cの通過帯域に対して、近すぎないように高く設定することで、消費電力が必要以上に大きくなることを抑制できる。また、(2)のfox<fH2で示すように、周波数foxを、所定周波数fH2よりも低くして減衰帯域内に入れることで、減衰帯域における減衰量を確保することができる。これらにより、弾性波フィルタ1Bまたは1Cの減衰帯域における減衰量を確保し、かつ、消費電力を小さくすることができる。 For example, as shown by 1.055×fH1<fix in (1) and 1.035×fH1<fox in (2), frequency fix and frequency fox are set near the passband of elastic wave filter 1B or 1C. It is possible to prevent the power consumption from increasing more than necessary by setting the power consumption higher than necessary. Further, as indicated by fox<fH2 in (2), the attenuation amount in the attenuation band can be ensured by making the frequency fox lower than the predetermined frequency fH2 and within the attenuation band. As a result, the attenuation in the attenuation band of the acoustic wave filter 1B or 1C can be ensured, and the power consumption can be reduced.
 また、弾性波フィルタ1Bまたは1Cは、さらに、fox<fixとなる関係を有していてもよい。 In addition, the elastic wave filter 1B or 1C may further have a relationship of fox<fix.
 この構成によれば、例えば、高周波信号が入力されるIDT電極31、33側の周波数fixを高くすることができる。これにより、上記の周波数fixを通過帯域から離すことができ、弾性波フィルタ1Bまたは1Cの消費電力をさらに小さくすることができる。 According to this configuration, for example, the frequency fix on the side of the IDT electrodes 31 and 33 to which the high frequency signal is input can be increased. As a result, the frequency fix can be separated from the passband, and the power consumption of the elastic wave filter 1B or 1C can be further reduced.
 また、減衰帯域内の所定周波数は、第1フィルタ回路10と異なる第2フィルタ回路50の通過帯域の最も高い周波数であってもよい。 Also, the predetermined frequency within the attenuation band may be the highest frequency of the passband of the second filter circuit 50 different from the first filter circuit 10 .
 この構成によれば、第2フィルタ回路50の通過帯域における減衰量を確保することができる。これにより、第2フィルタ回路50の通過特性が低下することを抑制できる。 According to this configuration, attenuation in the passband of the second filter circuit 50 can be ensured. Thereby, it is possible to suppress the deterioration of the pass characteristic of the second filter circuit 50 .
 また、第1フィルタ回路10は、所定バンドにおける送信フィルタの回路であり、第2フィルタ回路50は、所定バンドにおける受信フィルタの回路であってもよい。 Also, the first filter circuit 10 may be a transmission filter circuit in a predetermined band, and the second filter circuit 50 may be a reception filter circuit in a predetermined band.
 この構成によれば、受信フィルタの通過帯域における減衰量を確保することができる。これにより、受信フィルタの通過特性が低下することを抑制できる。 According to this configuration, it is possible to ensure the amount of attenuation in the passband of the reception filter. Thereby, it is possible to suppress the deterioration of the pass characteristic of the reception filter.
 また、付加回路20は、弾性波伝搬方向d1において縦結合弾性波共振器25の両外側に位置する複数の反射器41、42を有し、複数の反射器41、42のそれぞれの電極指の本数は、10本以下であってもよい。 Further, the additional circuit 20 has a plurality of reflectors 41 and 42 positioned on both outer sides of the longitudinally coupled acoustic wave resonator 25 in the acoustic wave propagation direction d1. The number may be 10 or less.
 この構成によれば、反射器41および42の多重反射を低減し、IDT電極31~34の励振を弱めることができる。これにより、弾性波フィルタ1Bまたは1Cの消費電力を小さくすることができる。 According to this configuration, it is possible to reduce the multiple reflections of the reflectors 41 and 42 and weaken the excitation of the IDT electrodes 31-34. Thereby, the power consumption of the elastic wave filter 1B or 1C can be reduced.
 また、付加回路20は、第2経路r2上に設けられた容量素子(容量素子C1、C2、C3およびC4の少なくとも1つ)をさらに有していてもよい。 Further, the additional circuit 20 may further include a capacitive element (at least one of capacitive elements C1, C2, C3 and C4) provided on the second path r2.
 この構成によれば、IDT電極31~34に入る瞬時電力を低下させることができる。これにより、弾性波フィルタ1の寿命が短くなることを抑制できる。 According to this configuration, the instantaneous power entering the IDT electrodes 31-34 can be reduced. Thereby, shortening of the life of the elastic wave filter 1 can be suppressed.
 また、複数のIDT電極31~34のうち、縦結合弾性波共振器25から見て第1端子T1側の第1経路r1に接続されるIDT電極31、33の電極指36の配列ピッチpの平均を1/2波長としたときの波長に対応する周波数をfiyとし、複数のIDT電極31~34のうち、縦結合弾性波共振器25から見て第2端子T2側の第1経路r1に接続されるIDT電極32、34の電極指36の配列ピッチpの平均を1/2波長としたときの波長に対応する周波数をfoyとし、第1フィルタ回路10の通過帯域の最も低い周波数をfL3とし、第1フィルタ回路10の通過帯域よりも低周波側に位置する減衰帯域内の所定周波数をfL4とした場合に、弾性波フィルタ1Bまたは1Cは、
(3)fiy<0.945×fL3となる関係を有し、かつ、
(4)fL4<foy<0.965×fL3となる関係を有する。
Among the plurality of IDT electrodes 31 to 34, the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 and 33 connected to the first path r1 on the side of the first terminal T1 when viewed from the longitudinally coupled acoustic wave resonator 25 is Let fiy be the frequency corresponding to the wavelength when the average is 1/2 wavelength. Let foy be the frequency corresponding to the wavelength when the average of the arrangement pitch p of the electrode fingers 36 of the connected IDT electrodes 32 and 34 is 1/2 wavelength, and fL3 be the lowest frequency of the passband of the first filter circuit 10. and fL4 is a predetermined frequency in the attenuation band located on the lower frequency side than the passband of the first filter circuit 10, the acoustic wave filter 1B or 1C is:
(3) having a relationship of fiy<0.945×fL3, and
(4) It has a relationship of fL4<foy<0.965×fL3.
