WO2022019072A1 - Acoustic wave filter, and multiplexer - Google Patents

Acoustic wave filter, and multiplexer Download PDF

Info

Publication number
WO2022019072A1
WO2022019072A1 PCT/JP2021/024758 JP2021024758W WO2022019072A1 WO 2022019072 A1 WO2022019072 A1 WO 2022019072A1 JP 2021024758 W JP2021024758 W JP 2021024758W WO 2022019072 A1 WO2022019072 A1 WO 2022019072A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
electrode
idt
electrode fingers
signal terminal
Prior art date
Application number
PCT/JP2021/024758
Other languages
French (fr)
Japanese (ja)
Inventor
明 野口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202190000716.5U priority Critical patent/CN219592382U/en
Publication of WO2022019072A1 publication Critical patent/WO2022019072A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave filter and a multiplexer.
  • Patent Document 1 discloses an elastic wave filter including a filter circuit having a predetermined frequency band as a pass band and a cancel line connected in parallel to the filter circuit.
  • an unnecessary wave outside the pass band is subjected to an antiphase by using a cancel line to cancel the unnecessary wave and increase the attenuation amount outside the pass band.
  • the resonance Q of the cancel line becomes higher than necessary, unnecessary waves such as spurious are generated outside the pass band, and the amount of attenuation outside the pass band may not be sufficiently secured.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an elastic wave filter or the like that can secure an amount of attenuation outside the frequency passband.
  • the elastic wave filter has a predetermined frequency band as a passing band and is arranged on a first path connecting the first signal terminal and the second signal terminal.
  • a first filter circuit and an additional circuit connected in parallel to at least a part of the first filter circuit are provided, and the additional circuit comprises a plurality of IDT electrodes arranged along an elastic wave propagation direction.
  • the ratio of the number of electrode fingers of the plurality of reflectors having the IDT electrode group and located on both outer sides of the IDT electrode group in the direction of propagation of the elastic wave is the number of electrode fingers of the plurality of IDT electrodes and the plurality of electrode fingers. It is 11% or less of the total number of electrode fingers of the reflector.
  • the multiplexer has a pass band of the elastic wave filter, the first signal terminal, the second signal terminal and the third signal terminal, and a frequency band different from that of the first filter circuit.
  • a second filter circuit arranged on a third path connecting the second signal terminal and the third signal terminal is provided.
  • the elastic wave filter or the like according to the present invention, it is possible to secure the amount of attenuation outside the frequency passband.
  • FIG. 1 is a circuit configuration diagram of a multiplexer including an elastic wave filter according to the first embodiment.
  • FIG. 2 is a schematic diagram showing a group of IDT electrodes included in the additional circuit of the elastic wave filter according to the first embodiment.
  • FIG. 3 is a plan view and a cross-sectional view schematically showing the structure of the IDT electrode group shown in FIG.
  • FIG. 4 is a diagram showing the passing characteristics of the elastic wave filter according to the first embodiment.
  • FIG. 5 is a diagram showing the isolation characteristics of the multiplexer according to the first embodiment.
  • FIG. 6 is a diagram showing the relationship between the ratio of the number of electrode fingers of the reflector and the peak level of unnecessary waves.
  • FIG. 7 is a circuit configuration diagram of a multiplexer including an elastic wave filter according to the second embodiment.
  • FIG. 8 is a schematic diagram showing a group of IDT electrodes included in the additional circuit of the elastic wave filter according to the second embodiment.
  • FIG. 9 is a plan view schematically showing the structure of the IDT electrode group shown in FIG.
  • FIG. 10 is a diagram showing the passage characteristics of the elastic wave filter according to the second embodiment.
  • FIG. 11 is a diagram showing the relationship between the ratio of the number of electrode fingers of the reflector and the peak level of unnecessary waves.
  • FIG. 1 is a circuit configuration diagram of a multiplexer 5 including the elastic wave filter 1 according to the first embodiment. Note that FIG. 1 also shows the antenna element 9.
  • the multiplexer 5 is a demultiplexer or combiner including a plurality of filters having different frequency pass bands. As shown in FIG. 1, the multiplexer 5 includes an elastic wave filter 1 having a first filter circuit 10 and an additional circuit 20, and a second filter circuit 50. Further, the multiplexer 5 includes a first signal terminal T1, a second signal terminal T2, and a third signal terminal T3.
  • the first signal terminal T1 is connected to the elastic wave filter 1. Further, the first signal terminal T1 is connected to an RF signal processing circuit (not shown) via an amplifier circuit or the like (not shown) outside the multiplexer 5.
  • the second signal terminal T2 is a common terminal connected to each of the elastic wave filter 1 and the second filter circuit 50. Specifically, the second signal terminal T2 is connected to the elastic wave filter 1 via the node n0 between the elastic wave filter 1 and the second signal terminal T2, and is also connected to the elastic wave filter 1 via the node n0. It is connected to 50. Further, the second signal terminal T2 is connected to the antenna element 9 outside the multiplexer 5. The second signal terminal T2 is also an antenna terminal of the multiplexer 5.
  • the third signal terminal T3 is connected to the second filter circuit 50. Further, the third signal terminal T3 is connected to an RF signal processing circuit (not shown) via an amplifier circuit or the like (not shown) outside the multiplexer 5.
  • the elastic wave filter 1 is arranged on the first path r1 connecting the first signal terminal T1 and the second signal terminal T2.
  • the elastic wave filter 1 is, for example, a transmission filter having an uplink frequency band (transmission band) as a pass band, and is set so that the frequency pass band is lower than that of the second filter circuit 50.
  • the elastic wave filter 1 includes a first filter circuit 10 and an additional circuit 20 additionally connected to the first filter circuit 10.
  • the additional circuit 20 is a circuit for canceling unnecessary waves outside the frequency pass band of the first filter circuit 10. The additional circuit 20 will be described later.
  • the second filter circuit 50 is arranged on the third path r3 connecting the second signal terminal T2 and the third signal terminal T3.
  • the second filter circuit 50 is, for example, a reception filter having a downlink frequency band (reception band) as a pass band.
  • the second filter circuit 50 is composed of, for example, a series arm resonator RS1, a parallel arm resonator RP1, a series arm resonator RS2, a vertically coupled elastic wave resonator 60, and a parallel arm resonator RP2. ..
  • Each of the elastic wave filter 1 and the second filter circuit 50 is required to have a characteristic of passing through a predetermined frequency band and attenuating a band outside the frequency band.
  • the elastic wave filter 1 includes a first filter circuit 10 and an additional circuit 20.
  • the first filter circuit 10 includes series arm resonators S1, S2, S3, S4 and parallel arm resonators P1, P2, P3, which are elastic wave resonators.
  • the series arm resonators S1 to S4 are arranged on the first path (series arm) r1 connecting the first signal terminal T1 and the second signal terminal T2.
  • the series arm resonators S1 to S4 are connected in series from the first signal terminal T1 toward the second signal terminal T2 in this order.
  • the parallel arm resonators P1 to P3 are paths (parallel arms) connecting the nodes n1, n2, n3 between the adjacent series arm resonators S1 to S4 on the first path r1 and the reference terminal (ground). They are connected in parallel to each other on top. Specifically, among the parallel arm resonators P1 to P3, the parallel arm resonator P1 closest to the first signal terminal T1 has one end connected to the node n1 between the series arm resonators S1 and S2, and the other. The end is connected to the reference terminal via the inductor L1.
  • One end of the parallel arm resonator P2 is connected to the node n2 between the series arm resonators S2 and S3, and the other end is connected to the reference terminal via the inductor L2.
  • One end of the parallel arm resonator P3 is connected to the node n3 between the series arm resonators S3 and S4, and the other end is connected to the reference terminal via the inductor L2.
  • the capacitive element C11 is connected in parallel to the circuit composed of the series arm resonators S1 and S2 and the parallel arm resonators P1 and P2, and the capacitive element C12 is connected in parallel to the series arm resonator S3.
  • the first filter circuit 10 is arranged on the four series arm resonators S1 to S4 arranged on the first path r1 and the path connecting the first path r1 and the reference terminal 3. It has a T-shaped ladder filter structure composed of two parallel arm resonators P1 to P3.
  • the number of series arm resonators and parallel arm resonators constituting the first filter circuit 10 is not limited to four or three, and there are two or more series arm resonators and one or more parallel arm resonators. It should be. Further, the parallel arm resonator may be connected to the reference terminal without using an inductor. Further, in FIG. 1, a part of the reference terminals to which the parallel arm resonators are connected is shared, but whether the reference terminals are shared or individualized depends on, for example, the mounting layout of the first filter circuit 10. It can be appropriately selected due to restrictions and the like.
  • the additional circuit 20 is a circuit that suppresses the output of unnecessary waves from the elastic wave filter 1 by applying an antiphase to unnecessary waves outside the frequency passband generated by the first filter circuit 10.
  • the additional circuit 20 is connected to a plurality of different nodes on the first path r1 so as to be connected in parallel to at least a part of the first filter circuit 10.
  • the additional circuit 20 includes a first terminal 21 that is a connection node on one end side of the additional circuit 20, a second terminal 22 that is a connection node on the other end side, and a second terminal that connects the first terminal 21 and the second terminal 22. It has an IDT (InterDigital Transducer) electrode group 25 arranged on the path r2 of the above.
  • the terminal here means an inlet or an outlet of a high frequency signal.
  • the first terminal 21 is electrically connected to the IDT electrode group 25.
  • the second terminal 22 is connected to the IDT electrode group 25 via the capacitive element C22.
  • the first terminal 21 and the second terminal 22 are acoustically connected via the IDT electrode group 25.
  • each of the first terminal 21 and the second terminal 22 is connected to a different node on the first path r1.
  • the first terminal 21 is connected to the node n1 between the series arm resonators S1 and S2
  • the second terminal 22 is the node n4 between the series arm resonator S4 and the second signal terminal T2. It is connected to the.
  • FIG. 2 is a schematic diagram showing an IDT electrode group 25 included in the additional circuit 20 of the elastic wave filter 1.
  • the electrodes and the wiring are shown by solid lines.
  • the IDT electrode group 25 is an elastic wave resonator group composed of a plurality of IDT electrodes 31 and 32.
  • the IDT electrode group 25 is, for example, a vertically coupled resonator.
  • the plurality of IDT electrodes 31 and 32 are arranged adjacent to each other along the elastic wave propagation direction D1.
  • the electrode parameters of the plurality of IDT electrodes 31 and 32 are different from each other.
  • the additional circuit 20 has a plurality of reflectors 41 and 42.
  • the plurality of reflectors 41 and 42 are located on both outer sides of the IDT electrode group 25 so as to sandwich the IDT electrode group 25 in the elastic wave propagation direction D1.
  • FIG. 2 illustrates an additional circuit 20 with two reflectors 41, 42. The structures of the reflectors 41 and 42 will be described in detail later.
  • the plurality of IDT electrodes 31 and 32 have a plurality of first comb-shaped electrodes 31a and 32a and a plurality of second comb-shaped electrodes 31b and 32b.
  • one of the IDT electrodes 31 is composed of a pair of a first comb-shaped electrode 31a and a second comb-shaped electrode 31b.
  • the other IDT electrode 32 is composed of a pair of a first comb-shaped electrode 32a and a second comb-shaped electrode 32b.
  • the first comb-shaped electrode 31a and the second comb-shaped electrode 31b face each other.
  • the first comb-shaped electrode 32a and the second comb-shaped electrode 32b face each other.
  • the first comb-shaped electrodes 31a and 32a are arranged in opposite directions to each other, and the second comb-shaped electrodes 31b are arranged.
  • 32b are also arranged in opposite directions to each other.
  • the first comb-shaped electrode 31a and the second comb-shaped electrode 32b are arranged in the same direction.
  • the plurality of first comb-shaped electrodes 31a and 32a are electrically connected to a plurality of different nodes on the first path r1. Specifically, the first comb-shaped electrode 31a is connected to the node n1 by the first terminal 21, and the first comb-shaped electrode 32a is connected to the node n4 by the second terminal 22. On the other hand, each of the second comb-shaped electrodes 31b and 32b is connected to the ground.
  • first terminal 21 of the additional circuit 20 is connected to the node n1 and the second terminal 22 is connected to the node n4, but the present invention is not limited to this.
  • Each of the first terminal 21 and the second terminal 22 may be connected to the outer nodes of two or more series arm resonators adjacent to each other on the first path r1.
  • the first terminal 21 may be connected to a node on the first path r1 connecting the first signal terminal T1 and the series arm resonator S1, or may be connected to the node n2.
  • the second terminal 22 may be connected to the node n3.
  • the additional circuit 20 does not have to include the capacitive element C22.
  • the IDT electrode group 25 may be connected to the second terminal 22 by wiring without a capacitive element as long as the unnecessary wave can be appropriately suppressed.
  • the IDT electrode group 25 is composed of, for example, a plurality of surface acoustic wave (SAW) resonators.
  • SAW surface acoustic wave
  • FIG. 3 is a plan view and a cross-sectional view schematically showing the structure of the IDT electrode group 25.
  • the IDT electrode group 25 shown in FIG. 3 is for explaining a typical structure of the resonator, and the number and length of the electrode fingers included in the IDT electrode and the reflector are the same. Not limited to.
  • the IDT electrode group 25 is composed of a substrate 320 having piezoelectricity and a plurality of IDT electrodes 31 and 32 formed on the substrate 320.
  • a plurality of reflectors 41 and 42 are provided on both outer sides of the IDT electrode group 25 in the elastic wave propagation direction D1.
  • the IDT electrode group 25 and the plurality of reflectors 41 and 42 include a substrate 320, each IDT electrode 31, 32 and an electrode layer 325 constituting the plurality of reflectors 41 and 42. It is formed by a dielectric layer 326 provided on the substrate 320 so as to cover each IDT electrode 31, 32 and each reflector 41, 42.
  • the substrate 320 is, for example, a LiNbO 3 substrate (lithium niobate substrate) having a cut angle of 127.5 °.
  • the cut angle of the substrate 320 is preferably 120 ° ⁇ 20 ° or 300 ° ⁇ 20 °.
  • the electrode layer 325 has a structure in which a plurality of metal layers are laminated.
  • the electrode layer 325 is formed by, for example, laminating a Ti layer, an Al layer, a Ti layer, a Pt layer, and a NiCr layer in order from the top.
  • the dielectric layer 326 is, for example, a film containing silicon dioxide (SiO 2 ) as a main component.
  • the dielectric layer 326 is provided for the purpose of adjusting the frequency temperature characteristics of the IDT electrode group 25, protecting the electrode layer 325 from the external environment, or enhancing the moisture resistance.
  • the IDT electrode 31 has a pair of first comb-shaped electrodes 31a and second comb-shaped electrodes 31b facing each other.
  • the IDT electrode 32 has a pair of first comb-shaped electrodes 32a and second comb-shaped electrodes 32b facing each other.
  • Each of the first comb-shaped electrodes 31a and 32a has a comb-shaped shape and is composed of a plurality of electrode fingers 36a parallel to each other and a bus bar electrode 37a connecting one ends of the plurality of electrode fingers 36a to each other.
  • Each of the second comb-shaped electrodes 31b and 32b has a comb-tooth shape and is composed of a plurality of electrode fingers 36b parallel to each other and a bus bar electrode 37b connecting one ends of the plurality of electrode fingers 36b to each other.
  • the bus bar electrodes 37a and 37b are formed so as to extend along the elastic wave propagation direction D1.
  • the plurality of electrode fingers 36a and 36b are formed so as to extend in the orthogonal direction D2 of the elastic wave propagation direction D1, intersperse with each other in the orthogonal direction D2, and face the elastic wave propagation direction D1.
  • the pitches (distances between the center lines) of the plurality of electrode fingers 36a in the elastic wave propagation direction D1 are different between the IDT electrode 31 and the IDT electrode 32. Further, the pitches (distances between the center lines) of the plurality of electrode fingers 36b in the elastic wave propagation direction D1 are different between the IDT electrode 31 and the IDT electrode 32.
  • the first comb-toothed electrode 31a is connected to the first terminal 21 via the lead-out wiring d1a.
  • the first comb-shaped electrode 32a is connected to the second terminal 22 via the lead-out wiring d2a and the capacitive element C22.
  • the second comb-shaped electrode 31b is connected to the ground via the lead-out wiring d1b.
  • the second comb-toothed electrode 32b is connected to the ground via the lead-out wiring d2b.
  • the ground may be a ground connection electrode (not shown) provided on the substrate of the multiplexer 5.
  • the plurality of reflectors 41 and 42 are arranged so as to sandwich the IDT electrodes 31 and 32 in the elastic wave propagation direction D1.
  • the reflectors 41 and 42 are independent electrodes that are not connected to each other.
  • the reflectors 41 and 42 shown in FIG. 3 are not connected to the ground and are in an open state.
  • the reflectors 41 and 42 may be connected to the ground or may be connected to a hot terminal (signal terminal).
  • Each of the reflectors 41 and 42 is composed of a plurality of electrode fingers 46 parallel to each other and a plurality of bus bars 47 connecting both ends of the plurality of electrode fingers 46.
  • Each electrode finger 46 is formed so as to extend in the orthogonal direction D2 of the elastic wave propagation direction D1.
  • Each bus bar 47 is formed so as to extend in the elastic wave propagation direction D1.
  • the number of the electrode fingers 46 of the reflectors 41 and 42 is two or more, and the ratio R is 0 ⁇ (the number of the electrode fingers 46 / (the number of the electrode fingers 36a and 36b + the number of the electrode fingers 46)). It is desirable to have a relationship of ⁇ 100.
  • the duty of the reflectors 41 and 42 is smaller than the duty of the IDT electrodes 31 and 32, respectively.
  • the duty of each reflector 41, 42 is 0.3 or more and less than 0.5.
  • the duties of the reflectors 41 and 42 may be the same or different.
  • the duty of the reflector in the present embodiment is a value obtained by dividing the width of the electrode fingers 46 by the distance between the electrode fingers 46 adjacent to each other in the elastic wave propagation direction D1 (the distance between the center lines of the adjacent electrode fingers). Is.
