WO2023037799A1 - High-frequency module - Google Patents

High-frequency module Download PDF

Info

Publication number
WO2023037799A1
WO2023037799A1 PCT/JP2022/029828 JP2022029828W WO2023037799A1 WO 2023037799 A1 WO2023037799 A1 WO 2023037799A1 JP 2022029828 W JP2022029828 W JP 2022029828W WO 2023037799 A1 WO2023037799 A1 WO 2023037799A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground
conductor
signal
signal conductor
frequency module
Prior art date
Application number
PCT/JP2022/029828
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 郷地
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023037799A1 publication Critical patent/WO2023037799A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices

Definitions

  • the present invention relates to high frequency modules.
  • the patch antenna is arranged on the first main surface side of the dielectric substrate, and the patch antenna is arranged on the side opposite to the first main surface of the dielectric substrate.
  • a configuration in which high-frequency elements (that is, high-frequency circuit components) are mounted on two main surfaces has been proposed (see Patent Document 1, for example).
  • the ground terminal provided on the second main surface side when viewed from the direction perpendicular to the first main surface of the dielectric substrate, is oriented in the polarization direction of the high-frequency signal radiated or received by the patch antenna. It is positioned between the conductor post and the first side of the dielectric substrate closest to the signal conductor post. As a result, the ground terminal serves as a shield, and the isolation between the plurality of patch antennas and the signal conductor poles can be improved.
  • the characteristic impedance of the signal conductor column may deviate, resulting in deterioration of signal quality.
  • Such a problem is particularly conspicuous in millimeter waves or the like in which high-frequency signals flow through the signal conductor posts.
  • the present invention is intended to solve the above problems, and aims to reduce the size of the high frequency module while suppressing the deviation of the characteristic impedance of the signal conductor column.
  • a high frequency module includes a dielectric substrate, a coating resin provided on a first main surface of the dielectric substrate, a first An electronic component mounted on a main surface via a plurality of bumps, and a plurality of conductor columns arranged on the dielectric substrate through a coating resin in the thickness direction of the dielectric substrate.
  • the plurality of conductor pillars includes a first signal conductor pillar adjacent to the electronic component and through which a high-frequency signal flows; one or more ground conductor pillars adjacent to the first signal conductor pillar and set to a ground potential; have
  • the plurality of bumps has one or more ground bumps connected to one or more ground conductor posts.
  • the ground bump closest to the first signal conductor column among the one or more ground bumps is the first ground bump
  • the central axis of the first signal conductor column is the center
  • a circle whose radius is the distance from the center to the farthest point of the one or more ground conductor columns overlaps at least a portion of the first ground bump.
  • a high-frequency module includes a dielectric substrate, a coating resin provided on a first main surface of the dielectric substrate, and a plurality of and a plurality of conductor columns arranged on the dielectric substrate through the coating resin in the thickness direction of the dielectric substrate.
  • the plurality of conductor pillars includes a first signal conductor pillar adjacent to the electronic component and through which a high-frequency signal flows; one or more ground conductor pillars adjacent to the first signal conductor pillar and set to a ground potential; have The plurality of bumps has a signal bump connected to the first signal conductor post and one or more ground bumps connected to one or more ground conductor posts.
  • the distance between the first signal conductor column and the first ground bump when viewed from the direction perpendicular to the first main surface is The distance is less than the distance between the first signal conductor post and the signal bump.
  • the characteristic impedance of the signal conductor column arranged adjacent to the electronic component is adjusted not only by the ground conductor column but also by the ground bump on which the electronic component is mounted. Therefore, it is possible to reduce the size of the high-frequency module while suppressing the deviation of the characteristic impedance of the signal conductor column.
  • FIG. 1 is an external perspective view of a high frequency module according to Embodiment 1.
  • FIG. 2A and 2B are a plan view and a cross-sectional view of a high-frequency module according to Embodiment 1.
  • FIG. 3 is a first partial plan view of the high-frequency module according to Embodiment 1.
  • FIG. 4 is a second partial plan view of the high-frequency module according to Embodiment 1.
  • FIG. 5 is a third partial plan view of the high-frequency module according to Embodiment 1.
  • FIG. 6 is a plan view of a high-frequency module according to Modification 1 of Embodiment 1.
  • FIG. 7A and 7B are a plan view and a cross-sectional view of a high-frequency module according to Modification 2 of Embodiment 1.
  • FIG. 1 is an external perspective view of a high frequency module according to Embodiment 1.
  • FIG. 2A and 2B are a plan view and a cross-sectional view of a high-frequency module according to
  • FIG. 8 is a partial plan view of a high frequency module according to Embodiment 2.
  • FIG. 9 is a partial plan view of a high frequency module according to Embodiment 3.
  • FIG. 10 is a partial plan view of a high frequency module according to Embodiment 4.
  • FIG. 11A and 11B are a plan view and a cross-sectional view of a high-frequency module according to Embodiment 5.
  • FIG. 12 is a cross-sectional view showing a modification of the high-frequency module according to Embodiment 1.
  • FIG. 1 to 5 are diagrams showing the structure of a high frequency module 100 according to Embodiment 1.
  • FIG. 1 is an external perspective view of a high-frequency module 100 according to Embodiment 1.
  • FIG. 2A and 2B are a plan view and a cross-sectional view of the high-frequency module 100 according to the first embodiment. More specifically, (a) of FIG. 2 is a cross-sectional view, and (b) of FIG. 2 is a cross-sectional view taken along line IIb-IIb of (a) of FIG. 2 is a plan view of the high-frequency module 100 viewed from the upper surface side (z-axis plus side in the drawing).
  • FIG. 3 is a first partial plan view of the high frequency module 100 according to Embodiment 1.
  • FIG. 4 is a second partial plan view of the high frequency module 100 according to the first embodiment.
  • FIG. 5 is a third partial plan view of the high frequency module 100 according to the first embodiment.
  • the thickness direction of the high-frequency module 100 will be described as the z-axis direction, and the directions perpendicular to the z-axis direction and mutually orthogonal to each other will be described as the x-axis direction and the y-axis direction, respectively. ) side.
  • the thickness direction of the high-frequency module 100 may not be the vertical direction, so the upper surface side of the high-frequency module 100 is not limited to the upward direction.
  • the high-frequency module 100 and the electronic component described later have a substantially rectangular flat plate shape, and the x-axis direction and the y-axis direction are parallel to two adjacent side surfaces of the high-frequency module 100 and the electronic component. is the direction.
  • the shape of the high-frequency module 100 is not limited to this, and may be, for example, a substantially circular flat plate shape. .
  • FIG. 2(a) strictly speaking, for the sake of simplicity, there are cases where constituent elements on different cross sections are shown in the same drawing, or where illustration of constituent elements on the same cross section is omitted. be.
  • the high frequency module 100 includes a dielectric substrate 10 and a coating resin 20 provided on the dielectric substrate 10.
  • the high frequency module 100 includes an electronic component 21 and a plurality of conductor posts 30 including a signal conductor post 31 and a ground conductor post 32 .
  • Electronic component 21 is mounted on dielectric substrate 10 via a plurality of bumps 40 including ground bumps 41 and signal bumps 42 .
  • the plurality of conductor posts 30 further includes dummy conductor posts 33 .
  • the dielectric substrate 10 is made of a dielectric material.
  • the dielectric substrate 10 has a substantially rectangular flat plate shape having an upper surface 10a and a lower surface 10b, and is, for example, a multi-layer substrate formed by laminating a plurality of dielectric layers.
  • the dielectric substrate 10 is not limited to this, and may have, for example, a substantially circular flat plate shape, or may be a single-layer substrate.
  • the dielectric substrate 10 has connection terminals 11 , wirings 12 , and interlayer connection conductors 13 .
  • the connection terminals 11 and the wirings 12 are conductor patterns, and the interlayer connection conductors 13 are conductors connected to the connection terminals 11 and the wirings 12 .
  • the connection terminal 11 is connected to the signal conductor column 31 and the ground conductor column 32 , and the wiring 12 is connected to the connection terminal 11 via the interlayer connection conductor 13 .
  • the wiring 12 may be arranged in the inner layer of the dielectric substrate 10, or may be arranged on the upper surface 10a or the lower surface 10b of the dielectric substrate 10.
  • a dielectric substrate 10 for example, a low temperature co-fired ceramics (LTCC) substrate, a printed circuit board, or the like is used.
  • LTCC low temperature co-fired ceramics
  • the coating resin 20 is provided on the lower surface 10b, which is an example of the first main surface of the dielectric substrate 10, and is made of a resin that seals the electronic component 21.
  • the coating resin 20 is provided on the lower surface 10b of the dielectric substrate 10, and includes four side surfaces that are flush with the side surfaces of the dielectric substrate 10 and one surface that is substantially parallel to the lower surface 10b of the dielectric substrate 10. It has two lower surfaces and is provided on the entire lower surface 10b of the dielectric substrate 10 . That is, in the present embodiment, electronic component 21 and multiple conductor posts 30 are embedded in coating resin 20 . In other words, the electronic component 21 , the plurality of conductor columns 30 and the plurality of bumps 40 are covered with the coating resin 20 except for the lower surfaces of the plurality of conductor columns 30 .
  • coating resin 20 is not particularly limited, for example, epoxy or polyimide resin is used.
  • the shape of the coating resin 20 is not limited to the above, and may have a side surface located inside or outside the side surface of the dielectric substrate 10, or may have a stepped lower surface. Moreover, the coating resin 20 may not be in direct contact with the lower surface 10b of the dielectric substrate 10, and an insulating film or the like may be provided between the lower surface 10b and the lower surface 10b.
  • the electronic component 21 is located inside the coating resin 20 and mounted on the lower surface 10b of the dielectric substrate 10.
  • the electronic component 21 is a circuit component electrically connected to other electronic components and the like, and is, for example, a power amplifier that amplifies and outputs an input high frequency signal.
  • Electronic component 21 is mounted on bottom surface 10b of dielectric substrate 10 via a plurality of bumps 40 .
  • the electronic component 21 has through conductors 22 that pass through the electronic component 21 and are connected to ground bumps 41, which will be described later.
  • the material of the penetrating conductor 22 is not particularly limited, for example, copper or the like with high conductivity (ie, low resistance) is used. Note that the electronic component 21 does not have to have the penetrating conductor 22 .
  • the shape of the through conductor 22 is not particularly limited. As shown in FIG. 21 may be divided into a plurality of conductors such that the upper surface 21a and the lower surface 21b of 21 are electrically connected.
  • the high-frequency module 100 is positioned inside the coating resin 20, and among the surfaces of the electronic component 21, the surface opposite to the surface (the upper surface 21a in FIG. 2) on which the plurality of bumps 40 are arranged (the upper surface 21a in FIG. It further has a connection conductor 23 arranged on the lower surface 21 b ) and connected to the through conductor 22 . Note that the high-frequency module 100 may not have the connection conductor 23 .
  • the plurality of conductor pillars 30 includes signal conductor pillars 31 , ground conductor pillars 32 and dummy conductor pillars 33 .
  • the plurality of conductor columns 30 penetrate the coating resin 20 in the thickness direction of the dielectric substrate 10 and are arranged in a matrix on the dielectric substrate 10 around the electronic component 21 .
  • the signal conductor column 31 is a conductor that transmits a signal such as a control signal or a high frequency signal between the electronic component 21 and the mother board or the like on which the high frequency module 100 is mounted.
  • the signal conductor post 31 is electrically connected to the electronic component 21 via the wiring 12 of the dielectric substrate 10 and the signal bump 42 on which the electronic component 21 is mounted.
  • the ground conductor pillar 32 is a conductor set to a ground potential.
  • the ground conductor post 32 is electrically connected to the electronic component 21 via the wiring 12 of the dielectric substrate 10 and the ground bump 41a on which the electronic component 21 is mounted.
  • the ground conductor pillars 32 may be electrically connected to the ground bumps 41a by mounting the high-frequency module 100 on a mother board or the like.
  • the dummy conductor post 33 is a conductor for ensuring mechanical connection strength when mounting the high frequency module 100 on a mother board or the like, and is an independent conductor that is not electrically connected to others in the high frequency module 100 .
  • each conductor column 30 is not numbered in the drawing, if the hatching is the same as that of the numbered conductor column, it indicates the same type of conductor column.
  • a plurality of signal conductor columns 31, ground conductor columns 32, and dummy conductor columns 33 are all provided, but the number of each is not particularly limited, and may be one or more.
  • the material of the plurality of conductor columns 30 is not particularly limited, for example, copper with high conductivity is used.
  • the plurality of conductor columns 30 are configured in a columnar shape, but the shape and dimensions are not particularly limited.
  • the plurality of conductor pillars 30 may have a prismatic shape, or a tapered shape with a substantially circular or substantially rectangular cross section, or some of the conductor pillars 30 may be thinner than the other conductor pillars 30 .
  • each conductor column 30 may be embedded in the dielectric substrate 10, or may not be in direct contact with the lower surface 10b of the dielectric substrate 10. 10b.
  • the plurality of bumps 40 are, as described above, a conductive bonding material for mounting the electronic component 21 on the lower surface 10b of the dielectric substrate 10, such as solder.
  • the plurality of bumps 40 includes a ground bump 41 set to a ground potential, and a signal bump 42 connected to the signal conductor pillar 31 via the wiring 12 and through which a high frequency signal flows.
  • the cross section of each bump 40 is not limited to a circular shape, and may be, for example, an elliptical shape.