 例えば、(3)のfiy<0.945×fL3および(4)のfoy<0.965×fL3で示すように、周波数fiyおよび周波数foyを弾性波フィルタ1Bまたは1Cの通過帯域に対して、近すぎないように低く設定することで、消費電力が必要以上に大きくなることを抑制できる。また、(4)のfL4<foyで示すように、周波数foyを、所定周波数fL4よりも高くして減衰帯域内に入れることで、減衰帯域における減衰量を確保することができる。これらにより、弾性波フィルタ1Bまたは1Cの減衰帯域における減衰量を確保し、かつ、消費電力を小さくすることができる。 For example, as shown by (3) fiy<0.945×fL3 and (4) foy<0.965×fL3, frequency fiy and frequency foy are set near the passband of elastic wave filter 1B or 1C. By setting the power consumption low, it is possible to prevent the power consumption from increasing more than necessary. Further, as indicated by fL4<foy in (4), the attenuation amount in the attenuation band can be ensured by setting the frequency foy higher than the predetermined frequency fL4 to be within the attenuation band. As a result, the attenuation in the attenuation band of the acoustic wave filter 1B or 1C can be ensured, and the power consumption can be reduced.
 本実施の形態に係る弾性波フィルタ1Eは、第1端子T1および第2端子T2と、第1端子T1と第2端子T2とを結ぶ第1経路r1に設けられた第1フィルタ回路10と、第1経路r1の少なくとも一部と並列接続される第2経路r2に設けられた付加回路20と、を備える。付加回路20は、縦結合弾性波共振器25を有している。縦結合弾性波共振器25は、弾性波伝搬方向d1に沿って配置された複数のIDT電極31~34を有している。複数のIDT電極31~34のうち、縦結合弾性波共振器25から見て第1端子T1側の第1経路r1に接続されるIDT電極31、33の電極指36の配列ピッチpの平均を1/2波長としたときの波長に対応する周波数をfiyとし、複数のIDT電極31~34のうち、縦結合弾性波共振器25から見て第2端子T2側の第1経路r1に接続されるIDT電極32、34の電極指36の配列ピッチpの平均を1/2波長としたときの波長に対応する周波数をfoyとし、第1フィルタ回路10の通過帯域の最も低い周波数をfL3とし、第1フィルタ回路10の通過帯域よりも低周波側に位置する減衰帯域内の所定周波数をfL4とした場合に、弾性波フィルタ1Eは、
(3)fiy<0.945×fL3となる関係を有し、かつ、
(4)fL4<foy<0.965×fL3となる関係を有する。
The acoustic wave filter 1E according to the present embodiment includes a first terminal T1 and a second terminal T2, a first filter circuit 10 provided on a first route r1 connecting the first terminal T1 and the second terminal T2, and an additional circuit 20 provided in a second route r2 connected in parallel with at least part of the first route r1. The additional circuit 20 has a longitudinally coupled acoustic wave resonator 25 . The longitudinally coupled acoustic wave resonator 25 has a plurality of IDT electrodes 31-34 arranged along the acoustic wave propagation direction d1. Among the plurality of IDT electrodes 31 to 34, the average arrangement pitch p of the electrode fingers 36 of the IDT electrodes 31 and 33 connected to the first path r1 on the first terminal T1 side when viewed from the longitudinally coupled acoustic wave resonator 25 is Let fiy be the frequency corresponding to the wavelength when the wavelength is set to 1/2. Let foy be the frequency corresponding to the wavelength when the average of the arrangement pitch p of the electrode fingers 36 of the IDT electrodes 32 and 34 is 1/2 wavelength, fL3 be the lowest frequency of the passband of the first filter circuit 10, When a predetermined frequency in the attenuation band located on the lower frequency side than the passband of the first filter circuit 10 is fL4, the elastic wave filter 1E is
(3) having a relationship of fiy<0.945×fL3, and
(4) It has a relationship of fL4<foy<0.965×fL3.
 例えば、(3)のfiy<0.945×fL3および(4)のfoy<0.965×fL3で示すように、周波数fiyおよび周波数foyを弾性波フィルタ1Eの通過帯域に対して、近すぎないように低く設定することで、消費電力が必要以上に大きくなることを抑制できる。また、(4)のfL4<foyで示すように、周波数foyを、所定周波数fL4よりも高くして減衰帯域内に入れることで、減衰帯域における減衰量を確保することができる。これらにより、弾性波フィルタ1Eの減衰帯域における減衰量を確保し、かつ、消費電力を小さくすることができる。 For example, as shown by (3) fiy<0.945×fL3 and (4) foy<0.965×fL3, the frequency fiy and the frequency foy are not too close to the passband of the acoustic wave filter 1E. By setting it as low as possible, it is possible to prevent the power consumption from increasing more than necessary. Further, as indicated by fL4<foy in (4), the attenuation amount in the attenuation band can be ensured by setting the frequency foy higher than the predetermined frequency fL4 to be within the attenuation band. As a result, the attenuation in the attenuation band of the elastic wave filter 1E can be ensured, and the power consumption can be reduced.
 また、減衰帯域内の所定周波数は、第1フィルタ回路10と異なる第2フィルタ回路50の通過帯域の最も低い周波数であってもよい。 Also, the predetermined frequency within the attenuation band may be the lowest frequency of the passband of the second filter circuit 50 different from the first filter circuit 10 .