  • the duty of the IDT electrodes 31 and 32 means that the width of the electrode fingers 36a (or 36b) of the IDT electrodes 31 and 32 is the distance between the electrode fingers 36a and the electrode fingers 36b adjacent to each other in the elastic wave propagation direction D1 (adjacent electrode fingers). It is the value divided by the distance between the center lines of.
  • the ratio R of the number of electrode fingers 46 of the reflectors 41 and 42 is 11% or less of the total number of electrode fingers 36a, 36b and 46. According to this, it is possible to secure the amount of attenuation of the elastic wave filter 1 outside the frequency passband.
  • the effects of the first embodiment will be specifically described.
  • FIG. 4 is a diagram showing the passing characteristics of the elastic wave filter 1.
  • FIG. 5 is a diagram showing the isolation characteristics of the multiplexer 5.
  • the elastic wave filter is used as a transmission filter
  • the second filter circuit 50 is used as a receive filter
  • the frequency passband of the elastic wave filter is 880 MHz-915 MHz
  • the frequency passband of the second filter circuit 50 is 925 MHz.
  • An example of -960 MHz is shown.
  • FIG. 4 shows an insertion loss between the first signal terminal T1 and the second signal terminal T2
  • FIG. 5 shows the insertion loss between the first signal terminal T1 and the third signal terminal T3. There is.
  • the number of the electrode fingers 36a and 36b of the IDT electrode is 70
  • the number of the electrode fingers 46 of the reflectors 41 and 42 (total number) is 7
  • the number of the electrode fingers 46 is 7.
  • the ratio R of the number is 9.1%.
  • the elastic wave filter of the comparative example has 70 electrode fingers 36a and 36b of the IDT electrode, 11 electrode fingers 46 of the reflectors 41 and 42 (total number), and is a ratio of the number of electrode fingers 46. R is 13.6%.
  • FIG. 6 is a diagram showing the relationship between the ratio R of the number of electrode fingers 46 of the reflectors 41 and 42 and the peak level of unnecessary waves.
  • the horizontal axis of FIG. 6 is the ratio R of the number of electrode fingers 46, and the vertical axis is the peak level of the largest unnecessary wave in the isolation characteristic of the multiplexer.
  • the peak level of unwanted waves is represented by insertion loss.
  • the ratio R of the number of electrode fingers 46 of the reflectors 41 and 42 was set according to the conditions shown in Table 1. Specifically, the number of each of the electrode fingers of the IDT electrodes 31 and 32 is 35, and the number of each of the electrode fingers 46 of the reflectors 41 and 42 is changed between 0 and 17 or less. The ratio R of the number of fingers 46 was changed.
  • the duty of the IDT electrodes 31 and 32 and the duty of the reflectors 41 and 42 are as shown in Table 1.
  • the ratio R of the number of electrode fingers 46 of the reflectors 41 and 42 is larger than 11%, the peak level of unnecessary waves is not so large even if the ratio R of the number of electrode fingers 46 is reduced. Does not decrease.
  • FIG. 7 is a circuit configuration diagram of a multiplexer 5 including the elastic wave filter 1 according to the second embodiment. Note that FIG. 7 also shows the antenna element 9.
  • the multiplexer 5 includes an elastic wave filter 1 having a first filter circuit 10 and an additional circuit 20A, and a second filter circuit 50. Further, the multiplexer 5 includes a first signal terminal T1, a second signal terminal T2, and a third signal terminal T3.
  • the elastic wave filter 1 of the second embodiment includes a first filter circuit 10 and an additional circuit 20A.
  • the first filter circuit 10 is the same as that of the first embodiment. That is, the first filter circuit 10 is arranged on the four series arm resonators S1 to S4 arranged on the first path r1 and on the path connecting the first path r1 and the reference terminal. It has a T-shaped ladder filter structure composed of three parallel arm resonators P1 to P3.
  • the additional circuit 20A is connected to a plurality of different nodes on the first path r1 so as to be connected in parallel to at least a part of the first filter circuit 10.
  • the additional circuit 20A includes first terminals 21 and 21a as connection nodes on one end side of the additional circuit 20A, second terminals 22 and 22a as connection nodes on the other end side, and first terminals 21 and 21a and second terminals. It has an IDT electrode group 25A arranged on the second path r2, r2a connecting 22 and 22a.
  • the first terminals 21 and 21a are electrically connected to the IDT electrode group 25A.
  • the second terminal 22 is connected to the IDT electrode group 25A via the capacitive element C22, and the second terminal 22a is connected to the IDT electrode group 25A via the capacitive element C22a.
  • each of the first terminals 21, 21a and the second terminals 22, 22a is connected to different nodes on the first path r1.
  • the first terminal 21 is connected to the node n1 between the series arm resonators S1 and S2
  • the first terminal 21a is connected to the node n2
  • the second terminal 22 is the series arm resonator S4.
  • the second terminal 22a is connected to the node n4a between the series arm resonator S4 and the second signal terminal T2.
  • FIG. 8 is a schematic diagram showing the IDT electrode group 25A included in the additional circuit 20A of the elastic wave filter 1. Also in FIG. 8, the electrodes and wiring are shown by solid lines.
  • the IDT electrode group 25A is composed of a plurality of IDT electrodes 31, 32, 33, 34.
  • the IDT electrode group 25A is, for example, a vertically coupled resonator.
  • the plurality of IDT electrodes 31, 32, 33, 34 are arranged adjacent to each other along the elastic wave propagation direction D1 in this order.
  • the additional circuit 20 has a plurality of reflectors 41 and 42.
  • the plurality of reflectors 41 and 42 are located on both outer sides of the IDT electrode group 25A so as to sandwich the IDT electrode group 25A in the elastic wave propagation direction D1.
  • FIG. 7 illustrates an IDT electrode group 25A including two reflectors 41 and 42.
  • the plurality of IDT electrodes 31 to 34 have a plurality of first comb-shaped electrodes 31a, 32a, 33a, 34a and a plurality of second comb-shaped electrodes 31b, 32b, 33b, 34b.
  • the IDT electrode 31 is composed of a pair of a first comb-shaped electrode 31a and a second comb-shaped electrode 31b.
  • the IDT electrode 32 is composed of a pair of a first comb-shaped electrode 32a and a second comb-shaped electrode 32b.
  • the IDT electrode 33 is composed of a pair of a first comb-shaped electrode 33a and a second comb-shaped electrode 33b.
  • the IDT electrode 34 is composed of a pair of a first comb-shaped electrode 34a and a second comb-shaped electrode 34b.
  • the first comb-shaped electrode and the second comb-shaped electrode face each other.
  • the first comb-shaped electrodes 31a and 33a and the first comb-shaped electrodes 32a and 34a are arranged in opposite directions to each other.
  • the second comb-shaped electrodes 31b and 33b and the second comb-shaped electrodes 32b and 34b are arranged in opposite directions to each other.
  • the first comb-shaped electrodes 31a and 33a and the second comb-shaped electrodes 32b and 34b are arranged in the same direction.
  • the plurality of first comb-shaped electrodes 31a to 34a are electrically connected to a plurality of nodes on the first path r1. Specifically, the first comb-shaped electrode 31a is connected to the node n1 by the first terminal 21, the first comb-shaped electrode 33a is connected to the node n2 by the first terminal 21a, and the first comb-shaped electrode is formed. The electrode 33a is connected to the node n4 by the second terminal 22, and the first comb-shaped electrode 34a is connected to the node n4a by the second terminal 22a. On the other hand, each of the second comb-shaped electrodes 31b to 34b is connected to the ground.
  • the first terminals 21, 21a and the second terminals 22, 22a may be connected to the outer nodes of two or more series arm resonators adjacent to each other on the first path r1.
  • the first terminal 21 may be connected to a node on the first path r1 connecting the first signal terminal T1 and the series arm resonator S1, or may be connected to the node n2.
  • the first terminal 21a may be connected to the node n1.
  • the second terminals 22 and 22a may be connected to the node n3.
  • the additional circuit 20A does not have to include the capacitive elements C22 and C22a.
  • the IDT electrode group 25A may be connected to the second terminals 22 and 22a by wiring without using a capacitive element as long as the unnecessary wave can be appropriately suppressed.
  • FIG. 9 is a plan view schematically showing the structure of the IDT electrode group 25A shown in FIG.
  • each of the first comb-shaped electrodes 31a to 34a is composed of a plurality of electrode fingers 36a parallel to each other and a bus bar electrode 37a connecting one ends of the plurality of electrode fingers 36a to each other.
  • Each of the second comb-shaped electrodes 31b to 34b is composed of a plurality of electrode fingers 36b parallel to each other and a bus bar electrode 37b connecting one ends of the plurality of electrode fingers 36b to each other.
  • the plurality of electrode fingers 36a and 36b are formed so as to extend in the orthogonal direction D2 of the elastic wave propagation direction D1, intersperse with each other in the orthogonal direction D2, and face the elastic wave propagation direction D1.
  • the bus bar electrodes 37a and 37b are formed so as to extend along the elastic wave propagation direction D1.
  • the plurality of reflectors 41 and 42 are arranged so as to sandwich the plurality of IDT electrodes 31 to 34 in the elastic wave propagation direction D1.
  • the reflectors 41 and 42 are independent electrodes that are not connected to each other.
  • Each of the reflectors 41 and 42 has a plurality of electrode fingers 46 parallel to each other and a plurality of bus bars 47 connecting both ends of the plurality of electrode fingers 46. And, it is composed of.
  • Each electrode finger 46 is formed so as to extend in the orthogonal direction D2 of the elastic wave propagation direction D1.
  • Each bus bar 47 is formed so as to extend in the elastic wave propagation direction D1.
  • the number of the electrode fingers 46 is two or more, and the ratio R may have a relationship of 0 ⁇ (the number of the electrode fingers 46 / (the number of the electrode fingers 36a and 36b + the number of the electrode fingers 46)) ⁇ 100. desirable.
  • the duty of each of the reflectors 41 and 42 is smaller than the duty of the IDT electrodes 31 to 34.
  • the duty of each reflector 41, 42 is 0.1 or more and less than 0.5.
  • the duties of the reflectors 41 and 42 may be the same or different.
  • the ratio R of the number of the electrode fingers 46 of the reflectors 41 and 42 is set to 11% or less of the total number of the electrode fingers 36a, 36b and 46. According to this, it is possible to secure the amount of attenuation of the elastic wave filter 1 outside the frequency passband.
  • the effects of the second embodiment will be specifically described.
  • FIG. 10 is a diagram showing the passing characteristics of the elastic wave filter 1 of the second embodiment.
  • the elastic wave filter is used as a transmission filter
  • the second filter circuit 50 is used as a reception filter
  • the frequency pass band of the elastic wave filter is 880 MHz-915 MHz
  • the frequency pass band of the second filter circuit 50 is 925 MHz-960 MHz.
  • An example is shown.
  • FIG. 10 shows an insertion loss between the first signal terminal T1 and the second signal terminal T2.
  • the number of the electrode fingers 36a and 36b of the IDT electrode is 74, the number of the electrode fingers 46 of the reflectors 41 and 42 (total number) is 7, and the number of the electrode fingers 46 is 7.
  • the ratio R of the number is 8.6%.
  • the elastic wave filter of the comparative example has 74 electrode fingers 36a and 36b of the IDT electrode and 11 electrode fingers 46 (total number) of the reflectors 41 and 42, and is a ratio of the number of electrode fingers 46. R is 12.9%.
  • FIG. 11 is a diagram showing the relationship between the ratio R of the number of electrode fingers 46 of the reflectors 41 and 42 and the peak level of unnecessary waves.
  • the horizontal axis of FIG. 11 is the ratio R of the number of electrode fingers 46, and the vertical axis is the peak level of the largest unnecessary wave.
  • the peak level of unwanted waves is expressed as insertion loss.
  • the ratio R of the number of electrode fingers 46 was set according to the conditions shown in Table 2. Specifically, the number of electrode fingers of the IDT electrodes 31, 32, 33, and 34 is 19, 23, 11, and 23, respectively, and the number of electrode fingers 46 of the reflector 41 is 0 or more and 17 or less. In addition, by changing the number of the electrode fingers 46 of the reflector 41 between 0 and more and 21 or less, the ratio R of the number of the electrode fingers 46 was changed.
  • the duty of the IDT electrodes 31 to 34 and the duty of the reflectors 41 and 42 are as shown in Table 2.
  • the ratio R of the number of electrode fingers 46 when the ratio R of the number of electrode fingers 46 is larger than 11.9%, the peak level of unnecessary waves does not decrease so much even if the ratio R of the number of electrode fingers 46 is reduced.
  • the elastic wave filter 1 has a predetermined frequency band as a pass band and is arranged on the first path r1 connecting the first signal terminal T1 and the second signal terminal T2.
  • a first filter circuit 10 and an additional circuit 20 connected in parallel to at least a part of the first filter circuit 10 are provided.
  • the additional circuit 20 has an IDT electrode group 25 composed of a plurality of IDT electrodes arranged along the elastic wave propagation direction D1.
  • the ratio R of the number of the electrode fingers 46 of the plurality of reflectors 41 and 42 located on both outer sides of the IDT electrode group 25 in the elastic wave propagation direction D is the number of the electrode fingers 36a and 36b of the plurality of IDT electrodes and the plurality of reflections. It is 11% or less of the total number of electrode fingers 46 of the vessels 41 and 42.
  • the resonance Q of the additional circuit 20 is required by setting the ratio R of the number of the electrode fingers 46 of the reflectors 41 and 42 in the additional circuit 20 to 11% or less of the total number of the electrode fingers 36a, 36b and 46. It is possible to suppress the increase above. As a result, it is possible to suppress the generation of unnecessary waves outside the frequency passband of the elastic wave filter 1 and secure the amount of attenuation outside the frequency passband.
  • the IDT electrode group 25 may be composed of two or more IDT electrodes 31 and 32.
  • the additional circuit 20 having two or more IDT electrodes 31 and 32, by setting the ratio R to 11% or less, it is possible to suppress the resonance Q of the additional circuit 20 from becoming higher than necessary. As a result, it is possible to suppress the generation of unnecessary waves outside the frequency passband of the elastic wave filter 1 and secure the amount of attenuation outside the frequency passband.
  • the IDT electrode group 25 may be composed of four IDT electrodes 31, 32, 33, 34.
  • the additional circuit 20 having four IDT electrodes 31 to 34 by setting the ratio R to 11% or less of the total number, it is possible to suppress that the resonance Q of the additional circuit 20 becomes higher than necessary. .. Further, as compared with the case where the plurality of IDT electrodes are composed of two IDT electrodes, the adjustment range of the ratio R can be widened, and it is possible to easily suppress that the resonance Q of the additional circuit 20 becomes higher than necessary. As a result, it is possible to suppress the generation of unnecessary waves outside the frequency passband of the elastic wave filter 1 and secure the amount of attenuation outside the frequency passband.
  • the duty of the reflectors 41 and 42 may be smaller than the duty of the IDT electrodes 31 and 32.
  • the multiplexer 5 has a pass band different from that of the elastic wave filter 1, the first signal terminal T1, the second signal terminal T2, the third signal terminal T3, and the first filter circuit 10.
  • a second filter circuit 50 arranged on a third path r3 connecting the second signal terminal T2 and the third signal terminal T3 is provided.
  • the elastic wave filter is provided with two or four IDT electrodes, but the number of IDT electrodes is not limited to this, and the number of IDT electrodes may be three or five or more.
  • the frequency passband of the elastic wave filter 1 is set to be lower than the frequency passband of the second filter circuit 50, but the present invention is not limited to this, and the frequency passband of the elastic wave filter 1 is not limited to this. May be set to be higher than the frequency passband of the second filter circuit 50.
  • the elastic wave filter 1 is a transmission filter
  • the present invention is not limited to this, and the elastic wave filter 1 may be a reception filter.
  • the multiplexer 5 is not limited to the configuration including both the transmission filter and the reception filter, and may be configured to include only the transmission filter or only the reception filter.
  • a multiplexer including two filters has been described as an example, but in the present invention, for example, a triplexer having common antenna terminals of three filters and a hexaplexer having common antenna terminals of six filters have been described. Can also be applied to. That is, the multiplexer need only have two or more filters.
  • first signal terminal T1 and the second signal terminal T2 may be either an input terminal or an output terminal.
  • first signal terminal T1 when the first signal terminal T1 is an input terminal, the second signal terminal T2 becomes an output terminal, and when the second signal terminal T2 is an input terminal, the first signal terminal T1 becomes an output terminal.
  • the second filter circuit 50 is not limited to the above-mentioned filter configuration, and can be appropriately designed according to the required filter characteristics and the like.
  • the second filter circuit 50 may have a vertically coupled filter structure or a ladder type filter structure.
  • each resonator constituting the second filter circuit 50 is not limited to the SAW resonator, and may be, for example, a BAW (Bulk Acoustic Wave) resonator.
  • the second filter circuit 50 may be configured without using a resonator, and may be, for example, an LC resonance filter or a dielectric filter.
  • the materials constituting the electrode layers 325 and the dielectric layer 326 of the IDT electrodes 31 and 32 and the reflectors 41 and 42 are not limited to the above-mentioned materials. Further, the IDT electrodes 31 and 32 do not have to have the above-mentioned laminated structure.
  • the IDT electrodes 31 and 32 may be made of, for example, a metal or alloy such as Ti, Al, Cu, Pt, Au, Ag, Pd, or from a plurality of laminates made of the above metal or alloy. It may be configured.
  • a substrate having piezoelectricity is shown as the substrate 320, but the substrate may be a piezoelectric substrate composed of a single layer of a piezoelectric layer.
  • the piezoelectric substrate in this case is composed of, for example, a piezoelectric single crystal of LiTaO 3 or another piezoelectric single crystal such as LiNbO 3.
  • the substrate 320 on which the IDT electrodes 31 and 32 are formed may be entirely composed of a piezoelectric layer or may have a structure in which the piezoelectric layer is laminated on the support substrate, as long as the substrate 320 has piezoelectricity.
  • the cut angle of the substrate 320 according to the first embodiment is not limited.
  • the laminated structure, material, and thickness may be appropriately changed according to the required passing characteristics of the surface acoustic wave filter, and the LiTaO 3 piezoelectric substrate having a cut angle other than the cut angle shown in the first embodiment may be used. Even an elastic surface acoustic wave filter using a LiNbO 3 piezoelectric substrate or the like can achieve the same effect.
  • the present invention can be widely used in communication equipment such as mobile phones as a multiplexer having an elastic wave filter, a front-end circuit, and a communication device.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

