WO2023037779A1 - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
WO2023037779A1
WO2023037779A1 PCT/JP2022/028914 JP2022028914W WO2023037779A1 WO 2023037779 A1 WO2023037779 A1 WO 2023037779A1 JP 2022028914 W JP2022028914 W JP 2022028914W WO 2023037779 A1 WO2023037779 A1 WO 2023037779A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
external
membrane
correction
correction resistor
Prior art date
Application number
PCT/JP2022/028914
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 笹原
健 海野
正典 小林
孝平 縄岡
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2023037779A1 publication Critical patent/WO2023037779A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/04Means for compensating for effects of changes of temperature, i.e. other than electric compensation

Definitions

  • the present invention relates to a pressure sensor that detects strain due to deformation of a membrane from changes in resistance of a resistor.
  • Patent Document 1 describes a pressure sensor having a membrane (diaphragm), a plurality of resistors formed on the membrane, and a temperature measuring element formed on the membrane.
  • a plurality of resistors formed on the membrane form a detection circuit (strain gauge) consisting of a bridge circuit. change the value. By detecting the output signal of the detection circuit at this time, it is possible to measure the change in the resistance values of the plurality of resistors, that is, the pressure applied to the membrane.
  • strain gauge strain gauge
  • the temperature measuring element formed on the membrane consists of a resistance element such as a thermistor, and changes the resistance value according to the temperature change of the pressure fluid. Therefore, by detecting the output signal of the temperature measuring element, the temperature of the pressure fluid can be measured. Based on this temperature information, the error contained in the output signal of the detection circuit (temperature error due to dependency) can be corrected.
  • a temperature measuring element in the area where a plurality of resistors are arranged, that is, in the strain-generating area of the membrane.
  • the membrane receives pressure from the pressurized fluid and generates strain, the resistance change of the temperature measuring element due to the effect of the strain cannot be ignored, and the output signal of the temperature measuring element is There is a risk that the corresponding error will exceed the allowable amount and be superimposed. Therefore, the accuracy of the temperature information obtained from the output signal of the temperature measuring element cannot be ensured, and it is difficult to perform accurate temperature correction on the output signal of the detection circuit.
  • the present invention has been made in view of such problems, and its object is to provide a pressure sensor capable of accurately performing temperature detection or temperature correction.
  • the pressure sensor according to the present invention comprises: a membrane that deforms in response to pressure; a plurality of sensor resistors formed on the membrane and constituting a detection circuit; a correction resistor formed on the membrane for detecting temperature; an external resistor formed on an external substrate different from the membrane and electrically connectable to one end of the correction resistor.
  • the temporary output signal may include not only the resistance change of the correction resistor caused by the temperature change of the pressure fluid, but also the resistance change of the correction resistor caused by the distortion of the membrane. be.
  • the change in resistance of the correction resistor caused by the distortion of the membrane can be calculated. can be specified. That is, if the temperature conditions are the same between the position where the correction resistor is arranged and the position where the external resistor is arranged, the resistance change occurs in the correction resistor according to the temperature change of the pressurized fluid. , the resistance change also occurs in the external resistor at the same rate of change.
  • the output signal of the correction resistor (for example, the correction resistor interposed between the power supply line and the ground and the external Theoretically, the value of the voltage divided between the resistors) is equal to the resistance change of the correction resistor due to the strain of the membrane. Therefore, the true temperature of the pressurized fluid can be obtained by removing the change in the resistance of the correction resistor due to the distortion of the membrane from the detected value of the provisional output signal.
  • the temperature of the pressure fluid can be detected with high accuracy, and the error contained in the output signal of the detection circuit (resistance change of each sensor resistor) can be detected based on the temperature information. error due to the temperature dependence of ) can be accurately corrected. Further, as described above, since the change in resistance of the correction resistor caused by the distortion of the membrane can be removed from the detected value of the temporary output signal, the correction resistor can be formed in the distortion generation region of the membrane. There is no problem, and it is possible to favorably reduce the size of the pressure sensor or improve the accuracy of temperature measurement.
  • the external substrate comprises a plurality of external substrates
  • the external resistor comprises a plurality of external resistors
  • each of the plurality of external resistors is formed on each of the plurality of external substrates.
  • the correction resistor and the plurality of external resistors may form a bridge circuit. With such a configuration, it is possible to obtain the output signal of the correction resistor as a differential output of the bridge circuit. The resistance change of the resistor can be read finely.
  • each external resistor on each external substrate, it is possible to freely adjust the arrangement of each external resistor by appropriately adjusting the installation position of each external substrate. The degree of freedom of arrangement can be increased.
  • the external resistor comprises a plurality of external resistors, the external substrate is formed with the plurality of external resistors, and the correction resistor and the plurality of external resistors form a bridge circuit. You may have Even in such a configuration, as described above, the output signal of the correction resistor can be obtained as a differential output of the bridge circuit. It is possible to finely read the resistance change of the correction resistor due to strain. Also, since the external resistors are formed on the same substrate, the temperature conditions at the positions where the external resistors are arranged are the same. Therefore, each external resistor undergoes a similar temperature change, and it is possible to prevent an error caused by a difference in temperature change from being included in the output signal of the correction resistor.
  • the external substrate and the membrane are made of materials having similar thermal properties.
  • the correction resistor and the external resistor undergo similar temperature changes, preventing the output signal of the correction resistor from including an error caused by the difference in temperature change between the resistors. It is possible to detect the resistance change of the correction resistor due to the distortion of the membrane with high accuracy.
  • the temporary output signal includes not only the resistance change of the correction resistor caused by the temperature change of the pressure fluid, but also the resistance change of the correction resistor caused by the distortion of the membrane. However, it is possible to prevent further inclusion of errors due to the effects of external resistors.
  • the correction resistor further includes a first conductive path and a second conductive path electrically connectable to one end of the correction resistor, and the external resistor is electrically connected to the second conductive path.
  • the release unit is a switch that switches the electrical connection destination of the correction resistor to either the first conductive path or the second conductive path.
  • the device further includes a substrate portion to which the external substrate is fixed, the external substrate is arranged adjacent to the periphery of the membrane, and the external resistor formed on the external substrate is formed on the membrane. is arranged in the vicinity of the correction resistor.
  • FIG. 1 is a schematic cross-sectional view of a pressure sensor according to a first embodiment of the invention.
  • 2 is a schematic plan view of the pressure sensor shown in FIG. 1.
  • FIG. 3 is a schematic plan view showing each configuration of the detection circuit, the temperature measurement circuit and the strain measurement circuit shown in FIG. 2.
  • FIG. 4A is a circuit diagram showing a circuit configuration when a voltage dividing resistor is electrically connected to one end of the correction resistor shown in FIG. 3.
  • FIG. 4B is a circuit diagram showing a circuit configuration when an external resistor is electrically connected to one end of the correction resistor shown in FIG. 3;
  • FIG. FIG. 5A is a diagram showing the relationship between the temperature change of the pressure fluid and the voltage value of the output signal of the correction resistor in the circuit shown in FIG.
  • FIG. 5B is a diagram showing the relationship between the distortion occurring in the membrane and the voltage value of the output signal of the correction resistor in the circuit shown in FIG. 4B.
  • FIG. 6A is a circuit showing a state when a voltage-dividing resistor is electrically connected to one end of a correction resistor in a circuit configured such that the circuit shown in FIG. 4A and the circuit shown in FIG. 4B can be switched by a switch. It is a diagram.
  • FIG. 6B is a circuit diagram showing a state when an external resistor is electrically connected to one end of the correction resistor in the circuit shown in FIG. 6A.
  • FIG. 7 is a schematic plan view showing configurations of a detection circuit, a temperature measurement circuit, and a strain measurement circuit of the pressure sensor according to the second embodiment of the present invention.
  • FIG. 8 is a circuit diagram showing the configuration of a bridge circuit composed of the correction resistor and a plurality of external resistors shown in FIG.
  • FIG. 9A is a circuit diagram showing a state when a voltage dividing resistor is electrically connected to one end of the correction resistor.
  • FIG. 9B is a circuit diagram showing a state when an external resistor is electrically connected to one end of the correction resistor in the circuit shown in FIG. 9A.
  • 10A is a diagram showing the relationship between the temperature change of the pressure fluid and the voltage value of the output signal of the correction resistor in the circuit shown in FIG. 8.
  • FIG. 8 is a circuit diagram showing the configuration of a bridge circuit composed of the correction resistor and a plurality of external resistors shown in FIG.
  • FIG. 9A is a circuit diagram showing a state when
  • FIG. 10B is a diagram showing the relationship between the distortion occurring in the membrane and the voltage value of the output signal of the correction resistor in the circuit shown in FIG. 8.
  • FIG. FIG. 11 is a schematic plan view showing configurations of a detection circuit, a temperature measurement circuit, and a strain measurement circuit of a pressure sensor according to a third embodiment of the present invention.
  • a pressure sensor 10 is a pressure sensor that utilizes the piezoresistive effect (piezoresistive effect), and detects strain due to deformation of the membrane from changes in the resistance of a resistor. be.
  • the pressure sensor 10 has a connecting member 12 , a holding member 14 , a substrate portion 16 , an external substrate 18 and a stem 20 .
  • the connection member 12 is for fixing the pressure sensor 10 to the object to be measured.
  • a thread groove 12 a is formed on the outer peripheral surface of the connecting member 12 .
  • the thread groove 12a has a shape that can be screwed into a thread groove formed in the object to be measured.
  • a channel 12b is formed which is used as a channel for pressure fluid.
  • the holding member 14 is for fixing the stem 20 to the connecting member 12 .
  • the holding member 14 is arranged on the upper surface of the connecting member 12 and has a ring-shaped outer shape.
  • a through hole is formed in the center of the restraining member 14, and the stem 20 can be inserted (arranged) therein.
  • a portion of the stem 20 (a flange portion 21 described later) can be fixed between the holding member 14 and the connecting member 12 .
  • the stem 20 has a cylindrical outer shape with a bottom (upper base) and is provided at one end of the flow path 12 b in the connection member 12 .
  • the stem 20 is made by machining a metal such as stainless steel or an alloy.
  • the material of the stem 20 is not particularly limited as long as it causes appropriate elastic deformation.
  • the stem 20 has a flange portion 21, a membrane 22 and a side wall portion 23.
  • the side wall portion 23 has a cylindrical outer shape. One end of the side wall portion 23 is closed with the membrane 22, while the other end of the side wall portion 23 is open.
  • the flange portion 21 is provided on the opening side of the stem 20 and protrudes radially outward from an opening edge formed at the other end of the side wall portion 23 .
  • the membrane 22 is a portion to which the pressure to be measured is transmitted, and constitutes the upper bottom portion of the stem 20 .
  • the membrane 22 is formed thinner than the other portions (side wall portion 23, etc.) of the stem 20, and generates deformation (distortion) according to the pressure transmitted from the flow path 12b (the pressure received from the pressure fluid).
  • the membrane 22 has an inner surface 22a that contacts the pressurized fluid and an outer surface 22b opposite to the inner surface 22a.
  • the outer surface 22b of the membrane 22 is provided with a detection circuit 30, a temperature measurement circuit 41, electrodes 51 to 56, etc., which will be described later (see FIG. 3).
  • the substrate portion 16 is fixed to the upper surface of the holding member 14 and has a ring-shaped outer shape. A through hole is formed in the center of the substrate portion 16, and the stem 20 can be inserted (arranged) therein. Electrode portions 57 to 64 (FIG. 2) are formed on the substrate portion 16, and the electrode portions 57 to 62 of the substrate portion 16 and the electrode portions 51 to 56 on the membrane 22 are connected by wire bonding or the like. They are electrically connected via wiring 80 . Electrode portions 57 to 64 formed on the substrate portion 16 are electrically connected to, for example, a signal line, power supply line, ground, or the like.
  • the external substrate 18 is configured separately from the substrate portion 16, and is fixed to the upper surface of the substrate portion 16 with a fastener such as a screw 82 or an adhesive.
  • a distortion measuring circuit 42 and electrodes 65 to 66 are provided on the upper surface of the external substrate 18, which will be described later. Examples of materials forming the external substrate 18 include stainless steel, copper alloys, aluminum alloys, and steel. Note that the external substrate 18 may be made of the same material as the stem 20 .
  • the thermal properties of the external substrate 18 are preferably similar (substantially the same) as the thermal properties of the membrane 22 . That is, the external substrate 18 is preferably made of a material having thermal properties similar to those of the membrane 22 . Thermal properties include, but are not limited to, thermal conductivity, specific heat, coefficient of thermal expansion, latent heat and melting temperature.
  • the external substrate 18 is preferably arranged adjacent to the membrane 22 on the outside (periphery) of the membrane 22 .
  • the external substrate 18 is provided with an external resistor Re
  • the membrane 22 is provided with a correction resistor Rc.
  • the external substrate 18 is located close to the membrane 22 (in particular, the position where the correction resistor Rc of the membrane 22 is provided) so that the temperature conditions (temperature environment) are the same with the position where the resistor Re is arranged. are placed as follows.
  • the external substrate 18 may be arranged along the outer circumference of the membrane 22 .
  • the position (height) of the surface of the external substrate 18 in the Z-axis direction is preferably substantially equal to the position (height) of the surface of the membrane 22 in the Z-axis direction. From the viewpoint of making the position (height) of the surface of the external substrate 18 approximately equal to the position (height) of the surface of the membrane 22 , the position of the surface of the external substrate 18 in the Z-axis direction corresponds to the Z It is preferably between the axial position and the Z-axis position of the outer surface 22b of the membrane 22 .
  • the membrane 22 is provided with the detection circuit 30, the temperature measurement circuit 41, the electrode portions 51 to 56, and the like. These configurations will be described below with reference to FIGS. 2 and 3.
  • FIG. 2 the detection circuit 30 has sensor resistors R1 to R4 and is formed in the strain generating region of the membrane 22 .
  • the top view is a schematic cross-sectional view of the stem 20, and the bottom view is a schematic plan view of the stem 20.
  • the strain generating region of the membrane 22 consists of a first strain region 24 that produces strain characteristics in a predetermined direction and a second strain region 26 that produces strain characteristics in the opposite direction to the first strain regions 24 .
  • the first strained region 24 of the membrane 22 receives pressure (positive pressure) from the inner surface 22a and produces a negative strain - ⁇ (compressive strain), while the second strained region 26 of the membrane 22 Upon receiving pressure (positive pressure) from the inner surface 22a, positive strain + ⁇ (tensile strain) is generated.
  • the distortion characteristics on the first distortion region 24 and the distortion characteristics on the second distortion region 26 are in mutually different directions (they have different signs and cancel each other out).
  • the first strained region 24 and the second strained region 26 are formed concentrically around the center O of the membrane 22, respectively.
  • the second distorted region 26 is located at a predetermined distance from the center O of the membrane 22 in the radial direction and is formed at the center of the membrane 22 .
  • the first distorted region 24 is formed outside (peripheral side) of the second distorted region 26 and located at a position a predetermined distance away from the second distorted region 26 in the radial direction of the membrane 22 .
  • An outer edge 27 of membrane 22 is connected to side wall 23 of stem 20 .
  • the sensor resistors R1 to R4 constituting the detection circuit 30 are pressure detection elements, and are configured to generate strain according to the deformation of the membrane 22, and change the resistance value by the piezoresistive effect according to the amount of strain. ing.
  • the sensor resistors R1 to R4 are produced, for example, by patterning a conductive thin film (semiconductor thin film, metal thin film, etc.) made of a predetermined material into a meander shape, for example.
  • the patterning of the conductive thin film is performed by fine processing or the like using semiconductor processing techniques such as laser processing and screen printing.
  • the conductive thin film is formed on the membrane 22 with an insulating film interposed therebetween by a thin film method such as sputtering or vapor deposition.
  • a conductive thin film can be formed directly on the outer surface 22b of the membrane 22 without forming an insulating film. good too.
  • As the conductive thin film for example, a strain resistance film containing Cr and Al is exemplified.
  • the sensor resistor R1 and the sensor resistor R3 are formed in the first strain region 24 and arranged to face each other with the center O of the membrane 22 interposed therebetween.
  • the sensor resistor R2 and the sensor resistor R4 are formed in the second strain region 26 and arranged to face each other with the center O of the membrane 22 interposed therebetween.
  • the direction in which the sensor resistor R1 and the sensor resistor R3 face each other is substantially orthogonal to the direction in which the sensor resistor R2 and the sensor resistor R4 face each other.
  • the arrangement of the sensor resistors R1 to R4 is not limited to the arrangement shown in the drawing, and may be changed as appropriate.
  • the detection circuit 30 is formed on the upper surface of the membrane 22 so as to straddle the first distorted region 24 and the second distorted region 26, and has an annular (elliptical) outer shape.
  • the detection circuit 30 is a bridge circuit, and constitutes a Wheatstone bridge in this embodiment.
  • the configuration of the detection circuit 30 is not limited to the illustrated configuration, and the detection circuit 30 may configure another bridge circuit.
  • the sensor resistor R1 and the sensor resistor R2 are connected via a connection point 71
  • the sensor resistor R1 and the sensor resistor R4 are connected via a connection point 72
  • the sensor resistor R3 and The sensor resistor R4 is connected via a connection point 73
  • the sensor resistor R2 and the sensor resistor R3 are connected via a connection point 74.
  • FIG. That is, the sensor resistors R1-R4 are electrically and physically connected to each other via the connection points 71-74.
  • connection point 71 is electrically connected to the electrode portion 51
  • connection point 72 is electrically connected to the electrode portion 52
  • connection point 73 is electrically connected to the electrode portion 53
  • connection point 74 is electrically connected to the electrode portion 54 .
  • the electrode portions 51 to 54 are produced by patterning a conductive thin film (semiconductor thin film, metal thin film, etc.) made of a predetermined material into a predetermined shape, for example, by the same method as the sensor resistors R1 to R4. .
  • Each of the electrode portions 51 to 54 is formed on the outer edge portion 27 of the membrane 22, but the positions of the electrode portions 51 to 54 are not limited to the illustrated positions. It may be formed at any position between.
  • connection points 71 to 74 and each of the electrode portions 51 to 54 are continuously connected by the conductive thin film patterned into the predetermined shape described above.
  • each of the connection points 71 to 74 and each of the electrode portions 51 to 54 may be connected by wire bonding or the like.
  • the electrode portion 51 is electrically connected to the electrode portion 57 formed on the substrate portion 16 by wire bonding or the like
  • the electrode portion 52 is connected to the electrode portion 58 formed on the substrate portion 16 by wire.
  • the electrode portion 53 is electrically connected to the electrode portion 59 formed on the substrate portion 16 by wire bonding or the like
  • the electrode portion 54 is electrically connected to the electrode portion 59 formed on the substrate portion 16 . It is electrically connected to the portion 60 by wire bonding or the like.
  • the electrode portions 57 to 60 are produced on the substrate portion 16 by, for example, the same method as the electrode portion 51 and the like. The same applies to electrode portions 61 to 64, which will be described later.
  • the electrode section 58 is electrically connected to, for example, a power supply line, and power (bias voltage) is supplied from the power supply line to the detection circuit 30 via the electrode section 58 and the electrode section 52 .
  • the electrode section 60 is electrically connected to the ground, for example.
  • the electrode section 57 is connected to, for example, a control section (not shown) of the pressure sensor 10, and the voltage (V+) at the connection point 71 is output as a detection signal to the control section via the electrode section 57 and the electrode section 51.
  • the electrode section 59 is connected to, for example, a control section (not shown) of the pressure sensor 10, and the voltage (V-) at the connection point 73 is output as a detection signal to the control section via the electrode section 59 and the electrode section 53.
  • the control unit is configured by an IC such as an MCU, FPGA, or ASIC, for example.
  • the voltage value V+ of the detection signal output from the electrode portion 57 (electrode portion 51) and the voltage value V ⁇ of the detection signal output from the electrode portion 59 (electrode portion 53) are combined by a differential amplifier having a gain of A, for example. By utilizing and amplifying, it is possible to acquire the output voltage V from the detection circuit 30 and detect the fluid pressure acting on the membrane 22 based on the output voltage V.
  • FIG. 1 A
  • the output signal of the detection circuit 30 includes the resistance of the sensor resistors R1 to R4. Errors due to temperature dependence of changes may be included. That is, the output signal of the detection circuit 30 includes not only the resistance changes of the sensor resistors R1 to R4 caused by the strain of the membrane 22, but also the resistance changes of the sensor resistors R1 to R4 caused by temperature changes of the pressure fluid. may contain errors.
  • the pressure sensor 10 is provided with a temperature measurement circuit 41, as shown in FIG.
  • the configuration of the temperature measurement circuit 41 will be described below.
  • the temperature measurement circuit 41 is formed on the membrane 22 and has a correction resistor Rc.
  • the correction resistor Rc is a resistor for detecting temperature, and changes the resistance value according to the temperature change of the pressurized fluid, for example.
  • the correction resistor Rc is formed independently (not electrically connected) to the detection circuit 30, and is formed in the outer edge portion 27 of the membrane 22, which is relatively less susceptible to distortion of the membrane 22. preferably. This is to prevent the correction resistor Rc from changing its resistance value according to the distortion of the membrane.
  • the correction resistor Rc may be formed in the strain generation region of the membrane 22 that is relatively susceptible to the strain of the membrane 22 .
  • a circuit disortion measuring circuit 42 capable of measuring the resistance change of the correction resistor Rc caused by the distortion of the membrane 22 is provided. This is because, even when the correction resistor Rc is arranged at a certain position, the resistance change of the correction resistor Rc caused by the temperature change of the pressure fluid can be specified accurately.
  • At least part of the correction resistor Rc may be formed at an arbitrary position between the first strain region 24 and the outer edge portion 27.
  • part of the correction resistor Rc may be formed at an arbitrary position between the first strain region 24 and the second strain region 26 .
  • the correction resistor Rc is fabricated by patterning a conductive thin film (semiconductor thin film, metal thin film, etc.) made of a predetermined material into a predetermined shape, for example, in the same manner as the sensor resistors R1 to R4. .
  • the extending direction of the correction resistor Rc is, when viewed as a whole, substantially aligned with, for example, the circumferential direction of the membrane 22 (the correction resistor Rc extends along the circumferential direction of the membrane 22 in a meandering shape). ).
  • the extending direction of the correction resistor Rc is not limited to this, and the correction resistor Rc may extend radially along the radial direction of the membrane 22, for example.
  • one end of the correction resistor Rc is electrically and physically connected to the electrode section 55 formed on the membrane 22 , and the other end of the correction resistor Rc is connected to the membrane 22 . It is electrically and physically connected to the electrode portion 56 formed thereon.
  • the electrode portion 56 is electrically connected to the electrode portion 62 formed on the substrate portion 16 by wire bonding or the like, and is electrically connected to the ground, for example.
  • the electrode portion 55 is electrically connected to the electrode portion 61 formed on the substrate portion 16 by wire bonding or the like.
  • the electrode section 61 is electrically connected to, for example, a control section (not shown) of the pressure sensor 10, and the voltage (Vo) at the connection point 75 is converted into an output signal ( It is possible to output to the control section as a signal indicating the resistance change of the correction resistor Rc.
  • connection point 75 can be electrically connected to a power supply line (not shown) via the first conductive path 75a.
  • a voltage dividing resistor Rt (see FIG. 6A) is interposed between the power supply line and the connection point 75, and a bias voltage Vdd1 (FIG. 3) is applied to the temperature measuring circuit 41 (correction resistor Rc). supplied.
  • the voltage dividing resistor Rt may be provided in a control unit such as an ASIC.
  • connection point 75 can be electrically connected to the external resistor Re via the second conductive path 75b.
  • An electrode portion 63 and an electrode portion 65 are provided between the external resistor Re and the connection point 75 .
  • a switch 83 may be provided at the connection point 75 as a release portion.
  • the switch 83 can switch the electrical connection destination of one end of the correction resistor Rc to the first conductive path 75a or the second conductive path 75b. Switching control of the switch 83 is performed by, for example, a control unit (not shown) of the pressure sensor 10 or the like.
  • the output signal of the correction resistor Rc is output to the control section via the electrode section 61 (FIG. 2).
  • the electrical connection between one end of the correction resistor Rc and the external resistor Re is released, and one end of the correction resistor Rc is electrically connected to the voltage dividing resistor Rt as shown in FIG. 6A.
  • the output signal of the correction resistor Rc is detected by the control unit to avoid interference with the external resistor Re (distortion measurement circuit 42), and the output signal of the correction resistor Rc is It is possible to prevent an error from being included due to the influence of the external resistor Re.
  • first conductive path 75 a and the second conductive path 75 b may be physically and electrically connected at the connection point 75 without installing the release portion described above at the connection point 75 .
  • the correction resistor Rc and the voltage dividing resistor Rt are electrically connected. are directly connected to form the circuit shown in FIG. 4A or FIG. 6A.
  • the output voltage Vo at node 76 (corresponding to electrode portion 61 shown in FIG. 2) is equal to the voltage at node 75 shown in FIG. .
  • the output voltage Vo is obtained by dividing the bias voltage Vdd1 supplied through the first conductive path 75a by the voltage dividing resistor Rt and the correcting resistor Rc.
  • the output signal of the correction resistor Rc (the output voltage Vo of the electrode section 61) is transmitted through the electrode section 61 (FIG. 2).
  • the resistance changes (pressure fluid temperature) of the sensor resistors R1 to R4 caused by temperature changes of the pressure fluid based on the detected values. Therefore, temperature correction can be performed on the output signal of the detection circuit 30 based on this measured value.
  • measuring the resistance change (temperature of the pressure fluid) of the sensor resistors R1 to R4 caused by the temperature change of the pressure fluid based on the detected value of the output signal of the correction resistor Rc is called “temperature measurement. called a mode.
  • the resistance change of the correction resistor Rc is affected by the distortion of the membrane 22 to some extent. That is, when the membrane 22 receives pressure from the pressurized fluid and is distorted, the correction resistor Rc changes its resistance value due to the influence of the distortion. Therefore, the output signal (the output voltage Vo shown in FIG. 4A or FIG. 6A) of the correction resistor Rc detected in the temperature measurement mode includes not only the resistance change caused by the temperature change of the pressure fluid, but also the distortion of the membrane 22.
  • the error may include the resistance change due to Therefore, the output signal of the correction resistor Rc detected in the temperature measurement mode may not accurately reflect the resistance change (temperature of the pressure fluid) of the sensor resistors R1 to R4 caused by the temperature change of the pressure fluid. Therefore, even if temperature correction is performed on the output signal of the detection circuit 30 based on this output signal, there is a possibility that the accuracy of the temperature correction cannot be ensured.
  • the pressure sensor 10 is provided with the strain measuring circuit 42 in order to measure the resistance change of the correction resistor Rc caused by the strain of the membrane 22 .
  • the configuration of the distortion measuring circuit 42 will be described below.
  • the strain measurement circuit 42 is formed on the external substrate 18 and has an external resistor Re.
  • the external resistor Re is fabricated by patterning a conductive thin film (semiconductor thin film, metal thin film, etc.) made of a predetermined material into a predetermined shape, for example, in the same manner as the correction resistor Rc.
  • the external resistor Re is not formed on the membrane 22, and thus is not affected by distortion. Therefore, the external resistor Re does not substantially change in resistance due to strain, but only changes in resistance due to temperature.
  • One end of the external resistor Re is electrically and physically connected to an electrode portion 65 formed on the external substrate 18 .
  • the electrode portion 65 is electrically connected to the electrode portion 63 formed on the substrate portion 16 by wire bonding or the like.
  • the electrode portion 63 is electrically connected to the second conductive path 75b.
  • the switch 83 switches the electrical connection destination of one end of the correction resistor Rc to the second conductive path 75b, thereby connecting the external resistor Re to one end of the correction resistor Rc. electrically connected.
  • the other end of the external resistor Re is electrically and physically connected to an electrode portion 66 formed on the external substrate 18.
  • the electrode portion 66 is electrically connected to the electrode portion 64 formed on the substrate portion 16 by wire bonding or the like.
  • the electrode section 66 is electrically connected to, for example, a power supply line, and a bias voltage Vdd2 (FIG. 3) is supplied from the power supply line to the distortion measuring circuit 42 via the electrode sections 64 and 66. be done.
  • the correction resistor Rc and the external resistor Re are electrically connected. are directly connected to form the circuit shown in FIG. 4B or FIG. 6B.
  • the switch 83 can switch the electrical connection destination of one end of the correction resistor Rc from the first conductive path 75a to the second conductive path 75b.
  • the output voltage Vo at node 76 (corresponding to electrode portion 61 shown in FIG. 2) is equal to the voltage at node 75 shown in FIG. .
  • the output voltage Vo is obtained by dividing the bias voltage Vdd2 supplied through the second conductive path 75b by the external resistor Re and the correction resistor Rc, and is expressed by the following formula (1).
  • TCR is the temperature resistance coefficient of the correction resistor Rc and the external resistor Re.
  • Equation (2) when resistance changes ⁇ Rc and ⁇ Re occur in both the correction resistor Rc and the external resistor Re, as shown in Equation (2), the resistance change rate (1+TCR ⁇ T) of the correction resistor Rc and Since the resistance change rate (1+TCR ⁇ T) of the composite resistor composed of the correction resistor Rc and the external resistor Re is equal, these are canceled out, and as a result, the output voltage Vo′ after the temperature change is is expressed by the same formula as the output voltage Vo of . In other words, as shown in FIG. 5A, the output voltage Vo does not change with changes in temperature and is always a constant value.
  • the output voltage Vo' is a function with the magnitude of distortion ⁇ as a variable. Therefore, as shown in FIG. 5B, the output voltage Vo' changes by an amount corresponding to the magnitude of ⁇ .
  • the resistance of the correction resistor Rc caused by the temperature change of the pressure fluid The change does not appear as a change in the output voltage Vo (see FIG. 5A), and the change in the output voltage Vo of the correction resistor Rc always represents the resistance change of the correction resistor Rc caused by the strain of the membrane 22. becomes. Therefore, by detecting the output voltage Vo, the resistance change of the correction resistor Rc caused by the strain of the membrane 22 can be measured. Thus, measuring the resistance change of the correction resistor Rc caused by the strain of the membrane 22 based on the detected value of the output signal of the correction resistor Rc is called "distortion measurement mode".
  • the output signal of the correction resistor Rc detected in the temperature measurement mode includes the correction due to the distortion of the membrane 22 in addition to the resistance change of the correction resistor Rc caused by the temperature change of the pressure fluid. In some cases, the resistance change of the resistor Rc is included.
  • the output signal of the correction resistor Rc detected in the strain measurement mode theoretically contains only the resistance change of the correction resistor Rc caused by the strain of the membrane 22 . Therefore, by taking the difference between the detected value of the output signal of the correction resistor Rc detected in the temperature measurement mode and the detected value of the output signal of the correction resistor Rc detected in the strain measurement mode, the former output signal The resistance change (error) due to the strain of the membrane 22 can be removed from the detected value of .
  • the resistance change rate (1+TCR ⁇ T) of the correction resistor Rc and the resistance change rate ( 1+TCR ⁇ T) are substantially equal, that is, the TCR of the correction resistor Rc and the TCR of the external resistor Re are substantially equal, and the temperature change ⁇ T of the correction resistor Rc and the temperature change ⁇ T of the external resistor Re are substantially equal. It is assumed that the temperature change ⁇ T is substantially equal.
  • the material constituting the external resistor Re should be the same material as the material constituting the correction resistor Rc, or a material having temperature characteristics (temperature coefficient of resistance, etc.) similar to that of the correction resistor Rc. is preferred.
  • the difference between the TCR of the external resistor Re and the TCR of the correction resistor Rc is preferably ⁇ 100 ppm or less.
  • the external resistor Re formed on the external substrate 18 is preferably arranged in the vicinity of the correction resistor Rc formed on the membrane 22 .
  • the temperature change ⁇ T of the correction resistor Rc and the temperature change ⁇ T of the external resistor Re become substantially equal, and the resistance change of the correction resistor Rc caused by the strain of the membrane 22 can be detected with high accuracy.
  • the temperature condition between the position where the external resistor Re is arranged and the position where the correction resistor Rc is arranged will vary. can be made the same. Therefore, the external resistor Re and the correction resistor Rc undergo similar temperature changes, and the output signal of the correction resistor Rc contains an error due to the difference in temperature change between the resistors. can be prevented, and the resistance change of the correction resistor Rc caused by the distortion of the membrane 22 can be detected with high accuracy.
  • the pressure sensor 10 can accurately detect the temperature of the pressure fluid, and based on the temperature information, the error contained in the output signal of the detection circuit 30 (each error caused by the temperature dependence of the resistance change of the sensor resistors R1 to R4) can be accurately corrected.
  • the resistance change of the correction resistor Rc caused by the distortion of the membrane 22 can be removed from the detected value of the output signal detected in the temperature measurement mode, the correction resistor Rc is placed in the distortion generation region of the membrane 22. There is no problem even if it is formed, and it is possible to favorably reduce the size of the pressure sensor 10 or improve the accuracy of temperature measurement.
  • the pressure sensor 10A has three external substrates 18_1-18_3 and three external resistors Re1-Re3.
  • An external resistor Re1 is formed on the external substrate 18_1
  • an external resistor Re2 is formed on the external substrate 18_2
  • an external resistor Re3 is formed on the external substrate 18_3.
  • the three external substrates 18_1 to 18_3 are configured separately and are arranged at predetermined intervals from each other.
  • the external substrates 18_1 to 18_3 are preferably arranged close to each other from the viewpoint of making the temperature conditions (temperature environments) of the external resistors Re1 to Re3 the same.
  • the three external substrates 18_1 to 18_3 are provided with the membrane 22 (particularly, the membrane 22 (especially, the membrane 22) is preferably arranged close to the position where the correction resistor Rc is provided.
  • the external substrates 18_1 to 18_3 may be arranged along the outer circumference of the membrane 22 .
  • the external substrates 18_1 to 18_3 are preferably made of substrates made of materials having similar thermal characteristics.
  • the external substrates 18_1 to 18_3 be formed of substrates having the same shape, size, or height.
  • the positions (heights) of the surfaces of the external substrates 18_1 to 18_3 are preferably substantially equal to each other, and preferably substantially equal to the position (height) of the surface of the membrane 22 . That is, the Z-axis direction positions of the surfaces of the external substrates 18_1 to 18_3 are between the Z-axis direction positions of the inner surface 22a (FIG. 1) of the membrane 22 and the Z-axis direction positions of the outer surface 22b of the membrane 22. is preferred.
  • the external resistors Re1 to Re3 may be resistors similar to the external resistor Re in the first embodiment.
  • the external resistors Re1 to Re3 may be resistors having a shape, size or resistance value different from that of the external resistor Re in the first embodiment.
  • the external resistors Re1 to Re3 may be resistors having the same shape, size or resistance value.
  • at least one of the external resistors Re1 to Re3 may be a resistor having a shape, size or resistance value different from that of the other resistors.
  • the materials constituting the external resistors Re1 to Re3 be the same material or materials with similar temperature characteristics.
  • the temperature environment of the external resistors Re1 to Re3 changes according to the temperature change of the pressure fluid, it is possible to cause the same temperature change ⁇ T to occur in the external resistors Re1 to Re3. becomes.
  • the external resistors Re1 to Re3 are electrically connected by wire bonding or wiring on the substrate portion 16 via electrodes formed on the external substrates 18_1 to 18_3 and the substrate portion 16 (FIG. 2).
  • the electrode portion 65 electrically connected to one end of the external resistor Re1 is electrically connected to the connection point 75, and the electrode portion 65 electrically connected to the other end of the external resistor Re1.
  • the portion 66 is electrically connected to an electrode portion 68 electrically connected to the other end of the external resistor Re2.
  • the electrode portion 67 electrically connected to one end of the external resistor Re2 is electrically connected to the electrode portion 70 electrically connected to the other end of the external resistor Re3.
  • the electrode portion 69 electrically connected to one end of the external resistor Re3 is electrically connected to the connection point 79 .
  • the connection point 79 is electrically connected to the electrode portion 56 formed at the other end of the correction resistor Rc.
  • a connection point 77 electrically connected to the electrode portion 66 and the electrode portion 68 is electrically connected to a power supply line, and a connection point 79 electrically connected to the electrode portion 56 and the electrode portion 69. is electrically connected to ground.
  • a connection point 76 electrically connected to the electrode section 65 and the electrode section 55 is connected to a control section (not shown) of the pressure sensor 10A, and the voltage V + at the connection point 76 (an external intermediate potential between the resistor Re1 and the correction resistor Rc) is output to the control section as a detection signal.
  • connection point 78 electrically connected to the electrode section 67 and the electrode section 70 is connected to a control section (not shown) of the pressure sensor 10A, and the voltage V ⁇ at the connection point 78 (an external intermediate potential between the resistor Re2 and the external resistor Re3) is output to the controller as a detection signal.
  • the correction resistor Rc and the plurality of external resistors Re1 to Re3 form a bridge circuit.
  • a switch 83 (release section) may be provided at the position of the connection point 75 .
  • the switch 83 when the switch 83 is electrically connected to the first conductive path 75a, the temperature measurement mode is entered, and a series circuit is formed by the voltage dividing resistor Rt and the correction resistor Rc.
  • the output voltage Vo1 at the connection point 76 is output to the control section (not shown) of the pressure sensor 10A as the output signal of the correction resistor Rc.
  • the detected value of the output voltage Vo1 mainly indicates the resistance change of the correction resistor Rc caused by the temperature change of the pressure fluid (the output voltage Vo1 includes the correction resistor Rc (including the change in resistance).
  • the strain measurement mode is entered, and a bridge circuit is formed by the correction resistor Rc and the external resistors Re1 to Re3.
  • the output voltage V + at the connection point 76 and the output voltage V - at the connection point 78 are output to the control section (not shown) of the pressure sensor 10A as the output signal of the correction resistor Rc (bridge circuit).
  • the controller calculates the difference between the output voltage V + and the output voltage V - as the output voltage (differential output) Vo2.
  • the detected value of the output voltage Vo2 indicates the resistance change of the correction resistor Rc caused by the strain of the membrane 22, and is a function with the magnitude of strain ⁇ as a variable, as shown in FIG. 10B.
  • the output voltage Vo2 does not change with respect to the temperature change ( ⁇ T), and is always a constant value.
  • the output signal detected in the temperature measurement mode is It is possible to remove the resistance change of the correction resistor Rc caused by the distortion of the membrane 22 from the detected value. As a result, it is possible to accurately detect the temperature of the pressure fluid, and based on the temperature information, the error contained in the output signal of the detection circuit 30 (the temperature dependence of the resistance change of each sensor resistor R1 to R4) resulting error) can be accurately corrected.
  • the same effects as in the first embodiment can be obtained in this embodiment as well.
  • the output signal of the correction resistor Rc can be obtained as a differential output of the bridge circuit, it is possible to remove the bias voltage from the output signal (output voltage) as shown in FIG. 10B.
  • the resistance change of the correction resistor Rc caused by the distortion of the membrane 22 can be read in detail.
  • the influence of noise superimposed on the output signal of the correction resistor Rc can be reduced.
  • the arrangement of the external resistors Re1 to Re3 can be achieved. can be freely adjusted, and the degree of freedom in arranging the external resistors Re1 to Re3 can be increased.
  • the pressure sensor 10B of the present embodiment differs from the pressure sensor 10A of the second embodiment in that all of the external resistors Re1 to Re3 are formed on a single external substrate 18. different.
  • the external resistors Re1 to Re3 may be formed on the external substrate 18 in an arrangement as shown. Alternatively, they may be formed on the external substrate 18 so as to be arranged in a line.
  • a release portion such as a switch 83 (FIGS. 9A and 9B) may be provided at the position of the connection point 75 .
  • the same effects as in the second embodiment can be obtained.
  • the external resistors Re1 to Re3 are formed on the same substrate, the temperature conditions at the positions where the external resistors Re1 to Re3 are arranged are the same. Therefore, the external resistors Re1 to Re3 undergo similar temperature changes, and the output signal of the correction resistor Rc contains an error caused by the difference in temperature change among the external resistors Re1 to Re3. can be prevented.
  • the voltage dividing resistor Rt shown in FIG. 4A is not essential and may be omitted.
  • the output signal of the correction resistor Rc is obtained by connecting one end of the correction resistor Rc to a current source and supplying a current to the correction resistor Rc through the current source. You may
  • the position of the external substrate 18 is not limited to the position shown in FIG. 1, and may be changed as appropriate.
  • the external substrate 18 may be positioned adjacent to the membrane 22 .
  • the number of external substrates may be two.
  • one of the external resistors Re1 to Re3 may be formed on one external substrate, and the remaining two external resistors may be formed on the other external substrate.