 この構成によれば、第2フィルタ回路50の通過帯域における減衰量を確保することができる。これにより、第2フィルタ回路50の通過特性が低下することを抑制できる。 According to this configuration, attenuation in the passband of the second filter circuit 50 can be ensured. Thereby, it is possible to suppress the deterioration of the pass characteristic of the second filter circuit 50 .
 また、第1フィルタ回路10は、所定バンドにおける送信フィルタの回路であり、第2フィルタ回路50は、所定バンドにおける受信フィルタの回路であってもよい。 Also, the first filter circuit 10 may be a transmission filter circuit in a predetermined band, and the second filter circuit 50 may be a reception filter circuit in a predetermined band.
 この構成によれば、受信フィルタの通過帯域における減衰量を確保することができる。これにより、受信フィルタの通過特性が低下することを抑制できる。 According to this configuration, it is possible to ensure the amount of attenuation in the passband of the reception filter. Thereby, it is possible to suppress the deterioration of the pass characteristic of the reception filter.
 本実施の形態に係るマルチプレクサ5は、上記の弾性波フィルタ1と、第2フィルタ回路50を有する他のフィルタと、を備える。 A multiplexer 5 according to the present embodiment includes the elastic wave filter 1 described above and another filter having a second filter circuit 50 .
 これによれば、第2フィルタ回路50の通過帯域における減衰量が確保され、かつ、弾性波フィルタ1の消費電力が抑制されたマルチプレクサ5を提供することができる。 According to this, it is possible to provide the multiplexer 5 in which the attenuation in the passband of the second filter circuit 50 is ensured and the power consumption of the acoustic wave filter 1 is suppressed.
 本実施の形態に係るマルチプレクサ5Eは、上記の弾性波フィルタ1Eと、第2フィルタ回路50を有する他のフィルタと、を備える。 A multiplexer 5E according to the present embodiment includes the above elastic wave filter 1E and another filter having a second filter circuit 50.
 これによれば、第2フィルタ回路50の通過帯域における減衰量が確保され、かつ、弾性波フィルタ1Eの消費電力が抑制されたマルチプレクサ5Eを提供することができる。 According to this, it is possible to provide the multiplexer 5E in which the attenuation in the passband of the second filter circuit 50 is ensured and the power consumption of the elastic wave filter 1E is suppressed.
 (その他の実施の形態)
 以上、本発明の実施の形態に係る弾性波フィルタ等について、実施の形態を挙げて説明したが、本発明は、上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る弾性波フィルタまたはマルチプレクサを含む高周波フロントエンド回路および通信装置も本発明に含まれる。
(Other embodiments)
As described above, the elastic wave filter and the like according to the embodiments of the present invention have been described with reference to the embodiments. , modifications obtained by applying various modifications to the above embodiments that can be considered by those skilled in the art without departing from the scope of the present invention, high-frequency front-end circuits and communication including elastic wave filters or multiplexers according to the present invention A device is also included in the present invention.
 上記では、縦結合弾性波共振器25が4つのIDT電極を備えている例を示したが、それに限られず、IDT電極の数は、2つ以上であってもよい。 Although an example in which the longitudinally coupled acoustic wave resonator 25 has four IDT electrodes is shown above, the number of IDT electrodes may be two or more.
 上記では、弾性波フィルタ1が送信フィルタである例を示したが、それに限られず、弾性波フィルタ1は受信フィルタであってもよい。また、マルチプレクサ5は、送信フィルタおよび受信フィルタの双方を備える構成に限られず、複数の送信フィルタ、または、複数の受信フィルタを備える構成であってもよい。 Although an example in which the elastic wave filter 1 is a transmission filter has been described above, the elastic wave filter 1 is not limited to this and may be a reception filter. Moreover, the multiplexer 5 is not limited to a configuration including both a transmission filter and a reception filter, and may be configured to include a plurality of transmission filters or a plurality of reception filters.
 また、上記では、2つのフィルタを含むマルチプレクサを例に説明したが、本発明は、例えば、3つのフィルタのアンテナ端子が共通化されたトリプレクサや、6つのフィルタのアンテナ端子が共通化されたヘキサプレクサについても適用することができる。つまり、マルチプレクサは、2以上のフィルタを備えていればよい。 In the above description, a multiplexer including two filters has been described as an example. can also be applied. That is, the multiplexer only needs to have two or more filters.
 また、第2フィルタ回路50は、前述したフィルタの構成に限定されず、要求されるフィルタ特性等に応じて適宜設計され得る。具体的には、第2フィルタ回路50は、縦結合型のフィルタ構造であってもよいし、ラダー型のフィルタ構造であってもよい。また、第2フィルタ回路50を構成する各共振子は、SAW共振子に限らず、例えば、BAW(Bulk Acoustic Wave)共振子であってもよい。さらには、第2フィルタ回路50は、共振子を用いずに構成されていてもよく、例えば、LC共振フィルタあるいは誘電体フィルタであってもよい。 Also, the second filter circuit 50 is not limited to the configuration of the filter described above, and can be appropriately designed according to the required filter characteristics and the like. Specifically, the second filter circuit 50 may have a longitudinal coupling filter structure or a ladder filter structure. Further, each resonator constituting the second filter circuit 50 is not limited to a SAW resonator, and may be, for example, a BAW (Bulk Acoustic Wave) resonator. Furthermore, the second filter circuit 50 may be configured without using resonators, and may be, for example, an LC resonance filter or a dielectric filter.