An acoustic wave filter (1) is provided with: a first filter circuit (10) which has a prescribed frequency band as a passband, and which is disposed on a first pathway (r1) linking a first signal terminal (T1) and a second signal terminal (T2); and an additional circuit (20) connected in parallel with at least a portion of the first filter circuit (10). The additional circuit (20) includes an IDT electrode group (25) comprising a plurality of IDT electrodes (31, 32) disposed in an acoustic wave propagation direction (D1). The proportion (R) of the number of electrode fingers (46) in a plurality of reflectors (41, 42) positioned on both outer sides of the IDT electrode group (25) in the acoustic wave propagation direction (D1) is at most equal to 11% of a total number obtained by summing the number of electrode fingers (36a, 36b) in the plurality of IDT electrodes (31, 32) and the number of electrode fingers (46) in the plurality of reflectors (41, 42).

Description

弾性波フィルタおよびマルチプレクサSAW filter and multiplexer
 本発明は、弾性波フィルタおよびマルチプレクサに関する。 The present invention relates to an elastic wave filter and a multiplexer.
 従来、直列腕共振子および並列腕共振子を備えるラダー型の弾性波フィルタが知られている。この種の弾性波フィルタの一例として、特許文献1には、所定の周波数帯域を通過帯域とするフィルタ回路と、フィルタ回路に並列接続されたキャンセル線路とを備える弾性波フィルタが開示されている。 Conventionally, a ladder type elastic wave filter including a series arm resonator and a parallel arm resonator is known. As an example of this type of elastic wave filter, Patent Document 1 discloses an elastic wave filter including a filter circuit having a predetermined frequency band as a pass band and a cancel line connected in parallel to the filter circuit.
特開2017-204743号公報Japanese Unexamined Patent Publication No. 2017-204743
 特許文献1に開示された弾性波フィルタでは、キャンセル線路を用いて通過帯域外の不要波に逆位相をかけ、不要波をキャンセルし、通過帯域外における減衰量を大きくしている。しかしながら、この弾性波フィルタでは、キャンセル線路の共振Qが必要以上に高くなって通過帯域外にスプリアスなどの不要波が発生し、通過帯域外における減衰量を十分に確保できないことがある。 In the elastic wave filter disclosed in Patent Document 1, an unnecessary wave outside the pass band is subjected to an antiphase by using a cancel line to cancel the unnecessary wave and increase the attenuation amount outside the pass band. However, in this elastic wave filter, the resonance Q of the cancel line becomes higher than necessary, unnecessary waves such as spurious are generated outside the pass band, and the amount of attenuation outside the pass band may not be sufficiently secured.
 本発明は、上記課題を解決するためになされたものであり、周波数通過帯域外における減衰量を確保することができる弾性波フィルタ等を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an elastic wave filter or the like that can secure an amount of attenuation outside the frequency passband.
 上記目的を達成するために、本発明の一態様に係る弾性波フィルタは、所定の周波数帯域を通過帯域とし、第1信号端子と第2信号端子とを結ぶ第1の経路上に配置された第1フィルタ回路と、前記第1フィルタ回路の少なくとも一部に対し並列に接続される付加回路と、を備え、前記付加回路は、弾性波伝搬方向に沿って配置された複数のIDT電極からなるIDT電極群を有し、前記弾性波伝搬方向において前記IDT電極群の両外側に位置する複数の反射器の電極指の本数の割合は、前記複数のIDT電極の電極指の本数および前記複数の反射器の電極指の本数を合計した総本数の11%以下である。 In order to achieve the above object, the elastic wave filter according to one aspect of the present invention has a predetermined frequency band as a passing band and is arranged on a first path connecting the first signal terminal and the second signal terminal. A first filter circuit and an additional circuit connected in parallel to at least a part of the first filter circuit are provided, and the additional circuit comprises a plurality of IDT electrodes arranged along an elastic wave propagation direction. The ratio of the number of electrode fingers of the plurality of reflectors having the IDT electrode group and located on both outer sides of the IDT electrode group in the direction of propagation of the elastic wave is the number of electrode fingers of the plurality of IDT electrodes and the plurality of electrode fingers. It is 11% or less of the total number of electrode fingers of the reflector.
 また、本発明の一態様に係るマルチプレクサは、上記弾性波フィルタと、前記第1信号端子、前記第2信号端子および第3信号端子と、前記第1フィルタ回路とは異なる周波数帯域を通過帯域とし、前記第2信号端子と前記第3信号端子とを結ぶ第3の経路上に配置された第2フィルタ回路とを備える。 Further, the multiplexer according to one aspect of the present invention has a pass band of the elastic wave filter, the first signal terminal, the second signal terminal and the third signal terminal, and a frequency band different from that of the first filter circuit. , A second filter circuit arranged on a third path connecting the second signal terminal and the third signal terminal is provided.
 本発明に係る弾性波フィルタ等によれば、周波数通過帯域外における減衰量を確保することができる。 According to the elastic wave filter or the like according to the present invention, it is possible to secure the amount of attenuation outside the frequency passband.
図1は、実施の形態1に係る弾性波フィルタを備えるマルチプレクサの回路構成図である。FIG. 1 is a circuit configuration diagram of a multiplexer including an elastic wave filter according to the first embodiment. 図2は、実施の形態1に係る弾性波フィルタの付加回路に含まれるIDT電極群を示す模式図である。FIG. 2 is a schematic diagram showing a group of IDT electrodes included in the additional circuit of the elastic wave filter according to the first embodiment. 図3は、図2に示すIDT電極群の構造を模式的に示す平面図および断面図である。FIG. 3 is a plan view and a cross-sectional view schematically showing the structure of the IDT electrode group shown in FIG. 図4は、実施の形態1に係る弾性波フィルタの通過特性を示す図である。FIG. 4 is a diagram showing the passing characteristics of the elastic wave filter according to the first embodiment. 図5は、実施の形態1に係るマルチプレクサのアイソレーション特性を示す図である。FIG. 5 is a diagram showing the isolation characteristics of the multiplexer according to the first embodiment. 図6は、反射器の電極指の本数の割合および不要波のピークレベルの関係を示す図である。FIG. 6 is a diagram showing the relationship between the ratio of the number of electrode fingers of the reflector and the peak level of unnecessary waves. 図7は、実施の形態2に係る弾性波フィルタを備えるマルチプレクサの回路構成図である。FIG. 7 is a circuit configuration diagram of a multiplexer including an elastic wave filter according to the second embodiment. 図8は、実施の形態2に係る弾性波フィルタの付加回路に含まれるIDT電極群を示す模式図である。FIG. 8 is a schematic diagram showing a group of IDT electrodes included in the additional circuit of the elastic wave filter according to the second embodiment. 図9は、図8に示すIDT電極群の構造を模式的に示す平面図である。FIG. 9 is a plan view schematically showing the structure of the IDT electrode group shown in FIG. 図10は、実施の形態2に係る弾性波フィルタの通過特性を示す図である。FIG. 10 is a diagram showing the passage characteristics of the elastic wave filter according to the second embodiment. 図11は、反射器の電極指の本数の割合および不要波のピークレベルの関係を示す図である。FIG. 11 is a diagram showing the relationship between the ratio of the number of electrode fingers of the reflector and the peak level of unnecessary waves.
 以下、本発明の実施の形態について、実施の形態および図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する場合がある。また、以下の実施の形態において、「接続される」とは、直接接続される場合だけでなく、他の素子等を介して電気的に接続される場合も含まれる。 Hereinafter, embodiments of the present invention will be described in detail with reference to embodiments and drawings. It should be noted that all of the embodiments described below are comprehensive or specific examples. The numerical values, shapes, materials, components, arrangement of components, connection modes, etc. shown in the following embodiments are examples, and are not intended to limit the present invention. Among the components in the following embodiments, the components not described in the independent claims are described as arbitrary components. Also, the sizes of the components shown in the drawings, or the ratio of sizes, are not always exact. Further, in each figure, the same reference numerals are given to substantially the same configurations, and duplicate explanations may be omitted or simplified. Further, in the following embodiments, "connected" includes not only the case of being directly connected but also the case of being electrically connected via another element or the like.
 (実施の形態1)
 [1-1.マルチプレクサの構成]
 実施の形態1に係る弾性波フィルタを備えるマルチプレクサの構成について、図1を参照しながら説明する。
(Embodiment 1)
[1-1. Multiplexer configuration]
The configuration of the multiplexer including the elastic wave filter according to the first embodiment will be described with reference to FIG.
 図1は、実施の形態1に係る弾性波フィルタ1を備えるマルチプレクサ5の回路構成図である。なお、図1にはアンテナ素子9も示されている。 FIG. 1 is a circuit configuration diagram of a multiplexer 5 including the elastic wave filter 1 according to the first embodiment. Note that FIG. 1 also shows the antenna element 9.
 マルチプレクサ5は、周波数通過帯域が異なる複数のフィルタを備える分波器または合波器である。図1に示すように、マルチプレクサ5は、第1フィルタ回路10および付加回路20を有する弾性波フィルタ1と、第2フィルタ回路50とを備えている。また、マルチプレクサ5は、第1信号端子T1、第2信号端子T2および第3信号端子T3を備えている。 The multiplexer 5 is a demultiplexer or combiner including a plurality of filters having different frequency pass bands. As shown in FIG. 1, the multiplexer 5 includes an elastic wave filter 1 having a first filter circuit 10 and an additional circuit 20, and a second filter circuit 50. Further, the multiplexer 5 includes a first signal terminal T1, a second signal terminal T2, and a third signal terminal T3.
 第1信号端子T1は、弾性波フィルタ1に接続されている。また、第1信号端子T1は、マルチプレクサ5の外部において、増幅回路等(図示せず)を介してRF信号処理回路(図示せず)に接続される。 The first signal terminal T1 is connected to the elastic wave filter 1. Further, the first signal terminal T1 is connected to an RF signal processing circuit (not shown) via an amplifier circuit or the like (not shown) outside the multiplexer 5.
 第2信号端子T2は、弾性波フィルタ1および第2フィルタ回路50のそれぞれに接続される共通端子である。具体的には、第2信号端子T2は、弾性波フィルタ1と第2信号端子T2との間のノードn0を介して弾性波フィルタ1に接続され、また、ノードn0を介して第2フィルタ回路50に接続されている。また、第2信号端子T2は、マルチプレクサ5の外部でアンテナ素子9に接続される。第2信号端子T2は、マルチプレクサ5のアンテナ端子でもある。 The second signal terminal T2 is a common terminal connected to each of the elastic wave filter 1 and the second filter circuit 50. Specifically, the second signal terminal T2 is connected to the elastic wave filter 1 via the node n0 between the elastic wave filter 1 and the second signal terminal T2, and is also connected to the elastic wave filter 1 via the node n0. It is connected to 50. Further, the second signal terminal T2 is connected to the antenna element 9 outside the multiplexer 5. The second signal terminal T2 is also an antenna terminal of the multiplexer 5.
 第3信号端子T3は、第2フィルタ回路50に接続されている。また、第3信号端子T3は、マルチプレクサ5の外部において、増幅回路等(図示せず)を介してRF信号処理回路(図示せず)に接続される。 The third signal terminal T3 is connected to the second filter circuit 50. Further, the third signal terminal T3 is connected to an RF signal processing circuit (not shown) via an amplifier circuit or the like (not shown) outside the multiplexer 5.
 弾性波フィルタ1は、第1信号端子T1と第2信号端子T2とを結ぶ第1の経路r1上に配置されている。弾性波フィルタ1は、例えば、上り周波数帯(送信帯域)を通過帯域とする送信フィルタであり、第2フィルタ回路50よりも周波数通過帯域が低くなるように設定される。弾性波フィルタ1は、第1フィルタ回路10と、第1フィルタ回路10に付加接続された付加回路20とを備える。付加回路20は、第1フィルタ回路10の周波数通過帯域外の不要波をキャンセルするための回路である。付加回路20については後述する。 The elastic wave filter 1 is arranged on the first path r1 connecting the first signal terminal T1 and the second signal terminal T2. The elastic wave filter 1 is, for example, a transmission filter having an uplink frequency band (transmission band) as a pass band, and is set so that the frequency pass band is lower than that of the second filter circuit 50. The elastic wave filter 1 includes a first filter circuit 10 and an additional circuit 20 additionally connected to the first filter circuit 10. The additional circuit 20 is a circuit for canceling unnecessary waves outside the frequency pass band of the first filter circuit 10. The additional circuit 20 will be described later.
 第2フィルタ回路50は、第2信号端子T2と第3信号端子T3とを結ぶ第3の経路r3上に配置されている。第2フィルタ回路50は、例えば、下り周波数帯(受信帯域)を通過帯域とする受信フィルタである。第2フィルタ回路50は、例えば、直列腕共振子RS1と、並列腕共振子RP1と、直列腕共振子RS2と、縦結合型弾性波共振器60と、並列腕共振子RP2とによって構成される。 The second filter circuit 50 is arranged on the third path r3 connecting the second signal terminal T2 and the third signal terminal T3. The second filter circuit 50 is, for example, a reception filter having a downlink frequency band (reception band) as a pass band. The second filter circuit 50 is composed of, for example, a series arm resonator RS1, a parallel arm resonator RP1, a series arm resonator RS2, a vertically coupled elastic wave resonator 60, and a parallel arm resonator RP2. ..
 弾性波フィルタ1および第2フィルタ回路50のそれぞれには、予め決められた周波数帯域を通過させ、当該周波数帯域外の帯域を減衰させるような特性が求められる。 Each of the elastic wave filter 1 and the second filter circuit 50 is required to have a characteristic of passing through a predetermined frequency band and attenuating a band outside the frequency band.
 [1-2.弾性波フィルタの構成]
 次に、弾性波フィルタ1の構成について、図1および図2を参照しながら説明する。
[1-2. Structure of elastic wave filter]
Next, the configuration of the elastic wave filter 1 will be described with reference to FIGS. 1 and 2.
 図1に示すように、弾性波フィルタ1は、第1フィルタ回路10と付加回路20とを備えている。 As shown in FIG. 1, the elastic wave filter 1 includes a first filter circuit 10 and an additional circuit 20.
 第1フィルタ回路10は、弾性波共振子である直列腕共振子S1、S2、S3、S4および並列腕共振子P1、P2、P3を備えている。 The first filter circuit 10 includes series arm resonators S1, S2, S3, S4 and parallel arm resonators P1, P2, P3, which are elastic wave resonators.
 直列腕共振子S1~S4は、第1信号端子T1と第2信号端子T2とを結ぶ第1の経路(直列腕)r1上に配置されている。直列腕共振子S1~S4は、第1信号端子T1から第2信号端子T2に向かって、この順で直列に接続されている。 The series arm resonators S1 to S4 are arranged on the first path (series arm) r1 connecting the first signal terminal T1 and the second signal terminal T2. The series arm resonators S1 to S4 are connected in series from the first signal terminal T1 toward the second signal terminal T2 in this order.
 並列腕共振子P1~P3は、第1の経路r1上にて隣り合う直列腕共振子S1~S4の間の各ノードn1、n2、n3と基準端子(グランド)とを結ぶ経路(並列腕)上に互いに並列に接続されている。具体的には、並列腕共振子P1~P3のうち、第1信号端子T1に最も近い並列腕共振子P1は、一端が直列腕共振子S1とS2との間のノードn1に接続され、他端がインダクタL1を介して基準端子に接続されている。並列腕共振子P2は、一端が直列腕共振子S2とS3との間のノードn2に接続され、他端がインダクタL2を介して基準端子に接続されている。並列腕共振子P3は、一端が直列腕共振子S3とS4との間のノードn3に接続され、他端がインダクタL2を介して基準端子に接続されている。なお、直列腕共振子S1、S2および並列腕共振子P1、P2で構成される回路には容量素子C11が並列接続され、直列腕共振子S3には容量素子C12が並列接続されている。 The parallel arm resonators P1 to P3 are paths (parallel arms) connecting the nodes n1, n2, n3 between the adjacent series arm resonators S1 to S4 on the first path r1 and the reference terminal (ground). They are connected in parallel to each other on top. Specifically, among the parallel arm resonators P1 to P3, the parallel arm resonator P1 closest to the first signal terminal T1 has one end connected to the node n1 between the series arm resonators S1 and S2, and the other. The end is connected to the reference terminal via the inductor L1. One end of the parallel arm resonator P2 is connected to the node n2 between the series arm resonators S2 and S3, and the other end is connected to the reference terminal via the inductor L2. One end of the parallel arm resonator P3 is connected to the node n3 between the series arm resonators S3 and S4, and the other end is connected to the reference terminal via the inductor L2. The capacitive element C11 is connected in parallel to the circuit composed of the series arm resonators S1 and S2 and the parallel arm resonators P1 and P2, and the capacitive element C12 is connected in parallel to the series arm resonator S3.
 このように第1フィルタ回路10は、第1の経路r1上に配置された4つの直列腕共振子S1~S4、および、第1の経路r1と基準端子とを結ぶ経路上に配置された3つの並列腕共振子P1~P3で構成されるT型のラダーフィルタ構造を有している。 As described above, the first filter circuit 10 is arranged on the four series arm resonators S1 to S4 arranged on the first path r1 and the path connecting the first path r1 and the reference terminal 3. It has a T-shaped ladder filter structure composed of two parallel arm resonators P1 to P3.
 なお、第1フィルタ回路10を構成する直列腕共振子および並列腕共振子の数は、4つまたは3つに限定されず、直列腕共振子が2つ以上かつ並列腕共振子が1つ以上であればよい。また、並列腕共振子は、インダクタを介さずに、基準端子に接続されていてもよい。また図1では、並列腕共振子が接続される基準端子の一部が共通化されているが、基準端子を共通化するか個別化するかは、例えば、第1フィルタ回路10の実装レイアウトの制約等によって適宜選択され得る。 The number of series arm resonators and parallel arm resonators constituting the first filter circuit 10 is not limited to four or three, and there are two or more series arm resonators and one or more parallel arm resonators. It should be. Further, the parallel arm resonator may be connected to the reference terminal without using an inductor. Further, in FIG. 1, a part of the reference terminals to which the parallel arm resonators are connected is shared, but whether the reference terminals are shared or individualized depends on, for example, the mounting layout of the first filter circuit 10. It can be appropriately selected due to restrictions and the like.
 次に、弾性波フィルタ1の付加回路20について説明する。付加回路20は、第1フィルタ回路10で発生する周波数通過帯域外の不要波に逆位相をかけることで、弾性波フィルタ1から不要波が出力されることを抑制する回路である。 Next, the additional circuit 20 of the elastic wave filter 1 will be described. The additional circuit 20 is a circuit that suppresses the output of unnecessary waves from the elastic wave filter 1 by applying an antiphase to unnecessary waves outside the frequency passband generated by the first filter circuit 10.
 付加回路20は、第1フィルタ回路10の少なくとも一部に対し並列に接続されるように、第1の経路r1上の異なる複数のノードに接続される。付加回路20は、付加回路20の一端側の接続ノードとなる第1端子21、他端側の接続ノードとなる第2端子22、および、第1端子21と第2端子22とを結ぶ第2の経路r2上に配置されたIDT(InterDigital Transducer)電極群25を有している。なお、ここでいう端子は、高周波信号の入口または出口を意味する。 The additional circuit 20 is connected to a plurality of different nodes on the first path r1 so as to be connected in parallel to at least a part of the first filter circuit 10. The additional circuit 20 includes a first terminal 21 that is a connection node on one end side of the additional circuit 20, a second terminal 22 that is a connection node on the other end side, and a second terminal that connects the first terminal 21 and the second terminal 22. It has an IDT (InterDigital Transducer) electrode group 25 arranged on the path r2 of the above. The terminal here means an inlet or an outlet of a high frequency signal.
