WO2023037470A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2023037470A1
WO2023037470A1 PCT/JP2021/033140 JP2021033140W WO2023037470A1 WO 2023037470 A1 WO2023037470 A1 WO 2023037470A1 JP 2021033140 W JP2021033140 W JP 2021033140W WO 2023037470 A1 WO2023037470 A1 WO 2023037470A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
life
indoor
indoor unit
electrolytic capacitor
Prior art date
Application number
PCT/JP2021/033140
Other languages
French (fr)
Japanese (ja)
Inventor
恵和 塚野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/033140 priority Critical patent/WO2023037470A1/en
Publication of WO2023037470A1 publication Critical patent/WO2023037470A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This disclosure relates to an air conditioning system.
  • the air conditioner has an outdoor unit and an indoor unit.
  • the indoor unit is provided with a heat exchanger and a fan that blows air toward the heat exchanger.
  • a fan is a load that consumes the most power in an indoor unit.
  • An inverter circuit is used to control the electric motor that drives the fan, and generally the inverter circuit includes an electrolytic capacitor that has a finite life. When the electrolytic capacitor reaches the end of its service life, the pressure valve provided at the bottom or top of the electrolytic capacitor operates and the inverter circuit does not operate normally.
  • a capacitor ripple current estimator obtains an estimated value of the ripple current of the electrolytic capacitor based on the output power to the motor and the system impedance.
  • the capacitor life estimating unit estimates the internal temperature of the electrolytic capacitor from the ambient temperature of the electrolytic capacitor, and calculates the cumulative life time of the electrolytic capacitor based on the estimated internal temperature and the estimated life time of the electrolytic capacitor. ing. Then, when the calculated cumulative life time of the capacitor becomes substantially equal to the pre-stored basic life time, a pre-alarm is displayed on the display unit.
  • the capacitor life determination section when it is determined that the remaining life of the electrolytic capacitor is short, the capacitor life determination section outputs a power reduction instruction to the inverter control section. As a result, the power output from the motor control device to the motor is reduced, and the life of the electrolytic capacitor can be extended.
  • Patent Document 1 describes control of a general electric motor, and there is no particular intention to apply the motor control device described in Patent Document 1 to an air conditioner.
  • Patent Document 1 when it is determined that the remaining life of the electrolytic capacitor is short, the operation is switched to reduce power consumption. Therefore, if the electric motor control device described in Patent Document 1 were applied to an air conditioner, the air conditioning capacity of the air conditioner would be reduced, and the comfort of the indoor space could not be maintained.
  • the present disclosure has been made to solve such problems, and aims to obtain an air conditioning system that can extend the life of electrolytic capacitors while maintaining the comfort of the indoor space.
  • the air conditioning system includes an outdoor unit, two or more indoor units installed in an indoor space and connected to the outdoor unit via refrigerant piping, and the operation of the outdoor unit and the indoor unit.
  • each of the indoor units includes an indoor heat exchanger that exchanges heat between a refrigerant flowing therein and air; a motor and a blade; an indoor fan that blows the air toward the indoor fan, a rectifying unit that rectifies the AC voltage output from the AC power supply, an electrolytic capacitor that smoothes the DC voltage output from the rectifying unit, and a direct current smoothed by the electrolytic capacitor and an inverter unit that converts a voltage into an AC voltage and outputs the voltage to the motor, and the control unit controls the power supply frequency of the AC power supply and the DC voltage output from the electrolytic capacitor for each of the indoor units.
  • a capacitor remaining life estimating unit that calculates the remaining life of the electrolytic capacitor based on the ripple voltage and the The indoor unit set as the life-prolonging operation unit by setting at least one other indoor unit arranged in a range or position where air can be blown to the air-conditioned area of the set indoor unit as a support operation unit. and increase the operability of the indoor unit set in the support operation unit.
  • the indoor unit to be set as the life-extending operation unit is selected based on the remaining life of the electrolytic capacitor, the operating ability of the indoor unit set to the life-extending operation unit is reduced, and the surrounding of the indoor unit is By increasing the drivability of the motor of the indoor unit located in the interior, it is possible to extend the life of the electrolytic capacitor while maintaining the comfort of the indoor space.
  • FIG. 2 is a refrigerant circuit diagram showing the basic configuration of a refrigeration cycle in the air conditioning system 100 according to Embodiment 1.
  • FIG. 1 is a configuration diagram showing the configuration of an air conditioning system 100 according to Embodiment 1;
  • FIG. FIG. 2 is an explanatory diagram showing an arrangement example of the indoor unit 1 and the outdoor unit 2 in the air conditioning system 100 according to Embodiment 1;
  • 2 is a plan view showing an example of arrangement of indoor units 1 in the air conditioning system 100 according to Embodiment 1.
  • FIG. 2 is a circuit diagram showing a configuration of power converter 21 mounted in air conditioning system 100 according to Embodiment 1.
  • FIG. 4 is a flow chart showing the flow of processing of the system controller 8 provided in the air conditioning system 100 according to Embodiment 1.
  • FIG. 1 is an explanatory diagram showing an example of a communication network to which an air conditioning system 100 according to Embodiment 1 is connected;
  • FIG. 3 is a plan view showing the state of the indoor unit 1 in the life extension mode in the air conditioning system 100 according to Embodiment 1.
  • FIG. 2 is a block diagram showing the internal configuration of a system controller 8 provided in the air conditioning system 100 according to Embodiment 1.
  • FIG. 10 is a flow chart showing the flow of processing of the air conditioning system 100 shown in FIG. 9.
  • FIG. 3 is a block diagram showing the configuration of a capacitor remaining life estimator 81 of the system controller 8 provided in the air conditioning system 100 according to Embodiment 1.
  • FIG. 8 is a diagram showing calculation results of a correction coefficient ⁇ B calculated by a correction coefficient calculator 811 provided in the air conditioning system 100 according to Embodiment 1.
  • FIG. 4 is a diagram showing a waveform of DC voltage Vdc output from electrolytic capacitor 24a provided in air conditioning system 100 according to Embodiment 1.
  • FIG. 4 is a diagram showing waveforms of DC voltage Vdc output by electrolytic capacitor 24a provided in air conditioning system 100 according to Embodiment 1 when there is no power source unbalance.
  • FIG. 4 is a diagram showing waveforms of DC voltage Vdc output by electrolytic capacitor 24a provided in air-conditioning system 100 according to Embodiment 1 when there is power supply unbalance.
  • FIG. 4 is a diagram showing calculation results of a correction coefficient ⁇ B calculated by a correction coefficient calculator 811 provided in the air conditioning system 100 according to Embodiment 1.
  • FIG. 4 is a diagram showing a waveform of DC voltage Vdc output from electrolytic capacitor 24a provided in air conditioning
  • FIG. 4 is a flow chart showing the flow of processing of a capacitor remaining life estimator 81 provided in the air conditioning system 100 according to Embodiment 1.
  • FIG. FIG. 4 is an explanatory diagram showing an example of a notification method by a notification unit 88 provided in the air conditioning system 100 according to Embodiment 1;
  • FIG. 4 is an explanatory diagram showing an example of a notification method by a notification unit 88 provided in the air conditioning system 100 according to Embodiment 1;
  • FIG. 4 is an explanatory diagram showing an example of a notification method by a notification unit 88 provided in the air conditioning system 100 according to Embodiment 1;
  • 2 is a diagram showing a configuration of an air conditioning system 100A as a modified example of the air conditioning system 100 according to Embodiment 1;
  • FIG. 2 is a diagram showing a configuration of an air conditioning system 100A as a modified example of the air conditioning system 100 according to Embodiment 1;
  • FIG. 2 is a plan view showing the configuration of the indoor unit 1 provided in the air conditioning system 100 according to Embodiment 1.
  • FIG. FIG. 9 is a plan view schematically showing a case where a wall 14 is installed in the indoor space 13a shown in FIG. 8;
  • 4 is an explanatory diagram showing an example of a data table 53 specifying a corresponding support operation unit for each indoor unit 1 in the air conditioning system 100 according to Embodiment 1.
  • FIG. 4 is a flow chart showing the flow of feedback control processing executed by the system controller 8 provided in the air conditioning system 100 according to Embodiment 1.
  • FIG. 7 is a flow chart showing the flow of another feedback control process executed by the system controller 8 provided in the air conditioning system 100 according to Embodiment 1.
  • FIG. FIG. 26 is an explanatory diagram illustrating the first range used in the feedback control shown in FIG. 25, and the first range and the second range used in the feedback control shown in FIG. 26 to be described later;
  • FIG. 1 is a refrigerant circuit diagram showing the basic configuration of a refrigeration cycle in an air conditioning system 100 according to Embodiment 1.
  • the air conditioning system 100 includes an indoor unit 1 and an outdoor unit 2 .
  • the air conditioning system 100 according to Embodiment 1 actually has a plurality of indoor units 1 as shown in FIGS. 2 and 3 to be described later. Only the indoor unit 1 is illustrated.
  • the indoor unit 1 and the outdoor unit 2 are connected via refrigerant pipes 5 .
  • the outdoor unit 2 is provided with a compressor 3 , a four-way valve 4 , an outdoor heat exchanger 6 , an outdoor fan 9 and an expansion device 7 .
  • the indoor unit 1 is provided with an indoor heat exchanger 10 and an indoor fan 11 .
  • the air conditioning system 100 is also provided with a system controller 8 that controls the overall operation of the air conditioning system 100 .
  • the system controller 8 is installed, for example, in an indoor space. Further, the indoor controller 91 may be provided in the indoor unit 1 and the outdoor controller 92 may be provided in the outdoor unit 2 . In that case, the system controller 8 is communicably connected to an indoor controller 91 provided in the indoor unit 1 and an outdoor controller 92 provided in the outdoor unit 2 .
  • the system controller 8 controls the operation of the indoor unit 1 and the outdoor unit 2 via the indoor controller 91 and the outdoor controller 92 .
  • the system controller 8, the indoor controller 91, and the outdoor controller 92 are collectively referred to as a "controller".
  • the outdoor unit 2 may be provided with an outside air temperature sensor 45 for detecting the outside air temperature, if necessary.
  • the indoor unit 1 may be provided with an intake air temperature sensor 46 for detecting the temperature of the intake air sucked from the intake port 61 (see FIG. 22) of the indoor unit 1, if necessary.
  • the compressor 3 sucks the refrigerant flowing through the refrigerant pipe 5 from the suction port.
  • the compressor 3 compresses the sucked refrigerant and discharges it to the refrigerant pipe 5 from a discharge port.
  • the compressor 3 is, for example, an inverter compressor.
  • the operating frequency may be arbitrarily changed by an inverter circuit or the like to change the refrigerant discharge capacity per unit time. In that case, the operation of the inverter circuit is controlled by the system controller 8, for example.
  • Refrigerant discharged from the compressor 3 flows into the outdoor heat exchanger 6 or the indoor heat exchanger 10 via the four-way valve 4 .
  • the outdoor heat exchanger 6 and the indoor heat exchanger 10 exchange heat between the refrigerant flowing inside and the air.
  • the outdoor heat exchanger 6 and the indoor heat exchanger 10 are, for example, fin-and-tube heat exchangers.
  • the outdoor heat exchanger 6 and the indoor heat exchanger 10 have a plurality of heat transfer tubes through which refrigerant flows, and fins installed between the heat transfer tubes.
  • the outdoor heat exchanger 6 functions as a condenser during cooling operation, and condenses and liquefies the refrigerant.
  • the outdoor heat exchanger 6 functions as an evaporator during heating operation and evaporates the refrigerant.
  • the indoor heat exchanger 10 functions as an evaporator during cooling operation and evaporates the refrigerant.
  • the indoor heat exchanger 10 functions as a condenser during heating operation, and condenses and liquefies the refrigerant.
  • the outdoor fan 9 has a motor 9a and blades 9b.
  • the indoor fan 11 has a motor 11a and blades 11b.
  • the outdoor fan 9 blows air to the outdoor heat exchanger 6 and the indoor fan 11 blows air to the indoor heat exchanger 10 .
  • the rotational speeds of the outdoor fan 9 and the indoor fan 11 are controlled by the system controller 8, for example.
  • the four-way valve 4 is configured to switch between the cooling operation for cooling the indoor unit 1 side and the heating operation for heating the indoor unit 1 side. Switching of the four-way valve 4 is controlled by the system controller 8, for example.
  • the four-way valve 4 is a channel switching device that switches the flow of refrigerant between cooling operation and heating operation. In the case of cooling operation, the four-way valve 4 is in the state indicated by the solid line in FIG. 1 and the refrigerant discharged from the compressor 3 flows into the outdoor heat exchanger 6 . At this time, the outdoor heat exchanger 6 acts as a condenser, and the indoor heat exchanger 10 acts as an evaporator.
  • the four-way valve 4 is in the state indicated by the dashed line in FIG. 1 and the refrigerant discharged from the compressor 3 flows into the indoor heat exchanger 10 .
  • the outdoor heat exchanger 6 acts as an evaporator
  • the indoor heat exchanger 10 acts as a condenser.
  • the expansion device 7 is a decompression device that decompresses and expands the refrigerant, and is composed of an expansion valve such as an electronic expansion valve such as LEV (Linear Expansion Valve). If the throttle device 7 is composed of an electronic expansion valve, the opening degree is adjusted based on an instruction from the system controller 8, for example.
  • the expansion device 7 is provided between the outdoor heat exchanger 6 and the indoor heat exchanger 10 .
  • the compressor 3, the four-way valve 4, the outdoor heat exchanger 6, the throttle device 7, and the indoor heat exchanger 10 are connected by refrigerant pipes 5 to form a refrigerant circuit.
  • the system controller 8 controls the overall operation of the air conditioning system 100 .
  • the system controller 8 is composed of, for example, a microcomputer.
  • the system controller 8 has a storage section 8a (see FIG. 7).
  • the indoor control unit 91 and the outdoor control unit 92 also have storage units (not shown). These storage units are composed of memories.
  • the system controller 8, the indoor controller 91, and the outdoor controller 92 are composed of processing circuits.
  • the processing circuitry consists of dedicated hardware or a processor. Dedicated hardware is, for example, ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
  • the processor executes programs stored in the storage unit.
  • the memory that makes up the storage unit is non-volatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), or magnetic disk, flexible disk, It is a disc such as an optical disc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable ROM)
  • magnetic disk flexible disk, It is a disc such as an optical disc.
  • FIG. 2 is a configuration diagram showing the configuration of the air conditioning system 100 according to Embodiment 1.
  • FIG. 3 is an explanatory diagram showing an arrangement example of the indoor unit 1 and the outdoor unit 2 in the air conditioning system 100 according to the first embodiment.
  • the air conditioning system 100 according to Embodiment 1 includes one outdoor unit 2 and multiple indoor units 1 .
  • the outdoor unit 2 and the indoor unit 1 are connected via the refrigerant pipe 5 as described with reference to FIG.
  • a relay unit 12 may be provided between the outdoor unit 2 and the indoor unit 1, if necessary.
  • the outdoor unit 2 is arranged outdoors such as on the roof of the building 13, for example.
  • the indoor unit 1 is arranged in an indoor space 13a to be air-conditioned.
  • the indoor unit 1 is configured by, for example, a ceiling-embedded 4-direction cassette air conditioner (hereinafter referred to as a 4-direction indoor unit). In that case, the indoor unit 1 is attached to the ceiling 13 b of the indoor space 13 a of the building 13 .
  • FIG. 4 is a plan view showing an arrangement example of the indoor units 1 in the air conditioning system 100 according to Embodiment 1.
  • FIG. FIG. 4 shows a state in which the ceiling 13b is looked up along the z direction (see FIG. 3) from the floor 13c side in the indoor space 13a.
  • 16 indoor units 1 are arranged on the ceiling 13b.
  • the x direction is the width direction of the indoor space 13a
  • the y direction is the depth direction of the indoor space 13a.
  • the x-direction and the y-direction are orthogonal to each other.
  • the z-direction shown in FIG. 3 is orthogonal to the x-direction and the y-direction.
  • the z-direction is the vertical direction, for example, the vertical direction.
  • a row extending along the x direction is called a row
  • a row extending along the y direction is called a column.
  • the indoor units 1 are arranged at regular intervals in rows and columns. Note that the number of indoor units 1 is not limited to 16, and may be any number.
  • the 16 indoor units 1 are separately called, they are called the indoor unit 1 of the first system, the indoor unit 1 of the second system, . . . , the indoor unit 1 of the 16th system.
  • FIG. 5 is a circuit diagram showing the configuration of the power conversion device 21 mounted on the air conditioning system 100 according to Embodiment 1. As shown in FIG. As shown in FIG. 5 , the power converter 21 is provided for each system of the indoor unit 1 . The power converter 21 is connected to the motor 11 a of the indoor fan 11 of each indoor unit 1 . Since the power conversion device 21 in each system has the same configuration, the configuration of the power conversion device 21 in one system will be described here, and the configuration of the power conversion device 21 in the other system will not be described. omitted.
  • the power converter 21 includes a rectifying section 22 , a reactor 23 , a DC link section 24 , an inverter section 25 , a drive circuit 26 and an inverter control section 27 .
  • the power conversion device 21 is connected to the AC power supply 20 as shown in FIG.
  • the AC power supply 20 is, for example, a three-phase AC power supply.
  • AC power supply 20 is, for example, a commercial power supply.
  • the AC power supply 20 is not limited to this case, and may be composed of a power supply other than three-phase, such as a single-phase power supply.
  • the DC power supply 20A may be used as the power supply (see FIGS. 20 and 21).
  • the rectifying section 22 is composed of, for example, a converter circuit.
  • the rectifying section 22 rectifies the AC voltage input from the AC power supply 20 and converts it into a DC voltage.
  • a DC voltage is applied to the DC link portion 24 through the reactor 23 .
  • the rectifying section 22 is composed of, for example, a full bridge circuit including six rectifying diodes.
  • the six rectifying diodes are connected in series two by two to form a total of three series circuits.
  • the three series circuits are connected in parallel.
  • the three series circuits are provided corresponding to the U-phase, V-phase and W-phase of AC power supply 20, respectively.
  • the connection points of the two rectifying diodes forming each series circuit are connected to the U-phase, V-phase and W-phase of AC power supply 20, respectively.
  • the input end of the rectifying section 22 is connected to the AC power supply 20 . Further, the output terminal of the rectifying section 22 is connected to the positive bus line P and the negative bus line N. As shown in FIG. Note that the rectifying section 22 may use a switching element such as a transistor instead of the rectifying diode.
  • the reactor 23 is provided for the purpose of suppressing a sharp rise of the power supply current from the AC power supply 20 and slowing the current change.
  • the reactor 23 is provided after the rectifying section 22 , but may be provided before the rectifying section 22 .
  • the DC link section 24 has an electrolytic capacitor 24a.
  • the electrolytic capacitor 24a is a smoothing capacitor.
  • the capacity of the electrolytic capacitor 24a is set so as to remove a low-order harmonic component that pulsates greatly at a frequency that is twice or six times the voltage frequency of the commercial power supply.
  • the electrolytic capacitor 24 a smoothes the DC voltage input from the rectifying section 22 and outputs it to the inverter section 25 .
  • the DC voltage Vdc output from the DC link section 24 has a voltage waveform 29 shown in a rectangular frame 28 in FIG.
  • a voltage waveform 29 of the DC voltage Vdc does not form a perfectly straight line (voltage is constant), but includes a pulsating component 29a in which the voltage value fluctuates up and down as shown in FIG.
  • the maximum value of the amplitude of this pulsating component 29a is hereinafter referred to as ripple voltage ⁇ V.
  • the DC link section 24 is provided with a first voltage sensor 40 that detects the DC voltage Vdc.
  • the first voltage sensor 40 detects a DC voltage Vdc applied to the electrolytic capacitor 24a.
  • the inverter unit 25 converts the DC voltage input from the DC link unit 24 into AC voltage by the operation of the power conversion element, and outputs the AC voltage to the motor 11a as the load.
  • the inverter section 25 has, for example, three upper arm switching elements 25a and three lower arm switching elements 25b as power conversion elements.
  • the inverter unit 25 is composed of an inverter circuit such as a full bridge circuit, for example.
  • One upper arm switching element 25a and one lower arm switching element 25b are connected in series, and the connection point is the middle point.
  • a series circuit composed of one upper arm switching element 25a and one lower arm switching element 25b is called an arm.
  • the inverter section 25 has three arms. The three arms are connected in parallel.
  • the three arms are provided corresponding to the U-phase, V-phase and W-phase of the motor 11a, respectively.
  • the midpoint of each arm is connected to the U-phase, V-phase and W-phase of the motor 11a.
  • a freewheeling diode 25c is connected in anti-parallel to each of the upper arm switching elements 25a.
  • a freewheeling diode 25c is connected in anti-parallel to each of the lower arm switching elements 25b.
  • the switching elements 25a and 25b used in the inverter section 25 are, for example, IGBTs, MOSFETs, self arc-extinguishing thyristors, bipolar transistors, and the like.
  • the switching elements 25 a and 25 b of the inverter section 25 perform ON/OFF operations according to the PWM drive command signal from the drive circuit 26 .
  • PWM is an abbreviation for PulseWidth Modulation.
  • the PWM drive command signal is a drive signal for switching the ON/OFF states of the U-phase, V-phase and W-phase switching elements 25 a and 25 b of the inverter unit 25 .
  • the on/off operation converts the direct current input from the DC link unit 24 into alternating current.
  • the power obtained by switching the switching elements 25a and 25b may be high frequency power.
  • the present invention is not limited to this case, and other power conversion elements may be used.
  • the inverter control unit 27 acquires the DC voltage Vdc output from the first voltage sensor 40, and performs PWM control calculation based on the DC voltage Vdc, the command value ⁇ input from the system controller 8, and the switching carrier frequency. .
  • the inverter control unit 27 outputs a control signal to the drive circuit 26 by the PWM control calculation.
  • the command value ⁇ is a command value that specifies the waveform (that is, the modulated wave) that the inverter section 25 should output.
  • the inverter control unit 27 is composed of, for example, a microcontroller mounted on the power converter 21 .
  • the drive circuit 26 drives the upper arm switching element 25a and the lower arm switching element 25b based on the control signal from the inverter control section 27 to perform on/off operations.
  • the motor 11a is, for example, a three-phase AC motor.
  • the motor 11a is not limited to this, and may be, for example, a motor other than three-phase, such as a single-phase AC motor. Also, the motor 11a may be an AC motor or a DC motor.
  • FIG. 6 is a flow chart showing the processing flow of the system controller 8 provided in the air conditioning system 100 according to the first embodiment.
  • Embodiment 1 As described above, in Embodiment 1, as described with reference to FIGS. 2 to 5, an environment is assumed in which a plurality of inverter-driven indoor units 1 are installed in the indoor space 13a.
  • each indoor unit 1 performs normal operation under normal control by the system controller 8.
  • This state is defined as "normal operation mode".
  • FIG. 4 above shows the state of each indoor unit 1 in the normal operation mode.
  • arrows indicate directions in which air blown from each indoor unit 1 flows.
  • each indoor unit 1 is normally operating, and each indoor unit 1 blows out temperature-controlled air in four directions from four outlets. Therefore, temperature-controlled air flows throughout the indoor space 13a, and the comfort of the indoor space 13a is maintained.
  • each indoor unit 1 performs normal operation according to the set temperature, wind speed (air volume), and wind direction set by the user.
  • step S2 the system controller 8 calculates the remaining life of the electrolytic capacitor 24a of the power conversion device 21 provided in the indoor unit 1 of each system.
  • the remaining life of the electrolytic capacitor 24a is periodically calculated at the cycle.
  • the remaining life of the electrolytic capacitor 24a is calculated instead of the system controller 8, for example, the indoor control unit 91 mounted on the indoor unit 1, or the cloud 33 (see FIG. 7) connected to the indoor unit 1. may go.
  • FIG. 7 is an explanatory diagram showing an example of a communication network to which the air conditioning system 100 according to Embodiment 1 is connected.
  • the system controller 8 is connected to computer terminals of a facility management company 31 and a maintenance company 32 via a communication network 30 such as the Internet.
  • the facility management company 31 is a company that manages the building 13 .
  • the maintenance company 32 is a company that maintains the air conditioning system 100 .
  • a cloud 33 is also connected to the communication network 30 .
  • the remote controller 34 is a portable controller for a user 36 present in the indoor space 13 a to input settings for the indoor unit 1 .
  • the remote controller 34 may be a wall-mounted controller 34a attached to the wall of the indoor space 13a.
  • the settings for the indoor unit 1 by the user 36 include the set temperature of the indoor space 13a, the wind direction, the air volume (wind speed), and the like.
  • the remote controller 34 communicates with the indoor unit 1 by infrared communication.
  • the mobile terminal 35 is a terminal carried by a user, such as a smart phone. The mobile terminal 35 communicates with the indoor unit 1 directly or via a base station 37 connected to the communication network 30 .
  • step S3 it is determined whether or not the remaining life calculated in step S2 of the electrolytic capacitor 24a mounted in the indoor unit 1 of each system is equal to or less than a preset first threshold value. If the remaining life of at least one electrolytic capacitor 24a is equal to or less than the first threshold, the process proceeds to step S4. In the following description, as an example, it is assumed that the remaining life of the electrolytic capacitor 24a mounted in the indoor unit 1 of the tenth system is equal to or less than the first threshold (see FIG. 8). If the remaining life of the electrolytic capacitors 24a of all systems is greater than the first threshold value in the determination of step S3, the process of FIG. 6 is terminated.
  • FIG. 8 is a plan view showing the state of the indoor unit 1 in the life extension mode in the air conditioning system 100 according to Embodiment 1.
  • FIG. 8 shows a state in which the ceiling 13b is looked up along the z direction (see FIG. 3) from the floor 13c side in the indoor space 13a.
  • the indoor unit 1 of the tenth system stops normal operation and performs life extension operation.
  • the indoor unit 1 performing life-prolonged operation is referred to as a "life-prolonged operation unit”.
  • a state in which at least one indoor unit 1 is performing life-prolonging operation in this way is called a "life-prolonging operation mode".
  • the drive frequency of the motor 11a is lowered from the current value under the control of the inverter control unit 27 of the power conversion device 21 .
  • the rotation speed of the motor 11a slows down, the drivability of the motor 11a is reduced, and the current flowing through the electrolytic capacitor 24a can be reduced.
  • the degree of decrease in the remaining life of the electrolytic capacitor 24a can be suppressed, and the life of the electrolytic capacitor 24a can be extended.
  • the indoor unit 1 once set to the "life-prolonging operation unit” does not release the setting until the electrolytic capacitor 24a is replaced. That is, when the air conditioning system 100 stops operating at night or the like, when it starts operating next time, the indoor unit 1 of the 10th system does not perform normal operation, but performs life-extending operation as a "life-extending operation unit". .
  • the airflow indicated by the dashed arrow in FIG. 8 is the airflow blown out from the life-prolonging operation unit, and is weaker than the airflow during normal operation.
  • the indoor unit 1 of the 10th system performs life-prolonging operation, thereby suppressing the air conditioning capacity of the indoor unit 1 of the 10th system. Therefore, the comfort of the indoor space 13a may be adversely affected on the user 36 . That is, for example, the user may feel cold during cooling, and may feel warm during heating. Therefore, in order to prevent such a decrease in comfort, the normally operating indoor units 1 arranged around the indoor unit 1 of the tenth system increase the operating capacity, and the indoor unit 1 of the tenth system Driving to compensate for the decline in driving ability. These indoor units 1 are called "support operation units". In the example of FIG.
  • the four indoor units 1 of the 6th, 9th, 11th, and 14th systems perform support operation as support operation units. These four indoor units 1 are arranged adjacent to the 10th system indoor unit 1 set as a life-prolonging unit.
  • the indoor unit 1, which is a support operation unit, increases the drive frequency of the motor 11a from the current value under the control of the inverter control unit 27 of the power conversion device 21. FIG. This increases the drivability of the motor 11a.
  • the airflow indicated by the white arrow in FIG. 8 is the airflow blown out from the support operation unit, and is stronger than the airflow during normal operation. Note that the indoor unit 1 that does not correspond to either the life-prolonging operation unit or the support operation unit performs normal operation.
  • the other indoor units 1 arranged around the indoor unit 1 set as the life-prolonging operation unit operate as "support operation units".
  • the load on the indoor unit 1 set as the "support operation unit” increases accordingly, but when four indoor units 1 support one indoor unit 1, the load increases by 1.1 to 1.2 times. about twice as much. Therefore, in the indoor unit 1 set to the "support operation unit", the increase in load does not affect the degree of decrease in the remaining life of the electrolytic capacitor 24a. Therefore, in the air conditioning system 100 as a whole, the operation of the air conditioning system 100 can be continued without applying an excessive load to the electrolytic capacitors 24a of the indoor units 1 .
  • FIG. 23 is a plan view schematically showing a case where walls 14 are installed in the indoor space 13a shown in FIG.
  • the walls 14 are installed so as to surround the indoor units 1 of the 1st, 2nd, 5th, 6th, 9th, and 10th systems.
  • at least one of the first, second, fifth, sixth, and ninth indoor units 1 arranged inside the wall 14 is connected to the tenth indoor unit 1. Suitable for support operating units.
  • the indoor units 1 of the sixth and ninth systems are adjacent to the indoor unit 1 of the tenth system.
  • the indoor units 1 of the 1st, 2nd and 5th systems are not adjacent to the 10th system of the indoor units 1 .
  • the air blown out from the indoor units 1 of the first, second, and fifth systems may flow along the wall 14 or collide with the wall 14 and flow in the opposite direction. Assuming this possibility, the air blown out from the indoor units 1 of the 1st, 2nd, and 5th systems may reach the air conditioning target area of the 10th system of the indoor units 1 .
  • the indoor unit 1 of the 11th system is arranged adjacent to the indoor unit 1 of the 10th system, there is a wall between the indoor unit 1 of the 11th system and the indoor unit 1 of the 10th system. 14 is installed. Therefore, the indoor unit 1 of the 11th system is not suitable as a support operation unit for the indoor unit 1 of the 10th system.
  • each indoor unit 1 is a four-direction indoor unit having four outlets 60 (see FIG. 22).
  • the indoor unit 1 adjacent to the life-prolonging operation unit is compatible with the support operation unit in most cases if there is no obstacle such as a wall.
  • the indoor unit 1 adjacent to the life-prolonging operation unit is not necessarily suitable for the support operation unit. That is, when the indoor unit 1 is a two-direction indoor unit, even if the direction of the vane 62bb (see FIG.
  • the direction of the life-prolonging operation unit can be changed. It is assumed that the wind cannot be sent to the In such a case, setting the indoor unit 1 as a support operation unit is meaningless. Conversely, it is conceivable that the indoor unit 1 not adjacent to the life-prolonging operation unit is suitable for the support operation unit.
  • the four indoor units 1 of the 5th, 7th, 13th, and 15th systems are not adjacent to the 10th system of the indoor unit 1, and are positioned diagonally. are placed in If these indoor units 1 are two-way indoor units, depending on the arrangement and orientation of the vanes 62bb (see FIG. 22), wind may be sent in the direction of the life-prolonging operation unit.
  • which indoor unit 1 is suitable for the support operation unit depends on the case.
  • the above-mentioned “surroundings” means the range in which the air conditioned by other indoor units 1 can affect the air-conditioned area of the indoor unit 1 set in the life-prolonging operation unit. That is, the above-mentioned “other indoor units 1 arranged around the indoor unit 1 set as the life-extending unit” is "a range in which air can be blown to the air conditioning target area of the indoor unit 1 set as the life-extending operation unit. Or another indoor unit 1” arranged at a position where air can be blown. Under these conditions, in the indoor unit 1 set as the support operation unit, the air conditioning target area of the indoor unit 1 during the support operation overlaps the air conditioning target area of the indoor unit 1 set as the life extension operation unit. .
  • the case where all the indoor units 1 arranged around the indoor unit 1 set as the life-prolonging unit perform the support operation as the support operation unit has been described as an example. However, it is not limited to that case. That is, at least one of the indoor units 1 suitable for the support operation unit should be set as the support operation unit.
  • the number of indoor units 1 to be set in the support operation unit may be appropriately changed based on the rank determined by the rank determination unit 86, which will be described later, for example.
  • each indoor unit 1 when the indoor unit 1 is set as a life-prolonging operation unit, it may be determined in advance which other indoor unit 1 is to be set as a support operation unit. In that case, a data table 53 as shown in FIG. 24 is created and stored in the storage unit 8a (see FIG. 7) of the system controller 8 or the cloud 33 (see FIG. 7).
  • FIG. 24 is an explanatory diagram showing an example of the data table 53 specifying the corresponding support operation unit for each indoor unit 1 in the air conditioning system 100 according to the first embodiment.
  • FIG. 24 which indoor unit 1 is set as the support operation unit when the indoor unit 1 is set as the life-prolonging operation unit is set in advance.
  • each indoor unit 1 is stored in association with the indoor unit 1 set as the support operation unit.
  • data of the support operation unit is input to the data table 53 by the user 36 or an installation worker when performing the installation work for installing the indoor unit 1 in the indoor space 13a.
  • the data of the support operation unit in the data table 53 can be set and changed by the user 36 or the like by operating the controller 34a or the mobile terminal 35.
  • the data of the support operation unit set in the data table 53 may be set and changed from the computer terminals of the facility management company 31 and the maintenance company 32 as well.
  • step S5 the system controller 8 notifies the facility management company 31, the user 36, or the maintenance company 32 that the indoor unit 1 has become a life-extending operation unit.
  • the notification is sent to, for example, the facility management company 31 and the maintenance company 32 through the communication network 30 or the cloud 33, and displayed on the display screens of the computer terminals installed in those companies.
  • the notification is transmitted from the indoor unit 1 to the remote controller 34 or the controller 34a and displayed on the display screen of the remote controller 34 or the controller 34a.
  • the notification may be sent to the mobile terminal 35 of the user 36 . In that case, the notification may be directly transmitted from the indoor unit 1 to the mobile terminal 35, or transmitted via the communication network 30 or the cloud 33.
  • the user 36 notified of the life-prolonging operation mode determines that there is no problem with the comfort of the indoor space 13a
  • the user 36 may continue the operating state in the life-prolonging operation mode.
  • the user 36 can request the maintenance company 32 to replace the electrolytic capacitor 24a of the indoor unit 1 during life-prolonging operation. By doing so, it is possible to give the user 36 a choice as to whether or not to immediately replace the electrolytic capacitor 24a.
  • the indoor unit 1 when the remaining life of the electrolytic capacitor 24a of at least one of the indoor units 1 of the plurality of systems is equal to or less than the first threshold value, the indoor unit 1 is "life extended.” Operation unit".
  • the indoor unit 1 set to the "life-prolonging operation unit” suppresses the degree of decrease in the life of the electrolytic capacitor 24a by suppressing the operability of the motor 11a.
  • the indoor units 1 arranged around the indoor units 1 set to the "life-prolonging operation unit" are set to the "support operation unit".
  • the indoor unit 1 set to the "support operation unit” increases the operation ability of the motor 11a, thereby operating to compensate for the deterioration of the operation ability of the indoor unit 1 set to the "life-prolonging operation unit".
  • the air conditioning system 100 according to Embodiment 1 it is possible to extend the life of the electrolytic capacitor 24a while maintaining the air conditioning capacity.
  • Life-prolonging operation unit Reduces the driving ability by, for example, reducing the drive frequency of the motor 11a.
  • the lowering width of the driving frequency is constant or variable. In a constant case, the width of decrease is preset to a value of approximately 20 to 30% of the average value of the drive frequency during normal operation.
  • Support driving unit Increases the driving ability by increasing the drive frequency of the motor 11a.
  • the increase width of the driving frequency is constant or variable. In a constant case, the width of increase is preset to a value of about 5% to 7.5% of the average value during normal operation.
  • the reduction in drive frequency in the life-sustaining operation unit may be constant or variable.
  • the drive frequency increment in the support driving unit may be constant or variable.
  • the system controller 8 determines a rank indicating the degree of life-prolonging operation and support operation in order to determine the extent of decrease and the extent of increase.
  • the indicators used to determine the rank are, for example, (1) to (3) below.
  • the difference between the room temperature and the set temperature is related to the power that contributes to the extent to which the life of the electrolytic capacitor 24a is shortened. Therefore, the absolute value of the difference between the room temperature and the set temperature is classified into the following three stages. (a) ⁇ 1°C or less (i.e., 0°C to ⁇ 1°C range) (b) ⁇ 3° C. or less (i.e., the range of ⁇ 1° C. to ⁇ 3° C.) (c) ⁇ 5°C or less (i.e., ⁇ 3°C to ⁇ 5°C range)
  • the ambient temperature of the electrolytic capacitor 24a is related to the degree of decrease in life of the electrolytic capacitor 24a. Therefore, the ambient temperature of the electrolytic capacitor 24a is classified into the following three stages. (a) 30° C. or higher (i.e., in the range of 30° C. to 50° C.) (b) 50°C or higher (i.e., in the range of 50°C to 70°C) (c) 70°C or higher
  • Range of air-conditioned area of life-prolonging operation unit The range of the air-conditioned area in which the indoor unit 1 performs air conditioning is related to the degree of reduction in the life of the electrolytic capacitor 24a. For this reason, the volume of the air-conditioned area that is air-conditioned by the indoor unit 1 is classified into the following three levels. (a) 10m3 (b) 20m3 (c) 30m3
  • the volume of the air-conditioned region is set as the range of the air-conditioned region in which the indoor unit 1 performs air conditioning, but the present invention is not limited to this case. That is, the range of the air-conditioned area where the indoor unit 1 performs air conditioning may be the floor area of the air-conditioned area.
  • first threshold instead of setting only one value of "three years", a plurality of first thresholds are prepared step by step, such as “three years”, “two years”, and “one year”.
  • the first threshold may be further reflected in the ranking of operations in the life-prolonging mode of operation.
  • the ranking when the first threshold is "three years” is the ranks 1 to 4 above.
  • the ranking when the first threshold is "two years” is as follows. As above, for each of the indicators (1) to (3), (a) is assigned 1 point, (b) is assigned 2 points, and (c) is assigned 3 points. As such, rank them. 3-4 points: Rank 5 5-6 points: Rank 6 7-8 points: rank 7 9 points: rank 8
  • the ranking when the first threshold is "one year" is as follows. 3-4 points: Rank 9 5-6 points: Rank 10 7-8 points: Rank 11 9 points: Rank 12
  • a first data table is prepared in which values are set for the range of decrease in drive frequency in the life-prolonging operation unit and the range of increase in drive frequency in the support operation unit. Then, the first data table is stored in the storage unit 8a of the system controller 8 in advance. The system controller 8 determines the rank as described above. After that, from the first data table, the value of the decrease width of the drive frequency in the life-sustaining operation unit and the increase width of the drive frequency in the support operation unit corresponding to the determined rank are read. In the first data table, the decrease width and increase width for each rank 1 to 12 are set so that the decrease width and increase width are the smallest for rank 1, and the decrease width and increase width are the largest for rank 12. It is
  • FIG. 9 is a block diagram showing the internal configuration of the system controller 8 provided in the air conditioning system 100 according to Embodiment 1. As shown in FIG. FIG. 9 shows a configuration in which the system controller 8 performs the ranking described above.
  • FIG. 10 is a flow chart showing the processing flow of the air conditioning system 100 shown in FIG.
  • the system controller 8 has a capacitor remaining life estimation unit 81, a life extension operation mode determination unit 82, a life extension operation control unit 87, and a notification unit 88. If the system controller 8 does not perform the above ranking, the system controller 8 may have only these units. In that case, the processing of the flowchart in FIG. 6 can be executed. Note that the notification unit 88 may be provided as a device separate from the system controller 8 instead of being a component of the system controller 8 .
  • system controller 8 when the system controller 8 performs the above ranking, as shown in FIG. It further has a range detection unit 85 . In that case, the processing of the flowchart of FIG. 10, which will be described later, can be executed. Note that the room temperature detector 83 , the capacitor ambient temperature detector 84 , and the target range detector 85 may be provided as separate devices from the system controller 8 instead of being components of the system controller 8 .
  • the capacitor remaining life estimator 81 calculates the remaining life of the electrolytic capacitor 24a based on the ripple voltage ⁇ V (see FIG. 13) of the electrolytic capacitor 24a.
  • the capacitor remaining life estimator 81 may take into consideration the presence or absence of power supply imbalance of the AC power supply 20 (see FIG. 5). In that case, the accuracy of the remaining life of the electrolytic capacitor 24a is further improved. A method of calculating the remaining life of the electrolytic capacitor 24a in the capacitor remaining life estimating unit 81 will be described later.
  • the life-extending operation mode determination unit 82 determines whether or not to transition to the life-extending operation mode based on the remaining life of the electrolytic capacitor 24a calculated by the capacitor remaining life estimation unit 81. Further, the life-prolonging operation mode determination unit 82 selects the indoor unit 1 to be set as the "life-prolonging operation unit" based on the remaining life of the electrolytic capacitor 24a. Specifically, the life extension operation mode determination unit 82 compares the remaining life of the electrolytic capacitor 24a provided in the indoor unit 1 of each system with the first threshold, and determines whether the remaining life is equal to or less than the first threshold. do.
  • the life-prolonging operation mode determining unit 82 sets the indoor unit 1 to the "life-prolonging operation unit". In addition, the life-prolonging operation mode determination unit 82 sets the indoor units 1 arranged around the indoor unit 1 set to the "life-prolonging operation unit” to the "support operation unit”. In the following description, as an example, it is assumed that the remaining life of the electrolytic capacitor 24a mounted in the indoor unit 1 of the tenth system is equal to or less than the first threshold. Furthermore, the life-prolonging operation mode determination unit 82 outputs a notification signal to the notification unit 88 to notify that the operation mode has been changed to the life-prolonging operation mode.
  • the indoor temperature detection unit 83 is composed of a room temperature sensor installed on the wall surface of the indoor unit 1 or the indoor space 13a.
  • the indoor temperature detection unit 83 detects the indoor temperature of the indoor space 13 a and transmits it to the rank determination unit 86 .
  • the rank determination unit 86 calculates the absolute value of the difference between the received indoor temperature and the set temperature, and uses it as the above index (1).
  • the capacitor ambient temperature detection unit 84 detects the ambient temperature of the electrolytic capacitor 24a.
  • the capacitor ambient temperature detection unit 84 is composed of a temperature sensor such as a thermistor installed in the vicinity of the electrolytic capacitor 24a of the power conversion device 21 of each system. In that case, the capacitor ambient temperature detection unit 84 detects the ambient temperature of the electrolytic capacitor 24a for each system.
  • the capacitor ambient temperature detection unit 84 transmits the ambient temperature of the electrolytic capacitor 24 a of the indoor unit 1 set to the “life extension unit” to the rank determination unit 86 .
  • the rank determination unit 86 uses the received ambient temperature of the electrolytic capacitor 24a as the above index (2).
  • the capacitor ambient temperature detection unit 84 may estimate the ambient temperature of the electrolytic capacitor 24 a based on the outside air temperature and the operating state of the power converter 21 .
  • the capacitor ambient temperature detector 84 has an outside air temperature sensor 45 (see FIG. 1) for detecting the outside air temperature.
  • the outside air temperature sensor 45 is installed in the outdoor unit 2, for example.
  • the ambient temperature of the electrolytic capacitor 24a is acquired by simulation or the like for each outside air temperature and the operation state of the power conversion device 21, and a data table storing it is stored in the storage unit 8a of the system controller 8 in advance.
  • the capacitor ambient temperature detector 84 acquires the ambient temperature of the electrolytic capacitor 24a from the data table based on the ambient temperature detected by the ambient temperature sensor 45 .
  • the target range detection unit 85 determines the volume of the air-conditioning target region to be air-conditioned by the indoor unit 1 set as the "life-extending operation unit” by the life-extending operation mode determination unit 82 .
  • the volume of the air-conditioned area is preset in the second data table for each indoor unit 1 of each system. Therefore, the target range detection unit 85 extracts from the second data table the volume of the air-conditioning target region of the indoor unit 1 set to the “life-prolonging operation unit” and transmits it to the rank determination unit 86 .
  • the second data table is pre-stored in the storage unit 8a of the system controller 8.
  • the rank determining unit 86 uses the received volume of the air-conditioned area as the above index (3).
  • the rank determination unit 86 determines a rank indicating the degree of life-prolonging operation and support operation by combining the above indicators (1) to (3). That is, the rank determining unit 86 determines the corresponding rank from among the ranks 1 to 4 (or from among the ranks 1 to 12).
  • the life-prolonging operation control unit 87 determines the decrease width and the increase width of the driving frequency based on the rank determined by the rank determination unit 86 . That is, the life-prolonging operation control unit 87 determines the degree of decrease in the drive frequency of the indoor unit 1 set as the life-prolonging operation unit and the degree of increase in the drive frequency of the support operation unit based on the rank. Since the method of ranking by the rank determination unit 86 is as described above, the description thereof is omitted here.
  • the life-prolonging operation control unit 87 reduces the drive frequency of the motor 11a of the indoor unit 1 set as the life-prolonging operation unit by the life-prolonging operation mode determination unit 82 from the current value by a fixed value. Then, the indoor unit 1 is controlled to operate. In addition, the life-prolonging operation control unit 87 increases the drive frequency of the motor 11a of the indoor unit 1 set in the support operation unit by the life-prolonging operation mode determination unit 82 by a constant value from the current value, and starts the operation of the indoor unit 1. control what to do. Thereby, the air conditioning system 100 can operate in the life extension operation mode.
  • the indoor unit 1 set as the life-prolonging operation unit operates with suppressed operating ability, so that the life of the electrolytic capacitor 24a can be extended.
  • the indoor unit 1 set as the support operation unit operates with increased operation capability, it is possible to compensate for the decrease in operation capability of the life-prolonging operation unit. As a result, when looking at the air conditioning system 100 as a whole, a sufficient air conditioning capacity can be maintained, so that the comfort of the indoor space 13a can be maintained.
  • the life-prolonging operation control unit 87 performs the following processing. That is, based on the rank determined by the rank determination unit 86, the life-prolonging operation control unit 87 determines the extent of decrease in the drive frequency in the life-prolonging operation unit and the extent of increase in the drive frequency in the support operation unit from the above-described first data table. Extract values.
  • the life-prolonging operation control section 87 lowers the drive frequency in the life-prolonging operation unit by the extracted reduction width, and increases the drive frequency in the support operation unit by the extracted increase width. Thereby, the air conditioning system 100 can operate in the life extension operation mode.