Abstract

[Problem] To provide a pressure sensor capable of accurately performing temperature detection or temperature correction. [Solution] A pressure sensor 10 comprises: a membrane 22 which deforms in accordance with pressure; a plurality of sensor resistors R1 to R4 which are formed on the membrane 22 and which constitute a detecting circuit 30; a correction resistor Rc which is formed on the membrane 22, for detecting a temperature; and an external resistor Re which is formed on an external board 18 different from the membrane 22, and which can be electrically connected to one end of the correction resistor Rc.

Description

圧力センサpressure sensor
 本発明は、メンブレンの変形による歪を抵抗体の抵抗変化により検出する圧力センサに関する。 The present invention relates to a pressure sensor that detects strain due to deformation of a membrane from changes in resistance of a resistor.
 近年、圧抵抗効果(ピエゾ抵抗効果)を利用した圧力センサに関し、各種技術が提案されている。例えば特許文献1には、メンブレン(ダイヤフラム)と、メンブレン上に形成された複数の抵抗体と、メンブレン上に形成された測温素子と、を有する圧力センサが記載されている。 In recent years, various technologies have been proposed for pressure sensors that utilize the piezoresistive effect (piezoresistive effect). For example, Patent Document 1 describes a pressure sensor having a membrane (diaphragm), a plurality of resistors formed on the membrane, and a temperature measuring element formed on the membrane.
 メンブレン上に形成された複数の抵抗体は、ブリッジ回路からなる検出回路(歪ゲージ)を構成し、メンブレンが圧力流体から圧力を受けて歪を発生させると、その歪量に応じた分だけ抵抗値を変化させる。このときの検出回路の出力信号を検出することにより、複数の抵抗体の抵抗値の変化、すなわちメンブレンに加わる圧力を測定することが可能となっている。 A plurality of resistors formed on the membrane form a detection circuit (strain gauge) consisting of a bridge circuit. change the value. By detecting the output signal of the detection circuit at this time, it is possible to measure the change in the resistance values of the plurality of resistors, that is, the pressure applied to the membrane.
 メンブレン上に形成された測温素子は、例えばサーミスタ等の抵抗素子からなり、圧力流体の温度変化に応じて抵抗値を変化させる。したがって、測温素子の出力信号を検出することにより、圧力流体の温度を測定することが可能となり、この温度情報に基づいて、検出回路の出力信号に含まれる誤差(抵抗体の抵抗変化の温度依存性に起因する誤差)を補正することができる。 The temperature measuring element formed on the membrane consists of a resistance element such as a thermistor, and changes the resistance value according to the temperature change of the pressure fluid. Therefore, by detecting the output signal of the temperature measuring element, the temperature of the pressure fluid can be measured. Based on this temperature information, the error contained in the output signal of the detection circuit (temperature error due to dependency) can be corrected.
 ところで、圧力センサの小型化あるいは温度測定の高精度化を図るためには、複数の抵抗体が配置される領域、すなわちメンブレンの歪発生領域に測温素子を形成することが望ましい。しかしながら、この場合、メンブレンが圧力流体から圧力を受けて歪を発生させると、その歪の影響による測温素子の抵抗変化を無視することができなくなり、測温素子の出力信号に上記抵抗変化に応じた誤差が許容量を超えて重畳するおそれがある。そのため、測温素子の出力信号から得られる温度情報の正確性を担保することができず、検出回路の出力信号に対して正確な温度補正を行うことは困難である。 By the way, in order to reduce the size of the pressure sensor or improve the accuracy of temperature measurement, it is desirable to form a temperature measuring element in the area where a plurality of resistors are arranged, that is, in the strain-generating area of the membrane. However, in this case, if the membrane receives pressure from the pressurized fluid and generates strain, the resistance change of the temperature measuring element due to the effect of the strain cannot be ignored, and the output signal of the temperature measuring element is There is a risk that the corresponding error will exceed the allowable amount and be superimposed. Therefore, the accuracy of the temperature information obtained from the output signal of the temperature measuring element cannot be ensured, and it is difficult to perform accurate temperature correction on the output signal of the detection circuit.
特開平11-094667号公報JP-A-11-094667
 本発明は、このような課題に鑑みてなされ、その目的は、温度検出または温度補正を精度良く行うことが可能な圧力センサを提供することである。 The present invention has been made in view of such problems, and its object is to provide a pressure sensor capable of accurately performing temperature detection or temperature correction.
 上記目的を達成するために、本発明に係る圧力センサは、
 圧力に応じた変形を生じるメンブレンと、
 前記メンブレンに形成され、検出回路を構成する複数のセンサ抵抗体と、
 前記メンブレンに形成され、温度を検出するための補正用抵抗体と、
 前記メンブレンとは異なる外部基板に形成され、前記補正用抵抗体の一端に電気的に接続可能な外部抵抗体と、を有する。
In order to achieve the above object, the pressure sensor according to the present invention comprises:
a membrane that deforms in response to pressure;
a plurality of sensor resistors formed on the membrane and constituting a detection circuit;
a correction resistor formed on the membrane for detecting temperature;
an external resistor formed on an external substrate different from the membrane and electrically connectable to one end of the correction resistor.
 例えば、補正用抵抗体と外部抵抗体とが電気的に接続されていない状態において、補正用抵抗体の出力信号(以下、仮出力信号)を検出することにより、圧力流体の温度(以下、仮温度)を測定することができる。ただし、仮出力信号には、圧力流体の温度変化に起因する補正用抵抗体の抵抗変化分だけでなく、メンブレンの歪に起因する補正用抵抗体の抵抗変化分も含まれている可能性がある。 For example, in a state where the correction resistor and the external resistor are not electrically connected, by detecting the output signal of the correction resistor (hereinafter, temporary output signal), the temperature of the pressure fluid (hereinafter, temporary temperature) can be measured. However, the temporary output signal may include not only the resistance change of the correction resistor caused by the temperature change of the pressure fluid, but also the resistance change of the correction resistor caused by the distortion of the membrane. be.
 そこで、補正用抵抗体と外部抵抗体とが電気的に接続された状態において、補正用抵抗体の出力信号を検出することにより、このメンブレンの歪に起因する補正用抵抗体の抵抗変化分を特定することが可能となる。すなわち、補正用抵抗体が配置される位置と外部抵抗体が配置される位置との間で温度条件が同様である場合、圧力流体の温度変化に応じた抵抗変化が補正用抵抗体に生じると、これと同様の変化率で外部抵抗体にも抵抗変化が生じる。そのため、上記温度変化に応じた各抵抗体の抵抗変化分が相殺されることにより、補正用抵抗体の出力信号(例えば、電力供給ラインとグランドとの間に介在された補正用抵抗体と外部抵抗体との間の分圧値)は、理論上、メンブレンの歪に起因する補正用抵抗体の抵抗変化分に等しくなる。したがって、上述した仮出力信号の検出値から、このメンブレンの歪に起因する補正用抵抗体の抵抗変化分を除くことにより、圧力流体の真の温度を求めることができる。 Therefore, by detecting the output signal of the correction resistor in a state in which the correction resistor and the external resistor are electrically connected, the change in resistance of the correction resistor caused by the distortion of the membrane can be calculated. can be specified. That is, if the temperature conditions are the same between the position where the correction resistor is arranged and the position where the external resistor is arranged, the resistance change occurs in the correction resistor according to the temperature change of the pressurized fluid. , the resistance change also occurs in the external resistor at the same rate of change. Therefore, by canceling out the resistance change of each resistor according to the temperature change, the output signal of the correction resistor (for example, the correction resistor interposed between the power supply line and the ground and the external Theoretically, the value of the voltage divided between the resistors) is equal to the resistance change of the correction resistor due to the strain of the membrane. Therefore, the true temperature of the pressurized fluid can be obtained by removing the change in the resistance of the correction resistor due to the distortion of the membrane from the detected value of the provisional output signal.
 このように、本発明に係る圧力センサでは、圧力流体の温度検出を精度良く行うことができるとともに、その温度情報に基づいて、検出回路の出力信号に含まれる誤差(各センサ抵抗体の抵抗変化の温度依存性に起因する誤差)を精度良く補正することができる。また、上述したように、仮出力信号の検出値からメンブレンの歪に起因する補正用抵抗体の抵抗変化分を除くことができるため、補正用抵抗体をメンブレンの歪発生領域に形成しても問題がなく、圧力センサの小型化あるいは温度測定の高精度化を良好に図ることができる。 Thus, in the pressure sensor according to the present invention, the temperature of the pressure fluid can be detected with high accuracy, and the error contained in the output signal of the detection circuit (resistance change of each sensor resistor) can be detected based on the temperature information. error due to the temperature dependence of ) can be accurately corrected. Further, as described above, since the change in resistance of the correction resistor caused by the distortion of the membrane can be removed from the detected value of the temporary output signal, the correction resistor can be formed in the distortion generation region of the membrane. There is no problem, and it is possible to favorably reduce the size of the pressure sensor or improve the accuracy of temperature measurement.
 前記外部基板は、複数の前記外部基板からなり、前記外部抵抗体は、複数の前記外部抵抗体からなり、複数の前記外部基板の各々には、複数の前記外部抵抗体の各々が形成されており、前記補正用抵抗体と複数の前記外部抵抗体とは、ブリッジ回路を形成していてもよい。このような構成とすることにより、補正用抵抗体の出力信号をブリッジ回路の差動出力として得ることが可能となり、バイアス電圧やノイズ等の影響を回避しつつ、メンブレンの歪に起因する補正用抵抗体の抵抗変化を細かく読み取ることができる。また、各外部基板に各外部抵抗体を形成することにより、各外部基板の設置位置を適宜調整することにより、各外部抵抗体の配置を自在に調整することが可能となり、各外部抵抗体の配置の自由度を高めることができる。 The external substrate comprises a plurality of external substrates, the external resistor comprises a plurality of external resistors, and each of the plurality of external resistors is formed on each of the plurality of external substrates. The correction resistor and the plurality of external resistors may form a bridge circuit. With such a configuration, it is possible to obtain the output signal of the correction resistor as a differential output of the bridge circuit. The resistance change of the resistor can be read finely. In addition, by forming each external resistor on each external substrate, it is possible to freely adjust the arrangement of each external resistor by appropriately adjusting the installation position of each external substrate. The degree of freedom of arrangement can be increased.
 前記外部抵抗体は、複数の前記外部抵抗体からなり、前記外部基板には、複数の前記外部抵抗体が形成され、前記補正用抵抗体と複数の前記外部抵抗体とは、ブリッジ回路を形成していてもよい。このような構成とした場合にも、上述したように、補正用抵抗体の出力信号をブリッジ回路の差動出力として得ることが可能となり、バイアス電圧やノイズ等の影響を回避しつつ、メンブレンの歪に起因する補正用抵抗体の抵抗変化を細かく読み取ることができる。また、各外部抵抗体が同一基板上に形成されているため、各外部抵抗体が配置される各位置の温度条件が同様となる。したがって、各外部抵抗体は同様の温度変化をすることになり、補正用抵抗体の出力信号に、各外部抵抗体の温度変化の相違に起因する誤差が含まれることを防止することができる。 The external resistor comprises a plurality of external resistors, the external substrate is formed with the plurality of external resistors, and the correction resistor and the plurality of external resistors form a bridge circuit. You may have Even in such a configuration, as described above, the output signal of the correction resistor can be obtained as a differential output of the bridge circuit. It is possible to finely read the resistance change of the correction resistor due to strain. Also, since the external resistors are formed on the same substrate, the temperature conditions at the positions where the external resistors are arranged are the same. Therefore, each external resistor undergoes a similar temperature change, and it is possible to prevent an error caused by a difference in temperature change from being included in the output signal of the correction resistor.
 好ましくは、前記外部基板と前記メンブレンとは、同様の熱特性を有する材料で形成されている。このような構成とすることにより、補正用抵抗体が配置される位置と外部抵抗体が配置される位置との間で温度条件を同様とすることが可能となる。それゆえ、補正用抵抗体と外部抵抗体とが同様の温度変化をすることになり、補正用抵抗体の出力信号に、各抵抗体の温度変化の相違に起因する誤差が含まれることを防止し、メンブレンの歪に起因する補正用抵抗体の抵抗変化を高精度で検出することができる。 Preferably, the external substrate and the membrane are made of materials having similar thermal properties. With such a configuration, it is possible to make the temperature conditions the same between the position where the correction resistor is arranged and the position where the external resistor is arranged. Therefore, the correction resistor and the external resistor undergo similar temperature changes, preventing the output signal of the correction resistor from including an error caused by the difference in temperature change between the resistors. It is possible to detect the resistance change of the correction resistor due to the distortion of the membrane with high accuracy.
 好ましくは、前記補正用抵抗体と前記外部抵抗体との間の電気的接続を解除する解除部を有する。圧力流体の温度変化に起因する補正用抵抗体の抵抗変化を測定するときに(仮温度を測定するときに)、補正用抵抗体と外部抵抗体との間の電気的接続を解除した上で、補正用抵抗体の出力信号(仮出力信号)を検出することにより、外部抵抗体を含む回路との干渉を回避し、仮出力信号に外部抵抗体の影響による誤差が含まれることを防止することができる。すなわち、上述したように、仮出力信号には、圧力流体の温度変化に起因する補正用抵抗体の抵抗変化分だけでなく、メンブレンの歪に起因する補正用抵抗体の抵抗変化分も含まれている可能性があるが、ここに外部抵抗体の影響による誤差がさらに含まれることを防止することができる。 Preferably, it has a releasing portion for releasing the electrical connection between the correction resistor and the external resistor. When measuring the resistance change of the compensating resistor due to the temperature change of the pressurized fluid (when measuring the virtual temperature), disconnect the electrical connection between the compensating resistor and the external resistor By detecting the output signal (provisional output signal) of the correction resistor, interference with the circuit including the external resistor is avoided, and the provisional output signal is prevented from including an error due to the influence of the external resistor. be able to. That is, as described above, the temporary output signal includes not only the resistance change of the correction resistor caused by the temperature change of the pressure fluid, but also the resistance change of the correction resistor caused by the distortion of the membrane. However, it is possible to prevent further inclusion of errors due to the effects of external resistors.
 好ましくは、前記補正用抵抗体の一端に電気的に接続可能な第1導電経路と第2導電経路とをさらに有し、前記第2導電経路には、前記外部抵抗体が電気的に接続されており、前記解除部は、前記補正用抵抗体の電気的な接続先を前記第1導電経路および前記第2導電経路のいずれかに切り替えるスイッチからなる。スイッチにより、補正用抵抗体の電気的な接続先を第1導電経路に切り替えることにより、補正用抵抗体と外部抵抗体とが電気的に接続されていない状態が形成され、補正用抵抗体の出力信号(仮出力信号)に基づいて、圧力流体の温度(仮温度)を測定する処理を実行することができる。また、スイッチにより、補正用抵抗体の電気的な接続先を第2導電経路に切り替えることにより、補正用抵抗体と外部抵抗体とが電気的に接続された状態が形成され、補正用抵抗体の出力信号に基づいて、メンブレンの歪に起因する補正用抵抗体の抵抗変化を検出する処理を実行することができる。 Preferably, the correction resistor further includes a first conductive path and a second conductive path electrically connectable to one end of the correction resistor, and the external resistor is electrically connected to the second conductive path. and the release unit is a switch that switches the electrical connection destination of the correction resistor to either the first conductive path or the second conductive path. By switching the electrical connection destination of the correction resistor to the first conductive path by the switch, a state in which the correction resistor and the external resistor are not electrically connected is formed. Based on the output signal (temporary output signal), a process of measuring the temperature (temporary temperature) of the pressure fluid can be performed. Further, by switching the electrical connection destination of the correction resistor to the second conductive path by the switch, a state in which the correction resistor and the external resistor are electrically connected is formed. Based on the output signal of , a process of detecting the resistance change of the correction resistor caused by the distortion of the membrane can be executed.
 好ましくは、前記外部基板が固定される基板部をさらに有し、前記外部基板は、前記メンブレンの周囲に隣接して配置され、前記外部基板に形成された前記外部抵抗体は、前記メンブレンに形成された前記補正用抵抗体の近傍に配置されている。このような構成とすることにより、補正用抵抗体が配置される位置と外部抵抗体が配置される位置との間の温度条件を同様とすることが可能となり、メンブレンの歪に起因する補正用抵抗体の抵抗変化を高精度で検出することができる。 Preferably, the device further includes a substrate portion to which the external substrate is fixed, the external substrate is arranged adjacent to the periphery of the membrane, and the external resistor formed on the external substrate is formed on the membrane. is arranged in the vicinity of the correction resistor. With such a configuration, it is possible to make the temperature conditions between the positions where the correction resistors are arranged and the positions where the external resistors are arranged to be the same. The resistance change of the resistor can be detected with high precision.