 第1端子21は、IDT電極群25に電気的に接続されている。第2端子22は、容量素子C22を介してIDT電極群25に接続されている。第1端子21および第2端子22は、IDT電極群25を介して音響的接続されている。 The first terminal 21 is electrically connected to the IDT electrode group 25. The second terminal 22 is connected to the IDT electrode group 25 via the capacitive element C22. The first terminal 21 and the second terminal 22 are acoustically connected via the IDT electrode group 25.
 また、第1端子21および第2端子22のそれぞれは、第1の経路r1上の異なるノードに接続される。図1では、第1端子21は、直列腕共振子S1とS2との間のノードn1に接続され、第2端子22は、直列腕共振子S4と第2信号端子T2との間のノードn4に接続されている。 Further, each of the first terminal 21 and the second terminal 22 is connected to a different node on the first path r1. In FIG. 1, the first terminal 21 is connected to the node n1 between the series arm resonators S1 and S2, and the second terminal 22 is the node n4 between the series arm resonator S4 and the second signal terminal T2. It is connected to the.
 図2は、弾性波フィルタ1の付加回路20に含まれるIDT電極群25を示す模式図である。なお図2では、電極および配線が実線で示されている。 FIG. 2 is a schematic diagram showing an IDT electrode group 25 included in the additional circuit 20 of the elastic wave filter 1. In FIG. 2, the electrodes and the wiring are shown by solid lines.
 IDT電極群25は、複数のIDT電極31および32からなる弾性波共振子群である。IDT電極群25は、例えば、縦結合型共振器である。複数のIDT電極31、32は、弾性波伝搬方向D1に沿って隣り合って配置されている。複数のIDT電極31、32の電極パラメータは、互いに異なっている。 The IDT electrode group 25 is an elastic wave resonator group composed of a plurality of IDT electrodes 31 and 32. The IDT electrode group 25 is, for example, a vertically coupled resonator. The plurality of IDT electrodes 31 and 32 are arranged adjacent to each other along the elastic wave propagation direction D1. The electrode parameters of the plurality of IDT electrodes 31 and 32 are different from each other.
 なお、付加回路20は、複数の反射器41、42を有している。複数の反射器41、42は、弾性波伝搬方向D1において、IDT電極群25を挟み込むように、IDT電極群25の両外側に位置している。図2には、2つの反射器41、42を備える付加回路20が例示されている。反射器41、42の構造については後で詳しく説明する。 The additional circuit 20 has a plurality of reflectors 41 and 42. The plurality of reflectors 41 and 42 are located on both outer sides of the IDT electrode group 25 so as to sandwich the IDT electrode group 25 in the elastic wave propagation direction D1. FIG. 2 illustrates an additional circuit 20 with two reflectors 41, 42. The structures of the reflectors 41 and 42 will be described in detail later.
 複数のIDT電極31、32は、複数の第1櫛歯状電極31a、32aおよび複数の第2櫛歯状電極31b、32bを有している。複数のIDT電極31、32のうち、一方のIDT電極31は、一対となる第1櫛歯状電極31aおよび第2櫛歯状電極31bによって構成されている。他方のIDT電極32は、一対となる第1櫛歯状電極32aおよび第2櫛歯状電極32bによって構成されている。 The plurality of IDT electrodes 31 and 32 have a plurality of first comb-shaped electrodes 31a and 32a and a plurality of second comb-shaped electrodes 31b and 32b. Of the plurality of IDT electrodes 31 and 32, one of the IDT electrodes 31 is composed of a pair of a first comb-shaped electrode 31a and a second comb-shaped electrode 31b. The other IDT electrode 32 is composed of a pair of a first comb-shaped electrode 32a and a second comb-shaped electrode 32b.
 第1櫛歯状電極31aおよび第2櫛歯状電極31bは、互いに対向している。第1櫛歯状電極32aおよび第2櫛歯状電極32bは、互いに対向している。IDT電極31、32を基板320(図3参照)に垂直な方向から見た場合に、第1櫛歯状電極31a、32aは、互いに逆向きで配置され、また、第2櫛歯状電極31b、32bも、互いに逆向きで、配置されている。第1櫛歯状電極31aおよび第2櫛歯状電極32bは同じ向きで配置されている。 The first comb-shaped electrode 31a and the second comb-shaped electrode 31b face each other. The first comb-shaped electrode 32a and the second comb-shaped electrode 32b face each other. When the IDT electrodes 31 and 32 are viewed from a direction perpendicular to the substrate 320 (see FIG. 3), the first comb-shaped electrodes 31a and 32a are arranged in opposite directions to each other, and the second comb-shaped electrodes 31b are arranged. , 32b are also arranged in opposite directions to each other. The first comb-shaped electrode 31a and the second comb-shaped electrode 32b are arranged in the same direction.
 複数の第1櫛歯状電極31a、32aは、第1の経路r1上の異なる複数のノードに電気的に接続される。具体的には、第1櫛歯状電極31aが、第1端子21によってノードn1に接続され、第1櫛歯状電極32aが、第2端子22によってノードn4に接続される。一方、第2櫛歯状電極31b、32bのそれぞれは、グランドに接続されている。 The plurality of first comb-shaped electrodes 31a and 32a are electrically connected to a plurality of different nodes on the first path r1. Specifically, the first comb-shaped electrode 31a is connected to the node n1 by the first terminal 21, and the first comb-shaped electrode 32a is connected to the node n4 by the second terminal 22. On the other hand, each of the second comb-shaped electrodes 31b and 32b is connected to the ground.
 なお、上記では、付加回路20の第1端子21がノードn1に接続され、第2端子22がノードn4に接続されている例を示したが、それに限られない。第1端子21および第2端子22のそれぞれは、第1の経路r1上にて隣り合う2以上の直列腕共振子の両外側のノードに接続されていればよい。例えば、第1端子21は、第1信号端子T1と直列腕共振子S1とを結ぶ第1の経路r1上のノードに接続されていてもよいし、ノードn2に接続されていてもよい。例えば、第2端子22は、ノードn3に接続されていてもよい。 Note that the above shows an example in which the first terminal 21 of the additional circuit 20 is connected to the node n1 and the second terminal 22 is connected to the node n4, but the present invention is not limited to this. Each of the first terminal 21 and the second terminal 22 may be connected to the outer nodes of two or more series arm resonators adjacent to each other on the first path r1. For example, the first terminal 21 may be connected to a node on the first path r1 connecting the first signal terminal T1 and the series arm resonator S1, or may be connected to the node n2. For example, the second terminal 22 may be connected to the node n3.
 また、付加回路20は、容量素子C22を備えていなくてもよい。不要波を適度に抑制できるのであれば、IDT電極群25は、第2端子22に、容量素子を介さずに配線接続されていてもよい。 Further, the additional circuit 20 does not have to include the capacitive element C22. The IDT electrode group 25 may be connected to the second terminal 22 by wiring without a capacitive element as long as the unnecessary wave can be appropriately suppressed.
 [1-3.IDT電極群の構造]
 次に、付加回路20に含まれるIDT電極群25の構造について説明する。IDT電極群25は、例えば、複数の弾性表面波(SAW:Surface Acoustic Wave)共振子によって構成されている。
[1-3. Structure of IDT electrode group]
Next, the structure of the IDT electrode group 25 included in the additional circuit 20 will be described. The IDT electrode group 25 is composed of, for example, a plurality of surface acoustic wave (SAW) resonators.
 図3は、IDT電極群25の構造を模式的に示す平面図および断面図である。なお、図3に示されたIDT電極群25は、共振子の典型的な構造を説明するためのものであって、IDT電極および反射器に含まれる電極指の本数や長さなどは、これに限定されない。 FIG. 3 is a plan view and a cross-sectional view schematically showing the structure of the IDT electrode group 25. The IDT electrode group 25 shown in FIG. 3 is for explaining a typical structure of the resonator, and the number and length of the electrode fingers included in the IDT electrode and the reflector are the same. Not limited to.
 IDT電極群25は、圧電性を有する基板320と、基板320上に形成された複数のIDT電極31、32とによって構成される。弾性波伝搬方向D1におけるIDT電極群25の両外側には、複数の反射器41、42が設けられている。 The IDT electrode group 25 is composed of a substrate 320 having piezoelectricity and a plurality of IDT electrodes 31 and 32 formed on the substrate 320. A plurality of reflectors 41 and 42 are provided on both outer sides of the IDT electrode group 25 in the elastic wave propagation direction D1.
 図3の断面図に示すように、IDT電極群25および複数の反射器41、42は、基板320と、各IDT電極31、32および複数の反射器41、42を構成する電極層325と、各IDT電極31、32および各反射器41、42を覆うように基板320上に設けられた誘電体層326とによって形成される。 As shown in the cross-sectional view of FIG. 3, the IDT electrode group 25 and the plurality of reflectors 41 and 42 include a substrate 320, each IDT electrode 31, 32 and an electrode layer 325 constituting the plurality of reflectors 41 and 42. It is formed by a dielectric layer 326 provided on the substrate 320 so as to cover each IDT electrode 31, 32 and each reflector 41, 42.
 基板320は、例えば、カット角127.5°のLiNbO基板(ニオブ酸リチウム基板)ある。基板320内を伝搬する弾性波としてレイリー波が使用される場合、基板320のカット角は、120°±20°、または、300°±20°であることが望ましい。 The substrate 320 is, for example, a LiNbO 3 substrate (lithium niobate substrate) having a cut angle of 127.5 °. When a Rayleigh wave is used as an elastic wave propagating in the substrate 320, the cut angle of the substrate 320 is preferably 120 ° ± 20 ° or 300 ° ± 20 °.
 電極層325は、複数の金属層が積層された構造を有している。電極層325は、例えば、上から順に、Ti層、Al層、Ti層、Pt層、NiCr層が積層されることで形成されている。 The electrode layer 325 has a structure in which a plurality of metal layers are laminated. The electrode layer 325 is formed by, for example, laminating a Ti layer, an Al layer, a Ti layer, a Pt layer, and a NiCr layer in order from the top.
 誘電体層326は、例えば、二酸化ケイ素(SiO)を主成分とする膜である。誘電体層326は、IDT電極群25の周波数温度特性を調整すること、電極層325を外部環境から保護すること、または、耐湿性を高めることなどを目的として設けられている。 The dielectric layer 326 is, for example, a film containing silicon dioxide (SiO 2 ) as a main component. The dielectric layer 326 is provided for the purpose of adjusting the frequency temperature characteristics of the IDT electrode group 25, protecting the electrode layer 325 from the external environment, or enhancing the moisture resistance.
 図3の平面図に示すように、IDT電極31は、互いに対向する一対の第1櫛歯状電極31aおよび第2櫛歯状電極31bを有している。IDT電極32は、互いに対向する一対の第1櫛歯状電極32aおよび第2櫛歯状電極32bを有している。 As shown in the plan view of FIG. 3, the IDT electrode 31 has a pair of first comb-shaped electrodes 31a and second comb-shaped electrodes 31b facing each other. The IDT electrode 32 has a pair of first comb-shaped electrodes 32a and second comb-shaped electrodes 32b facing each other.
 各第1櫛歯状電極31a、32aは、櫛歯状の形状を有し、互いに平行な複数の電極指36aと、複数の電極指36aのそれぞれの一端同士を接続するバスバー電極37aとで構成されている。各第2櫛歯状電極31b、32bは、櫛歯の形状を有し、互いに平行な複数の電極指36bと、複数の電極指36bのそれぞれの一端同士を接続するバスバー電極37bとで構成されている。各バスバー電極37aおよび37bは、弾性波伝搬方向D1に沿って延びるように形成されている。 Each of the first comb-shaped electrodes 31a and 32a has a comb-shaped shape and is composed of a plurality of electrode fingers 36a parallel to each other and a bus bar electrode 37a connecting one ends of the plurality of electrode fingers 36a to each other. Has been done. Each of the second comb-shaped electrodes 31b and 32b has a comb-tooth shape and is composed of a plurality of electrode fingers 36b parallel to each other and a bus bar electrode 37b connecting one ends of the plurality of electrode fingers 36b to each other. ing. The bus bar electrodes 37a and 37b are formed so as to extend along the elastic wave propagation direction D1.
 複数の電極指36aおよび36bは、弾性波伝搬方向D1の直交方向D2に延びるように形成され、直交方向D2に互いに間挿し合い、弾性波伝搬方向D1に対向している。弾性波伝搬方向D1における複数の電極指36aのピッチ(中心線同士の距離)は、IDT電極31とIDT電極32とで異なっている。また、弾性波伝搬方向D1における複数の電極指36bのピッチ(中心線同士の距離)は、IDT電極31とIDT電極32とで異なっている。 The plurality of electrode fingers 36a and 36b are formed so as to extend in the orthogonal direction D2 of the elastic wave propagation direction D1, intersperse with each other in the orthogonal direction D2, and face the elastic wave propagation direction D1. The pitches (distances between the center lines) of the plurality of electrode fingers 36a in the elastic wave propagation direction D1 are different between the IDT electrode 31 and the IDT electrode 32. Further, the pitches (distances between the center lines) of the plurality of electrode fingers 36b in the elastic wave propagation direction D1 are different between the IDT electrode 31 and the IDT electrode 32.
 第1櫛歯状電極31aは、引き出し配線d1aを介して第1端子21に接続される。第1櫛歯状電極32aは、引き出し配線d2aおよび容量素子C22を介して第2端子22に接続される。第2櫛歯状電極31bは、引き出し配線d1bを介してグランドに接続される。第2櫛歯状電極32bは、引き出し配線d2bを介してグランドに接続される。なお、グランドは、マルチプレクサ5の基板等に設けられたグランド接続用電極(図示省略)であってもよい。 The first comb-toothed electrode 31a is connected to the first terminal 21 via the lead-out wiring d1a. The first comb-shaped electrode 32a is connected to the second terminal 22 via the lead-out wiring d2a and the capacitive element C22. The second comb-shaped electrode 31b is connected to the ground via the lead-out wiring d1b. The second comb-toothed electrode 32b is connected to the ground via the lead-out wiring d2b. The ground may be a ground connection electrode (not shown) provided on the substrate of the multiplexer 5.
 複数の反射器41、42は、弾性波伝搬方向D1において、IDT電極31、32を挟むように配置されている。反射器41、42は、互いに接続されていない独立した電極である。図3に示す反射器41、42は、グランドに接続されずオープン状態となっている。なお、反射器41、42は、グランドに接続されてもよいし、ホット端子(信号端子)に接続されてもよい。 The plurality of reflectors 41 and 42 are arranged so as to sandwich the IDT electrodes 31 and 32 in the elastic wave propagation direction D1. The reflectors 41 and 42 are independent electrodes that are not connected to each other. The reflectors 41 and 42 shown in FIG. 3 are not connected to the ground and are in an open state. The reflectors 41 and 42 may be connected to the ground or may be connected to a hot terminal (signal terminal).
 各反射器41、42は、互いに平行な複数の電極指46と、複数の電極指46の両端同士を接続する複数のバスバー47と、で構成されている。各電極指46は、弾性波伝搬方向D1の直交方向D2に延びるように形成されている。各バスバー47は弾性波伝搬方向D1に延びるように形成されている。 Each of the reflectors 41 and 42 is composed of a plurality of electrode fingers 46 parallel to each other and a plurality of bus bars 47 connecting both ends of the plurality of electrode fingers 46. Each electrode finger 46 is formed so as to extend in the orthogonal direction D2 of the elastic wave propagation direction D1. Each bus bar 47 is formed so as to extend in the elastic wave propagation direction D1.
 複数の反射器41、42の電極指46の本数の割合Rは、複数のIDT電極31、32の電極指36a、36bの本数および複数の反射器41、42の電極指46の本数を合計した総本数の11%以下である。すなわち、電極指46の本数の割合R(%)=(電極指46の本数/(電極指36a、36bの本数+電極指46の本数))×100≦11である。なお、反射器41、42のそれぞれは、1本以上の電極指46を有していることが望ましい。すなわち、反射器41、42の電極指46の本数は2本以上であり、上記割合Rは、0<(電極指46の本数/(電極指36a、36bの本数+電極指46の本数))×100の関係を有することが望ましい。 The ratio R of the number of the electrode fingers 46 of the plurality of reflectors 41 and 42 is the sum of the number of the electrode fingers 36a and 36b of the plurality of IDT electrodes 31 and 32 and the number of the electrode fingers 46 of the plurality of reflectors 41 and 42. It is 11% or less of the total number. That is, the ratio R (%) of the number of the electrode fingers 46 = (the number of the electrode fingers 46 / (the number of the electrode fingers 36a and 36b + the number of the electrode fingers 46)) × 100 ≦ 11. It is desirable that each of the reflectors 41 and 42 has one or more electrode fingers 46. That is, the number of the electrode fingers 46 of the reflectors 41 and 42 is two or more, and the ratio R is 0 <(the number of the electrode fingers 46 / (the number of the electrode fingers 36a and 36b + the number of the electrode fingers 46)). It is desirable to have a relationship of × 100.
 また、反射器41、42のそれぞれのデューティは、IDT電極31、32のデューティよりも小さい。例えば、各反射器41、42のデューティは、0.3以上0.5未満である。反射器41、42のデューティは、同じであってもよいし、異なっていてもよい。なお、本実施の形態における反射器のデューティとは、電極指46の幅を、弾性波伝搬方向D1に隣り合う電極指46の距離(隣り合う電極指の中心線同士の距離)で割った値である。IDT電極31、32のデューティとは、IDT電極31、32の電極指36a(または36b)の幅を、弾性波伝搬方向D1に隣り合う電極指36aと電極指36bとの距離(隣り合う電極指の中心線同士の距離)で割った値である。 Further, the duty of the reflectors 41 and 42 is smaller than the duty of the IDT electrodes 31 and 32, respectively. For example, the duty of each reflector 41, 42 is 0.3 or more and less than 0.5. The duties of the reflectors 41 and 42 may be the same or different. The duty of the reflector in the present embodiment is a value obtained by dividing the width of the electrode fingers 46 by the distance between the electrode fingers 46 adjacent to each other in the elastic wave propagation direction D1 (the distance between the center lines of the adjacent electrode fingers). Is. The duty of the IDT electrodes 31 and 32 means that the width of the electrode fingers 36a (or 36b) of the IDT electrodes 31 and 32 is the distance between the electrode fingers 36a and the electrode fingers 36b adjacent to each other in the elastic wave propagation direction D1 (adjacent electrode fingers). It is the value divided by the distance between the center lines of.
 本実施の形態では、反射器41、42の電極指46の本数の割合Rを、電極指36a、36b、46の総本数の11%以下としている。これによれば、弾性波フィルタ1の周波数通過帯域外における減衰量を確保することができる。以下、実施の形態1の効果について具体的に説明する。 In the present embodiment, the ratio R of the number of electrode fingers 46 of the reflectors 41 and 42 is 11% or less of the total number of electrode fingers 36a, 36b and 46. According to this, it is possible to secure the amount of attenuation of the elastic wave filter 1 outside the frequency passband. Hereinafter, the effects of the first embodiment will be specifically described.
 [1-4.効果等]
 本実施の形態の弾性波フィルタ1の通過特性、および、マルチプレクサ5のアイソレーション特性について、比較例と比べながら説明する。
[1-4. Effect, etc.]
The pass characteristics of the elastic wave filter 1 and the isolation characteristics of the multiplexer 5 of the present embodiment will be described with reference to comparative examples.
 図4は、弾性波フィルタ1の通過特性を示す図である。図5は、マルチプレクサ5のアイソレーション特性を示す図である。 FIG. 4 is a diagram showing the passing characteristics of the elastic wave filter 1. FIG. 5 is a diagram showing the isolation characteristics of the multiplexer 5.
 図4および図5には、弾性波フィルタを送信フィルタとし、第2フィルタ回路50を受信フィルタとし、弾性波フィルタの周波数通過帯域を880MHz-915MHzとし、第2フィルタ回路50の周波数通過帯域を925MHz-960MHzとした例が示されている。また、図4には、第1信号端子T1-第2信号端子T2間の挿入損失が示され、図5には、第1信号端子T1-第3信号端子T3間の挿入損失が示されている。 In FIGS. 4 and 5, the elastic wave filter is used as a transmission filter, the second filter circuit 50 is used as a receive filter, the frequency passband of the elastic wave filter is 880 MHz-915 MHz, and the frequency passband of the second filter circuit 50 is 925 MHz. An example of -960 MHz is shown. Further, FIG. 4 shows an insertion loss between the first signal terminal T1 and the second signal terminal T2, and FIG. 5 shows the insertion loss between the first signal terminal T1 and the third signal terminal T3. There is.