 また、IDT電極31~34および反射器41、42の電極層325および誘電体層326を構成する材料は、前述した材料に限定されない。また、IDT電極31~34は、上記積層構造でなくてもよい。IDT電極31~34は、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属または合金から構成されてもよく、また、上記の金属または合金から構成される複数の積層体から構成されてもよい。 In addition, the materials constituting the IDT electrodes 31 to 34 and the electrode layers 325 and dielectric layers 326 of the reflectors 41 and 42 are not limited to the materials described above. Also, the IDT electrodes 31 to 34 may not have the laminated structure described above. The IDT electrodes 31 to 34 may be composed of metals or alloys such as Ti, Al, Cu, Pt, Au, Ag, Pd, etc., or may be composed of a plurality of laminates composed of the above metals or alloys. may be configured.
 また、実施の形態1では、圧電性基板320として圧電性を有する基板を示したが、当該圧電性基板は、圧電体層の単層からなる圧電基板であってもよい。この場合の圧電性基板は、例えば、LiTaOの圧電単結晶、または、LiNbOなどの他の圧電単結晶で構成される。また、IDT電極31~34が形成される圧電性基板320は、圧電性を有する限り、全体が圧電体層からなるものの他、支持基板上に圧電体層が積層されている構造を用いてもよい。また、上記実施の形態に係る圧電性基板320のカット角は限定されない。つまり、弾性波フィルタの要求通過特性などに応じて、適宜、積層構造、材料、および厚みを変更してもよく、上記実施の形態に示すカット角以外のカット角を有するLiTaO圧電性基板またはLiNbO圧電性基板などを用いた弾性表面波フィルタであっても、同様の効果を奏することが可能となる。 Further, in Embodiment 1, a substrate having piezoelectricity is shown as the piezoelectric substrate 320, but the piezoelectric substrate may be a piezoelectric substrate composed of a single piezoelectric layer. The piezoelectric substrate in this case consists of, for example, a piezoelectric single crystal of LiTaO 3 or another piezoelectric single crystal such as LiNbO 3 . In addition, the piezoelectric substrate 320 on which the IDT electrodes 31 to 34 are formed may be entirely composed of a piezoelectric layer as long as it has piezoelectricity, or may have a structure in which a piezoelectric layer is laminated on a support substrate. good. Moreover, the cut angle of the piezoelectric substrate 320 according to the above embodiment is not limited. In other words, depending on the required transmission characteristics of the acoustic wave filter, the laminated structure, material, and thickness may be changed as appropriate, and the LiTaO3 piezoelectric substrate or A surface acoustic wave filter using a LiNbO 3 piezoelectric substrate or the like can also achieve the same effect.
 本発明は、弾性波フィルタを有するマルチプレクサ、フロントエンド回路および通信装置として、携帯電話などの通信機器に広く利用できる。 The present invention can be widely used in communication devices such as mobile phones as multiplexers, front-end circuits, and communication devices having acoustic wave filters.
 1、1A、1B、1C、1D、1E 弾性波フィルタ
 5、5E マルチプレクサ
 10  第1フィルタ回路
 20  付加回路
 25  縦結合弾性波共振器
 31、32、33、34 IDT電極
 31a、32a、33a、34a 第1櫛歯状電極
 31b、32b、33b、34b 第2櫛歯状電極
 36、36a、36b 電極指
 37a、37b バスバー電極
 38a、38b 交差電極指
 39a、39b オフセット電極指
 41、42 反射器
 50  第2フィルタ回路
 61  IDT電極
 61a 第1櫛歯状電極
 61b 第2櫛歯状電極
 62  負荷膜
 63  幅広部
 64  連結バー
 66a、66b 電極指
 67a、67b バスバー電極
 68a、68b 交差電極指
 69a、69b オフセット電極指
 320 圧電性基板
 325 電極層
 326 誘電体層
 330 パッケージ基板
 C1、C2、C3、C4、C10 容量素子
 d1  弾性波伝搬方向
 d2  直交方向
 fix、fox、fiy、foy 周波数
 fL1、fL2、fL3、fL4 通過帯域の最も低い周波数
 fH1、fH2、fH3、fH4 通過帯域の最も高い周波数
 g   間隔
 L11、L12 インダクタ
 n0、n1、n2、n3、n4、n5 ノード
 P11、P12、P13、P14、P21、P22 並列腕共振子
 p   配列ピッチ
 Q21 弾性波共振器
 R13 抵抗素子
 r1  第1経路
 r2  第2経路
 r21、r22、r23、r24 部分経路
 r3  第3経路
 S11、S12、S13、S14、S15、S21 直列腕共振子
 T1  第1端子
 T2  第2端子
 T3  第3端子
1, 1A, 1B, 1C, 1D, 1E elastic wave filter 5, 5E multiplexer 10 first filter circuit 20 additional circuit 25 longitudinally coupled elastic wave resonator 31, 32, 33, 34 IDT electrode 31a, 32a, 33a, 34a 1 comb-shaped electrode 31b, 32b, 33b, 34b 2nd comb-shaped electrode 36, 36a, 36b electrode finger 37a, 37b busbar electrode 38a, 38b intersecting electrode finger 39a, 39b offset electrode finger 41, 42 reflector 50 second second Filter circuit 61 IDT electrode 61a First comb-shaped electrode 61b Second comb-shaped electrode 62 Load film 63 Wide portion 64 Connection bar 66a, 66b Electrode fingers 67a, 67b Bus bar electrodes 68a, 68b Intersecting electrode fingers 69a, 69b Offset electrode fingers 320 Piezoelectric substrate 325 Electrode layer 326 Dielectric layer 330 Package substrate C1, C2, C3, C4, C10 Capacitive element d1 Elastic wave propagation direction d2 Orthogonal direction fix, fox, fiy, foy Frequency fL1, fL2, fL3, fL4 Passband lowest frequency fH1, fH2, fH3, fH4 highest frequency of passband g interval L11, L12 inductor n0, n1, n2, n3, n4, n5 node P11, P12, P13, P14, P21, P22 parallel arm resonator p array pitch Q21 elastic wave resonator R13 resistive element r1 first path r2 second path r21, r22, r23, r24 partial path r3 third path S11, S12, S13, S14, S15, S21 series arm resonator T1 first Terminal T2 Second terminal T3 Third terminal

Claims (20)

  1.  第1端子および第2端子と、
     前記第1端子と前記第2端子とを結ぶ第1経路に設けられた第1フィルタ回路と、
     前記第1経路の少なくとも一部と並列接続される第2経路に設けられた付加回路と、
     を備え、
     前記付加回路は、縦結合弾性波共振器を有し、