図1は、本発明の第1実施形態に係る圧力センサの概略断面図である。FIG. 1 is a schematic cross-sectional view of a pressure sensor according to a first embodiment of the invention. 図2は、図1に示す圧力センサの概略平面図である。2 is a schematic plan view of the pressure sensor shown in FIG. 1. FIG. 図3は、図2に示す検出回路、温度測定用回路および歪測定用回路の各構成を示す概略平面図である。3 is a schematic plan view showing each configuration of the detection circuit, the temperature measurement circuit and the strain measurement circuit shown in FIG. 2. FIG. 図4Aは、図3に示す補正用抵抗体の一端に分圧用抵抗を電気的に接続したときの回路構成を示す回路図である。4A is a circuit diagram showing a circuit configuration when a voltage dividing resistor is electrically connected to one end of the correction resistor shown in FIG. 3. FIG. 図4Bは、図3に示す補正用抵抗体の一端に外部抵抗体を電気的に接続したときの回路構成を示す回路図である。4B is a circuit diagram showing a circuit configuration when an external resistor is electrically connected to one end of the correction resistor shown in FIG. 3; FIG. 図5Aは、図4Bに示す回路において、圧力流体の温度変化と補正用抵抗体の出力信号の電圧値との関係を示す図である。FIG. 5A is a diagram showing the relationship between the temperature change of the pressure fluid and the voltage value of the output signal of the correction resistor in the circuit shown in FIG. 4B. 図5Bは、図4Bに示す回路において、メンブレンに生じる歪みと補正用抵抗体の出力信号の電圧値との関係を示す図である。FIG. 5B is a diagram showing the relationship between the distortion occurring in the membrane and the voltage value of the output signal of the correction resistor in the circuit shown in FIG. 4B. 図6Aは、図4Aに示す回路と図4Bに示す回路とをスイッチで切替可能に構成した回路において、補正用抵抗体の一端に分圧用抵抗が電気的に接続されたときの状態を示す回路図である。FIG. 6A is a circuit showing a state when a voltage-dividing resistor is electrically connected to one end of a correction resistor in a circuit configured such that the circuit shown in FIG. 4A and the circuit shown in FIG. 4B can be switched by a switch. It is a diagram. 図6Bは、図6Aに示す回路において、補正用抵抗体の一端に外部抵抗体が電気的に接続されたときの状態を示す回路図である。FIG. 6B is a circuit diagram showing a state when an external resistor is electrically connected to one end of the correction resistor in the circuit shown in FIG. 6A. 図7は、本発明の第2実施形態に係る圧力センサの検出回路、温度測定用回路および歪測定用回路の各構成を示す概略平面図である。FIG. 7 is a schematic plan view showing configurations of a detection circuit, a temperature measurement circuit, and a strain measurement circuit of the pressure sensor according to the second embodiment of the present invention. 図8は、図7に示す補正用抵抗体と複数の外部抵抗体とからなるブリッジ回路の構成を示す回路図である。FIG. 8 is a circuit diagram showing the configuration of a bridge circuit composed of the correction resistor and a plurality of external resistors shown in FIG. 図9Aは、補正用抵抗体の一端に分圧用抵抗が電気的に接続されたときの状態を示す回路図である。FIG. 9A is a circuit diagram showing a state when a voltage dividing resistor is electrically connected to one end of the correction resistor. 図9Bは、図9Aに示す回路において、補正用抵抗体の一端に外部抵抗体が電気的に接続されたときの状態を示す回路図である。FIG. 9B is a circuit diagram showing a state when an external resistor is electrically connected to one end of the correction resistor in the circuit shown in FIG. 9A. 図10Aは、図8に示す回路において、圧力流体の温度変化と補正用抵抗体の出力信号の電圧値との関係を示す図である。10A is a diagram showing the relationship between the temperature change of the pressure fluid and the voltage value of the output signal of the correction resistor in the circuit shown in FIG. 8. FIG. 図10Bは、図8に示す回路において、メンブレンに生じる歪みと補正用抵抗体の出力信号の電圧値との関係を示す図である。10B is a diagram showing the relationship between the distortion occurring in the membrane and the voltage value of the output signal of the correction resistor in the circuit shown in FIG. 8. FIG. 図11は、本発明の第3実施形態に係る圧力センサの検出回路、温度測定用回路および歪測定用回路の各構成を示す概略平面図である。FIG. 11 is a schematic plan view showing configurations of a detection circuit, a temperature measurement circuit, and a strain measurement circuit of a pressure sensor according to a third embodiment of the present invention.
 以下、本発明を図面に示す実施形態に基づき説明する。 The present invention will be described below based on the embodiments shown in the drawings.
 第1実施形態
 本発明の第1実施形態に係る圧力センサ10は、圧抵抗効果(ピエゾ抵抗効果)を利用した圧力センサであり、メンブレンの変形による歪を抵抗体の抵抗変化により検出するものである。図1に示すように、圧力センサ10は、接続部材12と、抑え部材14と、基板部16と、外部基板18と、ステム20とを有する。
First Embodiment A pressure sensor 10 according to a first embodiment of the present invention is a pressure sensor that utilizes the piezoresistive effect (piezoresistive effect), and detects strain due to deformation of the membrane from changes in the resistance of a resistor. be. As shown in FIG. 1 , the pressure sensor 10 has a connecting member 12 , a holding member 14 , a substrate portion 16 , an external substrate 18 and a stem 20 .
 接続部材12は、圧力センサ10を測定対象に対して固定するためのものである。接続部材12の外周面には、ねじ溝12aが形成されている。ねじ溝12aは、測定対象に形成されたねじ溝に対して螺合可能な形状を有する。接続部材12の内部には、圧力流体の流路として利用される流路12bが形成されている。ねじ溝12aを介して圧力センサ10を測定対象に固定することにより、測定対象である圧力室に対して流路12bを気密に連通することが可能となっている。 The connection member 12 is for fixing the pressure sensor 10 to the object to be measured. A thread groove 12 a is formed on the outer peripheral surface of the connecting member 12 . The thread groove 12a has a shape that can be screwed into a thread groove formed in the object to be measured. Inside the connecting member 12, a channel 12b is formed which is used as a channel for pressure fluid. By fixing the pressure sensor 10 to the object to be measured via the thread groove 12a, the flow path 12b can be airtightly communicated with the pressure chamber to be measured.
 抑え部材14は、接続部材12に対してステム20を固定するためのものである。抑え部材14は、接続部材12の上面に配置されており、リング状の外形状を有している。抑え部材14の中央には貫通孔が形成されており、その内部にはステム20を挿通(配置)させることが可能となっている。抑え部材14と接続部材12との間には、ステム20の一部(後述するフランジ部21)を固定することが可能となっている。 The holding member 14 is for fixing the stem 20 to the connecting member 12 . The holding member 14 is arranged on the upper surface of the connecting member 12 and has a ring-shaped outer shape. A through hole is formed in the center of the restraining member 14, and the stem 20 can be inserted (arranged) therein. A portion of the stem 20 (a flange portion 21 described later) can be fixed between the holding member 14 and the connecting member 12 .
 ステム20は、有底(上底)筒状の外形状を有しており、接続部材12における流路12bの一方の端部に設けられる。ステム20は、例えばステンレス等の金属や合金を機械加工することにより作製される。ステム20の材質は、適切な弾性変形を生じるものであれば特に限定されない。 The stem 20 has a cylindrical outer shape with a bottom (upper base) and is provided at one end of the flow path 12 b in the connection member 12 . The stem 20 is made by machining a metal such as stainless steel or an alloy. The material of the stem 20 is not particularly limited as long as it causes appropriate elastic deformation.
 ステム20は、フランジ部21とメンブレン22と側壁部23とを有する。側壁部23は、筒状の外形状を有している。側壁部23の一方の端部はメンブレン22で閉塞されている一方で、側壁部23の他方の端部は開口している。フランジ部21は、ステム20の開口部側に設けられており、側壁部23の他方の端部に形成された開口縁部から径方向外側に向かって突出している。フランジ部21を抑え部材14と接続部材12とで挟み込むように固定することにより、ステム20の開口部を接続部材12の流路12bの一端に気密に連結した状態で、ステム20を接続部材12に固定することが可能となっている。 The stem 20 has a flange portion 21, a membrane 22 and a side wall portion 23. The side wall portion 23 has a cylindrical outer shape. One end of the side wall portion 23 is closed with the membrane 22, while the other end of the side wall portion 23 is open. The flange portion 21 is provided on the opening side of the stem 20 and protrudes radially outward from an opening edge formed at the other end of the side wall portion 23 . By fixing the flange portion 21 so as to be sandwiched between the holding member 14 and the connecting member 12, the stem 20 is connected to the connecting member 12 while the opening of the stem 20 is airtightly connected to one end of the flow path 12b of the connecting member 12. It is possible to fix to
 メンブレン22は、測定対象の圧力が伝達される部分であり、ステム20の上底部を構成している。メンブレン22は、ステム20における他の部分(側壁部23等)に比べて肉薄に形成されており、流路12bから伝えられる圧力(圧力流体から受ける圧力)に応じた変形(歪)を発生させる。メンブレン22は、圧力流体に接触する内面22aと、内面22aとは反対側の外面22bとを有している。メンブレン22の外面22bには、後述する検出回路30、温度測定用回路41および電極部51~56等が設けられている(図3参照)。 The membrane 22 is a portion to which the pressure to be measured is transmitted, and constitutes the upper bottom portion of the stem 20 . The membrane 22 is formed thinner than the other portions (side wall portion 23, etc.) of the stem 20, and generates deformation (distortion) according to the pressure transmitted from the flow path 12b (the pressure received from the pressure fluid). . The membrane 22 has an inner surface 22a that contacts the pressurized fluid and an outer surface 22b opposite to the inner surface 22a. The outer surface 22b of the membrane 22 is provided with a detection circuit 30, a temperature measurement circuit 41, electrodes 51 to 56, etc., which will be described later (see FIG. 3).
 基板部16は、抑え部材14の上面に固定されており、リング状の外形状を有している。基板部16の中央には貫通孔が形成されており、その内部にはステム20を挿通(配置)させることが可能となっている。基板部16には電極部57~64(図2)が形成されており、基板部16の電極部57~62とメンブレン22上の電極部51~56とは、ワイヤボンディング等により形成される接続配線80を介して電気的に接続される。基板部16に形成される電極部57~64は、例えば信号ライン、電力供給ラインあるいはグランド等に電気的に接続されている。 The substrate portion 16 is fixed to the upper surface of the holding member 14 and has a ring-shaped outer shape. A through hole is formed in the center of the substrate portion 16, and the stem 20 can be inserted (arranged) therein. Electrode portions 57 to 64 (FIG. 2) are formed on the substrate portion 16, and the electrode portions 57 to 62 of the substrate portion 16 and the electrode portions 51 to 56 on the membrane 22 are connected by wire bonding or the like. They are electrically connected via wiring 80 . Electrode portions 57 to 64 formed on the substrate portion 16 are electrically connected to, for example, a signal line, power supply line, ground, or the like.
 外部基板18は、基板部16とは別体で構成され、ねじ82等の留め具あるいは接着剤等により、基板部16の上面に固定されている。外部基板18の上面には、後述する歪測定用回路42および電極部65~66(図2)が設けられている。外部基板18を構成する材料としては、ステンレス、銅合金、アルミ合金、鋼鉄等が例示される。なお、外部基板18はステム20と同様の材料で構成されてもよい。 The external substrate 18 is configured separately from the substrate portion 16, and is fixed to the upper surface of the substrate portion 16 with a fastener such as a screw 82 or an adhesive. A distortion measuring circuit 42 and electrodes 65 to 66 (FIG. 2) are provided on the upper surface of the external substrate 18, which will be described later. Examples of materials forming the external substrate 18 include stainless steel, copper alloys, aluminum alloys, and steel. Note that the external substrate 18 may be made of the same material as the stem 20 .
 外部基板18の熱特性は、メンブレン22の熱特性と同様(実質的に同一)となっていることが好ましい。すなわち、外部基板18は、メンブレン22と同様の熱特性を有する材料で構成されていることが好ましい。熱特性としては、例えば、熱伝導率、比熱、熱膨張率、潜熱および溶融温度等が挙げられるが、これらに限定されるものではない。 The thermal properties of the external substrate 18 are preferably similar (substantially the same) as the thermal properties of the membrane 22 . That is, the external substrate 18 is preferably made of a material having thermal properties similar to those of the membrane 22 . Thermal properties include, but are not limited to, thermal conductivity, specific heat, coefficient of thermal expansion, latent heat and melting temperature.
 外部基板18は、メンブレン22の外側(周囲)において、メンブレン22に隣接して配置されていることが好ましい。後述するように、本実施形態では、外部基板18には外部抵抗体Reが設けられ、メンブレン22には補正用抵抗体Rcが設けられるが、この補正用抵抗体Rcが配置される位置と外部抵抗体Reが配置される位置との間で温度条件(温度環境)が同様となるように、外部基板18はメンブレン22(特に、メンブレン22の補正用抵抗体Rcが設けられた位置)に近接して配置される。例えば、外部基板18は、メンブレン22の外周に沿うように配置されてもよい。 The external substrate 18 is preferably arranged adjacent to the membrane 22 on the outside (periphery) of the membrane 22 . As will be described later, in this embodiment, the external substrate 18 is provided with an external resistor Re, and the membrane 22 is provided with a correction resistor Rc. The external substrate 18 is located close to the membrane 22 (in particular, the position where the correction resistor Rc of the membrane 22 is provided) so that the temperature conditions (temperature environment) are the same with the position where the resistor Re is arranged. are placed as follows. For example, the external substrate 18 may be arranged along the outer circumference of the membrane 22 .
 また、補正用抵抗体Rcが配置される位置と外部抵抗体Reが配置される位置との間で温度条件を同様とする観点では、外部基板18の表面のZ軸方向の位置(高さ)は、メンブレン22の表面のZ軸方向の位置(高さ)と略等しくなっていることが好ましい。外部基板18の表面の位置(高さ)を、メンブレン22の表面の位置(高さ)と略等しくする観点では、外部基板18の表面のZ軸方向の位置は、メンブレン22の内面22aのZ軸方向の位置と、メンブレン22の外面22bのZ軸方向の位置との間であることが好ましい。 From the viewpoint of making the temperature conditions the same between the position where the correction resistor Rc is arranged and the position where the external resistor Re is arranged, the position (height) of the surface of the external substrate 18 in the Z-axis direction is preferably substantially equal to the position (height) of the surface of the membrane 22 in the Z-axis direction. From the viewpoint of making the position (height) of the surface of the external substrate 18 approximately equal to the position (height) of the surface of the membrane 22 , the position of the surface of the external substrate 18 in the Z-axis direction corresponds to the Z It is preferably between the axial position and the Z-axis position of the outer surface 22b of the membrane 22 .
 上述したように、メンブレン22には、検出回路30、温度測定用回路41、電極部51~56等が設けられている。以下、図2および図3を参照しつつ、これらの構成について説明する。図2に示すように、検出回路30は、センサ抵抗体R1~R4を有し、メンブレン22の歪発生領域に形成されている。 As described above, the membrane 22 is provided with the detection circuit 30, the temperature measurement circuit 41, the electrode portions 51 to 56, and the like. These configurations will be described below with reference to FIGS. 2 and 3. FIG. As shown in FIG. 2, the detection circuit 30 has sensor resistors R1 to R4 and is formed in the strain generating region of the membrane 22 .
 図3において、その上部に示す図はステム20の模式断面図であり、その下部に示す図はステム20の概略平面図である。メンブレン22の歪発生領域は、所定方向の歪特性を生じる第1歪領域24と、第1歪領域24とは逆方向の歪特性を生じる第2歪領域26とからなる。メンブレン22の第1歪領域24は、内面22aからの圧力(正圧)を受けて、負方向の歪-ε(圧縮歪)を生じるのに対して、メンブレン22の第2歪領域26は、内面22aからの圧力(正圧)を受けて、正方向の歪+ε(引張歪)を生じる。このように、第1歪領域24上における歪特性と、第2歪領域26上における歪特性は、互いに異なる方向(符号が異なり打ち消しあう関係)であることが好ましい。  In FIG. 3, the top view is a schematic cross-sectional view of the stem 20, and the bottom view is a schematic plan view of the stem 20. As shown in FIG. The strain generating region of the membrane 22 consists of a first strain region 24 that produces strain characteristics in a predetermined direction and a second strain region 26 that produces strain characteristics in the opposite direction to the first strain regions 24 . The first strained region 24 of the membrane 22 receives pressure (positive pressure) from the inner surface 22a and produces a negative strain -ε (compressive strain), while the second strained region 26 of the membrane 22 Upon receiving pressure (positive pressure) from the inner surface 22a, positive strain +ε (tensile strain) is generated. Thus, it is preferable that the distortion characteristics on the first distortion region 24 and the distortion characteristics on the second distortion region 26 are in mutually different directions (they have different signs and cancel each other out).
 第1歪領域24および第2歪領域26は、それぞれメンブレン22の中心Oの周囲に同心円上に形成されている。第2歪領域26は、メンブレン22の中心Oから径方向に所定距離だけ離れた位置に位置し、メンブレン22の中心部に形成されている。第1歪領域24は、第2歪領域26の外側(外周側)に形成され、第2歪領域26からメンブレン22の径方向に所定距離だけ離れた位置に位置する。メンブレン22の外縁部27は、ステム20の側壁部23に接続されている。 The first strained region 24 and the second strained region 26 are formed concentrically around the center O of the membrane 22, respectively. The second distorted region 26 is located at a predetermined distance from the center O of the membrane 22 in the radial direction and is formed at the center of the membrane 22 . The first distorted region 24 is formed outside (peripheral side) of the second distorted region 26 and located at a position a predetermined distance away from the second distorted region 26 in the radial direction of the membrane 22 . An outer edge 27 of membrane 22 is connected to side wall 23 of stem 20 .
 検出回路30を構成するセンサ抵抗体R1~R4は、圧力検出素子であり、メンブレン22の変形に応じた歪を生じ、その歪み量に応じてピエゾ抵抗効果により抵抗値が変化するように構成されている。 The sensor resistors R1 to R4 constituting the detection circuit 30 are pressure detection elements, and are configured to generate strain according to the deformation of the membrane 22, and change the resistance value by the piezoresistive effect according to the amount of strain. ing.
 センサ抵抗体R1~R4は、例えば、所定の材料からなる導電性の薄膜(半導体薄膜あるいは金属薄膜等)を例えばミアンダ形状にパターニングすることにより作製される。導電性薄膜のパターニングは、レーザー加工やスクリーン印刷のような半導体加工技術による微細加工等により行われる。導電性薄膜は、スパッタリングや蒸着等の薄膜法により、メンブレン22の上に絶縁膜を挟んで形成される。ただし、メンブレン22がアルミナ等の絶縁材料からなり、メンブレン22の外面22bが絶縁性を有する場合には、絶縁膜を形成することなく、メンブレン22の外面22bに直接に導電性薄膜を形成してもよい。導電性薄膜としては、例えばCrとAlとを含む歪抵抗膜が例示される。 The sensor resistors R1 to R4 are produced, for example, by patterning a conductive thin film (semiconductor thin film, metal thin film, etc.) made of a predetermined material into a meander shape, for example. The patterning of the conductive thin film is performed by fine processing or the like using semiconductor processing techniques such as laser processing and screen printing. The conductive thin film is formed on the membrane 22 with an insulating film interposed therebetween by a thin film method such as sputtering or vapor deposition. However, when the membrane 22 is made of an insulating material such as alumina and the outer surface 22b of the membrane 22 has insulating properties, a conductive thin film can be formed directly on the outer surface 22b of the membrane 22 without forming an insulating film. good too. As the conductive thin film, for example, a strain resistance film containing Cr and Al is exemplified.
 センサ抵抗体R1とセンサ抵抗体R3とは、第1歪領域24に形成されており、メンブレン22の中心Oを挟んで対向して配置されている。センサ抵抗体R2とセンサ抵抗体R4とは、第2歪領域26に形成されており、メンブレン22の中心Oを挟んで対向して配置されている。センサ抵抗体R1とセンサ抵抗体R3とが向かい合う方向と、センサ抵抗体R2とセンサ抵抗体R4とが向かい合う方向とは略直交している。なお、センサ抵抗体R1~R4の配置は、図示の配置に限定されるものではなく、適宜変更してもよい。 The sensor resistor R1 and the sensor resistor R3 are formed in the first strain region 24 and arranged to face each other with the center O of the membrane 22 interposed therebetween. The sensor resistor R2 and the sensor resistor R4 are formed in the second strain region 26 and arranged to face each other with the center O of the membrane 22 interposed therebetween. The direction in which the sensor resistor R1 and the sensor resistor R3 face each other is substantially orthogonal to the direction in which the sensor resistor R2 and the sensor resistor R4 face each other. The arrangement of the sensor resistors R1 to R4 is not limited to the arrangement shown in the drawing, and may be changed as appropriate.
 検出回路30は、メンブレン22の上面に、第1歪領域24と第2歪領域26とに跨るように形成されており、円環状(楕円環状)からなる外形状を有する。検出回路30は、ブリッジ回路であり、本実施形態ではホイートストンブリッジを構成している。ただし、検出回路30の構成は図示の構成に限定されるものではなく、検出回路30は他のブリッジ回路を構成してもよい。 The detection circuit 30 is formed on the upper surface of the membrane 22 so as to straddle the first distorted region 24 and the second distorted region 26, and has an annular (elliptical) outer shape. The detection circuit 30 is a bridge circuit, and constitutes a Wheatstone bridge in this embodiment. However, the configuration of the detection circuit 30 is not limited to the illustrated configuration, and the detection circuit 30 may configure another bridge circuit.
 検出回路30において、センサ抵抗体R1とセンサ抵抗体R2とは接続点71を介して接続され、センサ抵抗体R1とセンサ抵抗体R4とは接続点72を介して接続され、センサ抵抗体R3とセンサ抵抗体R4とは接続点73を介して接続され、センサ抵抗体R2とセンサ抵抗体R3とは接続点74を介して接続されている。すなわち、センサ抵抗体R1~R4は、接続点71~74を介して、互いに電気的および物理的に接続されている。 In the detection circuit 30, the sensor resistor R1 and the sensor resistor R2 are connected via a connection point 71, the sensor resistor R1 and the sensor resistor R4 are connected via a connection point 72, and the sensor resistor R3 and The sensor resistor R4 is connected via a connection point 73, and the sensor resistor R2 and the sensor resistor R3 are connected via a connection point 74. FIG. That is, the sensor resistors R1-R4 are electrically and physically connected to each other via the connection points 71-74.
 接続点71は電極部51に電気的に接続されており、接続点72は電極部52に電気的に接続されており、接続点73は電極部53に電気的に接続されており、接続点74は電極部54に電気的に接続されている。 The connection point 71 is electrically connected to the electrode portion 51, the connection point 72 is electrically connected to the electrode portion 52, the connection point 73 is electrically connected to the electrode portion 53, and the connection point 74 is electrically connected to the electrode portion 54 .
 電極部51~54は、例えば、センサ抵抗体R1~R4と同様の方法により、所定の材料からなる導電性の薄膜(半導体薄膜あるいは金属薄膜等)を所定の形状にパターニングすることにより作製される。後述する電極部55および56についても同様である。電極部51~54の各々は、メンブレン22の外縁部27に形成されているが、電極部51~54の位置は図示の位置に限定されず、例えば第1歪領域24と外縁部27との間の任意の位置に形成されていてもよい。 The electrode portions 51 to 54 are produced by patterning a conductive thin film (semiconductor thin film, metal thin film, etc.) made of a predetermined material into a predetermined shape, for example, by the same method as the sensor resistors R1 to R4. . The same applies to electrode portions 55 and 56, which will be described later. Each of the electrode portions 51 to 54 is formed on the outer edge portion 27 of the membrane 22, but the positions of the electrode portions 51 to 54 are not limited to the illustrated positions. It may be formed at any position between.
 接続点71~74の各々と電極部51~54の各々との間は、上述した所定の形状にパターニングされた導電性の薄膜で連続して接続されている。ただし、接続点71~74の各々と電極部51~54の各々とは、例えばワイヤボンディング等により接続されていてもよい。 Each of the connection points 71 to 74 and each of the electrode portions 51 to 54 are continuously connected by the conductive thin film patterned into the predetermined shape described above. However, each of the connection points 71 to 74 and each of the electrode portions 51 to 54 may be connected by wire bonding or the like.
 図2に示すように、電極部51は基板部16に形成された電極部57にワイヤボンディング等により電気的に接続されており、電極部52は基板部16に形成された電極部58にワイヤボンディング等により電気的に接続されており、電極部53は基板部16に形成された電極部59にワイヤボンディング等により電気的に接続されており、電極部54は基板部16に形成された電極部60にワイヤボンディング等により電気的に接続されている。電極部57~60は、例えば、電極部51等と同様の方法により、基板部16上に作製される。後述する電極部61~64についても同様である。 As shown in FIG. 2, the electrode portion 51 is electrically connected to the electrode portion 57 formed on the substrate portion 16 by wire bonding or the like, and the electrode portion 52 is connected to the electrode portion 58 formed on the substrate portion 16 by wire. The electrode portion 53 is electrically connected to the electrode portion 59 formed on the substrate portion 16 by wire bonding or the like, and the electrode portion 54 is electrically connected to the electrode portion 59 formed on the substrate portion 16 . It is electrically connected to the portion 60 by wire bonding or the like. The electrode portions 57 to 60 are produced on the substrate portion 16 by, for example, the same method as the electrode portion 51 and the like. The same applies to electrode portions 61 to 64, which will be described later.
 電極部58は、例えば電力供給ラインに電気的に接続されており、検出回路30には、電極部58および電極部52を介して、電力供給ラインから電力(バイアス電圧)が供給される。電極部60は、例えばグランドに電気的に接続されている。 The electrode section 58 is electrically connected to, for example, a power supply line, and power (bias voltage) is supplied from the power supply line to the detection circuit 30 via the electrode section 58 and the electrode section 52 . The electrode section 60 is electrically connected to the ground, for example.
 電極部57は、例えば圧力センサ10の制御部(図示略)に接続されており、電極部57および電極部51を介して、接続点71における電圧(V+)が検出信号として制御部に出力される。電極部59は、例えば圧力センサ10の制御部(図示略)に接続されており、電極部59および電極部53を介して、接続点73における電圧(V-)が検出信号として制御部に出力される。なお、制御部は、例えば、MCU、FPGA、ASIC等のICにより構成される。 The electrode section 57 is connected to, for example, a control section (not shown) of the pressure sensor 10, and the voltage (V+) at the connection point 71 is output as a detection signal to the control section via the electrode section 57 and the electrode section 51. be. The electrode section 59 is connected to, for example, a control section (not shown) of the pressure sensor 10, and the voltage (V-) at the connection point 73 is output as a detection signal to the control section via the electrode section 59 and the electrode section 53. be done. Note that the control unit is configured by an IC such as an MCU, FPGA, or ASIC, for example.
 電極部57(電極部51)から出力される検出信号の電圧値V+と電極部59(電極部53)から出力される検出信号の電圧値V-とを、例えば利得Aを有する差動増幅器を利用して増幅することにより、検出回路30から出力電圧Vを取得し、出力電圧Vに基づいて、メンブレン22に作用する流体圧を検出することが可能となっている。 The voltage value V+ of the detection signal output from the electrode portion 57 (electrode portion 51) and the voltage value V− of the detection signal output from the electrode portion 59 (electrode portion 53) are combined by a differential amplifier having a gain of A, for example. By utilizing and amplifying, it is possible to acquire the output voltage V from the detection circuit 30 and detect the fluid pressure acting on the membrane 22 based on the output voltage V. FIG.
 ところで、メンブレン22に形成されたセンサ抵抗体R1~R4の抵抗変化には温度依存性があるため、検出回路30の出力信号(上述した出力電圧V)には、センサ抵抗体R1~R4の抵抗変化の温度依存性に起因する誤差が含まれる可能性がある。すなわち、検出回路30の出力信号には、メンブレン22の歪に起因するセンサ抵抗体R1~R4の抵抗変化分だけではなく、圧力流体の温度変化に起因するセンサ抵抗体R1~R4の抵抗変化分が誤差として含まれている可能性がある。 By the way, since the resistance change of the sensor resistors R1 to R4 formed in the membrane 22 is dependent on temperature, the output signal of the detection circuit 30 (output voltage V described above) includes the resistance of the sensor resistors R1 to R4. Errors due to temperature dependence of changes may be included. That is, the output signal of the detection circuit 30 includes not only the resistance changes of the sensor resistors R1 to R4 caused by the strain of the membrane 22, but also the resistance changes of the sensor resistors R1 to R4 caused by temperature changes of the pressure fluid. may contain errors.
 そこで、このようなセンサ抵抗体R1~R4の抵抗変化の温度依存性に起因する誤差(圧力流体の温度変化に起因するセンサ抵抗体R1~R4の抵抗変化)を測定し、その値に基づいて、検出回路30の出力信号に対して温度補正を行うために、図3に示すように、圧力センサ10には、温度測定用回路41が設けられている。以下、温度測定用回路41の構成について説明する。 Therefore, the error caused by the temperature dependence of the resistance change of the sensor resistors R1 to R4 (resistance change of the sensor resistors R1 to R4 caused by the temperature change of the pressure fluid) is measured, and based on the value In order to perform temperature correction on the output signal of the detection circuit 30, the pressure sensor 10 is provided with a temperature measurement circuit 41, as shown in FIG. The configuration of the temperature measurement circuit 41 will be described below.
 温度測定用回路41は、メンブレン22上に形成されており、補正用抵抗体Rcを有する。補正用抵抗体Rcは、温度を検出するための抵抗体であり、例えば圧力流体の温度変化に応じて抵抗値を変化させる。補正用抵抗体Rcは、検出回路30とは独立して(電気的に接続されることなく)形成されており、相対的にメンブレン22の歪の影響を受けにくいメンブレン22の外縁部27に形成されることが好ましい。補正用抵抗体Rcが、メンブレンの歪に応じて、抵抗値を変化させることを防止するためである。 The temperature measurement circuit 41 is formed on the membrane 22 and has a correction resistor Rc. The correction resistor Rc is a resistor for detecting temperature, and changes the resistance value according to the temperature change of the pressurized fluid, for example. The correction resistor Rc is formed independently (not electrically connected) to the detection circuit 30, and is formed in the outer edge portion 27 of the membrane 22, which is relatively less susceptible to distortion of the membrane 22. preferably. This is to prevent the correction resistor Rc from changing its resistance value according to the distortion of the membrane.
 ただし、補正用抵抗体Rcの少なくとも一部が、相対的にメンブレン22の歪の影響を受けやすいメンブレン22の歪発生領域に形成されてもよい。後述するように、本実施形態では、メンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化を測定することを可能とする回路(歪測定用回路42)が具備されているため、このような位置に補正用抵抗体Rcを配置した場合であっても、圧力流体の温度変化に起因する補正用抵抗体Rcの抵抗変化を正確に特定することができるからである。 However, at least part of the correction resistor Rc may be formed in the strain generation region of the membrane 22 that is relatively susceptible to the strain of the membrane 22 . As will be described later, in this embodiment, a circuit (distortion measuring circuit 42) capable of measuring the resistance change of the correction resistor Rc caused by the distortion of the membrane 22 is provided. This is because, even when the correction resistor Rc is arranged at a certain position, the resistance change of the correction resistor Rc caused by the temperature change of the pressure fluid can be specified accurately.
 例えば、補正用抵抗体Rcの少なくとも一部が、第1歪領域24と外縁部27との間の任意の位置に形成されてもよい。あるいは、補正用抵抗体Rcの一部が、第1歪領域24と第2歪領域26の間の任意の位置に形成されていてもよい。 For example, at least part of the correction resistor Rc may be formed at an arbitrary position between the first strain region 24 and the outer edge portion 27. Alternatively, part of the correction resistor Rc may be formed at an arbitrary position between the first strain region 24 and the second strain region 26 .
 補正用抵抗体Rcは、例えば、センサ抵抗体R1~R4と同様の方法により、所定の材料からなる導電性の薄膜(半導体薄膜あるいは金属薄膜等)を所定の形状にパターニングすることにより作製される。 The correction resistor Rc is fabricated by patterning a conductive thin film (semiconductor thin film, metal thin film, etc.) made of a predetermined material into a predetermined shape, for example, in the same manner as the sensor resistors R1 to R4. .
 補正用抵抗体Rcの延在方向は、全体として見たときに、例えばメンブレン22の周方向と略一致するようになっている(補正用抵抗体Rcがメンブレン22の周方向に沿ってミアンダ状に延びている)。ただし、補正用抵抗体Rcの延在方向は、これに限定されるものではなく、補正用抵抗体Rcは、例えばメンブレン22の径方向に沿って放射状に延びていてもよい。 The extending direction of the correction resistor Rc is, when viewed as a whole, substantially aligned with, for example, the circumferential direction of the membrane 22 (the correction resistor Rc extends along the circumferential direction of the membrane 22 in a meandering shape). ). However, the extending direction of the correction resistor Rc is not limited to this, and the correction resistor Rc may extend radially along the radial direction of the membrane 22, for example.
 図2に示すように、補正用抵抗体Rcの一端は、メンブレン22上に形成された電極部55に電気的および物理的に接続されており、補正用抵抗体Rcの他端は、メンブレン22上に形成された電極部56に電気的および物理的に接続されている。電極部56は、基板部16上に形成された電極部62にワイヤボンディング等により電気的に接続されており、例えばグランドに電気的に接続されている。 As shown in FIG. 2 , one end of the correction resistor Rc is electrically and physically connected to the electrode section 55 formed on the membrane 22 , and the other end of the correction resistor Rc is connected to the membrane 22 . It is electrically and physically connected to the electrode portion 56 formed thereon. The electrode portion 56 is electrically connected to the electrode portion 62 formed on the substrate portion 16 by wire bonding or the like, and is electrically connected to the ground, for example.
 電極部55は、基板部16上に形成された電極部61にワイヤボンディング等により電気的に接続されている。電極部61は、例えば圧力センサ10の制御部(図示略)に電気的に接続されており、電極部61を介して、接続点75における電圧(Vo)を補正用抵抗体Rcの出力信号(補正用抵抗体Rcの抵抗変化を示す信号)として制御部に出力することが可能となっている。 The electrode portion 55 is electrically connected to the electrode portion 61 formed on the substrate portion 16 by wire bonding or the like. The electrode section 61 is electrically connected to, for example, a control section (not shown) of the pressure sensor 10, and the voltage (Vo) at the connection point 75 is converted into an output signal ( It is possible to output to the control section as a signal indicating the resistance change of the correction resistor Rc.
 接続点75は、第1導電経路75aを介して、電力供給ライン(図示略)に電気的に接続可能となっている。電力供給ラインと接続点75との間には分圧用抵抗Rt(図6A参照)が介挿されており、温度測定用回路41(補正用抵抗体Rc)にはバイアス電圧Vdd1(図3)が供給される。分圧用抵抗Rtは、例えばASIC等からなる制御部に設けられていてもよい。 The connection point 75 can be electrically connected to a power supply line (not shown) via the first conductive path 75a. A voltage dividing resistor Rt (see FIG. 6A) is interposed between the power supply line and the connection point 75, and a bias voltage Vdd1 (FIG. 3) is applied to the temperature measuring circuit 41 (correction resistor Rc). supplied. The voltage dividing resistor Rt may be provided in a control unit such as an ASIC.
 接続点75は、第2導電経路75bを介して、外部抵抗体Reに電気的に接続可能となっている。外部抵抗体Reと接続点75との間には、電極部63および電極部65が設けられている。 The connection point 75 can be electrically connected to the external resistor Re via the second conductive path 75b. An electrode portion 63 and an electrode portion 65 are provided between the external resistor Re and the connection point 75 .
 接続点75の位置には、補正用抵抗体Rcの一端と外部抵抗体Reとの間の電気的接続を解除する解除部が設けてあることが好ましい。例えば、図6Aおよび図6Bに示すように、接続点75の位置には、解除部としてスイッチ83が設けてあってもよい。この場合、スイッチ83により、補正用抵抗体Rcの一端の電気的な接続先を第1導電経路75aあるいは第2導電経路75bに切り替えることが可能となる。なお、スイッチ83の切替制御は、例えば圧力センサ10の制御部(図示略)等によって行われる。 At the position of the connection point 75, it is preferable to provide a releasing portion for releasing the electrical connection between one end of the correction resistor Rc and the external resistor Re. For example, as shown in FIGS. 6A and 6B, a switch 83 may be provided at the connection point 75 as a release portion. In this case, the switch 83 can switch the electrical connection destination of one end of the correction resistor Rc to the first conductive path 75a or the second conductive path 75b. Switching control of the switch 83 is performed by, for example, a control unit (not shown) of the pressure sensor 10 or the like.
 上述したように、検出回路30の出力信号に対して温度補正を行う際には、電極部61(図2)を介して、補正用抵抗体Rcの出力信号が制御部に出力される。このとき、補正用抵抗体Rcの一端と外部抵抗体Reとの間の電気的接続を解除しておき、図6Aに示すように、補正用抵抗体Rcの一端を分圧用抵抗Rtに電気的に接続した状態で、補正用抵抗体Rcの出力信号を制御部で検出することにより、外部抵抗体Re(歪測定用回路42)との干渉を回避し、補正用抵抗体Rcの出力信号に外部抵抗体Reの影響による誤差が含まれることを防止することができる。 As described above, when performing temperature correction on the output signal of the detection circuit 30, the output signal of the correction resistor Rc is output to the control section via the electrode section 61 (FIG. 2). At this time, the electrical connection between one end of the correction resistor Rc and the external resistor Re is released, and one end of the correction resistor Rc is electrically connected to the voltage dividing resistor Rt as shown in FIG. 6A. , the output signal of the correction resistor Rc is detected by the control unit to avoid interference with the external resistor Re (distortion measurement circuit 42), and the output signal of the correction resistor Rc is It is possible to prevent an error from being included due to the influence of the external resistor Re.
 なお、接続点75に上述した解除部を設置せず、第1導電経路75aと第2導電経路75bとが接続点75で物理的および電気的に接続されていてもよい。ただし、この場合、第1導電経路75a側の回路と、第2導電経路75b側の回路との間の干渉を防止するための手段を設けておくことが好ましい。 Note that the first conductive path 75 a and the second conductive path 75 b may be physically and electrically connected at the connection point 75 without installing the release portion described above at the connection point 75 . However, in this case, it is preferable to provide means for preventing interference between the circuit on the side of the first conductive path 75a and the circuit on the side of the second conductive path 75b.
 第1導電経路75aおよび第2導電経路75bのうち、第1導電経路75aに補正用抵抗体Rcの一端が電気的に接続された状態では、補正用抵抗体Rcと分圧用抵抗Rtとが電気的に接続され、図4Aあるいは図6Aに示す回路が形成される。この回路において、接続点76(図2に示す電極部61に対応)の出力電圧Voは、図3に示す接続点75の電圧に等しく、例えば図2に示す電極部61を介して取得される。出力電圧Voは、第1導電経路75aを介して供給されるバイアス電圧Vdd1を分圧用抵抗Rtと補正用抵抗体Rcとで分圧した値からなる。 When one end of the correction resistor Rc is electrically connected to the first conductive path 75a of the first conductive path 75a and the second conductive path 75b, the correction resistor Rc and the voltage dividing resistor Rt are electrically connected. are directly connected to form the circuit shown in FIG. 4A or FIG. 6A. In this circuit, the output voltage Vo at node 76 (corresponding to electrode portion 61 shown in FIG. 2) is equal to the voltage at node 75 shown in FIG. . The output voltage Vo is obtained by dividing the bias voltage Vdd1 supplied through the first conductive path 75a by the voltage dividing resistor Rt and the correcting resistor Rc.
 補正用抵抗体Rcの一端が第1導電経路75aに電気的に接続された状態において、電極部61(図2)を介して、補正用抵抗体Rcの出力信号(電極部61の出力電圧Vo)を検出することにより、その検出値に基づいて、圧力流体の温度変化に起因するセンサ抵抗体R1~R4の抵抗変化(圧力流体の温度)を測定することが可能となる。したがって、この測定値に基づいて、検出回路30の出力信号に対して温度補正を行うことができる。このように、補正用抵抗体Rcの出力信号の検出値に基づいて、圧力流体の温度変化に起因するセンサ抵抗体R1~R4の抵抗変化(圧力流体の温度)を測定することを「温度測定モード」と呼ぶ。 With one end of the correction resistor Rc electrically connected to the first conductive path 75a, the output signal of the correction resistor Rc (the output voltage Vo of the electrode section 61) is transmitted through the electrode section 61 (FIG. 2). ), it is possible to measure resistance changes (pressure fluid temperature) of the sensor resistors R1 to R4 caused by temperature changes of the pressure fluid, based on the detected values. Therefore, temperature correction can be performed on the output signal of the detection circuit 30 based on this measured value. In this way, measuring the resistance change (temperature of the pressure fluid) of the sensor resistors R1 to R4 caused by the temperature change of the pressure fluid based on the detected value of the output signal of the correction resistor Rc is called “temperature measurement. called a mode.
 ところで、図2に示すように、補正用抵抗体Rcは、メンブレン22上に形成されているため、補正用抵抗体Rcの抵抗変化は、少なからずメンブレン22の歪の影響を受ける。すなわち、メンブレン22が圧力流体から圧力を受けて歪を発生させると、その歪の影響により補正用抵抗体Rcが抵抗値を変化させる。そのため、温度測定モードにおいて検出した補正用抵抗体Rcの出力信号(図4Aまたは図6Aに示す出力電圧Vo)には、圧
力流体の温度変化に起因する抵抗変化分だけではなく、メンブレン22の歪に起因する抵抗変化分が誤差として含まれる可能性がある。それゆえ、温度測定モードにおいて検出した補正用抵抗体Rcの出力信号は、圧力流体の温度変化に起因するセンサ抵抗体R1~R4の抵抗変化(圧力流体の温度)を正確に反映していない可能性があり、この出力信号に基づいて、検出回路30の出力信号に対して温度補正を行っても、温度補正の正確性を担保することができない可能性がある。
By the way, as shown in FIG. 2, since the correction resistor Rc is formed on the membrane 22, the resistance change of the correction resistor Rc is affected by the distortion of the membrane 22 to some extent. That is, when the membrane 22 receives pressure from the pressurized fluid and is distorted, the correction resistor Rc changes its resistance value due to the influence of the distortion. Therefore, the output signal (the output voltage Vo shown in FIG. 4A or FIG. 6A) of the correction resistor Rc detected in the temperature measurement mode includes not only the resistance change caused by the temperature change of the pressure fluid, but also the distortion of the membrane 22. The error may include the resistance change due to Therefore, the output signal of the correction resistor Rc detected in the temperature measurement mode may not accurately reflect the resistance change (temperature of the pressure fluid) of the sensor resistors R1 to R4 caused by the temperature change of the pressure fluid. Therefore, even if temperature correction is performed on the output signal of the detection circuit 30 based on this output signal, there is a possibility that the accuracy of the temperature correction cannot be ensured.
 圧力流体の温度変化に起因する補正用抵抗体Rcの抵抗変化(圧力流体の温度)を正確に求めるためには、メンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化を測定し、温度測定モードにおいて検出した補正用抵抗体Rcの出力信号から、メンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化分を除く処理を行う必要がある。そこで、本実施形態では、メンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化を測定するために、圧力センサ10に歪測定用回路42が設けられている。以下、歪測定用回路42の構成について説明する。 In order to accurately obtain the resistance change of the correction resistor Rc (temperature of the pressure fluid) caused by the temperature change of the pressure fluid, the resistance change of the correction resistor Rc caused by the strain of the membrane 22 is measured, and the temperature It is necessary to remove the resistance change of the correction resistor Rc caused by the distortion of the membrane 22 from the output signal of the correction resistor Rc detected in the measurement mode. Therefore, in the present embodiment, the pressure sensor 10 is provided with the strain measuring circuit 42 in order to measure the resistance change of the correction resistor Rc caused by the strain of the membrane 22 . The configuration of the distortion measuring circuit 42 will be described below.
 歪測定用回路42は、外部基板18上に形成されており、外部抵抗体Reを有する。外部抵抗体Reは、例えば、補正用抵抗体Rcと同様の方法により、所定の材料からなる導電性の薄膜(半導体薄膜あるいは金属薄膜等)を所定の形状にパターニングすることにより作製される。外部抵抗体Reは、補正用抵抗体Rcとは異なり、メンブレン22上に形成されてはいないため、歪みの影響を受けることがない。したがって、外部抵抗体Reは、実質的に、歪みに起因して抵抗変化を生ずることはなく、温度に起因して抵抗変化を生ずるのみである。 The strain measurement circuit 42 is formed on the external substrate 18 and has an external resistor Re. The external resistor Re is fabricated by patterning a conductive thin film (semiconductor thin film, metal thin film, etc.) made of a predetermined material into a predetermined shape, for example, in the same manner as the correction resistor Rc. Unlike the correction resistor Rc, the external resistor Re is not formed on the membrane 22, and thus is not affected by distortion. Therefore, the external resistor Re does not substantially change in resistance due to strain, but only changes in resistance due to temperature.
 外部抵抗体Reの一端は、外部基板18上に形成された電極部65に電気的および物理的に接続されている。電極部65は、基板部16上に形成された電極部63にワイヤボンディング等により電気的に接続されている。電極部63は、第2導電経路75bに電気的に接続されている。例えば、図6Bに示すように、スイッチ83が補正用抵抗体Rcの一端の電気的な接続先を第2導電経路75bに切り替えることにより、外部抵抗体Reは、補正用抵抗体Rcの一端に電気的に接続される。 One end of the external resistor Re is electrically and physically connected to an electrode portion 65 formed on the external substrate 18 . The electrode portion 65 is electrically connected to the electrode portion 63 formed on the substrate portion 16 by wire bonding or the like. The electrode portion 63 is electrically connected to the second conductive path 75b. For example, as shown in FIG. 6B, the switch 83 switches the electrical connection destination of one end of the correction resistor Rc to the second conductive path 75b, thereby connecting the external resistor Re to one end of the correction resistor Rc. electrically connected.
 図2に示すように、外部抵抗体Reの他端は、外部基板18上に形成された電極部66に電気的および物理的に接続されている。電極部66は、基板部16上に形成された電極部64にワイヤボンディング等により電気的に接続されている。電極部66は、例えば電力供給ラインに電気的に接続されており、歪測定用回路42には、電極部64および電極部66を介して、電力供給ラインからバイアス電圧Vdd2(図3)が供給される。 As shown in FIG. 2, the other end of the external resistor Re is electrically and physically connected to an electrode portion 66 formed on the external substrate 18. The electrode portion 66 is electrically connected to the electrode portion 64 formed on the substrate portion 16 by wire bonding or the like. The electrode section 66 is electrically connected to, for example, a power supply line, and a bias voltage Vdd2 (FIG. 3) is supplied from the power supply line to the distortion measuring circuit 42 via the electrode sections 64 and 66. be done.
 第1導電経路75aおよび第2導電経路75bのうち、第2導電経路75bに補正用抵抗体Rcの一端が電気的に接続された状態では、補正用抵抗体Rcと外部抵抗体Reとが電気的に接続され、図4Bあるいは図6Bに示す回路が形成される。図6Bに示す回路では、スイッチ83により、補正用抵抗体Rcの一端の電気的な接続先を第1導電経路75aから第2導電経路75bに切り替えることが可能となっている。 When one end of the correction resistor Rc is electrically connected to the second conductive path 75b of the first conductive path 75a and the second conductive path 75b, the correction resistor Rc and the external resistor Re are electrically connected. are directly connected to form the circuit shown in FIG. 4B or FIG. 6B. In the circuit shown in FIG. 6B, the switch 83 can switch the electrical connection destination of one end of the correction resistor Rc from the first conductive path 75a to the second conductive path 75b.
 この回路において、接続点76(図2に示す電極部61に対応)の出力電圧Voは、図3に示す接続点75の電圧に等しく、例えば図2に示す電極部61を介して取得される。出力電圧Voは、第2導電経路75bを介して供給されるバイアス電圧Vdd2を外部抵抗体Reと補正用抵抗体Rcとで分圧した値からなり、下記の数式(1)により表される。 In this circuit, the output voltage Vo at node 76 (corresponding to electrode portion 61 shown in FIG. 2) is equal to the voltage at node 75 shown in FIG. . The output voltage Vo is obtained by dividing the bias voltage Vdd2 supplied through the second conductive path 75b by the external resistor Re and the correction resistor Rc, and is expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、圧力流体の温度変化に起因して、補正用抵抗体Rcに温度変化ΔTが発生するとともに、外部抵抗体Reに温度変化ΔTが発生した場合、温度変化後の補正用抵抗体Rcの出力電圧Vo’は、下記の数式(2)により表される。なお、数式(2)において、補正用抵抗体Rcおよび外部抵抗体Reの温度抵抗係数をTCRとする。 Here, when a temperature change ΔT occurs in the correction resistor Rc due to a temperature change in the pressure fluid, and a temperature change ΔT also occurs in the external resistor Re, the correction resistor Rc after the temperature change The output voltage Vo' is represented by the following formula (2). In equation (2), TCR is the temperature resistance coefficient of the correction resistor Rc and the external resistor Re.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 数式(2)に示すように、補正用抵抗体Rcの温度がΔTだけ変化すると、補正用抵抗体RcにΔRc(ΔRc=Rc・TCR・ΔT)だけ抵抗変化が生じる。また、外部抵抗体Reの温度がΔTだけ変化すると、外部抵抗体ReにΔRe(ΔRe=Re・TCR・ΔT)だけ抵抗変化が生じる。しかしながら、補正用抵抗体Rcおよび外部抵抗体Reの両者に抵抗変化ΔRcおよびΔReが発生した場合、数式(2)に示すように、補正用抵抗体Rcの抵抗変化率(1+TCR・ΔT)と、補正用抵抗体Rcおよび外部抵抗体Reからなる合成抵抗体の抵抗変化率(1+TCR・ΔT)とが等しくなるため、これらが相殺される結果、温度変化後の出力電圧Vo’は、温度変化前の出力電圧Voと同一の式で表される。つまり、図5Aに示すように、出力電圧Voは、温度変化に応じて変化することがなく、常に一定の値となる。 As shown in Equation (2), when the temperature of the correction resistor Rc changes by ΔT, the resistance of the correction resistor Rc changes by ΔRc (ΔRc=Rc·TCR·ΔT). Further, when the temperature of the external resistor Re changes by ΔT, the resistance of the external resistor Re changes by ΔRe (ΔRe=Re·TCR·ΔT). However, when resistance changes ΔRc and ΔRe occur in both the correction resistor Rc and the external resistor Re, as shown in Equation (2), the resistance change rate (1+TCR·ΔT) of the correction resistor Rc and Since the resistance change rate (1+TCR·ΔT) of the composite resistor composed of the correction resistor Rc and the external resistor Re is equal, these are canceled out, and as a result, the output voltage Vo′ after the temperature change is is expressed by the same formula as the output voltage Vo of . In other words, as shown in FIG. 5A, the output voltage Vo does not change with changes in temperature and is always a constant value.
 一方、メンブレン22の歪に起因して、補正用抵抗体Rcに歪εが発生した場合、歪発生後の補正用抵抗体Rcの出力電圧Vo’は、下記の数式(3)により表される。なお、数式(3)において、補正用抵抗体Rcの感度をkとする。 On the other hand, when strain ε occurs in the correction resistor Rc due to the strain of the membrane 22, the output voltage Vo′ of the correction resistor Rc after the occurrence of the strain is represented by the following equation (3). . In equation (3), k is the sensitivity of the correction resistor Rc.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 数式(3)に示すように、補正用抵抗体Rcに加わる歪がεだけ変化すると、補正用抵抗体RcにΔRc(ΔRc=k・ε・Rc)だけ抵抗変化が生じる。数式(3)から明らかなように、出力電圧Vo’は、歪みの大きさεを変数とする関数である。したがって、図5Bに示すように、出力電圧Vo’は、εの大きさに応じた分だけ変化する。 As shown in Equation (3), when the strain applied to the correction resistor Rc changes by ε, the correction resistor Rc changes resistance by ΔRc (ΔRc=k·ε·Rc). As is clear from Equation (3), the output voltage Vo' is a function with the magnitude of distortion ε as a variable. Therefore, as shown in FIG. 5B, the output voltage Vo' changes by an amount corresponding to the magnitude of ε.
 つまり、補正用抵抗体Rcと外部抵抗体Reとが電気的に接続された状態(図4Bに示す回路が形成された状態)では、圧力流体の温度変化に起因する補正用抵抗体Rcの抵抗変化が出力電圧Voの変化として表れることはなく(図5A参照)、補正用抵抗体Rcの出力電圧Voの変化は、常にメンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化を表すものとなる。したがって、出力電圧Voを検出することにより、メンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化を測定することができる。このように、補正用抵抗体Rcの出力信号の検出値に基づいて、メンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化を測定することを「歪測定モード」と呼ぶ。 That is, in the state where the correction resistor Rc and the external resistor Re are electrically connected (the state where the circuit shown in FIG. 4B is formed), the resistance of the correction resistor Rc caused by the temperature change of the pressure fluid The change does not appear as a change in the output voltage Vo (see FIG. 5A), and the change in the output voltage Vo of the correction resistor Rc always represents the resistance change of the correction resistor Rc caused by the strain of the membrane 22. becomes. Therefore, by detecting the output voltage Vo, the resistance change of the correction resistor Rc caused by the strain of the membrane 22 can be measured. Thus, measuring the resistance change of the correction resistor Rc caused by the strain of the membrane 22 based on the detected value of the output signal of the correction resistor Rc is called "distortion measurement mode".
 上述したように、温度測定モードにおいて検出した補正用抵抗体Rcの出力信号は、圧力流体の温度変化に起因する補正用抵抗体Rcの抵抗変化分に加えて、メンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化分を含む場合がある。これに対して、歪測定モードにおいて検出した補正用抵抗体Rcの出力信号は、理論上、メンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化分のみを含む。したがって、温度測定モードにおいて検出した補正用抵抗体Rcの出力信号の検出値と、歪測定モードにおいて検出した補正用抵抗体Rcの出力信号の検出値との差分をとることにより、前者の出力信号の検出値から、メンブレン22の歪に起因する抵抗変化分(誤差)を除去することができる。 As described above, the output signal of the correction resistor Rc detected in the temperature measurement mode includes the correction due to the distortion of the membrane 22 in addition to the resistance change of the correction resistor Rc caused by the temperature change of the pressure fluid. In some cases, the resistance change of the resistor Rc is included. On the other hand, the output signal of the correction resistor Rc detected in the strain measurement mode theoretically contains only the resistance change of the correction resistor Rc caused by the strain of the membrane 22 . Therefore, by taking the difference between the detected value of the output signal of the correction resistor Rc detected in the temperature measurement mode and the detected value of the output signal of the correction resistor Rc detected in the strain measurement mode, the former output signal The resistance change (error) due to the strain of the membrane 22 can be removed from the detected value of .
 これにより、温度測定モードにおいて検出した補正用抵抗体Rcの出力信号から、圧力流体の温度変化に起因する補正用抵抗体Rcの抵抗変化分のみを正確に特定し(すなわち、圧力流体の真の温度を特定し)、検出回路30の出力信号に対して正確な温度補正を行うことができる。 As a result, from the output signal of the correction resistor Rc detected in the temperature measurement mode, only the resistance change of the correction resistor Rc caused by the temperature change of the pressure fluid can be accurately specified (that is, the true value of the pressure fluid). temperature), and an accurate temperature correction can be made to the output signal of the detection circuit 30 .
 ここで、数式(2)が成立するためには、補正用抵抗体Rcの抵抗変化率(1+TCR・ΔT)と、補正用抵抗体Rcおよび外部抵抗体Reからなる合成抵抗体の抵抗変化率(1+TCR・ΔT)とが実質的に等しくなること、すなわち補正用抵抗体RcのTCRと外部抵抗体ReのTCRとが実質的に等しく、補正用抵抗体Rcの温度変化ΔTと外部抵抗体Reの温度変化ΔTとが実質的に等しいことが前提となる。 Here, in order for the formula (2) to hold, the resistance change rate (1+TCR·ΔT) of the correction resistor Rc and the resistance change rate ( 1+TCR·ΔT) are substantially equal, that is, the TCR of the correction resistor Rc and the TCR of the external resistor Re are substantially equal, and the temperature change ΔT of the correction resistor Rc and the temperature change ΔT of the external resistor Re are substantially equal. It is assumed that the temperature change ΔT is substantially equal.
 そこで、上記の前提が成立するために、外部抵抗体Reを構成する材料は、補正用抵抗体Rcを構成する材料と同一の材料、あるいは温度特性(抵抗温度係数等)が近似する材料であることが好ましい。例えば、外部抵抗体ReのTCRと補正用抵抗体RcのTCRの差は、±100ppm以下であることが好ましい。 Therefore, in order to satisfy the above premise, the material constituting the external resistor Re should be the same material as the material constituting the correction resistor Rc, or a material having temperature characteristics (temperature coefficient of resistance, etc.) similar to that of the correction resistor Rc. is preferred. For example, the difference between the TCR of the external resistor Re and the TCR of the correction resistor Rc is preferably ±100 ppm or less.
 また、図2に示すように、外部基板18に形成された外部抵抗体Reは、メンブレン22に形成された補正用抵抗体Rcの近傍に配置されていることが好ましい。この場合、外部抵抗体Reが配置される位置と補正用抵抗体Rcが配置される位置との間の温度条件を同様とすることが可能となる。したがって、補正用抵抗体Rcの温度変化ΔTと外部抵抗体Reの温度変化ΔTとが略等しくなり、メンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化を高精度で検出することができる。 Also, as shown in FIG. 2, the external resistor Re formed on the external substrate 18 is preferably arranged in the vicinity of the correction resistor Rc formed on the membrane 22 . In this case, it is possible to make the same temperature condition between the position where the external resistor Re is arranged and the position where the correction resistor Rc is arranged. Therefore, the temperature change ΔT of the correction resistor Rc and the temperature change ΔT of the external resistor Re become substantially equal, and the resistance change of the correction resistor Rc caused by the strain of the membrane 22 can be detected with high accuracy. .
 また、外部基板18とメンブレン22とを、同様の熱特性を有する材料で形成することにより、外部抵抗体Reが配置される位置と補正用抵抗体Rcが配置される位置との間で温度条件を同様とすることが可能となる。したがって、外部抵抗体Reと補正用抵抗体Rcとが同様の温度変化をするようになり、補正用抵抗体Rcの出力信号に、各抵抗体の温度変化の相違に起因する誤差が含まれることを防止し、メンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化を高精度で検出することができる。 In addition, by forming the external substrate 18 and the membrane 22 from materials having similar thermal characteristics, the temperature condition between the position where the external resistor Re is arranged and the position where the correction resistor Rc is arranged will vary. can be made the same. Therefore, the external resistor Re and the correction resistor Rc undergo similar temperature changes, and the output signal of the correction resistor Rc contains an error due to the difference in temperature change between the resistors. can be prevented, and the resistance change of the correction resistor Rc caused by the distortion of the membrane 22 can be detected with high accuracy.
 以上で説明したように、本実施形態に係る圧力センサ10では、圧力流体の温度検出を精度良く行うことができるとともに、その温度情報に基づいて、検出回路30の出力信号に含まれる誤差(各センサ抵抗体R1~R4の抵抗変化の温度依存性に起因する誤差)を精度良く補正することができる。また、温度測定モードにおいて検出した出力信号の検出値からメンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化分を除くことができるため、補正用抵抗体Rcをメンブレン22の歪発生領域に形成しても問題がなく、圧力センサ10の小型化あるいは温度測定の高精度化を良好に図ることができる。 As described above, the pressure sensor 10 according to the present embodiment can accurately detect the temperature of the pressure fluid, and based on the temperature information, the error contained in the output signal of the detection circuit 30 (each error caused by the temperature dependence of the resistance change of the sensor resistors R1 to R4) can be accurately corrected. In addition, since the resistance change of the correction resistor Rc caused by the distortion of the membrane 22 can be removed from the detected value of the output signal detected in the temperature measurement mode, the correction resistor Rc is placed in the distortion generation region of the membrane 22. There is no problem even if it is formed, and it is possible to favorably reduce the size of the pressure sensor 10 or improve the accuracy of temperature measurement.
 第2実施形態
 次に、本発明の第2実施形態に係る圧力センサ10Aの構成について説明する。図面において、第1実施形態の圧力センサ10と共通する構成については、共通の符号を付し、その説明については省略する。
Second Embodiment Next, the construction of a pressure sensor 10A according to a second embodiment of the present invention will be described. In the drawings, components common to the pressure sensor 10 of the first embodiment are denoted by common reference numerals, and descriptions thereof are omitted.
 図7に示すように、圧力センサ10Aは、3つの外部基板18_1~18_3と、3つの外部抵抗体Re1~Re3とを有する。外部基板18_1には外部抵抗体Re1が形成されており、外部基板18_2には外部抵抗体Re2が形成されており、外部基板18_3には外部抵抗体Re3が形成されている。 As shown in FIG. 7, the pressure sensor 10A has three external substrates 18_1-18_3 and three external resistors Re1-Re3. An external resistor Re1 is formed on the external substrate 18_1, an external resistor Re2 is formed on the external substrate 18_2, and an external resistor Re3 is formed on the external substrate 18_3.
 3つの外部基板18_1~18_3は、それぞれ別体で構成されており、互いに所定の間隔をあけて配置されている。外部基板18_1~18_3は、各々に形成される外部抵抗体Re1~Re3の温度条件(温度環境)を同様とする観点から、互いに近接して配置されていることが好ましい。 The three external substrates 18_1 to 18_3 are configured separately and are arranged at predetermined intervals from each other. The external substrates 18_1 to 18_3 are preferably arranged close to each other from the viewpoint of making the temperature conditions (temperature environments) of the external resistors Re1 to Re3 the same.
 3つの外部基板18_1~18_3は、補正用抵抗体Rcが配置される位置と外部抵抗体Re1~Re3が配置される位置との間で温度条件が同様となるように、メンブレン22(特に、メンブレン22の補正用抵抗体Rcが設けられた位置)に近接して配置されることが好ましい。例えば、外部基板18_1~18_3は、メンブレン22の外周に沿うように配列されてもよい。 The three external substrates 18_1 to 18_3 are provided with the membrane 22 (particularly, the membrane 22 (especially, the membrane 22) is preferably arranged close to the position where the correction resistor Rc is provided. For example, the external substrates 18_1 to 18_3 may be arranged along the outer circumference of the membrane 22 .
 外部基板18_1~18_3は、これらの熱特性を同様とする観点から、それぞれ同様の熱特性を有する材料からなる基板で構成されていることが好ましい。また、外部基板18_1~18_3は、これらの熱特性を同様とする観点から、それぞれ同一の形状、大きさあるいは高さからなる基板で構成されていることが好ましい。また、外部基板18_1~18_3の表面の位置(高さ)は、互いに略等しくなっていることが好ましく、メンブレン22の表面の位置(高さ)と略等しくなっていることが好ましい。すなわち、外部基板18_1~18_3の表面のZ軸方向の位置は、メンブレン22の内面22a(図1)のZ軸方向の位置と、メンブレン22の外面22bのZ軸方向の位置との間であることが好ましい。 From the viewpoint of making these thermal characteristics similar, the external substrates 18_1 to 18_3 are preferably made of substrates made of materials having similar thermal characteristics. In addition, from the viewpoint of making the thermal characteristics of these external substrates 18_1 to 18_3 the same, it is preferable that the external substrates 18_1 to 18_3 be formed of substrates having the same shape, size, or height. The positions (heights) of the surfaces of the external substrates 18_1 to 18_3 are preferably substantially equal to each other, and preferably substantially equal to the position (height) of the surface of the membrane 22 . That is, the Z-axis direction positions of the surfaces of the external substrates 18_1 to 18_3 are between the Z-axis direction positions of the inner surface 22a (FIG. 1) of the membrane 22 and the Z-axis direction positions of the outer surface 22b of the membrane 22. is preferred.
 外部抵抗体Re1~Re3は、第1実施形態における外部抵抗体Reと同様の抵抗体であってもよい。あるいは、外部抵抗体Re1~Re3は、第1実施形態における外部抵抗体Reとは異なる形状、大きさあるいは抵抗値を有する抵抗体であってもよい。また、外部抵抗体Re1~Re3は、それぞれ同一の形状、大きさあるいは抵抗値を有する抵抗体であってもよい。あるいは、外部抵抗体Re1~Re3のうち、少なくとも1つの抵抗体が、他の抵抗体とは異なる形状、大きさあるいは抵抗値を有する抵抗体であってもよい。 The external resistors Re1 to Re3 may be resistors similar to the external resistor Re in the first embodiment. Alternatively, the external resistors Re1 to Re3 may be resistors having a shape, size or resistance value different from that of the external resistor Re in the first embodiment. Also, the external resistors Re1 to Re3 may be resistors having the same shape, size or resistance value. Alternatively, at least one of the external resistors Re1 to Re3 may be a resistor having a shape, size or resistance value different from that of the other resistors.
 外部抵抗体Re1~Re3を構成する材料は、各々の温度特性を同様とする観点から、それぞれ同一の材料、あるいは温度特性が近似する材料であることが好ましい。この場合、例えば圧力流体の温度の温度変化に応じて、外部抵抗体Re1~Re3の温度環境が変化したときに、外部抵抗体Re1~Re3に、それぞれ同様の温度変化ΔTを生じさせることが可能となる。 From the viewpoint of making the temperature characteristics of the external resistors Re1 to Re3 similar, it is preferable that the materials constituting the external resistors Re1 to Re3 be the same material or materials with similar temperature characteristics. In this case, for example, when the temperature environment of the external resistors Re1 to Re3 changes according to the temperature change of the pressure fluid, it is possible to cause the same temperature change ΔT to occur in the external resistors Re1 to Re3. becomes.
 外部抵抗体Re1~Re3は、外部基板18_1~18_3および基板部16(図2)に形成された電極部を介して、ワイヤボンディングあるいは基板部16上の配線等により電気的に接続されている。 The external resistors Re1 to Re3 are electrically connected by wire bonding or wiring on the substrate portion 16 via electrodes formed on the external substrates 18_1 to 18_3 and the substrate portion 16 (FIG. 2).
 より詳細には、外部抵抗体Re1の一端に電気的に接続された電極部65は、接続点75に電気的に接続されており、外部抵抗体Re1の他端に電気的に接続された電極部66は、外部抵抗体Re2の他端に電気的に接続された電極部68に電気的に接続されている。外部抵抗体Re2の一端に電気的に接続された電極部67は、外部抵抗体Re3の他端に電気的に接続された電極部70に電気的に接続されている。外部抵抗体Re3の一端に電気的に接続された電極部69は、接続点79に電気的に接続されている。接続点79は、補正用抵抗体Rcの他端に形成された電極部56に電気的に接続されている。 More specifically, the electrode portion 65 electrically connected to one end of the external resistor Re1 is electrically connected to the connection point 75, and the electrode portion 65 electrically connected to the other end of the external resistor Re1. The portion 66 is electrically connected to an electrode portion 68 electrically connected to the other end of the external resistor Re2. The electrode portion 67 electrically connected to one end of the external resistor Re2 is electrically connected to the electrode portion 70 electrically connected to the other end of the external resistor Re3. The electrode portion 69 electrically connected to one end of the external resistor Re3 is electrically connected to the connection point 79 . The connection point 79 is electrically connected to the electrode portion 56 formed at the other end of the correction resistor Rc.
 電極部66と電極部68とに電気的に接続された接続点77は、電力供給ラインに電気的に接続されており、電極部56と電極部69とに電気的に接続された接続点79は、グランドに電気的に接続されている。電極部65と電極部55とに電気的に接続された接続点76は、圧力センサ10Aの制御部(図示略)に接続されており、接続点76における電圧V+(直列に接続された外部抵抗体Re1と補正用抵抗体Rcの間の中間電位)が検出信号として制御部に出力される。電極部67と電極部70とに電気的に接続された接続点78は、圧力センサ10Aの制御部(図示略)に接続されており、接続点78における電圧V-(直列に接続された外部抵抗体Re2と外部抵抗体Re3の間の中間電位)が検出信号として制御部に出力される。 A connection point 77 electrically connected to the electrode portion 66 and the electrode portion 68 is electrically connected to a power supply line, and a connection point 79 electrically connected to the electrode portion 56 and the electrode portion 69. is electrically connected to ground. A connection point 76 electrically connected to the electrode section 65 and the electrode section 55 is connected to a control section (not shown) of the pressure sensor 10A, and the voltage V + at the connection point 76 (an external intermediate potential between the resistor Re1 and the correction resistor Rc) is output to the control section as a detection signal. A connection point 78 electrically connected to the electrode section 67 and the electrode section 70 is connected to a control section (not shown) of the pressure sensor 10A, and the voltage V at the connection point 78 (an external intermediate potential between the resistor Re2 and the external resistor Re3) is output to the controller as a detection signal.
 図8に示すように、補正用抵抗体Rcと複数の外部抵抗体Re1~Re3とはブリッジ回路を形成しており、歪測定モードでは、接続点76における電圧V+と接続点78における電圧V-との差動出力が、補正用抵抗体Rcの出力信号の出力電圧Vo2(Vo2=V+-V-)となる。 As shown in FIG. 8, the correction resistor Rc and the plurality of external resistors Re1 to Re3 form a bridge circuit. - is the output voltage Vo2 (Vo2=V + -V - ) of the output signal of the correction resistor Rc.
 図9Aおよび図9Bに示すように、接続点75の位置には、スイッチ83(解除部)が設けてあってもよい。図9Aに示すように、スイッチ83が第1導電経路75aに電気的に接続された場合には、温度測定モードとなり、分圧用抵抗Rtと補正用抵抗体Rcとからなる直列回路が形成され、接続点76における出力電圧Vo1が補正用抵抗体Rcの出力信号として圧力センサ10Aの制御部(図示略)に出力される。出力電圧Vo1の検出値は、主として、圧力流体の温度変化に起因する補正用抵抗体Rcの抵抗変化を示すものである(出力電圧Vo1には、メンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化分も含まれる)。 As shown in FIGS. 9A and 9B, a switch 83 (release section) may be provided at the position of the connection point 75 . As shown in FIG. 9A, when the switch 83 is electrically connected to the first conductive path 75a, the temperature measurement mode is entered, and a series circuit is formed by the voltage dividing resistor Rt and the correction resistor Rc. The output voltage Vo1 at the connection point 76 is output to the control section (not shown) of the pressure sensor 10A as the output signal of the correction resistor Rc. The detected value of the output voltage Vo1 mainly indicates the resistance change of the correction resistor Rc caused by the temperature change of the pressure fluid (the output voltage Vo1 includes the correction resistor Rc (including the change in resistance).
 図9Bに示すように、スイッチ83が第2導電経路75bに電気的に接続された場合には、歪測定モードとなり、補正用抵抗体Rcと外部抵抗Re1~Re3とからなるブリッジ回路が形成され、接続点76における出力電圧V+と接続点78における出力電圧V-が補正用抵抗体Rc(ブリッジ回路)の出力信号として圧力センサ10Aの制御部(図示略)に出力される。制御部では、この出力電圧V+と出力電圧V-の差分が出力電圧(差動出力)Vo2として算出される。出力電圧Vo2の検出値は、メンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化を示すものであり、図10Bに示すように、歪みの大きさεを変数とする関数である。なお、図10Aに示すように、出力電圧Vo2は、温度変化(ΔT)に対しては、変化することがなく、常に一定の値となる。 As shown in FIG. 9B, when the switch 83 is electrically connected to the second conductive path 75b, the strain measurement mode is entered, and a bridge circuit is formed by the correction resistor Rc and the external resistors Re1 to Re3. , the output voltage V + at the connection point 76 and the output voltage V - at the connection point 78 are output to the control section (not shown) of the pressure sensor 10A as the output signal of the correction resistor Rc (bridge circuit). The controller calculates the difference between the output voltage V + and the output voltage V - as the output voltage (differential output) Vo2. The detected value of the output voltage Vo2 indicates the resistance change of the correction resistor Rc caused by the strain of the membrane 22, and is a function with the magnitude of strain ε as a variable, as shown in FIG. 10B. In addition, as shown in FIG. 10A, the output voltage Vo2 does not change with respect to the temperature change (ΔT), and is always a constant value.
 したがって、温度測定モードにおいて検出した出力信号の検出値(出力電圧Vo1)から、歪測定モードにおいて検出した出力信号の検出値(出力電圧Vo2)を除くことにより、温度測定モードにおいて検出した出力信号の検出値からメンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化分を除くことが可能となる。これにより、圧力流体の温度検出を精度良く行うことができるとともに、その温度情報に基づいて、検出回路30の出力信号に含まれる誤差(各センサ抵抗体R1~R4の抵抗変化の温度依存性に起因する誤差)を精度良く補正することができる。 Therefore, by removing the output signal value (output voltage Vo2) detected in the strain measurement mode from the output signal value (output voltage Vo1) detected in the temperature measurement mode, the output signal detected in the temperature measurement mode is It is possible to remove the resistance change of the correction resistor Rc caused by the distortion of the membrane 22 from the detected value. As a result, it is possible to accurately detect the temperature of the pressure fluid, and based on the temperature information, the error contained in the output signal of the detection circuit 30 (the temperature dependence of the resistance change of each sensor resistor R1 to R4) resulting error) can be accurately corrected.
 このように、本実施形態においても、第1実施形態と同様の効果を得ることができる。また、補正用抵抗体Rcの出力信号をブリッジ回路の差動出力として得ることが可能であるため、図10Bに示すように、当該出力信号(出力電圧)からバイアス電圧を除くことが可能となり、メンブレン22の歪に起因する補正用抵抗体Rcの抵抗変化を細かく読み取ることができる。また、補正用抵抗体Rcの出力信号に重畳するノイズの影響を緩和することができる。 Thus, the same effects as in the first embodiment can be obtained in this embodiment as well. Further, since the output signal of the correction resistor Rc can be obtained as a differential output of the bridge circuit, it is possible to remove the bias voltage from the output signal (output voltage) as shown in FIG. 10B. The resistance change of the correction resistor Rc caused by the distortion of the membrane 22 can be read in detail. Moreover, the influence of noise superimposed on the output signal of the correction resistor Rc can be reduced.
 また、本実施形態では、外部基板18_1~18_3にそれぞれ外部抵抗体Re1~Re3を形成することにより、外部基板18_1~18_3の各設置位置を適宜調整することにより、外部抵抗体Re1~Re3の配置を自在に調整することが可能となり、外部抵抗体Re1~Re3の配置の自由度を高めることができる。 In addition, in this embodiment, by forming the external resistors Re1 to Re3 on the external substrates 18_1 to 18_3, respectively, by appropriately adjusting the installation positions of the external substrates 18_1 to 18_3, the arrangement of the external resistors Re1 to Re3 can be achieved. can be freely adjusted, and the degree of freedom in arranging the external resistors Re1 to Re3 can be increased.
 第3実施形態
 次に、本発明の第3実施形態に係る圧力センサ10Bの構成について説明する。図面において、第2実施形態の圧力センサ10Aと共通する構成については、共通の符号を付し、その説明については省略する。
Third Embodiment Next, the construction of a pressure sensor 10B according to a third embodiment of the present invention will be described. In the drawings, components common to the pressure sensor 10A of the second embodiment are denoted by common reference numerals, and descriptions thereof are omitted.
 図11に示すように、本実施形態における圧力センサ10Bは、外部抵抗体Re1~Re3の全部が1枚の外部基板18に形成されているという点において、第2実施形態における圧力センサ10Aとは異なる。外部抵抗体Re1~Re3は、図示のような配置で外部基板18に形成されていてもよく。あるいは一列に配列されるように外部基板18に形成されていてもよい。詳細な図示は省略するが、接続点75の位置には、スイッチ83(図9Aおよび9B)等からなる解除部が設けてあってもよい。 As shown in FIG. 11, the pressure sensor 10B of the present embodiment differs from the pressure sensor 10A of the second embodiment in that all of the external resistors Re1 to Re3 are formed on a single external substrate 18. different. The external resistors Re1 to Re3 may be formed on the external substrate 18 in an arrangement as shown. Alternatively, they may be formed on the external substrate 18 so as to be arranged in a line. Although detailed illustration is omitted, a release portion such as a switch 83 (FIGS. 9A and 9B) may be provided at the position of the connection point 75 .
 本実施形態においても、第2実施形態と同様の効果を得ることができる。加えて、本実施形態では、外部抵抗体Re1~Re3が同一基板上に形成されているため、外部抵抗体Re1~Re3の各々が配置される各位置の温度条件が同様となる。したがって、外部抵抗体Re1~Re3はそれぞれ同様の温度変化をすることになり、補正用抵抗体Rcの出力信号に、外部抵抗体Re1~Re3の各々の温度変化の相違に起因する誤差が含まれることを防止することができる。 Also in this embodiment, the same effects as in the second embodiment can be obtained. In addition, in this embodiment, since the external resistors Re1 to Re3 are formed on the same substrate, the temperature conditions at the positions where the external resistors Re1 to Re3 are arranged are the same. Therefore, the external resistors Re1 to Re3 undergo similar temperature changes, and the output signal of the correction resistor Rc contains an error caused by the difference in temperature change among the external resistors Re1 to Re3. can be prevented.
 なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。 It should be noted that the present invention is not limited to the above-described embodiments, and can be modified in various ways within the scope of the present invention.
 上記各実施形態において、図4Aに示す分圧用抵抗Rtは必須ではなく、省略してもよい。この場合、温度測定モードにおいて、補正用抵抗体Rcの一端を電流源に接続し、電流源を介して補正用抵抗体Rcに電流を供給することにより、補正用抵抗体Rcの出力信号を取得してもよい。 In each of the above embodiments, the voltage dividing resistor Rt shown in FIG. 4A is not essential and may be omitted. In this case, in the temperature measurement mode, the output signal of the correction resistor Rc is obtained by connecting one end of the correction resistor Rc to a current source and supplying a current to the correction resistor Rc through the current source. You may
 上記第1実施形態において、外部基板18の位置は図1に示す位置に限定されるものではなく、適宜変更してもよい。例えば、外部基板18は、メンブレン22と隣り合う位置に配置されていてもよい。 In the first embodiment, the position of the external substrate 18 is not limited to the position shown in FIG. 1, and may be changed as appropriate. For example, the external substrate 18 may be positioned adjacent to the membrane 22 .
 上記第2実施形態において、外部基板の数は2つでも良い。この場合、一方の外部基板に外部抵抗体Re1~Re3のいずれか1つを形成し、他方の外部基板に残りの2つの外部抵抗体を形成してもよい。 In the above second embodiment, the number of external substrates may be two. In this case, one of the external resistors Re1 to Re3 may be formed on one external substrate, and the remaining two external resistors may be formed on the other external substrate.
 10,10A,10B…圧力センサ
 12…接続部材
 12a…ねじ溝
 12b…流路
 14…抑え部材
 16…基板部
 18,18_1~18_3…外部基板
 20…ステム
 21…フランジ部
 22…メンブレン
 22a…内面
 22b…外面
 23…側壁部
 24…第1歪領域
 26…第2歪領域
 30…検出回路
 41…温度測定用回路
 42…歪測定用回路
 51~70…電極部
 71~79…接続点
 80…接続配線
 82…ねじ
 R1~R4…センサ抵抗体
 Rc…補正用抵抗体
 Re,Re1~Re3…外部抵抗体
DESCRIPTION OF SYMBOLS 10, 10A, 10B... Pressure sensor 12... Connection member 12a... Thread groove 12b... Flow path 14... Control member 16... Substrate part 18, 18_1 to 18_3... External substrate 20... Stem 21... Flange part 22... Membrane 22a... Inner surface 22b Outer surface 23 Side wall portion 24 First strain region 26 Second strain region 30 Detection circuit 41 Temperature measurement circuit 42 Strain measurement circuit 51 to 70 Electrode portion 71 to 79 Connection point 80 Connection wiring 82...Screw R1 to R4...Sensor resistor Rc...Correction resistor Re, Re1 to Re3...External resistor