  • the notification unit 88 When the notification unit 88 receives the notification signal from the life-prolonged operation mode determination unit 82, it outputs a notification that the indoor unit 1 has entered the life-prolonged operation mode. Specifically, the notification unit 88 outputs the notification to the computer terminal installed at the facility management company 31 or the maintenance company 32 or the mobile terminal 35 of the user 36 . The notification unit 88 may also transmit the notification to the remote controller 34 as well.
  • the computer terminal of the facility management company 31, the computer terminal installed in the maintenance company 32, the portable terminal 35 of the user 36, and the display screen provided in the remote controller 34 are collectively referred to as a "display unit". It is assumed that The notification transmitted from the notification unit 88 is displayed on the display unit. Note that the notification method by the notification unit 88 is the same as described in step S5 of FIG. 6 above, so description thereof will be omitted here.
  • step S10 is added in FIG. 10, and step S4A is performed instead of step S4.
  • step S1 each indoor unit 1 performs normal operation under normal control by the system controller 8. That is, the operating mode of the air conditioning system 100 is the "normal operating mode".
  • step S2 the capacitor remaining life estimator 81 calculates the remaining life of the electrolytic capacitor 24a of the power conversion device 21 provided in the indoor unit 1 of each system.
  • the remaining life of the electrolytic capacitor 24a is periodically calculated at a preset cycle.
  • step S3 the life extension operation mode determination unit 82 determines whether or not the remaining life calculated in step S2 of the electrolytic capacitor 24a mounted in the indoor unit 1 of each system is equal to or less than a preset first threshold. do. When the remaining life of at least one electrolytic capacitor 24a is equal to or less than the first threshold, the process proceeds to step S10. On the other hand, if the remaining life of the electrolytic capacitors 24a of all systems is greater than the first threshold value in the determination of step S3, the process of FIG. 10 is terminated.
  • the rank determining unit 86 receives the indoor temperature of the indoor space 13a from the indoor temperature detecting unit 83, calculates the absolute value of the difference between the received indoor temperature and the set temperature, and calculates the index (1). and In addition, the rank determining unit 86 receives the ambient temperature of the electrolytic capacitor 24a of the indoor unit 1 set to the "life-prolonging operation unit" from the capacitor ambient temperature detecting unit 84, and uses it as an index (2). In addition, the rank determination unit 86 receives the volume of the air-conditioning target area of the indoor unit 1 set as the “life-prolonging operation unit” from the target range detection unit 85 and uses it as an index (3). Then, the rank determination unit 86 determines the rank of the life-prolonging operation mode based on the remaining life calculated in step S2 and the indicators (1) to (3). After that, the process proceeds to step S4A.
  • step S4A the life-sustaining operation control unit 87 determines, based on the rank determined by the rank determining unit 86, from the first data table described above, the amount of decrease in the driving frequency in the life-sustaining operation unit and the increase in the driving frequency in the support operation unit. Extract the width value.
  • the life-prolonging operation control section 87 lowers the drive frequency in the life-prolonging operation unit by the extracted decrease width, and similarly increases the drive frequency in the support operation unit by the extracted increase width. After that, the life-prolonging operation control unit 87 changes the operation mode of the air conditioning system 100 from the "normal operation mode" to the "life-prolonging operation mode".
  • step S5 the notification unit 88 generates and outputs a notification notifying that the operation mode of the air conditioning system 100 has been changed from the "normal operation mode” to the "life extension operation mode".
  • the notification is sent to at least one of facility management company 31 , user 36 and maintenance company 32 .
  • FIG. 11 is a block diagram showing the configuration of the capacitor remaining life estimator 81 of the system controller 8 provided in the air conditioning system 100 according to Embodiment 1. As shown in FIG.
  • the capacitor remaining life estimation unit 81 is connected to the life extension operation mode determination unit 82 and the capacitor ambient temperature detection unit 84 shown in FIG.
  • the capacitor remaining life estimation unit 81 has a parameter acquisition unit 810, a correction coefficient calculation unit 811, a power frequency detection unit 812, and a ripple voltage detection unit 813, as shown in FIG. Furthermore, the capacitor remaining life estimation unit 81 has a power imbalance determination unit 814 , a ripple current calculation unit 815 , an operating time calculation unit 816 and a life estimation unit 817 .
  • the parameter acquisition unit 810 acquires information (data) necessary for accurately calculating the ripple current.
  • the parameter acquisition unit 810 has a power supply unbalance rate detection unit 810a, an input power detection unit 810b, a power supply impedance detection unit 810c, and a power supply voltage detection unit 810d.
  • Parameter acquisition section 810 acquires one or more parameters using at least one of these sections.
  • the parameters acquired by the parameter acquisition unit 810 are, for example, the following four.
  • a power source unbalance rate detected by the power source unbalance rate detector 810a (hereinafter referred to as parameter A). • Input power detected by the input power detector 810b (hereinafter referred to as parameter B).
  • ripple current calculation unit 815 calculates ripple voltage ⁇ V detected by ripple voltage detection unit 813, power supply frequency f detected by power supply frequency detection unit 812, Calculate the ripple current based on
  • factors other than the ripple voltage ⁇ V and the power supply frequency f that affect the ripple current include power supply unbalance factor, input power, power supply impedance, and power supply voltage. Therefore, in Embodiment 1, the accuracy of the ripple current value is improved by correcting the ripple current in consideration of the parameters A to D described above.
  • the reason why the parameters A to D are used in the first embodiment is that the voltage waveform 29 of the DC voltage Vdc (see FIG. 5 ) may be distorted. As a result, when the ripple current value is calculated without considering the distortion, the calculation accuracy of the ripple current value may deteriorate. Therefore, the elements (that is, parameters A to D) used in correcting the ripple current value will be described below. Although it is not always necessary to use all of the parameters A to D, the more types of correction parameters that are used, the more accurate the ripple current value can be calculated. Therefore, which of the parameters A to D should be used may be set as appropriate.
  • parameters A to D affect the ripple current value, but the importance is considered to be in the order of A, B, C, and D, and parameter A is considered to be the most important. .
  • the parameters A to D are correction parameters for correcting the ripple current value.
  • the power unbalance rate detector 810 a calculates the unbalance rate (parameter A) of the AC power supply 20 based on the power supply voltage of the AC power supply 20 .
  • the power supply unbalance rate detection unit 810a has, for example, a second voltage sensor 42 that detects each line voltage (Vuv, Vvw, Vwu) of the AC power supply 20 .
  • the power supply unbalance rate detection unit 810 a acquires each line voltage (Vuv, Vvw, Vwu) of the AC power supply 20 by the second voltage sensor 42 .
  • the power unbalance rate detection unit 810a obtains the maximum value Umax and the minimum value Umin from among the three line voltages (Vuv, Vvw, Vwu). Further, the power unbalance rate detection unit 810a obtains an average value Uave of the three line voltages (Vuv, Vvw, Vwu). Then, power supply unbalance rate detection section 810a calculates the unbalance rate of AC power supply 20 using the following equation (1).
  • Unbalance rate [%] ⁇ 2/3 x (Umax-Umin)/(Uave) ⁇ x 100 (1)
  • Umax is the maximum value of the three-phase line voltage
  • Umin is the minimum value of the three-phase line voltage
  • Input power detection unit 810 b detects input power Pin (parameter B) input from AC power supply 20 to power converter 21 .
  • the input power detection unit 810b calculates the input voltage using the following equation (2) based on the output power Pout output from the power converter 21 and the power module loss Loss.
  • Pout is the output power output from the power conversion device 21
  • Los is the power module loss
  • the output power Pout is calculated, for example, by the following formula (3).
  • the input power detection section 810b has a first current sensor 41 that detects the output current Iout of the power conversion device 21 .
  • Vout is the output voltage of the power conversion device 21.
  • Iout is the output current of the power conversion device 21 detected by the first current sensor 41 .
  • F is the output power factor of the power converter 21 . Since the output voltage Vout and the output power factor F are constantly calculated in the microcontroller during the operation of the power conversion device 21, it is possible to use the values. Also, the output current Iout is obtained from the first current sensor 41 .
  • the power module loss Loss in the above equation (2) is the total value of losses such as switching loss of semiconductor power elements such as the upper arm switching element 25a and the lower arm switching element 25b mounted on the power conversion device 21.
  • the power module loss Loss can be calculated in advance by simulation or the like from design values of the power conversion device 21 or the like. Therefore, the power module loss data is stored in advance in the memory of the microcontroller installed in the power conversion device 21 .
  • the DC power supply 20A may be used instead of the AC power supply 20, the DC power supply 20A.
  • 20 and 21 are diagrams showing the configuration of an air conditioning system 100A as a modification of the air conditioning system 100 according to Embodiment 1.
  • FIG. 20 and 21 in the air conditioning system 100A, the motor 11a is connected to the DC power supply 20A, and the DC power supply 20A is used as the power supply.
  • the DC power supply 20A may be connected to the AC power supply 20 as necessary for charging the DC power supply 20A.
  • the DC power supply 20A includes a rectifying section 22, a reactor 23, and a DC link section 24, as shown in FIG.
  • the power conversion device 21A is composed of an inverter section 25, a drive circuit 26, and an inverter control section 27. As shown in FIG.
  • the input power Pin (parameter B) is the power input to the inverter section 25 from the DC power supply 20A. Therefore, in both the first embodiment shown in FIG. 5 and the modified example shown in FIG. 21, the input power Pin (parameter B) can be considered as the input power input from the power supply to the inverter section 25 .
  • the power impedance detector 810 c detects the power impedance (parameter C) of the AC power supply 20 .
  • the power supply impedance includes system resistance R and system inductance L of AC power supply 20 .
  • the system resistance R is the system resistance of the AC power supply 20 and indicates the resistance of the power supply system.
  • a system inductance L is the system inductance of the AC power supply 20 and indicates the inductance of the power supply system.
  • the power supply impedance detector 810c obtains the system resistance R and the system inductance L of the AC power supply 20 from the following equation (4).
  • f is the power supply frequency of the AC power supply 20.
  • R1 is the resistance component of the AC power supply 20, and
  • X is the reactance component of the AC power supply 20.
  • Power supply voltage detection unit 810d detects the power supply voltage (parameter D) of AC power supply 20 .
  • the detection method is, for example, as follows.
  • the second voltage sensor 42 described above does not detect the phase power supply voltages (Vu, Vv, Vw), they may be obtained as follows. Since the power supply voltage of the AC power supply 20 connected to the power converter 21 is usually determined, the power supply voltage of the AC power supply 20 is not a variable but a predetermined fixed value. Therefore, the value of the power supply voltage of the AC power supply 20 is stored in advance in the storage unit 8a, and the power supply voltage detection unit 810d reads out and outputs the stored value of the power supply voltage of the AC power supply 20. FIG.
  • the power frequency detector 812 detects the power frequency f of the AC power supply 20 .
  • the power supply frequency f can be obtained, for example, by detecting the zero-cross period of the voltage waveform of the AC power supply 20 .
  • a ripple voltage detection unit 813 detects a ripple voltage ⁇ V of the DC voltage smoothed by the electrolytic capacitor 24a. Ripple voltage detection unit 813 detects ripple voltage ⁇ V, for example, based on DC voltage Vdc detected by first voltage sensor 40 .
  • FIG. 13 is a diagram showing a waveform of DC voltage Vdc output from electrolytic capacitor 24a provided in air conditioning system 100 according to the first embodiment.
  • the DC voltage Vdc output from the electrolytic capacitor 24a of the DC link section 24 has the voltage waveform 29 shown in FIGS. That is, the voltage waveform 29 of the DC voltage Vdc includes a pulsating component 29a whose voltage value fluctuates up and down.
  • the maximum value of the amplitude of this pulsating component 29a is called ripple voltage ⁇ V. That is, the ripple voltage ⁇ V is obtained by, for example, the absolute value of the difference between the maximum value and the minimum value of the DC voltage Vdc.
  • Correction coefficient calculator 811 calculates correction coefficients ⁇ and ⁇ used when ripple current calculator 815 calculates the ripple current. By multiplying the ripple current calculated by the ripple current calculator 815 by the correction coefficients ⁇ and ⁇ , the accuracy of the calculated value of the ripple current is improved. Correction coefficient calculator 811 uses at least one of the four parameters obtained by parameter obtaining unit 810 to calculate correction coefficients ⁇ and ⁇ . A method of calculating the correction coefficients ⁇ and ⁇ will be described below.
  • Base conditions include power supply frequency f, ripple voltage ⁇ V, and parameters AD.
  • the power supply frequency f, the ripple voltage ⁇ V, and the values of the above parameters A to D are uniquely determined, and these values are defined as the base conditions. Examples of specific base condition values are shown below.
  • the actual ripple current value calculated by simulation or the like using the above base conditions is as follows.
  • the ripple current value under the above base conditions is calculated using the ripple current calculation formula (formula (9) described later) used in the ripple current calculation unit 815 .
  • This value is defined as the base ripple current value.
  • the base ripple current value under the above base conditions is as follows.
  • Base ripple current value 3.7 Arms
  • the correction coefficient ⁇ is calculated by the following formula (5).
  • the correction coefficient ⁇ is used in the ripple current calculator 815.
  • a ripple current calculator 815 calculates a base ripple current value from a calculation formula, and multiplies the calculated base ripple current value by a correction coefficient ⁇ to obtain an actual ripple current value. This improves the accuracy of the ripple current calculated by the ripple current calculator 815 .
  • the actual ripple current value is sometimes called a corrected ripple current value.
  • correction coefficient calculation method a method of calculating correction coefficients ⁇ A , ⁇ B , ⁇ C , and ⁇ D for parameters A to D that change according to the operating state and installation environment of power conversion device 21 will be described.
  • the correction coefficient ⁇ X is calculated when the value of the one parameter is changed. Any one of B, C, and D is entered in X of ⁇ X. At this time, the values other than the one parameter to be changed are the same as those of the above base conditions.
  • FIG. 12 is a diagram showing calculation results of correction coefficient ⁇ B calculated by correction coefficient calculation section 811 provided in air conditioning system 100 according to Embodiment 1.
  • correction coefficient calculation section 811 provided in air conditioning system 100 according to Embodiment 1.
  • the horizontal axis indicates the base ripple current value
  • the vertical axis indicates the correction coefficient ⁇ B
  • the dotted line 51 is the graph for the case where the input power is 15 kW, that is, the case for the above base conditions. Therefore, ⁇ B at this time is the correction coefficient ⁇ described above.
  • a solid line 50 is a graph for an input power of 20 kW
  • a dashed line 52 is a graph for an input power of 10 kW.
  • the correction coefficient ⁇ B for the base ripple current value changes from the correction coefficient ⁇ .
  • correction coefficients ⁇ C and ⁇ B are obtained.
  • correction coefficient ⁇ A power supply unbalance rate
  • correction coefficient ⁇ B input power
  • correction coefficient ⁇ C power supply impedance
  • correction coefficient ⁇ D power supply voltage
  • the power supply imbalance determination unit 814 determines whether or not there is a power supply imbalance in the AC power supply 20 .
  • the frequency component of the DC voltage Vdc smoothed by the electrolytic capacitor 24a changes depending on whether or not the AC power supply 20 is unbalanced. Therefore, the ripple current calculation unit 815 uses different calculation formulas for calculating the ripple current based on the presence or absence of power supply imbalance. Therefore, it is necessary for the power unbalance determining unit 814 to determine whether or not there is a power unbalance in the AC power supply 20 . A detailed description is given below.
  • the power unbalance determining unit 814 determines whether or not there is a power unbalance in the AC power supply 20 based on the power unbalance rate calculated by the power unbalance rate detecting unit 810a, for example. As described above, the power supply unbalance rate detection unit 810a calculates the unbalance rate of the AC power supply 20 using Equation (1) above.
  • the unbalance rate calculated by the power source unbalance rate detector 810a is 0% if there is no power source unbalance, and is greater than 0 if there is a power source unbalance.
  • the power supply unbalance determination unit 814 can determine whether or not the AC power supply 20 has a power supply unbalance based on whether the power supply unbalance rate calculated by the power supply unbalance rate detection unit 810a is 0 or other than 0. .
  • the DC voltage Vdc output from the electrolytic capacitor 24a of the DC link section 24 has the voltage waveform 29. That is, the voltage waveform 29 of the DC voltage Vdc includes a pulsating component 29a whose voltage value fluctuates up and down.
  • the maximum value of the amplitude of this pulsating component 29a is called ripple voltage ⁇ V. That is, the ripple voltage ⁇ V is obtained by, for example, the absolute value of the difference between the maximum value and the minimum value of the DC voltage Vdc.
  • the power supply frequency f can be obtained, for example, by detecting the zero-cross period of the voltage waveform of the AC power supply 20 .
  • FIG. 14 is a diagram showing waveforms of the DC voltage Vdc output by the electrolytic capacitor 24a provided in the air conditioning system 100 according to Embodiment 1 when there is no power supply imbalance.
  • FIG. 15 is a diagram showing waveforms of the DC voltage Vdc output by the electrolytic capacitor 24a provided in the air conditioning system 100 according to the first embodiment when there is a power supply imbalance.
  • the frequency component of the DC voltage Vdc is 2f when the power supply frequency is f, as shown in FIG. ).
  • f is the power supply frequency of the AC power supply 20 in the above formulas (7) and (8).
  • the frequency component of the DC voltage Vdc smoothed by the electrolytic capacitor 24a changes depending on whether or not the AC power supply 20 is unbalanced. Therefore, it is desirable that the ripple current calculation unit 815, which will be described later, uses different calculation formulas when calculating the ripple current based on the presence or absence of power supply imbalance. Therefore, the power supply unbalance determination unit 814 determines whether or not there is a power supply unbalance in the AC power supply 20 , and transmits the result to the ripple current calculation unit 815 .
  • Ripple current calculator 815 calculates a base ripple current value of electrolytic capacitor 24 a based on power supply frequency f detected by power supply frequency detector 812 and ripple voltage ⁇ V detected by ripple voltage detector 813 . At this time, the ripple current calculation unit 815 selectively uses the calculation formula used when calculating the base ripple current value based on the determination result of the power imbalance determination unit 814 . Further, the ripple current calculator 815 corrects the calculated base ripple current value using the correction coefficients ⁇ and ⁇ calculated by the correction coefficient calculator 811 to obtain the actual ripple current value. A detailed description is given below.
  • the value of the current (that is, ripple current) flowing through the electrolytic capacitor 24a is generally obtained by the following formula (9).
  • C is the capacitance of the electrolytic capacitor 24a
  • ⁇ V is the ripple voltage of the DC voltage Vdc
  • T is the period of the DC voltage Vdc.
  • the ripple current value Ic is approximately calculated by the following formulas (10) and (11). can do.
  • the ripple current calculation unit 815 uses the above equation (10) and ( 11) Use properly from the formula.
  • the ripple current calculation unit 815 calculates the ripple current value Ic using the above equation (10). do.
  • the above formula (10) is sometimes called the first calculation formula.
  • the ripple current calculation unit 815 calculates the ripple current value Ic using the above equation (11).
  • the above formula (11) is sometimes called a second calculation formula.
  • the actual ripple current value Ic* is calculated by the following equation (12).
  • the actual ripple current value Ic* is hereinafter referred to as "the ripple current calculated by the ripple current calculator 815".
  • the operating time calculator 816 calculates the operating time of the power conversion device 21 (that is, the operating time of the electrolytic capacitor 24a).
  • the operating time is an integrated value of the operating time counted from the time when the power conversion device 21 was installed. That is, it is an integrated value of the operation time of the power conversion device 21 counted from the time when the air conditioning system 100 was installed in the building 13 .
  • the electrolytic capacitor 24a of the power conversion device 21 is replaced, the integrated value is reset, and counting of the operating time is started again from the time of replacement. That is, the electrolytic capacitor 24a tends to have a shorter remaining life as the operating time increases. Therefore, the operating time calculation unit 816 calculates the operating time of the power converter 21 .
  • the operating time of the power converter 21 may be measured using, for example, a timer function of a microcontroller mounted on the power converter 21 .
  • the life estimator 817 estimates the remaining life of the electrolytic capacitor 24a.
  • Actual ripple current value Ic* is input from ripple current calculation unit 815 to life estimation unit 817 .
  • the ambient temperature Ta of the electrolytic capacitor 24 a is input from the capacitor ambient temperature detector 84 to the lifetime estimator 817 .
  • the operating time of the power converter 21 is input from the operating time calculating unit 816 to the life estimating unit 817 .
  • Life estimator 817 obtains core temperature Tx of electrolytic capacitor 24a based on actual ripple current value Ic* and ambient temperature Ta.
  • the core temperature Tx of the electrolytic capacitor 24a can be calculated by the following equation (13).
  • Ta is the ambient temperature of the electrolytic capacitor 24a
  • ⁇ T is the increase in core temperature due to the actual ripple current value Ic*.
  • characteristic data indicating the characteristic is obtained from the manufacturer of the electrolytic capacitor 24a.
  • an approximation formula, data table, or the like for obtaining the core temperature rise value ⁇ T from the actual ripple current value Ic* is generated in advance and stored in the storage unit 8a.
  • the approximation formula and data table define the relationship between the actual ripple current value Ic* and the core temperature rise value ⁇ T.
  • the life estimator 817 uses the approximate expression or the data table to obtain the core temperature rise value ⁇ T with respect to the actual ripple current value Ic*.
  • the life estimator 817 obtains an estimated value of the remaining life of the electrolytic capacitor 24a based on the core temperature Tx of the electrolytic capacitor 24a calculated by the above equation (13). For that purpose, it is necessary to use a life calculation formula set by the manufacturer of the electrolytic capacitor 24a. Generally, the life calculation formula requires information on the core temperature Tx of the electrolytic capacitor 24a and the operating time (that is, the operating time of the power conversion device 21) under that condition (that is, the core temperature Tx). . Therefore, the life estimation unit 817 acquires the operation time of the power converter 21 from the operation time calculation unit 816 . Based on the operation time and the calculated core temperature Tx of the electrolytic capacitor 24a, the life estimation unit 817 uses a life calculation formula obtained from the manufacturer to estimate the remaining life of the electrolytic capacitor 24a. demand.
  • FIG. 16 is a flowchart showing the flow of processing by the capacitor remaining life estimator 81 provided in the air conditioning system 100 according to Embodiment 1.
  • FIG. 16 is a flowchart showing the flow of processing by the capacitor remaining life estimator 81 provided in the air conditioning system 100 according to Embodiment 1.
  • step S21 the parameter acquisition unit 810 acquires information on at least one element among the elements of parameters A to D, which are correction parameters. That is, at least one of the power supply unbalance rate, input power, power supply impedance, and power supply voltage is detected.
  • step S23 the power supply unbalance determination unit 814 determines whether or not the AC power supply 20 has a power supply unbalance. As a result of the determination, if there is power imbalance, the process proceeds to step S24, and if there is no power imbalance, the process proceeds to step S25.
  • step S24 the ripple current calculation unit 815 calculates the ripple current value Ic using the above equation (11) when there is power supply imbalance. After that, the process proceeds to step S26.
  • step S25 the ripple current calculator 815 calculates the ripple current value Ic using the above equation (10) when there is no power supply imbalance. After that, the process proceeds to step S26.
  • a ripple current value Ic* is calculated.
  • step S27 the life estimation unit 817 acquires the ambient temperature Ta of the electrolytic capacitor 24a from the capacitor ambient temperature detection unit 84.
  • life estimation unit 817 calculates core temperature Tx of electrolytic capacitor 24a based on actual ripple current value Ic* output from ripple current calculation unit 815 and ambient temperature Ta of electrolytic capacitor 24a. .
  • step S29 the operating time calculation unit 816 calculates the operating time of the power conversion device 21.
  • step S30 the life estimation unit 817 estimates the remaining life of the electrolytic capacitor 24a based on the core temperature Tx of the electrolytic capacitor 24a calculated in step S28 and the operation time of the power converter 21 calculated in step S29. calculate.
  • the above is the operation of the capacitor remaining life estimation unit 81 .
  • the capacitor remaining life estimation unit 81 outputs the calculated remaining life of the electrolytic capacitor 24 a to the life extension operation mode determination unit 82 .
  • the life-prolonging operation mode determination unit 82 compares the remaining life of the electrolytic capacitor 24a with the first threshold to determine whether or not to transition to the life-prolonging operation mode.
  • the life-prolonging operation mode determination unit 82 determines to transition to the life-prolonging operation mode, as described with reference to FIG. Life-prolonging operation unit".
  • the indoor units 1 arranged around the life-prolonging operation unit are set as "support operation units".
  • the indoor unit 1 set to the "life-prolonging operation unit” operates with the frequency of the motor 11a that drives the indoor fan reduced from the current value.
  • the indoor unit 1 set to the "support operation unit” operates with the frequency of the motor 11a that drives the indoor fan increased from the current value.
  • the notification unit 88 when the life-prolonging operation mode determination unit 82 determines to shift to the life-prolonging operation mode, the notification unit 88 outputs a notification signal for notifying transition to the life-prolonging operation mode. Upon receiving the notification signal, the notification unit 88 notifies the facility management company 31, the user 36, or the maintenance company 32 that the indoor unit 1 has entered the life-prolonging operation mode.
  • FIG. 17 to 19 are explanatory diagrams showing an example of a notification method by the notification unit 88 provided in the air conditioning system 100 according to Embodiment 1.
  • FIG. FIG. 17 shows an example of the display screen 35a of the mobile terminal 35 when the remaining life of the electrolytic capacitor 24a is three years.
  • FIG. 18 shows an example of the display screen 35a of the mobile terminal 35 when the remaining life of the electrolytic capacitor 24a is two years.
  • FIG. 19 shows an example of the display screen 35a of the portable terminal 35 when the remaining life of the electrolytic capacitor 24a is one year.
  • a message is simply displayed to inform the user 36 of the remaining life of the electrolytic capacitor 24a.
  • the contact information is also displayed in case the user 36 who sees the message wishes to replace the electrolytic capacitor 24a early.
  • the “service center” here is, for example, a service center installed in the facility management company 31 or the maintenance company 32 .
  • the user 36 When the user 36 feels that the comfort of the indoor space 13a has decreased due to the deterioration of the operating ability of the indoor unit 1 set to the "life-prolonging operation unit", the user 36 contacts the service center and electrolyzes. Apply for replacement of the capacitor 24a.
  • the operation of the air conditioning system 100 in the life-prolonging operation mode is continued without contacting the service center.
  • the user 36 can be given the option of whether or not to replace the electrolytic capacitor 24a immediately.
  • a message is displayed prompting the user 36 to replace the electrolytic capacitor 24a because the remaining life of the electrolytic capacitor 24a is short.
  • the contact information is also displayed in case the user 36 who sees the message wishes to replace the electrolytic capacitor 24a.
  • the notification unit 88 may generate different notifications according to the length of remaining life of the electrolytic capacitor 24a. Further, the content of these notification messages may be set in advance for each length of remaining life of the electrolytic capacitor 24a and stored in the data table. In this case, the notification unit 88 extracts from the data table the content of the message corresponding to the length of the remaining life of the electrolytic capacitor 24a calculated by the capacitor remaining life estimating unit 81, and generates a notification. As a result, the notification unit 88 can output notifications to the user 36 stepwise multiple times. Therefore, the user 36 can choose whether or not to replace the electrolytic capacitor 24a immediately, and can systematically replace the electrolytic capacitor 24a. Note that the notification unit 88 may also transmit the notification to the facility management company 31 or the maintenance company 32 . Also, the notification unit 88 may transmit to the remote controller 34 instead of the portable terminal 35 .
  • the latest remaining life of the electrolytic capacitor 24a can be periodically calculated by repeating the processing of the flowchart shown in FIG. 6 or 10 at a constant cycle.
  • FIG. 25 is a flow chart showing the flow of feedback control processing executed by the system controller 8 provided in the air conditioning system 100 according to the first embodiment.
  • the process of the flow shown in FIG. 25 is executed by the system controller 8, for example, by the life-prolonging operation control section 87 of the system controller 8.
  • a feedback control section (not shown) may be provided in the system controller 8, and the feedback control section may perform the processing of the flow shown in FIG.
  • the system controller 8 acquires the suction temperature of the indoor unit 1 as the ambient temperature of the indoor unit 1 set as the life-prolonging operation unit.
  • the ambient temperature of the indoor unit 1 may be the room temperature of the indoor space 13a.
  • the ambient temperature of the indoor unit 1 may be the room temperature in the indoor space 13a and in the air-conditioned region of the indoor unit 1 .
  • the ambient temperature is detected by a temperature sensor (not shown) arranged in the indoor space 13a.
  • a case will be described in which the suction temperature of the indoor unit 1 is used as the ambient temperature.
  • the intake temperature is detected, for example, by an intake temperature sensor 46 (see FIG. 1) provided at the intake port 61 (see FIG. 22) of the indoor unit 1.
  • step S41 the system controller 8 determines whether the intake temperature of the indoor unit 1 obtained in step S40 is within the first range.
  • the first range as shown in FIG. 27, is a range of ST ⁇ (° C.) centering on the set temperature ST of the indoor unit 1 set in the life-prolonging operation unit.
  • the value of ⁇ is a preset value.
  • 27 is an explanatory diagram for explaining the first range used in the feedback control shown in FIG. 25, and the first range and the second range used in the feedback control shown in FIG. 26, which will be described later.
  • step S41 determines that the suction temperature is within the first range. That is, the system controller 8 determines that the support operation by the support operation unit maintains comfort in the air-conditioned region of the indoor unit 1 set to the life-prolonging operation unit. In this case, since there is no problem, the process of the flow in FIG. 25 is terminated.
  • step S41 determines that the suction temperature is not within the first range. That is, the system controller 8 determines that the comfort of the air-conditioned region of the indoor unit 1 set to the life-prolonging operation unit is declining even though the support operation is being performed by the support operation unit. In this case, the process proceeds to step S42.
  • step S42 the system controller 8 further increases the operating capability of the indoor unit 1 set as the support operating unit from the current value. Specifically, the system controller 8 increases the drive frequency of the motor 11a (see FIGS. 1 and 5) of the indoor unit 1, which is the support operation unit, from the current value by a preset constant value. After that, the process returns to step S40. In this way, the processing from step S40 to step S42 shown in FIG. 25 is repeated until the suction temperature falls within the first range as determined in step S41 of FIG.
  • the indoor units 1 whose driving ability is to be increased may be all the indoor units 1 among the indoor units 1 set as the support operation unit, or at least one indoor unit 1.
  • the indoor unit 1 whose driving capacity is to be increased is, for example, the indoor unit 1 with the longest remaining life of the electrolytic capacitor 24a (see FIG. 5) among the support operation units, or the indoor unit with a low support operation rank. 1 will be given priority.
  • the feedback control shown in FIG. 25 is control that can be executed separately from the ranking performed by the rank determination unit 86 shown in FIG. That is, the feedback control shown in FIG. 25 can be executed regardless of whether or not the rank determination unit 86 performs ranking.
  • the following control may be performed. That is, the life-prolonging operation and the support operation may be performed based on the ranking determined by the rank determination unit 86, and the driving ability of the support operation unit may be slightly corrected by the feedback control of FIG.
  • machine learning may be performed using the flow of FIG. 25, and the air conditioning system 100 may be controlled using the results of the machine learning in other similar situations.
  • the input data for machine learning are, for example, the current operating capability of the indoor unit 1 of the life-extending operation unit, the current operating capability of the indoor unit 1 of the support operation unit, the suction temperature, and the life-extending operation based on the suction temperature. At least one of whether or not the air-conditioned area of the unit is comfortable.
  • the output data when machine learning is performed is, for example, commands such as a change in the number of support operation units and a change (amount of change) in operation capability such as the drive frequency of the motor 11a of a specific indoor unit 1. At least one.
  • the input data is the suction temperature
  • the output data is the amount of change in the driving ability of the support operation unit.
  • the supporting operation unit may not be able to sufficiently support the life-prolonging operation unit depending on the situation.
  • Examples of such a situation include, for example, a case where the remaining life of the electrolytic capacitor 24a of the life-prolonged operation unit is short and the operating capability of the life-prolonged operation unit is greatly reduced, or a case where the operating capability of the support operation unit has no margin. .
  • another feedback control shown in FIG. 26 may be performed.
  • the user 36 selects either the comfort-priority plan or the life-priority plan as the operation plan in the life-prolonging operation mode of the air-conditioning system 100, and preliminarily instructs the system controller 8 to It is assumed to be set.
  • the plan can be set by the user 36 by operating the controller 34a (see FIG. 7) or the mobile terminal 35 (see FIG. 7).
  • maintaining the comfort of the indoor space 13a is prioritized over extending the life of the electrolytic capacitor 24a of the life-prolonging operation unit. That is, in the comfort priority plan, the comfort of the indoor space 13a is improved by reducing the amount of reduction in the driving ability of the life-prolonging operation unit. In this case, the remaining life of the electrolytic capacitor 24a of the life-prolonging operation unit decreases faster than in the current life-prolonging operation, but the comfort of the indoor space 13a is maintained. In this case, the remaining life of the electrolytic capacitor 24a of the life-prolonged operation unit runs out earlier than expected, so the notification unit 88 notifies the user 36 that the life-prolonged operation, which is different from the normal life-prolonged operation, is being performed. , early replacement of the electrolytic capacitor 24a.
  • prolonging the life of the electrolytic capacitor 24a of the life-prolonging operation unit is prioritized over maintaining the comfort of the indoor space 13a.
  • the amount of driving ability reduction (or rank) of the life-sustaining operation unit and the amount of driving ability increase (or rank) of the support operation unit are not changed, and the current driving ability is maintained. to continue. As a result, a situation remains in which the support operation unit cannot sufficiently support the life-prolonging operation unit.
  • FIG. 26 is a flow chart showing the flow of another feedback control process executed by the system controller 8 provided in the air conditioning system 100 according to the first embodiment.
  • the processing of the flow shown in FIG. 26 is executed by the life-prolonging operation control unit 87 of the system controller 8, for example.
  • a feedback control section (not shown) may be provided in the system controller 8, and the feedback control section may perform the processing of the flow shown in FIG.
  • the system controller 8 acquires the suction temperature of the indoor unit 1 as the ambient temperature of the indoor unit 1 set as the life-prolonging operation unit.
  • the ambient temperature of the indoor unit 1 may be the room temperature of the indoor space 13a.
  • the ambient temperature of the indoor unit 1 may be the room temperature in the indoor space 13a and in the air-conditioned region of the indoor unit 1 .
  • the ambient temperature is detected by a temperature sensor (not shown) arranged in the indoor space 13a.
  • a case will be described in which the suction temperature of the indoor unit 1 is used as the ambient temperature.
  • the intake temperature is detected, for example, by an intake temperature sensor 46 (see FIG. 1) provided at the intake port 61 (see FIG. 22) of the indoor unit 1.
  • step S51 the system controller 8 determines whether the intake temperature of the indoor unit 1 obtained in step S50 is within the first range.
  • the first range as shown in FIG. 27, is a range of ST ⁇ (° C.) centering on the set temperature ST of the indoor unit 1 set in the life-prolonging operation unit.
  • the value of ⁇ is a preset value.
  • step S51 If it is determined in step S51 that the suction temperature is within the first range, the system controller 8 determines that the indoor unit 1 set as the support operation unit can be effectively supported. That is, the system controller 8 determines that the support operation by the support operation unit maintains comfort in the air-conditioned region of the indoor unit 1 set to the life-prolonging operation unit. In this case, since there is no problem, the process of the flow in FIG. 26 is terminated.
  • step S51 determines that the suction temperature is not within the first range.
  • the system controller 8 determines that the indoor unit 1 set as the support operation unit cannot be effectively supported. In this case, the process proceeds to step S52.
  • step S52 the system controller 8 determines whether or not the intake temperature of the indoor unit 1 obtained in step S50 is within the second range.
  • the second range is a range of ST ⁇ (° C.) centering on the set temperature ST of the indoor unit 1 set in the life-prolonging operation unit.
  • the value of ⁇ is a preset value.
  • the value of ⁇ is greater than the value of ⁇ . Therefore, the second range is a range that is wider than the first range and includes the first range. If it is determined in step S52 that the suction temperature is within the second range, the process proceeds to step S53. On the other hand, if the suction temperature is not within the second range, the process proceeds to step S55.
  • step S53 the system controller 8 determines whether or not it is possible to further increase the operability of the indoor unit 1 set as the support operation unit. Specifically, the system controller 8 determines whether or not the current drive frequency of the motor 11a (see FIGS. 1 and 5) of the indoor unit 1, which is the support operation unit, is greater than a preset second threshold. do. The second threshold is set in advance based on, for example, the designed rated frequency of the motor 11a. If it is determined in step S53 that the driving ability can be increased, the process proceeds to step S54. On the other hand, if the driving ability cannot be increased, the process proceeds to step S55.
  • step S54 the system controller 8 further increases the operating capability of the indoor unit 1 set as the support operating unit from the current value. Specifically, the system controller 8 increases the drive frequency of the motor 11a (see FIGS. 1 and 5) of the indoor unit 1, which is the support operation unit, from the current value by a preset constant value. After that, the process returns to step S50. In this way, the processing from step S50 to step S54 shown in FIG. 26 is repeated until the suction temperature falls within the first range as determined in step S51 of FIG.
  • the indoor units 1 whose driving ability is to be increased may be all indoor units 1 among the indoor units 1 set as the support operation unit, but may be at least one indoor unit 1.
  • the indoor unit 1 whose driving capacity is to be increased is, for example, the indoor unit 1 with the longest remaining life of the electrolytic capacitor 24a (see FIG. 5) among the support operation units, or the indoor unit with a low support operation rank. 1 will be given priority.
  • step S52 or step S53 when proceeding from step S52 or step S53 to step S55, the remaining life of the electrolytic capacitor 24a of the life-prolonging operation unit is small and the reduction in the operating ability of the life-prolonging operation unit is large, or the operating ability of the support operation unit has no margin. For example, if there is no
  • step S55 the system controller 8 determines whether the operation plan in the life extension operation mode of the air conditioning system 100 is a comfort-priority plan or a life-priority plan. If it is determined in step S55 that the operation mode of the air conditioning system 100 is set to the comfort priority plan, the process proceeds to step S56.
  • step S55 if it is determined in step S55 that the operation mode of the air conditioning system 100 is set to the lifespan priority plan, the process of the flow of FIG. 26 is terminated. In this case, in the indoor space 13a, the comfort of the air-conditioned area of the life-prolonging operation unit cannot be maintained, but the life-prolonging action of the electrolytic capacitor 24a of the life-prolonging operation unit is continued.
  • step S56 the system controller 8 increases the operating capability of the indoor unit 1 set in the life-prolonging operation unit from the current value in order to improve the comfort of the air-conditioned area of the life-prolonging operation unit. Specifically, the system controller 8 increases the drive frequency of the motor 11a (see FIGS. 1 and 5) of the indoor unit 1, which is a life-prolonging operation unit, from the current value by a preset constant value. In this case, the remaining life of the electrolytic capacitor 24a of the life-extending operation unit is reduced, but the comfort of the air-conditioned area of the life-extending operation unit can be maintained in the indoor space 13a.
  • step S52 may be executed after executing step S53.
  • steps S52 and S53 may be executed.
  • FIG. 22 is a plan view showing the configuration of the indoor unit 1 provided in the air conditioning system 100 according to Embodiment 1.
  • FIG. FIG. 22 shows a state of looking up at the ceiling 13b from the floor 13c side in the indoor space 13a.
  • the indoor unit 1 is attached to the ceiling 13b of the indoor space 13a.
  • the indoor unit 1 has a rectangular shape in plan view.
  • the indoor unit 1 includes four air outlets 60, one air inlet 61, an indoor heat exchanger 10 (see FIG. 1) provided between the air outlet 60 and the air inlet 61, and an indoor fan 11 (see FIG. 1). 1) and.
  • the suction port 61 is arranged in the central portion of the indoor unit 1 .
  • the four outlets 60 are arranged along the outer circumference of the indoor unit 1 .
  • Each outlet 60 has an elongated rectangular shape.
  • the four outlets 60 are arranged such that the longitudinal directions of two adjacent outlets 60 are perpendicular to each other.
  • the four outlets 60 are arranged along the circumferential direction so as to form a rectangular shape in plan view. Therefore, the directions of the air blown out from the four outlets 60 are set in four directions. Furthermore, the indoor unit 1 has a wind direction control plate 62 provided at the air outlet 60 . The orientation of the wind direction control plate 62 is controlled by the system controller 8 . Also, the wind velocity (air volume) of the air blown out from each outlet 60 is controlled by the system controller 8 .
  • the wind direction control plate 62 has a vertical wind direction plate 62a for adjusting the vertical wind direction and a horizontal wind direction plate 62b for adjusting the horizontal wind direction.
  • the horizontal direction here means the longitudinal direction (width direction) of each outlet 60 .
  • the vertical wind direction plate 62a adjusts the vertical wind direction of the air blown out from the blower outlet 60.
  • the left/right wind direction plate 62b adjusts the left/right wind direction of the air blown out from the outlet 60.
  • the left/right wind direction plate 62b is composed of a plurality of vanes 62bb.
  • the wind direction control plate 62 provided at each outlet 19 can operate independently under the control of the system controller 8 .
  • each setting such as the wind speed (air volume), wind direction, and set temperature of each indoor unit 1 is a value specified by the user or a default value. This value is automatically set by
  • the support operation unit makes the wind speed (or air volume) larger than the wind speed (or air volume) in the normal operation mode.
  • the set temperature during cooling is set lower than in the normal operation mode. Also, the support operation unit sets the temperature setting during heating higher than that in the normal operation mode.
  • the notification unit 88 of the indoor unit 1 may have a display panel 63 .
  • the display panel 63 is provided with an operation lamp 63a, a life extension operation lamp 63b, a support operation lamp 63c, and the like.
  • the display panel 63 is provided on the bottom panel 64 of the housing of the indoor unit 1 .
  • the operation lamp 63a is lit when the air conditioning system 100 is in the ON state, and is extinguished when the air conditioning system 100 is in the OFF state.
  • the life-prolonging operation lamp 63b lights up when the indoor unit 1 is set to the life-prolonging operation unit.
  • the life-prolonging operation lamp 63b lights to notify the user that the indoor unit 1 has been set to the life-prolonging operation unit.
  • the support operation lamp 63c lights up when the indoor unit 1 is set to the support operation unit. That is, the support operation lamp 63c lights up to notify the user that the indoor unit 1 has been set as the support operation unit.
  • the worker who performed the replacement operates a reset button (not shown) installed inside the indoor unit 1.
  • the life-prolonging operation lamp 63b and the support operation lamp 63c are turned off.
  • the notification unit 88 has the display panel 63, and the lamp provided on the display panel 63 may notify the user that the air conditioning system 100 has transitioned to the life-prolonging operation mode. .
  • Embodiment 1 when there is an indoor unit 1 in which the remaining life of the electrolytic capacitor 24a is equal to or less than the first threshold, the system controller 8, which is a control unit, causes the indoor unit 1 to perform "life extension operation.” unit”. In addition, the system controller 8 sets the other indoor units 1 arranged around the indoor unit 1 set to the "life-prolonging operation unit” to the "support operation unit”. Then, the operability of the indoor unit 1 set to the "life-prolonging operation unit” is suppressed, and the operability of the "support operation unit” is increased. As a result, it is possible to extend the life of the electrolytic capacitor 24a of the indoor unit 1 set to the "life-extending operation unit” while maintaining the comfort of the indoor space 13a.
  • the system controller 8 uses the indicators (1) to (3) described above to determine the degree of life-prolonging operation of the "life-prolonging operation unit" and the degree of support fate of the "supporting operation unit.” determine the rank shown. Based on the determined rank, the system controller 8 determines the extent of reduction in the drive frequency of the motor 11a of the "life-prolonging operation unit”. Similarly, the system controller 8 determines the increase width of the drive frequency of the motor 11a of the "support operation unit” based on the determined rank. As a result, it is possible to determine the range of decrease and the range of increase to appropriate values that match the usage environment of the air conditioning system 100 .
  • the notification unit 88 generates different notifications according to the length of the remaining life of the electrolytic capacitor 24a, and in a stepwise manner, a plurality of times, to the user 36, etc. to guide the replacement of This allows the user 36 to have the option of selecting the timing of replacement of the electrolytic capacitor 24a. Moreover, replacement of the electrolytic capacitor 24a can be encouraged before the electrolytic capacitor 24a fails.
  • Ripple current calculator 815 selects the calculation formula used for calculating the ripple current value from the above formulas (10) and (11). This improves the accuracy of the ripple current value.
  • the ripple current calculation unit 815 corrects the calculated ripple current value using the correction coefficients ⁇ and ⁇ calculated by the correction coefficient calculation unit 811 . Therefore, the accuracy of the ripple current value is further improved.

Abstract

This air conditioning system comprises: an outdoor unit; two or more indoor units that are installed in an indoor space and connected to the outdoor unit through refrigerant piping; and a control unit that controls the operation of the outdoor unit and the indoor units. Each of the indoor units has: an indoor heat exchanger that exchanges heat between the refrigerant flowing inside and air; an indoor fan that has a motor and blades and blows air toward the indoor heat exchanger; a rectifier that rectifies an AC voltage output from an AC power supply; an electrolytic capacitor that smooths a DC voltage output from the rectifier; and an inverter that converts the DC voltage smoothed by the electrolytic capacitor into an AC voltage and outputs the AC voltage to the motor. The control unit has, for each of the indoor units, a capacitor remaining life estimation unit for calculating the remaining life of the electrolytic capacitor on the basis of the power supply frequency of the AC power supply and the ripple voltage contained in the DC voltage output by the electrolytic capacitor, selects an indoor unit to be set as a life-extending operation unit on the basis of the remaining life, sets, as a support operation unit, at least one other indoor unit located in a range or position to be able to blow air to an area to be air-conditioned by the indoor unit set as the life-extending operation unit, reduces the operating capacity of the indoor unit set as the life-extending operation unit, and increases the operating capacity of the indoor unit set as the support operation unit.

Description

空調システムair conditioning system
 本開示は、空調システムに関する。 This disclosure relates to an air conditioning system.
 空気調和装置は、室外機と室内機とを有している。室内機には、熱交換器と、熱交換器に向けて送風を行うファンと、が設けられている。ファンは、室内機において、最も電力を消費する負荷である。ファンを駆動する電動機の制御にはインバータ回路が用いられ、一般的に、インバータ回路には、寿命が有限である電解コンデンサが含まれている。電解コンデンサの寿命が無くなってしまうと、電解コンデンサの下部または上部に備え付けられた圧力弁が動作し、インバータ回路が正常に動作しなくなる。 The air conditioner has an outdoor unit and an indoor unit. The indoor unit is provided with a heat exchanger and a fan that blows air toward the heat exchanger. A fan is a load that consumes the most power in an indoor unit. An inverter circuit is used to control the electric motor that drives the fan, and generally the inverter circuit includes an electrolytic capacitor that has a finite life. When the electrolytic capacitor reaches the end of its service life, the pressure valve provided at the bottom or top of the electrolytic capacitor operates and the inverter circuit does not operate normally.
 特許文献1に記載の電動機制御装置においては、コンデンサリプル電流推定部が、電動機への出力電力および系統インピーダンスに基づいて電解コンデンサのリプル電流の推定値を求める。また、コンデンサ寿命推定部は、電解コンデンサの周囲温度から、電解コンデンサの内部温度を推定し、推定した内部温度と、推定した電解コンデンサの寿命時間と、に基づいて、コンデンサ寿命積算時間を算出している。そして、算出したコンデンサ寿命積算時間が、予め記憶された基本寿命時間とほぼ等しくなった場合に、プリアラームを表示部に表示する。 In the motor control device described in Patent Document 1, a capacitor ripple current estimator obtains an estimated value of the ripple current of the electrolytic capacitor based on the output power to the motor and the system impedance. The capacitor life estimating unit estimates the internal temperature of the electrolytic capacitor from the ambient temperature of the electrolytic capacitor, and calculates the cumulative life time of the electrolytic capacitor based on the estimated internal temperature and the estimated life time of the electrolytic capacitor. ing. Then, when the calculated cumulative life time of the capacitor becomes substantially equal to the pre-stored basic life time, a pre-alarm is displayed on the display unit.
 さらに、特許文献1に記載の電動機制御装置においては、電解コンデンサの残寿命が短いと判断した場合に、コンデンサ寿命判定部がインバータ制御部に対して電力軽減指示を出力する。これにより、電動機制御装置から電動機に出力される電力が軽減され、電解コンデンサの延命が可能になる。 Furthermore, in the motor control device described in Patent Document 1, when it is determined that the remaining life of the electrolytic capacitor is short, the capacitor life determination section outputs a power reduction instruction to the inverter control section. As a result, the power output from the motor control device to the motor is reduced, and the life of the electrolytic capacitor can be extended.
 なお、特許文献1では、一般的な電動機の制御について記載されており、特許文献1に記載の電動機制御装置を、空気調和装置に適用させることについては特に意図されていない。 It should be noted that Patent Document 1 describes control of a general electric motor, and there is no particular intention to apply the motor control device described in Patent Document 1 to an air conditioner.
国際公開第2013/183118号WO2013/183118
 特許文献1では、電解コンデンサの残寿命が短いと判定した場合に、電力を軽減する運転に切り替える。そのため、仮に、特許文献1に記載の電動機制御装置を空気調和装置に適用させた場合、空気調和装置の空調能力が低下してしまい、室内空間の快適性が維持できないという課題があった。 In Patent Document 1, when it is determined that the remaining life of the electrolytic capacitor is short, the operation is switched to reduce power consumption. Therefore, if the electric motor control device described in Patent Document 1 were applied to an air conditioner, the air conditioning capacity of the air conditioner would be reduced, and the comfort of the indoor space could not be maintained.
 本開示は、かかる課題を解決するためになされたものであり、室内空間の快適性を維持しながら、電解コンデンサの延命を図ることが可能な、空調システムを得ることを目的としている。 The present disclosure has been made to solve such problems, and aims to obtain an air conditioning system that can extend the life of electrolytic capacitors while maintaining the comfort of the indoor space.
 本開示に係る空調システムは、室外機と、室内空間に設置され、前記室外機に対して冷媒配管を介して接続された、2以上の室内機と、前記室外機および前記室内機の動作を制御する制御部と、を備え、各前記室内機は、内部を流れる冷媒と空気との間で熱交換を行う室内熱交換器と、モータと翼部とを有し、前記室内熱交換器に向けて前記空気を送風する室内ファンと、交流電源から出力される交流電圧を整流する整流部と、前記整流部から出力される直流電圧を平滑する電解コンデンサと、前記電解コンデンサで平滑された直流電圧を交流電圧に変換して前記モータに出力するインバータ部と、を有し、前記制御部は、前記室内機ごとに、前記交流電源の電源周波数と、前記電解コンデンサが出力する直流電圧に含まれるリプル電圧と、に基づいて、前記電解コンデンサの残寿命を算出するコンデンサ残寿命推定部を有し、前記残寿命に基づいて延命運転ユニットに設定する室内機を選択し、前記延命運転ユニットに設定された前記室内機の空調対象領域への送風が可能な範囲または位置に配置された少なくとも1つの他の室内機をサポート運転ユニットに設定して、前記延命運転ユニットに設定された前記室内機の運転能力を低減させ、前記サポート運転ユニットに設定された前記室内機の運転能力を増加させるものである。 The air conditioning system according to the present disclosure includes an outdoor unit, two or more indoor units installed in an indoor space and connected to the outdoor unit via refrigerant piping, and the operation of the outdoor unit and the indoor unit. each of the indoor units includes an indoor heat exchanger that exchanges heat between a refrigerant flowing therein and air; a motor and a blade; an indoor fan that blows the air toward the indoor fan, a rectifying unit that rectifies the AC voltage output from the AC power supply, an electrolytic capacitor that smoothes the DC voltage output from the rectifying unit, and a direct current smoothed by the electrolytic capacitor and an inverter unit that converts a voltage into an AC voltage and outputs the voltage to the motor, and the control unit controls the power supply frequency of the AC power supply and the DC voltage output from the electrolytic capacitor for each of the indoor units. a capacitor remaining life estimating unit that calculates the remaining life of the electrolytic capacitor based on the ripple voltage and the The indoor unit set as the life-prolonging operation unit by setting at least one other indoor unit arranged in a range or position where air can be blown to the air-conditioned area of the set indoor unit as a support operation unit. and increase the operability of the indoor unit set in the support operation unit.
 本開示に係る空調システムによれば、電解コンデンサの残寿命に基づいて延命運転ユニットに設定する室内機を選択し、延命運転ユニットに設定した室内機の運転能力を低下させ、当該室内機の周囲に配置された室内機のモータの運転能力を増加させることで、室内空間の快適性を維持しながら、電解コンデンサの延命を図ることができる。 According to the air conditioning system according to the present disclosure, the indoor unit to be set as the life-extending operation unit is selected based on the remaining life of the electrolytic capacitor, the operating ability of the indoor unit set to the life-extending operation unit is reduced, and the surrounding of the indoor unit is By increasing the drivability of the motor of the indoor unit located in the interior, it is possible to extend the life of the electrolytic capacitor while maintaining the comfort of the indoor space.
実施の形態1に係る空調システム100における冷凍サイクルの基本構成を示す冷媒回路図である。2 is a refrigerant circuit diagram showing the basic configuration of a refrigeration cycle in the air conditioning system 100 according to Embodiment 1. FIG. 実施の形態1に係る空調システム100の構成を示す構成図である。1 is a configuration diagram showing the configuration of an air conditioning system 100 according to Embodiment 1; FIG. 実施の形態1に係る空調システム100における室内機1および室外機2の配置例を示す説明図である。FIG. 2 is an explanatory diagram showing an arrangement example of the indoor unit 1 and the outdoor unit 2 in the air conditioning system 100 according to Embodiment 1; 実施の形態1に係る空調システム100における室内機1の配置例を示す平面図である。2 is a plan view showing an example of arrangement of indoor units 1 in the air conditioning system 100 according to Embodiment 1. FIG. 実施の形態1に係る空調システム100に搭載される電力変換装置21の構成を示す回路図である。2 is a circuit diagram showing a configuration of power converter 21 mounted in air conditioning system 100 according to Embodiment 1. FIG. 実施の形態1に係る空調システム100に設けられたシステムコントローラ8の処理の流れを示すフローチャートである。4 is a flow chart showing the flow of processing of the system controller 8 provided in the air conditioning system 100 according to Embodiment 1. FIG. 実施の形態1に係る空調システム100が接続される通信ネットワークの一例を示す説明図である。1 is an explanatory diagram showing an example of a communication network to which an air conditioning system 100 according to Embodiment 1 is connected; FIG. 実施の形態1に係る空調システム100における延命モード時の室内機1の様子を示す平面図である。3 is a plan view showing the state of the indoor unit 1 in the life extension mode in the air conditioning system 100 according to Embodiment 1. FIG. 実施の形態1に係る空調システム100に設けられたシステムコントローラ8の内部の構成を示すブロック図である。2 is a block diagram showing the internal configuration of a system controller 8 provided in the air conditioning system 100 according to Embodiment 1. FIG. 図9に示す空調システム100の処理の流れを示すフローチャートである。FIG. 10 is a flow chart showing the flow of processing of the air conditioning system 100 shown in FIG. 9. FIG. 実施の形態1に係る空調システム100に設けられたシステムコントローラ8のコンデンサ残寿命推定部81の構成を示すブロック図である。3 is a block diagram showing the configuration of a capacitor remaining life estimator 81 of the system controller 8 provided in the air conditioning system 100 according to Embodiment 1. FIG. 実施の形態1に係る空調システム100に設けられた補正係数算出部811で算出した補正係数αBの算出結果を示す図である。8 is a diagram showing calculation results of a correction coefficient αB calculated by a correction coefficient calculator 811 provided in the air conditioning system 100 according to Embodiment 1. FIG. 実施の形態1に係る空調システム100に設けられた電解コンデンサ24aが出力する直流電圧Vdcの波形を示す図である。4 is a diagram showing a waveform of DC voltage Vdc output from electrolytic capacitor 24a provided in air conditioning system 100 according to Embodiment 1. FIG. 実施の形態1に係る空調システム100に設けられた電解コンデンサ24aが出力する直流電圧Vdcの電源不平衡が無い場合の波形を示す図である。4 is a diagram showing waveforms of DC voltage Vdc output by electrolytic capacitor 24a provided in air conditioning system 100 according to Embodiment 1 when there is no power source unbalance. FIG. 実施の形態1に係る空調システム100に設けられた電解コンデンサ24aが出力する直流電圧Vdcの電源不平衡が有る場合の波形を示す図である。4 is a diagram showing waveforms of DC voltage Vdc output by electrolytic capacitor 24a provided in air-conditioning system 100 according to Embodiment 1 when there is power supply unbalance. FIG. 実施の形態1に係る空調システム100に設けられたコンデンサ残寿命推定部81の処理の流れを示すフローチャートである。4 is a flow chart showing the flow of processing of a capacitor remaining life estimator 81 provided in the air conditioning system 100 according to Embodiment 1. FIG. 実施の形態1に係る空調システム100に設けられた通知部88による通知方法の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a notification method by a notification unit 88 provided in the air conditioning system 100 according to Embodiment 1; 実施の形態1に係る空調システム100に設けられた通知部88による通知方法の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a notification method by a notification unit 88 provided in the air conditioning system 100 according to Embodiment 1; 実施の形態1に係る空調システム100に設けられた通知部88による通知方法の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a notification method by a notification unit 88 provided in the air conditioning system 100 according to Embodiment 1; 実施の形態1に係る空調システム100の変形例としての空調システム100Aの構成を示す図である。2 is a diagram showing a configuration of an air conditioning system 100A as a modified example of the air conditioning system 100 according to Embodiment 1; FIG. 実施の形態1に係る空調システム100の変形例としての空調システム100Aの構成を示す図である。2 is a diagram showing a configuration of an air conditioning system 100A as a modified example of the air conditioning system 100 according to Embodiment 1; FIG. 実施の形態1に係る空調システム100に設けられた室内機1の構成を示す平面図である。2 is a plan view showing the configuration of the indoor unit 1 provided in the air conditioning system 100 according to Embodiment 1. FIG. 図8に示す室内空間13aに対して壁14が設置された場合を模式的に示す平面図である。FIG. 9 is a plan view schematically showing a case where a wall 14 is installed in the indoor space 13a shown in FIG. 8; 実施の形態1に係る空調システム100における、室内機1ごとに、対応するサポート運転ユニットを指定したデータテーブル53の一例を示す説明図である。4 is an explanatory diagram showing an example of a data table 53 specifying a corresponding support operation unit for each indoor unit 1 in the air conditioning system 100 according to Embodiment 1. FIG. 実施の形態1に係る空調システム100に設けられたシステムコントローラ8で実行されるフィードバック制御の処理の流れを示すフローチャートである。4 is a flow chart showing the flow of feedback control processing executed by the system controller 8 provided in the air conditioning system 100 according to Embodiment 1. FIG. 実施の形態1に係る空調システム100に設けられたシステムコントローラ8で実行される他のフィードバック制御の処理の流れを示すフローチャートである。7 is a flow chart showing the flow of another feedback control process executed by the system controller 8 provided in the air conditioning system 100 according to Embodiment 1. FIG. 図25に示すフィードバック制御で用いられる第1範囲、および、後述する図26に示すフィードバック制御で用いられる第1範囲および第2範囲を説明する説明図である。FIG. 26 is an explanatory diagram illustrating the first range used in the feedback control shown in FIG. 25, and the first range and the second range used in the feedback control shown in FIG. 26 to be described later;
 以下、本開示に係る空調システムの実施の形態について図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の実施の形態およびその変形例に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。 An embodiment of an air conditioning system according to the present disclosure will be described below with reference to the drawings. The present disclosure is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present disclosure. In addition, the present disclosure includes all combinations of configurations that can be combined among configurations shown in the following embodiments and modifications thereof. Also, in each figure, the same reference numerals denote the same or corresponding parts, which are common throughout the specification. In each drawing, the relative dimensional relationship, shape, etc. of each component may differ from the actual one.
 実施の形態1.
 [空調システム100の冷凍サイクル]
 図1は、実施の形態1に係る空調システム100における冷凍サイクルの基本構成を示す冷媒回路図である。図1に示すように、空調システム100は、室内機1と、室外機2とを備えている。なお、実施の形態1に係る空調システム100は、後述する図2および図3に示すように、実際には複数の室内機1を有しているが、図1では、説明のため、1つの室内機1のみを図示している。室内機1と室外機2とは、冷媒配管5を介して接続されている。室外機2には、圧縮機3と、四方弁4と、室外熱交換器6と、室外ファン9と、絞り装置7とが設けられている。室内機1には、室内熱交換器10と室内ファン11とが設けられている。また、空調システム100には、空調システム100の動作全般を制御するシステムコントローラ8が設けられている。システムコントローラ8は、例えば、室内空間に設置される。また、室内機1に室内制御部91が設けられ、室外機2に室外制御部92が設けられていてもよい。その場合には、システムコントローラ8は、室内機1に設けられた室内制御部91と、室外機2に設けられた室外制御部92と、に通信可能に接続される。そして、システムコントローラ8は、室内制御部91および室外制御部92を介して、室内機1および室外機2の動作の制御を行う。以下では、システムコントローラ8、室内制御部91、および、室外制御部92を、まとめて、「制御部」と呼ぶこととする。また、例えば室外機2に、外気温度を検出する外気温度センサ45を、必要に応じて設けるようにしてもよい。また、室内機1に、室内機1の吸込口61(図22参照)から吸い込まれる吸気温度を検出する吸気温度センサ46を必要に応じて設けるようにしてもよい。
Embodiment 1.
[Refrigeration cycle of air conditioning system 100]
FIG. 1 is a refrigerant circuit diagram showing the basic configuration of a refrigeration cycle in an air conditioning system 100 according to Embodiment 1. FIG. As shown in FIG. 1 , the air conditioning system 100 includes an indoor unit 1 and an outdoor unit 2 . The air conditioning system 100 according to Embodiment 1 actually has a plurality of indoor units 1 as shown in FIGS. 2 and 3 to be described later. Only the indoor unit 1 is illustrated. The indoor unit 1 and the outdoor unit 2 are connected via refrigerant pipes 5 . The outdoor unit 2 is provided with a compressor 3 , a four-way valve 4 , an outdoor heat exchanger 6 , an outdoor fan 9 and an expansion device 7 . The indoor unit 1 is provided with an indoor heat exchanger 10 and an indoor fan 11 . The air conditioning system 100 is also provided with a system controller 8 that controls the overall operation of the air conditioning system 100 . The system controller 8 is installed, for example, in an indoor space. Further, the indoor controller 91 may be provided in the indoor unit 1 and the outdoor controller 92 may be provided in the outdoor unit 2 . In that case, the system controller 8 is communicably connected to an indoor controller 91 provided in the indoor unit 1 and an outdoor controller 92 provided in the outdoor unit 2 . The system controller 8 controls the operation of the indoor unit 1 and the outdoor unit 2 via the indoor controller 91 and the outdoor controller 92 . Hereinafter, the system controller 8, the indoor controller 91, and the outdoor controller 92 are collectively referred to as a "controller". Further, for example, the outdoor unit 2 may be provided with an outside air temperature sensor 45 for detecting the outside air temperature, if necessary. Further, the indoor unit 1 may be provided with an intake air temperature sensor 46 for detecting the temperature of the intake air sucked from the intake port 61 (see FIG. 22) of the indoor unit 1, if necessary.
 圧縮機3は、冷媒配管5の中を流れる冷媒を吸入口から吸入する。圧縮機3は、吸入した冷媒を圧縮して、冷媒配管5に対して吐出口から吐出する。圧縮機3は、例えば、インバータ圧縮機である。圧縮機3がインバータ圧縮機の場合には、インバータ回路などにより、運転周波数を任意に変化させ、単位時間あたりの冷媒の吐出容量を変化させてもよい。その場合、インバータ回路の動作は、例えば、システムコントローラ8により制御される。圧縮機3から吐出された冷媒は、四方弁4を介して、室外熱交換器6または室内熱交換器10に流入される。 The compressor 3 sucks the refrigerant flowing through the refrigerant pipe 5 from the suction port. The compressor 3 compresses the sucked refrigerant and discharges it to the refrigerant pipe 5 from a discharge port. The compressor 3 is, for example, an inverter compressor. When the compressor 3 is an inverter compressor, the operating frequency may be arbitrarily changed by an inverter circuit or the like to change the refrigerant discharge capacity per unit time. In that case, the operation of the inverter circuit is controlled by the system controller 8, for example. Refrigerant discharged from the compressor 3 flows into the outdoor heat exchanger 6 or the indoor heat exchanger 10 via the four-way valve 4 .
 室外熱交換器6および室内熱交換器10は、内部を流れる冷媒と、空気との間で、熱交換を行う。室外熱交換器6および室内熱交換器10は、例えば、フィンアンドチューブ型熱交換器である。その場合、室外熱交換器6および室内熱交換器10は、冷媒が流れる複数の伝熱管と、伝熱管の間に設置されたフィンとを有している。 The outdoor heat exchanger 6 and the indoor heat exchanger 10 exchange heat between the refrigerant flowing inside and the air. The outdoor heat exchanger 6 and the indoor heat exchanger 10 are, for example, fin-and-tube heat exchangers. In that case, the outdoor heat exchanger 6 and the indoor heat exchanger 10 have a plurality of heat transfer tubes through which refrigerant flows, and fins installed between the heat transfer tubes.
 室外熱交換器6は、冷房運転時には凝縮器として機能し、冷媒を凝縮して液化させる。室外熱交換器6は、暖房運転時には蒸発器として機能し、冷媒を蒸発させて気化させる。 The outdoor heat exchanger 6 functions as a condenser during cooling operation, and condenses and liquefies the refrigerant. The outdoor heat exchanger 6 functions as an evaporator during heating operation and evaporates the refrigerant.
 室内熱交換器10は、冷房運転時には蒸発器として機能し、冷媒を蒸発させて気化させる。室内熱交換器10は、暖房運転時には凝縮器として機能し、冷媒を凝縮して液化させる。 The indoor heat exchanger 10 functions as an evaporator during cooling operation and evaporates the refrigerant. The indoor heat exchanger 10 functions as a condenser during heating operation, and condenses and liquefies the refrigerant.
 また、室外ファン9は、モータ9aと翼部9bとを有している。同様に、室内ファン11は、モータ11aと翼部11bとを有している。室外ファン9は室外熱交換器6に対して空気を送風し、室内ファン11は室内熱交換器10に対して空気を送風する。室外ファン9および室内ファン11の回転速度は、例えば、システムコントローラ8により制御される。 Also, the outdoor fan 9 has a motor 9a and blades 9b. Similarly, the indoor fan 11 has a motor 11a and blades 11b. The outdoor fan 9 blows air to the outdoor heat exchanger 6 and the indoor fan 11 blows air to the indoor heat exchanger 10 . The rotational speeds of the outdoor fan 9 and the indoor fan 11 are controlled by the system controller 8, for example.
 四方弁4は、室内機1側を冷房する冷房運転の場合と暖房する暖房運転の場合とで状態が切り替わるように構成されている。四方弁4の切り替えは、例えば、システムコントローラ8により制御される。四方弁4は、冷房運転時と暖房運転時とによって冷媒の流れを切り替える流路切替装置である。冷房運転の場合は、四方弁4は図1の実線で示す状態になり、圧縮機3から吐出された冷媒が、室外熱交換器6に流入する。このとき、室外熱交換器6は凝縮器として作用し、室内熱交換器10は蒸発器として作用する。一方、暖房運転の場合は、四方弁4は図1の破線で示す状態になり、圧縮機3から吐出された冷媒が、室内熱交換器10に流入する。このとき、室外熱交換器6は蒸発器として作用し、室内熱交換器10は凝縮器として作用する。 The four-way valve 4 is configured to switch between the cooling operation for cooling the indoor unit 1 side and the heating operation for heating the indoor unit 1 side. Switching of the four-way valve 4 is controlled by the system controller 8, for example. The four-way valve 4 is a channel switching device that switches the flow of refrigerant between cooling operation and heating operation. In the case of cooling operation, the four-way valve 4 is in the state indicated by the solid line in FIG. 1 and the refrigerant discharged from the compressor 3 flows into the outdoor heat exchanger 6 . At this time, the outdoor heat exchanger 6 acts as a condenser, and the indoor heat exchanger 10 acts as an evaporator. On the other hand, in the case of heating operation, the four-way valve 4 is in the state indicated by the dashed line in FIG. 1 and the refrigerant discharged from the compressor 3 flows into the indoor heat exchanger 10 . At this time, the outdoor heat exchanger 6 acts as an evaporator, and the indoor heat exchanger 10 acts as a condenser.
 絞り装置7は、冷媒を減圧して膨張させる減圧装置で、例えば、LEV(Linear Expansion Valve)などの電子膨張弁などの膨張弁で構成されている。絞り装置7が電子膨張弁で構成されている場合には、例えば、システムコントローラ8の指示に基づいて開度調整が行われる。絞り装置7は、室外熱交換器6と室内熱交換器10との間に設けられている。 The expansion device 7 is a decompression device that decompresses and expands the refrigerant, and is composed of an expansion valve such as an electronic expansion valve such as LEV (Linear Expansion Valve). If the throttle device 7 is composed of an electronic expansion valve, the opening degree is adjusted based on an instruction from the system controller 8, for example. The expansion device 7 is provided between the outdoor heat exchanger 6 and the indoor heat exchanger 10 .
 圧縮機3、四方弁4、室外熱交換器6、絞り装置7、および、室内熱交換器10は、冷媒配管5によって接続されて、冷媒回路を構成している。 The compressor 3, the four-way valve 4, the outdoor heat exchanger 6, the throttle device 7, and the indoor heat exchanger 10 are connected by refrigerant pipes 5 to form a refrigerant circuit.
 システムコントローラ8は、空調システム100の動作全般の制御を行う。システムコントローラ8は、例えば、マイクロコンピュータから構成される。 The system controller 8 controls the overall operation of the air conditioning system 100 . The system controller 8 is composed of, for example, a microcomputer.
 ここで、システムコントローラ8を含む「制御部」のハードウェア構成について説明する。システムコントローラ8は、記憶部8a(図7参照)を有している。また、室内制御部91および室外制御部92も、記憶部(図示せず)を有している。これらの記憶部はメモリから構成される。システムコントローラ8、室内制御部91、および、室外制御部92は、処理回路から構成される。処理回路は、専用のハードウェア、または、プロセッサから構成される。専用のハードウェアは、例えば、ASIC(Application Specific Integrated Circuit)またはFPGA(Field Programmable Gate Array)などである。プロセッサは、記憶部に記憶されるプログラムを実行する。記憶部を構成するメモリは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)などの不揮発性または揮発性の半導体メモリ、もしくは、磁気ディスク、フレキシブルディスク、光ディスクなどのディスクである。 Here, the hardware configuration of the "control section" including the system controller 8 will be described. The system controller 8 has a storage section 8a (see FIG. 7). In addition, the indoor control unit 91 and the outdoor control unit 92 also have storage units (not shown). These storage units are composed of memories. The system controller 8, the indoor controller 91, and the outdoor controller 92 are composed of processing circuits. The processing circuitry consists of dedicated hardware or a processor. Dedicated hardware is, for example, ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array). The processor executes programs stored in the storage unit. The memory that makes up the storage unit is non-volatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), or magnetic disk, flexible disk, It is a disc such as an optical disc.
 [空調システム100の構成]
 図2は、実施の形態1に係る空調システム100の構成を示す構成図である。図3は、実施の形態1に係る空調システム100における室内機1および室外機2の配置例を示す説明図である。図2および図3に示すように、実施の形態1に係る空調システム100は、1つの室外機2と、複数の室内機1とを備えている。室外機2と室内機1とは、図1を用いて説明したように、冷媒配管5を介して接続されている。なお、図2および図3に示すように、室外機2と室内機1との間には、必要に応じて、中継ユニット12を設けるようにしてもよい。
[Configuration of Air Conditioning System 100]
FIG. 2 is a configuration diagram showing the configuration of the air conditioning system 100 according to Embodiment 1. As shown in FIG. FIG. 3 is an explanatory diagram showing an arrangement example of the indoor unit 1 and the outdoor unit 2 in the air conditioning system 100 according to the first embodiment. As shown in FIGS. 2 and 3 , the air conditioning system 100 according to Embodiment 1 includes one outdoor unit 2 and multiple indoor units 1 . The outdoor unit 2 and the indoor unit 1 are connected via the refrigerant pipe 5 as described with reference to FIG. As shown in FIGS. 2 and 3, a relay unit 12 may be provided between the outdoor unit 2 and the indoor unit 1, if necessary.
 図3に示すように、室外機2は、例えば、建物13の屋上などの室外に配置される。室内機1は、空調対象の室内空間13aに配置される。室内機1は、例えば、天井埋め込み型四方向カセット空気調和機(以下、4方向室内機と呼ぶ)から構成される。その場合、室内機1は、建物13の室内空間13aの天井13bに取り付けられる。 As shown in FIG. 3, the outdoor unit 2 is arranged outdoors such as on the roof of the building 13, for example. The indoor unit 1 is arranged in an indoor space 13a to be air-conditioned. The indoor unit 1 is configured by, for example, a ceiling-embedded 4-direction cassette air conditioner (hereinafter referred to as a 4-direction indoor unit). In that case, the indoor unit 1 is attached to the ceiling 13 b of the indoor space 13 a of the building 13 .
 図4は、実施の形態1に係る空調システム100における室内機1の配置例を示す平面図である。図4は、室内空間13aにおいて、床13c側から天井13bをz方向(図3参照)に沿って見上げた状態を示している。図4に示すように、実施の形態1においては、16個の室内機1が天井13bに配置されている。図4において、x方向が室内空間13aの幅方向とし、y方向が室内空間13aの奥行き方向とする。x方向とy方向とは互いに直交している。また、図3に示すz方向は、x方向とy方向と直交している。z方向は、上下方向であり、例えば、鉛直方向である。x方向に沿って延びる列を横列と呼び、y方向に沿って延びる列を縦列と呼ぶと、16個の室内機1は、4つの横列と4つの縦列とを形成するように升目状に配置されている。横列および縦列において、室内機1は一定の間隔で配置されている。なお、室内機1の個数は、16個に限定されず、任意の個数でよい。以下では、16個の室内機1を区別して呼ぶ場合、第1系統の室内機1、第2系統の室内機1、・・・、第16系統の室内機1と呼ぶ。 FIG. 4 is a plan view showing an arrangement example of the indoor units 1 in the air conditioning system 100 according to Embodiment 1. FIG. FIG. 4 shows a state in which the ceiling 13b is looked up along the z direction (see FIG. 3) from the floor 13c side in the indoor space 13a. As shown in FIG. 4, in Embodiment 1, 16 indoor units 1 are arranged on the ceiling 13b. In FIG. 4, the x direction is the width direction of the indoor space 13a, and the y direction is the depth direction of the indoor space 13a. The x-direction and the y-direction are orthogonal to each other. Also, the z-direction shown in FIG. 3 is orthogonal to the x-direction and the y-direction. The z-direction is the vertical direction, for example, the vertical direction. A row extending along the x direction is called a row, and a row extending along the y direction is called a column. It is The indoor units 1 are arranged at regular intervals in rows and columns. Note that the number of indoor units 1 is not limited to 16, and may be any number. Hereinafter, when the 16 indoor units 1 are separately called, they are called the indoor unit 1 of the first system, the indoor unit 1 of the second system, . . . , the indoor unit 1 of the 16th system.
 図5は、実施の形態1に係る空調システム100に搭載される電力変換装置21の構成を示す回路図である。図5に示すように、電力変換装置21は、室内機1の各系統ごとに設けられている。電力変換装置21は、各室内機1の室内ファン11のモータ11aに接続されている。各系統における電力変換装置21は、同様の構成を有しているため、ここでは、1つの系統の電力変換装置21の構成について説明し、他の系統の電力変換装置21の構成については説明を省略する。 FIG. 5 is a circuit diagram showing the configuration of the power conversion device 21 mounted on the air conditioning system 100 according to Embodiment 1. As shown in FIG. As shown in FIG. 5 , the power converter 21 is provided for each system of the indoor unit 1 . The power converter 21 is connected to the motor 11 a of the indoor fan 11 of each indoor unit 1 . Since the power conversion device 21 in each system has the same configuration, the configuration of the power conversion device 21 in one system will be described here, and the configuration of the power conversion device 21 in the other system will not be described. omitted.
 電力変換装置21は、整流部22と、リアクトル23と、DCリンク部24と、インバータ部25と、駆動回路26と、インバータ制御部27と、を備える。電力変換装置21は、図5に示すように、交流電源20に接続されている。交流電源20は、例えば、三相交流電源である。交流電源20は、例えば、商用電源である。なお、この場合に限らず、交流電源20は、単相電源など、三相以外の電源から構成されていてもよい。また、実施の形態1では、電源として、交流電源20を用いる場合を例に挙げて説明するが、その場合に限定されない。すなわち、電源として、直流電源20Aを用いるようにしてもよい(図20、図21参照)。 The power converter 21 includes a rectifying section 22 , a reactor 23 , a DC link section 24 , an inverter section 25 , a drive circuit 26 and an inverter control section 27 . The power conversion device 21 is connected to the AC power supply 20 as shown in FIG. The AC power supply 20 is, for example, a three-phase AC power supply. AC power supply 20 is, for example, a commercial power supply. Note that the AC power supply 20 is not limited to this case, and may be composed of a power supply other than three-phase, such as a single-phase power supply. Moreover, in Embodiment 1, the case where the AC power supply 20 is used as the power supply will be described as an example, but the present invention is not limited to that case. That is, the DC power supply 20A may be used as the power supply (see FIGS. 20 and 21).
 整流部22は、例えば、コンバータ回路から構成されている。整流部22は、交流電源20から入力される交流電圧を整流して直流電圧に変換する。直流電圧は、リアクトル23を通して、DCリンク部24に印加される。整流部22は、例えば、6つの整流用ダイオードを備えたフルブリッジ回路から構成されている。6つの整流用ダイオードは、2つずつ直列に接続されて、合計3つの直列回路を形成している。3つの直列回路は並列に接続されている。3つの直列回路は、それぞれ、交流電源20のU相、V相およびW相に対応して設けられている。各直列回路を構成する2つの整流用ダイオードの接続点は、それぞれ、交流電源20のU相、V相およびW相に接続されている。このように、整流部22の入力端は、交流電源20に接続されている。また、整流部22の出力端は、正極母線Pおよび負極母線Nに接続されている。なお、整流部22は、整流用ダイオードの代わりに、トランジスタなどのスイッチング素子を用いてもよい。 The rectifying section 22 is composed of, for example, a converter circuit. The rectifying section 22 rectifies the AC voltage input from the AC power supply 20 and converts it into a DC voltage. A DC voltage is applied to the DC link portion 24 through the reactor 23 . The rectifying section 22 is composed of, for example, a full bridge circuit including six rectifying diodes. The six rectifying diodes are connected in series two by two to form a total of three series circuits. The three series circuits are connected in parallel. The three series circuits are provided corresponding to the U-phase, V-phase and W-phase of AC power supply 20, respectively. The connection points of the two rectifying diodes forming each series circuit are connected to the U-phase, V-phase and W-phase of AC power supply 20, respectively. Thus, the input end of the rectifying section 22 is connected to the AC power supply 20 . Further, the output terminal of the rectifying section 22 is connected to the positive bus line P and the negative bus line N. As shown in FIG. Note that the rectifying section 22 may use a switching element such as a transistor instead of the rectifying diode.
 リアクトル23は、交流電源20からの電源電流の急峻な立ち上がりを抑制し、電流変化を緩やかにする目的で設けられている。図5の例では、リアクトル23は、整流部22の後段に設けられているが、整流部22の前段に設けてもよい。 The reactor 23 is provided for the purpose of suppressing a sharp rise of the power supply current from the AC power supply 20 and slowing the current change. In the example of FIG. 5 , the reactor 23 is provided after the rectifying section 22 , but may be provided before the rectifying section 22 .
 DCリンク部24は、電解コンデンサ24aを有している。電解コンデンサ24aは、平滑用のコンデンサである。電解コンデンサ24aの容量は、商用電源の電圧周波数の2倍または6倍の周波数で大きく脈動する低次高調波成分を除去するように設定されている。電解コンデンサ24aは、整流部22から入力された直流電圧を平滑して、インバータ部25へ出力する。 The DC link section 24 has an electrolytic capacitor 24a. The electrolytic capacitor 24a is a smoothing capacitor. The capacity of the electrolytic capacitor 24a is set so as to remove a low-order harmonic component that pulsates greatly at a frequency that is twice or six times the voltage frequency of the commercial power supply. The electrolytic capacitor 24 a smoothes the DC voltage input from the rectifying section 22 and outputs it to the inverter section 25 .
 DCリンク部24から出力される直流電圧Vdcは、図5の矩形枠28の中に示されている電圧波形29を有している。直流電圧Vdcの電圧波形29は、完全な直線(電圧一定)とならずに、図5に示すように、電圧値が上下に変動する脈動成分29aを含んでいる。この脈動成分29aの振幅の最大値を、以下では、リプル電圧ΔVと呼ぶこととする。なお、DCリンク部24には、直流電圧Vdcを検出する第1電圧センサ40が設けられている。第1電圧センサ40は、電解コンデンサ24aに印加される直流電圧Vdcを検出する。 The DC voltage Vdc output from the DC link section 24 has a voltage waveform 29 shown in a rectangular frame 28 in FIG. A voltage waveform 29 of the DC voltage Vdc does not form a perfectly straight line (voltage is constant), but includes a pulsating component 29a in which the voltage value fluctuates up and down as shown in FIG. The maximum value of the amplitude of this pulsating component 29a is hereinafter referred to as ripple voltage ΔV. The DC link section 24 is provided with a first voltage sensor 40 that detects the DC voltage Vdc. The first voltage sensor 40 detects a DC voltage Vdc applied to the electrolytic capacitor 24a.
 インバータ部25は、DCリンク部24から入力された直流電圧を、電力変換素子の動作によって交流電圧に変換し、負荷であるモータ11aに出力する。インバータ部25は、電力変換素子として、例えば、3つの上アームスイッチング素子25aと、3つの下アームスイッチング素子25bとを有している。インバータ部25は、例えば、フルブリッジ回路などのインバータ回路から構成されている。1つの上アームスイッチング素子25aと1つの下アームスイッチング素子25bとは、直列に接続され、その接続点が中点となっている。1つの上アームスイッチング素子25aと1つの下アームスイッチング素子25bとで構成される直列回路は、アームと呼ばれる。インバータ部25は、3つのアームを有している。3つのアームは並列に接続されている。3つのアームは、それぞれ、モータ11aのU相、V相およびW相に対応して設けられている。各アームの中点は、それぞれ、モータ11aのU相、V相およびW相に接続されている。また、上アームスイッチング素子25aのそれぞれには、還流用ダイオード25cが逆並列で接続されている。また、同様に、下アームスイッチング素子25bのそれぞれには、還流用ダイオード25cが逆並列で接続されている。なお、インバータ部25に用いられるスイッチング素子25aおよび25bは、例えば、IGBT、MOSFET、自己消弧型サイリスタ、バイポーラトランジスタなどである。インバータ部25のスイッチング素子25aおよび25bは、駆動回路26からのPWM駆動指令信号に従って、オンオフ動作を行う。PWMはPulseWidthModulation(パルス幅変調)の略である。PWM駆動指令信号は、インバータ部25のU相、V相およびW相のスイッチング素子25aおよび25bのオンオフ状態を切り替えるための駆動信号である。当該オンオフ動作により、DCリンク部24から入力された直流が交流に変換される。スイッチング素子25aおよび25bのスイッチングにより得られる電力は、高周波電力であってもよい。 The inverter unit 25 converts the DC voltage input from the DC link unit 24 into AC voltage by the operation of the power conversion element, and outputs the AC voltage to the motor 11a as the load. The inverter section 25 has, for example, three upper arm switching elements 25a and three lower arm switching elements 25b as power conversion elements. The inverter unit 25 is composed of an inverter circuit such as a full bridge circuit, for example. One upper arm switching element 25a and one lower arm switching element 25b are connected in series, and the connection point is the middle point. A series circuit composed of one upper arm switching element 25a and one lower arm switching element 25b is called an arm. The inverter section 25 has three arms. The three arms are connected in parallel. The three arms are provided corresponding to the U-phase, V-phase and W-phase of the motor 11a, respectively. The midpoint of each arm is connected to the U-phase, V-phase and W-phase of the motor 11a. A freewheeling diode 25c is connected in anti-parallel to each of the upper arm switching elements 25a. Similarly, a freewheeling diode 25c is connected in anti-parallel to each of the lower arm switching elements 25b. The switching elements 25a and 25b used in the inverter section 25 are, for example, IGBTs, MOSFETs, self arc-extinguishing thyristors, bipolar transistors, and the like. The switching elements 25 a and 25 b of the inverter section 25 perform ON/OFF operations according to the PWM drive command signal from the drive circuit 26 . PWM is an abbreviation for PulseWidth Modulation. The PWM drive command signal is a drive signal for switching the ON/OFF states of the U-phase, V-phase and W- phase switching elements 25 a and 25 b of the inverter unit 25 . The on/off operation converts the direct current input from the DC link unit 24 into alternating current. The power obtained by switching the switching elements 25a and 25b may be high frequency power.
 なお、ここでは、インバータ部25が、電力変換素子として、スイッチング素子25aおよび25bを有している例について説明したが、この場合に限らず、他の電力変換素子であってもよい。 Although an example in which the inverter section 25 has the switching elements 25a and 25b as power conversion elements has been described here, the present invention is not limited to this case, and other power conversion elements may be used.
 インバータ制御部27は、第1電圧センサ40から出力される直流電圧Vdcを取得し、直流電圧Vdcとシステムコントローラ8から入力される指令値ωとスイッチングキャリア周波数とに基づいて、PWM制御演算を行う。インバータ制御部27は、当該PWM制御演算により、駆動回路26に対して制御信号を出力する。また、指令値ωは、インバータ部25が出力すべき波形(すなわち、変調波)を指定する指令値である。インバータ制御部27は、例えば、電力変換装置21に搭載されたマイクロコントローラから構成される。 The inverter control unit 27 acquires the DC voltage Vdc output from the first voltage sensor 40, and performs PWM control calculation based on the DC voltage Vdc, the command value ω input from the system controller 8, and the switching carrier frequency. . The inverter control unit 27 outputs a control signal to the drive circuit 26 by the PWM control calculation. Also, the command value ω is a command value that specifies the waveform (that is, the modulated wave) that the inverter section 25 should output. The inverter control unit 27 is composed of, for example, a microcontroller mounted on the power converter 21 .
 駆動回路26は、インバータ制御部27からの制御信号に基づいて、上アームスイッチング素子25aおよび下アームスイッチング素子25bを駆動させて、オンオフ動作を行わせる。 The drive circuit 26 drives the upper arm switching element 25a and the lower arm switching element 25b based on the control signal from the inverter control section 27 to perform on/off operations.
 モータ11aは、例えば、三相交流モータである。モータ11aは、これに限定されず、例えば、単相交流モータなど、3相以外のモータでもよい。また、モータ11aは、交流モータでもよく、あるいは、直流モータでもよい。 The motor 11a is, for example, a three-phase AC motor. The motor 11a is not limited to this, and may be, for example, a motor other than three-phase, such as a single-phase AC motor. Also, the motor 11a may be an AC motor or a DC motor.
 [空調システム100の動作]
 図6は、実施の形態1に係る空調システム100に設けられたシステムコントローラ8の処理の流れを示すフローチャートである。上述したように、実施の形態1では、図2~図5を用いて説明したように、室内空間13aに、インバータ駆動の室内機1が複数個設置されている環境を想定している。
[Operation of Air Conditioning System 100]
FIG. 6 is a flow chart showing the processing flow of the system controller 8 provided in the air conditioning system 100 according to the first embodiment. As described above, in Embodiment 1, as described with reference to FIGS. 2 to 5, an environment is assumed in which a plurality of inverter-driven indoor units 1 are installed in the indoor space 13a.
 ステップS1では、各室内機1が、システムコントローラ8の通常制御により、通常動作を行っている。この状態を「通常運転モード」と定義する。上記の図4は、通常運転モードにおける各室内機1の様子を示している。図4において、矢印は、各室内機1から吹き出される空気の流れる方向を示している。このように、通常運転モードにおいては、各室内機1が通常運転を行っており、各室内機1が、4つの吹出口から4方向に、温度調節された空気を吹き出している。そのため、室内空間13a全体に温度調節された空気の流れが行き渡り、室内空間13aの快適性が維持されている。「通常運転モード」においては、各室内機1が、ユーザによって設定された設定温度、風速(風量)、風向に従って、通常運転を行っている。 In step S1, each indoor unit 1 performs normal operation under normal control by the system controller 8. This state is defined as "normal operation mode". FIG. 4 above shows the state of each indoor unit 1 in the normal operation mode. In FIG. 4 , arrows indicate directions in which air blown from each indoor unit 1 flows. Thus, in the normal operation mode, each indoor unit 1 is normally operating, and each indoor unit 1 blows out temperature-controlled air in four directions from four outlets. Therefore, temperature-controlled air flows throughout the indoor space 13a, and the comfort of the indoor space 13a is maintained. In the "normal operation mode", each indoor unit 1 performs normal operation according to the set temperature, wind speed (air volume), and wind direction set by the user.
 ステップS2では、システムコントローラ8が、各系統の室内機1に設けられた電力変換装置21の電解コンデンサ24aの残寿命を算出する。ここで、図6のフローチャートの処理は、予め設定された周期で繰り返し実行されるため、電解コンデンサ24aの残寿命は当該周期で、定期的に算出される。なお、電解コンデンサ24aの残寿命の算出は、システムコントローラ8の代わりに、例えば、室内機1に搭載された室内制御部91、あるいは、室内機1に接続されたクラウド33(図7参照)などが行ってもよい。 In step S2, the system controller 8 calculates the remaining life of the electrolytic capacitor 24a of the power conversion device 21 provided in the indoor unit 1 of each system. Here, since the process of the flowchart of FIG. 6 is repeatedly executed at a preset cycle, the remaining life of the electrolytic capacitor 24a is periodically calculated at the cycle. The remaining life of the electrolytic capacitor 24a is calculated instead of the system controller 8, for example, the indoor control unit 91 mounted on the indoor unit 1, or the cloud 33 (see FIG. 7) connected to the indoor unit 1. may go.
 クラウド33について簡単に説明する。図7は、実施の形態1に係る空調システム100が接続される通信ネットワークの一例を示す説明図である。システムコントローラ8は、インターネットなどの通信網30を介して、施設管理会社31およびメンテナンス会社32のコンピュータ端末に接続されている。施設管理会社31は、建物13の管理を行う会社である。メンテナンス会社32は、空調システム100のメンテナンスを行う会社である。また、通信網30には、クラウド33が接続されている。リモートコントローラ34は、室内空間13aに存在するユーザ36が、室内機1に対する設定を入力するための可搬型のコントローラである。あるいは、リモートコントローラ34は、室内空間13aの壁に取り付けられた壁掛け式のコントローラ34aであってもよい。ユーザ36による室内機1に対する設定には、室内空間13aの設定温度、風向、風量(風速)などが含まれる。リモートコントローラ34は、赤外線通信で、室内機1との間で通信を行う。携帯端末35は、ユーザが携帯する端末で、例えば、スマートフォンである。携帯端末35は、直接、または、通信網30に接続された基地局37を介して、室内機1との間の通信を行う。 Briefly explain the cloud 33. FIG. 7 is an explanatory diagram showing an example of a communication network to which the air conditioning system 100 according to Embodiment 1 is connected. The system controller 8 is connected to computer terminals of a facility management company 31 and a maintenance company 32 via a communication network 30 such as the Internet. The facility management company 31 is a company that manages the building 13 . The maintenance company 32 is a company that maintains the air conditioning system 100 . A cloud 33 is also connected to the communication network 30 . The remote controller 34 is a portable controller for a user 36 present in the indoor space 13 a to input settings for the indoor unit 1 . Alternatively, the remote controller 34 may be a wall-mounted controller 34a attached to the wall of the indoor space 13a. The settings for the indoor unit 1 by the user 36 include the set temperature of the indoor space 13a, the wind direction, the air volume (wind speed), and the like. The remote controller 34 communicates with the indoor unit 1 by infrared communication. The mobile terminal 35 is a terminal carried by a user, such as a smart phone. The mobile terminal 35 communicates with the indoor unit 1 directly or via a base station 37 connected to the communication network 30 .
 図6の説明に戻る。ステップS3では、各系統の室内機1に搭載されている電解コンデンサ24aについて、ステップS2で算出した残寿命が、予め設定された第1閾値以下か否かを判定する。少なくとも1つの電解コンデンサ24aの残寿命が第1閾値以下の場合、ステップS4に進む。以下では、例として、第10系統の室内機1に搭載されている電解コンデンサ24aの残寿命が第1閾値以下である場合を想定して説明する(図8参照)。なお、ステップS3の判定で、すべての系統の電解コンデンサ24aの残寿命が第1閾値より大きい場合には、そのまま、図6の処理を終了する。 Return to the description of Fig. 6. In step S3, it is determined whether or not the remaining life calculated in step S2 of the electrolytic capacitor 24a mounted in the indoor unit 1 of each system is equal to or less than a preset first threshold value. If the remaining life of at least one electrolytic capacitor 24a is equal to or less than the first threshold, the process proceeds to step S4. In the following description, as an example, it is assumed that the remaining life of the electrolytic capacitor 24a mounted in the indoor unit 1 of the tenth system is equal to or less than the first threshold (see FIG. 8). If the remaining life of the electrolytic capacitors 24a of all systems is greater than the first threshold value in the determination of step S3, the process of FIG. 6 is terminated.
 ステップS4では、システムコントローラ8が、空調システム100の運転モードを、「通常運転モード」から「延命運転モード」に変更する。図8は、実施の形態1に係る空調システム100における延命モード時の室内機1の様子を示す平面図である。図8は、室内空間13aにおいて、床13c側から天井13bをz方向(図3参照)に沿って見上げた状態を示している。図8に示すように、第10系統の室内機1が、通常運転を停止し、延命運転を行う。以下では、延命運転を行っている室内機1を「延命運転ユニット」と呼ぶ。また、このように、少なくとも1つの室内機1が延命運転を行っている状態を「延命運転モード」と呼ぶ。 In step S4, the system controller 8 changes the operation mode of the air conditioning system 100 from "normal operation mode" to "life extension operation mode". FIG. 8 is a plan view showing the state of the indoor unit 1 in the life extension mode in the air conditioning system 100 according to Embodiment 1. FIG. FIG. 8 shows a state in which the ceiling 13b is looked up along the z direction (see FIG. 3) from the floor 13c side in the indoor space 13a. As shown in FIG. 8, the indoor unit 1 of the tenth system stops normal operation and performs life extension operation. Hereinafter, the indoor unit 1 performing life-prolonged operation is referred to as a "life-prolonged operation unit". Moreover, a state in which at least one indoor unit 1 is performing life-prolonging operation in this way is called a "life-prolonging operation mode".
 延命運転モードでは、延命運転ユニットである第10系統の室内機1において、電力変換装置21のインバータ制御部27の制御により、モータ11aの駆動周波数を現在の値から低下させる。これにより、モータ11aの回転速度が遅くなり、モータ11aの運転能力が低減されて、電解コンデンサ24aに流れる電流を低減させることができる。その結果、電解コンデンサ24aの残寿命の減少度合いを抑えることができ、電解コンデンサ24aを延命させることができる。ここで、第10系統の室内機1のように、一度、「延命運転ユニット」に設定された室内機1は、電解コンデンサ24aの交換までは、その設定を解除しない。すなわち、空調システム100が夜間などにいったん運転を停止した場合、次に運転を開始するときには、第10系統の室内機1は、通常運転は行わずに、「延命運転ユニット」として延命運転を行う。なお、図8の破線矢印で示す気流は、延命運転ユニットから吹き出される気流であり、通常運転時の気流よりも、弱い気流である。 In the life-prolonging operation mode, in the indoor unit 1 of the 10th system, which is a life-prolonging operation unit, the drive frequency of the motor 11a is lowered from the current value under the control of the inverter control unit 27 of the power conversion device 21 . As a result, the rotation speed of the motor 11a slows down, the drivability of the motor 11a is reduced, and the current flowing through the electrolytic capacitor 24a can be reduced. As a result, the degree of decrease in the remaining life of the electrolytic capacitor 24a can be suppressed, and the life of the electrolytic capacitor 24a can be extended. Here, like the indoor unit 1 of the 10th system, the indoor unit 1 once set to the "life-prolonging operation unit" does not release the setting until the electrolytic capacitor 24a is replaced. That is, when the air conditioning system 100 stops operating at night or the like, when it starts operating next time, the indoor unit 1 of the 10th system does not perform normal operation, but performs life-extending operation as a "life-extending operation unit". . Note that the airflow indicated by the dashed arrow in FIG. 8 is the airflow blown out from the life-prolonging operation unit, and is weaker than the airflow during normal operation.
 延命運転モードでは、第10系統の室内機1が延命運転を行うことで、第10系統の室内機1が空調能力を抑制している。そのため、室内空間13aの快適性に関してユーザ36に悪影響を与える可能性がある。すなわち、例えば、冷房時であればユーザが涼しくないと感じ、暖房時であればユーザが暖かくないと感じる可能性がある。そのため、そのような快適性の低下を防止するために、第10系統の室内機1の周囲に配置された通常運転の室内機1が、運転能力を上げて、第10系統の室内機1の運転能力の低下をカバーする運転を行う。これらの室内機1を「サポート運転ユニット」と呼ぶこととする。図8の例では、第6系統、第9系統、第11系統、第14系統の4つの室内機1がサポート運転ユニットとしてサポート運転を行う。これらの4つの室内機1は、延命ユニットに設定された第10系統の室内機1に隣接して配置されている。サポート運転ユニットである室内機1は、電力変換装置21のインバータ制御部27の制御により、モータ11aの駆動周波数を現在の値から上昇させる。これにより、モータ11aの運転能力を増加させる。なお、図8の白抜き矢印で示す気流は、サポート運転ユニットから吹き出される気流であり、通常運転時の気流よりも、強い気流である。なお、延命運転ユニットおよびサポート運転ユニットのいずれにも該当しない室内機1は、通常運転を行う。 In the life-prolonging operation mode, the indoor unit 1 of the 10th system performs life-prolonging operation, thereby suppressing the air conditioning capacity of the indoor unit 1 of the 10th system. Therefore, the comfort of the indoor space 13a may be adversely affected on the user 36 . That is, for example, the user may feel cold during cooling, and may feel warm during heating. Therefore, in order to prevent such a decrease in comfort, the normally operating indoor units 1 arranged around the indoor unit 1 of the tenth system increase the operating capacity, and the indoor unit 1 of the tenth system Driving to compensate for the decline in driving ability. These indoor units 1 are called "support operation units". In the example of FIG. 8, the four indoor units 1 of the 6th, 9th, 11th, and 14th systems perform support operation as support operation units. These four indoor units 1 are arranged adjacent to the 10th system indoor unit 1 set as a life-prolonging unit. The indoor unit 1, which is a support operation unit, increases the drive frequency of the motor 11a from the current value under the control of the inverter control unit 27 of the power conversion device 21. FIG. This increases the drivability of the motor 11a. Note that the airflow indicated by the white arrow in FIG. 8 is the airflow blown out from the support operation unit, and is stronger than the airflow during normal operation. Note that the indoor unit 1 that does not correspond to either the life-prolonging operation unit or the support operation unit performs normal operation.
 延命運転モードでは、このように、延命運転ユニットに設定された室内機1の周囲に配置された他の室内機1が「サポート運転ユニット」として動作する。その分、「サポート運転ユニット」に設定された室内機1の負荷は増加するが、4つの室内機1で1つの室内機1をサポートする場合、負荷の増加は1.1倍~1.2倍程度である。そのため、「サポート運転ユニット」に設定された室内機1において、当該負荷の増加が、電解コンデンサ24aの残寿命の減少度合いに影響することはない。従って、空調システム100全体において、各室内機1の電解コンデンサ24aに過度の負荷をかけずに、空調システム100の運転を継続することができる。 In the life-prolonging operation mode, the other indoor units 1 arranged around the indoor unit 1 set as the life-prolonging operation unit operate as "support operation units". The load on the indoor unit 1 set as the "support operation unit" increases accordingly, but when four indoor units 1 support one indoor unit 1, the load increases by 1.1 to 1.2 times. about twice as much. Therefore, in the indoor unit 1 set to the "support operation unit", the increase in load does not affect the degree of decrease in the remaining life of the electrolytic capacitor 24a. Therefore, in the air conditioning system 100 as a whole, the operation of the air conditioning system 100 can be continued without applying an excessive load to the electrolytic capacitors 24a of the indoor units 1 .
 ここで、「サポート運転ユニット」に関し、上記の「周囲」の定義について説明する。上記の説明においては、延命運転ユニットに設定された室内機1の「周囲」に配置された他の室内機1が「サポート運転ユニット」として動作すると説明した。上記の説明においては、延命ユニットに設定された第10系統の室内機1に隣接して配置された4つの室内機1が「サポート運転ユニット」に設定されている。しかしながら、室内機1の配置例は、下記のように、種々のケースが想定される。例えば、図8に示すフロアマップ上では、第10系統の室内機1と第11系統の室内機1とは隣接して配置されているが、実際には、それらの室内機1の間に壁が設置されている場合などが考えられる。図23は、図8に示す室内空間13aに対して壁14が設置された場合を模式的に示す平面図である。図23では、室内空間13aにおいて、第1系統、第2系統、第5系統、第6系統、第9系統、および、第10系統の室内機1を囲むように、壁14が設置されている。この場合には、壁14の内側に配置された、第1系統、第2系統、第5系統、第6系統、第9系統の室内機1の少なくとも1つが、第10系統の室内機1に対するサポート運転ユニットに適している。第6系統および第9系統の室内機1は、第10系統の室内機1に隣接している。一方、第1系統、第2系統、第5系統の室内機1は、第10系統の室内機1に隣接していない。しかしながら、第1系統、第2系統、第5系統の室内機1から吹き出された空気は、壁14に沿って流れる、または、壁14に衝突して逆向きに流れる可能性がある。当該可能性を想定すれば、第1系統、第2系統、第5系統の室内機1から吹き出される空気が、第10系統の室内機1の空調対象領域に到達する場合もあり得る。しかしながら、第11系統の室内機1は、第10系統の室内機1に隣接して配置されているものの、第11系統の室内機1と第10系統の室内機1との間には、壁14が設置されている。そのため、第11系統の室内機1は、第10系統の室内機1に対するサポート運転ユニットには適していない。 Here, we will explain the definition of the above "surroundings" with respect to the "support operation unit". In the above explanation, it was explained that the other indoor units 1 arranged "surrounding" the indoor unit 1 set as the life-prolonging operation unit operate as the "support operation unit". In the above description, the four indoor units 1 arranged adjacent to the 10th system indoor unit 1 set as the life-prolonging unit are set as the "support operation unit". However, various cases are assumed as examples of the arrangement of the indoor units 1 as described below. For example, on the floor map shown in FIG. 8, the indoor unit 1 of the 10th system and the indoor unit 1 of the 11th system are arranged adjacent to each other. is installed. FIG. 23 is a plan view schematically showing a case where walls 14 are installed in the indoor space 13a shown in FIG. In FIG. 23, in the indoor space 13a, the walls 14 are installed so as to surround the indoor units 1 of the 1st, 2nd, 5th, 6th, 9th, and 10th systems. . In this case, at least one of the first, second, fifth, sixth, and ninth indoor units 1 arranged inside the wall 14 is connected to the tenth indoor unit 1. Suitable for support operating units. The indoor units 1 of the sixth and ninth systems are adjacent to the indoor unit 1 of the tenth system. On the other hand, the indoor units 1 of the 1st, 2nd and 5th systems are not adjacent to the 10th system of the indoor units 1 . However, the air blown out from the indoor units 1 of the first, second, and fifth systems may flow along the wall 14 or collide with the wall 14 and flow in the opposite direction. Assuming this possibility, the air blown out from the indoor units 1 of the 1st, 2nd, and 5th systems may reach the air conditioning target area of the 10th system of the indoor units 1 . However, although the indoor unit 1 of the 11th system is arranged adjacent to the indoor unit 1 of the 10th system, there is a wall between the indoor unit 1 of the 11th system and the indoor unit 1 of the 10th system. 14 is installed. Therefore, the indoor unit 1 of the 11th system is not suitable as a support operation unit for the indoor unit 1 of the 10th system.
 また、図8の例では、各室内機1が、4つの吹出口60(図22参照)を有した4方向室内機であるが、この場合に限らず、室内機1が、2つの吹出口を有する2方向室内機の場合がある。室内機1が4方向室内機の場合、壁などの障害物が無ければ、延命運転ユニットに隣接した室内機1が、サポート運転ユニットに適合する場合が殆どである。しかしながら、室内機1が2方向室内機の場合、延命運転ユニットに隣接した室内機1が、必ずしも、サポート運転ユニットに適しているとは限らない。すなわち、室内機1が2方向室内機の場合、延命運転ユニットに隣接した室内機1の吹出口60に設置されたベーン62bb(図22参照)の向きを変更しても、延命運転ユニットの方向に風が送れない場合が想定される。このような場合には、当該室内機1をサポート運転ユニットに設定しても意味がない。また、逆に、延命運転ユニットに隣接していない室内機1が、サポート運転ユニットに適している場合も想定される。図8の例で説明すると、例えば、第5系統、第7系統、第13系統、第15系統の4つの室内機1は、第10系統の室内機1に隣接しておらず、斜めの位置に配置されている。もし、仮に、これらの室内機1が2方向室内機の場合、ベーン62bb(図22参照)の配置および向きによっては、延命運転ユニットの方向に風が送れる場合がある。このように、どの室内機1がサポート運転ユニットに適しているかは、ケースバイケースである。 In the example of FIG. 8, each indoor unit 1 is a four-direction indoor unit having four outlets 60 (see FIG. 22). There is the case of a two-way indoor unit having In the case where the indoor unit 1 is a four-direction indoor unit, the indoor unit 1 adjacent to the life-prolonging operation unit is compatible with the support operation unit in most cases if there is no obstacle such as a wall. However, when the indoor unit 1 is a two-way indoor unit, the indoor unit 1 adjacent to the life-prolonging operation unit is not necessarily suitable for the support operation unit. That is, when the indoor unit 1 is a two-direction indoor unit, even if the direction of the vane 62bb (see FIG. 22) installed at the outlet 60 of the indoor unit 1 adjacent to the life-prolonging operation unit is changed, the direction of the life-prolonging operation unit can be changed. It is assumed that the wind cannot be sent to the In such a case, setting the indoor unit 1 as a support operation unit is meaningless. Conversely, it is conceivable that the indoor unit 1 not adjacent to the life-prolonging operation unit is suitable for the support operation unit. In the example of FIG. 8, for example, the four indoor units 1 of the 5th, 7th, 13th, and 15th systems are not adjacent to the 10th system of the indoor unit 1, and are positioned diagonally. are placed in If these indoor units 1 are two-way indoor units, depending on the arrangement and orientation of the vanes 62bb (see FIG. 22), wind may be sent in the direction of the life-prolonging operation unit. Thus, which indoor unit 1 is suitable for the support operation unit depends on the case.
 そのため、上記の「周囲」とは、延命運転ユニットに設定された室内機1の空調対象領域に対して、他の室内機1により空気調和された空気が影響し得る範囲を意味する。すなわち、上記の「延命ユニットに設定された室内機1の周囲に配置された他の室内機1」は、「延命運転ユニットに設定された室内機1の空調対象領域に対して送風可能な範囲または送風可能な位置に配置された他の室内機1」である。このような条件で、サポート運転ユニットに設定された室内機1においては、サポート運転時の室内機1の空調対象領域が、延命運転ユニットに設定された室内機1の空調対象領域とオーバーラップする。 Therefore, the above-mentioned "surroundings" means the range in which the air conditioned by other indoor units 1 can affect the air-conditioned area of the indoor unit 1 set in the life-prolonging operation unit. That is, the above-mentioned "other indoor units 1 arranged around the indoor unit 1 set as the life-extending unit" is "a range in which air can be blown to the air conditioning target area of the indoor unit 1 set as the life-extending operation unit. Or another indoor unit 1” arranged at a position where air can be blown. Under these conditions, in the indoor unit 1 set as the support operation unit, the air conditioning target area of the indoor unit 1 during the support operation overlaps the air conditioning target area of the indoor unit 1 set as the life extension operation unit. .
 また、上記の説明においては、延命ユニットに設定された室内機1の周囲に配置された室内機1の全てが、サポート運転ユニットとしてサポート運転を行う場合を例に挙げて説明した。しかしながら、その場合に限定されない。すなわち、サポート運転ユニットに適している室内機1のうちの少なくとも1つの室内機1が、サポート運転ユニットに設定されればよい。サポート運転ユニットに設定する室内機1の台数については、例えば、後述するランク決定部86が決定するランクに基づいて適宜変更すればよい。 Also, in the above description, the case where all the indoor units 1 arranged around the indoor unit 1 set as the life-prolonging unit perform the support operation as the support operation unit has been described as an example. However, it is not limited to that case. That is, at least one of the indoor units 1 suitable for the support operation unit should be set as the support operation unit. The number of indoor units 1 to be set in the support operation unit may be appropriately changed based on the rank determined by the rank determination unit 86, which will be described later, for example.
 また、各室内機1について、当該室内機1が延命運転ユニットに設定された場合に、いずれの他の室内機1をサポート運転ユニットに設定するかにつき、事前に決定しておいてもよい。その場合には、図24に示すようなデータテーブル53を作成し、システムコントローラ8の記憶部8a(図7参照)またはクラウド33(図7参照)に格納しておく。図24は、実施の形態1に係る空調システム100における、室内機1ごとに、対応するサポート運転ユニットを指定したデータテーブル53の一例を示す説明図である。図24に示すデータテーブル53では、室内機1が延命運転ユニットに設定された場合に、いずれの室内機1をサポート運転ユニットに設定するかが予め設定されている。すなわち、データテーブル53では、室内機1が延命運転ユニットに設定された場合に、当該室内機1ごとに、サポート運転ユニットに設定される室内機1が対応付けて記憶されている。なお、室内空間13aに室内機1を設置する設置工事を行うときに、データテーブル53に対して、ユーザ36または設置工事作業員によって、サポート運転ユニットのデータが入力される。このように、データテーブル53におけるサポート運転ユニットのデータは、ユーザ36等がコントローラ34aまたは携帯端末35に対して操作入力することで、設定および変更が可能である。さらに、データテーブル53に設定されたサポート運転ユニットのデータは、施設管理会社31およびメンテナンス会社32のコンピュータ端末からも設定可能および変更可能にしておいてもよい。 Further, for each indoor unit 1, when the indoor unit 1 is set as a life-prolonging operation unit, it may be determined in advance which other indoor unit 1 is to be set as a support operation unit. In that case, a data table 53 as shown in FIG. 24 is created and stored in the storage unit 8a (see FIG. 7) of the system controller 8 or the cloud 33 (see FIG. 7). FIG. 24 is an explanatory diagram showing an example of the data table 53 specifying the corresponding support operation unit for each indoor unit 1 in the air conditioning system 100 according to the first embodiment. In the data table 53 shown in FIG. 24, which indoor unit 1 is set as the support operation unit when the indoor unit 1 is set as the life-prolonging operation unit is set in advance. That is, in the data table 53, when the indoor unit 1 is set as the life-prolonging operation unit, each indoor unit 1 is stored in association with the indoor unit 1 set as the support operation unit. It should be noted that data of the support operation unit is input to the data table 53 by the user 36 or an installation worker when performing the installation work for installing the indoor unit 1 in the indoor space 13a. In this manner, the data of the support operation unit in the data table 53 can be set and changed by the user 36 or the like by operating the controller 34a or the mobile terminal 35. FIG. Further, the data of the support operation unit set in the data table 53 may be set and changed from the computer terminals of the facility management company 31 and the maintenance company 32 as well.
 図6の説明に戻る。ステップS5では、システムコントローラ8が、延命運転ユニットになった室内機1が発生したことを、施設管理会社31、ユーザ36、あるいは、メンテナンス会社32に通知する。当該通知は、例えば施設管理会社31およびメンテナンス会社32には、通信網30またはクラウド33を通して送信され、それらの会社に設置されたコンピュータ端末の表示画面に表示される。また、ユーザ36に対しては、当該通知が、室内機1からリモートコントローラ34またはコントローラ34aに送信され、リモートコントローラ34またはコントローラ34aの表示画面に表示される。あるいは、当該通知がユーザ36の携帯端末35に送信されてもよい。その場合、当該通知は、室内機1から携帯端末35に直接送信されてもよく、あるいは、通信網30またはクラウド33を経由して送信される。 Return to the description of Fig. 6. In step S5, the system controller 8 notifies the facility management company 31, the user 36, or the maintenance company 32 that the indoor unit 1 has become a life-extending operation unit. The notification is sent to, for example, the facility management company 31 and the maintenance company 32 through the communication network 30 or the cloud 33, and displayed on the display screens of the computer terminals installed in those companies. For the user 36, the notification is transmitted from the indoor unit 1 to the remote controller 34 or the controller 34a and displayed on the display screen of the remote controller 34 or the controller 34a. Alternatively, the notification may be sent to the mobile terminal 35 of the user 36 . In that case, the notification may be directly transmitted from the indoor unit 1 to the mobile terminal 35, or transmitted via the communication network 30 or the cloud 33.
 ここで、例えば、延命運転モードを通知されたユーザ36が、室内空間13aの快適性に問題がないと判断した場合に、ユーザ36は延命運転モードでの運転状態を継続してもよい。また、ユーザ36にとって快適性に問題があれば、ユーザ36は、延命運転中の室内機1の電解コンデンサ24aの交換をメンテナンス会社32に要求することができる。このようにすることで、ユーザ36に対して、すぐに電解コンデンサ24aを交換するか否かの選択肢を与えることができる。 Here, for example, if the user 36 notified of the life-prolonging operation mode determines that there is no problem with the comfort of the indoor space 13a, the user 36 may continue the operating state in the life-prolonging operation mode. Further, if the user 36 has a problem with comfort, the user 36 can request the maintenance company 32 to replace the electrolytic capacitor 24a of the indoor unit 1 during life-prolonging operation. By doing so, it is possible to give the user 36 a choice as to whether or not to immediately replace the electrolytic capacitor 24a.
 このように、実施の形態1では、複数の系統の室内機1のうち、少なくとも1つの室内機1の電解コンデンサ24aの残寿命が第1の閾値以下の場合に、その室内機1を「延命運転ユニット」に設定する。「延命運転ユニット」に設定された室内機1は、モータ11aの運転能力を抑制することで、電解コンデンサ24aの寿命の減少度合いを抑える。また、室内空間13aの快適性を維持するために、「延命運転ユニット」に設定された室内機1の周囲に配置された室内機1を、「サポート運転ユニット」に設定する。「サポート運転ユニット」に設定された室内機1は、モータ11aの運転能力を増加させることで、「延命運転ユニット」に設定された室内機1の運転能力の低下をカバーする運転を行う。これにより、実施の形態1に係る空調システム100においては、空調能力を維持しながら、電解コンデンサ24aの延命を図ることが可能である。 As described above, in the first embodiment, when the remaining life of the electrolytic capacitor 24a of at least one of the indoor units 1 of the plurality of systems is equal to or less than the first threshold value, the indoor unit 1 is "life extended." Operation unit". The indoor unit 1 set to the "life-prolonging operation unit" suppresses the degree of decrease in the life of the electrolytic capacitor 24a by suppressing the operability of the motor 11a. Also, in order to maintain the comfort of the indoor space 13a, the indoor units 1 arranged around the indoor units 1 set to the "life-prolonging operation unit" are set to the "support operation unit". The indoor unit 1 set to the "support operation unit" increases the operation ability of the motor 11a, thereby operating to compensate for the deterioration of the operation ability of the indoor unit 1 set to the "life-prolonging operation unit". Thus, in the air conditioning system 100 according to Embodiment 1, it is possible to extend the life of the electrolytic capacitor 24a while maintaining the air conditioning capacity.
 [延命運転モード]
 次に、延命運転モードについて、詳細に説明する。実施の形態1においては、延命運転モードについて、例えば、下記を想定している。
[Life extension mode]
Next, the life extension operation mode will be described in detail. In Embodiment 1, for example, the following assumptions are made about the life-prolonging operation mode.
 <延命運転モードに入る条件>
 上述した図6のステップS3で、少なくとも1つの室内機1の電解コンデンサ24aの残寿命が第1閾値以下の場合に、延命運転モードに入る。このように、実施の形態1では、延命運転モードに入るか否かは、電解コンデンサ24aの残寿命に基づいて判定される。このとき、第1閾値は、例えば、3年と設定する。
<Conditions for entering life-extending operation mode>
When the remaining life of the electrolytic capacitor 24a of at least one indoor unit 1 is equal to or less than the first threshold value in step S3 of FIG. 6 described above, the life extension operation mode is entered. Thus, in Embodiment 1, whether or not to enter the life extension operation mode is determined based on the remaining life of the electrolytic capacitor 24a. At this time, the first threshold is set to three years, for example.
 <延命運転モード中の動作>
 (A)延命運転ユニット・・・モータ11aの駆動周波数を低下させる等により、運転能力を低下させる。駆動周波数の低下幅は、一定または可変とする。一定の場合、低下幅は、通常運転時の駆動周波数の平均値のおおよそ20~30%程度の値に予め設定しておく。
 (B)サポート運転ユニット・・・モータ11aの駆動周波数を増加させる等により、運転能力を増加させる。駆動周波数の増加幅は、一定または可変とする。一定の場合、増加幅は、通常運転時の平均値のおおよそ5%~7.5%程度の値に予め設定しておく。
<Operation during life extension operation mode>
(A) Life-prolonging operation unit: Reduces the driving ability by, for example, reducing the drive frequency of the motor 11a. The lowering width of the driving frequency is constant or variable. In a constant case, the width of decrease is preset to a value of approximately 20 to 30% of the average value of the drive frequency during normal operation.
(B) Support driving unit: Increases the driving ability by increasing the drive frequency of the motor 11a. The increase width of the driving frequency is constant or variable. In a constant case, the width of increase is preset to a value of about 5% to 7.5% of the average value during normal operation.
 <延命運転モードのランク付け>
 上述したように、延命運転ユニットにおける駆動周波数の低下幅は、一定または可変としてよい。同様に、サポート運転ユニットにおける駆動周波数の増加幅は、一定または可変としてよい。以下では、延命運転ユニットにおける駆動周波数の低下幅およびサポート運転ユニットにおける駆動周波数の増加幅が可変の場合について説明する。この場合、システムコントローラ8は、低下幅および増加幅を決定するために、延命運転およびサポート運転の度合いを示すランクの決定を行う。
<Ranking of life-prolonging operation modes>
As described above, the reduction in drive frequency in the life-sustaining operation unit may be constant or variable. Similarly, the drive frequency increment in the support driving unit may be constant or variable. In the following, a case will be described in which the range of decrease in drive frequency in the life-prolonging operation unit and the range of increase in drive frequency in the support operation unit are variable. In this case, the system controller 8 determines a rank indicating the degree of life-prolonging operation and support operation in order to determine the extent of decrease and the extent of increase.
 ランクの決定に用いる指標は、例えば、下記の(1)~(3)とする。 The indicators used to determine the rank are, for example, (1) to (3) below.
 (1)室内温度と設定温度との差の絶対値
 室内温度と設定温度との差は、電解コンデンサ24aの寿命減の度合いに寄与する電力と関連している。そのため、室内温度と設定温度との差の絶対値を以下の3段階に区分する。
  (a)±1℃以下(すなわち、0℃~±1℃の範囲)
  (b)±3℃以下(すなわち、±1℃~±3℃の範囲)
  (c)±5℃以下(すなわち、±3℃~±5℃の範囲)
(1) Absolute Value of Difference Between Room Temperature and Set Temperature The difference between the room temperature and the set temperature is related to the power that contributes to the extent to which the life of the electrolytic capacitor 24a is shortened. Therefore, the absolute value of the difference between the room temperature and the set temperature is classified into the following three stages.
(a) ±1°C or less (i.e., 0°C to ±1°C range)
(b) ±3° C. or less (i.e., the range of ±1° C. to ±3° C.)
(c) ±5°C or less (i.e., ±3°C to ±5°C range)
 (2)コンデンサ周囲温度
 電解コンデンサ24aの周囲温度は、電解コンデンサ24aの寿命減の度合いに関連する。そのため、電解コンデンサ24aの周囲温度を以下の3段階に区分する。
  (a)30℃以上(すなわち、30℃~50℃の範囲)
  (b)50℃以上(すなわち、50℃~70℃の範囲)
  (c)70℃以上
(2) Ambient Temperature of Capacitor The ambient temperature of the electrolytic capacitor 24a is related to the degree of decrease in life of the electrolytic capacitor 24a. Therefore, the ambient temperature of the electrolytic capacitor 24a is classified into the following three stages.
(a) 30° C. or higher (i.e., in the range of 30° C. to 50° C.)
(b) 50°C or higher (i.e., in the range of 50°C to 70°C)
(c) 70°C or higher
 (3)延命運転ユニットの空調対象領域の範囲
 室内機1が空調を行う空調対象領域の範囲は、電解コンデンサ24aの寿命減の度合いに関連する。そのため、室内機1が空調を行う空調対象領域の容積を以下の3段階に区分する。
  (a)10m
  (b)20m
  (c)30m
 なお、ここでは、室内機1が空調を行う空調対象領域の範囲を、空調対象領域の容積とした例を挙げて説明を行うが、その場合に限定されない。すなわち、室内機1が空調を行う空調対象領域の範囲を、空調対象領域の床面積としてもよい。
(3) Range of air-conditioned area of life-prolonging operation unit The range of the air-conditioned area in which the indoor unit 1 performs air conditioning is related to the degree of reduction in the life of the electrolytic capacitor 24a. For this reason, the volume of the air-conditioned area that is air-conditioned by the indoor unit 1 is classified into the following three levels.
(a) 10m3
(b) 20m3
(c) 30m3
Here, an example will be described in which the volume of the air-conditioned region is set as the range of the air-conditioned region in which the indoor unit 1 performs air conditioning, but the present invention is not limited to this case. That is, the range of the air-conditioned area where the indoor unit 1 performs air conditioning may be the floor area of the air-conditioned area.
 各指標(1)~(3)において、(a)から(c)に行くほど、延命運転ユニットの運転能力の低下度合い、および、サポート運転ユニットの運転能力の増加度合いを大きくすべきである。そこで、指標(1)~(3)の組み合わせで、ランク付けを決定する。 In each index (1) to (3), the degree of decline in driving ability of the life-prolonging operation unit and the degree of increase in driving ability of the support operation unit should increase from (a) to (c). Therefore, ranking is determined by a combination of indicators (1) to (3).
 例えば、(1)~(3)の指標ごとに、(a)を1ポイント、(b)を2ポイント、(c)を3ポイントとする。このとき、3つの指標のポイント数の合計は、3~9ポイントのいずれかになる。そこで、以下のように、当該ポイント数の合計に基づいて、下記のように、ランク付けを行う。
 3~4ポイント:ランク1
 5~6ポイント:ランク2
 7~8ポイント:ランク3
 9ポイント  :ランク4
For example, for each index (1) to (3), (a) is 1 point, (b) is 2 points, and (c) is 3 points. At this time, the total number of points for the three indicators will be anywhere from 3 to 9 points. Therefore, ranking is performed as follows based on the total number of points.
3-4 points: Rank 1
5-6 points: Rank 2
7-8 points: Rank 3
9 points: rank 4
 また、第1閾値についても「3年」の1つだけにせず、「3年」、「2年」、「1年」というように、第1閾値を段階的に複数個用意し、それらの第1閾値を、延命運転モードの動作のランク付けにさらに反映させてもよい。 Also, for the first threshold, instead of setting only one value of "three years", a plurality of first thresholds are prepared step by step, such as "three years", "two years", and "one year". The first threshold may be further reflected in the ranking of operations in the life-prolonging mode of operation.
 その場合、第1閾値が「3年」の場合のランク付けは、上記のランク1~4とする。また、第1閾値が「2年」の場合のランク付けは、次の通りとする。上記と同様に、(1)~(3)の指標ごとに、(a)を1ポイント、(b)を2ポイント、(c)を3ポイントとし、当該ポイント数の合計に基づいて、下記のように、ランク付けを行う。
 3~4ポイント:ランク5
 5~6ポイント:ランク6
 7~8ポイント:ランク7
 9ポイント  :ランク8
In that case, the ranking when the first threshold is "three years" is the ranks 1 to 4 above. Also, the ranking when the first threshold is "two years" is as follows. As above, for each of the indicators (1) to (3), (a) is assigned 1 point, (b) is assigned 2 points, and (c) is assigned 3 points. As such, rank them.
3-4 points: Rank 5
5-6 points: Rank 6
7-8 points: rank 7
9 points: rank 8
 同様に、第1閾値が「1年」の場合のランク付けは、次の通りとする。
 3~4ポイント:ランク9
 5~6ポイント:ランク10
 7~8ポイント:ランク11
 9ポイント  :ランク12
Similarly, the ranking when the first threshold is "one year" is as follows.
3-4 points: Rank 9
5-6 points: Rank 10
7-8 points: Rank 11
9 points: Rank 12
 そして、ランク1~12ごとに、延命運転ユニットにおける駆動周波数の低下幅およびサポート運転ユニットにおける駆動周波数の増加幅の値を設定した第1データテーブルを用意する。そして、第1データテーブルをシステムコントローラ8の記憶部8aに予め格納しておく。システムコントローラ8は、上記のようにして、ランクを決定する。その後に、第1データテーブルから、決定したランクに対応する延命運転ユニットにおける駆動周波数の低下幅およびサポート運転ユニットにおける駆動周波数の増加幅の値を読み出す。第1データテーブルでは、ランク1の場合が低下幅および増加幅が最も小さく、ランク12の場合が低下幅および増加幅が最も大きくなるように、各ランク1~12における低下幅および増加幅が設定されている。 Then, for each rank 1 to 12, a first data table is prepared in which values are set for the range of decrease in drive frequency in the life-prolonging operation unit and the range of increase in drive frequency in the support operation unit. Then, the first data table is stored in the storage unit 8a of the system controller 8 in advance. The system controller 8 determines the rank as described above. After that, from the first data table, the value of the decrease width of the drive frequency in the life-sustaining operation unit and the increase width of the drive frequency in the support operation unit corresponding to the determined rank are read. In the first data table, the decrease width and increase width for each rank 1 to 12 are set so that the decrease width and increase width are the smallest for rank 1, and the decrease width and increase width are the largest for rank 12. It is
 [システムコントローラ8の構成]
 図9は、実施の形態1に係る空調システム100に設けられたシステムコントローラ8の内部の構成を示すブロック図である。図9では、システムコントローラ8が、上記のランク付けを行う場合の構成を示している。図10は、図9に示す空調システム100の処理の流れを示すフローチャートである。
[Configuration of system controller 8]
FIG. 9 is a block diagram showing the internal configuration of the system controller 8 provided in the air conditioning system 100 according to Embodiment 1. As shown in FIG. FIG. 9 shows a configuration in which the system controller 8 performs the ranking described above. FIG. 10 is a flow chart showing the processing flow of the air conditioning system 100 shown in FIG.
 図9に示すように、システムコントローラ8は、コンデンサ残寿命推定部81と、延命運転モード判定部82と、延命運転制御部87と、通知部88と、を有している。仮に、システムコントローラ8が上記のランク付けを行わない場合には、システムコントローラ8は、これらの各部のみを有していればよい。その場合、上記の図6のフローチャートの処理が実行可能である。なお、通知部88は、システムコントローラ8の構成要素ではなく、システムコントローラ8とは別個の装置として設けられていてもよい。 As shown in FIG. 9, the system controller 8 has a capacitor remaining life estimation unit 81, a life extension operation mode determination unit 82, a life extension operation control unit 87, and a notification unit 88. If the system controller 8 does not perform the above ranking, the system controller 8 may have only these units. In that case, the processing of the flowchart in FIG. 6 can be executed. Note that the notification unit 88 may be provided as a device separate from the system controller 8 instead of being a component of the system controller 8 .
 また、システムコントローラ8が上記のランク付けを行う場合には、図9に示すように、システムコントローラ8は、ランク決定部86と、室内温度検出部83と、コンデンサ周囲温度検出部84と、対象範囲検出部85と、をさらに有している。その場合、後述する図10のフローチャートの処理が実行可能である。なお、室内温度検出部83、コンデンサ周囲温度検出部84、および、対象範囲検出部85は、システムコントローラ8の構成要素ではなく、システムコントローラ8とは別個の装置として設けられていてもよい。 Further, when the system controller 8 performs the above ranking, as shown in FIG. It further has a range detection unit 85 . In that case, the processing of the flowchart of FIG. 10, which will be described later, can be executed. Note that the room temperature detector 83 , the capacitor ambient temperature detector 84 , and the target range detector 85 may be provided as separate devices from the system controller 8 instead of being components of the system controller 8 .
 次に、図9に示すシステムコントローラ8の各部について説明する。 Next, each part of the system controller 8 shown in FIG. 9 will be described.
 コンデンサ残寿命推定部81は、電解コンデンサ24aのリプル電圧ΔV(図13参照)に基づいて、電解コンデンサ24aの残寿命を算出する。なお、コンデンサ残寿命推定部81は、電解コンデンサ24aの残寿命を算出する際に、交流電源20(図5参照)の電源不平衡の有無を考慮に入れてもよい。その場合、電解コンデンサ24aの残寿命の精度がより向上する。なお、コンデンサ残寿命推定部81における電解コンデンサ24aの残寿命の算出方法については後述する。 The capacitor remaining life estimator 81 calculates the remaining life of the electrolytic capacitor 24a based on the ripple voltage ΔV (see FIG. 13) of the electrolytic capacitor 24a. Incidentally, when calculating the remaining life of the electrolytic capacitor 24a, the capacitor remaining life estimator 81 may take into consideration the presence or absence of power supply imbalance of the AC power supply 20 (see FIG. 5). In that case, the accuracy of the remaining life of the electrolytic capacitor 24a is further improved. A method of calculating the remaining life of the electrolytic capacitor 24a in the capacitor remaining life estimating unit 81 will be described later.
 延命運転モード判定部82は、コンデンサ残寿命推定部81が算出した電解コンデンサ24aの残寿命に基づいて、延命運転モードに移行するか否かを判定する。また、延命運転モード判定部82は、電解コンデンサ24aの残寿命に基づいて、「延命運転ユニット」に設定する室内機1を選択する。具体的には、延命運転モード判定部82は、各系統の室内機1に設けられた電解コンデンサ24aの残寿命と第1閾値とを比較し、残寿命が第1閾値以下か否かを判定する。延命運転モード判定部82は、少なくとも1つの系統の電解コンデンサ24aの残寿命が第1閾値以下の場合、その室内機1を「延命運転ユニット」に設定する。また、延命運転モード判定部82は、「延命運転ユニット」に設定された室内機1の周囲に配置された室内機1を、「サポート運転ユニット」に設定する。以下では、例として、第10系統の室内機1に搭載されている電解コンデンサ24aの残寿命が第1閾値以下である場合を想定して説明する。さらに、延命運転モード判定部82は、運転モードが延命運転モードに変更されたことを通知する通知信号を通知部88に対して出力する。 The life-extending operation mode determination unit 82 determines whether or not to transition to the life-extending operation mode based on the remaining life of the electrolytic capacitor 24a calculated by the capacitor remaining life estimation unit 81. Further, the life-prolonging operation mode determination unit 82 selects the indoor unit 1 to be set as the "life-prolonging operation unit" based on the remaining life of the electrolytic capacitor 24a. Specifically, the life extension operation mode determination unit 82 compares the remaining life of the electrolytic capacitor 24a provided in the indoor unit 1 of each system with the first threshold, and determines whether the remaining life is equal to or less than the first threshold. do. When the remaining life of the electrolytic capacitor 24a of at least one system is equal to or less than the first threshold value, the life-prolonging operation mode determining unit 82 sets the indoor unit 1 to the "life-prolonging operation unit". In addition, the life-prolonging operation mode determination unit 82 sets the indoor units 1 arranged around the indoor unit 1 set to the "life-prolonging operation unit" to the "support operation unit". In the following description, as an example, it is assumed that the remaining life of the electrolytic capacitor 24a mounted in the indoor unit 1 of the tenth system is equal to or less than the first threshold. Furthermore, the life-prolonging operation mode determination unit 82 outputs a notification signal to the notification unit 88 to notify that the operation mode has been changed to the life-prolonging operation mode.
 室内温度検出部83は、室内機1または室内空間13aの壁面などに設置された室温センサから構成されている。室内温度検出部83は、室内空間13aの室内温度を検出して、ランク決定部86に送信する。ランク決定部86は、受信した室内温度と設定温度との差の絶対値を算出して、上記の指標(1)として用いる。 The indoor temperature detection unit 83 is composed of a room temperature sensor installed on the wall surface of the indoor unit 1 or the indoor space 13a. The indoor temperature detection unit 83 detects the indoor temperature of the indoor space 13 a and transmits it to the rank determination unit 86 . The rank determination unit 86 calculates the absolute value of the difference between the received indoor temperature and the set temperature, and uses it as the above index (1).
 コンデンサ周囲温度検出部84は、電解コンデンサ24aの周囲の温度を検出する。コンデンサ周囲温度検出部84は、各系統の電力変換装置21の電解コンデンサ24aの近傍に設置されたサーミスタなどの温度センサから構成されている。その場合、コンデンサ周囲温度検出部84は、系統ごとに、電解コンデンサ24aの周囲温度を検出する。コンデンサ周囲温度検出部84は、「延命運転ユニット」に設定された室内機1の電解コンデンサ24aの周囲温度を、ランク決定部86に送信する。ランク決定部86は、受信した電解コンデンサ24aの周囲温度を、上記の指標(2)として用いる。 The capacitor ambient temperature detection unit 84 detects the ambient temperature of the electrolytic capacitor 24a. The capacitor ambient temperature detection unit 84 is composed of a temperature sensor such as a thermistor installed in the vicinity of the electrolytic capacitor 24a of the power conversion device 21 of each system. In that case, the capacitor ambient temperature detection unit 84 detects the ambient temperature of the electrolytic capacitor 24a for each system. The capacitor ambient temperature detection unit 84 transmits the ambient temperature of the electrolytic capacitor 24 a of the indoor unit 1 set to the “life extension unit” to the rank determination unit 86 . The rank determination unit 86 uses the received ambient temperature of the electrolytic capacitor 24a as the above index (2).
 あるいは、コンデンサ周囲温度検出部84は、外気温度と、電力変換装置21の運転状態とに基づいて、電解コンデンサ24aの周囲温度を推定してもよい。その場合には、コンデンサ周囲温度検出部84は、外気温度を検出する外気温度センサ45(図1参照)を有している。外気温度センサ45は、例えば、室外機2に設置されている。また、外気温度および電力変換装置21の運転状態ごとに、電解コンデンサ24aの周囲温度をシミュレーションなどで取得して、それを記憶したデータテーブルをシステムコントローラ8の記憶部8aに予め記憶しておく。コンデンサ周囲温度検出部84は、外気温度センサ45が検出した外気温度に基づいて、当該データテーブルから電解コンデンサ24aの周囲温度を取得する。 Alternatively, the capacitor ambient temperature detection unit 84 may estimate the ambient temperature of the electrolytic capacitor 24 a based on the outside air temperature and the operating state of the power converter 21 . In that case, the capacitor ambient temperature detector 84 has an outside air temperature sensor 45 (see FIG. 1) for detecting the outside air temperature. The outside air temperature sensor 45 is installed in the outdoor unit 2, for example. In addition, the ambient temperature of the electrolytic capacitor 24a is acquired by simulation or the like for each outside air temperature and the operation state of the power conversion device 21, and a data table storing it is stored in the storage unit 8a of the system controller 8 in advance. The capacitor ambient temperature detector 84 acquires the ambient temperature of the electrolytic capacitor 24a from the data table based on the ambient temperature detected by the ambient temperature sensor 45 .
 対象範囲検出部85は、延命運転モード判定部82によって、「延命運転ユニット」に設定された室内機1が空調を行う空調対象領域の容積を決定する。空調対象領域の容積は、各系統の室内機1ごとに、第2データテーブルに予め設定されている。そのため、対象範囲検出部85は、「延命運転ユニット」に設定された室内機1の空調対象領域の容積を第2データテーブルから抽出して、ランク決定部86に送信する。なお、第2データテーブルは、システムコントローラ8の記憶部8aに予め格納されている。ランク決定部86は、受信した空調対象領域の容積を、上記の指標(3)として用いる。 The target range detection unit 85 determines the volume of the air-conditioning target region to be air-conditioned by the indoor unit 1 set as the "life-extending operation unit" by the life-extending operation mode determination unit 82 . The volume of the air-conditioned area is preset in the second data table for each indoor unit 1 of each system. Therefore, the target range detection unit 85 extracts from the second data table the volume of the air-conditioning target region of the indoor unit 1 set to the “life-prolonging operation unit” and transmits it to the rank determination unit 86 . The second data table is pre-stored in the storage unit 8a of the system controller 8. FIG. The rank determining unit 86 uses the received volume of the air-conditioned area as the above index (3).
 ランク決定部86は、上記の指標(1)~(3)の組み合わせで、延命運転およびサポート運転の度合いを示すランクを決定する。すなわち、ランク決定部86は、上記のランク1~4の中から(あるいは、ランク1~12の中から)、該当するランクを決定する。ランク決定部86がランク付けを行った場合、延命運転制御部87は、ランク決定部86によって決定されたランクに基づいて、駆動周波数の低下幅および増加幅を決定する。すなわち、延命運転制御部87は、当該ランクに基づいて、延命運転ユニットに設定された室内機1における駆動周波数の低下幅、および、サポート運転ユニットにおける駆動周波数の増加幅を決定する。ランク決定部86のランク付けの方法については、上述した通りであるため、ここではその説明を省略する。 The rank determination unit 86 determines a rank indicating the degree of life-prolonging operation and support operation by combining the above indicators (1) to (3). That is, the rank determining unit 86 determines the corresponding rank from among the ranks 1 to 4 (or from among the ranks 1 to 12). When the rank determination unit 86 ranks, the life-prolonging operation control unit 87 determines the decrease width and the increase width of the driving frequency based on the rank determined by the rank determination unit 86 . That is, the life-prolonging operation control unit 87 determines the degree of decrease in the drive frequency of the indoor unit 1 set as the life-prolonging operation unit and the degree of increase in the drive frequency of the support operation unit based on the rank. Since the method of ranking by the rank determination unit 86 is as described above, the description thereof is omitted here.
 延命運転制御部87は、ランク決定部86がランク付けを行わない場合、延命運転モード判定部82が延命運転ユニットに設定した室内機1のモータ11aの駆動周波数を現在の値から一定値だけ低下させて、当該室内機1の運転を行うように制御する。また、延命運転制御部87は、延命運転モード判定部82がサポート運転ユニットに設定した室内機1のモータ11aの駆動周波数を現在の値から一定値だけ増加させて、当該室内機1の運転を行うように制御する。これにより、空調システム100が延命運転モードでの運転を行うことができる。このとき、延命運転ユニットに設定された室内機1は、運転能力を抑制した運転を行うため、電解コンデンサ24aの延命を図ることができる。また、サポート運転ユニットに設定された室内機1が、運転能力を増加させた運転を行うため、延命運転ユニットの運転能力の低下を補うことができる。その結果、空調システム100全体で見た場合、十分な空調能力が維持できるので、室内空間13aの快適性を維持することができる。 When the rank determining unit 86 does not perform ranking, the life-prolonging operation control unit 87 reduces the drive frequency of the motor 11a of the indoor unit 1 set as the life-prolonging operation unit by the life-prolonging operation mode determination unit 82 from the current value by a fixed value. Then, the indoor unit 1 is controlled to operate. In addition, the life-prolonging operation control unit 87 increases the drive frequency of the motor 11a of the indoor unit 1 set in the support operation unit by the life-prolonging operation mode determination unit 82 by a constant value from the current value, and starts the operation of the indoor unit 1. control what to do. Thereby, the air conditioning system 100 can operate in the life extension operation mode. At this time, the indoor unit 1 set as the life-prolonging operation unit operates with suppressed operating ability, so that the life of the electrolytic capacitor 24a can be extended. In addition, since the indoor unit 1 set as the support operation unit operates with increased operation capability, it is possible to compensate for the decrease in operation capability of the life-prolonging operation unit. As a result, when looking at the air conditioning system 100 as a whole, a sufficient air conditioning capacity can be maintained, so that the comfort of the indoor space 13a can be maintained.
 また、ランク決定部86がランク付けを行った場合には、延命運転制御部87は、以下の処理を行う。すなわち、延命運転制御部87は、ランク決定部86によって決定されたランクに基づいて、上述した第1データテーブルから、延命運転ユニットにおける駆動周波数の低下幅およびサポート運転ユニットにおける駆動周波数の増加幅の値を抽出する。延命運転制御部87は、抽出した低下幅だけ延命運転ユニットにおける駆動周波数を低下させ、抽出した増加幅だけサポート運転ユニットにおける駆動周波数を増加させる。これにより、空調システム100が延命運転モードでの運転を行うことができる。 Also, when the rank determining unit 86 performs ranking, the life-prolonging operation control unit 87 performs the following processing. That is, based on the rank determined by the rank determination unit 86, the life-prolonging operation control unit 87 determines the extent of decrease in the drive frequency in the life-prolonging operation unit and the extent of increase in the drive frequency in the support operation unit from the above-described first data table. Extract values. The life-prolonging operation control section 87 lowers the drive frequency in the life-prolonging operation unit by the extracted reduction width, and increases the drive frequency in the support operation unit by the extracted increase width. Thereby, the air conditioning system 100 can operate in the life extension operation mode.
 通知部88は、延命運転モード判定部82からの通知信号を受信した場合、延命運転モードになった室内機1が発生したことを知らせる通知を出力する。具体的には、通知部88は、当該通知を、施設管理会社31またはメンテナンス会社32に設置されたコンピュータ端末、あるいは、ユーザ36の携帯端末35に対して出力する。また、通知部88は、リモートコントローラ34にも当該通知を送信するようにしてもよい。以下では、施設管理会社31のコンピュータ端末、メンテナンス会社32に設置されたコンピュータ端末、ユーザ36の携帯端末35、および、リモートコントローラ34に設けられた表示画面を、まとめて、「表示部」と呼ぶこととする。通知部88から送信された通知は、表示部に表示される。なお、通知部88による通知方法については、上記の図6のステップS5で説明した通りであるため、ここでは、その説明を省略する。 When the notification unit 88 receives the notification signal from the life-prolonged operation mode determination unit 82, it outputs a notification that the indoor unit 1 has entered the life-prolonged operation mode. Specifically, the notification unit 88 outputs the notification to the computer terminal installed at the facility management company 31 or the maintenance company 32 or the mobile terminal 35 of the user 36 . The notification unit 88 may also transmit the notification to the remote controller 34 as well. Hereinafter, the computer terminal of the facility management company 31, the computer terminal installed in the maintenance company 32, the portable terminal 35 of the user 36, and the display screen provided in the remote controller 34 are collectively referred to as a "display unit". It is assumed that The notification transmitted from the notification unit 88 is displayed on the display unit. Note that the notification method by the notification unit 88 is the same as described in step S5 of FIG. 6 above, so description thereof will be omitted here.
 次に、図10を用いて、システムコントローラ8の動作について説明する。図6と図10との違いは、図10では、ステップS10が追加され、ステップS4の代わりに、ステップS4Aを行う点である。 Next, the operation of the system controller 8 will be described using FIG. The difference between FIG. 6 and FIG. 10 is that step S10 is added in FIG. 10, and step S4A is performed instead of step S4.
 ステップS1では、各室内機1が、システムコントローラ8の通常制御により、通常動作を行っている。すなわち、空調システム100の運転モードは、「通常運転モード」である。 In step S1, each indoor unit 1 performs normal operation under normal control by the system controller 8. That is, the operating mode of the air conditioning system 100 is the "normal operating mode".
 ステップS2では、コンデンサ残寿命推定部81が、各系統の室内機1に設けられた電力変換装置21の電解コンデンサ24aの残寿命を算出する。電解コンデンサ24aの残寿命は、予め設定された周期で、定期的に算出される。 In step S2, the capacitor remaining life estimator 81 calculates the remaining life of the electrolytic capacitor 24a of the power conversion device 21 provided in the indoor unit 1 of each system. The remaining life of the electrolytic capacitor 24a is periodically calculated at a preset cycle.
 ステップS3では、延命運転モード判定部82が、各系統の室内機1に搭載されている電解コンデンサ24aについて、ステップS2で算出した残寿命が、予め設定された第1閾値以下か否かを判定する。少なくとも1つの電解コンデンサ24aの残寿命が第1閾値以下の場合、ステップS10に進む。一方、ステップS3の判定で、すべての系統の電解コンデンサ24aの残寿命が第1閾値より大きい場合には、そのまま、図10の処理を終了する。 In step S3, the life extension operation mode determination unit 82 determines whether or not the remaining life calculated in step S2 of the electrolytic capacitor 24a mounted in the indoor unit 1 of each system is equal to or less than a preset first threshold. do. When the remaining life of at least one electrolytic capacitor 24a is equal to or less than the first threshold, the process proceeds to step S10. On the other hand, if the remaining life of the electrolytic capacitors 24a of all systems is greater than the first threshold value in the determination of step S3, the process of FIG. 10 is terminated.
 ステップS10では、ランク決定部86が、室内温度検出部83から、室内空間13aの室内温度を受信して、受信した室内温度と設定温度との差の絶対値を算出して、指標(1)とする。また、ランク決定部86は、コンデンサ周囲温度検出部84から、「延命運転ユニット」に設定された室内機1の電解コンデンサ24aの周囲温度を受信して、指標(2)とする。また、ランク決定部86は、対象範囲検出部85から、「延命運転ユニット」に設定された室内機1の空調対象領域の容積を受信して、指標(3)とする。そして、ランク決定部86は、ステップS2で算出された残寿命と、指標(1)~(3)とに基づいて、延命運転モードのランクを決定する。その後、ステップS4Aに進む。 In step S10, the rank determining unit 86 receives the indoor temperature of the indoor space 13a from the indoor temperature detecting unit 83, calculates the absolute value of the difference between the received indoor temperature and the set temperature, and calculates the index (1). and In addition, the rank determining unit 86 receives the ambient temperature of the electrolytic capacitor 24a of the indoor unit 1 set to the "life-prolonging operation unit" from the capacitor ambient temperature detecting unit 84, and uses it as an index (2). In addition, the rank determination unit 86 receives the volume of the air-conditioning target area of the indoor unit 1 set as the “life-prolonging operation unit” from the target range detection unit 85 and uses it as an index (3). Then, the rank determination unit 86 determines the rank of the life-prolonging operation mode based on the remaining life calculated in step S2 and the indicators (1) to (3). After that, the process proceeds to step S4A.
 ステップS4Aでは、延命運転制御部87は、ランク決定部86によって決定されたランクに基づいて、上述した第1データテーブルから、延命運転ユニットにおける駆動周波数の低下幅およびサポート運転ユニットにおける駆動周波数の増加幅の値を抽出する。延命運転制御部87は、抽出した低下幅だけ延命運転ユニットにおける駆動周波数を低下させ、同様に、抽出した増加幅だけサポート運転ユニットにおける駆動周波数を増加させる。その後、延命運転制御部87は、空調システム100の運転モードを、「通常運転モード」から「延命運転モード」に変更する。 In step S4A, the life-sustaining operation control unit 87 determines, based on the rank determined by the rank determining unit 86, from the first data table described above, the amount of decrease in the driving frequency in the life-sustaining operation unit and the increase in the driving frequency in the support operation unit. Extract the width value. The life-prolonging operation control section 87 lowers the drive frequency in the life-prolonging operation unit by the extracted decrease width, and similarly increases the drive frequency in the support operation unit by the extracted increase width. After that, the life-prolonging operation control unit 87 changes the operation mode of the air conditioning system 100 from the "normal operation mode" to the "life-prolonging operation mode".
 ステップS5では、通知部88が、空調システム100の運転モードが「通常運転モード」から「延命運転モード」に変更されたことを知らせる通知を生成して出力する。当該通知は、施設管理会社31、ユーザ36、および、メンテナンス会社32のうち、少なくとも1つに送信される。 In step S5, the notification unit 88 generates and outputs a notification notifying that the operation mode of the air conditioning system 100 has been changed from the "normal operation mode" to the "life extension operation mode". The notification is sent to at least one of facility management company 31 , user 36 and maintenance company 32 .
 [コンデンサ残寿命推定部81の構成]
 図11は、実施の形態1に係る空調システム100に設けられたシステムコントローラ8のコンデンサ残寿命推定部81の構成を示すブロック図である。
[Configuration of Capacitor Remaining Life Estimating Unit 81]
FIG. 11 is a block diagram showing the configuration of the capacitor remaining life estimator 81 of the system controller 8 provided in the air conditioning system 100 according to Embodiment 1. As shown in FIG.
 図11に示すように、コンデンサ残寿命推定部81は、図9に示した延命運転モード判定部82と、コンデンサ周囲温度検出部84とに、接続されている。 As shown in FIG. 11, the capacitor remaining life estimation unit 81 is connected to the life extension operation mode determination unit 82 and the capacitor ambient temperature detection unit 84 shown in FIG.
 コンデンサ残寿命推定部81は、図11に示すように、パラメータ取得部810と、補正係数算出部811と、電源周波数検出部812と、リプル電圧検出部813と、を有している。さらに、コンデンサ残寿命推定部81は、電源不平衡判定部814と、リプル電流算出部815と、運転時間算出部816と、寿命推定部817と、を有している。 The capacitor remaining life estimation unit 81 has a parameter acquisition unit 810, a correction coefficient calculation unit 811, a power frequency detection unit 812, and a ripple voltage detection unit 813, as shown in FIG. Furthermore, the capacitor remaining life estimation unit 81 has a power imbalance determination unit 814 , a ripple current calculation unit 815 , an operating time calculation unit 816 and a life estimation unit 817 .
 以下に、図11に示すコンデンサ残寿命推定部81のこれらの各部について説明する。 Each part of the capacitor remaining life estimating part 81 shown in FIG. 11 will be described below.
 [パラメータ取得部810]
 パラメータ取得部810は、リプル電流を精度よく算出するために必要な情報(データ)を取得する。パラメータ取得部810は、電源不平衡率検出部810aと、入力電力検出部810bと、電源インピーダンス検出部810cと、電源電圧検出部810dと、を有している。パラメータ取得部810は、これらの各部のうちの少なくとも1つを用いて、1以上のパラメータを取得する。パラメータ取得部810が取得するパラメータは、例えば、以下の4つである。
 ・電源不平衡率検出部810aで検出される電源不平衡率(以下、パラメータAと呼ぶ)。
 ・入力電力検出部810bで検出される入力電力(以下、パラメータBと呼ぶ)。
 ・電源インピーダンス検出部810cで検出される電源インピーダンス(以下、パラメータCと呼ぶ)。
 ・電源電圧検出部810dで検出される電源電圧(以下、パラメータDと呼ぶ)。
[Parameter Acquisition Unit 810]
The parameter acquisition unit 810 acquires information (data) necessary for accurately calculating the ripple current. The parameter acquisition unit 810 has a power supply unbalance rate detection unit 810a, an input power detection unit 810b, a power supply impedance detection unit 810c, and a power supply voltage detection unit 810d. Parameter acquisition section 810 acquires one or more parameters using at least one of these sections. The parameters acquired by the parameter acquisition unit 810 are, for example, the following four.
A power source unbalance rate detected by the power source unbalance rate detector 810a (hereinafter referred to as parameter A).
• Input power detected by the input power detector 810b (hereinafter referred to as parameter B).
A power source impedance (hereinafter referred to as parameter C) detected by the power source impedance detector 810c.
A power supply voltage (hereinafter referred to as parameter D) detected by the power supply voltage detection unit 810d.
 後述する(10)式または(11)式を用いて、リプル電流算出部815は、リプル電圧検出部813で検出されたリプル電圧ΔVと、電源周波数検出部812で検出された電源周波数fと、に基づいて、リプル電流を算出する。しかしながら、リプル電流に影響を与える要素は、リプル電圧ΔVおよび電源周波数fの他にもある。当該要素としては、電源不平衡率、入力電力、電源インピーダンス、および、電源電圧が挙げられる。そのため、実施の形態1では、上記のパラメータA~Dを考慮して、リプル電流の補正を行うことによって、リプル電流値の精度を向上させる。 Using equation (10) or equation (11), which will be described later, ripple current calculation unit 815 calculates ripple voltage ΔV detected by ripple voltage detection unit 813, power supply frequency f detected by power supply frequency detection unit 812, Calculate the ripple current based on However, there are factors other than the ripple voltage ΔV and the power supply frequency f that affect the ripple current. Such factors include power supply unbalance factor, input power, power supply impedance, and power supply voltage. Therefore, in Embodiment 1, the accuracy of the ripple current value is improved by correcting the ripple current in consideration of the parameters A to D described above.
 実施の形態1で、パラメータA~Dを用いる理由は、リプル電流に影響を与える上記要素(すなわち、パラメータA~D)の値が変化することによって、直流電圧Vdcの電圧波形29(図5参照)が歪むことがあるためである。その結果、当該歪みを考慮せずに、リプル電流値を算出した場合、リプル電流値の計算精度が悪化する方向になる場合がある。そのため、以下では、リプル電流値の補正で用いるための要素(すなわち、パラメータA~D)について説明する。なお、パラメータA~Dのすべてを必ずしも用いる必要はないが、使用する補正パラメータの種類が多ければ多いほど、リプル電流値の算出精度を高めることができる。そのため、パラメータA~Dのうち、どの補正パラメータを用いるかについては、適宜、設定すればよい。なお、パラメータA~Dのいずれも、リプル電流値に影響を与えるが、重要度については、A、B、C、Dの順であると考えられ、パラメータAが最も重要度が高いと考えられる。このように、パラメータA~Dは、リプル電流値を補正する補正パラメータである。 The reason why the parameters A to D are used in the first embodiment is that the voltage waveform 29 of the DC voltage Vdc (see FIG. 5 ) may be distorted. As a result, when the ripple current value is calculated without considering the distortion, the calculation accuracy of the ripple current value may deteriorate. Therefore, the elements (that is, parameters A to D) used in correcting the ripple current value will be described below. Although it is not always necessary to use all of the parameters A to D, the more types of correction parameters that are used, the more accurate the ripple current value can be calculated. Therefore, which of the parameters A to D should be used may be set as appropriate. All of the parameters A to D affect the ripple current value, but the importance is considered to be in the order of A, B, C, and D, and parameter A is considered to be the most important. . Thus, the parameters A to D are correction parameters for correcting the ripple current value.
 <電源不平衡率検出部810a>
 電源不平衡率検出部810aは、交流電源20の電源電圧に基づいて、交流電源20の不平衡率(パラメータA)を算出する。ここでは、交流電源20が三相交流電源の場合を例に挙げて説明する。電源不平衡率検出部810aは、例えば、交流電源20の各線間電圧(Vuv,Vvw,Vwu)を検出する第2電圧センサ42を有している。電源不平衡率検出部810aは、第2電圧センサ42により、交流電源20の各線間電圧(Vuv,Vvw,Vwu)を取得する。電源不平衡率検出部810aは、3つの線間電圧(Vuv,Vvw,Vwu)の中から、最大値Umaxと最小値Uminとを求める。また、電源不平衡率検出部810aは、3つの線間電圧(Vuv,Vvw,Vwu)の平均値Uaveを求める。そして、電源不平衡率検出部810aは、下記の(1)式を用いて、交流電源20の不平衡率を算出する。
<Power supply imbalance rate detector 810a>
The power unbalance rate detector 810 a calculates the unbalance rate (parameter A) of the AC power supply 20 based on the power supply voltage of the AC power supply 20 . Here, the case where the AC power supply 20 is a three-phase AC power supply will be described as an example. The power supply unbalance rate detection unit 810a has, for example, a second voltage sensor 42 that detects each line voltage (Vuv, Vvw, Vwu) of the AC power supply 20 . The power supply unbalance rate detection unit 810 a acquires each line voltage (Vuv, Vvw, Vwu) of the AC power supply 20 by the second voltage sensor 42 . The power unbalance rate detection unit 810a obtains the maximum value Umax and the minimum value Umin from among the three line voltages (Vuv, Vvw, Vwu). Further, the power unbalance rate detection unit 810a obtains an average value Uave of the three line voltages (Vuv, Vvw, Vwu). Then, power supply unbalance rate detection section 810a calculates the unbalance rate of AC power supply 20 using the following equation (1).
 不平衡率[%]
 ={2/3×(Umax-Umin)/(Uave)}×100 (1)
Unbalance rate [%]
= {2/3 x (Umax-Umin)/(Uave)} x 100 (1)
 ここで、Umaxは、三相線間電圧の最大値、Uminは、三相線間電圧の最小値、Uaveは、三相線間電圧の平均値(=(Vuv+Vvw+Vwu)/3)である。交流電源20に電源不平衡が無い場合、電源不平衡率は0となり、交流電源20に電源不平衡が有る場合、電源不平衡率は0以外の値になる。 Here, Umax is the maximum value of the three-phase line voltage, Umin is the minimum value of the three-phase line voltage, and Uave is the average value of the three-phase line voltage (=(Vuv+Vvw+Vwu)/3). If the AC power supply 20 has no power supply unbalance, the power supply unbalance factor is 0, and if the AC power supply 20 has a power supply unbalance, the power supply unbalance factor has a value other than 0.
 <入力電力検出部810b>
 入力電力検出部810bは、交流電源20から電力変換装置21に入力される入力電力Pin(パラメータB)を検出する。入力電力検出部810bは、電力変換装置21から出力される出力電力Poutと、パワーモジュール損失Lossとに基づいて、下記の(2)式を用いて、入力電圧を算出する。
<Input power detector 810b>
Input power detection unit 810 b detects input power Pin (parameter B) input from AC power supply 20 to power converter 21 . The input power detection unit 810b calculates the input voltage using the following equation (2) based on the output power Pout output from the power converter 21 and the power module loss Loss.
 Pin=Pout+Loss    (2)  Pin = Pout + Loss (2)
 ここで、(2)式において、Poutは、電力変換装置21から出力される出力電力であり、Lossは、パワーモジュール損失である。 Here, in equation (2), Pout is the output power output from the power conversion device 21, and Los is the power module loss.
 出力電力Poutは、例えば、下記の(3)式により算出される。その場合、入力電力検出部810bは、電力変換装置21の出力電流Ioutを検出する第1電流センサ41を有している。 The output power Pout is calculated, for example, by the following formula (3). In that case, the input power detection section 810b has a first current sensor 41 that detects the output current Iout of the power conversion device 21 .
 Pout=√3×Vout×Iout×F  (3)  Pout=√3×Vout×Iout×F (3)
 ここで、Voutは、電力変換装置21の出力電圧である。Ioutは、第1電流センサ41で検出される電力変換装置21の出力電流である。Fは、電力変換装置21の出力力率である。出力電圧Voutおよび出力力率Fは、電力変換装置21の動作中に、マイクロコントローラ内でそれぞれ常時算出されているため、その値を利用することが可能である。また、出力電流Ioutは、第1電流センサ41から取得される。 Here, Vout is the output voltage of the power conversion device 21. Iout is the output current of the power conversion device 21 detected by the first current sensor 41 . F is the output power factor of the power converter 21 . Since the output voltage Vout and the output power factor F are constantly calculated in the microcontroller during the operation of the power conversion device 21, it is possible to use the values. Also, the output current Iout is obtained from the first current sensor 41 .
 なお、上記(2)式におけるパワーモジュール損失Lossは、電力変換装置21に搭載された上アームスイッチング素子25aおよび下アームスイッチング素子25bなどの半導体パワー素子のスイッチング損失などの損失の合計値である。パワーモジュール損失Lossは、電力変換装置21の設計値などから、予めシミュレーションなどで算出することができる。そのため、パワーモジュール損失Lossのデータは、電力変換装置21に搭載されたマイクロコントローラのメモリに予め記憶されている。 It should be noted that the power module loss Loss in the above equation (2) is the total value of losses such as switching loss of semiconductor power elements such as the upper arm switching element 25a and the lower arm switching element 25b mounted on the power conversion device 21. The power module loss Loss can be calculated in advance by simulation or the like from design values of the power conversion device 21 or the like. Therefore, the power module loss data is stored in advance in the memory of the microcontroller installed in the power conversion device 21 .
 なお、上述したように、交流電源20の代わりに、直流電源20Aを使用してもよい。図20および図21は、実施の形態1に係る空調システム100の変形例としての空調システム100Aの構成を示す図である。図20および図21に示すように、空調システム100Aでは、モータ11aが直流電源20Aに接続されて、直流電源20Aを電源として用いている。なお、直流電源20Aの充電などのため、必要に応じて、直流電源20Aを交流電源20に接続してもよい。 In addition, as described above, instead of the AC power supply 20, the DC power supply 20A may be used. 20 and 21 are diagrams showing the configuration of an air conditioning system 100A as a modification of the air conditioning system 100 according to Embodiment 1. FIG. As shown in FIGS. 20 and 21, in the air conditioning system 100A, the motor 11a is connected to the DC power supply 20A, and the DC power supply 20A is used as the power supply. Note that the DC power supply 20A may be connected to the AC power supply 20 as necessary for charging the DC power supply 20A.
 直流電源20Aは、図21に示すように、整流部22と、リアクトル23と、DCリンク部24とを備えている。なお、図21の場合には、電力変換装置21Aは、インバータ部25と、駆動回路26と、インバータ制御部27とから構成される。 The DC power supply 20A includes a rectifying section 22, a reactor 23, and a DC link section 24, as shown in FIG. In addition, in the case of FIG. 21, the power conversion device 21A is composed of an inverter section 25, a drive circuit 26, and an inverter control section 27. As shown in FIG.
 図20および図21に示す変形例の場合、入力電力Pin(パラメータB)は、直流電源20Aからインバータ部25に入力される電力となる。従って、図5の実施の形態1の場合および図21の変形例の場合のいずれも、入力電力Pin(パラメータB)は、電源からインバータ部25に入力される入力電力と考えて良い。 In the case of the modification shown in FIGS. 20 and 21, the input power Pin (parameter B) is the power input to the inverter section 25 from the DC power supply 20A. Therefore, in both the first embodiment shown in FIG. 5 and the modified example shown in FIG. 21, the input power Pin (parameter B) can be considered as the input power input from the power supply to the inverter section 25 .
 <電源インピーダンス検出部810c>
 図11の説明に戻る。電源インピーダンス検出部810cは、交流電源20の電源インピーダンス(パラメータC)を検出する。電源インピーダンス検出部810cは、例えば、下記のように、短絡インピーダンス(=%インピーダンス)から、電源インピーダンスの推定値を求める。電源インピーダンスには、交流電源20の系統抵抗Rと系統インダクタンスLとが含まれる。系統抵抗Rは、交流電源20の系統抵抗であり、電源系統の抵抗分を示す。また、系統インダクタンスLは、交流電源20の系統インダクタンスであり、電源系統のインダクタンス分を示す。
<Power supply impedance detector 810c>
Returning to the description of FIG. The power impedance detector 810 c detects the power impedance (parameter C) of the AC power supply 20 . The power supply impedance detection unit 810c obtains an estimated value of the power supply impedance from the short-circuit impedance (=% impedance), for example, as described below. The power supply impedance includes system resistance R and system inductance L of AC power supply 20 . The system resistance R is the system resistance of the AC power supply 20 and indicates the resistance of the power supply system. A system inductance L is the system inductance of the AC power supply 20 and indicates the inductance of the power supply system.
 交流電源20のレジスタンス成分R1とリアクタンス成分Xとの比が予め分かっている場合、電源インピーダンス検出部810cは、下記の(4)式から、交流電源20の系統抵抗Rと系統インダクタンスLを求める。 When the ratio between the resistance component R1 and the reactance component X of the AC power supply 20 is known in advance, the power supply impedance detector 810c obtains the system resistance R and the system inductance L of the AC power supply 20 from the following equation (4).
 R=(短絡インピーダンス)/(√(1+(X/R1)))
 L=(R1×X/R1)/(2×π×f)          (4)
R = (short circuit impedance)/(√(1+(X/R1) 2 ))
L=(R1×X/R1)/(2×π×f) (4)
 ここで、fは、交流電源20の電源周波数である。R1は、交流電源20のレジスタンス成分であり、Xは、交流電源20のリアクタンス成分である。また、短絡インピーダンスは、系統トランスの仕様書等から入手可能であるため、予め、記憶部8aに格納されている。 Here, f is the power supply frequency of the AC power supply 20. R1 is the resistance component of the AC power supply 20, and X is the reactance component of the AC power supply 20. Further, since the short-circuit impedance can be obtained from the specifications of the system transformer, etc., it is stored in advance in the storage unit 8a.
 <電源電圧検出部810d>
 電源電圧検出部810dは、交流電源20の電源電圧(パラメータD)を検出する。検出方法は、例えば、以下の通りである。
<Power supply voltage detector 810d>
Power supply voltage detection unit 810d detects the power supply voltage (parameter D) of AC power supply 20 . The detection method is, for example, as follows.
 上述した第2電圧センサ42が、上記の線間電圧だけでなく、各相電源電圧(Vu,Vv,Vw)も検出している場合には、交流電源20の電源電圧は、次のように算出される。すなわち、電源電圧検出部810dは、それらの電源電圧の平均値(=(Vu+Vv+Vw)/3)を求め、当該平均値を交流電源20の電源電圧とする。 When the second voltage sensor 42 described above detects not only the line voltage but also each phase power supply voltage (Vu, Vv, Vw), the power supply voltage of the AC power supply 20 is as follows. Calculated. That is, the power supply voltage detection unit 810 d obtains the average value (=(Vu+Vv+Vw)/3) of these power supply voltages, and uses the average value as the power supply voltage of the AC power supply 20 .
 また、上述した第2電圧センサ42が、各相電源電圧(Vu,Vv,Vw)を検出していない場合には、次のようにして求めてもよい。電力変換装置21に接続される交流電源20の電源電圧は通常決まっているため、交流電源20の電源電圧は、変数とせずに、予め決定された固定値とする。そのため、交流電源20の電源電圧の値を予め記憶部8aに格納しておき、電源電圧検出部810dは、格納された交流電源20の電源電圧の値を読み出して出力する。 Also, if the second voltage sensor 42 described above does not detect the phase power supply voltages (Vu, Vv, Vw), they may be obtained as follows. Since the power supply voltage of the AC power supply 20 connected to the power converter 21 is usually determined, the power supply voltage of the AC power supply 20 is not a variable but a predetermined fixed value. Therefore, the value of the power supply voltage of the AC power supply 20 is stored in advance in the storage unit 8a, and the power supply voltage detection unit 810d reads out and outputs the stored value of the power supply voltage of the AC power supply 20. FIG.
 [電源周波数検出部812]
 電源周波数検出部812は、交流電源20の電源周波数fを検出する。電源周波数fは、例えば、交流電源20の電圧波形のゼロクロス周期を検出することで求められる。
[Power supply frequency detector 812]
The power frequency detector 812 detects the power frequency f of the AC power supply 20 . The power supply frequency f can be obtained, for example, by detecting the zero-cross period of the voltage waveform of the AC power supply 20 .
 [リプル電圧検出部813]
 リプル電圧検出部813は、電解コンデンサ24aで平滑された直流電圧のリプル電圧ΔVを検出する。リプル電圧検出部813は、例えば、第1電圧センサ40で検出される直流電圧Vdcに基づいて、リプル電圧ΔVを検出する。図13は、実施の形態1に係る空調システム100に設けられた電解コンデンサ24aが出力する直流電圧Vdcの波形を示す図である。上記の図5を用いて簡単に説明したように、DCリンク部24の電解コンデンサ24aから出力される直流電圧Vdcは、図5および図13に示す電圧波形29を有している。すなわち、直流電圧Vdcの電圧波形29には、電圧値が上下に変動する脈動成分29aが含まれている。この脈動成分29aの振幅の最大値を、リプル電圧ΔVと呼ぶ。すなわち、リプル電圧ΔVは、例えば、直流電圧Vdcの最大値と最小値との差の絶対値で求められる。
[Ripple voltage detector 813]
A ripple voltage detection unit 813 detects a ripple voltage ΔV of the DC voltage smoothed by the electrolytic capacitor 24a. Ripple voltage detection unit 813 detects ripple voltage ΔV, for example, based on DC voltage Vdc detected by first voltage sensor 40 . FIG. 13 is a diagram showing a waveform of DC voltage Vdc output from electrolytic capacitor 24a provided in air conditioning system 100 according to the first embodiment. As briefly described above with reference to FIG. 5, the DC voltage Vdc output from the electrolytic capacitor 24a of the DC link section 24 has the voltage waveform 29 shown in FIGS. That is, the voltage waveform 29 of the DC voltage Vdc includes a pulsating component 29a whose voltage value fluctuates up and down. The maximum value of the amplitude of this pulsating component 29a is called ripple voltage ΔV. That is, the ripple voltage ΔV is obtained by, for example, the absolute value of the difference between the maximum value and the minimum value of the DC voltage Vdc.
 [補正係数算出部811]
 補正係数算出部811は、リプル電流算出部815がリプル電流を算出する際に用いる補正係数α,βを算出する。リプル電流算出部815が算出するリプル電流に、補正係数α,βを乗算することで、リプル電流の算出値の精度が向上する。補正係数算出部811は、パラメータ取得部810で取得される4つのパラメータのうちの少なくとも1つを用いて、補正係数α,βを算出する。補正係数α,βの算出方法については以下に説明する。
[Correction coefficient calculation unit 811]
Correction coefficient calculator 811 calculates correction coefficients α and β used when ripple current calculator 815 calculates the ripple current. By multiplying the ripple current calculated by the ripple current calculator 815 by the correction coefficients α and β, the accuracy of the calculated value of the ripple current is improved. Correction coefficient calculator 811 uses at least one of the four parameters obtained by parameter obtaining unit 810 to calculate correction coefficients α and β. A method of calculating the correction coefficients α and β will be described below.
 補正係数α,βを算出するために、補正係数算出部811は、まず、ベース条件を決定する。ベース条件には、電源周波数f、リプル電圧ΔV、および、パラメータA~Dが含まれる。ベース条件として、電源周波数f、リプル電圧ΔV、および、上記のパラメータA~Dの値を一意に決定し、それらの値をベース条件と定義する。下記に、具体的なベース条件の値の例を示す。 In order to calculate the correction coefficients α and β, the correction coefficient calculation unit 811 first determines base conditions. Base conditions include power supply frequency f, ripple voltage ΔV, and parameters AD. As base conditions, the power supply frequency f, the ripple voltage ΔV, and the values of the above parameters A to D are uniquely determined, and these values are defined as the base conditions. Examples of specific base condition values are shown below.
 <ベース条件の一例>:
  電源周波数f:50Hz、
  リプル電圧ΔV:50V、
  電源不平衡率(パラメータA):1.9%、
  入力電力(パラメータB):15kW、
  電源インピーダンス(パラメータC):系統抵抗R=0.1mΩ、系統インダクタンスL=0.05mH
  電源電圧(パラメータD):400V
<Example of base condition>:
Power supply frequency f: 50Hz,
Ripple voltage ΔV: 50V,
Power supply unbalance rate (parameter A): 1.9%,
input power (parameter B): 15 kW,
Power supply impedance (parameter C): system resistance R = 0.1 mΩ, system inductance L = 0.05 mH
Power supply voltage (parameter D): 400V
 次に、ベース条件を用いて、シミュレーション等を実施して、リプル電流を算出する。この値を実リプル電流値と定義する。上記のベース条件を用いてシミュレーション等で算出した実リプル電流値は、以下の通りとなる。 Next, using the base conditions, perform simulations, etc. to calculate the ripple current. This value is defined as the actual ripple current value. The actual ripple current value calculated by simulation or the like using the above base conditions is as follows.
 <実リプル電流値>:
  実リプル電流値:4.6Arms
<Actual ripple current value>:
Real ripple current value: 4.6Arms
 次に、リプル電流算出部815で用いるリプル電流の計算式(後述する(9)式)を用いて、上記のベース条件におけるリプル電流値を算出する。この値をベースリプル電流値と定義する。上記のベース条件におけるベースリプル電流値は、以下の通りとなる。 Next, the ripple current value under the above base conditions is calculated using the ripple current calculation formula (formula (9) described later) used in the ripple current calculation unit 815 . This value is defined as the base ripple current value. The base ripple current value under the above base conditions is as follows.
 <ベースリプル電流値>:
  ベースリプル電流値:3.7Arms
<Base ripple current value>:
Base ripple current value: 3.7 Arms
 次に、実リプル電流値とベースリプル電流値との割合を補正係数αとする。補正係数αは、下記の(5)式で算出される。 Next, let the ratio between the actual ripple current value and the base ripple current value be the correction coefficient α. The correction coefficient α is calculated by the following formula (5).
  補正係数α=実リプル電流値/ベースリプル電流値  (5)   Correction coefficient α = actual ripple current value / base ripple current value (5)
 従って、実リプル電流値=4.6Arms、および、ベースリプル電流値=3.7Armsの場合、補正係数αは、以下の通りとなる。 Therefore, when the actual ripple current value = 4.6 Arms and the base ripple current value = 3.7 Arms, the correction coefficient α is as follows.
  α=4.6/3.7=1.2   α=4.6/3.7=1.2
 補正係数αは、リプル電流算出部815で用いられる。リプル電流算出部815は、計算式よりベースリプル電流値を算出し、算出したベースリプル電流値に補正係数αを乗算することで、実リプル電流値を求める。これにより、リプル電流算出部815で算出するリプル電流の精度が向上する。実リプル電流値は、補正リプル電流値と呼ばれることがある。 The correction coefficient α is used in the ripple current calculator 815. A ripple current calculator 815 calculates a base ripple current value from a calculation formula, and multiplies the calculated base ripple current value by a correction coefficient α to obtain an actual ripple current value. This improves the accuracy of the ripple current calculated by the ripple current calculator 815 . The actual ripple current value is sometimes called a corrected ripple current value.
 補正係数の算出方法の説明に戻る。次に、電力変換装置21の運転状態および設置環境等に応じて変化するパラメータA~Dに対する補正係数β、β、β、βの算出方法について説明する。 Returning to the description of the correction coefficient calculation method. Next, a method of calculating correction coefficients β A , β B , β C , and β D for parameters A to D that change according to the operating state and installation environment of power conversion device 21 will be described.
 まず、電源不平衡率(パラメータA)と、パラメータB~Dの中の1つのパラメータと、に着目して、当該1つのパラメータの値を変化させた場合の補正係数αを算出する。αのXには、B,C,Dのいずれかが入る。このとき、変化させる1つのパラメータ以外は、上記のベース条件と同じ値とする。 First, focusing on the power supply unbalance rate (parameter A) and one of the parameters B to D, the correction coefficient α X is calculated when the value of the one parameter is changed. Any one of B, C, and D is entered in X of α X. At this time, the values other than the one parameter to be changed are the same as those of the above base conditions.
 ここでは、例として、パラメータB~Dの中のパラメータBを用いた場合を例に挙げて説明する。すなわち、電源不平衡率(パラメータA)と、入力電力(パラメータB)と、に着目して、パラメータBの値を変化させた場合の補正係数αを算出する。従って、このとき、パラメータCおよびDの値は、上記のベース条件と同じにする。図12は、実施の形態1に係る空調システム100に設けられた補正係数算出部811で算出した補正係数αの算出結果を示す図である。 Here, as an example, a case where parameter B among parameters B to D is used will be described. That is, focusing on the power unbalance rate (parameter A) and the input power (parameter B), the correction coefficient α B when the value of the parameter B is changed is calculated. Therefore, at this time, the values of parameters C and D are set to be the same as the above base conditions. FIG. 12 is a diagram showing calculation results of correction coefficient α B calculated by correction coefficient calculation section 811 provided in air conditioning system 100 according to Embodiment 1. In FIG.
 図12において、横軸は、ベースリプル電流値を示し、縦軸は、補正係数αを示す。また、図12において、点線51は入力電力が15kWの場合、すなわち、上記のベース条件の場合のグラフである。従って、このときのαは、上記の補正係数αである。また、実線50は入力電力が20kWの場合のグラフであり、破線52は入力電力が10kWの場合のグラフである。図12に示すように、パラメータBの入力電力の値を変化させることで、ベースリプル電流値に対する補正係数αが、補正係数αから変化することが分かる。同様に、パラメータCおよびDについても、補正係数αおよび補正係数αを求める。 In FIG. 12, the horizontal axis indicates the base ripple current value, and the vertical axis indicates the correction coefficient αB . Also, in FIG. 12, the dotted line 51 is the graph for the case where the input power is 15 kW, that is, the case for the above base conditions. Therefore, α B at this time is the correction coefficient α described above. A solid line 50 is a graph for an input power of 20 kW, and a dashed line 52 is a graph for an input power of 10 kW. As shown in FIG. 12, by changing the input power value of the parameter B, the correction coefficient αB for the base ripple current value changes from the correction coefficient α. Similarly, for parameters C and D, correction coefficients α C and α B are obtained.
 次に、上記のベース条件における補正係数αと補正係数α(X=A,B,C,D)との割合を下記の(6)式を用いて算出する。算出された当該割合の値を、それぞれ、補正係数β(電源不平衡率)、補正係数β(入力電力)、補正係数β(電源インピーダンス)、補正係数β(電源電圧)とする。 Next, the ratio between the correction coefficient α and the correction coefficient α X (X=A, B, C, D) under the above base conditions is calculated using the following formula (6). The calculated ratio values are defined as correction coefficient β A (power supply unbalance rate), correction coefficient β B (input power), correction coefficient β C (power supply impedance), and correction coefficient β D (power supply voltage). .
  β=α/α    (6) βX = αX /α (6)
 以下に、補正係数β(入力電力)の計算例を示す。 A calculation example of the correction coefficient β B (input power) is shown below.
 例)β(入力電力)の場合の計算例
 入力電力(パラメータB)がベース条件の15kWの場合の補正係数αと、入力電力(パラメータB)が20kWの場合の補正係数αBとは、図12に示されるように、それぞれ、以下の通りである。
入力電力15kW、ベースリプル電流値4.6Armsの場合のα=86
入力電力20kW、ベースリプル電流値4.6Armsの場合のα=83
 従って、ベースリプル電流値4.6Armsの場合に、入力電力(パラメータB)を、ベース条件の15kWから、20kWに変化させた場合の補正係数βは、以下の通りとなる。
 β=α/α=83/86=0.97
Example) Calculation example for β B (input power) 12, respectively:
α=86 when the input power is 15 kW and the base ripple current value is 4.6 Arms
α B =83 when the input power is 20 kW and the base ripple current value is 4.6 Arms
Therefore, when the base ripple current value is 4.6 Arms, the correction coefficient β B when changing the input power (parameter B) from 15 kW under the base condition to 20 kW is as follows.
β BB /α=83/86=0.97
 [電源不平衡判定部814]
 図11の説明に戻る。電源不平衡判定部814は、交流電源20の電源不平衡の有無を判定する。交流電源20の電源不平衡の有無により、電解コンデンサ24aが平滑した直流電圧Vdcの周波数成分が変化する。そのため、リプル電流算出部815では、電源不平衡の有無に基づいて、リプル電流を算出するときに使用する計算式を使い分ける。そのため、電源不平衡判定部814で、交流電源20の電源不平衡の有無を判定する必要がある。以下に、詳細に説明する。
[Power supply imbalance determination unit 814]
Returning to the description of FIG. The power supply imbalance determination unit 814 determines whether or not there is a power supply imbalance in the AC power supply 20 . The frequency component of the DC voltage Vdc smoothed by the electrolytic capacitor 24a changes depending on whether or not the AC power supply 20 is unbalanced. Therefore, the ripple current calculation unit 815 uses different calculation formulas for calculating the ripple current based on the presence or absence of power supply imbalance. Therefore, it is necessary for the power unbalance determining unit 814 to determine whether or not there is a power unbalance in the AC power supply 20 . A detailed description is given below.
 電源不平衡判定部814は、例えば、電源不平衡率検出部810aで算出される電源不平衡率に基づいて、交流電源20の電源不平衡の有無を判定する。上述したように、電源不平衡率検出部810aは、上記の(1)式を用いて、交流電源20の不平衡率を算出する。電源不平衡率検出部810aで算出される不平衡率は、電源不平衡が無ければ0%となり、電源不平衡が有れば0より大きい値になる。従って、電源不平衡判定部814は、電源不平衡率検出部810aで算出される電源不平衡率が0か0以外かに基づいて、交流電源20の電源不平衡の有無を判定することができる。 The power unbalance determining unit 814 determines whether or not there is a power unbalance in the AC power supply 20 based on the power unbalance rate calculated by the power unbalance rate detecting unit 810a, for example. As described above, the power supply unbalance rate detection unit 810a calculates the unbalance rate of the AC power supply 20 using Equation (1) above. The unbalance rate calculated by the power source unbalance rate detector 810a is 0% if there is no power source unbalance, and is greater than 0 if there is a power source unbalance. Therefore, the power supply unbalance determination unit 814 can determine whether or not the AC power supply 20 has a power supply unbalance based on whether the power supply unbalance rate calculated by the power supply unbalance rate detection unit 810a is 0 or other than 0. .
 図13を用いて上述したように、DCリンク部24の電解コンデンサ24aから出力される直流電圧Vdcは、電圧波形29を有している。すなわち、直流電圧Vdcの電圧波形29には、電圧値が上下に変動する脈動成分29aが含まれている。この脈動成分29aの振幅の最大値を、リプル電圧ΔVと呼ぶ。すなわち、リプル電圧ΔVは、例えば、直流電圧Vdcの最大値と最小値との差の絶対値で求められる。また、電源周波数fは、例えば、交流電源20の電圧波形のゼロクロス周期を検出することで求められる。 As described above with reference to FIG. 13, the DC voltage Vdc output from the electrolytic capacitor 24a of the DC link section 24 has the voltage waveform 29. That is, the voltage waveform 29 of the DC voltage Vdc includes a pulsating component 29a whose voltage value fluctuates up and down. The maximum value of the amplitude of this pulsating component 29a is called ripple voltage ΔV. That is, the ripple voltage ΔV is obtained by, for example, the absolute value of the difference between the maximum value and the minimum value of the DC voltage Vdc. Also, the power supply frequency f can be obtained, for example, by detecting the zero-cross period of the voltage waveform of the AC power supply 20 .
 なお、直流電圧Vdcの周期は、電源不平衡の有無で異なる。図14は、実施の形態1に係る空調システム100に設けられた電解コンデンサ24aが出力する直流電圧Vdcの電源不平衡が無い場合の波形を示す図である。図15は、実施の形態1に係る空調システム100に設けられた電解コンデンサ24aが出力する直流電圧Vdcの電源不平衡が有る場合の波形を示す図である。 It should be noted that the period of the DC voltage Vdc differs depending on the presence or absence of power supply imbalance. FIG. 14 is a diagram showing waveforms of the DC voltage Vdc output by the electrolytic capacitor 24a provided in the air conditioning system 100 according to Embodiment 1 when there is no power supply imbalance. FIG. 15 is a diagram showing waveforms of the DC voltage Vdc output by the electrolytic capacitor 24a provided in the air conditioning system 100 according to the first embodiment when there is a power supply imbalance.
 図14に示すように、電源不平衡が無い場合には、電源周波数をfとした場合の直流電圧Vdcの周波数成分は6fとなるため、直流電圧Vdcの周期Tは、下記の(7)式となる。 As shown in FIG. 14, when there is no power supply unbalance, the frequency component of the DC voltage Vdc is 6f when the power supply frequency is f. becomes.
 <電源不平衡が無い場合>
   T=1/(2×6×f)         (7)
<When there is no power imbalance>
T=1/(2×6×f) (7)
 一方、電源不平衡が有る場合には、図15に示すように、電源周波数をfとした場合の直流電圧Vdcの周波数成分は2fとなるため、直流電圧Vdcの周期Tは、下記の(8)式となる。 On the other hand, when there is a power supply imbalance, the frequency component of the DC voltage Vdc is 2f when the power supply frequency is f, as shown in FIG. ).
 <電源不平衡が有る場合>
   T=1/(2×2×f)         (8)
<When there is a power imbalance>
T=1/(2×2×f) (8)
 ここで、上記の(7)式および(8)式において、fは、交流電源20の電源周波数である。このように、交流電源20の電源不平衡の有無により、電解コンデンサ24aが平滑した直流電圧Vdcの周波数成分が変化する。そのため、後述するリプル電流算出部815では、電源不平衡の有無に基づいて、リプル電流を算出するときに使用する計算式を使い分けることが望ましい。そこで、電源不平衡判定部814では、交流電源20の電源不平衡の有無を判定し、その結果をリプル電流算出部815に送信する。 Here, f is the power supply frequency of the AC power supply 20 in the above formulas (7) and (8). Thus, the frequency component of the DC voltage Vdc smoothed by the electrolytic capacitor 24a changes depending on whether or not the AC power supply 20 is unbalanced. Therefore, it is desirable that the ripple current calculation unit 815, which will be described later, uses different calculation formulas when calculating the ripple current based on the presence or absence of power supply imbalance. Therefore, the power supply unbalance determination unit 814 determines whether or not there is a power supply unbalance in the AC power supply 20 , and transmits the result to the ripple current calculation unit 815 .
 [リプル電流算出部815]
 リプル電流算出部815は、電源周波数検出部812で検出された電源周波数fと、リプル電圧検出部813で検出されたリプル電圧ΔVとに基づいて、電解コンデンサ24aのベースリプル電流値を算出する。このとき、リプル電流算出部815は、電源不平衡判定部814の判定結果に基づいて、ベースリプル電流値を算出するときに使用する計算式を使い分ける。さらに、リプル電流算出部815は、補正係数算出部811が算出した補正係数α、βを用いて、算出したベースリプル電流値を補正して、実リプル電流値を求める。以下に、詳細に説明する。
[Ripple current calculator 815]
Ripple current calculator 815 calculates a base ripple current value of electrolytic capacitor 24 a based on power supply frequency f detected by power supply frequency detector 812 and ripple voltage ΔV detected by ripple voltage detector 813 . At this time, the ripple current calculation unit 815 selectively uses the calculation formula used when calculating the base ripple current value based on the determination result of the power imbalance determination unit 814 . Further, the ripple current calculator 815 corrects the calculated base ripple current value using the correction coefficients α and β calculated by the correction coefficient calculator 811 to obtain the actual ripple current value. A detailed description is given below.
 電解コンデンサ24aに流れる電流(すなわち、リプル電流)の値は、一般的に、下記の(9)式で求められる。 The value of the current (that is, ripple current) flowing through the electrolytic capacitor 24a is generally obtained by the following formula (9).
  Ic=C×dv/dt
    =C×(ΔV/(T×1/2))    (9)
Ic=C×dv/dt
=C×(ΔV/(T×1/2)) (9)
 ここで、Cは、電解コンデンサ24aのコンデンサ容量、ΔVは、直流電圧Vdcのリプル電圧、Tは、直流電圧Vdcの周期である。 Here, C is the capacitance of the electrolytic capacitor 24a, ΔV is the ripple voltage of the DC voltage Vdc, and T is the period of the DC voltage Vdc.
 従って、上記の(9)式に、上記の(7)式および(8)式の周期Tを代入すると、リプル電流値Icは、下記の(10)式および(11)式で近似的に算出することができる。 Therefore, by substituting the period T of the above formulas (7) and (8) into the above formula (9), the ripple current value Ic is approximately calculated by the following formulas (10) and (11). can do.
 <電源不平衡が無い場合>
  Ic=C×(ΔV/(T×1/2))
    =C×(ΔV/(1/(2×6×f))×1/2) (10)
<When there is no power imbalance>
Ic=C×(ΔV/(T×1/2))
=C×(ΔV/(1/(2×6×f))×1/2) (10)
 <電源不平衡が有る場合>
  Ic=C×(ΔV/(T×1/2))
    =C×(ΔV/(1/(2×2×f))×1/2) (11)
<When there is a power imbalance>
Ic=C×(ΔV/(T×1/2))
=C×(ΔV/(1/(2×2×f))×1/2) (11)
 そのため、このように、リプル電流値Icを算出する計算式は、電源不平衡の有無に基づいて異なる。そのため、リプル電流算出部815では、電源不平衡判定部814で判定された電源不平衡の有無に基づいて、リプル電流値Icを算出するときに使用する計算式を上記の(10)式および(11)式の中から使い分ける。 Therefore, the formula for calculating the ripple current value Ic differs based on the presence or absence of power supply imbalance. Therefore, the ripple current calculation unit 815 uses the above equation (10) and ( 11) Use properly from the formula.
 具体的には、リプル電流算出部815は、電源不平衡が無い場合には、すなわち、電源不平衡率が0の場合には、上記の(10)式を用いて、リプル電流値Icを算出する。上記の(10)式は、第1計算式と呼ばれることがある。 Specifically, when there is no power supply unbalance, that is, when the power supply unbalance rate is 0, the ripple current calculation unit 815 calculates the ripple current value Ic using the above equation (10). do. The above formula (10) is sometimes called the first calculation formula.
 一方、リプル電流算出部815は、電源不平衡が有る場合には、すなわち、電源不平衡率が0でない場合には、上記の(11)式を用いて、リプル電流値Icを算出する。上記の(11)式は、第2計算式と呼ばれることがある。 On the other hand, if there is a power supply unbalance, that is, if the power supply unbalance rate is not 0, the ripple current calculation unit 815 calculates the ripple current value Ic using the above equation (11). The above formula (11) is sometimes called a second calculation formula.
 なお、上記の(10)式および(11)式で算出されたリプル電流値Icは、図12を用いて説明したベースリプル電流値である。そのため、リプル電流算出部815は、補正係数算出部811で算出された補正係数αおよび補正係数β(X=A,B,C,D)を用いて、ベースリプル電流値であるリプル電流値Icを補正する。これにより、上述した実リプル電流値Ic*を求めることができる。実リプル電流値Ic*は、下記の(12)式で算出される。 Note that the ripple current value Ic calculated by the above formulas (10) and (11) is the base ripple current value described using FIG. Therefore, the ripple current calculation unit 815 uses the correction coefficient α and the correction coefficient β X (X=A, B, C, D) calculated by the correction coefficient calculation unit 811 to calculate the ripple current value, which is the base ripple current value. Correct Ic. Thereby, the above-described actual ripple current value Ic* can be obtained. The actual ripple current value Ic* is calculated by the following equation (12).
 Ic*=Ic×α×β    (12) Ic*=Ic×α× βX (12)
 補正係数αおよび補正係数β(X=A,B,C,D)を用いて、リプル電流値Icを補正することで、精度が向上したリプル電流値(すなわち、実リプル電流値Ic*)を算出することができる。以下では、実リプル電流値Ic*を、「リプル電流算出部815が算出したリプル電流」と呼ぶこととする。 Ripple current value (that is, actual ripple current value Ic*) with improved accuracy by correcting ripple current value Ic using correction coefficient α and correction coefficient β X (X=A, B, C, D) can be calculated. The actual ripple current value Ic* is hereinafter referred to as "the ripple current calculated by the ripple current calculator 815".
 なお、補正係数αおよび補正係数β(X=A,B,C,D)を用いた補正は、必ずしも行わなくてもよく、必要に応じて行うようにしてもよい。当該補正を行わなかった場合には、「リプル電流算出部815が算出したリプル電流」は、リプル電流値Icとなる。 Note that the correction using the correction coefficient α and the correction coefficient β X (X=A, B, C, D) is not necessarily performed, and may be performed as necessary. If the correction is not performed, the "ripple current calculated by the ripple current calculator 815" becomes the ripple current value Ic.
 [運転時間算出部816]
 図11の説明に戻る。運転時間算出部816は、電力変換装置21の運転時間(すなわち、電解コンデンサ24aの運転時間)を算出する。運転時間とは、電力変換装置21が設置された時点からカウントした運転時間の積算値である。すなわち、空調システム100が建物13に設置された時点からカウントした電力変換装置21の運転時間の積算値である。ただし、電力変換装置21の電解コンデンサ24aを交換した場合には、当該積算値はリセットされ、交換した時点から、再度、運転時間のカウントが開始される。すなわち、電解コンデンサ24aは、運転時間の増加に伴って残寿命が短くなる傾向がある。そのため、運転時間算出部816は、電力変換装置21の運転時間を算出する。電力変換装置21の運転時間は、例えば、電力変換装置21に搭載されたマイクロコントローラのタイマー機能等を用いて計測すればよい。
[Operating time calculator 816]
Returning to the description of FIG. The operating time calculator 816 calculates the operating time of the power conversion device 21 (that is, the operating time of the electrolytic capacitor 24a). The operating time is an integrated value of the operating time counted from the time when the power conversion device 21 was installed. That is, it is an integrated value of the operation time of the power conversion device 21 counted from the time when the air conditioning system 100 was installed in the building 13 . However, when the electrolytic capacitor 24a of the power conversion device 21 is replaced, the integrated value is reset, and counting of the operating time is started again from the time of replacement. That is, the electrolytic capacitor 24a tends to have a shorter remaining life as the operating time increases. Therefore, the operating time calculation unit 816 calculates the operating time of the power converter 21 . The operating time of the power converter 21 may be measured using, for example, a timer function of a microcontroller mounted on the power converter 21 .
 [寿命推定部817]
 寿命推定部817は、電解コンデンサ24aの残寿命を推定する。寿命推定部817には、リプル電流算出部815から、実リプル電流値Ic*が入力される。また、寿命推定部817には、コンデンサ周囲温度検出部84から、電解コンデンサ24aの周囲温度Taが入力される。また、寿命推定部817には、運転時間算出部816から、電力変換装置21の運転時間が入力される。寿命推定部817は、実リプル電流値Ic*と周囲温度Taとに基づいて、電解コンデンサ24aの芯温度Txを求める。電解コンデンサ24aの芯温度Txは、下記の(13)式で算出できる。
[Lifetime estimation unit 817]
The life estimator 817 estimates the remaining life of the electrolytic capacitor 24a. Actual ripple current value Ic* is input from ripple current calculation unit 815 to life estimation unit 817 . Further, the ambient temperature Ta of the electrolytic capacitor 24 a is input from the capacitor ambient temperature detector 84 to the lifetime estimator 817 . Further, the operating time of the power converter 21 is input from the operating time calculating unit 816 to the life estimating unit 817 . Life estimator 817 obtains core temperature Tx of electrolytic capacitor 24a based on actual ripple current value Ic* and ambient temperature Ta. The core temperature Tx of the electrolytic capacitor 24a can be calculated by the following equation (13).
  Tx=Ta+ΔT        (13)   Tx = Ta + ΔT (13)
 ここで、Taは、電解コンデンサ24aの周囲温度、ΔTは、実リプル電流値Ic*による芯温度の上昇値である。実リプル電流値Ic*による芯温度の上昇値の算出方法の一例について説明する。対象となる電解コンデンサ毎に、リプル電流-芯温度上昇値の特性が異なるため、電解コンデンサ24aの製造メーカから、当該特性を示す特性データを入手する。そして、当該特性データに基づいて、実リプル電流値Ic*から芯温度の上昇値ΔTを求めるための近似式またはデータテーブル等を予め生成し、記憶部8aに記憶しておく。当該近似式およびデータテーブルは、実リプル電流値Ic*と芯温度の上昇値ΔTとの関係を定義するものである。寿命推定部817は、当該近似式またはデータテーブルを用いて、実リプル電流値Ic*に対する芯温度の上昇値ΔTを求める。 Here, Ta is the ambient temperature of the electrolytic capacitor 24a, and ΔT is the increase in core temperature due to the actual ripple current value Ic*. An example of a method for calculating the core temperature increase value based on the actual ripple current value Ic* will be described. Since the ripple current-core temperature rise value characteristic differs for each target electrolytic capacitor, characteristic data indicating the characteristic is obtained from the manufacturer of the electrolytic capacitor 24a. Based on the characteristic data, an approximation formula, data table, or the like for obtaining the core temperature rise value ΔT from the actual ripple current value Ic* is generated in advance and stored in the storage unit 8a. The approximation formula and data table define the relationship between the actual ripple current value Ic* and the core temperature rise value ΔT. The life estimator 817 uses the approximate expression or the data table to obtain the core temperature rise value ΔT with respect to the actual ripple current value Ic*.
 次に、寿命推定部817は、上記の(13)式によって算出した電解コンデンサ24aの芯温度Txに基づいて、電解コンデンサ24aの残寿命の推定値を求める。そのためには、電解コンデンサ24aの製造メーカによって設定されている寿命算出式を用いる必要がある。一般的に、寿命算出式には、電解コンデンサ24aの芯温度Txと、その条件(すなわち、芯温度Tx)における動作時間(すなわち、電力変換装置21の運転時間)の情報と、が必要となる。そこで、寿命推定部817は、運転時間算出部816から電力変換装置21の運転時間を取得する。そして、寿命推定部817は、当該運転時間と、算出した電解コンデンサ24aの芯温度Txと、に基づいて、製造メーカから入手した寿命算出式を用いて、電解コンデンサ24aの残寿命の推定値を求める。 Next, the life estimator 817 obtains an estimated value of the remaining life of the electrolytic capacitor 24a based on the core temperature Tx of the electrolytic capacitor 24a calculated by the above equation (13). For that purpose, it is necessary to use a life calculation formula set by the manufacturer of the electrolytic capacitor 24a. Generally, the life calculation formula requires information on the core temperature Tx of the electrolytic capacitor 24a and the operating time (that is, the operating time of the power conversion device 21) under that condition (that is, the core temperature Tx). . Therefore, the life estimation unit 817 acquires the operation time of the power converter 21 from the operation time calculation unit 816 . Based on the operation time and the calculated core temperature Tx of the electrolytic capacitor 24a, the life estimation unit 817 uses a life calculation formula obtained from the manufacturer to estimate the remaining life of the electrolytic capacitor 24a. demand.
 [コンデンサ残寿命推定部81の動作]
 次に、図11に示したコンデンサ残寿命推定部81の動作について説明する。図16は、実施の形態1に係る空調システム100に設けられたコンデンサ残寿命推定部81の処理の流れを示すフローチャートである。
[Operation of Capacitor Remaining Life Estimating Unit 81]
Next, the operation of capacitor remaining life estimator 81 shown in FIG. 11 will be described. FIG. 16 is a flowchart showing the flow of processing by the capacitor remaining life estimator 81 provided in the air conditioning system 100 according to Embodiment 1. FIG.
 ステップS21では、パラメータ取得部810が、補正パラメータであるパラメータA~Dの要素のうち、少なくとも1つの要素の情報を取得する。すなわち、電源不平衡率、入力電力、電源インピーダンス、および、電源電圧のうち、少なくとも1つの値を検出する。 In step S21, the parameter acquisition unit 810 acquires information on at least one element among the elements of parameters A to D, which are correction parameters. That is, at least one of the power supply unbalance rate, input power, power supply impedance, and power supply voltage is detected.
 ステップS22では、補正係数算出部811が、ステップS21で取得されたパラメータA~Dと、電源周波数fと、リプル電圧ΔVと、を用いて、補正係数αおよび補正係数β(X=A,B,C,D)を算出する。 In step S22, correction coefficient calculator 811 calculates correction coefficient α and correction coefficient β X (X=A, B, C, D) are calculated.
 ステップS23では、電源不平衡判定部814が、交流電源20に電源不平衡が有るか否かの判定を行う。判定結果、電源不平衡が有ればステップS24に進み、電源不平衡が無ければステップS25に進む。 In step S23, the power supply unbalance determination unit 814 determines whether or not the AC power supply 20 has a power supply unbalance. As a result of the determination, if there is power imbalance, the process proceeds to step S24, and if there is no power imbalance, the process proceeds to step S25.
 ステップS24では、リプル電流算出部815が、電源不平衡が有る場合の上記(11)式を用いて、リプル電流値Icを算出する。その後、ステップS26に進む。 In step S24, the ripple current calculation unit 815 calculates the ripple current value Ic using the above equation (11) when there is power supply imbalance. After that, the process proceeds to step S26.
 ステップS25では、リプル電流算出部815が、電源不平衡が無い場合の上記(10)式を用いて、リプル電流値Icを算出する。その後、ステップS26に進む。 In step S25, the ripple current calculator 815 calculates the ripple current value Ic using the above equation (10) when there is no power supply imbalance. After that, the process proceeds to step S26.
 ステップS26では、リプル電流算出部815が、ステップS22で算出された補正係数αおよび補正係数β(X=A,B,C,D)を用いてリプル電流値Icを補正することで、実リプル電流値Ic*を算出する。 In step S26, the ripple current calculation unit 815 corrects the ripple current value Ic using the correction coefficient α and the correction coefficient β X (X=A, B, C, D) calculated in step S22. A ripple current value Ic* is calculated.
 ステップS27では、寿命推定部817が、コンデンサ周囲温度検出部84から、電解コンデンサ24aの周囲温度Taを取得する。 In step S27, the life estimation unit 817 acquires the ambient temperature Ta of the electrolytic capacitor 24a from the capacitor ambient temperature detection unit 84.
 ステップS28では、寿命推定部817が、リプル電流算出部815から出力される実リプル電流値Ic*と、電解コンデンサ24aの周囲温度Taと、に基づいて、電解コンデンサ24aの芯温度Txを算出する。 In step S28, life estimation unit 817 calculates core temperature Tx of electrolytic capacitor 24a based on actual ripple current value Ic* output from ripple current calculation unit 815 and ambient temperature Ta of electrolytic capacitor 24a. .
 ステップS29では、運転時間算出部816が、電力変換装置21の運転時間を算出する。 In step S29, the operating time calculation unit 816 calculates the operating time of the power conversion device 21.
 ステップS30では、寿命推定部817が、ステップS28で算出した電解コンデンサ24aの芯温度Txと、ステップS29で算出された電力変換装置21の運転時間と、に基づいて、電解コンデンサ24aの残寿命を算出する。 In step S30, the life estimation unit 817 estimates the remaining life of the electrolytic capacitor 24a based on the core temperature Tx of the electrolytic capacitor 24a calculated in step S28 and the operation time of the power converter 21 calculated in step S29. calculate.
 以上が、コンデンサ残寿命推定部81の動作である。コンデンサ残寿命推定部81は、算出した電解コンデンサ24aの残寿命を、延命運転モード判定部82に出力する。延命運転モード判定部82は、電解コンデンサ24aの残寿命を第1閾値と比較して、延命運転モードに移行するか否かを判定する。 The above is the operation of the capacitor remaining life estimation unit 81 . The capacitor remaining life estimation unit 81 outputs the calculated remaining life of the electrolytic capacitor 24 a to the life extension operation mode determination unit 82 . The life-prolonging operation mode determination unit 82 compares the remaining life of the electrolytic capacitor 24a with the first threshold to determine whether or not to transition to the life-prolonging operation mode.
 また、延命運転モード判定部82は、延命運転モードに移行すると判定した場合に、上記の図8を用いて説明したように、電解コンデンサ24aの残寿命が第1閾値以下の室内機1を「延命運転ユニット」に設定する。また、同時に、延命運転ユニットの周囲に配置されている室内機1を「サポート運転ユニット」に設定する。これにより、「延命運転ユニット」に設定された室内機1は、室内ファンを駆動するモータ11aの周波数を現在の値よりも低減させた運転を行う。これにより、「延命運転ユニット」に設定された室内機1の電解コンデンサ24aの残寿命の減少度合いを抑えることができる。また、「サポート運転ユニット」に設定された室内機1は、室内ファンを駆動するモータ11aの周波数を現在の値よりも増加させた運転を行う。これにより、「延命運転ユニット」の運転能力の低下をカバーすることができ、空調対象の室内空間13aの快適性を維持することができる。 In addition, when the life-prolonging operation mode determination unit 82 determines to transition to the life-prolonging operation mode, as described with reference to FIG. Life-prolonging operation unit". At the same time, the indoor units 1 arranged around the life-prolonging operation unit are set as "support operation units". As a result, the indoor unit 1 set to the "life-prolonging operation unit" operates with the frequency of the motor 11a that drives the indoor fan reduced from the current value. As a result, it is possible to suppress the degree of decrease in the remaining life of the electrolytic capacitor 24a of the indoor unit 1 set to the "life-prolonging operation unit". Also, the indoor unit 1 set to the "support operation unit" operates with the frequency of the motor 11a that drives the indoor fan increased from the current value. As a result, it is possible to compensate for the deterioration of the operating ability of the "life-prolonging operation unit" and maintain the comfort of the indoor space 13a to be air-conditioned.
 また、延命運転モード判定部82は、延命運転モードに移行すると判定した場合に、通知部88に対して、延命運転モードへの移行を通知する通知信号を出力する。通知部88は、当該通知信号を受けて、延命運転モードになった室内機1が発生したことを、施設管理会社31、ユーザ36、あるいは、メンテナンス会社32に通知する。 In addition, when the life-prolonging operation mode determination unit 82 determines to shift to the life-prolonging operation mode, the notification unit 88 outputs a notification signal for notifying transition to the life-prolonging operation mode. Upon receiving the notification signal, the notification unit 88 notifies the facility management company 31, the user 36, or the maintenance company 32 that the indoor unit 1 has entered the life-prolonging operation mode.
 [通知部88の通知方法]
 図17~図19は、実施の形態1に係る空調システム100に設けられた通知部88による通知方法の一例を示す説明図である。図17は、電解コンデンサ24aの残寿命が3年の場合の携帯端末35の表示画面35aの一例を示している。図18は、電解コンデンサ24aの残寿命が2年の場合の携帯端末35の表示画面35aの一例を示している。図19は、電解コンデンサ24aの残寿命が1年の場合の携帯端末35の表示画面35aの一例を示している。
[Notification method of notification unit 88]
17 to 19 are explanatory diagrams showing an example of a notification method by the notification unit 88 provided in the air conditioning system 100 according to Embodiment 1. FIG. FIG. 17 shows an example of the display screen 35a of the mobile terminal 35 when the remaining life of the electrolytic capacitor 24a is three years. FIG. 18 shows an example of the display screen 35a of the mobile terminal 35 when the remaining life of the electrolytic capacitor 24a is two years. FIG. 19 shows an example of the display screen 35a of the portable terminal 35 when the remaining life of the electrolytic capacitor 24a is one year.
 図17および図18では、電解コンデンサ24aの残寿命に余裕があるため、ユーザ36に対して、単に、電解コンデンサ24aの残寿命を知らせるメッセージが表示されている。また、当該メッセージを見たユーザ36が、電解コンデンサ24aの早期の交換を希望する場合に備えて、連絡先も表示している。ここでの「サービスセンター」とは、例えば、施設管理会社31またはメンテナンス会社32に設置されたサービスセンターである。  In Figs. 17 and 18, since the remaining life of the electrolytic capacitor 24a has a margin, a message is simply displayed to inform the user 36 of the remaining life of the electrolytic capacitor 24a. The contact information is also displayed in case the user 36 who sees the message wishes to replace the electrolytic capacitor 24a early. The “service center” here is, for example, a service center installed in the facility management company 31 or the maintenance company 32 .
 ユーザ36は、「延命運転ユニット」に設定された室内機1の運転能力の低下に起因して、室内空間13aの快適性が低下したと感じた場合には、サービスセンターに連絡して、電解コンデンサ24aの交換を申し込む。 When the user 36 feels that the comfort of the indoor space 13a has decreased due to the deterioration of the operating ability of the indoor unit 1 set to the "life-prolonging operation unit", the user 36 contacts the service center and electrolyzes. Apply for replacement of the capacitor 24a.
 一方、ユーザ36が、室内空間13aの快適性に特に問題がないと感じた場合には、サービスセンターに連絡せずに、延命運転モードでの空調システム100の運転を継続する。 On the other hand, if the user 36 feels that there is no particular problem with the comfort of the indoor space 13a, the operation of the air conditioning system 100 in the life-prolonging operation mode is continued without contacting the service center.
 このようにすることで、電解コンデンサ24aの残寿命が3年または2年の場合には、ユーザ36に対して、電解コンデンサ24aをすぐに交換するか否かの選択肢を与えることができる。 By doing so, when the remaining life of the electrolytic capacitor 24a is three years or two years, the user 36 can be given the option of whether or not to replace the electrolytic capacitor 24a immediately.
 これに対して、図19では、電解コンデンサ24aの残寿命が短いため、ユーザ36に対して、電解コンデンサ24aの交換を促すメッセージが表示されている。また、当該メッセージを見たユーザ36が、電解コンデンサ24aの交換を希望する場合に備えて、連絡先も表示している。このようにして、ユーザ36に対して、電解コンデンサ24aの早期の交換を促すことで、電解コンデンサ24aの交換が促進される。その結果、電解コンデンサ24aが故障する前に、電解コンデンサ24aの交換を促すことができる。 On the other hand, in FIG. 19, a message is displayed prompting the user 36 to replace the electrolytic capacitor 24a because the remaining life of the electrolytic capacitor 24a is short. The contact information is also displayed in case the user 36 who sees the message wishes to replace the electrolytic capacitor 24a. Thus, prompting the user 36 to replace the electrolytic capacitor 24a at an early stage promotes the replacement of the electrolytic capacitor 24a. As a result, replacement of the electrolytic capacitor 24a can be encouraged before the electrolytic capacitor 24a fails.
 このように、通知部88は、電解コンデンサ24aの残寿命の長さに応じて異なる通知を生成するようにしてもよい。また、それらの通知のメッセージの内容は、電解コンデンサ24aの残寿命の長さごとに予め設定してデータテーブルに記憶しておいてもよい。その場合、通知部88は、コンデンサ残寿命推定部81が算出した電解コンデンサ24aの残寿命の長さに対応するメッセージの内容を当該データテーブルから抽出して通知を生成する。これにより、通知部88は、ユーザ36に対して、段階的に複数回にわたって通知を出力することができる。そのため、ユーザ36は、電解コンデンサ24aをすぐに交換するか否かの選択肢が得られるとともに、電解コンデンサ24aの交換を計画的に行うことが可能になる。なお、通知部88は、当該通知を施設管理会社31またはメンテナンス会社32にも送信するようにしてもよい。また、通知部88は、携帯端末35ではなく、リモートコントローラ34に送信するようにしてもよい。 In this way, the notification unit 88 may generate different notifications according to the length of remaining life of the electrolytic capacitor 24a. Further, the content of these notification messages may be set in advance for each length of remaining life of the electrolytic capacitor 24a and stored in the data table. In this case, the notification unit 88 extracts from the data table the content of the message corresponding to the length of the remaining life of the electrolytic capacitor 24a calculated by the capacitor remaining life estimating unit 81, and generates a notification. As a result, the notification unit 88 can output notifications to the user 36 stepwise multiple times. Therefore, the user 36 can choose whether or not to replace the electrolytic capacitor 24a immediately, and can systematically replace the electrolytic capacitor 24a. Note that the notification unit 88 may also transmit the notification to the facility management company 31 or the maintenance company 32 . Also, the notification unit 88 may transmit to the remote controller 34 instead of the portable terminal 35 .
 実施の形態1では、図6または図10に示すフローチャートの処理を一定の周期で繰り返し行うことで、電解コンデンサ24aの最新の残寿命を定期的に算出することができる。 In Embodiment 1, the latest remaining life of the electrolytic capacitor 24a can be periodically calculated by repeating the processing of the flowchart shown in FIG. 6 or 10 at a constant cycle.
 [フィードバック制御]
 延命運転ユニットに設定された室内機1のサポート運転を行うために、他の室内機1をサポート運転ユニットを設定しても、実際には、サポート運転ユニットで有効にサポートができていない場合が発生する可能性がある。そのような場合に備えて、実施の形態1に係る空調システム100において、下記のようなフィードバック制御を行うようにしてもよい。
[Feedback control]
In order to perform the support operation of the indoor unit 1 set as the life-prolonging operation unit, even if the other indoor unit 1 is set as the support operation unit, there are cases where the support operation unit cannot actually provide effective support. can occur. In preparation for such a case, in the air conditioning system 100 according to Embodiment 1, the following feedback control may be performed.
 図25は、実施の形態1に係る空調システム100に設けられたシステムコントローラ8で実行されるフィードバック制御の処理の流れを示すフローチャートである。図25に示すフローの処理は、システムコントローラ8で実行され、例えば、システムコントローラ8の延命運転制御部87で実行される。あるいは、その場合に限らず、システムコントローラ8内に、フィードバック制御部(図示せず)を設けて、フィードバック制御部が図25に示すフローの処理を行うようにしてもよい。 FIG. 25 is a flow chart showing the flow of feedback control processing executed by the system controller 8 provided in the air conditioning system 100 according to the first embodiment. The process of the flow shown in FIG. 25 is executed by the system controller 8, for example, by the life-prolonging operation control section 87 of the system controller 8. As shown in FIG. Alternatively, without being limited to that case, a feedback control section (not shown) may be provided in the system controller 8, and the feedback control section may perform the processing of the flow shown in FIG.
 図25に示すように、ステップS40では、システムコントローラ8は、延命運転ユニットに設定された室内機1の周囲温度として、当該室内機1の吸込温度を取得する。室内機1の周囲温度は、室内空間13aの室温でもよい。あるいは、室内機1の周囲温度は、室内空間13a内で、且つ、当該室内機1の空調対象領域の室温でもよい。これらの場合には、室内空間13aに配置された温度センサ(図示せず)によって、周囲温度が検出される。ここでは、周囲温度として、室内機1の吸込温度を使用する場合について説明する。吸込温度は、例えば、室内機1の吸込口61(図22参照)に設けられた吸気温度センサ46(図1参照)によって検出される。 As shown in FIG. 25, in step S40, the system controller 8 acquires the suction temperature of the indoor unit 1 as the ambient temperature of the indoor unit 1 set as the life-prolonging operation unit. The ambient temperature of the indoor unit 1 may be the room temperature of the indoor space 13a. Alternatively, the ambient temperature of the indoor unit 1 may be the room temperature in the indoor space 13a and in the air-conditioned region of the indoor unit 1 . In these cases, the ambient temperature is detected by a temperature sensor (not shown) arranged in the indoor space 13a. Here, a case will be described in which the suction temperature of the indoor unit 1 is used as the ambient temperature. The intake temperature is detected, for example, by an intake temperature sensor 46 (see FIG. 1) provided at the intake port 61 (see FIG. 22) of the indoor unit 1.
 次に、ステップS41で、システムコントローラ8は、ステップS40で取得した室内機1の吸込温度が、第1範囲以内か否かを判定する。第1範囲とは、図27に示すように、延命運転ユニットに設定された室内機1の設定温度STを中心とし、ST±α(℃)の範囲である。αの値は、予め設定された値である。なお、図27は、図25に示すフィードバック制御で用いられる第1範囲、および、後述する図26に示すフィードバック制御で用いられる第1範囲および第2範囲を説明する説明図である。 Next, in step S41, the system controller 8 determines whether the intake temperature of the indoor unit 1 obtained in step S40 is within the first range. The first range, as shown in FIG. 27, is a range of ST±α (° C.) centering on the set temperature ST of the indoor unit 1 set in the life-prolonging operation unit. The value of α is a preset value. 27 is an explanatory diagram for explaining the first range used in the feedback control shown in FIG. 25, and the first range and the second range used in the feedback control shown in FIG. 26, which will be described later.
 ステップS41の判定で、吸込温度が第1範囲内であれば、システムコントローラ8は、サポート運転ユニットに設定された室内機1が有効にサポート出来ていると判定する。すなわち、システムコントローラ8は、サポート運転ユニットによるサポート運転で、延命運転ユニットに設定された室内機1の空調対象領域の快適性が維持されていると判定する。この場合には、問題がないため、そのまま、図25のフローの処理を終了する。 If it is determined in step S41 that the suction temperature is within the first range, the system controller 8 determines that the indoor unit 1 set as the support operation unit can be effectively supported. That is, the system controller 8 determines that the support operation by the support operation unit maintains comfort in the air-conditioned region of the indoor unit 1 set to the life-prolonging operation unit. In this case, since there is no problem, the process of the flow in FIG. 25 is terminated.
 一方、ステップS41の判定で、吸込温度が第1範囲以内でなければ、システムコントローラ8は、サポート運転ユニットに設定された室内機1が有効にサポート出来ていないと判定する。すなわち、システムコントローラ8は、サポート運転ユニットによるサポート運転を行っているにもかかわらず、延命運転ユニットに設定された室内機1の空調対象領域の快適性が低下していると判定する。この場合、ステップS42に進む。 On the other hand, if it is determined in step S41 that the suction temperature is not within the first range, the system controller 8 determines that the indoor unit 1 set as the support operation unit cannot be effectively supported. That is, the system controller 8 determines that the comfort of the air-conditioned region of the indoor unit 1 set to the life-prolonging operation unit is declining even though the support operation is being performed by the support operation unit. In this case, the process proceeds to step S42.
 ステップS42では、システムコントローラ8は、サポート運転ユニットに設定された室内機1の運転能力を、現在の値から、さらに増加させる。具体的には、システムコントローラ8は、サポート運転ユニットである室内機1のモータ11a(図1および図5参照)の駆動周波数を現在の値から、予め設定された一定値だけ上昇させる。その後、ステップS40の処理に戻る。このように、図25のステップS41の判定で、吸込温度が第1範囲内になるまで、図25に示すステップS40からステップS42までの処理を繰り返し行う。 In step S42, the system controller 8 further increases the operating capability of the indoor unit 1 set as the support operating unit from the current value. Specifically, the system controller 8 increases the drive frequency of the motor 11a (see FIGS. 1 and 5) of the indoor unit 1, which is the support operation unit, from the current value by a preset constant value. After that, the process returns to step S40. In this way, the processing from step S40 to step S42 shown in FIG. 25 is repeated until the suction temperature falls within the first range as determined in step S41 of FIG.
 ここで、ステップS42の処理で、運転能力を増加させる室内機1は、サポート運転ユニットに設定されている室内機1のうちの全ての室内機1でもよいが、少なくとも1つの室内機1であってもよい。その場合、運転能力を増加させる室内機1は、サポート運転ユニットの中で、例えば、電解コンデンサ24a(図5参照)の残寿命の最も長い室内機1、または、サポート運転のランクが低い室内機1を優先して選定する。 Here, in the process of step S42, the indoor units 1 whose driving ability is to be increased may be all the indoor units 1 among the indoor units 1 set as the support operation unit, or at least one indoor unit 1. may In that case, the indoor unit 1 whose driving capacity is to be increased is, for example, the indoor unit 1 with the longest remaining life of the electrolytic capacitor 24a (see FIG. 5) among the support operation units, or the indoor unit with a low support operation rank. 1 will be given priority.
 なお、図25に示すフィードバック制御は、図9に示すランク決定部86が行うランク付けとは別個に実行できる制御である。すなわち、ランク決定部86によるランク付け実行の有無にかかわらず、図25に示すフィードバック制御は実行できる。ランク決定部86によるランク付けを行う場合には、例えば、次のような制御を行ってもよい。すなわち、ランク決定部86で決定されたランク付けに基づいて延命運転およびサポート運転を行い、さらに、図25のフィードバック制御で、サポート運転ユニットの運転能力を微修正するようにしてもよい。 It should be noted that the feedback control shown in FIG. 25 is control that can be executed separately from the ranking performed by the rank determination unit 86 shown in FIG. That is, the feedback control shown in FIG. 25 can be executed regardless of whether or not the rank determination unit 86 performs ranking. When performing ranking by the rank determining unit 86, for example, the following control may be performed. That is, the life-prolonging operation and the support operation may be performed based on the ranking determined by the rank determination unit 86, and the driving ability of the support operation unit may be slightly corrected by the feedback control of FIG.
 また、図25のフローを用いて機械学習を行い、他の似たような状況で、当該機械学習の学習結果を使って、空調システム100の制御を行うようにしてもよい。機械学習を行う場合の入力データは、例えば、延命運転ユニットの室内機1の現在の運転能力、サポート運転ユニットの室内機1の現在の運転能力、吸込温度、および、吸込温度などに基づく延命運転ユニットの空調対象領域の快適性の有無のうちの少なくとも1つとする。また、機械学習を行う場合の出力データは、例えば、サポート運転ユニットの台数変更、および、特定の室内機1のモータ11aの駆動周波数などの運転能力の変更(変化量)などの指令のうちの少なくとも1つとする。このように、機械学習を行っておけば、他の似たような状況で、当該機械学習の学習結果を使って、空調システム100の制御を行うことができる。なお、図25のフローを用いて機械学習を行う場合、入力データは吸込温度であり、出力データはサポート運転ユニットの運転能力の変化量である。 Alternatively, machine learning may be performed using the flow of FIG. 25, and the air conditioning system 100 may be controlled using the results of the machine learning in other similar situations. The input data for machine learning are, for example, the current operating capability of the indoor unit 1 of the life-extending operation unit, the current operating capability of the indoor unit 1 of the support operation unit, the suction temperature, and the life-extending operation based on the suction temperature. At least one of whether or not the air-conditioned area of the unit is comfortable. In addition, the output data when machine learning is performed is, for example, commands such as a change in the number of support operation units and a change (amount of change) in operation capability such as the drive frequency of the motor 11a of a specific indoor unit 1. At least one. By performing machine learning in this way, it is possible to control the air conditioning system 100 using the results of the machine learning in other similar situations. Note that when machine learning is performed using the flow of FIG. 25, the input data is the suction temperature, and the output data is the amount of change in the driving ability of the support operation unit.
 [フィードバック制御の変形例]
 上記の図25に示すフィードバック制御を行っても、状況によっては、サポート運転ユニットが、延命運転ユニットに対する十分なサポートができない場合が想定される。当該状況の例としては、例えば、延命運転ユニットの電解コンデンサ24aの残寿命が少なく延命運転ユニットの運転能力の低減が大きい場合、あるいは、サポート運転ユニットの運転能力に余裕がない場合などが挙げられる。そのような場合には、図26に示す他のフィードバック制御を行ってもよい。
[Modification of feedback control]
Even if the feedback control shown in FIG. 25 is performed, the supporting operation unit may not be able to sufficiently support the life-prolonging operation unit depending on the situation. Examples of such a situation include, for example, a case where the remaining life of the electrolytic capacitor 24a of the life-prolonged operation unit is short and the operating capability of the life-prolonged operation unit is greatly reduced, or a case where the operating capability of the support operation unit has no margin. . In such a case, another feedback control shown in FIG. 26 may be performed.
 図26のフィードバック制御においては、ユーザ36が、空調システム100の延命運転モードにおける運転プランとして、快適性優先プランか寿命優先プランかのいずれか一方を選択して、システムコントローラ8に対して、予め設定しておくことを前提とする。なお、当該プランの設定は、ユーザ36が、コントローラ34a(図7参照)または携帯端末35(図7参照)を操作することで実行できる。 In the feedback control of FIG. 26, the user 36 selects either the comfort-priority plan or the life-priority plan as the operation plan in the life-prolonging operation mode of the air-conditioning system 100, and preliminarily instructs the system controller 8 to It is assumed to be set. The plan can be set by the user 36 by operating the controller 34a (see FIG. 7) or the mobile terminal 35 (see FIG. 7).
 快適性優先プランでは、延命運転ユニットの電解コンデンサ24aの延命よりも、室内空間13aの快適性の維持が優先される。すなわち、快適性優先プランでは、延命運転ユニットの運転能力の低減量を少なくすることで、室内空間13aの快適性を向上させる。この場合、延命運転ユニットの電解コンデンサ24aは、現在の延命運転よりも、残寿命が早く減少してしまうが、室内空間13aの快適性は維持される。この場合、延命運転ユニットの電解コンデンサ24aの残寿命が、予定よりも早くなくなるので、通知部88は、ユーザ36に対して、通常の延命運転とは異なる延命運転を行っていることを通知し、電解コンデンサ24aの早期の交換を促すようにする。 In the comfort priority plan, maintaining the comfort of the indoor space 13a is prioritized over extending the life of the electrolytic capacitor 24a of the life-prolonging operation unit. That is, in the comfort priority plan, the comfort of the indoor space 13a is improved by reducing the amount of reduction in the driving ability of the life-prolonging operation unit. In this case, the remaining life of the electrolytic capacitor 24a of the life-prolonging operation unit decreases faster than in the current life-prolonging operation, but the comfort of the indoor space 13a is maintained. In this case, the remaining life of the electrolytic capacitor 24a of the life-prolonged operation unit runs out earlier than expected, so the notification unit 88 notifies the user 36 that the life-prolonged operation, which is different from the normal life-prolonged operation, is being performed. , early replacement of the electrolytic capacitor 24a.
 寿命優先プランでは、室内空間13aの快適性の維持よりも、延命運転ユニットの電解コンデンサ24aの延命が優先される。すなわち、寿命優先プランでは、延命運転ユニットの運転能力の低下量(またはランク)、および、サポート運転ユニットの運転能力の増加量(またはランク)を変更せずに、現在の運転能力のまま、運転を継続する。その結果、サポート運転ユニットが、延命運転ユニットに対する十分なサポートができない状況が保持されたままとなる。 In the longevity priority plan, prolonging the life of the electrolytic capacitor 24a of the life-prolonging operation unit is prioritized over maintaining the comfort of the indoor space 13a. In other words, in the longevity priority plan, the amount of driving ability reduction (or rank) of the life-sustaining operation unit and the amount of driving ability increase (or rank) of the support operation unit are not changed, and the current driving ability is maintained. to continue. As a result, a situation remains in which the support operation unit cannot sufficiently support the life-prolonging operation unit.
 図26に示すフィードバック制御について説明する。図26は、実施の形態1に係る空調システム100に設けられたシステムコントローラ8で実行される他のフィードバック制御の処理の流れを示すフローチャートである。図26に示すフローの処理は、例えば、システムコントローラ8の延命運転制御部87で実行される。あるいは、その場合に限らず、システムコントローラ8内に、フィードバック制御部(図示せず)を設けて、フィードバック制御部が図26に示すフローの処理を行うようにしてもよい。 The feedback control shown in FIG. 26 will be described. FIG. 26 is a flow chart showing the flow of another feedback control process executed by the system controller 8 provided in the air conditioning system 100 according to the first embodiment. The processing of the flow shown in FIG. 26 is executed by the life-prolonging operation control unit 87 of the system controller 8, for example. Alternatively, without being limited to that case, a feedback control section (not shown) may be provided in the system controller 8, and the feedback control section may perform the processing of the flow shown in FIG.
 図26に示すように、ステップS50では、システムコントローラ8は、延命運転ユニットに設定された室内機1の周囲温度として、当該室内機1の吸込温度を取得する。室内機1の周囲温度は、室内空間13aの室温でもよい。あるいは、室内機1の周囲温度は、室内空間13a内で、且つ、当該室内機1の空調対象領域の室温でもよい。これらの場合には、室内空間13aに配置された温度センサ(図示せず)によって、周囲温度が検出される。ここでは、周囲温度として、室内機1の吸込温度を用いる場合について説明する。吸込温度は、例えば、室内機1の吸込口61(図22参照)に設けられた吸気温度センサ46(図1参照)によって検出される。 As shown in FIG. 26, in step S50, the system controller 8 acquires the suction temperature of the indoor unit 1 as the ambient temperature of the indoor unit 1 set as the life-prolonging operation unit. The ambient temperature of the indoor unit 1 may be the room temperature of the indoor space 13a. Alternatively, the ambient temperature of the indoor unit 1 may be the room temperature in the indoor space 13a and in the air-conditioned region of the indoor unit 1 . In these cases, the ambient temperature is detected by a temperature sensor (not shown) arranged in the indoor space 13a. Here, a case will be described in which the suction temperature of the indoor unit 1 is used as the ambient temperature. The intake temperature is detected, for example, by an intake temperature sensor 46 (see FIG. 1) provided at the intake port 61 (see FIG. 22) of the indoor unit 1.
 次に、ステップS51で、システムコントローラ8は、ステップS50で取得した室内機1の吸込温度が、第1範囲以内か否かを判定する。第1範囲とは、図27に示すように、延命運転ユニットに設定された室内機1の設定温度STを中心とし、ST±α(℃)の範囲である。αの値は、予め設定された値である。 Next, in step S51, the system controller 8 determines whether the intake temperature of the indoor unit 1 obtained in step S50 is within the first range. The first range, as shown in FIG. 27, is a range of ST±α (° C.) centering on the set temperature ST of the indoor unit 1 set in the life-prolonging operation unit. The value of α is a preset value.
 ステップS51の判定で、吸込温度が第1範囲内であれば、システムコントローラ8は、サポート運転ユニットに設定された室内機1が有効にサポート出来ていると判定する。すなわち、システムコントローラ8は、サポート運転ユニットによるサポート運転で、延命運転ユニットに設定された室内機1の空調対象領域の快適性が維持されていると判定する。この場合には、問題がないため、そのまま、図26のフローの処理を終了する。 If it is determined in step S51 that the suction temperature is within the first range, the system controller 8 determines that the indoor unit 1 set as the support operation unit can be effectively supported. That is, the system controller 8 determines that the support operation by the support operation unit maintains comfort in the air-conditioned region of the indoor unit 1 set to the life-prolonging operation unit. In this case, since there is no problem, the process of the flow in FIG. 26 is terminated.
 一方、ステップS51の判定で、吸込温度が第1範囲内でなければ、システムコントローラ8は、サポート運転ユニットに設定された室内機1が有効にサポート出来ていないと判定する。この場合、ステップS52に進む。 On the other hand, if it is determined in step S51 that the suction temperature is not within the first range, the system controller 8 determines that the indoor unit 1 set as the support operation unit cannot be effectively supported. In this case, the process proceeds to step S52.
 ステップS52では、システムコントローラ8は、ステップS50で取得した室内機1の吸込温度が、第2範囲以内か否かを判定する。第2範囲とは、図27に示すように、延命運転ユニットに設定された室内機1の設定温度STを中心とし、ST±β(℃)の範囲である。βの値は、予め設定された値である。βの値は、αの値より大きい。従って、第2範囲は、第1範囲より広い範囲であり、且つ、第1範囲を含む範囲である。ステップS52の判定で、吸込温度が第2範囲以内であれば、ステップS53に進み、一方、吸込温度が第2範囲以内でなければ、ステップS55に進む。 In step S52, the system controller 8 determines whether or not the intake temperature of the indoor unit 1 obtained in step S50 is within the second range. As shown in FIG. 27, the second range is a range of ST±β (° C.) centering on the set temperature ST of the indoor unit 1 set in the life-prolonging operation unit. The value of β is a preset value. The value of β is greater than the value of α. Therefore, the second range is a range that is wider than the first range and includes the first range. If it is determined in step S52 that the suction temperature is within the second range, the process proceeds to step S53. On the other hand, if the suction temperature is not within the second range, the process proceeds to step S55.
 ステップS53では、システムコントローラ8は、サポート運転ユニットに設定されている室内機1の運転能力をさらに増加させることが可能か否かを判定する。具体的には、システムコントローラ8は、サポート運転ユニットである室内機1のモータ11a(図1および図5参照)の現在の駆動周波数が、予め設定された第2閾値より大きいか否かを判定する。第2閾値は、例えば、モータ11aの設計上の定格周波数などに基づいて、予め設定される。ステップS53の判定で、運転能力の増加が可能であれば、ステップS54に進み、一方、運転能力の増加が可能でなければ、ステップS55に進む。 In step S53, the system controller 8 determines whether or not it is possible to further increase the operability of the indoor unit 1 set as the support operation unit. Specifically, the system controller 8 determines whether or not the current drive frequency of the motor 11a (see FIGS. 1 and 5) of the indoor unit 1, which is the support operation unit, is greater than a preset second threshold. do. The second threshold is set in advance based on, for example, the designed rated frequency of the motor 11a. If it is determined in step S53 that the driving ability can be increased, the process proceeds to step S54. On the other hand, if the driving ability cannot be increased, the process proceeds to step S55.
 ステップS54では、システムコントローラ8は、サポート運転ユニットに設定された室内機1の運転能力を、現在の値から、さらに増加させる。具体的には、システムコントローラ8は、サポート運転ユニットである室内機1のモータ11a(図1および図5参照)の駆動周波数を現在の値から、予め設定された一定値だけ上昇させる。その後、ステップS50の処理に戻る。このように、図26のステップS51の判定で、吸込温度が第1範囲内になるまで、図26に示すステップS50からステップS54までの処理を繰り返し行う。 In step S54, the system controller 8 further increases the operating capability of the indoor unit 1 set as the support operating unit from the current value. Specifically, the system controller 8 increases the drive frequency of the motor 11a (see FIGS. 1 and 5) of the indoor unit 1, which is the support operation unit, from the current value by a preset constant value. After that, the process returns to step S50. In this way, the processing from step S50 to step S54 shown in FIG. 26 is repeated until the suction temperature falls within the first range as determined in step S51 of FIG.
 ここで、ステップS54の処理で、運転能力を増加させる室内機1は、サポート運転ユニットに設定されている室内機1のうちの全ての室内機1でもよいが、少なくとも1つの室内機1であってもよい。その場合、運転能力を増加させる室内機1は、サポート運転ユニットの中で、例えば、電解コンデンサ24a(図5参照)の残寿命の最も長い室内機1、または、サポート運転のランクが低い室内機1を優先して選定する。 Here, in the process of step S54, the indoor units 1 whose driving ability is to be increased may be all indoor units 1 among the indoor units 1 set as the support operation unit, but may be at least one indoor unit 1. may In that case, the indoor unit 1 whose driving capacity is to be increased is, for example, the indoor unit 1 with the longest remaining life of the electrolytic capacitor 24a (see FIG. 5) among the support operation units, or the indoor unit with a low support operation rank. 1 will be given priority.
 一方、ステップS52またはステップS53からステップS55に進む場合は、延命運転ユニットの電解コンデンサ24aの残寿命が少なく延命運転ユニットの運転能力の低減が大きい場合、あるいは、サポート運転ユニットの運転能力に余裕がない場合などである。 On the other hand, when proceeding from step S52 or step S53 to step S55, the remaining life of the electrolytic capacitor 24a of the life-prolonging operation unit is small and the reduction in the operating ability of the life-prolonging operation unit is large, or the operating ability of the support operation unit has no margin. For example, if there is no
 ステップS55では、システムコントローラ8は、空調システム100の延命運転モードにおける運転プランが、快適性優先プランか寿命優先プランかを判定する。ステップS55の判定で、空調システム100の運転モードが快適性優先プランに設定されていれば、ステップS56に進む。 In step S55, the system controller 8 determines whether the operation plan in the life extension operation mode of the air conditioning system 100 is a comfort-priority plan or a life-priority plan. If it is determined in step S55 that the operation mode of the air conditioning system 100 is set to the comfort priority plan, the process proceeds to step S56.
 一方、ステップS55の判定で、空調システム100の運転モードが寿命優先プランに設定されていれば、そのまま、図26のフローの処理を終了する。この場合、室内空間13aにおいて、延命運転ユニットの空調対象領域の快適性は維持できないが、延命運転ユニットの電解コンデンサ24aの延命措置は継続される。 On the other hand, if it is determined in step S55 that the operation mode of the air conditioning system 100 is set to the lifespan priority plan, the process of the flow of FIG. 26 is terminated. In this case, in the indoor space 13a, the comfort of the air-conditioned area of the life-prolonging operation unit cannot be maintained, but the life-prolonging action of the electrolytic capacitor 24a of the life-prolonging operation unit is continued.
 ステップS56では、延命運転ユニットの空調対象領域の快適性を改善させるために、システムコントローラ8は、延命運転ユニットに設定された室内機1の運転能力を、現在の値から増加させる。具体的には、システムコントローラ8は、延命運転ユニットである室内機1のモータ11a(図1および図5参照)の駆動周波数を現在の値から、予め設定された一定値だけ上昇させる。この場合、延命運転ユニットの電解コンデンサ24aの残寿命の低減は促進されるが、室内空間13aにおいて、延命運転ユニットの空調対象領域の快適性は維持できる。 In step S56, the system controller 8 increases the operating capability of the indoor unit 1 set in the life-prolonging operation unit from the current value in order to improve the comfort of the air-conditioned area of the life-prolonging operation unit. Specifically, the system controller 8 increases the drive frequency of the motor 11a (see FIGS. 1 and 5) of the indoor unit 1, which is a life-prolonging operation unit, from the current value by a preset constant value. In this case, the remaining life of the electrolytic capacitor 24a of the life-extending operation unit is reduced, but the comfort of the air-conditioned area of the life-extending operation unit can be maintained in the indoor space 13a.
 なお、図26のフローにおいて、ステップS52およびステップS53を実行する順序は、逆であってもよい。すなわち、ステップS53を実行した後に、ステップS52を実行してもよい。また、ステップS52およびステップS53のいずれか一方のみを実行するようにしてもよい。 Note that in the flow of FIG. 26, the order of executing steps S52 and S53 may be reversed. That is, step S52 may be executed after executing step S53. Alternatively, only one of steps S52 and S53 may be executed.
 [室内機1の構成]
 図22は、実施の形態1に係る空調システム100に設けられた室内機1の構成を示す平面図である。図22は、室内空間13aにおいて、床13c側から天井13bを見上げた状態を示している。
[Configuration of indoor unit 1]
22 is a plan view showing the configuration of the indoor unit 1 provided in the air conditioning system 100 according to Embodiment 1. FIG. FIG. 22 shows a state of looking up at the ceiling 13b from the floor 13c side in the indoor space 13a.
 図22に示すように、室内機1は、室内空間13aの天井13bに取り付けられている。室内機1は、平面視で矩形形状を有している。室内機1は、4つの吹出口60と、1つの吸込口61と、吹出口60と吸込口61との間に設けられた室内熱交換器10(図1参照)と、室内ファン11(図1参照)と、を有している。吸込口61は、室内機1の中央部分に配置されている。4つの吹出口60は、室内機1の外周に沿って配置されている。各吹出口60は、細長い矩形形状を有している。4つの吹出口60は、隣接する2つの吹出口60の長手方向が互いに直交する向きに配置されている。すなわち、4つの吹出口60は、平面視で矩形形状を形成するように、周方向に沿って配置されている。従って、4つの吹出口60から吹き出される空気の向きは、4方向に設定される。さらに、室内機1は、吹出口60に設けられた風向制御板62を有している。風向制御板62の向きは、システムコントローラ8によって制御される。また、各吹出口60から吹き出される空気の風速(風量)は、システムコントローラ8によって制御される。 As shown in FIG. 22, the indoor unit 1 is attached to the ceiling 13b of the indoor space 13a. The indoor unit 1 has a rectangular shape in plan view. The indoor unit 1 includes four air outlets 60, one air inlet 61, an indoor heat exchanger 10 (see FIG. 1) provided between the air outlet 60 and the air inlet 61, and an indoor fan 11 (see FIG. 1). 1) and. The suction port 61 is arranged in the central portion of the indoor unit 1 . The four outlets 60 are arranged along the outer circumference of the indoor unit 1 . Each outlet 60 has an elongated rectangular shape. The four outlets 60 are arranged such that the longitudinal directions of two adjacent outlets 60 are perpendicular to each other. That is, the four outlets 60 are arranged along the circumferential direction so as to form a rectangular shape in plan view. Therefore, the directions of the air blown out from the four outlets 60 are set in four directions. Furthermore, the indoor unit 1 has a wind direction control plate 62 provided at the air outlet 60 . The orientation of the wind direction control plate 62 is controlled by the system controller 8 . Also, the wind velocity (air volume) of the air blown out from each outlet 60 is controlled by the system controller 8 .
 風向制御板62は、上下風向を調整する上下風向板62aと、左右風向を調整する左右風向板62bとを有している。なお、ここでの左右方向とは、各吹出口60の長手方向(幅方向)を意味する。上下風向板62aは、吹出口60から吹き出される空気の上下方向の風向を調整する。また、左右風向板62bは、吹出口60から吹き出される空気の左右方向の風向を調整する。左右風向板62bは、複数のベーン62bbから構成されている。各吹出口19に設けられた風向制御板62は、システムコントローラ8の制御により、それぞれ、独立して動作することが可能である。 The wind direction control plate 62 has a vertical wind direction plate 62a for adjusting the vertical wind direction and a horizontal wind direction plate 62b for adjusting the horizontal wind direction. The horizontal direction here means the longitudinal direction (width direction) of each outlet 60 . The vertical wind direction plate 62a adjusts the vertical wind direction of the air blown out from the blower outlet 60. As shown in FIG. Further, the left/right wind direction plate 62b adjusts the left/right wind direction of the air blown out from the outlet 60. As shown in FIG. The left/right wind direction plate 62b is composed of a plurality of vanes 62bb. The wind direction control plate 62 provided at each outlet 19 can operate independently under the control of the system controller 8 .
 空調システム100が「通常運転モード」で運転している場合、各室内機1の風速(風量)、風向、および、設定温度などの各設定は、ユーザによって指定された値、あるいは、デフォルト値などにより自動設定された値である。 When the air conditioning system 100 is operating in the "normal operation mode", each setting such as the wind speed (air volume), wind direction, and set temperature of each indoor unit 1 is a value specified by the user or a default value. This value is automatically set by
 [実施の形態1の変形例]
 <延命運転ユニットの動作の変形例>
 上記の説明においては、延命運転モード中の動作として、延命運転ユニットに設定された室内機1のモータ11aの駆動周波数を低下することを例に挙げて説明した。しかしながら、この場合に限らず、次の動作を行ってもよい。
 ・延命運転ユニットは、通常運転モードの場合の風速(または風量)よりも、風速(または風量)を小さくする。
 ・延命運転ユニットの上下方向および左右方向の風向は、通常運転モードの場合の風向と同じでよい。
 ・延命運転ユニットは、冷房時の設定温度を通常運転モードの場合より高くする。また、延命運転ユニットは、暖房時の設定温度を通常運転モードの場合の値より低くする。
 ・延命運転ユニットは、間欠運転を行う。
[Modification of Embodiment 1]
<Modified example of the operation of the life-sustaining operation unit>
In the above description, as an operation during the life-prolonging operation mode, an example of lowering the driving frequency of the motor 11a of the indoor unit 1 set to the life-prolonging operation unit has been described. However, the following operation may be performed without being limited to this case.
- The life-prolonging operation unit makes the wind speed (or air volume) smaller than the wind speed (or air volume) in the normal operation mode.
・The vertical and horizontal wind directions of the life-prolonging operation unit may be the same as those in the normal operation mode.
・The set temperature for the extended-life operation unit during cooling is set higher than in the normal operation mode. In addition, the life-prolonging operation unit sets the set temperature during heating to be lower than the value for the normal operation mode.
・The life-prolonging operation unit operates intermittently.
 <サポート運転ユニットの動作の変形例>
 上記の説明においては、延命運転モード中の動作として、サポート運転ユニットに設定された室内機1のモータ11aの駆動周波数を増加することを例に挙げて説明した。しかしながら、この場合に限らず、次の動作を行ってもよい。
 ・サポート運転ユニットは、通常運転モードの場合の風速(または風量)よりも、風速(または風量)を大きくする。
 ・サポート運転ユニットの上下方向および左右方向の風向は、延命運転ユニットの空調対象領域まで届くように変更する。すなわち、サポート運転ユニット自身の空調対象領域と延命運転ユニットの空調対象領域との両方に向けて送風できるように風向を変更する。あるいは、風向をスイングに設定する。
 ・サポート運転ユニットは、冷房時の設定温度を通常運転モードの場合より低くする。また、サポート運転ユニットは、暖房時の設定温度を通常運転モードの場合より高くする。
<Modified example of the operation of the support operation unit>
In the above description, as an operation during the life-prolonging operation mode, increasing the drive frequency of the motor 11a of the indoor unit 1 set to the support operation unit has been described as an example. However, the following operation may be performed without being limited to this case.
- The support operation unit makes the wind speed (or air volume) larger than the wind speed (or air volume) in the normal operation mode.
・ Change the vertical and horizontal wind directions of the support operation unit so that it reaches the air conditioning target area of the life-prolonging operation unit. That is, the wind direction is changed so that the air can be blown toward both the air conditioning target area of the support operation unit itself and the air conditioning target area of the life-prolonging operation unit. Alternatively, set the wind direction to swing.
・For the support operation unit, the set temperature during cooling is set lower than in the normal operation mode. Also, the support operation unit sets the temperature setting during heating higher than that in the normal operation mode.
 <通知部88の変形例>
 また、図22に示すように、室内機1の通知部88が、表示パネル63を有していてもよい。表示パネル63には、運転ランプ63a、延命運転ランプ63b、および、サポート運転ランプ63cなどが設けられている。表示パネル63は、室内機1の筐体の下面パネル64に設けられている。運転ランプ63aは、空調システム100がONの状態のときに点灯し、空調システム100がOFFの状態のときに消灯する。延命運転ランプ63bは、室内機1が延命運転ユニットに設定されたときに点灯する。すなわち、延命運転ランプ63bは、点灯することで、室内機1が延命運転ユニットに設定されたことをユーザに通知する。サポート運転ランプ63cは、室内機1がサポート運転ユニットに設定されたときに点灯する。すなわち、サポート運転ランプ63cは、点灯することで、室内機1がサポート運転ユニットに設定されたことをユーザに通知する。なお、延命運転ユニットに設定された室内機1の電解コンデンサ24aが交換されたときに、交換を行った作業員が、室内機1の内部に設置されたリセットボタン(図示省略)を操作する。当該操作により、延命運転ランプ63bおよびサポート運転ランプ63cは消灯する。このように、通知部88が、表示パネル63を有しており、表示パネル63に設けられたランプにより、空調システム100が延命運転モードに移行されたことをユーザに通知するようにしてもよい。
<Modified Example of Notification Unit 88>
Further, as shown in FIG. 22 , the notification unit 88 of the indoor unit 1 may have a display panel 63 . The display panel 63 is provided with an operation lamp 63a, a life extension operation lamp 63b, a support operation lamp 63c, and the like. The display panel 63 is provided on the bottom panel 64 of the housing of the indoor unit 1 . The operation lamp 63a is lit when the air conditioning system 100 is in the ON state, and is extinguished when the air conditioning system 100 is in the OFF state. The life-prolonging operation lamp 63b lights up when the indoor unit 1 is set to the life-prolonging operation unit. That is, the life-prolonging operation lamp 63b lights to notify the user that the indoor unit 1 has been set to the life-prolonging operation unit. The support operation lamp 63c lights up when the indoor unit 1 is set to the support operation unit. That is, the support operation lamp 63c lights up to notify the user that the indoor unit 1 has been set as the support operation unit. When the electrolytic capacitor 24a of the indoor unit 1 set to the life-prolonging operation unit is replaced, the worker who performed the replacement operates a reset button (not shown) installed inside the indoor unit 1. By this operation, the life-prolonging operation lamp 63b and the support operation lamp 63c are turned off. In this way, the notification unit 88 has the display panel 63, and the lamp provided on the display panel 63 may notify the user that the air conditioning system 100 has transitioned to the life-prolonging operation mode. .
 [実施の形態1の効果]
 以上のように、実施の形態1においては、制御部であるシステムコントローラ8が、電解コンデンサ24aの残寿命が第1閾値以下の室内機1があった場合に、当該室内機1を「延命運転ユニット」に設定する。また、システムコントローラ8は、「延命運転ユニット」に設定された室内機1の周囲に配置された他の室内機1を「サポート運転ユニット」に設定する。そして、「延命運転ユニット」に設定された室内機1の運転能力を抑制させ、「サポート運転ユニット」の運転能力を増加させる。これにより、室内空間13aの快適性を維持しながら、「延命運転ユニット」に設定された室内機1の電解コンデンサ24aの延命を図ることができる。
[Effect of Embodiment 1]
As described above, in Embodiment 1, when there is an indoor unit 1 in which the remaining life of the electrolytic capacitor 24a is equal to or less than the first threshold, the system controller 8, which is a control unit, causes the indoor unit 1 to perform "life extension operation." unit”. In addition, the system controller 8 sets the other indoor units 1 arranged around the indoor unit 1 set to the "life-prolonging operation unit" to the "support operation unit". Then, the operability of the indoor unit 1 set to the "life-prolonging operation unit" is suppressed, and the operability of the "support operation unit" is increased. As a result, it is possible to extend the life of the electrolytic capacitor 24a of the indoor unit 1 set to the "life-extending operation unit" while maintaining the comfort of the indoor space 13a.
 また、実施の形態1では、システムコントローラ8が、上記の指標(1)~(3)を用いて、「延命運転ユニット」の延命運転の度合い、および、「サポート運転ユニット」のサポート運命度合いを示すランク決定する。そして、システムコントローラ8は、決定したランクに基づき、「延命運転ユニット」のモータ11aの駆動周波数の低下幅を決定する。同様に、システムコントローラ8は、決定したランクに基づき、「サポート運転ユニット」のモータ11aの駆動周波数の増加幅を決定する。これにより、空調システム100の使用環境に合わせた適切な値に低下幅および増加幅を決定することができる。 Further, in the first embodiment, the system controller 8 uses the indicators (1) to (3) described above to determine the degree of life-prolonging operation of the "life-prolonging operation unit" and the degree of support fate of the "supporting operation unit." determine the rank shown. Based on the determined rank, the system controller 8 determines the extent of reduction in the drive frequency of the motor 11a of the "life-prolonging operation unit". Similarly, the system controller 8 determines the increase width of the drive frequency of the motor 11a of the "support operation unit" based on the determined rank. As a result, it is possible to determine the range of decrease and the range of increase to appropriate values that match the usage environment of the air conditioning system 100 .
 さらに、実施の形態1においては、通知部88が、電解コンデンサ24aの残寿命の長さに応じて異なる通知を生成し、段階的に、複数回にわたって、ユーザ36等に対して、電解コンデンサ24aの交換の案内を行う。これにより、ユーザ36は、電解コンデンサ24a交換の時期を選べる選択肢が持てる。また、電解コンデンサ24aが故障する前に、電解コンデンサ24aの交換を促すことができる。 Furthermore, in the first embodiment, the notification unit 88 generates different notifications according to the length of the remaining life of the electrolytic capacitor 24a, and in a stepwise manner, a plurality of times, to the user 36, etc. to guide the replacement of This allows the user 36 to have the option of selecting the timing of replacement of the electrolytic capacitor 24a. Moreover, replacement of the electrolytic capacitor 24a can be encouraged before the electrolytic capacitor 24a fails.
 また、実施の形態1においては、電源不平衡判定部814の判定結果に基づいて、
リプル電流算出部815が、リプル電流値の算出に用いる計算式を、上記の(10)式および(11)式の中から選択する。これにより、リプル電流値の精度が向上する。
Further, in Embodiment 1, based on the determination result of the power imbalance determination unit 814,
Ripple current calculator 815 selects the calculation formula used for calculating the ripple current value from the above formulas (10) and (11). This improves the accuracy of the ripple current value.
 さらに、実施の形態1においては、補正係数算出部811が算出した補正係数αおよびβを用いて、リプル電流算出部815が、算出したリプル電流値を補正する。そのため、リプル電流値の精度がさらに向上する。 Furthermore, in Embodiment 1, the ripple current calculation unit 815 corrects the calculated ripple current value using the correction coefficients α and β calculated by the correction coefficient calculation unit 811 . Therefore, the accuracy of the ripple current value is further improved.
 1 室内機、2 室外機、3 圧縮機、4 四方弁、5 冷媒配管、6 室外熱交換器、7 絞り装置、8 システムコントローラ、8a 記憶部、9 室外ファン、9a モータ、9b 翼部、10 室内熱交換器、11 室内ファン、11a モータ、11b 翼部、12 中継ユニット、13 建物、13a 室内空間、13b 天井、13c 床、14 壁、20 交流電源、20A 直流電源、21 電力変換装置、21A 電力変換装置、22 整流部、23 リアクトル、24 DCリンク部、24a 電解コンデンサ、25 インバータ部、25a 上アームスイッチング素子、25b 下アームスイッチング素子、25c 還流用ダイオード、26 駆動回路、27 インバータ制御部、28 矩形枠、29 電圧波形、29a 脈動成分、30 通信網、31 施設管理会社、32 メンテナンス会社、33 クラウド、34 リモートコントローラ、34a コントローラ、35 携帯端末、35a 表示画面、36 ユーザ、37 基地局、40 第1電圧センサ、41 第1電流センサ、42 第2電圧センサ、45 外気温度センサ、46 吸気温度センサ、50 実線、51 点線、52 破線、53 データテーブル、60 吹出口、61 吸込口、62 風向制御板、62a 上下風向板、62b 左右風向板、62bb ベーン、63 表示パネル、63a 運転ランプ、63b 延命運転ランプ、63c サポート運転ランプ、64 下面パネル、81 コンデンサ残寿命推定部、82 延命運転モード判定部、83 室内温度検出部、84 コンデンサ周囲温度検出部、85 対象範囲検出部、86 ランク決定部、87 延命運転制御部、88 通知部、91 室内制御部、92 室外制御部、100 空調システム、100A 空調システム、810 パラメータ取得部、810a 電源不平衡率検出部、810b 入力電力検出部、810c 電源インピーダンス検出部、810d 電源電圧検出部、811 補正係数算出部、812 電源周波数検出部、813 リプル電圧検出部、814 電源不平衡判定部、815 リプル電流算出部、816 運転時間算出部、817 寿命推定部、A パラメータ、B パラメータ、C パラメータ、D パラメータ、F 出力力率、Ic リプル電流値、Ic* 実リプル電流値、Iout 出力電流、L 系統インダクタンス、Loss パワーモジュール損失、N 負極母線、P 正極母線、Pin 入力電力、Pout 出力電力、R 系統抵抗、R1 レジスタンス成分、T 周期、Ta 周囲温度、Tx 芯温度、Uave 平均値、Umax 最大値、Umin 最小値、Vdc 直流電圧、Vout 出力電圧、X リアクタンス成分、f 電源周波数、ΔT 上昇値、ΔV リプル電圧。 1 Indoor unit, 2 Outdoor unit, 3 Compressor, 4 Four-way valve, 5 Refrigerant piping, 6 Outdoor heat exchanger, 7 Expansion device, 8 System controller, 8a Storage unit, 9 Outdoor fan, 9a Motor, 9b Wing part, 10 Indoor heat exchanger, 11 Indoor fan, 11a Motor, 11b Wing, 12 Relay unit, 13 Building, 13a Indoor space, 13b Ceiling, 13c Floor, 14 Wall, 20 AC power supply, 20A DC power supply, 21 Power converter, 21A power converter, 22 rectifier, 23 reactor, 24 DC link, 24a electrolytic capacitor, 25 inverter, 25a upper arm switching element, 25b lower arm switching element, 25c freewheeling diode, 26 drive circuit, 27 inverter control unit, 28 Rectangular frame, 29 Voltage waveform, 29a Pulsation component, 30 Communication network, 31 Facility management company, 32 Maintenance company, 33 Cloud, 34 Remote controller, 34a Controller, 35 Mobile terminal, 35a Display screen, 36 User, 37 Base station, 40 first voltage sensor, 41 first current sensor, 42 second voltage sensor, 45 outside air temperature sensor, 46 intake air temperature sensor, 50 solid line, 51 dotted line, 52 dashed line, 53 data table, 60 outlet, 61 inlet, 62 Wind direction control plate, 62a Vertical wind direction plate, 62b Left and right wind direction plate, 62bb Vane, 63 Display panel, 63a Operation lamp, 63b Life extension operation lamp, 63c Support operation lamp, 64 Bottom panel, 81 Condenser remaining life estimator, 82 Life extension operation mode Judgment unit, 83 Indoor temperature detection unit, 84 Condenser ambient temperature detection unit, 85 Target range detection unit, 86 Rank determination unit, 87 Life extension operation control unit, 88 Notification unit, 91 Indoor control unit, 92 Outdoor control unit, 100 Air conditioning system , 100A air conditioning system, 810 parameter acquisition unit, 810a power unbalance rate detection unit, 810b input power detection unit, 810c power supply impedance detection unit, 810d power supply voltage detection unit, 811 correction coefficient calculation unit, 812 power supply frequency detection unit, 813 ripple Voltage detection unit, 814 power unbalance determination unit, 815 ripple current calculation unit, 816 operating time calculation unit, 817 life estimation unit, A parameter, B parameter, C parameter, D parameter, F output power factor, Ic ripple current value, Ic* Actual ripple current value, Iout output current, L system inductor Power module loss, N Negative bus, P Positive bus, Pin Input power, Pout Output power, R System resistance, R1 Resistance component, T Period, Ta Ambient temperature, Tx Core temperature, Uave Average value, Umax Maximum value, Umin minimum value, Vdc DC voltage, Vout output voltage, X reactance component, f power supply frequency, ΔT rise value, ΔV ripple voltage.

Claims (17)

  1.  室外機と、
     室内空間に設置され、前記室外機に対して冷媒配管を介して接続された、2以上の室内機と、
     前記室外機および前記室内機の動作を制御する制御部と、
     を備え、
     各前記室内機は、
     内部を流れる冷媒と空気との間で熱交換を行う室内熱交換器と、
     モータと翼部とを有し、前記室内熱交換器に向けて前記空気を送風する室内ファンと、
     交流電源から出力される交流電圧を整流する整流部と、
     前記整流部から出力される直流電圧を平滑する電解コンデンサと、
     前記電解コンデンサで平滑された直流電圧を交流電圧に変換して前記モータに出力するインバータ部と、
     を有し、
     前記制御部は、
     前記室内機ごとに、前記交流電源の電源周波数と、前記電解コンデンサが出力する直流電圧に含まれるリプル電圧と、に基づいて、前記電解コンデンサの残寿命を算出するコンデンサ残寿命推定部を有し、
     前記残寿命に基づいて延命運転ユニットに設定する室内機を選択し、前記延命運転ユニットに設定された前記室内機の空調対象領域への送風が可能な範囲または位置に配置された少なくとも1つの他の室内機をサポート運転ユニットに設定して、
     前記延命運転ユニットに設定された前記室内機の運転能力を低減させ、前記サポート運転ユニットに設定された前記室内機の運転能力を増加させる、
     空調システム。
    outdoor unit and
    two or more indoor units installed in an indoor space and connected to the outdoor unit via refrigerant pipes;
    a control unit that controls the operation of the outdoor unit and the indoor unit;
    with
    Each of the indoor units
    an indoor heat exchanger that exchanges heat between the refrigerant flowing inside and the air;
    an indoor fan that has a motor and blades and blows the air toward the indoor heat exchanger;
    a rectifier that rectifies an AC voltage output from an AC power supply;
    an electrolytic capacitor that smoothes the DC voltage output from the rectifying unit;
    an inverter unit that converts the DC voltage smoothed by the electrolytic capacitor into an AC voltage and outputs the AC voltage to the motor;
    has
    The control unit
    Each indoor unit has a capacitor remaining life estimating unit that calculates the remaining life of the electrolytic capacitor based on the power supply frequency of the AC power supply and the ripple voltage included in the DC voltage output from the electrolytic capacitor. ,
    At least one other unit that selects an indoor unit to be set as a life-extending operation unit based on the remaining life, and is placed in a range or position where air can be blown to an air-conditioning target area of the indoor unit set as the life-extending operation unit. Set the indoor unit of as a support operation unit,
    reducing the operability of the indoor unit set to the life-prolonging operation unit and increasing the operability of the indoor unit set to the support operation unit;
    air conditioning system.
  2.  前記制御部は、
     前記コンデンサ残寿命推定部が算出した前記残寿命が第1閾値以下の前記室内機を前記延命運転ユニットに設定し、空調システムの運転モードを通常運転モードから延命運転モードに変更する延命運転モード判定部を、有する、
     請求項1に記載の空調システム。
    The control unit
    Life-extending operation mode determination for setting the indoor unit having the remaining life equal to or less than a first threshold calculated by the capacitor remaining life estimating unit as the life-extending operation unit, and changing the operation mode of the air conditioning system from the normal operation mode to the life-extending operation mode. have a part
    The air conditioning system of Claim 1.
  3.  前記制御部は、
     前記延命運転ユニットに設定された前記室内機の前記室内ファンの前記モータの駆動周波数を、通常運転モード時の値より低減させ、
     前記サポート運転ユニットに設定された前記室内機の前記室内ファンの前記モータの駆動周波数を、通常運転モード時の値より増加させる、
     請求項1または2に記載の空調システム。
    The control unit
    reducing the driving frequency of the motor of the indoor fan of the indoor unit set in the life-prolonging operation unit from the value in the normal operation mode,
    increasing the drive frequency of the motor of the indoor fan of the indoor unit set in the support operation unit from the value in the normal operation mode;
    The air conditioning system according to claim 1 or 2.
  4.  前記制御部は、
     前記延命運転ユニットにおける延命運転の度合いを示すランクを決定するランク決定部を有し、
     前記ランク決定部は、前記室内空間の室内温度と設定温度との差の絶対値、前記電解コンデンサの周囲温度、および、前記延命運転ユニットに設定された前記室内機の空調対象領域の範囲、のうちの少なくとも1つの指標に基づいて、前記ランクを決定する、
     請求項1~3のいずれか1項に記載の空調システム。
    The control unit
    a rank determining unit that determines a rank indicating the degree of life-sustaining operation in the life-sustaining operation unit;
    The rank determination unit determines the absolute value of the difference between the indoor temperature of the indoor space and the set temperature, the ambient temperature of the electrolytic capacitor, and the range of the air-conditioned area of the indoor unit set in the life-extending operation unit. determining the rank based on at least one metric of
    The air conditioning system according to any one of claims 1-3.
  5.  前記制御部は、
     前記ランク決定部によって決定されたランクに基づいて、前記延命運転ユニットに設定された前記室内機の前記室内ファンの前記モータの駆動周波数を低下させる低下幅を決定し、
     前記ランク決定部によって決定されたランクに基づいて、前記サポート運転ユニットに設定された前記室内機の前記室内ファンの前記モータの駆動周波数を増加させる増加幅を決定する、
     請求項3に従属する請求項4に記載の空調システム。
    The control unit
    Based on the rank determined by the rank determination unit, determining a decrease width for decreasing the drive frequency of the motor of the indoor fan of the indoor unit set in the life-prolonging operation unit;
    Based on the rank determined by the rank determination unit, determining an increase width for increasing the drive frequency of the motor of the indoor fan of the indoor unit set in the support operation unit;
    An air conditioning system as claimed in Claim 4 when dependent from Claim 3.
  6.  前記制御部が少なくとも1つの前記室内機を延命運転ユニットに設定した場合に、通知を出力する通知部を備えた、
     請求項1~5のいずれか1項に記載の空調システム。
    A notification unit that outputs a notification when the control unit sets at least one of the indoor units to a life-extending operation unit,
    The air conditioning system according to any one of claims 1-5.
  7.  前記通知部は、前記コンデンサ残寿命推定部が算出した前記電解コンデンサの残寿命の長さに応じて異なる通知を生成し、
     段階的に複数回にわたって前記通知を出力する、
     請求項6に記載の空調システム。
    The notification unit generates different notifications according to the length of remaining life of the electrolytic capacitor calculated by the remaining capacitor life estimation unit,
    outputting the notification multiple times in stages;
    The air conditioning system of claim 6.
  8.  前記コンデンサ残寿命推定部は、
     前記電解コンデンサが出力する直流電圧に含まれるリプル電圧を検出するリプル電圧検出部と、
     前記交流電源の電源周波数を検出する電源周波数検出部と、
     前記リプル電圧と前記電源周波数とに基づいて、前記電解コンデンサのリプル電流を算出するリプル電流算出部と、
     前記リプル電流と前記電解コンデンサの周囲温度とに基づいて、前記電解コンデンサの芯温度を算出し、前記芯温度に基づいて、前記電解コンデンサの残寿命を算出する寿命推定部と
     を有している、
     請求項1~6のいずれか1項に記載の空調システム。
    The capacitor remaining life estimating unit,
    a ripple voltage detection unit that detects a ripple voltage included in the DC voltage output by the electrolytic capacitor;
    a power frequency detection unit that detects the power frequency of the AC power supply;
    a ripple current calculator that calculates the ripple current of the electrolytic capacitor based on the ripple voltage and the power supply frequency;
    a life estimating unit that calculates the core temperature of the electrolytic capacitor based on the ripple current and the ambient temperature of the electrolytic capacitor, and calculates the remaining life of the electrolytic capacitor based on the core temperature. ,
    The air conditioning system according to any one of claims 1-6.
  9.  前記コンデンサ残寿命推定部は、
     前記交流電源の不平衡の有無を判定する電源不平衡判定部
     を有し、
     前記リプル電流算出部は、
     前記交流電源に前記不平衡が無い場合に、前記リプル電圧と前記電源周波数とに基づいて、前記電解コンデンサの前記リプル電流を算出する第1計算式と、
     前記交流電源に前記不平衡が有る場合に、前記リプル電圧と前記電源周波数とに基づいて、前記電解コンデンサの前記リプル電流を算出する第2計算式と、
     を有しており、
     前記リプル電流算出部は、前記電源不平衡判定部の判定結果に基づいて、前記第1計算式および前記第2計算式のうちの一方を用いて前記電解コンデンサの前記リプル電流を算出する、
     請求項8に記載の空調システム。
    The capacitor remaining life estimating unit,
    a power source imbalance determination unit that determines whether or not there is an imbalance in the AC power source;
    The ripple current calculator,
    a first calculation formula for calculating the ripple current of the electrolytic capacitor based on the ripple voltage and the power supply frequency when the AC power supply does not have the unbalance;
    a second calculation formula for calculating the ripple current of the electrolytic capacitor based on the ripple voltage and the power supply frequency when the AC power supply has the unbalance;
    and
    The ripple current calculation unit calculates the ripple current of the electrolytic capacitor using one of the first calculation formula and the second calculation formula based on the determination result of the power imbalance determination unit.
    An air conditioning system according to claim 8 .
  10.  前記コンデンサ残寿命推定部は、
     前記交流電源の電源不平衡率、前記インバータ部に入力される入力電力、前記交流電源の電源インピーダンス、および、前記交流電源の電源電圧のうちの少なくとも1つのパラメータの値を取得するパラメータ取得部と、
     前記パラメータ取得部が取得した前記パラメータの値に基づいて、前記リプル電流算出部が算出する前記リプル電流を補正する補正係数を算出する補正係数算出部と、
     を有し、
     前記リプル電流算出部は、算出した前記リプル電流に対して前記補正係数を乗算することで、前記リプル電流を補正する、
     請求項8または9に記載の空調システム。
    The capacitor remaining life estimating unit,
    a parameter acquisition unit that acquires the value of at least one parameter among a power supply unbalance rate of the AC power supply, input power input to the inverter unit, power supply impedance of the AC power supply, and power supply voltage of the AC power supply; ,
    a correction coefficient calculation unit that calculates a correction coefficient for correcting the ripple current calculated by the ripple current calculation unit based on the parameter value obtained by the parameter obtaining unit;
    has
    The ripple current calculation unit corrects the ripple current by multiplying the calculated ripple current by the correction coefficient.
    An air conditioning system according to claim 8 or 9.
  11.  前記コンデンサ残寿命推定部は、
     前記電解コンデンサの運転時間を算出する運転時間算出部
     を有し、
     前記寿命推定部は、
     前記リプル電流と前記電解コンデンサの周囲温度とに基づいて、前記電解コンデンサの芯温度を算出し、前記芯温度と前記運転時間とに基づいて、前記電解コンデンサの残寿命を算出する、
     請求項8~10のいずれか1項に記載の空調システム。
    The capacitor remaining life estimating unit,
    an operating time calculation unit that calculates the operating time of the electrolytic capacitor,
    The life estimator,
    calculating the core temperature of the electrolytic capacitor based on the ripple current and the ambient temperature of the electrolytic capacitor, and calculating the remaining life of the electrolytic capacitor based on the core temperature and the operating time;
    The air conditioning system according to any one of claims 8-10.
  12.  前記通知部は、前記室内機ごとに設けられた表示パネルを有し、
     前記表示パネルは、
     対応する前記室内機が延命運転ユニットに設定された場合に点灯する延命運転ランプと、
     対応する前記室内機がサポート運転ユニットに設定された場合に点灯するサポート運転ランプと、
     を有する、
     請求項6に記載の空調システム。
    The notification unit has a display panel provided for each of the indoor units,
    The display panel is
    a life-prolonged operation lamp that lights when the corresponding indoor unit is set to a life-prolonged operation unit;
    a support operation lamp that lights when the corresponding indoor unit is set as a support operation unit;
    having
    The air conditioning system of claim 6.
  13.  前記制御部は、
     前記延命運転ユニットに設定された前記室内機の前記室内ファンの風速または風量を、通常運転モード時の値より低減させ、
     前記サポート運転ユニットに設定された前記室内機の前記室内ファンの風速または風量を、通常運転モード時の値より増加させる、
     請求項1または2に記載の空調システム。
    The control unit
    reducing the wind speed or air volume of the indoor fan of the indoor unit set in the life-prolonging operation unit from the value in the normal operation mode,
    increasing the wind speed or air volume of the indoor fan of the indoor unit set in the support operation unit from the value in the normal operation mode;
    The air conditioning system according to claim 1 or 2.
  14.  前記制御部は、
     前記サポート運転ユニットに設定された前記室内機の前記室内ファンの風向を、当該サポート運転ユニットに設定された前記室内機の空調対象領域および前記延命運転ユニットに設定された前記室内機の空調対象領域に向けて設定する、
     請求項1または2に記載の空調システム。
    The control unit
    The wind direction of the indoor fan of the indoor unit set in the support operation unit is adjusted to the air conditioning target area of the indoor unit set in the support operation unit and the air conditioning target area of the indoor unit set in the life extension operation unit. set towards
    The air conditioning system according to claim 1 or 2.
  15.  前記制御部は、
     前記延命運転ユニットに設定された前記室内機の周囲温度を取得し、
     前記室内機の前記周囲温度が第1範囲以内にあるか否かを判定し、
     前記室内機の前記周囲温度が前記第1範囲以内にある場合に、前記延命運転ユニットに設定された前記室内機および前記サポート運転ユニットに設定された前記室内機の現在の運転を継続させ、
     前記室内機の前記周囲温度が前記第1範囲以内にない場合に、前記サポート運転ユニットに設定された前記室内機の前記運転能力を増加させる、
     請求項1~14のいずれか1項に記載の空調システム。
    The control unit
    Acquiring the ambient temperature of the indoor unit set in the life-prolonging operation unit,
    determining whether the ambient temperature of the indoor unit is within a first range;
    when the ambient temperature of the indoor unit is within the first range, continuing the current operation of the indoor unit set to the life-prolonging operation unit and the indoor unit set to the support operation unit;
    increasing the operability of the indoor unit set in the support operation unit when the ambient temperature of the indoor unit is not within the first range;
    Air conditioning system according to any one of claims 1-14.
  16.  前記空調システムの延命運転モードは、運転プランとして、前記室内空間の快適性を優先させる快適性優先プラン、および、前記延命運転ユニットに設定された前記室内機の前記電解コンデンサの延命を優先させる延命優先プランを有し、
     前記制御部は、
     前記室内機の前記周囲温度が前記第1範囲以内にない場合に、
     前記サポート運転ユニットに設定された前記室内機の前記運転能力の増加が可能か判定し、
     前記サポート運転ユニットに設定された前記室内機の前記運転能力の増加が可能な場合には、前記サポート運転ユニットに設定された前記室内機の前記運転能力を増加させ、
     前記サポート運転ユニットに設定された前記室内機の前記運転能力の増加が可能でない場合には、
     前記運転プランが前記快適性優先プランである場合に、前記延命運転ユニットに設定された前記室内機の前記運転能力を増加させ、
     前記運転プランが前記延命優先プランである場合に、前記延命運転ユニットに設定された前記室内機および前記サポート運転ユニットに設定された前記室内機の現在の運転を継続させる、
     請求項15に記載の空調システム。
    The life-extending operation mode of the air conditioning system includes, as operation plans, a comfort-prioritizing plan that prioritizes the comfort of the indoor space, and a life-extending operation that prioritizes extending the life of the electrolytic capacitor of the indoor unit set in the life-extending operation unit. have a preferred plan,
    The control unit
    When the ambient temperature of the indoor unit is not within the first range,
    determining whether the operation capability of the indoor unit set in the support operation unit can be increased;
    if the operability of the indoor unit set to the support operation unit can be increased, increasing the operability of the indoor unit set to the support operation unit;
    If it is not possible to increase the operation capacity of the indoor unit set in the support operation unit,
    when the operation plan is the comfort priority plan, increasing the operation capability of the indoor unit set in the life-prolonging operation unit;
    When the operation plan is the life extension priority plan, continuing the current operation of the indoor unit set to the life extension operation unit and the indoor unit set to the support operation unit;
    16. The air conditioning system of claim 15.
  17.  前記空調システムの延命運転モードは、運転プランとして、前記室内空間の快適性を優先させる快適性優先プラン、および、前記延命運転ユニットに設定された前記室内機の前記電解コンデンサの延命を優先させる延命優先プランを有し、
     前記制御部は、
     前記室内機の前記周囲温度が前記第1範囲以内にない場合に、
     前記室内機の前記周囲温度が、前記第1範囲を含み前記第1範囲より広い第2範囲以内にあるか否かを判定し、
     前記室内機の前記周囲温度が前記第2範囲以内にある場合に、前記サポート運転ユニットに設定された前記室内機の前記運転能力を増加させ、
     前記室内機の前記周囲温度が前記第2範囲以内にない場合に、
     前記運転プランが前記快適性優先プランである場合に、前記延命運転ユニットに設定された前記室内機の前記運転能力を増加させ、
     前記運転プランが前記延命優先プランである場合に、前記延命運転ユニットに設定された前記室内機および前記サポート運転ユニットに設定された前記室内機の現在の運転を継続させる、
     請求項15または16に記載の空調システム。
    The life-extending operation mode of the air conditioning system includes, as operation plans, a comfort-prioritizing plan that prioritizes the comfort of the indoor space, and a life-extending operation that prioritizes extending the life of the electrolytic capacitor of the indoor unit set in the life-extending operation unit. have a preferred plan,
    The control unit
    When the ambient temperature of the indoor unit is not within the first range,
    determining whether the ambient temperature of the indoor unit is within a second range that includes the first range and is wider than the first range;
    increasing the operating capacity of the indoor unit set in the support operation unit when the ambient temperature of the indoor unit is within the second range;
    when the ambient temperature of the indoor unit is not within the second range,
    when the operation plan is the comfort priority plan, increasing the operation capability of the indoor unit set in the life-prolonging operation unit;
    When the operation plan is the life extension priority plan, continuing the current operation of the indoor unit set to the life extension operation unit and the indoor unit set to the support operation unit;
    17. Air conditioning system according to claim 15 or 16.
PCT/JP2021/033140 2021-09-09 2021-09-09 Air conditioning system WO2023037470A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033140 WO2023037470A1 (en) 2021-09-09 2021-09-09 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033140 WO2023037470A1 (en) 2021-09-09 2021-09-09 Air conditioning system

Publications (1)

Publication Number Publication Date
WO2023037470A1 true WO2023037470A1 (en) 2023-03-16

Family

ID=85506209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033140 WO2023037470A1 (en) 2021-09-09 2021-09-09 Air conditioning system

Country Status (1)

Country Link
WO (1) WO2023037470A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160397A (en) * 2012-02-01 2013-08-19 Daikin Industries Ltd Chiller control system
WO2013183118A1 (en) * 2012-06-05 2013-12-12 三菱電機株式会社 Electric motor control device
WO2014106894A1 (en) * 2013-01-07 2014-07-10 三菱電機株式会社 Electric power conversion device and air conditioning device using same
WO2016075996A1 (en) * 2014-11-11 2016-05-19 三菱電機株式会社 Power conversion device
JP2019060539A (en) * 2017-09-26 2019-04-18 株式会社富士通ゼネラル Air conditioning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160397A (en) * 2012-02-01 2013-08-19 Daikin Industries Ltd Chiller control system
WO2013183118A1 (en) * 2012-06-05 2013-12-12 三菱電機株式会社 Electric motor control device
WO2014106894A1 (en) * 2013-01-07 2014-07-10 三菱電機株式会社 Electric power conversion device and air conditioning device using same
WO2016075996A1 (en) * 2014-11-11 2016-05-19 三菱電機株式会社 Power conversion device
JP2019060539A (en) * 2017-09-26 2019-04-18 株式会社富士通ゼネラル Air conditioning device

Similar Documents

Publication Publication Date Title
US7049774B2 (en) Apparatus for controlling power factor compensation in inverter control circuit and method thereof
WO2010116706A1 (en) Dc power source device and inverter device and air-conditioner using these
JP4757680B2 (en) Air conditioner
KR20090067730A (en) Motor controller of air conditioner
KR102543891B1 (en) Power converting apparatus and air conditioner including the same
WO2023037470A1 (en) Air conditioning system
JP5818600B2 (en) Motor driving device and refrigeration cycle device
WO2022227954A1 (en) Three-phase power converter circuit, household appliance, and control method and device
KR101965737B1 (en) Apparatus for driving compressor and motor of air conditioner
WO2019088118A1 (en) Power conversion device and air-conditioning device
KR102396563B1 (en) Motor driver and air conditioner including the same
KR20190130763A (en) Method of controlling air conditioner
KR20100003580A (en) Motor controller of air conditioner
KR101054439B1 (en) Electric motor drive of air conditioner
KR101054438B1 (en) Electric motor drive of air conditioner
KR102198185B1 (en) Air conditioner and method
KR102366586B1 (en) Motor driving device and air conditioner including the same
KR102102756B1 (en) Power converting apparatus and home appliance including the same
KR20110081594A (en) Motor driver of air conditioner
KR20090049849A (en) Motor controller of air conditioner
JP2016213978A (en) Power supply circuit and air conditioner having the same
KR20090081914A (en) Motor controller of air conditioner
JP2013194969A (en) Air conditioner
KR102002118B1 (en) Apparatus for converting power and air conditioner having the same
JP3357736B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956767

Country of ref document: EP

Kind code of ref document: A1