 実施の形態1の弾性波フィルタ1は、IDT電極の電極指36aおよび36bの本数が70本、反射器41、42の電極指46の本数(合計本数)が7本であり、電極指46の本数の割合Rは9.1%である。比較例の弾性波フィルタは、IDT電極の電極指36aおよび36bの本数が70本、反射器41、42の電極指46の本数(合計本数)が11本であり、電極指46の本数の割合Rは13.6%である。 In the elastic wave filter 1 of the first embodiment, the number of the electrode fingers 36a and 36b of the IDT electrode is 70, the number of the electrode fingers 46 of the reflectors 41 and 42 (total number) is 7, and the number of the electrode fingers 46 is 7. The ratio R of the number is 9.1%. The elastic wave filter of the comparative example has 70 electrode fingers 36a and 36b of the IDT electrode, 11 electrode fingers 46 of the reflectors 41 and 42 (total number), and is a ratio of the number of electrode fingers 46. R is 13.6%.
 図4および図5に示すように、比較例(R=13.6%)では、弾性波フィルタの周波数通過帯域外において3つの大きな不要波a、b、cが発生している。それに対し、実施の形態1(R=9.1%)では、不要波a、b、cのピークレベルが抑えられ、減衰量が大きくなっている。 As shown in FIGS. 4 and 5, in the comparative example (R = 13.6%), three large unnecessary waves a, b, and c are generated outside the frequency passband of the elastic wave filter. On the other hand, in the first embodiment (R = 9.1%), the peak levels of the unnecessary waves a, b, and c are suppressed, and the amount of attenuation is large.
 ここで、反射器41、42の電極指46の本数の割合Rを変えた場合の不要波のピークレベルについて説明する。 Here, the peak level of unnecessary waves when the ratio R of the number of electrode fingers 46 of the reflectors 41 and 42 is changed will be described.
 図6は、反射器41、42の電極指46の本数の割合Rおよび不要波のピークレベルの関係を示す図である。図6の横軸は、電極指46の本数の割合Rであり、縦軸は、マルチプレクサのアイソレーション特性における最も大きな不要波のピークレベルである。不要波のピークレベルは挿入損失で表されている。 FIG. 6 is a diagram showing the relationship between the ratio R of the number of electrode fingers 46 of the reflectors 41 and 42 and the peak level of unnecessary waves. The horizontal axis of FIG. 6 is the ratio R of the number of electrode fingers 46, and the vertical axis is the peak level of the largest unnecessary wave in the isolation characteristic of the multiplexer. The peak level of unwanted waves is represented by insertion loss.
 反射器41、42の電極指46の本数の割合Rは、表1に示す条件により設定した。具体的には、IDT電極31、32の電極指のそれぞれの本数を35本とし、反射器41、42の電極指46のそれぞれの本数を、0以上17本以下の間で変えることで、電極指46の本数の割合Rを変えた。なお、IDT電極31、32のデューティ、および、反射器41、42のデューティは表1に示すとおりとした。 The ratio R of the number of electrode fingers 46 of the reflectors 41 and 42 was set according to the conditions shown in Table 1. Specifically, the number of each of the electrode fingers of the IDT electrodes 31 and 32 is 35, and the number of each of the electrode fingers 46 of the reflectors 41 and 42 is changed between 0 and 17 or less. The ratio R of the number of fingers 46 was changed. The duty of the IDT electrodes 31 and 32 and the duty of the reflectors 41 and 42 are as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図6に示すように、反射器41、42の電極指46の本数の割合Rが11%よりも大きい場合、電極指46の本数の割合Rを小さくしても、不要波のピークレベルがそれほど低下しない。それに対し、電極指46の本数の割合Rが11%以下である場合、電極指46の本数の割合Rを小さくすると、不要波のピークレベルが極端に低下する。すなわち、不要波のピークレベルの低下率(傾き)が、割合R=11%を境に急に大きくなっている。このように、反射器41、42の電極指46の本数の割合Rを、電極指36a、36b、46の総本数の11%以下とすることで、周波数通過帯域外における不要波のピークレベルを低下させることができる。 As shown in FIG. 6, when the ratio R of the number of electrode fingers 46 of the reflectors 41 and 42 is larger than 11%, the peak level of unnecessary waves is not so large even if the ratio R of the number of electrode fingers 46 is reduced. Does not decrease. On the other hand, when the ratio R of the number of the electrode fingers 46 is 11% or less, if the ratio R of the number of the electrode fingers 46 is reduced, the peak level of the unnecessary wave is extremely lowered. That is, the rate of decrease (slope) of the peak level of the unwanted wave suddenly increases at the ratio R = 11%. In this way, by setting the ratio R of the number of electrode fingers 46 of the reflectors 41 and 42 to 11% or less of the total number of electrode fingers 36a, 36b, 46, the peak level of unnecessary waves outside the frequency pass band can be set. Can be reduced.
 (実施の形態2)
 [2-1.マルチプレクサの構成]
 実施の形態2に係る弾性波フィルタ1を備えるマルチプレクサ5の構成について、図1を参照しながら説明する。実施の形態2では、付加回路20AのIDT電極群25Aが4つのIDT電極で構成されている例について説明する。
(Embodiment 2)
[2-1. Multiplexer configuration]
The configuration of the multiplexer 5 including the elastic wave filter 1 according to the second embodiment will be described with reference to FIG. In the second embodiment, an example in which the IDT electrode group 25A of the additional circuit 20A is composed of four IDT electrodes will be described.
 図7は、実施の形態2に係る弾性波フィルタ1を備えるマルチプレクサ5の回路構成図である。なお、図7にはアンテナ素子9も示されている。 FIG. 7 is a circuit configuration diagram of a multiplexer 5 including the elastic wave filter 1 according to the second embodiment. Note that FIG. 7 also shows the antenna element 9.
 マルチプレクサ5は、第1フィルタ回路10および付加回路20Aを有する弾性波フィルタ1と、第2フィルタ回路50とを備えている。また、マルチプレクサ5は、第1信号端子T1、第2信号端子T2および第3信号端子T3を備えている。 The multiplexer 5 includes an elastic wave filter 1 having a first filter circuit 10 and an additional circuit 20A, and a second filter circuit 50. Further, the multiplexer 5 includes a first signal terminal T1, a second signal terminal T2, and a third signal terminal T3.
 [2-2.弾性波フィルタの構成]
 図7に示すように、実施の形態2の弾性波フィルタ1は、第1フィルタ回路10と付加回路20Aとを備えている。
[2-2. Structure of elastic wave filter]
As shown in FIG. 7, the elastic wave filter 1 of the second embodiment includes a first filter circuit 10 and an additional circuit 20A.
 第1フィルタ回路10は、実施の形態1と同じである。すわなち、第1フィルタ回路10は、第1の経路r1上に配置された4つの直列腕共振子S1~S4、および、第1の経路r1と基準端子とを結ぶ経路上に配置された3つの並列腕共振子P1~P3で構成されるT型のラダーフィルタ構造を有している。 The first filter circuit 10 is the same as that of the first embodiment. That is, the first filter circuit 10 is arranged on the four series arm resonators S1 to S4 arranged on the first path r1 and on the path connecting the first path r1 and the reference terminal. It has a T-shaped ladder filter structure composed of three parallel arm resonators P1 to P3.
 付加回路20Aは、第1フィルタ回路10の少なくとも一部に対し並列に接続されるように、第1の経路r1上の異なる複数のノードに接続される。付加回路20Aは、付加回路20Aの一端側の接続ノードとなる第1端子21、21a、他端側の接続ノードとなる第2端子22、22a、および、第1端子21、21aと第2端子22、22aとを結ぶ第2の経路r2、r2a上に配置されたIDT電極群25Aを有している。 The additional circuit 20A is connected to a plurality of different nodes on the first path r1 so as to be connected in parallel to at least a part of the first filter circuit 10. The additional circuit 20A includes first terminals 21 and 21a as connection nodes on one end side of the additional circuit 20A, second terminals 22 and 22a as connection nodes on the other end side, and first terminals 21 and 21a and second terminals. It has an IDT electrode group 25A arranged on the second path r2, r2a connecting 22 and 22a.
 第1端子21、21aは、IDT電極群25Aに電気的に接続されている。第2端子22は、容量素子C22を介してIDT電極群25Aに接続され、第2端子22aは、容量素子C22aを介してIDT電極群25Aに接続されている。 The first terminals 21 and 21a are electrically connected to the IDT electrode group 25A. The second terminal 22 is connected to the IDT electrode group 25A via the capacitive element C22, and the second terminal 22a is connected to the IDT electrode group 25A via the capacitive element C22a.
 また、第1端子21、21aおよび第2端子22、22aのそれぞれは、第1の経路r1上の異なるノードに接続される。図7では、第1端子21は、直列腕共振子S1とS2との間のノードn1に接続され、第1端子21aは、ノードn2に接続され、第2端子22は、直列腕共振子S4と第2信号端子T2との間のノードn4に接続され、第2端子22aは、直列腕共振子S4と第2信号端子T2との間のノードn4aに接続されている。 Further, each of the first terminals 21, 21a and the second terminals 22, 22a is connected to different nodes on the first path r1. In FIG. 7, the first terminal 21 is connected to the node n1 between the series arm resonators S1 and S2, the first terminal 21a is connected to the node n2, and the second terminal 22 is the series arm resonator S4. The second terminal 22a is connected to the node n4a between the series arm resonator S4 and the second signal terminal T2.
 図8は、弾性波フィルタ1の付加回路20Aに含まれるIDT電極群25Aを示す模式図である。なお図8でも、電極および配線が実線で示されている。 FIG. 8 is a schematic diagram showing the IDT electrode group 25A included in the additional circuit 20A of the elastic wave filter 1. Also in FIG. 8, the electrodes and wiring are shown by solid lines.
 IDT電極群25Aは、複数のIDT電極31、32、33、34からなる。IDT電極群25Aは、例えば、縦結合型共振器である。複数のIDT電極31、32、33、34は、弾性波伝搬方向D1に沿って隣り合って、この順で配置されている。 The IDT electrode group 25A is composed of a plurality of IDT electrodes 31, 32, 33, 34. The IDT electrode group 25A is, for example, a vertically coupled resonator. The plurality of IDT electrodes 31, 32, 33, 34 are arranged adjacent to each other along the elastic wave propagation direction D1 in this order.
 また、付加回路20は、複数の反射器41、42を有している。複数の反射器41、42は、弾性波伝搬方向D1において、IDT電極群25Aを挟み込むように、IDT電極群25Aの両外側に位置している。図7には、2つの反射器41、42を備えるIDT電極群25Aが例示されている。 Further, the additional circuit 20 has a plurality of reflectors 41 and 42. The plurality of reflectors 41 and 42 are located on both outer sides of the IDT electrode group 25A so as to sandwich the IDT electrode group 25A in the elastic wave propagation direction D1. FIG. 7 illustrates an IDT electrode group 25A including two reflectors 41 and 42.
 複数のIDT電極31~34は、複数の第1櫛歯状電極31a、32a、33a、34aおよび複数の第2櫛歯状電極31b、32b、33b、34bを有している。IDT電極31は、一対となる第1櫛歯状電極31aおよび第2櫛歯状電極31bによって構成されている。IDT電極32は、一対となる第1櫛歯状電極32aおよび第2櫛歯状電極32bによって構成されている。IDT電極33は、一対となる第1櫛歯状電極33aおよび第2櫛歯状電極33bによって構成されている。IDT電極34は、一対となる第1櫛歯状電極34aおよび第2櫛歯状電極34bによって構成されている。 The plurality of IDT electrodes 31 to 34 have a plurality of first comb-shaped electrodes 31a, 32a, 33a, 34a and a plurality of second comb-shaped electrodes 31b, 32b, 33b, 34b. The IDT electrode 31 is composed of a pair of a first comb-shaped electrode 31a and a second comb-shaped electrode 31b. The IDT electrode 32 is composed of a pair of a first comb-shaped electrode 32a and a second comb-shaped electrode 32b. The IDT electrode 33 is composed of a pair of a first comb-shaped electrode 33a and a second comb-shaped electrode 33b. The IDT electrode 34 is composed of a pair of a first comb-shaped electrode 34a and a second comb-shaped electrode 34b.
 第1櫛歯状電極および第2櫛歯状電極は、互いに対向している。 The first comb-shaped electrode and the second comb-shaped electrode face each other.
 IDT電極31~34を基板320に垂直な方向から見た場合に、第1櫛歯状電極31a、33aと第1櫛歯状電極32a、34aとは、互いに逆向きで配置されている。また、第2櫛歯状電極31b、33bと第2櫛歯状電極32b、34bとは、互いに逆向きで配置されている。第1櫛歯状電極31a、33aおよび第2櫛歯状電極32b、34bは同じ向きで配置されている。 When the IDT electrodes 31 to 34 are viewed from the direction perpendicular to the substrate 320, the first comb-shaped electrodes 31a and 33a and the first comb-shaped electrodes 32a and 34a are arranged in opposite directions to each other. Further, the second comb-shaped electrodes 31b and 33b and the second comb-shaped electrodes 32b and 34b are arranged in opposite directions to each other. The first comb-shaped electrodes 31a and 33a and the second comb-shaped electrodes 32b and 34b are arranged in the same direction.
 複数の第1櫛歯状電極31a~34aは、第1の経路r1上の複数のノードに電気的に接続される。具体的には、第1櫛歯状電極31aが、第1端子21によってノードn1に接続され、第1櫛歯状電極33aが、第1端子21aによってノードn2に接続され、第1櫛歯状電極33aが、第2端子22によってノードn4に接続され、第1櫛歯状電極34aが、第2端子22aによってノードn4aに接続される。一方、第2櫛歯状電極31b~34bのそれぞれは、グランドに接続されている。 The plurality of first comb-shaped electrodes 31a to 34a are electrically connected to a plurality of nodes on the first path r1. Specifically, the first comb-shaped electrode 31a is connected to the node n1 by the first terminal 21, the first comb-shaped electrode 33a is connected to the node n2 by the first terminal 21a, and the first comb-shaped electrode is formed. The electrode 33a is connected to the node n4 by the second terminal 22, and the first comb-shaped electrode 34a is connected to the node n4a by the second terminal 22a. On the other hand, each of the second comb-shaped electrodes 31b to 34b is connected to the ground.
 なお、第1端子21、21aおよび第2端子22、22aは、第1の経路r1上にて隣り合う2以上の直列腕共振子の両外側のノードに接続されていればよい。例えば、第1端子21は、第1信号端子T1と直列腕共振子S1とを結ぶ第1の経路r1上のノードに接続されていてもよいし、ノードn2に接続されていてもよい。例えば、第1端子21aは、ノードn1に接続されていてもよい。例えば、第2端子22、22aは、ノードn3に接続されていてもよい。 The first terminals 21, 21a and the second terminals 22, 22a may be connected to the outer nodes of two or more series arm resonators adjacent to each other on the first path r1. For example, the first terminal 21 may be connected to a node on the first path r1 connecting the first signal terminal T1 and the series arm resonator S1, or may be connected to the node n2. For example, the first terminal 21a may be connected to the node n1. For example, the second terminals 22 and 22a may be connected to the node n3.
 また、付加回路20Aは、容量素子C22、C22aを備えていなくてもよい。不要波を適度に抑制できるのであれば、IDT電極群25Aは、第2端子22、22aに、容量素子を介さずに配線接続されていてもよい。 Further, the additional circuit 20A does not have to include the capacitive elements C22 and C22a. The IDT electrode group 25A may be connected to the second terminals 22 and 22a by wiring without using a capacitive element as long as the unnecessary wave can be appropriately suppressed.
 [2-3.IDT電極群の構造]
 次に、付加回路20Aに含まれるIDT電極群25Aの構造について説明する。
[2-3. Structure of IDT electrode group]
Next, the structure of the IDT electrode group 25A included in the additional circuit 20A will be described.
 図9は、図8に示すIDT電極群25Aの構造を模式的に示す平面図である。 FIG. 9 is a plan view schematically showing the structure of the IDT electrode group 25A shown in FIG.
 図9に示すように、各第1櫛歯状電極31a~34aは、互いに平行な複数の電極指36aと、複数の電極指36aのそれぞれの一端同士を接続するバスバー電極37aとで構成されている。各第2櫛歯状電極31b~34bは、互いに平行な複数の電極指36bと、複数の電極指36bのそれぞれの一端同士を接続するバスバー電極37bとで構成されている。複数の電極指36aおよび36bは、弾性波伝搬方向D1の直交方向D2に延びるように形成され、直交方向D2に互いに間挿し合い、弾性波伝搬方向D1に対向している。各バスバー電極37aおよび37bは、弾性波伝搬方向D1に沿って延びるように形成されている。 As shown in FIG. 9, each of the first comb-shaped electrodes 31a to 34a is composed of a plurality of electrode fingers 36a parallel to each other and a bus bar electrode 37a connecting one ends of the plurality of electrode fingers 36a to each other. There is. Each of the second comb-shaped electrodes 31b to 34b is composed of a plurality of electrode fingers 36b parallel to each other and a bus bar electrode 37b connecting one ends of the plurality of electrode fingers 36b to each other. The plurality of electrode fingers 36a and 36b are formed so as to extend in the orthogonal direction D2 of the elastic wave propagation direction D1, intersperse with each other in the orthogonal direction D2, and face the elastic wave propagation direction D1. The bus bar electrodes 37a and 37b are formed so as to extend along the elastic wave propagation direction D1.
 複数の反射器41、42は、弾性波伝搬方向D1において、複数のIDT電極31~34を挟むように配置されている。反射器41、42は、互いに接続されていない独立した電極である各反射器41、42は、互いに平行な複数の電極指46と、複数の電極指46の両端同士を接続する複数のバスバー47と、で構成されている。各電極指46は、弾性波伝搬方向D1の直交方向D2に延びるように形成されている。各バスバー47は弾性波伝搬方向D1に延びるように形成されている。 The plurality of reflectors 41 and 42 are arranged so as to sandwich the plurality of IDT electrodes 31 to 34 in the elastic wave propagation direction D1. The reflectors 41 and 42 are independent electrodes that are not connected to each other. Each of the reflectors 41 and 42 has a plurality of electrode fingers 46 parallel to each other and a plurality of bus bars 47 connecting both ends of the plurality of electrode fingers 46. And, it is composed of. Each electrode finger 46 is formed so as to extend in the orthogonal direction D2 of the elastic wave propagation direction D1. Each bus bar 47 is formed so as to extend in the elastic wave propagation direction D1.
 実施の形態2において、複数の反射器41、42の電極指46の本数の割合Rは、複数のIDT電極31~34の電極指36a、36bの本数および複数の反射器41、42の電極指46の本数を合計した総本数の11%以下である。すなわち、電極指46の本数の割合R(%)=(電極指46の本数/(電極指36a、36bの本数+電極指46の本数))×100≦11である。電極指46の本数は2本以上であり、上記割合Rは、0<(電極指46の本数/(電極指36a、36bの本数+電極指46の本数))×100の関係を有することが望ましい。 In the second embodiment, the ratio R of the number of the electrode fingers 46 of the plurality of reflectors 41 and 42 is the number of the electrode fingers 36a and 36b of the plurality of IDT electrodes 31 to 34 and the electrode fingers of the plurality of reflectors 41 and 42. It is 11% or less of the total number of 46 pieces. That is, the ratio R (%) of the number of the electrode fingers 46 = (the number of the electrode fingers 46 / (the number of the electrode fingers 36a and 36b + the number of the electrode fingers 46)) × 100 ≦ 11. The number of the electrode fingers 46 is two or more, and the ratio R may have a relationship of 0 <(the number of the electrode fingers 46 / (the number of the electrode fingers 36a and 36b + the number of the electrode fingers 46)) × 100. desirable.
 また、反射器41、42のそれぞれのデューティは、IDT電極31~34のデューティよりも小さい。例えば、各反射器41、42のデューティは、0.1以上0.5未満である。反射器41、42のデューティは、同じであってもよいし、異なっていてもよい。 Further, the duty of each of the reflectors 41 and 42 is smaller than the duty of the IDT electrodes 31 to 34. For example, the duty of each reflector 41, 42 is 0.1 or more and less than 0.5. The duties of the reflectors 41 and 42 may be the same or different.
 実施の形態2でも、反射器41、42の電極指46の本数の割合Rを、電極指36a、36b、46の総本数の11%以下としている。これによれば、弾性波フィルタ1の周波数通過帯域外における減衰量を確保することができる。以下、実施の形態2の効果について具体的に説明する。 Also in the second embodiment, the ratio R of the number of the electrode fingers 46 of the reflectors 41 and 42 is set to 11% or less of the total number of the electrode fingers 36a, 36b and 46. According to this, it is possible to secure the amount of attenuation of the elastic wave filter 1 outside the frequency passband. Hereinafter, the effects of the second embodiment will be specifically described.
 [2-4.効果等]
 本実施の形態の弾性波フィルタ1の通過特性について、比較例と比べながら説明する。
[2-4. Effect, etc.]
The passing characteristics of the elastic wave filter 1 of the present embodiment will be described with reference to comparative examples.
 図10は、実施の形態2の弾性波フィルタ1の通過特性を示す図である。 FIG. 10 is a diagram showing the passing characteristics of the elastic wave filter 1 of the second embodiment.
 図10には、弾性波フィルタを送信フィルタとし、第2フィルタ回路50を受信フィルタとし、弾性波フィルタの周波数通過帯域を880MHz-915MHzとし、第2フィルタ回路50の周波数通過帯域を925MHz-960MHzとした例が示されている。また、図10には、第1信号端子T1-第2信号端子T2間の挿入損失が示されている。 In FIG. 10, the elastic wave filter is used as a transmission filter, the second filter circuit 50 is used as a reception filter, the frequency pass band of the elastic wave filter is 880 MHz-915 MHz, and the frequency pass band of the second filter circuit 50 is 925 MHz-960 MHz. An example is shown. Further, FIG. 10 shows an insertion loss between the first signal terminal T1 and the second signal terminal T2.