  • the high-frequency module 100 configured as described above is, for example, an amplification module that amplifies and outputs an input high-frequency signal. Specifically, a high-frequency signal input to the high-frequency module 100 is input to the electronic component 21 via a certain signal conductor post 31 . A high-frequency signal amplified by the electronic component 21 is output from the high-frequency module 100 via another signal conductor column 31 .
  • the frequency of the high-frequency signal flowing through the signal conductor column 31 is several hundred MHz band or higher, and may be in the millimeter wave band. Therefore, in order to suppress the deterioration of signal quality, it is necessary to suppress the deviation of the characteristic impedance of the signal conductor column 31 through which the high frequency signal flows. In particular, from the viewpoint of matching with the input impedance or output impedance of the electronic component 21, it is important to suppress the deviation of the characteristic impedance at the end of the signal conductor column 31 on the dielectric substrate 10 side.
  • the signal conductor column 31 arranged adjacent to the electronic component 21 is provided with a ground conductor.
  • the characteristic impedance is adjusted using not only the pillar 32 but also the ground bump 41 on which the electronic component 21 is mounted.
  • the signal conductor column 31 through which the high-frequency signal flows will be particularly referred to as the signal conductor column 31a, and the details thereof will be described with reference to FIGS. 3 and 4.
  • FIG. 31a the signal conductor column 31a
  • the electronic component 21 in the present embodiment has a side S1 parallel to the y-axis and sides S2 and S4 parallel to the x-axis when viewed from the direction perpendicular to the xy plane.
  • the central axis of the signal conductor column 31a is the center C
  • the ground conductor column 32 arranged adjacent to the signal conductor column 31a from the center C is the farthest from the center C.
  • a circle R whose radius is the distance to the point P overlaps at least a portion of the ground bump 41 .
  • ground conductor pillars 32 adjacent to the signal conductor pillar 31a a ground conductor pillar 32a located on the y-axis plus side, a ground conductor pillar 32b located on the y-axis minus side, and a ground conductor pillar 32b located on the x-axis minus side are shown.
  • a column 32c and a ground conductor column 32z positioned obliquely on the negative side of the x-axis and the positive side of the y-axis are arranged.
  • the farthest point P from the center C is the end of the ground conductor pillar 32z farthest from the center C among the four ground conductor pillars 32a to 32c, 32z arranged adjacent to the signal conductor pillar 31a. It is part.
  • the circle R overlaps the entire ground bump 41, and in FIG. overlaps with
  • the ground bump 41 is arranged at a position overlapping the circle R including the ground conductor column 32z with the signal conductor column 31a as the center. , the characteristic impedance is adjusted not only by the ground conductor pillars 32z but also by the ground bumps 41 on which the electronic component 21 is mounted. Therefore, miniaturization of the high-frequency module 100 can be achieved while suppressing the deviation of the characteristic impedance of the signal conductor column 31a.
  • the signal conductor pillar 31a and the ground bump 41a respectively correspond to the "first signal conductor pillar” and the “first ground bump” in the present disclosure.
  • the circle R only needs to overlap at least a part of the ground bump 41a arranged closest to the signal conductor post 31a. At the same time, miniaturization of the high-frequency module 100 is achieved. However, as in the present embodiment, by overlapping the entire ground bump 41a with the circle R, it is possible to further suppress the deviation of the characteristic impedance of the signal conductor column 31a.
  • the ground bump 41a is positioned between the signal conductor post 31a and the signal conductor post 31a among the sides S1, S2, and S4 of the electronic component 21 when viewed from the direction perpendicular to the xy plane. It may be arranged on the nearest side S1. As a result, the ground bump 41a is arranged at a position closer to the signal conductor column 31a, so that the deviation of the characteristic impedance of the signal conductor column 31a is further suppressed.
  • another ground bump 41b is arranged adjacent to the ground bump 41a.
  • no signal bump 42 is arranged between the ground bumps 41a and 41b. This makes it easier to adjust the characteristic impedance of the signal conductor column 31a, thereby further suppressing the deviation of the characteristic impedance of the signal conductor column 31a.
  • the ground bump 41b corresponds to the "second ground bump" in the present disclosure.
  • the ground conductor columns 32a and 32b are arranged so that the signal conductor column 31a is positioned between them.
  • the ground conductor pillars 32a and 32b and the signal conductor pillar 31a overlap when viewed in a direction parallel to the y-axis in which the ground conductor pillars 32a and 32b are arranged.
  • the entire signal conductor pillar 31a may overlap the ground conductor pillars 32a and 32b. Part of it does not have to overlap with the ground conductor columns 32a and 32b.
  • the ground bump 41a and the ground conductor column 32c are arranged so that the signal conductor column 31a is positioned between them.
  • the ground conductor pillar 32c and the ground bump 41a may overlap with the signal conductor pillar 31a when viewed in a direction parallel to the x-axis in which the ground conductor pillar 32c and the ground bump 41a are arranged.
  • the ground conductor column 32c and the ground bump 41a so as to sandwich the signal conductor column 31a in this way, it becomes easier to adjust the characteristic impedance of the signal conductor column 31a. is further suppressed.
  • the ground conductor pillar 32c corresponds to the "third ground conductor pillar" in the present disclosure.
  • the entire signal conductor pillar 31a may overlap the ground conductor pillar 32c and the ground bump 41a. may not overlap with the ground conductor posts 32a and 32b.
  • the ground conductor pillars 32a and 32b when viewed from the direction perpendicular to the xy plane, extend along the side S1 of the electronic component 21 in a direction parallel to the y-axis. , the signal conductor post 31a is positioned between them.
  • the ground conductor pillar 32c is arranged adjacent to the signal conductor pillar 31a in the direction parallel to the y-axis orthogonal to the side S1 of the electronic component 21.
  • the ground conductor pillar 32z is arranged adjacent to the signal conductor pillar 31a in a direction different from the x-axis and the y-axis.
  • the x-axis direction and the y-axis direction correspond to the "first direction” and the “second direction” in the present disclosure, respectively, and the direction different from the x-axis and the y-axis when viewed from a direction perpendicular to the xy plane is It corresponds to the "third direction” in the present disclosure.
  • the signal conductor column 31z corresponds to the "fourth ground conductor column” in the present disclosure.
  • the ground bumps 41a and 41b are arranged on the side S1 closest to the signal conductor column 31a of the electronic component 21 when viewed from the direction perpendicular to the xy plane.
  • the two adjacent ground bumps 41a and 41b are arranged at positions closer to the signal conductor post 31a, which makes it easier to adjust the characteristic impedance of the signal conductor post 31a. Impedance deviation is further suppressed.
  • the signal conductor post 31 has a signal conductor post 31b through which a high-frequency signal different from that of the signal conductor post 31a flows.
  • At least one ground conductor pillar 32 (ground conductor pillar 32b in FIG. 4) is arranged between the signal conductor pillar 31a and the signal conductor pillar 31b.
  • the signal conductor pole 31b corresponds to the "second signal conductor pole" in the present disclosure.
  • FIG. 5 it has a signal bump 42a which is the signal bump 42 connected to the signal conductor post 31a.
  • the distance A1 between the signal conductor post 31a and the nearest ground bump 41a is smaller than the distance A2 between the signal conductor post 31a and the signal bump 42a.
  • the ground bump 41 is arranged closer than the signal bump 42a connected to the signal conductor post 31a.
  • the characteristic impedance is adjusted not only by the ground conductor columns 32a to 32c and 32z arranged adjacent to 31a, but also by the ground bumps 41 on which the electronic component 21 is mounted. Therefore, miniaturization of the high-frequency module 100 can be achieved while suppressing the deviation of the characteristic impedance of the signal conductor column 31a.
  • the electronic component 21 penetrates through the electronic component 21 to establish the positional relationship between the signal conductor column 31a and the ground conductor column 32 as shown in FIGS. It has through conductors 22 connected to bumps 41 .
  • the penetrating conductor 22 connected to the ground potential faces the signal conductor column 31a, so that the characteristics of the signal conductor column 31a can be obtained not only at the end of the signal conductor column 31a on the dielectric substrate 10 side but also over a wide range. Impedance deviation can be suppressed.
  • connection conductor 23 connected to the through conductor 22 is further provided in order to establish the positional relationship with the signal conductor column 31a and the ground conductor column 32 as shown in FIGS. .
  • the through conductor 22 and the connection conductor 23 connected to the ground potential are opposed to the signal conductor column 31a, thereby suppressing the deviation of the characteristic impedance over the entire signal conductor column 31a.
  • FIG. 6 is a plan view of a high-frequency module 101 according to Modification 1 of Embodiment 1.
  • the high frequency module 101 differs from the high frequency module 100 in the arrangement of the plurality of conductor columns 30 .
  • the plurality of conductor columns 30 may be arranged in a zigzag pattern.
  • FIG. 7A and 7B are a plan view and a cross-sectional view of a high-frequency module 102 according to Modification 2 of Embodiment 1.
  • FIG. The high-frequency module 102 differs from the high-frequency module 100 in the arrangement of the plurality of conductor columns 30 .
  • the plurality of conductor columns 30 may be arranged in only one row around the electronic component 21 .
  • FIG. 8 is a partial plan view of the high frequency module 103 according to the second embodiment.
  • the high-frequency module 103 differs from the high-frequency module 100 in that it has ground bumps 41z instead of the ground bumps 41a.
  • the ground bump 41z has a major axis B1 and a minor axis B2 with different lengths as viewed from the direction perpendicular to the xy plane, as shown in FIG. In other words, the ground bump 41z has an elliptical cross section, not a perfect circle, when viewed from the direction perpendicular to the xy plane.
  • Long axis B ⁇ b>1 extends along side S ⁇ b>1 of electronic component 21 .
  • the area of the ground bump 41z facing the signal conductor column 31a is increased, so the effect on the characteristic impedance of the signal conductor column 31a is increased. Therefore, even if it is difficult to dispose the ground bump 41z close to the signal conductor column 31a, it is possible to suppress the deviation of the characteristic impedance of the signal conductor column 31a.
  • ground bump 41 different from the ground bump 41z may also have an elliptical cross section when viewed from the direction perpendicular to the xy plane.
  • FIG. 9 is a partial plan view of high frequency module 104 according to the third embodiment.
  • the high frequency module 104 differs from the high frequency module 100 in the distance between the signal conductor post 31a and other members.
  • A3 is larger than A4.
  • the bumps 40 on which the electronic components 21 are mounted are often smaller in size than the conductor posts 30 penetrating the coating resin 20 . Therefore, by arranging the ground bump 41a at a position closer to the signal conductor pillar 31a than the ground conductor pillar 32c, the strength of the electromagnetic field coupling with the signal conductor pillar 31a can be brought closer between the ground conductor pillar 32c and the ground bump 41a. can be done. As a result, variations in ground strength around the signal conductor post 31a are reduced, so that high-frequency signal loss can be reduced.
  • the ground bump 41a may be arranged at a position closer to the signal conductor pillar 31a than the ground conductor pillar 32, not only to the ground conductor pillar 32c, but also to other ground conductor pillars 32 adjacent to the signal conductor pillar 31a. .
  • FIG. 10 is a partial plan view of high frequency module 105 according to the fourth embodiment.
  • the high frequency module 105 differs from the high frequency module 100 in the distance between the signal conductor column 31a and the ground bump 41a.
  • the distance between the signal conductor post 31a and the ground bump 41a is A5
  • the maximum diameter of the signal conductor post 31a is A6, A5 is smaller than A6.
  • the effect of the ground bump 41a on the characteristic impedance of the signal conductor column 31a can be increased, so that the deviation of the characteristic impedance of the signal conductor column 31a can be further suppressed.
  • Embodiment 5 The high-frequency module described so far can be applied to an antenna module having an antenna.
  • Embodiment 5 describes a high-frequency module applied to an antenna module.
  • 11A and 11B are a plan view and a cross-sectional view of a high-frequency module 106 according to Embodiment 5.
  • FIG. 5 is a plan view and a cross-sectional view of a high-frequency module 106 according to Embodiment 5.
  • the high frequency module 106 differs from the high frequency module 100 in that it has an antenna 50 .
  • the high-frequency module 106 is an antenna module having an antenna 50 on the top surface 10a side of the dielectric substrate 10 .
  • Antenna 50 includes multiple patch antennas 51 that radiate or receive high frequency signals.
  • the electronic component 21 is, for example, an RFIC (Radio-Frequency Integrated Circuit) electrically connected to a plurality of patch antennas 51, and up-converts a high-frequency signal input via the signal conductor pole 31 into a plurality of patch antennas. 51 radiates to the outside.
  • RFIC Radio-Frequency Integrated Circuit
  • a high-frequency module 106 it is suitable as a low-loss and compact antenna module, especially for a millimeter wave band.
  • FIG. 12 is a cross-sectional view showing a modification of the high frequency module 100 according to the first embodiment.
  • electronic component 21 is shielded by conductive member 60 .
  • Conductive member 60 is electrically connected to ground bump 41 .
  • the conductive member 60 is connected to a conductive heat dissipation member 70 .
  • the modified example has the same configuration as the high-frequency module 100 shown in FIG. According to the modification, the ground around the signal conductor column 31 can be further stabilized.
  • the high-frequency module has the coating resin 20, and the plurality of conductor columns 30 pass through the coating resin 20.
  • the high-frequency module may not have the coating resin 20, and the plurality of conductor columns 30 are pattern electrodes provided on the second main surface side (for example, on the second main surface) of the dielectric substrate 10. It may be an electrode.
  • a high-frequency module configured in this way can be mounted on a mother board or the like having a cavity structure by means of a plurality of conductor posts 30 .
  • the present invention does not limit the arrangement position, arrangement, type, number, etc. of conductor posts other than the specific conductor posts with reference numerals.
  • the present invention also includes modifications that can be made by those skilled in the art without departing from the gist of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