     前記縦結合弾性波共振器は、弾性波伝搬方向に沿って配置された複数のIDT電極を有し、
     前記複数のIDT電極のうち、前記縦結合弾性波共振器から見て前記第1端子側の前記第1経路に接続されるIDT電極の電極指の配列ピッチの平均を1/2波長としたときの波長に対応する周波数をfixとし、
     前記複数のIDT電極のうち、前記縦結合弾性波共振器から見て前記第2端子側の前記第1経路に接続されるIDT電極の電極指の配列ピッチの平均を1/2波長としたときの波長に対応する周波数をfoxとし、
     前記第1フィルタ回路の通過帯域の最も高い周波数をfH1とし、
     前記第1フィルタ回路の通過帯域よりも高周波側に位置する減衰帯域内の所定周波数をfH2とした場合に、
     1.055×fH1<fixとなる関係を有し、かつ、
     1.035×fH1<fox<fH2となる関係を有する
     弾性波フィルタ。
    a first terminal and a second terminal;
    a first filter circuit provided on a first path connecting the first terminal and the second terminal;
    an additional circuit provided in a second path connected in parallel with at least part of the first path;
    with
    The additional circuit has a longitudinally coupled acoustic wave resonator,
    The longitudinally coupled acoustic wave resonator has a plurality of IDT electrodes arranged along the acoustic wave propagation direction,
    When the average of the arrangement pitch of the electrode fingers of the IDT electrodes connected to the first path on the first terminal side as viewed from the longitudinally coupled acoustic wave resonator among the plurality of IDT electrodes is 1/2 wavelength Let fix be the frequency corresponding to the wavelength of
    When the average of the arrangement pitch of the electrode fingers of the IDT electrodes connected to the first path on the second terminal side when viewed from the longitudinally coupled acoustic wave resonator among the plurality of IDT electrodes is 1/2 wavelength Let fox be the frequency corresponding to the wavelength of
    fH1 is the highest frequency of the passband of the first filter circuit,
    When fH2 is a predetermined frequency within an attenuation band located on the higher frequency side than the pass band of the first filter circuit,
    have a relationship of 1.055×fH1<fix, and
    An elastic wave filter having a relationship of 1.035×fH1<fox<fH2.
  2.  さらに、fox<fixとなる関係を有する
     請求項1に記載の弾性波フィルタ。
    The elastic wave filter according to claim 1, further having a relationship of fox<fix.
  3.  前記減衰帯域内の所定周波数は、前記第1フィルタ回路と異なる第2フィルタ回路の通過帯域の最も高い周波数である
     請求項1または2に記載の弾性波フィルタ。
    The acoustic wave filter according to claim 1 or 2, wherein the predetermined frequency within the attenuation band is the highest frequency of a passband of a second filter circuit different from the first filter circuit.
  4.  前記第1フィルタ回路は、所定バンドにおける送信フィルタの回路であり、
     前記第2フィルタ回路は、前記所定バンドにおける受信フィルタの回路である
     請求項3に記載の弾性波フィルタ。
    The first filter circuit is a circuit of a transmission filter in a predetermined band,
    The elastic wave filter according to claim 3, wherein the second filter circuit is a reception filter circuit for the predetermined band.
  5.  前記付加回路は、前記弾性波伝搬方向において前記縦結合弾性波共振器の両外側に位置する複数の反射器を有し、
     前記複数の反射器のそれぞれの電極指の本数は、10本以下である
     請求項1~4のいずれか1項に記載の弾性波フィルタ。
    The additional circuit has a plurality of reflectors positioned on both outer sides of the longitudinally coupled acoustic wave resonator in the acoustic wave propagation direction,
    The elastic wave filter according to any one of claims 1 to 4, wherein the number of electrode fingers of each of the plurality of reflectors is 10 or less.
  6.  前記付加回路は、前記第2経路上に設けられた容量素子をさらに有する
     請求項1~5のいずれか1項に記載の弾性波フィルタ。
    The elastic wave filter according to any one of claims 1 to 5, wherein the additional circuit further includes a capacitive element provided on the second path.
  7.  第1端子および第2端子と、
     前記第1端子と前記第2端子とを結ぶ第1経路に設けられた第1フィルタ回路と、
     前記第1経路の少なくとも一部と並列接続される第2経路に設けられた付加回路と、
     を備え、
     前記付加回路は、縦結合弾性波共振器を有し、
     前記縦結合弾性波共振器は、弾性波伝搬方向に沿って配置された複数のIDT電極を有し、
     前記第1フィルタ回路は、前記縦結合弾性波共振器の前記複数のIDT電極と異なる他の複数のIDT電極で構成され、
     前記第1フィルタ回路に含まれる前記他の複数のIDT電極の少なくとも一部は、ピストンモードが適用され、
     前記付加回路に含まれる前記複数のIDT電極は、ピストンモードが適用されていない
     弾性波フィルタ。
    a first terminal and a second terminal;
    a first filter circuit provided on a first path connecting the first terminal and the second terminal;
    an additional circuit provided in a second path connected in parallel with at least part of the first path;
    with
    The additional circuit has a longitudinally coupled acoustic wave resonator,
    The longitudinally coupled acoustic wave resonator has a plurality of IDT electrodes arranged along the acoustic wave propagation direction,
    The first filter circuit is composed of a plurality of IDT electrodes different from the plurality of IDT electrodes of the longitudinally coupled acoustic wave resonator,
    A piston mode is applied to at least some of the other plurality of IDT electrodes included in the first filter circuit,
    A piston mode is not applied to the plurality of IDT electrodes included in the additional circuit. An acoustic wave filter.