 実施の形態2の弾性波フィルタ1は、IDT電極の電極指36a、36bの本数が74本、反射器41、42の電極指46の本数(合計本数)が7本であり、電極指46の本数の割合Rは8.6%である。比較例の弾性波フィルタは、IDT電極の電極指36a、36bの本数が74本、反射器41、42の電極指46の本数(合計本数)が11本であり、電極指46の本数の割合Rは12.9%である。 In the elastic wave filter 1 of the second embodiment, the number of the electrode fingers 36a and 36b of the IDT electrode is 74, the number of the electrode fingers 46 of the reflectors 41 and 42 (total number) is 7, and the number of the electrode fingers 46 is 7. The ratio R of the number is 8.6%. The elastic wave filter of the comparative example has 74 electrode fingers 36a and 36b of the IDT electrode and 11 electrode fingers 46 (total number) of the reflectors 41 and 42, and is a ratio of the number of electrode fingers 46. R is 12.9%.
 図10に示すように、比較例(R=12.9%)では、弾性波フィルタの周波数通過帯域外において3つの大きな不要波a1、b1、c1が発生している。それに対し、実施の形態2(R=8.6%)では、不要波a1、b1、c1のピークレベルが抑えられ、減衰量が大きくなっている。 As shown in FIG. 10, in the comparative example (R = 12.9%), three large unnecessary waves a1, b1 and c1 are generated outside the frequency passband of the elastic wave filter. On the other hand, in the second embodiment (R = 8.6%), the peak levels of the unnecessary waves a1, b1 and c1 are suppressed, and the attenuation is large.
 ここで、反射器41、42の電極指46の本数の割合Rを変えた場合の不要波のピークレベルについて説明する。 Here, the peak level of unnecessary waves when the ratio R of the number of electrode fingers 46 of the reflectors 41 and 42 is changed will be described.
 図11は、反射器41、42の電極指46の本数の割合Rおよび不要波のピークレベルの関係を示す図である。図11の横軸は、電極指46の本数の割合Rであり、縦軸は、最も大きな不要波のピークレベルである。不要波のピークレベルは挿入損失として表されている。 FIG. 11 is a diagram showing the relationship between the ratio R of the number of electrode fingers 46 of the reflectors 41 and 42 and the peak level of unnecessary waves. The horizontal axis of FIG. 11 is the ratio R of the number of electrode fingers 46, and the vertical axis is the peak level of the largest unnecessary wave. The peak level of unwanted waves is expressed as insertion loss.
 電極指46の本数の割合Rは、表2に示す条件により設定した。具体的には、IDT電極31、32、33、34の電極指のそれぞれの本数を19本、23本、11本、23本とし、反射器41の電極指46の本数を0以上17本以下の間で、また、反射器41の電極指46の本数を0以上21本以下の間で変えることで、電極指46の本数の割合Rを変えた。なお、IDT電極31~34のデューティ、および、反射器41、42のデューティは表2に示すとおりとした。 The ratio R of the number of electrode fingers 46 was set according to the conditions shown in Table 2. Specifically, the number of electrode fingers of the IDT electrodes 31, 32, 33, and 34 is 19, 23, 11, and 23, respectively, and the number of electrode fingers 46 of the reflector 41 is 0 or more and 17 or less. In addition, by changing the number of the electrode fingers 46 of the reflector 41 between 0 and more and 21 or less, the ratio R of the number of the electrode fingers 46 was changed. The duty of the IDT electrodes 31 to 34 and the duty of the reflectors 41 and 42 are as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図11に示すように、電極指46の本数の割合Rが11.9%よりも大きい場合、電極指46の本数の割合Rを小さくしても、不要波のピークレベルがそれほど低下しない。それに対し、電極指46の本数の割合Rが11.9%以下である場合、電極指46の本数の割合Rを小さくすると、不要波のピークレベルが極端に低下する。すなわち、不要波のピークレベルの低下率(傾き)が、割合R=11.9%を境に急に大きくなっている。このように、反射器41、42の電極指46の本数の割合Rを、電極指36a、36b、46の総本数の11.9%以下とすることで、周波数通過帯域外における不要波のピークレベルを低下させることができる。 As shown in FIG. 11, when the ratio R of the number of electrode fingers 46 is larger than 11.9%, the peak level of unnecessary waves does not decrease so much even if the ratio R of the number of electrode fingers 46 is reduced. On the other hand, when the ratio R of the number of the electrode fingers 46 is 11.9% or less, if the ratio R of the number of the electrode fingers 46 is reduced, the peak level of the unnecessary wave is extremely lowered. That is, the rate of decrease (slope) of the peak level of the unwanted wave suddenly increases at the ratio R = 11.9%. In this way, by setting the ratio R of the number of electrode fingers 46 of the reflectors 41 and 42 to 11.9% or less of the total number of electrode fingers 36a, 36b, 46, the peak of unnecessary waves outside the frequency pass band The level can be lowered.
 (まとめ)
 以上説明したように、本実施の形態に係る弾性波フィルタ1は、所定の周波数帯域を通過帯域とし、第1信号端子T1と第2信号端子T2とを結ぶ第1の経路r1上に配置された第1フィルタ回路10と、第1フィルタ回路10の少なくとも一部に対し並列に接続される付加回路20と、を備える。付加回路20は、弾性波伝搬方向D1に沿って配置された複数のIDT電極からなるIDT電極群25を有する。弾性波伝搬方向D1においてIDT電極群25の両外側に位置する複数の反射器41、42の電極指46の本数の割合Rは、複数のIDT電極の電極指36a、36bの本数および複数の反射器41、42の電極指46の本数を合計した総本数の11%以下である。
(summary)
As described above, the elastic wave filter 1 according to the present embodiment has a predetermined frequency band as a pass band and is arranged on the first path r1 connecting the first signal terminal T1 and the second signal terminal T2. A first filter circuit 10 and an additional circuit 20 connected in parallel to at least a part of the first filter circuit 10 are provided. The additional circuit 20 has an IDT electrode group 25 composed of a plurality of IDT electrodes arranged along the elastic wave propagation direction D1. The ratio R of the number of the electrode fingers 46 of the plurality of reflectors 41 and 42 located on both outer sides of the IDT electrode group 25 in the elastic wave propagation direction D is the number of the electrode fingers 36a and 36b of the plurality of IDT electrodes and the plurality of reflections. It is 11% or less of the total number of electrode fingers 46 of the vessels 41 and 42.
 このように、付加回路20における反射器41、42の電極指46の本数の割合Rを電極指36a、36b、46の総本数の11%以下とすることで、付加回路20の共振Qが必要以上に高くなることを抑制できる。これにより、弾性波フィルタ1の周波数通過帯域外に不要波が発生することを抑止し、周波数通過帯域外における減衰量を確保することができる。 As described above, the resonance Q of the additional circuit 20 is required by setting the ratio R of the number of the electrode fingers 46 of the reflectors 41 and 42 in the additional circuit 20 to 11% or less of the total number of the electrode fingers 36a, 36b and 46. It is possible to suppress the increase above. As a result, it is possible to suppress the generation of unnecessary waves outside the frequency passband of the elastic wave filter 1 and secure the amount of attenuation outside the frequency passband.
 また、IDT電極群25は、2つ以上のIDT電極31、32で構成されていてもよい。 Further, the IDT electrode group 25 may be composed of two or more IDT electrodes 31 and 32.
 これによれば、2つ以上のIDT電極31、32を有する付加回路20において、上記割合Rを11%以下とすることで、付加回路20の共振Qが必要以上に高くなることを抑制できる。これにより、弾性波フィルタ1の周波数通過帯域外に不要波が発生することを抑止し、周波数通過帯域外における減衰量を確保することができる。 According to this, in the additional circuit 20 having two or more IDT electrodes 31 and 32, by setting the ratio R to 11% or less, it is possible to suppress the resonance Q of the additional circuit 20 from becoming higher than necessary. As a result, it is possible to suppress the generation of unnecessary waves outside the frequency passband of the elastic wave filter 1 and secure the amount of attenuation outside the frequency passband.
 また、IDT電極群25は、4つのIDT電極31、32、33、34で構成されていてもよい。 Further, the IDT electrode group 25 may be composed of four IDT electrodes 31, 32, 33, 34.
 これによれば、4つのIDT電極31~34を有する付加回路20において、上記割合Rを総本数の11%以下とすることで、付加回路20の共振Qが必要以上に高くなることを抑制できる。また、複数のIDT電極を2つのIDT電極で構成する場合に比べて、割合Rの調整幅を広げることができ、付加回路20の共振Qが必要以上に高くなることを簡易に抑制できる。これにより、弾性波フィルタ1の周波数通過帯域外に不要波が発生することを抑止し、周波数通過帯域外における減衰量を確保することができる。 According to this, in the additional circuit 20 having four IDT electrodes 31 to 34, by setting the ratio R to 11% or less of the total number, it is possible to suppress that the resonance Q of the additional circuit 20 becomes higher than necessary. .. Further, as compared with the case where the plurality of IDT electrodes are composed of two IDT electrodes, the adjustment range of the ratio R can be widened, and it is possible to easily suppress that the resonance Q of the additional circuit 20 becomes higher than necessary. As a result, it is possible to suppress the generation of unnecessary waves outside the frequency passband of the elastic wave filter 1 and secure the amount of attenuation outside the frequency passband.
 また、反射器41、42のデューティは、IDT電極31、32のデューティよりも小さくてもよい。 Further, the duty of the reflectors 41 and 42 may be smaller than the duty of the IDT electrodes 31 and 32.
 これによれば、付加回路20の共振Qが必要以上に高くなることを抑制できる。これにより、弾性波フィルタ1の周波数通過帯域外に不要波が発生することを抑止し、周波数通過帯域外における減衰量を確保することができる。 According to this, it is possible to prevent the resonance Q of the additional circuit 20 from becoming higher than necessary. As a result, it is possible to suppress the generation of unnecessary waves outside the frequency passband of the elastic wave filter 1 and secure the amount of attenuation outside the frequency passband.
 本実施の形態に係るマルチプレクサ5は、上記弾性波フィルタ1と、第1信号端子T1、第2信号端子T2および第3信号端子T3と、第1フィルタ回路10とは異なる周波数帯域を通過帯域とし、第2信号端子T2と第3信号端子T3とを結ぶ第3の経路r3上に配置された第2フィルタ回路50とを備える。 The multiplexer 5 according to the present embodiment has a pass band different from that of the elastic wave filter 1, the first signal terminal T1, the second signal terminal T2, the third signal terminal T3, and the first filter circuit 10. , A second filter circuit 50 arranged on a third path r3 connecting the second signal terminal T2 and the third signal terminal T3 is provided.
 これによれば、周波数通過帯域外における減衰量が確保された弾性波フィルタ1を備えるマルチプレクサ5を提供することができる。 According to this, it is possible to provide a multiplexer 5 provided with an elastic wave filter 1 in which an attenuation amount outside the frequency pass band is secured.
 (その他の実施の形態)
 以上、本発明の実施の形態に係る弾性波フィルタおよびマルチプレクサについて、実施の形態1、2を挙げて説明したが、本発明は、上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る弾性波フィルタまたはマルチプレクサを含む高周波フロントエンド回路および通信装置も本発明に含まれる。
(Other embodiments)
Although the elastic wave filter and the multiplexer according to the embodiment of the present invention have been described with reference to the first and second embodiments, the present invention can be realized by combining arbitrary components according to the above embodiment. A high-frequency front including an elastic wave filter or a multiplexer according to the present invention, examples of modifications obtained by subjecting various modifications to the above embodiments to the extent that those skilled in the art can think of. End circuits and communication devices are also included in the present invention.
 上記では、弾性波フィルタが2つまたは4つのIDT電極を備えている例を示したが、それに限られず、IDT電極の数は、3つでもよいし、5つ以上であってもよい。 In the above, the example in which the elastic wave filter is provided with two or four IDT electrodes is shown, but the number of IDT electrodes is not limited to this, and the number of IDT electrodes may be three or five or more.
 上記では、弾性波フィルタ1の周波数通過帯域が、第2フィルタ回路50の周波数通過帯域よりも低くなるように設定されている例を示したが、それに限られず、弾性波フィルタ1の周波数通過帯域は、第2フィルタ回路50の周波数通過帯域よりも高くなるように設定されていてもよい。 In the above, an example is shown in which the frequency passband of the elastic wave filter 1 is set to be lower than the frequency passband of the second filter circuit 50, but the present invention is not limited to this, and the frequency passband of the elastic wave filter 1 is not limited to this. May be set to be higher than the frequency passband of the second filter circuit 50.
 上記では、弾性波フィルタ1が送信フィルタである例を示したが、それに限られず、弾性波フィルタ1は受信フィルタであってもよい。また、マルチプレクサ5は、送信フィルタおよび受信フィルタの双方を備える構成に限られず、送信フィルタのみ、または、受信フィルタのみを備える構成であってもよい。 In the above, the example in which the elastic wave filter 1 is a transmission filter is shown, but the present invention is not limited to this, and the elastic wave filter 1 may be a reception filter. Further, the multiplexer 5 is not limited to the configuration including both the transmission filter and the reception filter, and may be configured to include only the transmission filter or only the reception filter.
 また、上記では、2つのフィルタを含むマルチプレクサを例に説明したが、本発明は、例えば、3つのフィルタのアンテナ端子が共通化されたトリプレクサや、6つのフィルタのアンテナ端子が共通化されたヘキサプレクサについても適用することができる。つまり、マルチプレクサは、2以上のフィルタを備えていればよい。 Further, in the above description, a multiplexer including two filters has been described as an example, but in the present invention, for example, a triplexer having common antenna terminals of three filters and a hexaplexer having common antenna terminals of six filters have been described. Can also be applied to. That is, the multiplexer need only have two or more filters.
 また、第1信号端子T1および第2信号端子T2は、入力端子および出力端子のいずれかであってもよい。例えば、第1信号端子T1が入力端子である場合は、第2信号端子T2が出力端子となり、第2信号端子T2が入力端子である場合は、第1信号端子T1が出力端子となる。 Further, the first signal terminal T1 and the second signal terminal T2 may be either an input terminal or an output terminal. For example, when the first signal terminal T1 is an input terminal, the second signal terminal T2 becomes an output terminal, and when the second signal terminal T2 is an input terminal, the first signal terminal T1 becomes an output terminal.
 また、第2フィルタ回路50は、前述したフィルタの構成に限定されず、要求されるフィルタ特性等に応じて適宜設計され得る。具体的には、第2フィルタ回路50は、縦結合型のフィルタ構造であってもよいし、ラダー型のフィルタ構造であってもよい。また、第2フィルタ回路50を構成する各共振子は、SAW共振子に限らず、例えば、BAW(Bulk Acoustic Wave)共振子であってもよい。さらには、第2フィルタ回路50は、共振子を用いずに構成されていてもよく、例えば、LC共振フィルタあるいは誘電体フィルタであってもよい。 Further, the second filter circuit 50 is not limited to the above-mentioned filter configuration, and can be appropriately designed according to the required filter characteristics and the like. Specifically, the second filter circuit 50 may have a vertically coupled filter structure or a ladder type filter structure. Further, each resonator constituting the second filter circuit 50 is not limited to the SAW resonator, and may be, for example, a BAW (Bulk Acoustic Wave) resonator. Further, the second filter circuit 50 may be configured without using a resonator, and may be, for example, an LC resonance filter or a dielectric filter.
 また、IDT電極31、32および反射器41、42の電極層325および誘電体層326を構成する材料は、前述した材料に限定されない。また、IDT電極31、32は、上記積層構造でなくてもよい。IDT電極31、32は、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属または合金から構成されてもよく、また、上記の金属または合金から構成される複数の積層体から構成されてもよい。 Further, the materials constituting the electrode layers 325 and the dielectric layer 326 of the IDT electrodes 31 and 32 and the reflectors 41 and 42 are not limited to the above-mentioned materials. Further, the IDT electrodes 31 and 32 do not have to have the above-mentioned laminated structure. The IDT electrodes 31 and 32 may be made of, for example, a metal or alloy such as Ti, Al, Cu, Pt, Au, Ag, Pd, or from a plurality of laminates made of the above metal or alloy. It may be configured.
 また、実施の形態1では、基板320として圧電性を有する基板を示したが、当該基板は、圧電体層の単層からなる圧電基板であってもよい。この場合の圧電基板は、例えば、LiTaOの圧電単結晶、または、LiNbOなどの他の圧電単結晶で構成される。また、IDT電極31、32が形成される基板320は、圧電性を有する限り、全体が圧電体層からなるものの他、支持基板上に圧電体層が積層されている構造を用いてもよい。また、上記実施の形態1に係る基板320のカット角は限定されない。つまり、弾性波フィルタの要求通過特性などに応じて、適宜、積層構造、材料、および厚みを変更してもよく、上記実施の形態1に示すカット角以外のカット角を有するLiTaO圧電基板またはLiNbO圧電基板などを用いた弾性表面波フィルタであっても、同様の効果を奏することが可能となる。 Further, in the first embodiment, a substrate having piezoelectricity is shown as the substrate 320, but the substrate may be a piezoelectric substrate composed of a single layer of a piezoelectric layer. The piezoelectric substrate in this case is composed of, for example, a piezoelectric single crystal of LiTaO 3 or another piezoelectric single crystal such as LiNbO 3. Further, the substrate 320 on which the IDT electrodes 31 and 32 are formed may be entirely composed of a piezoelectric layer or may have a structure in which the piezoelectric layer is laminated on the support substrate, as long as the substrate 320 has piezoelectricity. Further, the cut angle of the substrate 320 according to the first embodiment is not limited. That is, the laminated structure, material, and thickness may be appropriately changed according to the required passing characteristics of the surface acoustic wave filter, and the LiTaO 3 piezoelectric substrate having a cut angle other than the cut angle shown in the first embodiment may be used. Even an elastic surface acoustic wave filter using a LiNbO 3 piezoelectric substrate or the like can achieve the same effect.
 本発明は、弾性波フィルタを有するマルチプレクサ、フロントエンド回路および通信装置として、携帯電話などの通信機器に広く利用できる。 The present invention can be widely used in communication equipment such as mobile phones as a multiplexer having an elastic wave filter, a front-end circuit, and a communication device.
 1  弾性波フィルタ
 5  マルチプレクサ
 9  アンテナ素子
 10 第1フィルタ回路
 20、20A 付加回路
 21、21a 第1端子
 22、22a 第2端子
 25、25A IDT電極群
 31、32、33、34 IDT電極
 31a、32a、33a、34a 第1櫛歯状電極
 31b、32b、33b、34b 第2櫛歯状電極
 36a、36b 電極指
 37a、37b バスバー電極
 41、42 反射器
 46 電極指
 47 バスバー
 50 第2フィルタ回路
 60 縦結合型弾性波共振器
 320 基板
 325 電極層
 326 誘電体層
 C11、C12、C22、C22a 容量素子
 D1 弾性波伝搬方向
 D2 直交方向
 d1a、d1b、d2a、d2b 引き出し配線
 L1、L2 インダクタ
 n0、n1、n2、n3、n4、n4a ノード
 P1、P2、P3、RP1、RP2 並列腕共振子
 r1、r2、r2a、r3 経路
 S1、S2、S3、S4、RS1、RS2 直列腕共振子
 T1 第1信号端子
 T2 第2信号端子
 T3 第3信号端子
1 Elastic wave filter 5 Dielectric 9 Antenna element 10 1st filter circuit 20, 20A Additional circuit 21, 21a 1st terminal 22, 22a 2nd terminal 25, 25A IDT electrode group 31, 32, 33, 34 IDT electrode 31a, 32a, 33a, 34a 1st comb tooth electrode 31b, 32b, 33b, 34b 2nd comb tooth electrode 36a, 36b Electrode finger 37a, 37b Bus bar electrode 41, 42 Reflector 46 Electrode finger 47 Bus bar 50 Second filter circuit 60 Vertical coupling Type elastic wave resonator 320 substrate 325 electrode layer 326 dielectric layer C11, C12, C22, C22a capacitive element D1 elastic wave propagation direction D2 orthogonal direction d1a, d1b, d2a, d2b lead-out wiring L1, L2 inductor n0, n1, n2, n3, n4, n4a node P1, P2, P3, RP1, RP2 Parallel arm resonator r1, r2, r2a, r3 Path S1, S2, S3, S4, RS1, RS2 Series arm resonator T1 1st signal terminal T2 2nd Signal terminal T3 3rd signal terminal