Claims (7)

  1.  圧力に応じた変形を生じるメンブレンと、
     前記メンブレンに形成され、検出回路を構成する複数のセンサ抵抗体と、
     前記メンブレンに形成され、温度を検出するための補正用抵抗体と、
     前記メンブレンとは異なる外部基板に形成され、前記補正用抵抗体の一端に電気的に接続可能な外部抵抗体と、を有する圧力センサ。
    a membrane that deforms in response to pressure;
    a plurality of sensor resistors formed on the membrane and constituting a detection circuit;
    a correction resistor formed on the membrane for detecting temperature;
    an external resistor formed on an external substrate different from the membrane and electrically connectable to one end of the correction resistor.
  2.  前記外部基板は、複数の前記外部基板からなり、
     前記外部抵抗体は、複数の前記外部抵抗体からなり、
     複数の前記外部基板の各々には、複数の前記外部抵抗体の各々が形成されており、
     前記補正用抵抗体と複数の前記外部抵抗体とは、ブリッジ回路を形成している請求項1に記載の圧力センサ。
    The external substrate is composed of a plurality of external substrates,
    The external resistor consists of a plurality of external resistors,
    Each of the plurality of external substrates is formed with each of the plurality of external resistors,
    2. The pressure sensor according to claim 1, wherein said correction resistor and said plurality of external resistors form a bridge circuit.
  3.  前記外部抵抗体は、複数の前記外部抵抗体からなり、
     前記外部基板には、複数の前記外部抵抗体が形成され、
     前記補正用抵抗体と複数の前記外部抵抗体とは、ブリッジ回路を形成している請求項1に記載の圧力センサ。
    The external resistor consists of a plurality of external resistors,
    A plurality of the external resistors are formed on the external substrate,
    2. The pressure sensor according to claim 1, wherein said correction resistor and said plurality of external resistors form a bridge circuit.
  4.  前記外部基板と前記メンブレンとは、同様の熱特性を有する材料で形成されている請求項1~3のいずれかに記載の圧力センサ。 The pressure sensor according to any one of claims 1 to 3, wherein the external substrate and the membrane are made of materials having similar thermal properties.
  5.  前記補正用抵抗体と前記外部抵抗体との間の電気的接続を解除する解除部を有する請求項1~4のいずれかに記載の圧力センサ。 The pressure sensor according to any one of claims 1 to 4, further comprising a releasing portion for releasing electrical connection between the correction resistor and the external resistor.
  6.  前記補正用抵抗体の一端に電気的に接続可能な第1導電経路と第2導電経路とをさらに有し、
     前記第2導電経路には、前記外部抵抗体が電気的に接続されており、
     前記解除部は、前記補正用抵抗体の電気的な接続先を前記第1導電経路および前記第2導電経路のいずれかに切り替えるスイッチからなる請求項5に記載の圧力センサ。
    further comprising a first conductive path and a second conductive path electrically connectable to one end of the correction resistor;
    The external resistor is electrically connected to the second conductive path,
    6. The pressure sensor according to claim 5, wherein the releasing portion comprises a switch that switches the electrical connection destination of the correction resistor to either the first conductive path or the second conductive path.
  7.  前記外部基板が固定される基板部をさらに有し、
     前記外部基板は、前記メンブレンの周囲に隣接して配置され、
     前記外部基板に形成された前記外部抵抗体は、前記メンブレンに形成された前記補正用抵抗体の近傍に配置されている請求項1~6のいずれかに記載の圧力センサ。
    further comprising a board portion to which the external board is fixed;
    The external substrate is arranged adjacent to the periphery of the membrane,
    7. The pressure sensor according to claim 1, wherein said external resistor formed on said external substrate is arranged near said correction resistor formed on said membrane.
PCT/JP2022/028914 2021-09-10 2022-07-27 Pressure sensor WO2023037779A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-147787 2021-09-10
JP2021147787A JP2023040674A (en) 2021-09-10 2021-09-10 pressure sensor