A high-frequency module (100) that comprises a dielectric substrate (10), a coating resin (20), an electronic component (21) that is installed via a plurality of bumps (40), and a plurality of conductor pillars (30). The plurality of conductor pillars (30) include a signal conductor pillar (31a) that is adjacent to the electronic component (21) and conducts a high-frequency signal and ground conductor pillars (32) that are adjacent to the signal conductor pillar (31a). The plurality of bumps (40) include ground bumps (41) that are connected to the ground conductor pillars (32). As seen from the direction orthogonal to the xy plane, the circle (R) that has its center (C) at the center axis of the signal conductor pillar (31a) and has a radius that is the distance from the center to the furthest point (P) on ground conductor pillar (32z) overlaps at least a portion of the ground bump (41a) that is closest to the signal conductor pillar (31a).

Description

高周波モジュールhigh frequency module
 本発明は、高周波モジュールに関する。 The present invention relates to high frequency modules.
 無線通信用のパッチアンテナと高周波回路部品とが一体化された高周波モジュールとして、誘電体基板の第1主面側にパッチアンテナが配置され、誘電体基板の第1主面とは反対側の第2主面に高周波素子(すなわち高周波回路部品)が実装された構成が提案されている(例えば、特許文献1参照)。そして第2主面側に設けられているグランド端子は、誘電体基板の第1主面に垂直な方向から見た場合に、パッチアンテナにより放射または受信される高周波信号の偏波方向において、信号導体柱と、信号導体柱に最も近い誘電体基板の第1側面と、の間に配置されている。これにより、グランド端子がシールドとなって複数のパッチアンテナと信号導体柱とのアイソレーションを向上することができる。 As a high frequency module in which a patch antenna for wireless communication and a high frequency circuit component are integrated, the patch antenna is arranged on the first main surface side of the dielectric substrate, and the patch antenna is arranged on the side opposite to the first main surface of the dielectric substrate. A configuration in which high-frequency elements (that is, high-frequency circuit components) are mounted on two main surfaces has been proposed (see Patent Document 1, for example). Further, the ground terminal provided on the second main surface side, when viewed from the direction perpendicular to the first main surface of the dielectric substrate, is oriented in the polarization direction of the high-frequency signal radiated or received by the patch antenna. It is positioned between the conductor post and the first side of the dielectric substrate closest to the signal conductor post. As a result, the ground terminal serves as a shield, and the isolation between the plurality of patch antennas and the signal conductor poles can be improved.
国際公開第2018/173750号WO2018/173750
 しかしながら、上記従来の構成では、高周波モジュールを小型化させた場合、信号導体柱の特性インピーダンスがずれることにより、信号品質が劣化してしまう場合がある。このような問題は、当該信号導体柱に高周波信号が流れるミリ波等において特に顕著である。 However, in the conventional configuration described above, if the high-frequency module is miniaturized, the characteristic impedance of the signal conductor column may deviate, resulting in deterioration of signal quality. Such a problem is particularly conspicuous in millimeter waves or the like in which high-frequency signals flow through the signal conductor posts.
 本発明は、上記課題を解決するためのものであり、高周波モジュールについて、信号導体柱の特性インピーダンスのズレを抑制しつつ、高周波モジュールの小型化を図ることを目的とする。 The present invention is intended to solve the above problems, and aims to reduce the size of the high frequency module while suppressing the deviation of the characteristic impedance of the signal conductor column.
 上記目的を達成するために、本発明の一態様に係る高周波モジュールは、誘電体基板と、誘電体基板の第1主面に設けられた被覆樹脂と、被覆樹脂の内部に位置し、第1主面に複数のバンプを介して実装された電子部品と、被覆樹脂を誘電体基板の厚み方向に貫通し、誘電体基板に配置された複数の導体柱と、を備える。複数の導体柱は、電子部品と隣り合い、かつ、高周波信号が流れる第1信号導体柱と、第1信号導体柱と隣り合い、かつ、グランド電位に設定される1以上のグランド導体柱と、を有する。複数のバンプは、1以上のグランド導体柱に接続される1以上のグランドバンプを有する。1以上のグランドバンプのうち、第1信号導体柱に最も近いグランドバンプを第1グランドバンプとすると、第1主面に垂直な方向から見て、第1信号導体柱の中心軸を中心とし、当該中心から1以上のグランド導体柱のうち最も遠い点までの距離を半径とする円は、第1グランドバンプの少なくとも一部と重なる。 To achieve the above object, a high frequency module according to one aspect of the present invention includes a dielectric substrate, a coating resin provided on a first main surface of the dielectric substrate, a first An electronic component mounted on a main surface via a plurality of bumps, and a plurality of conductor columns arranged on the dielectric substrate through a coating resin in the thickness direction of the dielectric substrate. The plurality of conductor pillars includes a first signal conductor pillar adjacent to the electronic component and through which a high-frequency signal flows; one or more ground conductor pillars adjacent to the first signal conductor pillar and set to a ground potential; have The plurality of bumps has one or more ground bumps connected to one or more ground conductor posts. Assuming that the ground bump closest to the first signal conductor column among the one or more ground bumps is the first ground bump, when viewed from the direction perpendicular to the first main surface, the central axis of the first signal conductor column is the center, A circle whose radius is the distance from the center to the farthest point of the one or more ground conductor columns overlaps at least a portion of the first ground bump.
 また、本発明の他の一態様に係る高周波モジュールは、誘電体基板と、誘電体基板の第1主面に設けられた被覆樹脂と、被覆樹脂の内部に位置し、第1主面に複数のバンプを介して実装された電子部品と、被覆樹脂を誘電体基板の厚み方向に貫通し、誘電体基板に配置された複数の導体柱と、を備える。複数の導体柱は、電子部品と隣り合い、かつ、高周波信号が流れる第1信号導体柱と、第1信号導体柱と隣り合い、かつ、グランド電位に設定される1以上のグランド導体柱と、を有する。複数のバンプは、第1信号導体柱に接続される信号バンプと、1以上のグランド導体柱に接続される1以上のグランドバンプと、を有する。1以上のグランドバンプのうち、第1信号導体柱に最も近いグランドバンプを第1グランドバンプとすると、第1主面に垂直な方向から見て、第1信号導体柱と第1グランドバンプとの距離は、第1信号導体柱と信号バンプとの距離より小さい。 A high-frequency module according to another aspect of the present invention includes a dielectric substrate, a coating resin provided on a first main surface of the dielectric substrate, and a plurality of and a plurality of conductor columns arranged on the dielectric substrate through the coating resin in the thickness direction of the dielectric substrate. The plurality of conductor pillars includes a first signal conductor pillar adjacent to the electronic component and through which a high-frequency signal flows; one or more ground conductor pillars adjacent to the first signal conductor pillar and set to a ground potential; have The plurality of bumps has a signal bump connected to the first signal conductor post and one or more ground bumps connected to one or more ground conductor posts. Assuming that the ground bump closest to the first signal conductor column among the one or more ground bumps is the first ground bump, the distance between the first signal conductor column and the first ground bump when viewed from the direction perpendicular to the first main surface is The distance is less than the distance between the first signal conductor post and the signal bump.
 本発明の一態様に係る高周波モジュールは、電子部品に隣り合って配置される信号導体柱について、グランド導体柱だけでなく、電子部品が実装されるグランドバンプによって特性インピーダンスが調整される。したがって、信号導体柱の特性インピーダンスのズレを抑制しつつ、高周波モジュールの小型化が図られる。 In the high-frequency module according to one aspect of the present invention, the characteristic impedance of the signal conductor column arranged adjacent to the electronic component is adjusted not only by the ground conductor column but also by the ground bump on which the electronic component is mounted. Therefore, it is possible to reduce the size of the high-frequency module while suppressing the deviation of the characteristic impedance of the signal conductor column.
図1は、実施の形態1に係る高周波モジュールの外観斜視図である。FIG. 1 is an external perspective view of a high frequency module according to Embodiment 1. FIG. 図2は、実施の形態1に係る高周波モジュールの平面図および断面図である。2A and 2B are a plan view and a cross-sectional view of a high-frequency module according to Embodiment 1. FIG. 図3は、実施の形態1に係る高周波モジュールの第1の部分平面図である。3 is a first partial plan view of the high-frequency module according to Embodiment 1. FIG. 図4は、実施の形態1に係る高周波モジュールの第2の部分平面図である。FIG. 4 is a second partial plan view of the high-frequency module according to Embodiment 1. FIG. 図5は、実施の形態1に係る高周波モジュールの第3の部分平面図である。5 is a third partial plan view of the high-frequency module according to Embodiment 1. FIG. 図6は、実施の形態1の変形例1に係る高周波モジュールの平面図である。6 is a plan view of a high-frequency module according to Modification 1 of Embodiment 1. FIG. 図7は、実施の形態1の変形例2に係る高周波モジュールの平面図および断面図である。7A and 7B are a plan view and a cross-sectional view of a high-frequency module according to Modification 2 of Embodiment 1. FIG. 図8は、実施の形態2に係る高周波モジュールの部分平面図である。FIG. 8 is a partial plan view of a high frequency module according to Embodiment 2. FIG. 図9は、実施の形態3に係る高周波モジュールの部分平面図である。FIG. 9 is a partial plan view of a high frequency module according to Embodiment 3. FIG. 図10は、実施の形態4に係る高周波モジュールの部分平面図である。FIG. 10 is a partial plan view of a high frequency module according to Embodiment 4. FIG. 図11は、実施の形態5に係る高周波モジュールの平面図および断面図である。11A and 11B are a plan view and a cross-sectional view of a high-frequency module according to Embodiment 5. FIG. 図12は、実施の形態1に係る高周波モジュールの変形例を示す断面図である。12 is a cross-sectional view showing a modification of the high-frequency module according to Embodiment 1. FIG.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the embodiments described below are all comprehensive or specific examples. Numerical values, shapes, materials, constituent elements, arrangement of constituent elements, connection forms, and the like shown in the following embodiments are examples, and are not intended to limit the present invention. Among the constituent elements in the following embodiments, constituent elements not described in independent claims will be described as optional constituent elements. Also, the sizes, or size ratios, of components shown in the drawings are not necessarily exact. Moreover, in each figure, the same code|symbol is attached|subjected with respect to substantially the same structure, and the overlapping description may be abbreviate|omitted or simplified.
 (実施の形態1)
 図1~図5は、実施の形態1に係る高周波モジュール100の構造を示す図である。具体的には、図1は、実施の形態1に係る高周波モジュール100の外観斜視図である。図2は、実施の形態1に係る高周波モジュール100の平面図および断面図である。より具体的には、図2の(a)は断面図であり、図2の(b)は、図2の(a)のIIb-IIb線における断面図であって、誘電体基板10を透視して高周波モジュール100を上面側(図中のz軸プラス側)から見た場合の平面図である。図3は、実施の形態1に係る高周波モジュール100の第1の部分平面図である。図4は、実施の形態1に係る高周波モジュール100の第2の部分平面図である。図5は、実施の形態1に係る高周波モジュール100の第3の部分平面図である。図3~図5は、同じ配置を示しているが、配置を表現する方法が異なるため、図を分けて示す。
(Embodiment 1)
1 to 5 are diagrams showing the structure of a high frequency module 100 according to Embodiment 1. FIG. Specifically, FIG. 1 is an external perspective view of a high-frequency module 100 according to Embodiment 1. FIG. 2A and 2B are a plan view and a cross-sectional view of the high-frequency module 100 according to the first embodiment. More specifically, (a) of FIG. 2 is a cross-sectional view, and (b) of FIG. 2 is a cross-sectional view taken along line IIb-IIb of (a) of FIG. 2 is a plan view of the high-frequency module 100 viewed from the upper surface side (z-axis plus side in the drawing). FIG. FIG. 3 is a first partial plan view of the high frequency module 100 according to Embodiment 1. FIG. FIG. 4 is a second partial plan view of the high frequency module 100 according to the first embodiment. FIG. 5 is a third partial plan view of the high frequency module 100 according to the first embodiment. Although FIGS. 3 to 5 show the same arrangement, the figures are shown separately because the method of expressing the arrangement is different.
 以降、高周波モジュール100の厚さ方向をz軸方向、z軸方向に垂直かつ互いに直交する方向をそれぞれx軸方向およびy軸方向として説明し、z軸プラス側を高周波モジュール100の上面(天面)側として説明する。しかし、実際の使用態様においては、高周波モジュール100の厚さ方向が上下方向とはならない場合もあるため、高周波モジュール100の上面側は上方向に限らない。また、本実施の形態では、高周波モジュール100および後述する電子部品は略矩形平板形状を有し、x軸方向およびy軸方向のそれぞれは高周波モジュール100および電子部品の隣り合う2つの側面と平行な方向である。なお、高周波モジュール100の形状は、これに限らず、例えば、略円形平板形状であってもよいし、さらには平板形状に限らず中央部と周縁部とで厚みが異なる形状であってもよい。 Hereinafter, the thickness direction of the high-frequency module 100 will be described as the z-axis direction, and the directions perpendicular to the z-axis direction and mutually orthogonal to each other will be described as the x-axis direction and the y-axis direction, respectively. ) side. However, in actual use, the thickness direction of the high-frequency module 100 may not be the vertical direction, so the upper surface side of the high-frequency module 100 is not limited to the upward direction. Further, in the present embodiment, the high-frequency module 100 and the electronic component described later have a substantially rectangular flat plate shape, and the x-axis direction and the y-axis direction are parallel to two adjacent side surfaces of the high-frequency module 100 and the electronic component. is the direction. The shape of the high-frequency module 100 is not limited to this, and may be, for example, a substantially circular flat plate shape. .
 また、図2の(a)では、簡明のため、厳密には別断面にある構成要素を同一図面内に示している場合、あるいは、同一断面にある構成要素の図示を省略している場合がある。 In addition, in FIG. 2(a), strictly speaking, for the sake of simplicity, there are cases where constituent elements on different cross sections are shown in the same drawing, or where illustration of constituent elements on the same cross section is omitted. be.
 図1に示すように、高周波モジュール100は、誘電体基板10と、誘電体基板10に設けられた被覆樹脂20と、を備えている。また、図2に示すように、高周波モジュール100は、電子部品21と、信号導体柱31およびグランド導体柱32を含む複数の導体柱30と、を備えている。電子部品21は、グランドバンプ41および信号バンプ42を含む複数のバンプ40を介して誘電体基板10に実装されている。本実施の形態では、複数の導体柱30は、ダミー導体柱33をさらに備えている。 As shown in FIG. 1, the high frequency module 100 includes a dielectric substrate 10 and a coating resin 20 provided on the dielectric substrate 10. As shown in FIG. Moreover, as shown in FIG. 2, the high frequency module 100 includes an electronic component 21 and a plurality of conductor posts 30 including a signal conductor post 31 and a ground conductor post 32 . Electronic component 21 is mounted on dielectric substrate 10 via a plurality of bumps 40 including ground bumps 41 and signal bumps 42 . In this embodiment, the plurality of conductor posts 30 further includes dummy conductor posts 33 .
 以下、これら高周波モジュール100を構成する各部材について、図2を参照して具体的に説明する。 Each member constituting the high-frequency module 100 will be specifically described below with reference to FIG.
 誘電体基板10は、誘電体材料からなる。この誘電体基板10は、本実施の形態では、上面10aおよび下面10bを有する略矩形平板形状であり、例えば、複数の誘電体層が積層されることで構成された多層基板である。なお、誘電体基板10は、これに限らず、例えば、略円形平板形状であってもよいし、あるいは、単層基板であってもよい。 The dielectric substrate 10 is made of a dielectric material. In this embodiment, the dielectric substrate 10 has a substantially rectangular flat plate shape having an upper surface 10a and a lower surface 10b, and is, for example, a multi-layer substrate formed by laminating a plurality of dielectric layers. Note that the dielectric substrate 10 is not limited to this, and may have, for example, a substantially circular flat plate shape, or may be a single-layer substrate.
 誘電体基板10は、接続端子11および配線12、層間接続導体13を有している。接続端子11および配線12は導体パターンであり、層間接続導体13は接続端子11および配線12と接続する導体である。接続端子11は信号導体柱31およびグランド導体柱32と接続され、配線12は層間接続導体13を介して接続端子11と接続されている。 The dielectric substrate 10 has connection terminals 11 , wirings 12 , and interlayer connection conductors 13 . The connection terminals 11 and the wirings 12 are conductor patterns, and the interlayer connection conductors 13 are conductors connected to the connection terminals 11 and the wirings 12 . The connection terminal 11 is connected to the signal conductor column 31 and the ground conductor column 32 , and the wiring 12 is connected to the connection terminal 11 via the interlayer connection conductor 13 .
 なお、配線12は誘電体基板10の内層に配置されていてもよいし、誘電体基板10の上面10aや下面10bに配置されていてもよい。すなわち、層間接続導体13は必須の構成ではない。 The wiring 12 may be arranged in the inner layer of the dielectric substrate 10, or may be arranged on the upper surface 10a or the lower surface 10b of the dielectric substrate 10. FIG. That is, the interlayer connection conductor 13 is not an essential component.
 このような誘電体基板10としては、例えば、低温同時焼成セラミックス(Low Temperature Co-fired Ceramics:LTCC)基板、または、プリント基板等が用いられる。 As such a dielectric substrate 10, for example, a low temperature co-fired ceramics (LTCC) substrate, a printed circuit board, or the like is used.
 被覆樹脂20は、誘電体基板10の第1主面の一例である下面10bに設けられ、電子部品21を封止する樹脂からなる。本実施の形態では、被覆樹脂20は、誘電体基板10の下面10b上に設けられ、誘電体基板10の側面と面一の4つの側面と、誘電体基板10の下面10bと略平行の1つの下面とを有し、誘電体基板10の下面10b全体に設けられている。つまり、本実施の形態において、電子部品21および複数の導体柱30は、被覆樹脂20に埋め込まれている。換言すると、電子部品21、複数の導体柱30および複数のバンプ40は、複数の導体柱30の下面を除き、被覆樹脂20で覆われている。 The coating resin 20 is provided on the lower surface 10b, which is an example of the first main surface of the dielectric substrate 10, and is made of a resin that seals the electronic component 21. In this embodiment, the coating resin 20 is provided on the lower surface 10b of the dielectric substrate 10, and includes four side surfaces that are flush with the side surfaces of the dielectric substrate 10 and one surface that is substantially parallel to the lower surface 10b of the dielectric substrate 10. It has two lower surfaces and is provided on the entire lower surface 10b of the dielectric substrate 10 . That is, in the present embodiment, electronic component 21 and multiple conductor posts 30 are embedded in coating resin 20 . In other words, the electronic component 21 , the plurality of conductor columns 30 and the plurality of bumps 40 are covered with the coating resin 20 except for the lower surfaces of the plurality of conductor columns 30 .
 このような被覆樹脂20の材質は特に限定されないが、例えば、エポキシ、または、ポリイミド樹脂等が用いられる。 Although the material of such coating resin 20 is not particularly limited, for example, epoxy or polyimide resin is used.
 なお、被覆樹脂20の形状は、上記に限らず、誘電体基板10の側面よりも内側または外側に位置する側面を有してもよいし、段差が設けられた下面を有してもよい。また、被覆樹脂20は、誘電体基板10の下面10bと直接的には接しておらず、当該下面10bとの間に絶縁膜等が設けられていてもよい。 The shape of the coating resin 20 is not limited to the above, and may have a side surface located inside or outside the side surface of the dielectric substrate 10, or may have a stepped lower surface. Moreover, the coating resin 20 may not be in direct contact with the lower surface 10b of the dielectric substrate 10, and an insulating film or the like may be provided between the lower surface 10b and the lower surface 10b.
 電子部品21は、被覆樹脂20の内部に位置し、誘電体基板10の下面10bに実装されている。電子部品21は、他の電子部品等と電気的に接続された回路部品であり、例えば、入力された高周波信号を増幅して出力するパワーアンプである。電子部品21は、誘電体基板10の下面10bに複数のバンプ40を介して実装される。 The electronic component 21 is located inside the coating resin 20 and mounted on the lower surface 10b of the dielectric substrate 10. The electronic component 21 is a circuit component electrically connected to other electronic components and the like, and is, for example, a power amplifier that amplifies and outputs an input high frequency signal. Electronic component 21 is mounted on bottom surface 10b of dielectric substrate 10 via a plurality of bumps 40 .
 本実施の形態において、電子部品21は、電子部品21を貫通し、後述するグランドバンプ41に接続される貫通導体22を有している。貫通導体22の材質は特に限定されないが、例えば、導電率の高い(すなわち抵抗値の低い)銅等が用いられる。なお、電子部品21は、貫通導体22を有さなくてもよい。また、貫通導体22の形状は特に限定されず、図1に示すように電子部品21の上面21aおよび下面21bを一直線状に導通させる形状でもよいし、電子部品21の内部配線を介して電子部品21の上面21aおよび下面21bを導通させるような複数の導体に分かれていてもよい。 In the present embodiment, the electronic component 21 has through conductors 22 that pass through the electronic component 21 and are connected to ground bumps 41, which will be described later. Although the material of the penetrating conductor 22 is not particularly limited, for example, copper or the like with high conductivity (ie, low resistance) is used. Note that the electronic component 21 does not have to have the penetrating conductor 22 . The shape of the through conductor 22 is not particularly limited. As shown in FIG. 21 may be divided into a plurality of conductors such that the upper surface 21a and the lower surface 21b of 21 are electrically connected.
 また、高周波モジュール100は、被覆樹脂20の内部に位置し、電子部品21の有する面のうち、複数のバンプ40が配置された面(図2における上面21a)と反対側の面(図2における下面21b)に配置され、貫通導体22と接続される接続導体23をさらに有している。なお、高周波モジュール100は、接続導体23を有さなくてもよい。 Further, the high-frequency module 100 is positioned inside the coating resin 20, and among the surfaces of the electronic component 21, the surface opposite to the surface (the upper surface 21a in FIG. 2) on which the plurality of bumps 40 are arranged (the upper surface 21a in FIG. It further has a connection conductor 23 arranged on the lower surface 21 b ) and connected to the through conductor 22 . Note that the high-frequency module 100 may not have the connection conductor 23 .
 複数の導体柱30は、信号導体柱31、グランド導体柱32およびダミー導体柱33を備える。複数の導体柱30は、被覆樹脂20を誘電体基板10の厚み方向に貫通し、電子部品21の周囲において誘電体基板10に行列状に配置される。 The plurality of conductor pillars 30 includes signal conductor pillars 31 , ground conductor pillars 32 and dummy conductor pillars 33 . The plurality of conductor columns 30 penetrate the coating resin 20 in the thickness direction of the dielectric substrate 10 and are arranged in a matrix on the dielectric substrate 10 around the electronic component 21 .
 信号導体柱31は、高周波モジュール100が実装されるマザー基板等と電子部品21との間で、例えば制御信号あるいは高周波信号等の信号を伝達する導体である。信号導体柱31は、誘電体基板10の配線12を経由し、電子部品21を実装する信号バンプ42を介して、電子部品21と電気的に接続されている。グランド導体柱32は、グランド電位に設定される導体である。グランド導体柱32は、誘電体基板10の配線12を経由し、電子部品21を実装するグランドバンプ41aを介して、電子部品21と電気的に接続されている。なお、グランド導体柱32は、高周波モジュール100がマザー基板等に実装されることにより、グランドバンプ41aと電気的に接続されていてもよい。ダミー導体柱33は、高周波モジュール100をマザー基板等に実装する際に機械的な接続強度を確保するための導体であり、高周波モジュール100において他と電気的に接続されない独立した導体である。 The signal conductor column 31 is a conductor that transmits a signal such as a control signal or a high frequency signal between the electronic component 21 and the mother board or the like on which the high frequency module 100 is mounted. The signal conductor post 31 is electrically connected to the electronic component 21 via the wiring 12 of the dielectric substrate 10 and the signal bump 42 on which the electronic component 21 is mounted. The ground conductor pillar 32 is a conductor set to a ground potential. The ground conductor post 32 is electrically connected to the electronic component 21 via the wiring 12 of the dielectric substrate 10 and the ground bump 41a on which the electronic component 21 is mounted. The ground conductor pillars 32 may be electrically connected to the ground bumps 41a by mounting the high-frequency module 100 on a mother board or the like. The dummy conductor post 33 is a conductor for ensuring mechanical connection strength when mounting the high frequency module 100 on a mother board or the like, and is an independent conductor that is not electrically connected to others in the high frequency module 100 .
 なお、各導体柱30は、図面において符号を付しておらずとも、符号が付してある導体柱とハッチングが同一であれば、同じ種類の導体柱を示すものとする。 Even if each conductor column 30 is not numbered in the drawing, if the hatching is the same as that of the numbered conductor column, it indicates the same type of conductor column.
 なお、本実施の形態では、信号導体柱31、グランド導体柱32およびダミー導体柱33は、いずれも複数個設けられているが、それぞれの個数は特に限定されず、1以上であればよい。 In the present embodiment, a plurality of signal conductor columns 31, ground conductor columns 32, and dummy conductor columns 33 are all provided, but the number of each is not particularly limited, and may be one or more.
 複数の導体柱30の材質は特に限定されないが、例えば、導電率の高い銅等が用いられる。また、本実施の形態では、複数の導体柱30は、円柱形状に構成されているが、形状および寸法は特に限定されない。例えば、複数の導体柱30は、角柱形状、あるいは、断面が略円形または略矩形のテーパー形状であってもよいし、一部の導体柱30が他の導体柱30より細くてもよい。 Although the material of the plurality of conductor columns 30 is not particularly limited, for example, copper with high conductivity is used. Moreover, in the present embodiment, the plurality of conductor columns 30 are configured in a columnar shape, but the shape and dimensions are not particularly limited. For example, the plurality of conductor pillars 30 may have a prismatic shape, or a tapered shape with a substantially circular or substantially rectangular cross section, or some of the conductor pillars 30 may be thinner than the other conductor pillars 30 .
 なお、各導体柱30は、上方端部が誘電体基板10に埋め込まれていてもよいし、誘電体基板10の下面10bと直接的には接しておらず、絶縁膜等を介して当該下面10bに設けられていてもよい。 The upper end of each conductor column 30 may be embedded in the dielectric substrate 10, or may not be in direct contact with the lower surface 10b of the dielectric substrate 10. 10b.
 複数のバンプ40は、前述の通り、電子部品21を誘電体基板10の下面10bに実装する導電性接合材であり、例えば半田である。複数のバンプ40は、グランド電位に設定されるグランドバンプ41と、配線12を介して信号導体柱31に接続されて高周波信号が流れる信号バンプ42とを備える。各バンプ40の断面は、円形状に限らず、例えば楕円形状であってもよい。 The plurality of bumps 40 are, as described above, a conductive bonding material for mounting the electronic component 21 on the lower surface 10b of the dielectric substrate 10, such as solder. The plurality of bumps 40 includes a ground bump 41 set to a ground potential, and a signal bump 42 connected to the signal conductor pillar 31 via the wiring 12 and through which a high frequency signal flows. The cross section of each bump 40 is not limited to a circular shape, and may be, for example, an elliptical shape.
 以上のように構成された高周波モジュール100は、例えば、入力された高周波信号を増幅して出力する増幅モジュールである。具体的には、高周波モジュール100に入力された高周波信号は、或る信号導体柱31を介して電子部品21に入力される。当該電子部品21で増幅された高周波信号は、他の信号導体柱31を介して高周波モジュール100から出力される。 The high-frequency module 100 configured as described above is, for example, an amplification module that amplifies and outputs an input high-frequency signal. Specifically, a high-frequency signal input to the high-frequency module 100 is input to the electronic component 21 via a certain signal conductor post 31 . A high-frequency signal amplified by the electronic component 21 is output from the high-frequency module 100 via another signal conductor column 31 .
 このような高周波モジュール100では、信号導体柱31に流れる高周波信号の周波数が数百MHz帯以上となり、ミリ波帯となることもある。このため、信号品質の劣化を抑えるためには、高周波信号が流れる信号導体柱31の特性インピーダンスのズレを抑制することが必要である。特に、電子部品21の入力インピーダンスあるいは出力インピーダンスとのマッチングの観点から、信号導体柱31の誘電体基板10側の端部における特性インピーダンスのズレを抑制することが重要である。 In such a high-frequency module 100, the frequency of the high-frequency signal flowing through the signal conductor column 31 is several hundred MHz band or higher, and may be in the millimeter wave band. Therefore, in order to suppress the deterioration of signal quality, it is necessary to suppress the deviation of the characteristic impedance of the signal conductor column 31 through which the high frequency signal flows. In particular, from the viewpoint of matching with the input impedance or output impedance of the electronic component 21, it is important to suppress the deviation of the characteristic impedance at the end of the signal conductor column 31 on the dielectric substrate 10 side.
 信号導体柱31の特性インピーダンスのズレを抑制する構成として、例えば、信号導体柱31を囲むように複数のグランド導体柱32を配置する構成が考えられる。しかしながら、このような構成では、多数の導体柱を配置するスペースが必要となり、高周波モジュールの小型化の妨げとなる。 As a configuration for suppressing the deviation of the characteristic impedance of the signal conductor column 31, for example, a configuration in which a plurality of ground conductor columns 32 are arranged so as to surround the signal conductor column 31 is conceivable. However, such a configuration requires a space for arranging a large number of conductor columns, which hinders miniaturization of the high-frequency module.