  8.  第1端子および第2端子と、
     前記第1端子と前記第2端子とを結ぶ第1経路に設けられた第1フィルタ回路と、
     前記第1経路の少なくとも一部と並列接続される第2経路に設けられた付加回路と、
     を備え、
     前記付加回路は、縦結合弾性波共振器を有し、
     前記縦結合弾性波共振器は、弾性波伝搬方向に沿って配置された複数のIDT電極を有し、
     前記第1フィルタ回路は、前記縦結合弾性波共振器の前記複数のIDT電極と異なる他の複数のIDT電極で構成され、
     前記第1フィルタ回路に含まれる前記他の複数のIDT電極、および、前記付加回路に含まれる前記複数のIDT電極のそれぞれは、一対の第1櫛歯状電極および第2櫛歯状電極を有し、
     前記第1櫛歯状電極および第2櫛歯状電極のそれぞれは、前記弾性波伝搬方向に延びるバスバー電極と、前記バスバー電極に接続されて前記弾性波伝搬方向に直交する直交方向に延びる複数の交差電極指および複数のオフセット電極指と、を有し、
     前記第1櫛歯状電極の前記交差電極指と前記第2櫛歯状電極の前記オフセット電極指とは、前記直交方向に互いに対向し、
     前記第2櫛歯状電極の前記交差電極指と前記第1櫛歯状電極の前記オフセット電極指とは、前記直交方向に互いに対向し、
     前記付加回路にて前記直交方向に互いに対向する前記交差電極指と前記オフセット電極指との間隔は、前記第1フィルタ回路にて前記直交方向に互いに対向する前記交差電極指と前記オフセット電極指との間隔よりも広い
     弾性波フィルタ。
    a first terminal and a second terminal;
    a first filter circuit provided on a first path connecting the first terminal and the second terminal;
    an additional circuit provided in a second path connected in parallel with at least part of the first path;
    with
    The additional circuit has a longitudinally coupled acoustic wave resonator,
    The longitudinally coupled acoustic wave resonator has a plurality of IDT electrodes arranged along the acoustic wave propagation direction,
    The first filter circuit is composed of a plurality of IDT electrodes different from the plurality of IDT electrodes of the longitudinally coupled acoustic wave resonator,
    Each of the other plurality of IDT electrodes included in the first filter circuit and the plurality of IDT electrodes included in the additional circuit has a pair of a first comb-shaped electrode and a second comb-shaped electrode. death,
    Each of the first comb-shaped electrode and the second comb-shaped electrode includes a bus bar electrode extending in the elastic wave propagation direction and a plurality of bus bar electrodes connected to the bus bar electrode and extending in a direction orthogonal to the elastic wave propagation direction. a cross electrode finger and a plurality of offset electrode fingers;
    the intersecting electrode fingers of the first comb-shaped electrode and the offset electrode fingers of the second comb-shaped electrode face each other in the orthogonal direction;
    the intersecting electrode fingers of the second comb-shaped electrode and the offset electrode fingers of the first comb-shaped electrode face each other in the orthogonal direction;
    The distance between the intersecting electrode fingers and the offset electrode fingers facing each other in the orthogonal direction in the additional circuit is the same as the intersecting electrode fingers and the offset electrode fingers facing in the orthogonal direction in the first filter circuit. Acoustic wave filter wider than the spacing of .
  9.  前記複数のIDT電極のうち、前記縦結合弾性波共振器から見て前記第1端子側の前記第1経路に接続されるIDT電極の電極指の配列ピッチの平均を1/2波長としたときの波長に対応する周波数をfixとし、
     前記複数のIDT電極のうち、前記縦結合弾性波共振器から見て前記第2端子側の前記第1経路に接続されるIDT電極の電極指の配列ピッチの平均を1/2波長としたときの波長に対応する周波数をfoxとし、
     前記第1フィルタ回路の通過帯域の最も高い周波数をfH1とし、
     前記第1フィルタ回路の通過帯域よりも高周波側に位置する減衰帯域内の所定周波数をfH2とした場合に、
     1.055×fH1<fixとなる関係を有し、かつ、
     1.035×fH1<fox<fH2となる関係を有する
     請求項7または8に記載の弾性波フィルタ。
    When the average of the arrangement pitch of the electrode fingers of the IDT electrodes connected to the first path on the first terminal side as viewed from the longitudinally coupled acoustic wave resonator among the plurality of IDT electrodes is set to 1/2 wavelength Let fix be the frequency corresponding to the wavelength of
    When the average of the arrangement pitch of the electrode fingers of the IDT electrodes connected to the first path on the second terminal side when viewed from the longitudinally coupled acoustic wave resonator among the plurality of IDT electrodes is 1/2 wavelength Let fox be the frequency corresponding to the wavelength of
    fH1 is the highest frequency of the passband of the first filter circuit,
    When fH2 is a predetermined frequency within the attenuation band located on the higher frequency side than the pass band of the first filter circuit,
    have a relationship of 1.055×fH1<fix, and
    The acoustic wave filter according to claim 7 or 8, having a relationship of 1.035 x fH1<fox<fH2.
  10.  さらに、fox<fixとなる関係を有する
     請求項9に記載の弾性波フィルタ。
    The elastic wave filter according to claim 9, further having a relationship of fox<fix.
  11.  前記減衰帯域内の所定周波数は、前記第1フィルタ回路と異なる第2フィルタ回路の通過帯域の最も高い周波数である
     請求項9または10に記載の弾性波フィルタ。
    The elastic wave filter according to claim 9 or 10, wherein the predetermined frequency within the attenuation band is the highest frequency of a passband of a second filter circuit different from the first filter circuit.
  12.  前記第1フィルタ回路は、所定バンドにおける送信フィルタの回路であり、
     前記第2フィルタ回路は、前記所定バンドにおける受信フィルタの回路である
     請求項11に記載の弾性波フィルタ。
    The first filter circuit is a circuit of a transmission filter in a predetermined band,
    The elastic wave filter according to claim 11, wherein the second filter circuit is a reception filter circuit for the predetermined band.
  13.  前記付加回路は、前記弾性波伝搬方向において前記縦結合弾性波共振器の両外側に位置する複数の反射器を有し、
     前記複数の反射器のそれぞれの電極指の本数は、10本以下である
     請求項7~12のいずれか1項に記載の弾性波フィルタ。
    The additional circuit has a plurality of reflectors positioned on both outer sides of the longitudinally coupled acoustic wave resonator in the acoustic wave propagation direction,
    The elastic wave filter according to any one of claims 7 to 12, wherein the number of electrode fingers of each of the plurality of reflectors is 10 or less.
  14.  前記付加回路は、前記第2経路上に設けられた容量素子をさらに有する
     請求項7~13のいずれか1項に記載の弾性波フィルタ。
    The elastic wave filter according to any one of claims 7 to 13, wherein the additional circuit further includes a capacitive element provided on the second path.
  15.  前記複数のIDT電極のうち、前記縦結合弾性波共振器から見て前記第1端子側の前記第1経路に接続されるIDT電極の電極指の配列ピッチの平均を1/2波長としたときの波長に対応する周波数をfiyとし、
     前記複数のIDT電極のうち、前記縦結合弾性波共振器から見て前記第2端子側の前記第1経路に接続されるIDT電極の電極指の配列ピッチの平均を1/2波長としたときの波長に対応する周波数をfoyとし、
     前記第1フィルタ回路の通過帯域の最も低い周波数をfL3とし、
     前記第1フィルタ回路の通過帯域よりも低周波側に位置する減衰帯域内の所定周波数をfL4とした場合に、
     fiy<0.945×fL3となる関係を有し、かつ、
     fL4<foy<0.965×fL3となる関係を有する
     請求項7または8に記載の弾性波フィルタ。
    When the average of the arrangement pitch of the electrode fingers of the IDT electrodes connected to the first path on the first terminal side as viewed from the longitudinally coupled acoustic wave resonator among the plurality of IDT electrodes is set to 1/2 wavelength Let fiy be the frequency corresponding to the wavelength of
    When the average of the arrangement pitch of the electrode fingers of the IDT electrodes connected to the first path on the second terminal side when viewed from the longitudinally coupled acoustic wave resonator among the plurality of IDT electrodes is 1/2 wavelength Let foy be the frequency corresponding to the wavelength of
    fL3 is the lowest frequency of the passband of the first filter circuit,
    When fL4 is a predetermined frequency within the attenuation band located on the lower frequency side than the pass band of the first filter circuit,
    having a relationship of fiy<0.945×fL3, and
    The elastic wave filter according to claim 7 or 8, having a relationship of fL4<foy<0.965×fL3.
  16.  第1端子および第2端子と、
     前記第1端子と前記第2端子とを結ぶ第1経路に設けられた第1フィルタ回路と、
     前記第1経路の少なくとも一部と並列接続される第2経路に設けられた付加回路と、
     を備え、
     前記付加回路は、縦結合弾性波共振器を有し、
     前記縦結合弾性波共振器は、弾性波伝搬方向に沿って配置された複数のIDT電極を有し、
     前記複数のIDT電極のうち、前記縦結合弾性波共振器から見て前記第1端子側の前記第1経路に接続されるIDT電極の電極指の配列ピッチの平均を1/2波長としたときの波長に対応する周波数をfiyとし、
     前記複数のIDT電極のうち、前記縦結合弾性波共振器から見て前記第2端子側の前記第1経路に接続されるIDT電極の電極指の配列ピッチの平均を1/2波長としたときの波長に対応する周波数をfoyとし、
     前記第1フィルタ回路の通過帯域の最も低い周波数をfL3とし、
     前記第1フィルタ回路の通過帯域よりも低周波側に位置する減衰帯域内の所定周波数をfL4とした場合に、
     fiy<0.945×fL3となる関係を有し、かつ、
     fL4<foy<0.965×fL3となる関係を有する
     弾性波フィルタ。
    a first terminal and a second terminal;
    a first filter circuit provided on a first path connecting the first terminal and the second terminal;
    an additional circuit provided in a second path connected in parallel with at least part of the first path;
    with
    The additional circuit has a longitudinally coupled acoustic wave resonator,
    The longitudinally coupled acoustic wave resonator has a plurality of IDT electrodes arranged along the acoustic wave propagation direction,
    When the average of the arrangement pitch of the electrode fingers of the IDT electrodes connected to the first path on the first terminal side as viewed from the longitudinally coupled acoustic wave resonator among the plurality of IDT electrodes is set to 1/2 wavelength Let fiy be the frequency corresponding to the wavelength of
    When the average of the arrangement pitch of the electrode fingers of the IDT electrodes connected to the first path on the second terminal side when viewed from the longitudinally coupled acoustic wave resonator among the plurality of IDT electrodes is 1/2 wavelength Let foy be the frequency corresponding to the wavelength of
    fL3 is the lowest frequency of the passband of the first filter circuit,
    When fL4 is a predetermined frequency within the attenuation band located on the lower frequency side than the pass band of the first filter circuit,
    having a relationship of fiy<0.945×fL3, and
    An elastic wave filter having a relationship of fL4<foy<0.965×fL3.
  17.  前記減衰帯域内の所定周波数は、前記第1フィルタ回路と異なる第2フィルタ回路の通過帯域の最も低い周波数である
     請求項16に記載の弾性波フィルタ。
    The elastic wave filter according to claim 16, wherein the predetermined frequency within the attenuation band is the lowest frequency in the passband of a second filter circuit different from the first filter circuit.
  18.  前記第1フィルタ回路は、所定バンドにおける送信フィルタの回路であり、
     前記第2フィルタ回路は、前記所定バンドにおける受信フィルタの回路である
     請求項17に記載の弾性波フィルタ。
    The first filter circuit is a circuit of a transmission filter in a predetermined band,
    The elastic wave filter according to claim 17, wherein the second filter circuit is a receive filter circuit for the predetermined band.
  19.  請求項3または4に記載の弾性波フィルタと、
     前記第2フィルタ回路を有する他のフィルタと、
     を備えるマルチプレクサ。
    An elastic wave filter according to claim 3 or 4;
    another filter having the second filter circuit;
    A multiplexer with
  20.  請求項17または18に記載の弾性波フィルタと、
     前記第2フィルタ回路を有する他のフィルタと、
     を備えるマルチプレクサ。
    An elastic wave filter according to claim 17 or 18;
    another filter having the second filter circuit;
    A multiplexer with
PCT/JP2022/032490 2021-09-08 2022-08-30 Elastic wave filter and multiplexer WO2023037925A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021146511 2021-09-08
JP2021-146511 2021-09-08

Publications (1)

Publication Number Publication Date
WO2023037925A1 true WO2023037925A1 (en) 2023-03-16

Family

ID=85506665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032490 WO2023037925A1 (en) 2021-09-08 2022-08-30 Elastic wave filter and multiplexer

Country Status (1)

Country Link
WO (1) WO2023037925A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171210A (en) * 2013-02-08 2014-09-18 Panasonic Corp High frequency filter
JP2017092945A (en) * 2015-10-01 2017-05-25 スカイワークスフィルターソリューションズジャパン株式会社 Branching filter
WO2019017422A1 (en) * 2017-07-20 2019-01-24 株式会社村田製作所 Multiplexer, high-frequency front end circuit, and communication device
JP2019125856A (en) * 2018-01-12 2019-07-25 太陽誘電株式会社 Acoustic wave resonator, filter and multiplexer
JP2021005742A (en) * 2019-06-25 2021-01-14 株式会社村田製作所 Multiplexer
JP2021068953A (en) * 2019-10-18 2021-04-30 株式会社村田製作所 Filter device and multiplexer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171210A (en) * 2013-02-08 2014-09-18 Panasonic Corp High frequency filter
JP2017092945A (en) * 2015-10-01 2017-05-25 スカイワークスフィルターソリューションズジャパン株式会社 Branching filter
WO2019017422A1 (en) * 2017-07-20 2019-01-24 株式会社村田製作所 Multiplexer, high-frequency front end circuit, and communication device
JP2019125856A (en) * 2018-01-12 2019-07-25 太陽誘電株式会社 Acoustic wave resonator, filter and multiplexer
JP2021005742A (en) * 2019-06-25 2021-01-14 株式会社村田製作所 Multiplexer
JP2021068953A (en) * 2019-10-18 2021-04-30 株式会社村田製作所 Filter device and multiplexer

Similar Documents

Publication Publication Date Title
US11496116B2 (en) Acoustic wave filter device, multiplexer and composite filter device
EP1251638B1 (en) Surface acoustic wave filter apparatus and communications apparatus
JP6509151B2 (en) Elastic wave resonator, filter and multiplexer
JP2019106622A (en) Multiplexer, high frequency front end circuit, and communication device
JP4100249B2 (en) Surface acoustic wave device, communication device
US11863159B2 (en) Acoustic wave filter
WO2019131533A1 (en) Elastic wave filter, multiplexer, high-frequency front end circuit, and communication device
JP6935220B2 (en) Elastic wave elements, filters and multiplexers
JP6634973B2 (en) Surface acoustic wave filters, duplexers and multiplexers
US7482895B2 (en) Surface acoustic wave filter
US10476473B2 (en) Elastic wave element and elastic wave filter device
WO2023037925A1 (en) Elastic wave filter and multiplexer
WO2019065671A1 (en) Multiplexer, high-frequency front-end circuit, and communication device
WO2018117060A1 (en) Acoustic wave resonator, filter device, and multiplexer
WO2022019072A1 (en) Acoustic wave filter, and multiplexer
WO2017170742A1 (en) Surface acoustic wave element and communication device
JP2002111443A (en) Coupled surface acoustic wave filter
WO2018117059A1 (en) Acoustic wave resonator, filter device, and multiplexer
WO2018123545A1 (en) Multiplexer
CN117941257A (en) Elastic wave filter and multiplexer
JP2002111444A (en) Coupled surface acoustic wave filter
JP7215413B2 (en) elastic wave filter
JP6885473B2 (en) Multiplexers, high frequency front-end circuits and communication equipment
JP4548305B2 (en) Dual-mode surface acoustic wave filter
WO2023074373A1 (en) Elastic wave resonator, elastic wave filter device, and multiplexer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867247

Country of ref document: EP

Kind code of ref document: A1