Claims (5)

  1.  所定の周波数帯域を通過帯域とし、第1信号端子と第2信号端子とを結ぶ第1の経路上に配置された第1フィルタ回路と、
     前記第1フィルタ回路の少なくとも一部に対し並列に接続される付加回路と、
     を備え、
     前記付加回路は、弾性波伝搬方向に沿って配置された複数のIDT電極からなるIDT電極群を有し、
     前記弾性波伝搬方向において前記IDT電極群の両外側に位置する複数の反射器の電極指の本数の割合は、前記複数のIDT電極の電極指の本数および前記複数の反射器の電極指の本数を合計した総本数の11%以下である
     弾性波フィルタ。
    A first filter circuit arranged on a first path connecting a first signal terminal and a second signal terminal with a predetermined frequency band as a pass band,
    An additional circuit connected in parallel to at least a part of the first filter circuit,
    Equipped with
    The additional circuit has an IDT electrode group composed of a plurality of IDT electrodes arranged along the elastic wave propagation direction.
    The ratio of the number of electrode fingers of the plurality of reflectors located on both outer sides of the IDT electrode group in the direction of propagation of the elastic wave is the number of electrode fingers of the plurality of IDT electrodes and the number of electrode fingers of the plurality of reflectors. An elastic wave filter that is 11% or less of the total number of filters.
  2.  前記IDT電極群は、2つ以上のIDT電極で構成されている
     請求項1に記載の弾性波フィルタ。
    The elastic wave filter according to claim 1, wherein the IDT electrode group is composed of two or more IDT electrodes.
  3.  前記IDT電極群は、4つのIDT電極で構成されている
     請求項1または2に記載の弾性波フィルタ。
    The elastic wave filter according to claim 1 or 2, wherein the IDT electrode group is composed of four IDT electrodes.
  4.  前記反射器のデューティは、前記IDT電極のデューティよりも小さい
     請求項1~3のいずれか1項に記載の弾性波フィルタ。
    The elastic wave filter according to any one of claims 1 to 3, wherein the duty of the reflector is smaller than the duty of the IDT electrode.
  5.  請求項1~4のいずれか1項に記載の弾性波フィルタと、
     前記第1信号端子、前記第2信号端子および第3信号端子と、
     前記第1フィルタ回路とは異なる周波数帯域を通過帯域とし、前記第2信号端子と前記第3信号端子とを結ぶ第3の経路上に配置された第2フィルタ回路と
     を備えるマルチプレクサ。
    The elastic wave filter according to any one of claims 1 to 4.
    The first signal terminal, the second signal terminal, and the third signal terminal,
    A multiplexer having a frequency band different from that of the first filter circuit as a pass band, and a second filter circuit arranged on a third path connecting the second signal terminal and the third signal terminal.
PCT/JP2021/024758 2020-07-20 2021-06-30 Acoustic wave filter, and multiplexer WO2022019072A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202190000716.5U CN219592382U (en) 2020-07-20 2021-06-30 Elastic wave filter and multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-123826 2020-07-20
JP2020123826 2020-07-20