Publications (1)

Publication Number Publication Date
WO2023037779A1 true WO2023037779A1 (en) 2023-03-16

Family

ID=85507485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028914 WO2023037779A1 (en) 2021-09-10 2022-07-27 Pressure sensor

Country Status (2)

Country Link
JP (1) JP2023040674A (en)
WO (1) WO2023037779A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311110A (en) * 1994-05-20 1995-11-28 Hitachi Ltd Composite sensor and composite transfer device using it
CN201215517Y (en) * 2008-05-28 2009-04-01 伊玛精密电子(苏州)有限公司 Pressure detecting device with temperature compensation
US20090126498A1 (en) * 2005-04-18 2009-05-21 Markus Gilch Pressure sensor device
JP2010286280A (en) * 2009-06-09 2010-12-24 Denso Corp Sensor system
JP2020134451A (en) * 2019-02-25 2020-08-31 Tdk株式会社 Pressure sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311110A (en) * 1994-05-20 1995-11-28 Hitachi Ltd Composite sensor and composite transfer device using it
US20090126498A1 (en) * 2005-04-18 2009-05-21 Markus Gilch Pressure sensor device
CN201215517Y (en) * 2008-05-28 2009-04-01 伊玛精密电子(苏州)有限公司 Pressure detecting device with temperature compensation
JP2010286280A (en) * 2009-06-09 2010-12-24 Denso Corp Sensor system
JP2020134451A (en) * 2019-02-25 2020-08-31 Tdk株式会社 Pressure sensor

Also Published As

Publication number Publication date
JP2023040674A (en) 2023-03-23

Similar Documents

Publication Publication Date Title
EP1407239B1 (en) Temperature compensated strain sensing apparatus
US4500864A (en) Pressure sensor
US6422088B1 (en) Sensor failure or abnormality detecting system incorporated in a physical or dynamic quantity detecting apparatus
WO2000039551A1 (en) Pressure sensor
JP4438193B2 (en) Pressure sensor
US20100083764A1 (en) Redundant self compensating leadless pressure sensor
US9593994B2 (en) Compensated pressure sensors
JP7139998B2 (en) pressure sensor
JPH03210443A (en) Load detector and method for compensating temperature of load detector
WO2023037779A1 (en) Pressure sensor
JPH0972805A (en) Semiconductor sensor
US6591683B1 (en) Pressure sensor
JP4379993B2 (en) Pressure sensor
WO2022190913A1 (en) Pressure sensor and sensor system
WO2021177024A1 (en) Pressure sensor
JP2512220B2 (en) Multi-function sensor
JPS59217374A (en) Semiconductor strain converter
JPS6222272B2 (en)
JP2023125776A (en) Temperature sensor, strain sensor, and pressure sensor
EP4209764A1 (en) Pressure sensor
JPH06213744A (en) Semiconductor pressure sensor
JPH06294691A (en) Pressure sensor
JP2002039888A (en) Method of setting position of gage resistance of semiconductor pressure sensor
JP2001272203A (en) Distortion measuring apparatus
JP3081352B2 (en) Pressure sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867101

Country of ref document: EP

Kind code of ref document: A1