 そこで、本実施の形態では、信号導体柱31の特性インピーダンスのズレを抑制しつつ、高周波モジュール100を小型化するために、電子部品21に隣り合って配置される信号導体柱31について、グランド導体柱32だけでなく、電子部品21が実装されるグランドバンプ41も利用して特性インピーダンスを調整している。 Therefore, in the present embodiment, in order to reduce the size of the high-frequency module 100 while suppressing the deviation of the characteristic impedance of the signal conductor column 31, the signal conductor column 31 arranged adjacent to the electronic component 21 is provided with a ground conductor. The characteristic impedance is adjusted using not only the pillar 32 but also the ground bump 41 on which the electronic component 21 is mounted.
 以降、高周波信号が流れる信号導体柱31を特に信号導体柱31aと表記して、図3および図4を用いて詳細を説明する。 Hereinafter, the signal conductor column 31 through which the high-frequency signal flows will be particularly referred to as the signal conductor column 31a, and the details thereof will be described with reference to FIGS. 3 and 4. FIG.
 なお、図3に示すように、本実施の形態における電子部品21は、xy平面に垂直な方向から見て、y軸に平行な辺S1とx軸に平行な辺S2,S4とを有する。 As shown in FIG. 3, the electronic component 21 in the present embodiment has a side S1 parallel to the y-axis and sides S2 and S4 parallel to the x-axis when viewed from the direction perpendicular to the xy plane.
 図3に示すように、xy平面に垂直に見た場合、信号導体柱31aの中心軸を中心Cとし、中心Cから信号導体柱31aに隣り合って配置されるグランド導体柱32のうち最も遠い点Pまでの距離を半径とする円Rは、グランドバンプ41の少なくとも一部と重なっている。 As shown in FIG. 3, when viewed perpendicularly to the xy plane, the central axis of the signal conductor column 31a is the center C, and the ground conductor column 32 arranged adjacent to the signal conductor column 31a from the center C is the farthest from the center C. A circle R whose radius is the distance to the point P overlaps at least a portion of the ground bump 41 .
 図3では、信号導体柱31aに隣り合うグランド導体柱32として、y軸プラス側に位置するグランド導体柱32a、y軸マイナス側に位置するグランド導体柱32b、x軸マイナス側に位置するグランド導体柱32c、および、x軸マイナス側かつy軸プラス側となる斜め方向に位置するグランド導体柱32zが配置されている。ここで、中心Cから最も遠い点Pとは、信号導体柱31aに隣り合って配置される4つのグランド導体柱32a~32c,32zのうち、中心Cから最も遠いグランド導体柱32zの端部の一部である。 In FIG. 3, as the ground conductor pillars 32 adjacent to the signal conductor pillar 31a, a ground conductor pillar 32a located on the y-axis plus side, a ground conductor pillar 32b located on the y-axis minus side, and a ground conductor pillar 32b located on the x-axis minus side are shown. A column 32c and a ground conductor column 32z positioned obliquely on the negative side of the x-axis and the positive side of the y-axis are arranged. Here, the farthest point P from the center C is the end of the ground conductor pillar 32z farthest from the center C among the four ground conductor pillars 32a to 32c, 32z arranged adjacent to the signal conductor pillar 31a. It is part.
 本実施の形態では、円Rは、グランドバンプ41の全体と重なっており、図3では、信号導体柱31aのx軸プラス側に位置するグランドバンプ41aとこれに隣り合うグランドバンプ41bとの全体と重なっている。 In this embodiment, the circle R overlaps the entire ground bump 41, and in FIG. overlaps with
 このように、電子部品21に隣り合って配置される信号導体柱31aについて、信号導体柱31aを中心として、グランド導体柱32zを含む円Rと重なる位置にグランドバンプ41が配置されていることにより、グランド導体柱32zだけでなく、電子部品21が実装されるグランドバンプ41によって特性インピーダンスが調整される。したがって、信号導体柱31aの特性インピーダンスのズレを抑制しつつ、高周波モジュール100の小型化が図られる。 As described above, with respect to the signal conductor column 31a arranged adjacent to the electronic component 21, the ground bump 41 is arranged at a position overlapping the circle R including the ground conductor column 32z with the signal conductor column 31a as the center. , the characteristic impedance is adjusted not only by the ground conductor pillars 32z but also by the ground bumps 41 on which the electronic component 21 is mounted. Therefore, miniaturization of the high-frequency module 100 can be achieved while suppressing the deviation of the characteristic impedance of the signal conductor column 31a.
 なお、信号導体柱31aおよびグランドバンプ41aは、それぞれ、本開示における「第1信号導体柱」および「第1グランドバンプ」に相当する。 The signal conductor pillar 31a and the ground bump 41a respectively correspond to the "first signal conductor pillar" and the "first ground bump" in the present disclosure.
 また、円Rは、信号導体柱31aに最も近く配置されたグランドバンプ41aの少なくとも一部と重なっていればよく、このような構成であっても、信号導体柱31aの特性インピーダンスのズレを抑制しつつ、高周波モジュール100の小型化が図られる。ただし、本実施の形態のように、円Rがグランドバンプ41aの全体と重なることで、信号導体柱31aの特性インピーダンスのズレの抑制がより図られる。 Moreover, the circle R only needs to overlap at least a part of the ground bump 41a arranged closest to the signal conductor post 31a. At the same time, miniaturization of the high-frequency module 100 is achieved. However, as in the present embodiment, by overlapping the entire ground bump 41a with the circle R, it is possible to further suppress the deviation of the characteristic impedance of the signal conductor column 31a.
 また、本実施の形態によれば、図3に示すように、xy平面に垂直な方向から見て、グランドバンプ41aは、電子部品21の辺S1,S2,S4のうち、信号導体柱31aと最も近い辺S1に配置されてもよい。これにより、信号導体柱31aにより近い位置にグランドバンプ41aが配置されることになるので、信号導体柱31aの特性インピーダンスのズレの抑制がより図られる。 Further, according to the present embodiment, as shown in FIG. 3, the ground bump 41a is positioned between the signal conductor post 31a and the signal conductor post 31a among the sides S1, S2, and S4 of the electronic component 21 when viewed from the direction perpendicular to the xy plane. It may be arranged on the nearest side S1. As a result, the ground bump 41a is arranged at a position closer to the signal conductor column 31a, so that the deviation of the characteristic impedance of the signal conductor column 31a is further suppressed.
 また、本実施の形態によれば、図3に示すように、グランドバンプ41aと隣り合って他のグランドバンプ41bが配置されている。換言すると、グランドバンプ41aとグランドバンプ41bとの間には信号バンプ42が配置されていない。これにより、信号導体柱31aの特性インピーダンスの調整がより容易となるので、信号導体柱31aの特性インピーダンスのズレの抑制がより図られる。なお、グランドバンプ41bは、本開示における「第2グランドバンプ」に相当する。 Also, according to the present embodiment, as shown in FIG. 3, another ground bump 41b is arranged adjacent to the ground bump 41a. In other words, no signal bump 42 is arranged between the ground bumps 41a and 41b. This makes it easier to adjust the characteristic impedance of the signal conductor column 31a, thereby further suppressing the deviation of the characteristic impedance of the signal conductor column 31a. Note that the ground bump 41b corresponds to the "second ground bump" in the present disclosure.
 また、本実施の形態によれば、図3に示すように、信号導体柱31aが間に位置するようにグランド導体柱32a,32bが配置されている。換言すると、グランド導体柱32aとグランド導体柱32bとの並び方向であるy軸と平行な方向に見て、グランド導体柱32a,32bと信号導体柱31aとは重なっている。このように、信号導体柱31aを挟むようにグランド導体柱32a,32bが配置されることにより、信号導体柱31aの特性インピーダンスの調整がより容易となるので、信号導体柱31aの特性インピーダンスのズレの抑制がより図られる。なお、グランド導体柱32a,32bは、それぞれ、本開示における「第1グランド導体柱」および「第2グランド導体柱」に相当する。 Further, according to the present embodiment, as shown in FIG. 3, the ground conductor columns 32a and 32b are arranged so that the signal conductor column 31a is positioned between them. In other words, the ground conductor pillars 32a and 32b and the signal conductor pillar 31a overlap when viewed in a direction parallel to the y-axis in which the ground conductor pillars 32a and 32b are arranged. By arranging the ground conductor pillars 32a and 32b so as to sandwich the signal conductor pillar 31a in this way, it becomes easier to adjust the characteristic impedance of the signal conductor pillar 31a. is further suppressed. The ground conductor pillars 32a and 32b respectively correspond to the "first ground conductor pillar" and the "second ground conductor pillar" in the present disclosure.
 ここで、グランド導体柱32aとグランド導体柱32bとの並び方向と平行な方向に見て、信号導体柱31aの全体がグランド導体柱32a,32bと重なっていてもよいし、信号導体柱31aの一部がグランド導体柱32a,32bと重なっていなくてもよい。 Here, when viewed in a direction parallel to the direction in which the ground conductor pillars 32a and 32b are arranged, the entire signal conductor pillar 31a may overlap the ground conductor pillars 32a and 32b. Part of it does not have to overlap with the ground conductor columns 32a and 32b.
 また、本実施の形態によれば、図3に示すように、信号導体柱31aが間に位置するようにグランドバンプ41aとグランド導体柱32cとが配置されている。換言すると、グランド導体柱32cとグランドバンプ41aとの並び方向であるx軸と平行な方向に見て、グランド導体柱32cおよびグランドバンプ41aと、信号導体柱31aとは重なっていてもよい。このように、信号導体柱31aを挟むようにグランド導体柱32cおよびグランドバンプ41aが配置されることにより、信号導体柱31aの特性インピーダンスの調整がより容易となるので、信号導体柱31aの特性インピーダンスのズレの抑制がより図られる。なお、グランド導体柱32cは、本開示における「第3グランド導体柱」に相当する。 Further, according to the present embodiment, as shown in FIG. 3, the ground bump 41a and the ground conductor column 32c are arranged so that the signal conductor column 31a is positioned between them. In other words, the ground conductor pillar 32c and the ground bump 41a may overlap with the signal conductor pillar 31a when viewed in a direction parallel to the x-axis in which the ground conductor pillar 32c and the ground bump 41a are arranged. By arranging the ground conductor column 32c and the ground bump 41a so as to sandwich the signal conductor column 31a in this way, it becomes easier to adjust the characteristic impedance of the signal conductor column 31a. is further suppressed. Note that the ground conductor pillar 32c corresponds to the "third ground conductor pillar" in the present disclosure.
 ここで、グランド導体柱32cとグランドバンプ41aとの並び方向と平行な方向に見て、信号導体柱31aの全体がグランド導体柱32cおよびグランドバンプ41aと重なっていてもよいし、信号導体柱31aの一部がグランド導体柱32aおよび32bと重なっていなくてもよい。 Here, when viewed in a direction parallel to the direction in which the ground conductor pillar 32c and the ground bump 41a are arranged, the entire signal conductor pillar 31a may overlap the ground conductor pillar 32c and the ground bump 41a. may not overlap with the ground conductor posts 32a and 32b.
 また、本実施の形態によれば、図3に示すように、xy平面に垂直な方向から見て、グランド導体柱32a,32bは、電子部品21の辺S1に沿ったy軸と平行な方向において、信号導体柱31aが間に位置するように配置される。グランド導体柱32cは、電子部品21の辺S1に直交するy軸と平行な方向において、信号導体柱31aに隣り合って配置される。グランド導体柱32zは、x軸およびy軸とは異なる方向において、信号導体柱31aに隣り合って配置される。これにより、信号導体柱31aを囲むように、複数のグランド導体柱32a~32c,32zが配置されることにより、信号導体柱31aの特性インピーダンスの調整がより容易となるので、信号導体柱31aの特性インピーダンスのズレの抑制がより図られる。なお、x軸方向およびy軸方向は、それぞれ、本開示における「第1方向」および「第2方向」に相当し、xy平面に垂直な方向から見てx軸およびy軸とは異なる方向は本開示における「第3方向」に相当する。また、信号導体柱31zは、本開示における「第4グランド導体柱」に相当する。 Further, according to the present embodiment, as shown in FIG. 3, when viewed from the direction perpendicular to the xy plane, the ground conductor pillars 32a and 32b extend along the side S1 of the electronic component 21 in a direction parallel to the y-axis. , the signal conductor post 31a is positioned between them. The ground conductor pillar 32c is arranged adjacent to the signal conductor pillar 31a in the direction parallel to the y-axis orthogonal to the side S1 of the electronic component 21. As shown in FIG. The ground conductor pillar 32z is arranged adjacent to the signal conductor pillar 31a in a direction different from the x-axis and the y-axis. Thus, by arranging the plurality of ground conductor columns 32a to 32c and 32z so as to surround the signal conductor column 31a, it becomes easier to adjust the characteristic impedance of the signal conductor column 31a. It is possible to further suppress the deviation of the characteristic impedance. Note that the x-axis direction and the y-axis direction correspond to the "first direction" and the "second direction" in the present disclosure, respectively, and the direction different from the x-axis and the y-axis when viewed from a direction perpendicular to the xy plane is It corresponds to the "third direction" in the present disclosure. Also, the signal conductor column 31z corresponds to the "fourth ground conductor column" in the present disclosure.
 また、本実施の形態によれば、xy平面に垂直な方向から見て、グランドバンプ41a,41bは、電子部品21の信号導体柱31aと最も近い辺S1に配置されている。これにより、信号導体柱31aにより近い位置に、隣り合う2つのグランドバンプ41a,41bが配置されることにより、信号導体柱31aの特性インピーダンスの調整がより容易となるので、信号導体柱31aの特性インピーダンスのズレの抑制がより図られる。 Further, according to the present embodiment, the ground bumps 41a and 41b are arranged on the side S1 closest to the signal conductor column 31a of the electronic component 21 when viewed from the direction perpendicular to the xy plane. As a result, the two adjacent ground bumps 41a and 41b are arranged at positions closer to the signal conductor post 31a, which makes it easier to adjust the characteristic impedance of the signal conductor post 31a. Impedance deviation is further suppressed.
 また、本実施の形態によれば、図4に示すように、信号導体柱31として、信号導体柱31aと異なる高周波信号が流れる信号導体柱31bを有している。信号導体柱31aと信号導体柱31bとの間には、グランド導体柱32の少なくとも1つ(図4ではグランド導体柱32b)が配置されている。これにより、2種類の高周波信号のアイソレーションの確保を図ることができる。なお、信号導体柱31bは、本開示における「第2信号導体柱」に相当する。 Further, according to the present embodiment, as shown in FIG. 4, the signal conductor post 31 has a signal conductor post 31b through which a high-frequency signal different from that of the signal conductor post 31a flows. At least one ground conductor pillar 32 (ground conductor pillar 32b in FIG. 4) is arranged between the signal conductor pillar 31a and the signal conductor pillar 31b. Thereby, it is possible to ensure the isolation of the two types of high-frequency signals. The signal conductor pole 31b corresponds to the "second signal conductor pole" in the present disclosure.
 また、本実施の形態によれば、図5に示すように、信号導体柱31aに接続される信号バンプ42である信号バンプ42aを有している。xy平面に垂直な方向から見て、信号導体柱31aとこれに最も近いグランドバンプ41aとの距離A1は、信号導体柱31aと信号バンプ42aとの距離A2より小さい。 Further, according to the present embodiment, as shown in FIG. 5, it has a signal bump 42a which is the signal bump 42 connected to the signal conductor post 31a. When viewed from the direction perpendicular to the xy plane, the distance A1 between the signal conductor post 31a and the nearest ground bump 41a is smaller than the distance A2 between the signal conductor post 31a and the signal bump 42a.