Publications (1)

Publication Number Publication Date
WO2022019072A1 true WO2022019072A1 (en) 2022-01-27

Family

ID=79729456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024758 WO2022019072A1 (en) 2020-07-20 2021-06-30 Acoustic wave filter, and multiplexer

Country Status (2)

Country Link
CN (1) CN219592382U (en)
WO (1) WO2022019072A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029610A1 (en) * 2022-08-03 2024-02-08 株式会社村田製作所 Elastic wave device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322161A (en) * 1997-05-14 1998-12-04 Toyo Commun Equip Co Ltd Vertically-coupled triple mode saw filter
JP2000312126A (en) * 1999-04-28 2000-11-07 Kyocera Corp Surface acoustic wave unit
JP2004343637A (en) * 2003-05-19 2004-12-02 Murata Mfg Co Ltd Surface acoustic wave device
JP2008124703A (en) * 2006-11-10 2008-05-29 Epson Toyocom Corp Surface acoustic wave filter
JP2018078489A (en) * 2016-11-10 2018-05-17 太陽誘電株式会社 Filter and multiplexer
JP2020088846A (en) * 2018-11-20 2020-06-04 株式会社村田製作所 Filter and multiplexer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322161A (en) * 1997-05-14 1998-12-04 Toyo Commun Equip Co Ltd Vertically-coupled triple mode saw filter
JP2000312126A (en) * 1999-04-28 2000-11-07 Kyocera Corp Surface acoustic wave unit
JP2004343637A (en) * 2003-05-19 2004-12-02 Murata Mfg Co Ltd Surface acoustic wave device
JP2008124703A (en) * 2006-11-10 2008-05-29 Epson Toyocom Corp Surface acoustic wave filter
JP2018078489A (en) * 2016-11-10 2018-05-17 太陽誘電株式会社 Filter and multiplexer
JP2020088846A (en) * 2018-11-20 2020-06-04 株式会社村田製作所 Filter and multiplexer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029610A1 (en) * 2022-08-03 2024-02-08 株式会社村田製作所 Elastic wave device

Also Published As

Publication number Publication date
CN219592382U (en) 2023-08-25

Similar Documents

Publication Publication Date Title
US10742194B2 (en) Filter
JP6913619B2 (en) Multiplexers, high frequency front-end circuits and communication equipment
KR100688885B1 (en) Surface acoustic wave filter, branching filter, and communication apparatus
CN111164891B (en) Multiplexer, high-frequency front-end circuit and communication device
WO2022019072A1 (en) Acoustic wave filter, and multiplexer
KR102597953B1 (en) Filter units and multiplexers
US11848661B2 (en) Filter and multiplexer
US11863162B2 (en) Filter, multiplexer, radio frequency front-end circuit, and communication device
WO2022014332A1 (en) Elastic wave filter and multiplexer
WO2022059643A1 (en) Elastic wave filter
WO2022050210A1 (en) Elastic wave filter, and multiplexer
WO2018123545A1 (en) Multiplexer
US20240080010A1 (en) Filter and multiplexer
US20230261640A1 (en) Filter and multiplexer
WO2022071185A1 (en) Multiplexer
JP6885473B2 (en) Multiplexers, high frequency front-end circuits and communication equipment
JP7298543B2 (en) Filters and multiplexers
US20240195389A1 (en) High frequency filter and multiplexer
WO2023074373A1 (en) Elastic wave resonator, elastic wave filter device, and multiplexer
CN111108689B (en) Multiplexer, high-frequency front-end circuit, and communication device
WO2019065670A1 (en) Multiplexer, high-frequency front-end circuit, and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202190000716.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21846502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP