WO2023037551A1 - 酸化ガス供給システムおよび燃料電池車両 - Google Patents
酸化ガス供給システムおよび燃料電池車両 Download PDFInfo
- Publication number
- WO2023037551A1 WO2023037551A1 PCT/JP2021/033578 JP2021033578W WO2023037551A1 WO 2023037551 A1 WO2023037551 A1 WO 2023037551A1 JP 2021033578 W JP2021033578 W JP 2021033578W WO 2023037551 A1 WO2023037551 A1 WO 2023037551A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxidizing gas
- flow rate
- fuel cell
- compressor
- gas supply
- Prior art date
Links
- 230000001590 oxidative effect Effects 0.000 title claims abstract description 401
- 239000000446 fuel Substances 0.000 title claims abstract description 179
- 239000007800 oxidant agent Substances 0.000 claims description 176
- 239000003507 refrigerant Substances 0.000 claims description 28
- 238000010992 reflux Methods 0.000 claims description 11
- 239000007789 gas Substances 0.000 description 374
- 239000002737 fuel gas Substances 0.000 description 73
- 238000010248 power generation Methods 0.000 description 50
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 28
- 239000001301 oxygen Substances 0.000 description 28
- 229910052760 oxygen Inorganic materials 0.000 description 28
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 19
- 238000010586 diagram Methods 0.000 description 14
- 239000002826 coolant Substances 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04111—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04201—Reactant storage and supply, e.g. means for feeding, pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04425—Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04753—Pressure; Flow of fuel cell reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04776—Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present disclosure relates to an oxidant gas supply system for supplying oxidant gas compressed by a compressor to a fuel cell, and a fuel cell vehicle equipped with the oxidant gas supply system.
- a fuel cell electric vehicle (FCEV: Fuel Cell Electric Vehicle) is configured to run by rotating a driving motor with electric energy generated by a chemical reaction between fuel gas (hydrogen) and oxidizing gas (oxygen) in a fuel cell. It is what was done. Hydrogen supplied to the fuel cell is stored in a hydrogen tank mounted on the fuel cell vehicle. Oxygen in the air is used as the oxygen supplied to the fuel cell.
- An electric compressor may be provided in an oxygen supply system for supplying oxygen to the fuel cell so that a large amount of air can be sent to the fuel cell and the pressure inside the fuel cell can be maintained. The electric compressor controls and varies the number of revolutions of the electric compressor in accordance with the state of the fuel cell vehicle so that the required amount of power generation, that is, the amount of reaction between hydrogen and oxygen can be covered. be.
- Patent Document 1 Since part of the electric power generated by the electric compressor is used, a turbine is provided on the air discharge side of the fuel cell in order to improve the efficiency of the power generation system in the fuel cell vehicle (Patent Document 1), or a turbocharger is provided. (Patent Document 2) is performed.
- an object of at least one embodiment of the present disclosure is to provide an oxidant gas supply system capable of suppressing surging in a compressor that supplies oxidant gas to a fuel cell, and a fuel cell vehicle equipped with the oxidant gas supply system. to provide.
- An oxidizing gas supply system includes: An oxidizing gas supply system for supplying an oxidizing gas compressed by a compressor to a fuel cell, the compressor having a compressor impeller; an oxidizing gas supply line for supplying the oxidizing gas that has passed through the compressor impeller to the fuel cell; an oxidizing gas introduction line for introducing the oxidizing gas into the compressor impeller; an oxidizing gas reflux line branched from the oxidizing gas supply line and connected to the oxidizing gas introduction line; and a flow control valve configured to adjust the flow rate of the oxidizing gas passing through the oxidizing gas recirculation line.
- a fuel cell vehicle includes: comprising the oxidizing gas supply system; The electric power generated by the fuel cell is used to run the vehicle.
- an oxidant gas supply system capable of suppressing surging in a compressor that supplies oxidant gas to a fuel cell, and a fuel cell vehicle including the oxidant gas supply system are provided.
- FIG. 1 is a schematic configuration diagram schematically showing the configuration of a fuel cell vehicle according to an embodiment of the present disclosure
- FIG. FIG. 3 is an explanatory diagram for explaining functions of a control device according to an embodiment of the present disclosure
- FIG. FIG. 4 is a flow chart showing an example of control including first opening increasing control of the control device according to the embodiment of the present disclosure
- FIG. 4 is a flow chart showing an example of control including rapid opening degree increase control of the control device according to the embodiment of the present disclosure
- FIG. 5 is an explanatory diagram for explaining changes in the operating point of the compressor when the flow rate of the oxidizing gas supplied to the fuel cell is changed to a small flow rate
- FIG. 4 is a flow diagram showing an example of control including second opening degree increase control of the control device according to an embodiment of the present disclosure
- FIG. 9 is an explanatory diagram for explaining second degree-of-opening increase control and second degree-of-opening decrease control
- FIG. 3 is an explanatory diagram for explaining a heat exchanger of the oxidizing gas supply system according to one embodiment of the present disclosure
- symbol may be attached
- FIG. 1 is a schematic configuration diagram schematically showing the configuration of a fuel cell vehicle 1 according to an embodiment of the present disclosure.
- a fuel cell vehicle 1 according to some embodiments is an electric vehicle configured to run on electric power generated by a fuel cell (FC) 2 .
- the fuel cell 2 is supplied (supplemented) with a fuel gas (hydrogen gas in the illustrated example) as a negative electrode active material and an oxidizing gas (oxygen in the air in the illustrated example) as a positive electrode active material at room temperature or in a high temperature environment. ).
- the fuel cell 2 is configured to generate power through an electrochemical reaction between the supplied fuel gas and oxidant gas.
- the fuel cell vehicle 1 as shown in FIG. A gas supply system 4, a drive battery (secondary battery) 5 configured to be charged with the power generated by the fuel cell 2, and a drive battery configured to be driven by the power generated by the fuel cell 2
- a running motor 6 is provided.
- the fuel gas supplied to the fuel cell 2 consists of hydrogen gas and the oxidizing gas supplied to the fuel cell 2 consists of oxygen in the air.
- the fuel cell 2 as shown in FIG. and an electrolyte membrane 23 sandwiched between a cathode 21 and an anode 22 in a spaced apart manner.
- the fuel cell 2 may have a structure in which a plurality of power generation cells 20 and separators sandwiched between the plurality of power generation cells 20 are stacked.
- the electrolyte membrane 23 consists of a solid polymer electrolyte membrane.
- oxygen-containing air is supplied to the catalyst layers on the air electrode 21 side of each of the plurality of power generation cells 20 by the oxidant gas supply system 3 .
- hydrogen gas is supplied to catalyst layers on the fuel electrode 22 side of each of the plurality of power generation cells 20 by the fuel gas supply system 4 .
- Fuel electrode 22 (anode): H 2 ⁇ 2H++2e- Air electrode 21 (cathode): 1/2O 2 +2H++2e- ⁇ H 2 O
- the output of the fuel cell 2 is connected to the input of the drive battery 5 via the first connection cable 11 .
- the output of drive battery 5 is connected to the input of drive motor 6 via second connection cable 12 .
- the drive battery 5 is supplied with power generated by the fuel cell 2 via the first connection cable 11 and stores (charges) the supplied power.
- the drive motor 6 is mainly supplied with power charged in the drive battery 5 and is driven by the power supplied from the drive battery 5 .
- the driving battery 5 may be a lithium ion battery, a nickel-cadmium battery, or a nickel-hydrogen battery, and is not particularly limited.
- the output of the drive battery 5 is also connected to the input of the electrical equipment mounted on the fuel cell vehicle 1.
- the electric power charged in the driving battery 5 is supplied to the electrical equipment mounted on the fuel cell vehicle 1 .
- the output of the fuel cell 2 may be directly connected to the drive motor 6 or the input of the electrical equipment mounted on the fuel cell vehicle 1 .
- the fuel cell vehicle 1 further includes a vehicle body 13 on which the fuel cell 2, the oxidant gas supply system 3, the fuel gas supply system 4, the drive battery 5 and the drive motor 6 are mounted.
- the fuel cell vehicle 1 further includes a plurality of wheels (front wheels, rear wheels) (not shown) rotatably supported with respect to the vehicle body 13 .
- the traveling motor 6 is connected to at least one of the front wheels and the rear wheels so as to transmit driving force (rotational force).
- the fuel cell vehicle 1 runs by rotating the front wheels and the rear wheels to which driving force is transmitted from the running motor 6 as the running motor 6 is driven.
- the oxidant gas supply system 3 is for supplying oxygen-containing air (oxidant gas) compressed by the compressor 7 to the air electrode 21 of the fuel cell 2 .
- the oxidant gas supply system 3 includes the compressor 7 having a compressor impeller 71, and the oxygen-containing air that has passed through the compressor impeller 71 is fed to the air electrode 21 of the fuel cell 2 (on the air electrode 21 side). and an oxidizing gas introduction line 32 for introducing oxygen-containing air into the compressor impeller 71 of the compressor 7 .
- the compressor 7 further has a compressor cover 72 that rotatably houses the compressor impeller 71 .
- the compressor cover 72 has an inlet 73 for introducing oxygen-containing air from the outside of the compressor cover 72 and an outlet 74 for discharging the oxygen-containing air that has passed through the compressor impeller 71 to the outside of the compressor cover 72. and are formed.
- an oxidizing gas introduction passage 75 for introducing oxygen-containing air introduced into the inside of the compressor cover 72 from the introduction port 73 to the compressor impeller 71, and oxygen-containing air that has passed through the compressor impeller 71 are provided.
- an oxidizing gas discharge passage 76 for leading from the discharge port 74 to the outside of the compressor cover 72 is formed.
- the oxidizing gas introduction line 32 includes at least an oxidizing gas introduction path 75 .
- the oxidant gas introduction line 32 may further include an oxidant gas introduction pipe 321 having one side connected to the inlet port 73 of the compressor cover 72 and the other side open. In this case, air containing oxygen in the atmosphere is introduced into the compressor impeller 71 via the oxidizing gas introduction pipe 321 and the oxidizing gas introduction path 75 .
- the oxidizing gas introduction line 32 further includes an oxidizing gas storage device (for example, an oxidizing gas storage tank) (not shown) configured to store compressed oxidizing gas (for example, oxygen).
- an oxidizing gas storage device for example, an oxidizing gas storage tank
- compressed oxidizing gas for example, oxygen
- the other side of the oxidizing gas introduction pipe 321 may be connected to the device.
- the oxidizing gas stored in the oxidizing gas storage device is introduced into the compressor impeller 71 via the oxidizing gas introducing pipe 321 and the oxidizing gas introducing path 75 .
- the oxidizing gas supply line 31 includes an oxidizing gas discharge path 76 and an oxidizing gas supply pipe 311 .
- the oxidizing gas supply pipe 311 has one side connected to the discharge port 74 of the compressor cover 72 and the other side connected to the air electrode 21 of the fuel cell 2 .
- the oxidant gas supply line 31 supplies oxygen-containing air compressed by the compressor impeller 71 to the air electrode 21 (catalyst layer on the air electrode 21 side) of the fuel cell 2 via the oxidant gas discharge path 76 and the oxidant gas supply pipe 311 . configured to lead to
- air containing oxygen is taken into the inside of the compressor cover 72 through the inlet 73 by the suction force generated.
- the oxygen-containing air taken inside the compressor cover 72 is guided to the compressor impeller 71 through the oxidizing gas introduction passage 75 and compressed by the compressor impeller 71 .
- Air containing oxygen compressed by the compressor impeller 71 is supplied to the air electrode 21 (the catalyst layer on the air electrode 21 side) of the fuel cell 2 through the oxidizing gas supply line 31 .
- the compressor 7 is an electric compressor 7A that is supplied with electric power from the driving battery 5 and configured to rotate the compressor impeller 71 with the electric power supplied from the driving battery 5.
- the electric compressor 7A is mechanically connected to an electric motor (electric motor) 77 that generates a rotational force for rotating the compressor impeller 71 by electric power supplied from the drive battery 5, and to the electric motor 77 and the compressor impeller 71. , and a rotating shaft 78 that transmits rotational force from the electric motor 77 to the compressor impeller 71 .
- the oxidizing gas supply system 3 instead of the electric compressor 7A, includes a compressor impeller 71 and turbine blades that are rotated by the energy of the exhaust gas (water vapor) discharged from the fuel cell 2. , a compressor impeller 71 and a rotating shaft mechanically connecting the turbine blades.
- the fuel gas supply system 4 is for supplying hydrogen gas (fuel gas) to the fuel electrode 22 of the fuel cell 2 .
- the fuel gas supply system 4 includes a fuel gas storage device (for example, a hydrogen gas storage tank) 41 configured to store hydrogen gas;
- a fuel gas supply line 42 for supplying hydrogen gas to the fuel electrode 22 (the catalyst layer on the side of the fuel electrode 22), and a fuel gas flow rate adjustment configured to be able to adjust the flow rate of the hydrogen gas passing through the fuel gas supply line 42.
- a valve 43 One side of the fuel gas supply line 42 is connected to the fuel gas storage device 41 , and the other side is connected to the fuel electrode 22 of the fuel cell 2 .
- Hydrogen gas is stored in a compressed state in the fuel gas storage device 41, and when the fuel gas flow rate adjustment valve 43 is fully closed, the fuel gas supply line 42 is upstream of the fuel gas flow rate adjustment valve 43 (The pressure on the side where the fuel gas storage device 41 is located) becomes higher than the pressure on the downstream side (the side where the fuel electrode 22 of the fuel cell 2 is located) of the fuel gas flow control valve 43 of the fuel gas supply line 42. There is Due to the pressure difference between the upstream side and the downstream side of the fuel gas flow rate control valve 43 in the fuel gas supply line 42, when the fuel gas flow rate control valve 43 is opened, the fuel gas flow rate control valve 43 changes from the upstream side of the fuel gas supply line 42 to the downstream side. and the hydrogen gas is supplied to the fuel electrode 22 of the fuel cell 2 .
- the oxidizing gas supply system 3 includes an oxidizing gas recirculation line 33 branched from an oxidizing gas supply line 31 and connected to an oxidizing gas introduction line 32, and oxygen passing through the oxidizing gas recirculation line 33. and an oxidizing gas flow rate adjustment valve (flow rate adjustment valve) 34 configured to adjust the flow rate of the included air.
- One side of the oxidizing gas recirculation line 33 is connected to the branch portion 312 of the oxidizing gas supply line 31 , and the other side is connected to the confluence portion 322 of the oxidizing gas introduction line 32 .
- the oxidant gas supply line located downstream of the compressor impeller 71 31 is higher than the pressure in the oxidizing gas introduction line 32 located upstream of the compressor impeller 71 . Due to the pressure difference between the oxidizing gas supply line 31 and the oxidizing gas introduction line 32, when the oxidizing gas flow control valve 34 is opened, the above-mentioned Air containing oxygen flows to the other side (oxidizing gas introduction line 32 side). That is, part of the oxygen-containing air flowing through the oxidizing gas supply line 31 is recirculated to the oxidizing gas introduction line 32 via the oxidizing gas recirculation line 33 .
- the fuel cell vehicle 1 has an exhaust discharge line 14 for discharging the exhaust gas (water vapor) generated by the electrochemical reaction between the fuel gas (hydrogen) and the oxidizing gas (oxygen) in the fuel cell 2 to the outside of the fuel cell vehicle 1. and an exhaust flow control valve 15 configured to be able to adjust the flow rate of water vapor passing through the exhaust discharge line 14 .
- the fuel cell vehicle 1 includes an oxidant gas pressure measuring device (for example, an air pressure sensor) 16 configured to measure the oxidant gas pressure OP (air pressure), and an oxidant gas pressure sensor 16 configured to measure the fuel gas pressure HP (hydrogen pressure). and a configured fuel gas pressure measuring device (eg, hydrogen pressure sensor) 17 .
- the oxidant gas pressure measuring device 16 may measure the air pressure at the air electrode 21 of the fuel cell 2 as the oxidant gas pressure OP, or measure the oxidant gas supply line 31 (particularly, the downstream side of the branch 312). The pressure of flowing air may be measured.
- the fuel gas pressure measuring device 17 may measure the pressure of hydrogen gas at the fuel electrode 22 of the fuel cell 2 as the fuel gas pressure HP, or the fuel gas supply line 42 (particularly, rather than the fuel gas flow control valve 43 downstream) may be measured.
- the fuel cell vehicle 1 further includes an oxidant gas flow rate measuring device (for example, an air flow meter) 18 configured to measure the oxidant gas flow rate of the fuel cell 2 (the amount of air supplied to the fuel cell 2). good too.
- the oxidizing gas flow rate measurement device 18 may measure the flow rate of air flowing through the oxidizing gas supply line 31 (particularly, the downstream side of the branch 312) as the oxidizing gas flow rate OF.
- the control device 8 which will be described later, includes an oxidant gas flow rate estimation unit 81 configured to estimate the oxidant gas flow rate OF from the oxidant gas pressure OP, the rotational speed N of the compressor 7, and the like by a known technique
- the fuel cell vehicle 1 may not include the oxidant gas flow rate measuring device 18 .
- the oxidant gas supply system 3 further includes a control device 8 for controlling opening and closing of at least the oxidant gas flow control valve 34 .
- the control device 8 is an electronic control unit for adjusting the pressure and flow rate of the oxidizing gas and fuel gas supplied to the fuel cell 2, and includes a CPU (processor), ROM and RAM (not shown). , a storage device such as an external storage device, an I/O interface, a communication interface, and the like. Then, for example, the CPU operates (for example, performs data calculation, etc.) in accordance with the instructions of the program loaded in the main storage device of the memory, thereby realizing each section described later.
- each of the oxidant gas flow rate control valve 34, the fuel gas flow rate control valve 43 and the exhaust gas flow rate control valve 15 is electrically communicably connected to the controller 8 via wire or wireless.
- Each of the oxidizing gas flow rate adjusting valve 34, the fuel gas flow rate adjusting valve 43, and the exhaust flow rate adjusting valve 15 has an actuator (not shown) that operates in accordance with an opening/closing instruction sent from the control device 8. It is configured such that opening/closing (opening degree) is controlled according to an opening/closing instruction.
- the oxidizing gas flow rate control valve 34, the fuel gas flow rate control valve 43, and the exhaust flow rate control valve 15 may each be an on-off valve whose degree of opening can be adjusted between fully closed and fully open, or a valve between fully closed and fully open. It may be an opening adjustment valve whose opening can be adjusted to at least one intermediate opening.
- the electric compressor 7A (compressor 7) is electrically communicably connected to the control device 8 via wire or wireless.
- the electric compressor 7 ⁇ /b>A (compressor 7 ) is configured such that its rotation speed is controlled according to a rotation speed instruction sent from the control device 8 .
- Information regarding the operation of the fuel cell vehicle 1 is sent to the control device 8 from each device included in the fuel cell vehicle 1, such as the drive battery 5, the drive motor 6, the oxidant gas pressure measurement device 16, and the fuel gas pressure measurement device 17. It is designed to be The information on the operation of the fuel cell vehicle 1 includes the charging rate CR of the driving battery 5, the power consumption PC of the driving motor 6, the measured value of the oxidant gas pressure OP, the measured value of the fuel gas pressure HP, and the The number of revolutions N and the like are included. Information regarding the operation of the fuel cell vehicle 1 is stored in the database section 80 .
- FIG. 2 is an explanatory diagram for explaining the functions of the control device 8 in one embodiment of the present disclosure.
- the control device 8 includes a database unit 80, a required power generation amount estimation unit 82 configured to estimate the amount of power generation (required power generation amount RPG) required by the fuel cell vehicle 1, and a required power generation amount RPG for generating the required power generation amount RPG.
- a required power generation amount estimation unit 82 configured to estimate the amount of power generation (required power generation amount RPG) required by the fuel cell vehicle 1, and a required power generation amount RPG for generating the required power generation amount RPG.
- Each unit of the control device 8 (required power generation amount estimation unit 82, demand amount calculation unit 83, rotation speed instruction unit 84, fuel gas side opening instruction unit 85, exhaust side opening instruction unit 86, and oxidant gas side opening instruction unit 87 etc.) is configured to acquire necessary information from the database unit 80 . As shown in FIG. 2, the control device 8 may further include the oxidation gas flow rate estimation section 81 described above.
- the power generation amount required by the fuel cell vehicle 1 differs depending on the power generation mode of the fuel cell 2 .
- the control device 8 adjusts the pressure and flow rate of the oxidant gas and fuel gas supplied to the fuel cell 2 so that the fuel cell 2 generates power corresponding to the power consumption PC of the drive motor 6. adjust.
- the required power generation amount estimator 82 may set the power generation amount according to the power consumption PC of the drive motor 6 as the above-mentioned required power generation amount RPG.
- the required power generation amount estimating unit 82 calculates the required power consumption from the power consumption PC of the travel motor 6 based on the first association information that pre-associates the power consumption PC of the travel motor 6 and the required power generation amount RPG.
- a power generation amount RPG may be obtained.
- the first association information is information including the tendency of the required power generation amount RPG corresponding to the power consumption PC to increase as the power consumption PC of the traveling motor 6 increases, and is stored in the database unit 80 in advance.
- the control device 8 controls the fuel cell 2 so that the fuel cell 2 starts generating power when the charging rate CR of the drive battery 5 is lower than a preset specified charging rate RC (a specified value). Adjust the pressure and flow rate of the oxidant gas and fuel gas supplied to the The required power generation amount estimator 82 may set the required power generation amount RPG to zero when the charging rate CR of the driving battery 5 is equal to or higher than the specified charging rate RC. Further, when the charging rate CR of the drive battery 5 is less than the specified charging rate RC, the required power generation amount estimator 82 may set the required power generation amount RPG to a preset value (constant power generation amount). , the required power generation amount RPG may be set to the power generation amount according to the charging rate CR of the drive battery 5 .
- a preset specified charging rate RC a specified value
- the required power generation amount estimator 82 uses a second power generation amount RPG that is associated in advance with the charging rate CR of the drive battery 5 and the required power generation amount RPG.
- the required power generation amount RPG may be obtained from the charging rate CR of the drive battery 5 based on the association information.
- the second association information is information that includes the tendency of the required power generation amount RPG corresponding to the charging rate CR to increase as the charging rate CR of the drive battery 5 decreases, and is stored in the database unit 80 in advance.
- the required amount calculation unit 83 calculates the amount required of the fuel cell 2 for generating the required amount of power generation RPG estimated by the required power generation amount estimation unit 82 .
- the required amount includes the required oxidant gas flow rate ROF, which is the flow rate OF required for the oxidant gas supplied to the air electrode 21 of the fuel cell 2, and the pressure OP required for the oxidant gas supplied to the air electrode 21 of the fuel cell 2.
- the required fuel gas flow rate RHF which is the flow rate HF required for the fuel gas supplied to the fuel electrode 22 of the fuel cell 2
- the required fuel gas flow rate RHF which is required for the fuel gas supplied to the fuel electrode 22 of the fuel cell 2.
- Included is the requested fuel gas pressure RHP, which is the pressure HP.
- the required amount calculation unit 83 establishes a third association in which each of the required oxidizing gas flow rate ROF, the required oxidizing gas pressure ROP, the required fuel gas flow rate RHF, and the required fuel gas pressure RHP is associated in advance with the required power generation amount RPG. Based on the information, the required oxidant gas flow rate ROF, the required oxidant gas pressure ROP, the required fuel gas flow rate RHF, and the required fuel gas pressure RHP can be obtained from the required power generation amount RPG estimated by the required power generation amount estimation unit 82. good.
- the third association information is stored in the database section 80 in advance.
- the rotation speed instructing unit 84 is configured to instruct the electric motor 77 of the compressor 7 of the required rotation speed RN, which is the rotation speed corresponding to the required power generation amount RPG estimated by the required power generation amount estimation unit 82 .
- the rotation speed instruction unit 84 calculates the required rotation speed RN may be determined.
- the fourth association information is information including the tendency of the required rotation speed RN corresponding to the required power generation amount RPG to increase as the required power generation amount RPG increases, and is stored in the database unit 80 in advance.
- the fuel gas side opening degree instruction unit 85 instructs the fuel gas flow rate adjustment valve 43 to specify an opening degree OD1 corresponding to the required fuel gas flow rate RHF and the required fuel gas pressure RHP calculated by the required amount calculation unit 83. It is configured. For example, the fuel gas side opening degree instruction unit 85 calculates the required amount calculation unit 83 based on the fifth association information that pre-associates the required fuel gas flow rate RHF, the required fuel gas pressure RHP, and the indicated opening degree OD1. The indicated opening degree OD1 may be obtained from the required fuel gas flow rate RHF and the required fuel gas pressure RHP.
- the fifth association information is stored in the database section 80 in advance.
- the exhaust-side opening degree instruction unit 86 is configured to instruct the exhaust flow rate adjustment valve 15 to indicate an instruction opening degree OD2 corresponding to the required oxidizing gas flow rate ROF and the required oxidizing gas pressure ROP calculated by the required amount calculating unit 83.
- the exhaust-side opening degree instruction unit 86 uses sixth association information that pre-associates the requested oxidant gas flow rate ROF, the requested oxidant gas pressure ROP, and the indicated opening degree OD2.
- the indicated opening degree OD2 may be obtained from the oxidizing gas flow rate ROF and the required oxidizing gas pressure ROP.
- the sixth association information is stored in the database section 80 in advance.
- the electrolyte membrane 23 may be damaged.
- At least one of the rotational speed indicator 84, the fuel gas side opening indicator 85, and the exhaust side opening indicator 86 causes the differential pressure to become equal to or less than the allowable value when the differential pressure exceeds the allowable value.
- at least one of the requested rotation speed RN, the commanded opening degree OD1, and the commanded opening degree OD2 may be adjusted.
- the opening degree of the exhaust gas flow control valve 15 When the opening degree of the exhaust gas flow control valve 15 is decreased in accordance with the commanded opening degree OD2, the amount of exhaust gas (water vapor) discharged from the fuel cell 2 decreases, so the pressure of the oxidizing gas in the fuel cell 2 increases, and the fuel cell 2, the pressure of the oxidizing gas supplied to the air electrode 21 (oxidizing gas pressure OP) increases. Further, if the opening degree of the exhaust gas flow control valve 15 is reduced in accordance with the command opening degree OD2, the amount of exhaust gas (water vapor) discharged from the fuel cell 2 is reduced. The flow rate (oxidizing gas flow rate OF) becomes smaller.
- oxidizing gas flow rate OF the flow rate of the oxidizing gas that can be supplied to the air electrode 21 of the fuel cell 2
- the flow rate of the oxidizing gas that can be supplied to the compressor impeller 71 is also small, so there is a possibility that surging will occur in the compressor 7 . increase.
- the oxidizing gas side opening degree instruction unit 87 is configured to instruct the oxidizing gas flow rate adjustment valve 34 to indicate the indicated opening degree OD3. Although the details will be described later, the oxidizing gas side opening degree instruction unit 87 increases the indicated opening degree OD3 and increases the opening degree of the oxidizing gas flow control valve 34 when there is a high possibility that surging will occur in the compressor 7. do. Further, the oxidizing gas side opening instruction unit 87 reduces the indicated opening OD3 and the opening of the oxidizing gas flow control valve 34 when the possibility of surging in the compressor 7 is low. Note that “increasing (increasing) the degree of opening” in the present disclosure includes changing the degree of opening from fully closed to intermediate or fully open. “Reducing (decreasing) the degree of opening” in the present disclosure includes fully closing the degree of opening or from an intermediate degree of opening.
- the oxidizing gas supply system 3 according to some embodiments, as shown in FIG. A gas recirculation line 33 and the oxidizing gas flow control valve 34 described above are provided.
- the oxidant gas flow rate adjustment valve 34 is turned on. A portion of the oxidant gas can be returned from the oxidant gas supply line 31 to the oxidant gas introduction line 32 via the oxidant gas recirculation line 33 .
- the amount of oxidant gas flowing into the compressor impeller 71 can be increased when the required oxidant gas flow rate ROF of the fuel cell 2 is small, so surging in the compressor 7 can be suppressed without reducing the rotation speed of the compressor 7. can.
- the oxidant gas flow rate control valve 34 when the required oxidant gas flow rate ROF of the fuel cell 2 is large and the flow rate OF of the oxidant gas that can be supplied to the fuel cell 2 through the oxidant gas supply line 31 is large, the oxidant gas flow rate control valve 34 to suppress the recirculation of the oxidant gas through the oxidant gas recirculation line 33, it is possible to suppress the reduction in efficiency of the compressor 7 due to the recirculation of the oxidant gas.
- the oxidizing gas supply system 3 is configured to release the oxidizing gas present in the oxidizing gas supply line 31 to the atmosphere, most of the oxidizing gas that has passed through the compressor impeller 71 is discharged into the atmosphere due to the opening to the atmosphere. Therefore, there is a possibility that sufficient oxidizing gas will not flow into the power generation cell 20 and power generation will not be possible.
- part of the oxidizing gas existing in the oxidizing gas supply line 31 is recirculated through the oxidizing gas recirculation line 33, and the rest of the oxidizing gas existing in the oxidizing gas supply line 31 is sent to the power generation cell 20. supplied. As a result, sufficient oxidizing gas is supplied to the power generation cells 20, so power generation is possible.
- part of the oxidizing gas present in the oxidizing gas supply line 31 is recirculated through the oxidizing gas recirculation line 33, so that the compressor impeller 71 is more efficient than when the oxidizing gas is not recirculated.
- the pressure and temperature of the supplied oxidizing gas can be increased, and the power of the compressor 7 can be increased.
- the load on the compressor 7 is increased, so the rotation speed of the compressor impeller 71 can be quickly reduced. Damage to the compressor 7 can be suppressed by quickly reducing the rotation speed of the compressor impeller 71 when the compressor 7 is to be stopped urgently when an abnormality such as surging or asynchronous vibration occurs.
- FIG. 3 is a flow diagram showing an example of control 100 including the first degree-of-opening increase control of control device 8 in an embodiment of the present disclosure.
- the control device 8 described above presets the flow rate of the oxidant gas supplied to the fuel cell 2 (in the illustrated example, the measured value of the oxidant gas flow rate OF). If the flow rate is less than the first specified flow rate SF1 ("Yes" in S11), first opening degree increase control (S12) for increasing the opening degree of the oxidant gas flow rate adjustment valve 34 is executed.
- the oxidizing gas side opening instruction section 87 is configured to execute the first opening increase control.
- the flow rate of the oxidant gas supplied to the fuel cell 2 is lower than the first specified flow rate SF1
- the flow rate of the oxidant gas supplied to the fuel cell 2 is higher than the first specified flow rate SF1. It means moving to a state smaller than the first specified flow rate SF1.
- the control device 8 executes the first degree-of-opening increase control to increase the degree of opening of the oxidant gas flow rate control valve 34.
- the amount of oxidizing gas recirculated through the oxidizing gas recirculating line 33 can be increased.
- first degree-of-opening reduction control In some embodiments, as shown in FIG. 3, the control device 8 described above presets the flow rate of the oxidant gas supplied to the fuel cell 2 (in the illustrated example, the measured value of the oxidant gas flow rate OF). If the flow rate exceeds the third specified flow rate SF3 ("Yes" in S13), first opening reduction control (S14) for reducing the opening of the oxidizing gas flow rate adjustment valve 34 is executed.
- the first degree-of-opening reduction control may be executed after execution of the first degree-of-opening increase control, as shown in FIG.
- the degree of opening of the gas flow rate adjustment valve 34 may be returned to the degree of opening before being increased in the first degree-of-opening increase control.
- the oxidizing gas side opening instruction section 87 is configured to execute the first opening reduction control.
- the third prescribed flow rate SF3 is greater than the first prescribed flow rate SF1.
- "the flow rate of the oxidant gas supplied to the fuel cell 2 exceeds the third specified flow rate SF3” means that the flow rate of the oxidant gas supplied to the fuel cell 2 is less than the third specified flow rate SF3. It means that the flow rate is shifted to a state larger than the third prescribed flow rate SF3.
- FIG. 4 is a flow diagram showing an example of control 200 including rapid opening degree increase control of control device 8 in an embodiment of the present disclosure.
- FIG. 5 is an explanatory diagram for explaining changes in the operating point of the compressor 7 when the flow rate of the oxidant gas supplied to the fuel cell 2 changes to a small flow rate.
- the above-described control device 8 when the requested oxidant gas flow rate ROF of the fuel cell 2 is lower than the second specified flow rate SF2 ("Yes" in S22), is configured to execute a rapid opening degree increase control (S23) for increasing the opening degree of the oxidizing gas flow control valve 34.
- S23 rapid opening degree increase control
- the required amount calculation unit 83 is configured to calculate the required oxidant gas flow rate ROF (S21), and the oxidant gas side opening instruction unit 87 is configured to execute rapid opening increase control.
- the requested oxidant gas flow rate ROF is less than the second specified flow rate SF2
- the requested oxidant gas flow rate ROF changes from being greater than the second specified flow rate SF2 to being smaller than the second specified flow rate SF2.
- FIG. 5 and FIG. 7, which will be described later, show a compressor map with the above-described oxidizing gas flow rate OF as the horizontal axis and the above-described oxidizing gas pressure OP as the vertical axis.
- This compressor map includes a surge line LS of the compressor 7, a surge region SR formed on the small flow rate side of the surge line LS, and a surge region SR on the opposite side of the surge line LS (large flow rate side). , a surge dangerous operating region SDR provided in the vicinity of the surge region SR, and a current operating point (operating point) P1 of the compressor 7 are shown. As shown in FIGS.
- the surge dangerous operating region SDR includes a surge dangerous line LS1 formed in a curved shape along the surge line LS on the large flow rate side of the surge line LS in the compressor map, and a surge line LS1. may be formed between Each of surge line LS, surge danger line LS1, surge region SR, and surge danger driving region SDR is set in advance and stored in database unit 80 .
- the control device 8 executes rapid opening degree increase control to increase the opening degree of the oxidant gas flow rate control valve 34.
- the above-described second specified flow rate SF2 is greater than the above-described first specified flow rate SF1.
- the second specified flow rate SF2 by making the second specified flow rate SF2 larger than the first specified flow rate SF1, when the flow rate OF of the oxidizing gas supplied to the fuel cell 2 changes from a large flow rate to a small flow rate, the compression Temporary entry of the operating point of the machine 7 into the surge region SR can be effectively suppressed.
- the first specified flow rate SF1 smaller than the second specified flow rate SF2
- the frequency of the first opening increase control by the control device 8 can be suppressed.
- Pressure loss (energy loss) of the oxidizing gas recirculated via 33 can be suppressed. By suppressing the pressure loss of the oxidizing gas, the reduction in efficiency of the compressor 7 can be suppressed.
- FIG. 6 is a flow diagram showing an example of control 300 including the second degree-of-opening increase control of control device 8 in an embodiment of the present disclosure.
- FIG. 7 is an explanatory diagram for explaining the second degree-of-opening increase control and the second degree-of-opening decrease control.
- the control device 8 described above controls the flow rate of the oxidant gas supplied to the fuel cell 2 (in the illustrated example, the measured or estimated value of the oxidant gas flow rate OF) and The operating point P (P1, see FIG.
- the oxidizing gas side opening degree instruction unit 87 (control device 8) is configured to acquire the operating point P (S31) and execute the second opening degree increase control (S32, S33). .
- the oxidizing gas side opening instruction unit 87 obtains the operating point P of the compressor 7 according to either the measured value or the estimated value of the oxidizing gas flow rate OF and the measured value of the oxidizing gas pressure OP.
- the oxidizing gas side opening degree instruction unit 87 controls the oxidizing gas flow rate based on seventh association information that associates the oxidizing gas flow rate OF, the oxidizing gas pressure OP, and the operating point P of the compressor 7 in advance.
- the measured value or the estimated value of the oxidant gas flow rate OF and the measured value of the oxidant gas pressure OP may be obtained from either the measured value or the estimated value of OF and the measured value of the oxidant gas pressure OP.
- the seventh association information is stored in the database section 80 in advance.
- the control device 8 executes the second degree-of-opening increase control to increase the degree of opening of the oxidizing gas flow rate control valve 34, so that the compressor Surging in 7 can be prevented. As a result, surging in the compressor 7 can be effectively suppressed.
- second opening degree reduction control (Second opening reduction control)
- the control device 8 described above changes the operating point P (P4, see FIG. If the position is outside the region SDR (on the large flow rate side of the surge danger line LS1) ("Yes" in S34), second opening degree reduction control (S35 ) may be configured to execute
- the degree of opening of the oxidizing gas flow control valve 34 increased in the second degree-of-opening increase control may be returned to the degree of opening before being increased in the second degree-of-opening increase control.
- the oxidizing gas side opening instruction section 87 is configured to execute the second opening reduction control.
- the oxidant gas recirculation line 33 described above is provided inside the compressor cover 72, as shown in FIG.
- the above-described branch portion 312 to which one side of the oxidizing gas recirculation line 33 is connected is provided in the oxidizing gas discharge passage 76
- the above-described junction portion 322 to which the other side of the oxidizing gas recirculation line 33 is connected is provided in the oxidizing gas introduction passage 75 .
- the connection portion of the oxidant gas recirculation line 33 with the branch portion 312 is reduced. Since the length from one end to the other end, which is the connecting portion with the merging portion 322, can be shortened, the pressure loss (energy loss) of the oxidant gas recirculated through the oxidant gas recirculation line 33 can be suppressed. By suppressing the pressure loss of the oxidizing gas, the reduction in efficiency of the compressor 7 can be suppressed.
- the responsiveness is improved when the opening degree of the oxidant gas flow rate control valve 34 is increased or decreased, and the oxidant gas recirculation line can be quickly opened.
- the amount of oxidizing gas recirculated through 33 can be increased or decreased.
- FIG. 8 is an explanatory diagram for explaining the heat exchanger of the oxidizing gas supply system according to one embodiment of the present disclosure.
- the oxidant gas supply system 3 described above provides heat transfer between the oxidant gas flowing through the oxidant gas recirculation line 33 and the refrigerant, which is provided in the oxidant gas recirculation line 33 .
- It further comprises a heat exchanger (oxidizing gas side heat exchanger) 35 configured to perform the exchange.
- the refrigerant has a lower temperature than the oxidizing gas flowing through the oxidizing gas recirculation line 33 , and heat energy is transferred from the oxidizing gas flowing through the oxidizing gas recirculation line 33 to the refrigerant in the heat exchanger 35 .
- the flowing oxidizing gas is cooled.
- the oxidizing gas compressed by the compressor impeller 71 and flowing through the oxidizing gas supply line 31 has a higher temperature than the oxidizing gas introduced into the compressor impeller 71 via the oxidizing gas introduction line 32 .
- the oxidant gas flowing through the oxidant gas recirculation line 33 is cooled by the heat exchanger 35 provided in the oxidant gas recirculation line 33.
- An accompanying temperature rise of the oxidizing gas introduced into the compressor impeller 71 can be suppressed.
- the power (energy consumption) of the compressor 7 can be reduced.
- the coolant that cools the oxidant gas flowing through the oxidant gas recirculation line 33 in the heat exchanger 35 is made of the same type of heat medium as the coolant that cools the fuel cell 2 .
- Fuel cell vehicle 1 further includes a cooling system 9 for cooling fuel cell 2 .
- the cooling system 9 is configured to exchange heat between a coolant storage device (eg, cooling water tank) 91 configured to store a coolant (eg, cooling water) and the fuel cell 2 and the coolant.
- a coolant storage device eg, cooling water tank
- a coolant eg, cooling water
- a refrigerant supply line 93 for guiding the refrigerant from the refrigerant storage device 91 to the fuel cell side heat exchanger 92; and a refrigerant pump 95 provided in either the refrigerant supply line 93 or the refrigerant discharge line 94 .
- the oxidizing gas supply system 3 includes a first refrigerant branch line 36 for directing refrigerant from either the refrigerant supply line 93 or the refrigerant discharge line 94 to the heat exchanger 35, and the heat exchanger and a second refrigerant branch line 37 for discharging refrigerant from 35 to either the refrigerant supply line 93 or the refrigerant discharge line 94 .
- the coolant flow path in the heat exchanger 35 may be provided in either the coolant supply line 93 or the coolant discharge line 94 .
- the equipment and piping of the cooling system 9 can be used to send the refrigerant to the heat exchanger 35, and there is no need to separately provide the refrigerant storage device 91 and the refrigerant pump 95 for the heat exchanger 35. Therefore, it is possible to prevent the oxidizing gas supply system 3 including the heat exchanger 35 from becoming complicated and expensive.
- the fuel cell vehicle 1 includes the oxidant gas supply system 3 described above, and is configured to be able to run on electric power generated by the fuel cell 2 described above. According to the above configuration, since the fuel cell vehicle 1 includes the oxidant gas supply system 3, surging in the compressor 7 can be suppressed, and the efficiency of the fuel cell vehicle 1 can be improved.
- the oxidizing gas supply system (3) comprises: An oxidizing gas supply system (3) for supplying an oxidizing gas compressed by a compressor (7) to a fuel cell (2), said compressor (7) having a compressor impeller (71); an oxidizing gas supply line (31) for supplying the oxidizing gas that has passed through the compressor impeller (71) to the fuel cell (2); an oxidizing gas introduction line (32) for introducing the oxidizing gas into the compressor impeller (71); an oxidizing gas reflux line (33) branched from the oxidizing gas supply line (31) and connected to the oxidizing gas introduction line (32); and a flow rate control valve (oxidation gas flow rate control valve 34) configured to be able to control the flow rate of the oxidant gas passing through the oxidant gas recirculation line (33).
- An oxidizing gas supply system (3) for supplying an oxidizing gas compressed by a compressor (7) to a fuel cell (2), said compressor (7) having a compressor impeller (71); an oxidizing gas supply line (31) for supplying the oxid
- the flow rate of the oxidant gas that can be supplied to the fuel cell (2) through the oxidant gas supply line (31) is small
- the flow rate By opening the regulating valve (34), a part of the oxidant gas can be recirculated from the oxidant gas supply line (31) to the oxidant gas introduction line (32) through the oxidant gas recirculation line (33).
- the amount of oxidant gas flowing into the compressor impeller (71) can be increased when the required oxidant gas flow rate of the fuel cell (2) is small, so surging in the compressor (7) can be suppressed.
- the oxidizing gas supply system (3) of 1) above Further comprising a control device (8) for controlling opening and closing of the flow control valve (34),
- the control device (8) increases the degree of opening of the flow control valve (34) when the flow rate of the oxidant gas supplied to the fuel cell (2) is below a first specified flow rate (SF1). It is configured to execute the first degree-of-opening increase control.
- the compressor impeller (71) is fed through the oxidant gas introduction line (32).
- the flow rate of the oxidizing gas introduced into the compressor (7) is small, and there is a high possibility that surging will occur in the compressor (7).
- the control device (8) executes the first degree-of-opening increase control to open the flow control valve (34). By increasing the temperature, the amount of oxidant gas recirculated through the oxidant gas recirculation line (33) can be increased.
- the amount of oxidant gas flowing into the compressor impeller (71) can be increased, so that surging in the compressor (7) can be effectively suppressed. can be suppressed.
- the oxidizing gas supply system (3) of 2) above wherein When the required oxidant gas flow rate of the fuel cell (2) falls below a second specified flow rate (SF2), the control device (8) provides a rapid opening degree increase for increasing the opening degree of the flow control valve (34). configured to perform control;
- the control device (8) executes rapid opening degree increase control to increase the opening degree of the flow control valve (34).
- the flow rate of the oxidizing gas supplied to the fuel cell (2) becomes smaller after that, it is possible to suppress the operating point of the compressor (7) from temporarily entering the surge region (SR). Surging in the compressor (7) can be effectively suppressed.
- the second specified flow rate (SF2) larger than the first specified flow rate (SF1)
- the flow rate of the oxidizing gas supplied to the fuel cell (2) changes from a large flow rate to a small flow rate.
- the operating point of the compressor (7) can be effectively prevented from temporarily entering the surge region (SR).
- the first specified flow rate (SF1) smaller than the second specified flow rate (SF2)
- the frequency of the first opening increase control by the control device (8) can be suppressed. Therefore, the pressure loss (energy loss) of the oxidant gas recirculated through the oxidant gas recirculation line (33) can be suppressed.
- the reduction in efficiency of the compressor (7) can be suppressed.
- the oxidizing gas supply system (3) of 1) above comprising: Further comprising a control device (8) for controlling opening and closing of the flow control valve (34),
- the control device (8) sets the operating point of the compressor (7) according to the flow rate of the oxidizing gas supplied to the fuel cell (2) and the pressure of the oxidizing gas to a surge dangerous operating region (SDR). When positioned, it is configured to execute a second degree-of-opening increase control for increasing the degree of opening of the flow control valve (34).
- the control device (8) executes the second degree of opening increase control to increase the degree of opening of the flow control valve (34). By doing so, it is possible to prevent surging in the compressor (7). This effectively suppresses surging in the compressor (7).
- the oxidizing gas supply system (3) according to any one of 1) to 5) above,
- the compressor (7) further has a compressor cover (72) that rotatably houses the compressor impeller (71),
- the oxidant gas recirculation line (33) was provided inside the compressor cover (72).
- the oxidant gas recirculation line (33) can be more Since the length from one end to the other end can be shortened, the pressure loss (energy loss) of the oxidant gas recirculated through the oxidant gas recirculation line (33) can be suppressed. By suppressing the pressure loss of the oxidizing gas, the reduction in efficiency of the compressor (7) can be suppressed.
- the oxidizing gas supply system (3) according to any one of 1) to 6) above, Further comprising a heat exchanger (35) provided in the oxidant gas reflux line (33) configured to exchange heat between the oxidant gas flowing through the oxidant gas reflux line (33) and the refrigerant. .
- the oxidizing gas compressed by the compressor impeller (71) flowing through the oxidizing gas supply line (31) has a higher temperature than the oxidizing gas introduced into the compressor impeller (71) through the oxidizing gas introduction line (32). .
- the oxidizing gas flowing through the oxidizing gas reflux line (33) is cooled by the heat exchanger (35) provided in the oxidizing gas reflux line (33). 33), the temperature rise of the oxidizing gas introduced into the compressor impeller (71) can be suppressed. By suppressing the temperature rise of the oxidizing gas introduced into the compressor impeller (71), the power (energy consumption) of the compressor (7) can be reduced.
- a fuel cell vehicle (1) according to at least one embodiment of the present disclosure,
- the oxidizing gas supply system (3) according to any one of 1) to 7) above,
- the electric power generated by the fuel cell (2) is used to run the vehicle.
- the fuel cell vehicle (1) is provided with the oxidizing gas supply system (3), so that surging in the compressor (7) can be suppressed. can be improved.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
燃料電池に圧縮機により圧縮された酸化ガスを供給するための酸化ガス供給システムであって、
コンプレッサインペラを有する前記圧縮機と、
前記コンプレッサインペラを通過した前記酸化ガスを前記燃料電池に供給するための酸化ガス供給ラインと、
前記コンプレッサインペラに前記酸化ガスを導入するための酸化ガス導入ラインと、
前記酸化ガス供給ラインから分岐して前記酸化ガス導入ラインに接続される酸化ガス還流ラインと、
前記酸化ガス還流ラインを通過する前記酸化ガスの流量を調整可能に構成された流量調整弁と、を備える。
前記酸化ガス供給システムを備え、
前記燃料電池が発生させた電力により走行可能に構成された。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
なお、同様の構成については同じ符号を付し説明を省略することがある。
図1は、本開示の一実施形態にかかる燃料電池車両1の構成を概略的に示す概略構成図である。幾つかの実施形態にかかる燃料電池車両1は、燃料電池(FC:Fuel Cell)2が発生させた電力により走行可能に構成された電動車両である。燃料電池2は、負極活物質となる燃料ガス(図示例では、水素ガス)と、正極活物質となる酸化ガス(図示例では、空気中の酸素)と、が常温または高温環境で供給(補充)されるようになっている。燃料電池2は、供給された燃料ガスと酸化ガスとの電気化学反応により発電可能に構成されている。
図示される実施形態では、燃料電池2に供給される燃料ガスは、水素ガスからなり、燃料電池2に供給される酸化ガスは、空気中の酸素からなる。燃料電池2は、図1に示されるように、電子受容側電極(カソード)である空気極21と、電子放出側電極(アノード)である燃料極22と、空気極21と燃料極22とを隔てるように空気極21と燃料極22との間に挟まれた電解質膜23と、を含む少なくとも1つの発電セル20を有する。なお、燃料電池2は、複数の発電セル20と、複数の発電セル20の夫々の間に挟まれたセパレータと、が積層された構成にしてもよい。図示される実施形態では、電解質膜23は、固体高分子電解質膜からなる。
燃料極22(アノード):H2→2H++2e-
空気極21(カソード):1/2O2+2H++2e-→H2O
燃料電池2の出力は、第1の接続ケーブル11を介して、駆動用バッテリ5の入力に接続されている。駆動用バッテリ5の出力は、第2の接続ケーブル12を介して、走行用モータ6の入力に接続されている。駆動用バッテリ5は、第1の接続ケーブル11を介して燃料電池2が発生させた電力が供給され、供給された電力を蓄える(充電する)。走行用モータ6は、主に駆動用バッテリ5に充電された電力が供給され、駆動用バッテリ5から供給された電力により駆動する。駆動用バッテリ5は、リチウムイオン電池、ニッケル・カドミウム電池、又はニッケル・水素電池の何れかであってもよく、特に限定されるものではない。
酸化ガス供給システム3は、燃料電池2の空気極21に圧縮機7により圧縮された酸素を含む空気(酸化ガス)を供給するためのものである。酸化ガス供給システム3は、図1に示されるように、コンプレッサインペラ71を有する上記圧縮機7と、コンプレッサインペラ71を通過した酸素を含む空気を燃料電池2の空気極21(空気極21側の触媒層)に供給するための酸化ガス供給ライン31と、上記圧縮機7のコンプレッサインペラ71に酸素を含む空気を導入するための酸化ガス導入ライン32と、を少なくとも備える。
燃料ガス供給システム4は、燃料電池2の燃料極22に水素ガス(燃料ガス)を供給するためのものである。燃料ガス供給システム4は、図1に示されるように、水素ガスを貯留するように構成された燃料ガス貯留装置(例えば、水素ガス貯留タンク)41と、燃料ガス貯留装置41から燃料電池2の燃料極22(燃料極22側の触媒層)に水素ガスを供給するための燃料ガス供給ライン42と、燃料ガス供給ライン42を通過する水素ガスの流量を調整可能に構成された燃料ガス流量調整弁43と、を含む。燃料ガス供給ライン42は、その一方側が燃料ガス貯留装置41に接続され、その他方側が燃料電池2の燃料極22に接続されている。
酸化ガス供給システム3は、図1に示されるように、酸化ガス供給ライン31から分岐して酸化ガス導入ライン32に接続される酸化ガス還流ライン33と、酸化ガス還流ライン33を通過する酸素を含む空気の流量を調整可能に構成された酸化ガス流量調整弁(流量調整弁)34と、をさらに備える。酸化ガス還流ライン33は、その一方側が酸化ガス供給ライン31の分岐部312に接続され、その他方側が酸化ガス導入ライン32の合流部322に接続されている。
燃料電池車両1は、燃料電池2における燃料ガス(水素)と酸化ガス(酸素)との電気化学反応で生成された排気(水蒸気)を燃料電池車両1の外部に排出するための排気排出ライン14と、排気排出ライン14を通過する水蒸気の流量を調整可能に構成された排気流量調整弁15と、をさらに備える。
燃料電池車両1は、酸化ガス圧力OP(空気圧力)を測定するように構成された酸化ガス圧力測定装置(例えば、空気圧力センサ)16と、燃料ガス圧力HP(水素圧力)を測定するように構成された燃料ガス圧力測定装置(例えば、水素圧力センサ)17と、をさらに備える。酸化ガス圧力測定装置16は、酸化ガス圧力OPとして、燃料電池2の空気極21における空気の圧力を測定してもよいし、酸化ガス供給ライン31(特に、分岐部312よりも下流側)を流れる空気の圧力を測定してもよい。燃料ガス圧力測定装置17は、燃料ガス圧力HPとして、燃料電池2の燃料極22における水素ガスの圧力を測定してもよいし、燃料ガス供給ライン42(特に、燃料ガス流量調整弁43よりも下流側)を流れる水素ガスの圧力を測定してもよい。
酸化ガス供給システム3は、少なくとも酸化ガス流量調整弁34の開閉を制御するための制御装置8をさらに備える。図示される実施形態では、制御装置8は、燃料電池2に供給される酸化ガスや燃料ガスの圧力や流量を調整するための電子制御ユニットであり、図示しないCPU(プロセッサ)や、ROMやRAMといったメモリ、外部記憶装置などの記憶装置、I/Oインターフェース、通信インターフェースなどからなるマイクロコンピュータとして構成されていてもよい。そして、例えば上記メモリの主記憶装置にロードされたプログラムの命令に従ってCPUが動作(例えばデータの演算など)することで、後述する各部を実現する。
図3は、本開示の一実施形態における制御装置8の第1開度増大制御を含む制御100の一例を示すフロー図である。幾つかの実施形態では、図3に示されるように、上述した制御装置8は、燃料電池2に供給される酸化ガスの流量(図示例では、酸化ガス流量OFの測定値)が予め設定された第1規定流量SF1を下回る場合(S11で「Yes」の場合)には、酸化ガス流量調整弁34の開度を増大させる第1開度増大制御(S12)を実行するように構成されている。図示される実施形態では、酸化ガス側開度指示部87が第1開度増大制御を実行するように構成されている。ここで、「燃料電池2に供給される酸化ガスの流量が第1規定流量SF1を下回る」とは、燃料電池2に供給される酸化ガスの流量が、第1規定流量SF1よりも大きい状態から第1規定流量SF1よりも小さい状態に移行することを意味する。
幾つかの実施形態では、図3に示されるように、上述した制御装置8は、燃料電池2に供給される酸化ガスの流量(図示例では、酸化ガス流量OFの測定値)が予め設定された第3規定流量SF3を上回る場合(S13で「Yes」の場合)には、酸化ガス流量調整弁34の開度を減少させる第1開度減少制御(S14)を実行するように構成されていてもよい。第1開度減少制御は、図3に示されるように、第1開度増大制御の実行後に実行されてもよく、第1開度減少制御では、第1開度増大制御において増大させた酸化ガス流量調整弁34の開度を、第1開度増大制御において増大させる前の開度に戻してもよい。図示される実施形態では、酸化ガス側開度指示部87が第1開度減少制御を実行するように構成されている。第3規定流量SF3は、第1規定流量SF1よりも大きい。ここで、「燃料電池2に供給される酸化ガスの流量が第3規定流量SF3を上回る」とは、燃料電池2に供給される酸化ガスの流量が、第3規定流量SF3よりも小さい状態から第3規定流量SF3よりも大きい状態に移行することを意味する。
図4は、本開示の一実施形態における制御装置8の急速開度増大制御を含む制御200の一例を示すフロー図である。図5は、燃料電池2に供給される酸化ガスの流量の小流量への変化時における圧縮機7の運転点の変化を説明するための説明図である。
幾つかの実施形態では、図4に示されるように、上述した制御装置8は、燃料電池2の要求酸化ガス流量ROFが第2規定流量SF2を下回る場合(S22で「Yes」の場合)には、酸化ガス流量調整弁34の開度を増大させる急速開度増大制御(S23)を実行するように構成されている。図示される実施形態では、要求量算出部83が要求酸化ガス流量ROFを算出(S21)し、酸化ガス側開度指示部87が急速開度増大制御を実行するように構成されている。ここで、「要求酸化ガス流量ROFが第2規定流量SF2を下回る」とは、要求酸化ガス流量ROFが第2規定流量SF2よりも大きい状態から第2規定流量SF2よりも小さい状態に移行することを意味する。
図6は、本開示の一実施形態における制御装置8の第2開度増大制御を含む制御300の一例を示すフロー図である。図7は、第2開度増大制御や第2開度減少制御を説明するための説明図である。幾つかの実施形態では、図6に示されるように、上述した制御装置8は、燃料電池2に供給される酸化ガスの流量(図示例では、酸化ガス流量OFの測定値又は推定値)および燃料電池2に供給される酸化ガスの圧力(図示例では、酸化ガス圧力OPの測定値)に応じた圧縮機7の運転点P(P1、図7参照)が、予め設定されたサージ危険運転領域SDRに位置する場合(S32で「Yes」の場合)には、酸化ガス流量調整弁34の開度を増大させる第2開度増大制御(S33)を実行するように構成されている。図示される実施形態では、酸化ガス側開度指示部87(制御装置8)が運転点Pの取得(S31)および第2開度増大制御(S32、S33)を実行するように構成されている。
幾つかの実施形態では、図6に示されるように、上述した制御装置8は、第2開度増大制御を実行後に圧縮機7の運転点P(P4、図7参照)が、サージ危険運転領域SDR外(サージ危険ラインLS1よりも大流量側)に位置する場合(S34で「Yes」の場合)には、酸化ガス流量調整弁34の開度を減少させる第2開度減少制御(S35)を実行するように構成されていてもよい。第2開度減少制御では、第2開度増大制御において増大させた酸化ガス流量調整弁34の開度を、第2開度増大制御において増大させる前の開度に戻してもよい。図示される実施形態では、酸化ガス側開度指示部87が第2開度減少制御を実行するように構成されている。
図8は、本開示の一実施形態にかかる酸化ガス供給システムの熱交換器を説明するための説明図である。幾つかの実施形態では、図8に示されるように、上述した酸化ガス供給システム3は、酸化ガス還流ライン33に設けられた、酸化ガス還流ライン33を流れる酸化ガスと冷媒との間で熱交換を行うように構成された熱交換器(酸化ガス側熱交換器)35をさらに備える。冷媒は、酸化ガス還流ライン33を流れる酸化ガスよりも低温であり、熱交換器35において酸化ガス還流ライン33を流れる酸化ガスから冷媒に熱エネルギーが伝達されることで、酸化ガス還流ライン33を流れる酸化ガスが冷却される。
燃料電池(2)に圧縮機(7)により圧縮された酸化ガスを供給するための酸化ガス供給システム(3)であって、
コンプレッサインペラ(71)を有する前記圧縮機(7)と、
前記コンプレッサインペラ(71)を通過した前記酸化ガスを前記燃料電池(2)に供給するための酸化ガス供給ライン(31)と、
前記コンプレッサインペラ(71)に前記酸化ガスを導入するための酸化ガス導入ライン(32)と、
前記酸化ガス供給ライン(31)から分岐して前記酸化ガス導入ライン(32)に接続される酸化ガス還流ライン(33)と、
前記酸化ガス還流ライン(33)を通過する前記酸化ガスの流量を調整可能に構成された流量調整弁(酸化ガス流量調整弁34)と、を備える。
前記流量調整弁(34)の開閉を制御するための制御装置(8)をさらに備え、
前記制御装置(8)は、前記燃料電池(2)に供給される前記酸化ガスの流量が第1規定流量(SF1)を下回る場合には、前記流量調整弁(34)の開度を増大させる第1開度増大制御を実行するように構成される。
前記制御装置(8)は、前記燃料電池(2)の要求酸化ガス流量が第2規定流量(SF2)を下回る場合には、前記流量調整弁(34)の開度を増大させる急速開度増大制御を実行するように構成される。
前記第2規定流量(SF2)は、前記第1規定流量(SF1)よりも大きい。
前記流量調整弁(34)の開閉を制御するための制御装置(8)をさらに備え、
前記制御装置(8)は、前記燃料電池(2)に供給される前記酸化ガスの流量および前記酸化ガスの圧力に応じた前記圧縮機(7)の運転点がサージ危険運転領域(SDR)に位置する場合には、前記流量調整弁(34)の開度を増大させる第2開度増大制御を実行するように構成される。
前記圧縮機(7)は、前記コンプレッサインペラ(71)を回転可能に収容するコンプレッサカバー(72)をさらに有し、
前記酸化ガス還流ライン(33)は、前記コンプレッサカバー(72)の内部に設けられた。
前記酸化ガス還流ライン(33)に設けられた、前記酸化ガス還流ライン(33)を流れる前記酸化ガスと冷媒との間で熱交換を行うように構成された熱交換器(35)をさらに備える。
上記1)~上記7)までの何れかに記載の酸化ガス供給システム(3)を備え、
前記燃料電池(2)が発生させた電力により走行可能に構成された。
2 燃料電池
3 酸化ガス供給システム
4 燃料ガス供給システム
5 駆動用バッテリ
6 走行用モータ
7 圧縮機
8 制御装置
9 冷却システム
11 第1の接続ケーブル
12 第2の接続ケーブル
13 車体
14 排気排出ライン
15 排気流量調整弁
16 酸化ガス圧力測定装置
17 燃料ガス圧力測定装置
18 酸化ガス流量測定装置
20 発電セル
21 空気極
22 燃料極
23 電解質膜
31 酸化ガス供給ライン
32 酸化ガス導入ライン
33 酸化ガス還流ライン
34 酸化ガス流量調整弁
35 熱交換器
36 第1の冷媒分流ライン
37 第2の冷媒分流ライン
41 燃料ガス貯留装置
42 燃料ガス供給ライン
43 燃料ガス流量調整弁
71 コンプレッサインペラ
72 コンプレッサカバー
73 導入口
74 排出口
75 酸化ガス導入路
76 酸化ガス排出路
77 電動モータ
78 回転シャフト
80 データベース部
81 酸化ガス流量推定部
82 必要発電量推定部
83 要求量算出部
84 回転数指示部
85 燃料ガス側開度指示部
86 排気側開度指示部
87 酸化ガス側開度指示部
91 冷媒貯留装置
92 燃料電池側熱交換器
93 冷媒供給ライン
94 冷媒排出ライン
95 冷媒ポンプ
Claims (8)
- 燃料電池に圧縮機により圧縮された酸化ガスを供給するための酸化ガス供給システムであって、
コンプレッサインペラを有する前記圧縮機と、
前記コンプレッサインペラを通過した前記酸化ガスを前記燃料電池に供給するための酸化ガス供給ラインと、
前記コンプレッサインペラに前記酸化ガスを導入するための酸化ガス導入ラインと、
前記酸化ガス供給ラインから分岐して前記酸化ガス導入ラインに接続される酸化ガス還流ラインと、
前記酸化ガス還流ラインを通過する前記酸化ガスの流量を調整可能に構成された流量調整弁と、を備える、
酸化ガス供給システム。 - 前記流量調整弁の開閉を制御するための制御装置をさらに備え、
前記制御装置は、前記燃料電池に供給される前記酸化ガスの流量が第1規定流量を下回る場合には、前記流量調整弁の開度を増大させる第1開度増大制御を実行するように構成される、
請求項1に記載の酸化ガス供給システム。 - 前記制御装置は、前記燃料電池の要求酸化ガス流量が第2規定流量を下回る場合には、前記流量調整弁の開度を増大させる急速開度増大制御を実行するように構成される、
請求項2に記載の酸化ガス供給システム。 - 前記第2規定流量は、前記第1規定流量よりも大きい、
請求項3に記載の酸化ガス供給システム。 - 前記流量調整弁の開閉を制御するための制御装置をさらに備え、
前記制御装置は、前記燃料電池に供給される前記酸化ガスの流量および前記酸化ガスの圧力に応じた前記圧縮機の運転点がサージ危険運転領域に位置する場合には、前記流量調整弁の開度を増大させる第2開度増大制御を実行するように構成される、
請求項1に記載の酸化ガス供給システム。 - 前記圧縮機は、前記コンプレッサインペラを回転可能に収容するコンプレッサカバーをさらに有し、
前記酸化ガス還流ラインは、前記コンプレッサカバーの内部に設けられた、
請求項1に記載の酸化ガス供給システム。 - 前記酸化ガス還流ラインに設けられた、前記酸化ガス還流ラインを流れる前記酸化ガスと冷媒との間で熱交換を行うように構成された熱交換器をさらに備える、
請求項1に記載の酸化ガス供給システム。 - 請求項1に記載の酸化ガス供給システムを備え、
前記燃料電池が発生させた電力により走行可能に構成された、
燃料電池車両。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/567,401 US20240274843A1 (en) | 2021-09-13 | 2021-09-13 | Oxidizing gas supply system, and fuel cell electric vehicle |
JP2023546718A JP7546170B2 (ja) | 2021-09-13 | 2021-09-13 | 酸化ガス供給システムおよび燃料電池車両 |
PCT/JP2021/033578 WO2023037551A1 (ja) | 2021-09-13 | 2021-09-13 | 酸化ガス供給システムおよび燃料電池車両 |
DE112021007428.8T DE112021007428T5 (de) | 2021-09-13 | 2021-09-13 | Oxidationsgas-zufuhrsystem und brennstoffzellen- elektrofahrzeug |
CN202180099040.4A CN117425991A (zh) | 2021-09-13 | 2021-09-13 | 氧化气体供给系统及燃料电池车辆 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/033578 WO2023037551A1 (ja) | 2021-09-13 | 2021-09-13 | 酸化ガス供給システムおよび燃料電池車両 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023037551A1 true WO2023037551A1 (ja) | 2023-03-16 |
Family
ID=85506265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/033578 WO2023037551A1 (ja) | 2021-09-13 | 2021-09-13 | 酸化ガス供給システムおよび燃料電池車両 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240274843A1 (ja) |
JP (1) | JP7546170B2 (ja) |
CN (1) | CN117425991A (ja) |
DE (1) | DE112021007428T5 (ja) |
WO (1) | WO2023037551A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103727074A (zh) * | 2013-12-07 | 2014-04-16 | 西南交通大学 | 燃料电池机车低功率运行空压机防喘振方法 |
US20140120447A1 (en) * | 2012-10-25 | 2014-05-01 | GM Global Technology Operations LLC | Reactive compressor surge mitigation strategy for a fuel cell power system |
WO2016013304A1 (ja) * | 2014-07-24 | 2016-01-28 | 日産自動車株式会社 | 燃料電池システム及び燃料電池システムの制御方法 |
JP2016091609A (ja) * | 2014-10-29 | 2016-05-23 | トヨタ自動車株式会社 | 燃料電池システム及び燃料電池システムの制御方法 |
JP2019145357A (ja) * | 2018-02-21 | 2019-08-29 | トヨタ自動車株式会社 | 燃料電池システムおよび燃料電池システムの制御方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10120947A1 (de) | 2001-04-22 | 2002-10-24 | Daimler Chrysler Ag | Brennstoffzellen-Luftversorgung |
JP2005310429A (ja) | 2004-04-19 | 2005-11-04 | Honda Motor Co Ltd | 燃料電池システム |
JP2019075282A (ja) | 2017-10-16 | 2019-05-16 | トヨタ自動車株式会社 | 燃料電池モジュール |
JP2019145338A (ja) | 2018-02-21 | 2019-08-29 | トヨタ自動車株式会社 | 燃料電池システム |
-
2021
- 2021-09-13 CN CN202180099040.4A patent/CN117425991A/zh active Pending
- 2021-09-13 JP JP2023546718A patent/JP7546170B2/ja active Active
- 2021-09-13 DE DE112021007428.8T patent/DE112021007428T5/de active Pending
- 2021-09-13 US US18/567,401 patent/US20240274843A1/en active Pending
- 2021-09-13 WO PCT/JP2021/033578 patent/WO2023037551A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140120447A1 (en) * | 2012-10-25 | 2014-05-01 | GM Global Technology Operations LLC | Reactive compressor surge mitigation strategy for a fuel cell power system |
CN103727074A (zh) * | 2013-12-07 | 2014-04-16 | 西南交通大学 | 燃料电池机车低功率运行空压机防喘振方法 |
WO2016013304A1 (ja) * | 2014-07-24 | 2016-01-28 | 日産自動車株式会社 | 燃料電池システム及び燃料電池システムの制御方法 |
JP2016091609A (ja) * | 2014-10-29 | 2016-05-23 | トヨタ自動車株式会社 | 燃料電池システム及び燃料電池システムの制御方法 |
JP2019145357A (ja) * | 2018-02-21 | 2019-08-29 | トヨタ自動車株式会社 | 燃料電池システムおよび燃料電池システムの制御方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7546170B2 (ja) | 2024-09-05 |
US20240274843A1 (en) | 2024-08-15 |
CN117425991A (zh) | 2024-01-19 |
DE112021007428T5 (de) | 2024-02-15 |
JPWO2023037551A1 (ja) | 2023-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8846262B2 (en) | Reactive compressor surge mitigation strategy for a fuel cell power system | |
JP5007927B2 (ja) | 燃料電池システム | |
JP6206440B2 (ja) | 燃料電池システム | |
WO2012029414A1 (ja) | 燃料電池システム | |
JP5224082B2 (ja) | 燃料電池システム及びその排水制御方法 | |
JP2009123550A (ja) | 燃料電池システム | |
JP5446023B2 (ja) | 燃料電池システム | |
US10096853B2 (en) | Method of detecting abnormality in pressure sensor and fuel cell system | |
US10290887B2 (en) | Fuel cell system and method for operating such a system | |
KR101135654B1 (ko) | 연료전지시스템 및 그 제어방법 | |
US20070218328A1 (en) | Fuel cell system | |
US20120214079A1 (en) | Fuel cell system | |
JP6088163B2 (ja) | 燃料電池システム | |
WO2009011324A1 (ja) | 燃料電池システム及び移動体 | |
US8153315B2 (en) | Fuel cell system having output voltage corrector | |
KR101078794B1 (ko) | 연료전지시스템 및 상기 연료전지시스템의 순환비산출방법 | |
JP2018181771A (ja) | 燃料電池システム | |
JP5272328B2 (ja) | 燃料電池システム | |
JP2009026632A (ja) | 燃料電池システム | |
KR101020225B1 (ko) | 연료전지차량 | |
US8855945B2 (en) | Feedforward control of the volume flow in a hydraulic system | |
JP5057131B2 (ja) | 燃料電池車 | |
WO2023037551A1 (ja) | 酸化ガス供給システムおよび燃料電池車両 | |
US11476477B2 (en) | Fuel cell system, control method of fuel cell system, and storage medium | |
JP2009193838A (ja) | 燃料電池システムおよびその制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21956846 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023546718 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112021007428 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180099040.4 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18567401 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21956846 Country of ref document: EP Kind code of ref document: A1 |