 このように、電子部品21に隣り合って配置される信号導体柱31aについて、この信号導体柱31aに接続される信号バンプ42aよりも近くにグランドバンプ41が配置されていることにより、信号導体柱31aに隣り合って配置されるグランド導体柱32a~32c,32zだけでなく、電子部品21が実装されるグランドバンプ41によって特性インピーダンスが調整される。したがって、信号導体柱31aの特性インピーダンスのズレを抑制しつつ、高周波モジュール100の小型化が図られる。 As described above, for the signal conductor post 31a arranged adjacent to the electronic component 21, the ground bump 41 is arranged closer than the signal bump 42a connected to the signal conductor post 31a. The characteristic impedance is adjusted not only by the ground conductor columns 32a to 32c and 32z arranged adjacent to 31a, but also by the ground bumps 41 on which the electronic component 21 is mounted. Therefore, miniaturization of the high-frequency module 100 can be achieved while suppressing the deviation of the characteristic impedance of the signal conductor column 31a.
 また、本実施の形態によれば、図3~図5に示すような信号導体柱31aおよびグランド導体柱32との位置関係をとるうえで、電子部品21は、電子部品21を貫通し、グランドバンプ41に接続される貫通導体22を有する。これにより、グランド電位に接続された貫通導体22が信号導体柱31aと対向することで、信号導体柱31aの誘電体基板10側の端部だけでなく広範囲に亘って、信号導体柱31aの特性インピーダンスのズレの抑制が図られる。 Further, according to the present embodiment, the electronic component 21 penetrates through the electronic component 21 to establish the positional relationship between the signal conductor column 31a and the ground conductor column 32 as shown in FIGS. It has through conductors 22 connected to bumps 41 . As a result, the penetrating conductor 22 connected to the ground potential faces the signal conductor column 31a, so that the characteristics of the signal conductor column 31a can be obtained not only at the end of the signal conductor column 31a on the dielectric substrate 10 side but also over a wide range. Impedance deviation can be suppressed.
 また、本実施の形態によれば、図3および図4に示すような信号導体柱31aおよびグランド導体柱32との位置関係をとるうえで、貫通導体22と接続される接続導体23をさらに有する。これにより、グランド電位に接続された貫通導体22および接続導体23が信号導体柱31aと対向することで、信号導体柱31a全体に亘って特性インピーダンスのズレの抑制が図られる。 Further, according to the present embodiment, the connection conductor 23 connected to the through conductor 22 is further provided in order to establish the positional relationship with the signal conductor column 31a and the ground conductor column 32 as shown in FIGS. . As a result, the through conductor 22 and the connection conductor 23 connected to the ground potential are opposed to the signal conductor column 31a, thereby suppressing the deviation of the characteristic impedance over the entire signal conductor column 31a.
 (実施の形態1の変形例1)
 図6は、実施の形態1の変形例1に係る高周波モジュール101の平面図である。高周波モジュール101は、複数の導体柱30の並び方について、高周波モジュール100と相違する。具体的には、図6に示すように、複数の導体柱30は、千鳥状に配置されていてもよい。
(Modification 1 of Embodiment 1)
FIG. 6 is a plan view of a high-frequency module 101 according to Modification 1 of Embodiment 1. FIG. The high frequency module 101 differs from the high frequency module 100 in the arrangement of the plurality of conductor columns 30 . Specifically, as shown in FIG. 6, the plurality of conductor columns 30 may be arranged in a zigzag pattern.
 (実施の形態1の変形例2)
 図7は、実施の形態1の変形例2に係る高周波モジュール102の平面図および断面図である。高周波モジュール102は、複数の導体柱30の並び方について、高周波モジュール100と相違する。具体的には、図7に示すように、複数の導体柱30は、電子部品21の周囲に1列のみ配置されていてもよい。
(Modification 2 of Embodiment 1)
7A and 7B are a plan view and a cross-sectional view of a high-frequency module 102 according to Modification 2 of Embodiment 1. FIG. The high-frequency module 102 differs from the high-frequency module 100 in the arrangement of the plurality of conductor columns 30 . Specifically, as shown in FIG. 7 , the plurality of conductor columns 30 may be arranged in only one row around the electronic component 21 .
 (実施の形態2)
 図8は、実施の形態2に係る高周波モジュール103の部分平面図である。
(Embodiment 2)
FIG. 8 is a partial plan view of the high frequency module 103 according to the second embodiment.
 高周波モジュール103は、グランドバンプ41aに代わりグランドバンプ41zを有する点において、高周波モジュール100と相違する。 The high-frequency module 103 differs from the high-frequency module 100 in that it has ground bumps 41z instead of the ground bumps 41a.
 グランドバンプ41zは、グランドバンプ41aに対して、図8に示すように、xy平面に垂直な方向から見て、長さが異なる長軸B1と短軸B2とを径に有する。換言すると、グランドバンプ41zは、xy平面に垂直な方向から見て、正円ではなく、楕円形の断面を有する。長軸B1は、電子部品21の辺S1に沿って延伸している。 The ground bump 41z has a major axis B1 and a minor axis B2 with different lengths as viewed from the direction perpendicular to the xy plane, as shown in FIG. In other words, the ground bump 41z has an elliptical cross section, not a perfect circle, when viewed from the direction perpendicular to the xy plane. Long axis B<b>1 extends along side S<b>1 of electronic component 21 .
 これにより、グランドバンプ41zは、信号導体柱31aと対向する面積が大きくなるため、信号導体柱31aの特性インピーダンスへの影響が大きくなる。よって、グランドバンプ41zを、信号導体柱31aに近付けて配置することが難しい場合であっても信号導体柱31aの特性インピーダンスのズレの抑制が図られる。 As a result, the area of the ground bump 41z facing the signal conductor column 31a is increased, so the effect on the characteristic impedance of the signal conductor column 31a is increased. Therefore, even if it is difficult to dispose the ground bump 41z close to the signal conductor column 31a, it is possible to suppress the deviation of the characteristic impedance of the signal conductor column 31a.
 なお、グランドバンプ41zとは異なるグランドバンプ41についても、xy平面に垂直な方向から見て、楕円形の断面を有してもよい。 Note that the ground bump 41 different from the ground bump 41z may also have an elliptical cross section when viewed from the direction perpendicular to the xy plane.
 (実施の形態3)
 図9は、実施の形態3に係る高周波モジュール104の部分平面図である。
(Embodiment 3)
FIG. 9 is a partial plan view of high frequency module 104 according to the third embodiment.
 高周波モジュール104は、信号導体柱31aと他の部材との距離について、高周波モジュール100と相違する。 The high frequency module 104 differs from the high frequency module 100 in the distance between the signal conductor post 31a and other members.
 本実施の形態において、信号導体柱31aとグランド導体柱32cとの距離をA3とし、信号導体柱31aとグランドバンプ41aとの距離をA4とすると、A3はA4より大きい。 In this embodiment, if the distance between the signal conductor post 31a and the ground conductor post 32c is A3, and the distance between the signal conductor post 31a and the ground bump 41a is A4, then A3 is larger than A4.
 電子部品21を実装するバンプ40は、被覆樹脂20を貫通する導体柱30よりもサイズが小さいことが多い。そこで、グランド導体柱32cよりもグランドバンプ41aが信号導体柱31aに近い位置に配置されることで、信号導体柱31aとの電磁界結合の強度をグランド導体柱32cとグランドバンプ41aとで近付けることができる。これにより、信号導体柱31aに対する周囲のグランド強度のバラつきが低減されるため、高周波信号の損失を低減することができる。 The bumps 40 on which the electronic components 21 are mounted are often smaller in size than the conductor posts 30 penetrating the coating resin 20 . Therefore, by arranging the ground bump 41a at a position closer to the signal conductor pillar 31a than the ground conductor pillar 32c, the strength of the electromagnetic field coupling with the signal conductor pillar 31a can be brought closer between the ground conductor pillar 32c and the ground bump 41a. can be done. As a result, variations in ground strength around the signal conductor post 31a are reduced, so that high-frequency signal loss can be reduced.
 なお、グランド導体柱32cに限らず、信号導体柱31aに隣り合う他のグランド導体柱32についても、グランド導体柱32よりもグランドバンプ41aが信号導体柱31aに近い位置に配置されていてもよい。 The ground bump 41a may be arranged at a position closer to the signal conductor pillar 31a than the ground conductor pillar 32, not only to the ground conductor pillar 32c, but also to other ground conductor pillars 32 adjacent to the signal conductor pillar 31a. .
 (実施の形態4)
 図10は、実施の形態4に係る高周波モジュール105の部分平面図である。
(Embodiment 4)
FIG. 10 is a partial plan view of high frequency module 105 according to the fourth embodiment.
 高周波モジュール105は、信号導体柱31aとグランドバンプ41aとの距離が、高周波モジュール100と相違する。 The high frequency module 105 differs from the high frequency module 100 in the distance between the signal conductor column 31a and the ground bump 41a.
 xy平面に垂直な方向から見て、信号導体柱31aとグランドバンプ41aとの距離をA5とし、信号導体柱31aの最大径をA6とすると、A5はA6より小さい。 When viewed from the direction perpendicular to the xy plane, the distance between the signal conductor post 31a and the ground bump 41a is A5, and the maximum diameter of the signal conductor post 31a is A6, A5 is smaller than A6.
 これにより、グランドバンプ41aによる信号導体柱31aの特性インピーダンスに対する影響を大きくすることができるので、信号導体柱31aの特性インピーダンスのズレの抑制がより図られる。 As a result, the effect of the ground bump 41a on the characteristic impedance of the signal conductor column 31a can be increased, so that the deviation of the characteristic impedance of the signal conductor column 31a can be further suppressed.
 (実施の形態5)
 ここまで説明した高周波モジュールは、アンテナを有するアンテナモジュールに適用することができる。実施の形態5では、アンテナモジュールに適用される高周波モジュールについて説明する。図11は、実施の形態5に係る高周波モジュール106の平面図および断面図である。
(Embodiment 5)
The high-frequency module described so far can be applied to an antenna module having an antenna. Embodiment 5 describes a high-frequency module applied to an antenna module. 11A and 11B are a plan view and a cross-sectional view of a high-frequency module 106 according to Embodiment 5. FIG.
 高周波モジュール106は、アンテナ50を備えていることにおいて、高周波モジュール100と相違する。 The high frequency module 106 differs from the high frequency module 100 in that it has an antenna 50 .
 高周波モジュール106は、誘電体基板10の上面10a側に、アンテナ50を有するアンテナモジュールである。アンテナ50は、高周波信号を放射または受信する複数のパッチアンテナ51を含む。電子部品21は、複数のパッチアンテナ51と電気的に接続された例えばRFIC(Radio-Frequency Integrated Circuit)であり、信号導体柱31を介して入力された高周波信号をアップコンバートして複数のパッチアンテナ51から外部に放射する。 The high-frequency module 106 is an antenna module having an antenna 50 on the top surface 10a side of the dielectric substrate 10 . Antenna 50 includes multiple patch antennas 51 that radiate or receive high frequency signals. The electronic component 21 is, for example, an RFIC (Radio-Frequency Integrated Circuit) electrically connected to a plurality of patch antennas 51, and up-converts a high-frequency signal input via the signal conductor pole 31 into a plurality of patch antennas. 51 radiates to the outside.
 このような高周波モジュール106によれば、低ロスかつ小型化の特にミリ波帯のアンテナモジュールとして好適である。 According to such a high-frequency module 106, it is suitable as a low-loss and compact antenna module, especially for a millimeter wave band.
 (変形例)
 図12は、実施の形態1に係る高周波モジュール100の変形例を示す断面図である。変形例においては、電子部品21が導電部材60でシールドされている。導電部材60はグランドバンプ41と電気的に接続されている。さらに、導電部材60は導電性を有する放熱部材70と接続されている。その他の構成に関して、変形例は、図2に示される高周波モジュール100と同様の構成を有する。変形例によれば、信号導体柱31の周囲のグランドをさらに安定させることができる。
(Modification)
FIG. 12 is a cross-sectional view showing a modification of the high frequency module 100 according to the first embodiment. In a modified example, electronic component 21 is shielded by conductive member 60 . Conductive member 60 is electrically connected to ground bump 41 . Furthermore, the conductive member 60 is connected to a conductive heat dissipation member 70 . Regarding other configurations, the modified example has the same configuration as the high-frequency module 100 shown in FIG. According to the modification, the ground around the signal conductor column 31 can be further stabilized.
 (その他の実施の形態)
 以上、本発明の実施の形態およびその変形例に係る高周波モジュールについて説明したが、本発明は上記実施の形態およびその変形例に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本開示の高周波モジュールを内蔵した各種機器も本発明に含まれる。
(Other embodiments)
Although the high-frequency modules according to the embodiments and modifications of the present invention have been described above, the present invention is not limited to the above-described embodiments and modifications thereof. Another embodiment realized by combining arbitrary constituent elements in the above embodiment, and a modification obtained by applying various modifications that a person skilled in the art can think of without departing from the scope of the present invention to the above embodiment Examples and various devices incorporating the high-frequency module of the present disclosure are also included in the present invention.
 また、上記説明では、高周波モジュールは被覆樹脂20を有し、複数の導体柱30は被覆樹脂20を貫通するとした。しかし、高周波モジュールは被覆樹脂20を有していなくてもよく、複数の導体柱30は誘電体基板10の第2主面側(例えば第2主面上)に設けられたパターン電極である表面電極であってもよい。このように構成された高周波モジュールは、キャビティ構造を有するマザー基板等に複数の導体柱30によって実装され得る。 Also, in the above description, the high-frequency module has the coating resin 20, and the plurality of conductor columns 30 pass through the coating resin 20. However, the high-frequency module may not have the coating resin 20, and the plurality of conductor columns 30 are pattern electrodes provided on the second main surface side (for example, on the second main surface) of the dielectric substrate 10. It may be an electrode. A high-frequency module configured in this way can be mounted on a mother board or the like having a cavity structure by means of a plurality of conductor posts 30 .
 また、本発明は、上記実施の形態およびその変形例の説明において、符号を振っている特定の導体柱以外の導体柱は、配置の位置、並び方、種類および個数など、いずれも限定しない。本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本発明に含まれる。 In addition, in the description of the above embodiment and its modifications, the present invention does not limit the arrangement position, arrangement, type, number, etc. of conductor posts other than the specific conductor posts with reference numerals. The present invention also includes modifications that can be made by those skilled in the art without departing from the gist of the present invention.
 10 誘電体基板
11 接続端子
12 配線
13 層間接続導体
20 被覆樹脂
21 電子部品
10a,21a 上面
10b,21b 下面
22 貫通導体
23 接続導体
30 導体柱
31,31a,31b 信号導体柱
32,32a,32b,32c,32z グランド導体柱
33 ダミー導体柱
40 バンプ
41,41a,41b グランドバンプ
42 信号バンプ
50 アンテナ
51 パッチアンテナ
60 導電部材
70 放熱部材
100,101,102,103,104,105,106 高周波モジュール
10 Dielectric substrate 11 Connection terminal 12 Wiring 13 Interlayer connection conductor 20 Coating resin 21 Electronic components 10a, 21a Upper surface 10b, 21b Lower surface 22 Through conductor 23 Connection conductor 30 Conductor column 31, 31a, 31b Signal conductor column 32, 32a, 32b, 32c, 32z ground conductor post 33 dummy conductor post 40 bumps 41, 41a, 41b ground bump 42 signal bump 50 antenna 51 patch antenna 60 conductive member 70 heat dissipation member 100, 101, 102, 103, 104, 105, 106 high frequency module

Claims (15)

  1.  誘電体基板と、
     前記誘電体基板の第1主面に設けられた被覆樹脂と、
     前記被覆樹脂の内部に位置し、前記第1主面に複数のバンプを介して実装された電子部品と、
     前記被覆樹脂を前記誘電体基板の厚み方向に貫通し、前記誘電体基板に配置された複数の導体柱と、
     を備え、
     前記複数の導体柱は、前記電子部品と隣り合い、かつ、高周波信号が流れる第1信号導体柱と、前記第1信号導体柱と隣り合い、かつ、グランド電位に設定される1以上のグランド導体柱と、を有し、
     前記複数のバンプは、前記1以上のグランド導体柱に接続される1以上のグランドバンプを有し、
     前記1以上のグランドバンプのうち、前記第1信号導体柱に最も近いグランドバンプを第1グランドバンプとすると、
     前記第1主面に垂直な方向から見て、前記第1信号導体柱の中心軸を中心とし、当該中心から前記1以上のグランド導体柱のうち最も遠い点までの距離を半径とする円は、前記第1グランドバンプの少なくとも一部と重なる、
     高周波モジュール。
    a dielectric substrate;
    a coating resin provided on the first main surface of the dielectric substrate;
    an electronic component located inside the coating resin and mounted on the first main surface via a plurality of bumps;
    a plurality of conductor columns arranged on the dielectric substrate through the coating resin in the thickness direction of the dielectric substrate;
    with
    The plurality of conductor pillars includes a first signal conductor pillar adjacent to the electronic component and through which a high-frequency signal flows, and one or more ground conductors adjacent to the first signal conductor pillar and set to a ground potential. having a pillar and
    The plurality of bumps have one or more ground bumps connected to the one or more ground conductor posts,
    If the ground bump closest to the first signal conductor column among the one or more ground bumps is the first ground bump,
    When viewed in a direction perpendicular to the first main surface, a circle centered on the central axis of the first signal conductor pillar and having a radius equal to the distance from the center to the farthest point of the one or more ground conductor pillars is , overlaps at least a portion of the first ground bump;
    high frequency module.
  2.  前記第1主面に垂直な方向から見て、前記円は、前記第1グランドバンプの全体と重なる、
     請求項1に記載の高周波モジュール。
    When viewed from a direction perpendicular to the first main surface, the circle overlaps the entire first ground bump.
    The high frequency module according to claim 1.
  3.  前記第1主面に垂直な方向から見て、前記第1グランドバンプは、前記電子部品の辺のうち前記第1信号導体柱と最も近い辺に配置される、
     請求項1または2に記載の高周波モジュール。
    When viewed from a direction perpendicular to the first main surface, the first ground bump is arranged on a side of the electronic component that is closest to the first signal conductor column,
    The high frequency module according to claim 1 or 2.
  4.  前記1以上のグランド導体柱は、前記第1信号導体柱が間に位置するように配置される、第1グランド導体柱と第2グランド導体柱とを有する、
     請求項1から3のいずれか1項に記載の高周波モジュール。
    The one or more ground conductor pillars have a first ground conductor pillar and a second ground conductor pillar arranged such that the first signal conductor pillar is positioned therebetween.
    The high frequency module according to any one of claims 1 to 3.
  5.  前記1以上のグランド導体柱は、当該1以上のグランド導体柱と前記1以上のグランドバンプのうちの1つのグランドバンプとによって、前記第1信号導体柱が間に位置するように配置される、第3グランド導体柱を有する、
     請求項1から4のいずれか1項に記載の高周波モジュール。
    The one or more ground conductor pillars are arranged such that the first signal conductor pillar is positioned between the one or more ground conductor pillars and one of the one or more ground bumps. having a third ground conductor post,
    The high frequency module according to any one of claims 1 to 4.
  6.  前記第1主面に垂直な方向から見て、前記1以上のグランド導体柱は、
     前記電子部品の辺のうち前記第1信号導体柱と最も近い辺に沿った第1方向において、前記第1信号導体柱が間に位置するように配置される、第1グランド導体柱および第2グランド導体柱と、
     前記第1方向に直交する第2方向において、前記第1信号導体柱に隣り合って配置される第3グランド導体柱と、
     前記第1方向および前記第2方向と異なる第3方向において、前記第1信号導体柱に隣り合って配置される第4グランド導体柱と、を有する、
     請求項1から3のいずれか1項に記載の高周波モジュール。
    When viewed from a direction perpendicular to the first main surface, the one or more ground conductor columns are
    A first ground conductor pillar and a second ground conductor pillar arranged such that the first signal conductor pillar is positioned between them in a first direction along a side of the electronic component that is closest to the first signal conductor pillar. a ground conductor post;
    a third ground conductor pole arranged adjacent to the first signal conductor pole in a second direction orthogonal to the first direction;
    a fourth ground conductor post arranged adjacent to the first signal conductor post in a third direction different from the first direction and the second direction;
    The high frequency module according to any one of claims 1 to 3.
  7.  前記電子部品は、前記電子部品を貫通し、前記1以上のグランドバンプに接続される1以上の貫通導体を有する、
     請求項1から6のいずれか1項に記載の高周波モジュール。
    The electronic component has one or more through conductors penetrating the electronic component and connected to the one or more ground bumps.
    The high frequency module according to any one of claims 1 to 6.
  8.  前記被覆樹脂の内部に位置し、前記電子部品の有する面のうち、前記複数のバンプが配置された面と反対側の面に配置され、前記貫通導体と接続される接続導体をさらに有する、
     請求項7に記載の高周波モジュール。
    further comprising a connection conductor located inside the coating resin, arranged on a surface of the electronic component opposite to the surface on which the plurality of bumps are arranged, and connected to the through conductor;
    The high frequency module according to claim 7.
  9.  前記1以上のグランドバンプは、前記第1グランドバンプと隣り合う第2グランドバンプをさらに有する、
     請求項1から8のいずれか1項に記載の高周波モジュール。
    The one or more ground bumps further have a second ground bump adjacent to the first ground bump,
    The high frequency module according to any one of claims 1 to 8.
  10.  前記第1主面に垂直な方向から見て、前記第1グランドバンプおよび前記第2グランドバンプは、前記電子部品の辺のうち、前記第1信号導体柱と最も近い辺に配置される、
     請求項9に記載の高周波モジュール。
    When viewed from a direction perpendicular to the first main surface, the first ground bump and the second ground bump are arranged on the side closest to the first signal conductor column among the sides of the electronic component,
    The high frequency module according to claim 9.
  11.  前記第1主面に垂直な方向から見て、前記第1信号導体柱と前記1以上のグランド導体柱との距離は、前記第1信号導体柱と前記第1グランドバンプとの距離より大きい、
     請求項1から9のいずれか1項に記載の高周波モジュール。
    When viewed from a direction perpendicular to the first main surface, the distance between the first signal conductor column and the one or more ground conductor columns is greater than the distance between the first signal conductor column and the first ground bump,
    The high frequency module according to any one of claims 1 to 9.
  12.  前記第1信号導体柱と異なる高周波信号が流れる第2信号導体柱をさらに有し、
     前記1以上のグランド導体柱の少なくとも1つは、前記第1信号導体柱と前記第2信号導体柱との間に位置するように配置される、
     請求項1から11のいずれか1項に記載の高周波モジュール。
    further comprising a second signal conductor pole through which a high-frequency signal different from that of the first signal conductor pole flows;
    at least one of the one or more ground conductor pillars is arranged to be positioned between the first signal conductor pillar and the second signal conductor pillar;
    The radio frequency module according to any one of claims 1 to 11.
  13.  前記第1主面に垂直な方向から見て、前記第1信号導体柱と前記第1グランドバンプとの距離は、前記第1信号導体柱の最大径より小さい、
     請求項1から12のいずれか1項に記載の高周波モジュール。
    When viewed from a direction perpendicular to the first main surface, the distance between the first signal conductor post and the first ground bump is smaller than the maximum diameter of the first signal conductor post.
    The radio frequency module according to any one of claims 1 to 12.
  14.  前記第1主面と反対側の第2主面側に配置され、高周波信号を放射または受信する複数のパッチアンテナを含むアンテナをさらに有し、
     前記電子部品は前記複数のパッチアンテナと電気的に接続される、
     請求項1から13のいずれか1項に記載の高周波モジュール。
    further comprising an antenna including a plurality of patch antennas arranged on the side of the second main surface opposite to the first main surface and for radiating or receiving high frequency signals;
    the electronic component is electrically connected to the plurality of patch antennas;
    A high frequency module according to any one of claims 1 to 13.
  15.  誘電体基板と、
     前記誘電体基板の第1主面に設けられた被覆樹脂と、
     前記被覆樹脂の内部に位置し、前記第1主面に複数のバンプを介して実装された電子部品と、
     前記被覆樹脂を前記誘電体基板の厚み方向に貫通し、前記誘電体基板に配置された複数の導体柱と、
     を備え、
     前記複数の導体柱は、前記電子部品と隣り合い、かつ、高周波信号が流れる第1信号導体柱と、前記第1信号導体柱と隣り合い、かつ、グランド電位に設定される1以上のグランド導体柱と、を有し、
     前記複数のバンプは、前記第1信号導体柱に接続される信号バンプと、前記1以上のグランド導体柱に接続される1以上のグランドバンプと、を有し、
     前記1以上のグランドバンプのうち、前記第1信号導体柱に最も近いグランドバンプを第1グランドバンプとすると、
     前記第1主面に垂直な方向から見て、前記第1信号導体柱と前記第1グランドバンプとの距離は、前記第1信号導体柱と前記信号バンプとの距離より小さい、
     高周波モジュール。
    a dielectric substrate;
    a coating resin provided on the first main surface of the dielectric substrate;
    an electronic component located inside the coating resin and mounted on the first main surface via a plurality of bumps;
    a plurality of conductor columns arranged on the dielectric substrate through the coating resin in the thickness direction of the dielectric substrate;
    with
    The plurality of conductor pillars includes a first signal conductor pillar adjacent to the electronic component and through which a high-frequency signal flows, and one or more ground conductors adjacent to the first signal conductor pillar and set to a ground potential. having a pillar and
    The plurality of bumps has a signal bump connected to the first signal conductor pillar and one or more ground bumps connected to the one or more ground conductor pillars,
    If the ground bump closest to the first signal conductor column among the one or more ground bumps is the first ground bump,
    When viewed from a direction perpendicular to the first main surface, the distance between the first signal conductor post and the first ground bump is smaller than the distance between the first signal conductor post and the signal bump.
    high frequency module.
PCT/JP2022/029828 2021-09-08 2022-08-03 High-frequency module WO2023037799A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-146357 2021-09-08
JP2021146357 2021-09-08

Publications (1)

Publication Number Publication Date
WO2023037799A1 true WO2023037799A1 (en) 2023-03-16

Family

ID=85507514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029828 WO2023037799A1 (en) 2021-09-08 2022-08-03 High-frequency module

Country Status (1)

Country Link
WO (1) WO2023037799A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537208A (en) * 1991-07-31 1993-02-12 Mitsubishi Electric Corp Microwave package
JPH0541463A (en) * 1991-08-05 1993-02-19 Ngk Spark Plug Co Ltd Integrated circuit package
JPH0992651A (en) * 1995-09-27 1997-04-04 Toshiba Corp Semiconductor element and connection method
JP2004071961A (en) * 2002-08-08 2004-03-04 Taiyo Yuden Co Ltd Compound module and manufacturing method thereof
JP2006108182A (en) * 2004-09-30 2006-04-20 Taiyo Yuden Co Ltd Semiconductor device, its mounter and its manufacturing method
JP2017103447A (en) * 2015-12-04 2017-06-08 恆勁科技股分有限公司Phoenix Pioneer Technology Co.,Ltd. Semiconductor package substrate and manufacturing method of the same
JP2019102660A (en) * 2017-12-04 2019-06-24 富士通株式会社 Electronic equipment and manufacturing method for electronic equipment
US20200294939A1 (en) * 2019-03-12 2020-09-17 Intel Corporation Through-substrate waveguide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537208A (en) * 1991-07-31 1993-02-12 Mitsubishi Electric Corp Microwave package
JPH0541463A (en) * 1991-08-05 1993-02-19 Ngk Spark Plug Co Ltd Integrated circuit package
JPH0992651A (en) * 1995-09-27 1997-04-04 Toshiba Corp Semiconductor element and connection method
JP2004071961A (en) * 2002-08-08 2004-03-04 Taiyo Yuden Co Ltd Compound module and manufacturing method thereof
JP2006108182A (en) * 2004-09-30 2006-04-20 Taiyo Yuden Co Ltd Semiconductor device, its mounter and its manufacturing method
JP2017103447A (en) * 2015-12-04 2017-06-08 恆勁科技股分有限公司Phoenix Pioneer Technology Co.,Ltd. Semiconductor package substrate and manufacturing method of the same
JP2019102660A (en) * 2017-12-04 2019-06-24 富士通株式会社 Electronic equipment and manufacturing method for electronic equipment
US20200294939A1 (en) * 2019-03-12 2020-09-17 Intel Corporation Through-substrate waveguide

Similar Documents

Publication Publication Date Title
US20230130259A1 (en) Radio frequency device packages
US11631933B2 (en) Antenna module and communication device
JP6750738B2 (en) Antenna module and communication device
KR102530828B1 (en) Chip antenna and chip antenna module including the same
US9698487B2 (en) Array antenna
KR102488399B1 (en) Chip antenna
US11171421B2 (en) Antenna module and communication device equipped with the same
CN110521057B (en) Antenna module and communication device
US9196951B2 (en) Millimeter-wave radio frequency integrated circuit packages with integrated antennas
US9190732B2 (en) Antenna device
US7649499B2 (en) High-frequency module
WO2016063759A1 (en) Wireless communication module
TWI593334B (en) Wireless module
KR102470355B1 (en) Chip antenna module
KR20150041054A (en) Dual-polarized antenna
US9245859B2 (en) Wireless module
US20140126168A1 (en) Wireless module
US20200153114A1 (en) Planar array antenna and wireless module
KR20210043145A (en) Chip antenna
CN110050386B (en) Antenna substrate
TW201818608A (en) Antenna device
JP2005117139A (en) Microwave module, and array antenna system employing the same
JP7047910B2 (en) Antenna device
WO2023037799A1 (en) High-frequency module
US10971822B2 (en) Antenna, module substrate, and module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE