JP5818600B2 - Motor driving device and refrigeration cycle device - Google Patents

Motor driving device and refrigeration cycle device Download PDF

Info

Publication number
JP5818600B2
JP5818600B2 JP2011203472A JP2011203472A JP5818600B2 JP 5818600 B2 JP5818600 B2 JP 5818600B2 JP 2011203472 A JP2011203472 A JP 2011203472A JP 2011203472 A JP2011203472 A JP 2011203472A JP 5818600 B2 JP5818600 B2 JP 5818600B2
Authority
JP
Japan
Prior art keywords
output
power supply
frequency
ripple current
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011203472A
Other languages
Japanese (ja)
Other versions
JP2013066299A (en
Inventor
晃弘 津村
晃弘 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011203472A priority Critical patent/JP5818600B2/en
Publication of JP2013066299A publication Critical patent/JP2013066299A/en
Application granted granted Critical
Publication of JP5818600B2 publication Critical patent/JP5818600B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

この発明は、例えば冷凍サイクル装置が有する圧縮機等を可変速駆動させるための電動機駆動用装置等に関するものである。   The present invention relates to an electric motor driving device for driving a compressor or the like included in a refrigeration cycle device at a variable speed, for example.

従来から、空気調和装置等の冷凍サイクル装置を構成する圧縮機において、圧縮機が有する電動機の回転速度(出力)の可変速駆動を行うため、電力変換を行う電動機駆動用装置を電源と電動機との間に配置することが多い。電動機駆動用装置は、例えば、インバータ主回路を有し、交流電源の電力を直流変換し、再度交流変換して電動機に供給する。   Conventionally, in a compressor constituting a refrigeration cycle apparatus such as an air conditioner, in order to perform variable speed driving of the rotational speed (output) of an electric motor included in the compressor, an electric motor driving apparatus that performs power conversion is provided with a power source and an electric motor. Often placed between. The motor driving device has, for example, an inverter main circuit, converts the power of the AC power source into DC, converts it again into AC, and supplies it to the motor.

このような電動機駆動用装置において電力変換を行う際、インバータ主回路の素子である直流平滑コンデンサに過大なリプル電流が流れることによって発熱等するのを防ぐ必要がある。そこで、例えば直流母線電圧の脈動電圧(ΔV)が、ある所定値(以下、閾値という)を超えた場合に、インバータ出力を制限し、直流平滑コンデンサ(素子)の保護を行う機能(以下、保護制御という)を有する電動機駆動用装置を有する空気調和装置が提案されている(たとえば、特許文献1参照)。   When power conversion is performed in such a motor driving apparatus, it is necessary to prevent heat generation or the like due to an excessive ripple current flowing through a DC smoothing capacitor that is an element of the inverter main circuit. Therefore, for example, when the pulsation voltage (ΔV) of the DC bus voltage exceeds a predetermined value (hereinafter referred to as a threshold value), the inverter output is limited to protect the DC smoothing capacitor (element) (hereinafter referred to as protection). An air conditioner having an electric motor driving device having a control) has been proposed (for example, see Patent Document 1).

特開2007−259629号公報(図1)JP 2007-259629 A (FIG. 1)

上記のような保護制御では、従来、直流平滑コンデンサの両端電圧(直流母線電圧)の脈動分(ΔV)からリプル電流の値を導き出し、その値からコンデンサの芯温度上昇値を推定していた。そして、推定した芯温度上昇値から得られる芯温度値が、直流平滑コンデンサの許容温度範囲内に収まるような脈動電圧(ΔV)の閾値を設定するようにして、インバータ出力を制御し、直流平滑コンデンサの発熱を抑制していた。このとき、従来の保護制御では、予めシミュレーション等を行い、脈動電圧(ΔV)とリプル電流との関係を求め、関係を例えばテーブル化したデータとしておくものであった。   In the protection control as described above, conventionally, the ripple current value is derived from the pulsation (ΔV) of the voltage across the DC smoothing capacitor (DC bus voltage), and the core temperature rise value of the capacitor is estimated from the value. Then, the inverter output is controlled so as to set the threshold of the pulsating voltage (ΔV) such that the core temperature value obtained from the estimated core temperature rise value is within the allowable temperature range of the DC smoothing capacitor, and the DC smoothing is controlled. The heat generation of the capacitor was suppressed. At this time, in the conventional protection control, a simulation or the like is performed in advance to determine the relationship between the pulsating voltage (ΔV) and the ripple current, and the relationship is set, for example, as data in a table.

しかしながら、電源周波数、インバータ出力電力(電動機に供給する電力)の少なくとも一方が変動すると、脈動電圧(ΔV)が同じであっても直流母線電圧の変動パターンが異なり、リプル電流が一意に定まらなくなる。よって直流平滑コンデンサ保護の観点から、保護制御が動作する脈動電圧(ΔV)の閾値として、実際には余裕をみた値を設定する必要があった。このため、例えば、閾値に余裕を持たせている分だけインバータ出力に制限がかかる可能性が高くなり、適切な電力供給ができなくなる可能性があった。   However, if at least one of the power supply frequency and the inverter output power (power supplied to the electric motor) fluctuates, even if the pulsation voltage (ΔV) is the same, the fluctuation pattern of the DC bus voltage is different and the ripple current cannot be uniquely determined. Therefore, from the viewpoint of DC smoothing capacitor protection, it is actually necessary to set a value with allowance as the threshold value of the pulsating voltage (ΔV) at which protection control operates. For this reason, for example, there is a high possibility that the inverter output is limited by the margin of the threshold, and there is a possibility that appropriate power supply cannot be performed.

この発明は、上記のような課題を解決するためになされたもので、直流平滑コンデンサに流れるリプル電流をより正確に導き出すことができ、適切な保護制御を行うことができる電動機駆動用装置等を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. An electric motor driving device or the like that can more accurately derive a ripple current flowing through a DC smoothing capacitor and can perform appropriate protection control is provided. The purpose is to provide.

この発明に係わる電動機駆動用装置は、整流器、直流リアクトル、直流平滑コンデンサ及び逆変換器を有し、電源からの電力を変換して電動機に供給するためのインバータ主回路と、直流母線電圧を検出する直流母線電圧検出手段と、直流母線電圧の脈動電圧を検出する脈動電圧検出手段と、インバータ主回路の出力電流を検出する出力電流検出手段と、電源における電源周波数を検出する電源周波数検出手段と、出力電流に基づいてインバータ出力電力を演算する出力電力演算手段と、電源周波数及び脈動電圧からリプル電流を算出し、インバータ出力電力とあらかじめ定めた基準値とを比較して、インバータ出力電力が基準値よりも大きければあらかじめ定めた補正量をリプル電流に加算し、インバータ出力電力が基準値以下であればあらかじめ定めた補正量をリプル電流から減算するリプル電流演算手段と、リプル電流演算手段が補正したリプル電流に基づいて、設定されたインバータ主回路の出力周波数を補正処理し、出力周波数指令を出力する出力周波数補正手段と、出力周波数指令に基づいて逆変換器に駆動信号を送る逆変換器駆動手段とを備えるものである。 An apparatus for driving an electric motor according to the present invention includes a rectifier, a DC reactor, a DC smoothing capacitor, and an inverse converter, and detects an inverter main circuit for converting electric power from a power source to supply the electric motor and a DC bus voltage. DC bus voltage detecting means, pulsating voltage detecting means for detecting the pulsating voltage of the DC bus voltage, output current detecting means for detecting the output current of the inverter main circuit, and power supply frequency detecting means for detecting the power supply frequency in the power supply The output power calculation means for calculating the inverter output power based on the output current, the ripple current is calculated from the power supply frequency and the pulsation voltage, the inverter output power is compared with a predetermined reference value, and the inverter output power is If it is larger than the value, a predetermined correction amount is added to the ripple current. A ripple current calculation means for subtracting a correction amount determined beforehand from the ripple current, based on the ripple current ripple current calculation unit is corrected, and the correction processing of the output frequency of the inverter main circuit is set, an output frequency command Output frequency correcting means, and inverse converter driving means for sending a drive signal to the inverse converter based on the output frequency command.

この発明によれば、脈動電圧から直流平滑コンデンサに流れるリプル電流を算出する際、電源周波数検出手段の検出に係る電源周波数、出力電力演算手段の演算に係るインバータ出力電力に基づいた上で、脈動電圧からリプル電流を算出するようにしたので、算出に係るリプル電流の精度を向上させることができる。このため、保護制御が過剰に動作することを防ぐことができる電動機駆動用装置を得ることができる。例えば、冷凍サイクル装置への電力供給を不要に制限することなく、適切な電力供給による圧縮機の運転等を行うことができるという効果が得られる。   According to the present invention, when calculating the ripple current flowing in the DC smoothing capacitor from the pulsation voltage, the pulsation is based on the power supply frequency related to the detection by the power supply frequency detection means and the inverter output power related to the calculation by the output power calculation means. Since the ripple current is calculated from the voltage, the accuracy of the ripple current according to the calculation can be improved. For this reason, the motor drive device which can prevent that protection control operates excessively can be obtained. For example, it is possible to obtain an effect that a compressor can be operated by appropriate power supply without restricting power supply to the refrigeration cycle apparatus unnecessarily.

この発明の実施の形態1における冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus in Embodiment 1 of this invention. 電源周波数と直流母線電圧の波形との関係を示す図である。It is a figure which shows the relationship between a power supply frequency and the waveform of DC bus-line voltage. インバータ出力電力、脈動電圧及びリプル電流の関係を示す図である。It is a figure which shows the relationship between inverter output electric power, a pulsation voltage, and a ripple current. 本実施の形態における保護制御に係るフローチャートを示す図である。It is a figure which shows the flowchart which concerns on the protection control in this Embodiment. この発明の実施の形態2における冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus in Embodiment 2 of this invention. 電源周波数演算手段19の電源周波数算出を説明するための図である。It is a figure for demonstrating calculation of the power supply frequency of the power supply frequency calculating means.

実施の形態1.
図1はこの発明の実施の形態1における電動機駆動用装置を中心とする冷凍サイクル装置の構成を示す図である。本実施の形態では、冷凍サイクル装置として空気調和装置を例として説明する。図1に示すように、本実施の形態における空気調和装置は、圧縮機1、凝縮器2、絞り装置3及び蒸発器4を冷媒配管で環状に接続し、冷媒回路を構成している。
Embodiment 1 FIG.
1 is a diagram showing a configuration of a refrigeration cycle apparatus centering on an electric motor driving apparatus according to Embodiment 1 of the present invention. In the present embodiment, an air conditioner will be described as an example of the refrigeration cycle apparatus. As shown in FIG. 1, the air-conditioning apparatus according to the present embodiment connects a compressor 1, a condenser 2, a throttling device 3, and an evaporator 4 in a ring shape with refrigerant piping to form a refrigerant circuit.

電動機を有する圧縮機1は、冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。ここで、圧縮機1については、例えばインバータ回路による電動機の回転数(出力周波数)制御によって、冷媒の吐出量を調整できるタイプの圧縮機で構成している。凝縮器2は、例えば空気等と冷媒との間で熱交換を行い、冷媒を凝縮液化させる熱交換器である。また、送風機2Aは、例えば凝縮器2に空気を送り込み、凝縮器2を流れる冷媒との熱交換を促す。そして、絞り装置3は、冷媒を減圧して膨張させるものである。蒸発器4は、熱交換により冷媒を蒸発ガス化させる熱交換器である。   The compressor 1 having an electric motor sucks refrigerant, compresses it, and discharges it in a high temperature / high pressure state. Here, the compressor 1 is constituted by a compressor of a type that can adjust the discharge amount of the refrigerant by, for example, controlling the rotation speed (output frequency) of the motor by an inverter circuit. The condenser 2 is a heat exchanger that performs heat exchange between, for example, air and the refrigerant, and condenses and liquefies the refrigerant. In addition, the blower 2 </ b> A sends air to the condenser 2, for example, and promotes heat exchange with the refrigerant flowing through the condenser 2. The expansion device 3 expands the refrigerant by decompressing it. The evaporator 4 is a heat exchanger that evaporates a refrigerant by heat exchange.

ここで、電動機駆動用装置が保護制御を行う場合、冷凍サイクル装置においては、絞り装置3の開度を減少させて冷媒回路を循環する冷媒量を減少させ、圧縮機1の吐出側における圧力を低下させるようにする。また、送風機2Aの風量を増やして、凝縮器2における熱交換量を増やして圧縮機1の吐出側における圧力を低下させるようにすることもできる。   Here, when the motor driving device performs protection control, in the refrigeration cycle device, the opening amount of the expansion device 3 is decreased to reduce the amount of refrigerant circulating in the refrigerant circuit, and the pressure on the discharge side of the compressor 1 is increased. Try to reduce. Moreover, the air volume of the blower 2A can be increased, the heat exchange amount in the condenser 2 can be increased, and the pressure on the discharge side of the compressor 1 can be reduced.

また、圧縮機1に電力供給を行うための電動機駆動用装置においては、整流器5、力率改善用の直流リアクトル6、直流平滑コンデンサ7及び逆変換器8をインバータ主回路として有している。整流器5は、例えばダイオード等の整流素子をブリッジ接続して構成し、例えば商用電源である交流電源9による電力の整流を行うために設ける。力率改善用の直流リアクトル6は、整流器5の出力側に接続され、高調波を抑制するために設ける。直流平滑コンデンサ7は、整流器5の整流に係る電圧を平滑し、負荷側の逆変換器8に対して直流電圧(出力電圧)を印加した電力供給を行うために設ける。逆変換器8は、直流電圧を変換した電圧を圧縮機1の電動機に印加して圧縮機1を駆動させる。本実施の形態では、逆変換器8は直流電圧をPWM(Pulse Width Modulation:パルス幅変調)変換したPWM電圧を印加するものとする。   In addition, the motor driving device for supplying power to the compressor 1 includes a rectifier 5, a DC reactor 6 for power factor improvement, a DC smoothing capacitor 7, and an inverse converter 8 as an inverter main circuit. The rectifier 5 is configured by bridge-connecting rectifier elements such as diodes, for example, and is provided for rectifying power by an AC power source 9 that is a commercial power source, for example. The DC reactor 6 for power factor improvement is connected to the output side of the rectifier 5 and is provided to suppress harmonics. The DC smoothing capacitor 7 is provided to smooth the voltage related to the rectification of the rectifier 5 and to supply power to the load-side inverter 8 by applying a DC voltage (output voltage). The inverse converter 8 drives the compressor 1 by applying a voltage obtained by converting the DC voltage to the electric motor of the compressor 1. In the present embodiment, the inverse converter 8 applies a PWM voltage obtained by converting a DC voltage into a PWM (Pulse Width Modulation).

さらに、直流母線電圧検出手段11は、直流平滑コンデンサ7の両端の電圧(以下、直流母線電圧)を検出する。また、脈動電圧検出手段12は、直流母線電圧検出手段11の検出した直流母線電圧に基づいて直流平滑コンデンサ7に印加される脈動電圧(ΔV)を検出する。さらに、出力電流検出手段13は、インバータ主回路より出力された出力電流を検出する。   Further, the DC bus voltage detecting means 11 detects the voltage across the DC smoothing capacitor 7 (hereinafter referred to as DC bus voltage). Further, the pulsation voltage detection means 12 detects the pulsation voltage (ΔV) applied to the DC smoothing capacitor 7 based on the DC bus voltage detected by the DC bus voltage detection means 11. Furthermore, the output current detection means 13 detects the output current output from the inverter main circuit.

また、出力周波数設定手段15は、利用者が空気調和装置に対して設定した温度に基づいて、インバータ主回路が供給するインバータ出力電力(インバータ出力電流)の周波数(出力周波数)を設定する。ここでは、電動機駆動用装置が出力周波数設定手段15を有しているが、場合によっては、冷凍サイクル装置を構成する機器を制御等するための制御装置(図示せず)が出力周波数を設定する機能を有するようにしてもよい。そして、出力周波数補正手段16は、直流平滑コンデンサ7の芯温度を演算し、保護制御を行うものと判断した場合には、出力周波数設定手段15の設定した出力周波数を低下させ、出力周波数指令の信号をPWM信号演算部10に送る。   The output frequency setting means 15 sets the frequency (output frequency) of the inverter output power (inverter output current) supplied by the inverter main circuit based on the temperature set by the user for the air conditioner. Here, the motor driving device has the output frequency setting means 15, but in some cases, a control device (not shown) for controlling the equipment constituting the refrigeration cycle device sets the output frequency. You may make it have a function. When the output frequency correction means 16 calculates the core temperature of the DC smoothing capacitor 7 and determines that the protection control is to be performed, the output frequency correction means 16 reduces the output frequency set by the output frequency setting means 15 and outputs the output frequency command. The signal is sent to the PWM signal calculation unit 10.

図2は、電源周波数と直流母線電圧の波形との関係を示す図である。図2(a)は電源周波数が50Hzの場合を示す。また、図2(b)は電源周波数が60Hzの場合を示す。図2から、脈動電圧(ΔV)が同じ値であっても、電圧の変動パターンが異なるため直流平滑コンデンサに流れるリプル電流に差が生じることがわかる。このため、リプル電流を正確に導き出すためには電源周波数を正確に判断する必要がある。そこで、電源周波数検出手段18は、交流電源9の電源周波数を検出する。ここで、例えば外部装置において電源周波数を検出している場合には、電源周波数検出手段18は外部装置の検出に信号を受信するようにしてもよい。本実施の形態では交流電源9を商用電源とする。このため、電源周波数は50Hzか、60Hzとなる。   FIG. 2 is a diagram showing the relationship between the power supply frequency and the waveform of the DC bus voltage. FIG. 2A shows the case where the power supply frequency is 50 Hz. FIG. 2B shows the case where the power supply frequency is 60 Hz. FIG. 2 shows that even if the pulsating voltage (ΔV) is the same value, a difference occurs in the ripple current flowing in the DC smoothing capacitor because the voltage fluctuation pattern is different. For this reason, it is necessary to accurately determine the power supply frequency in order to accurately derive the ripple current. Therefore, the power supply frequency detection means 18 detects the power supply frequency of the AC power supply 9. Here, for example, when the power supply frequency is detected in the external device, the power supply frequency detection means 18 may receive a signal for detection of the external device. In the present embodiment, the AC power supply 9 is a commercial power supply. For this reason, the power supply frequency is 50 Hz or 60 Hz.

図3はインバータ出力電力、脈動電圧(ΔV)及びリプル電流の関係を示す図である。図3に示すように、圧縮機1の電動機に供給する電力が異なれば、脈動電圧(ΔV)に対してリプル電流に差が生じることがわかる。このため、リプル電流を正確に導き出すためにはインバータ主回路から供給する電力(インバータ出力電力)を正確に算出等する必要がある。そこで、出力電力演算手段17は、インバータ出力電力を演算する。また、リプル電流演算手段14は、交流電源9の電源周波数及びインバータ主回路の出力電力に基づき、脈動電圧(ΔV)からリプル電流を演算する。出力電力演算手段17の電力演算及びリプル電流演算手段14の動作については後述する。記憶手段20はリプル電流演算手段14等がリプル電流算出等の場合に用いるデータを記憶する。   FIG. 3 is a diagram showing the relationship between inverter output power, pulsation voltage (ΔV), and ripple current. As shown in FIG. 3, it can be seen that if the power supplied to the electric motor of the compressor 1 is different, the ripple current is different from the pulsating voltage (ΔV). For this reason, in order to accurately derive the ripple current, it is necessary to accurately calculate the power supplied from the inverter main circuit (inverter output power). Therefore, the output power calculation means 17 calculates the inverter output power. Further, the ripple current calculation means 14 calculates a ripple current from the pulsation voltage (ΔV) based on the power supply frequency of the AC power supply 9 and the output power of the inverter main circuit. The power calculation of the output power calculation means 17 and the operation of the ripple current calculation means 14 will be described later. The storage unit 20 stores data used when the ripple current calculation unit 14 or the like performs ripple current calculation or the like.

また、逆変換器駆動手段となるPWM信号演算部10は、出力周波数指令に基づいて、圧縮機1に印加すべき出力電圧、位相、周波数から、空気調和装置の所要空調能力を出力するように圧縮機1に印加するPWM電圧の指令値であるPWM信号(PWMデューティ信号)を生成する。そして、駆動信号となるPWM信号を逆変換器8に送って駆動させ、圧縮機1にPWM電圧を印加する。   Further, the PWM signal calculation unit 10 serving as the inverse converter driving means outputs the required air conditioning capability of the air conditioner from the output voltage, phase, and frequency to be applied to the compressor 1 based on the output frequency command. A PWM signal (PWM duty signal) that is a command value of a PWM voltage applied to the compressor 1 is generated. Then, a PWM signal as a drive signal is sent to the inverse converter 8 to be driven, and a PWM voltage is applied to the compressor 1.

図4は本実施の形態における保護制御に係るフローチャートを示す図である。図4に基づいて、本実施の形態における電動機駆動用装置の保護制御をするかどうかの判断等を行うための各手段の動作について説明する。   FIG. 4 is a diagram showing a flowchart according to protection control in the present embodiment. Based on FIG. 4, the operation of each means for determining whether or not to perform protection control of the motor driving device in the present embodiment will be described.

例えば、出力電力演算手段17は、インバータ出力電流を検出する出力電流検出手段13と圧縮機1に印加するPWM電圧を演算するPWM信号演算部10の出力電圧指令値とに基づいて、以下の式(1)を適用してインバータ出力電力を演算する(S1)。ここでは、リプル電流演算手段14のリプル電流算出前にインバータ出力電力を演算しているが、後述するS6の処理を行う前であれば、特に処理順を限定するものではない。式(1)において、Pはインバータ出力電力、Vは出力線間電圧、Iは出力電流、cosθは力率を表している。
P=31/2×V×I×cosθ …(1)
For example, the output power calculation means 17 is based on the following expression based on the output current detection means 13 for detecting the inverter output current and the output voltage command value of the PWM signal calculation unit 10 for calculating the PWM voltage applied to the compressor 1. The inverter output power is calculated by applying (1) (S1). Here, the inverter output power is calculated before the ripple current calculation by the ripple current calculation means 14, but the processing order is not particularly limited as long as it is before the process of S6 described later. In equation (1), P is the inverter output power, V is the output line voltage, I is the output current, and cos θ is the power factor.
P = 3 1/2 × V × I × cos θ (1)

一方、脈動電圧検出手段12は、直流母線電圧検出手段11の検出に係る直流母線電圧に基づいて、直流母線電圧の脈動電圧(ΔV)を検出する(S2)。そして、リプル電流演算手段14は、脈動電圧検出手段12の検出された直流母線電圧の脈動電圧(ΔV)に基づいて、直流平滑コンデンサ7に流れるリプル電流を算出する。ここで、リプル電流演算手段14がリプル電流を算出する際に用いるデータとなる、脈動電圧(ΔV)とリプル電流との関係のデータを、例えばテーブル化して記憶手段20に記憶させておく。例えば、テーブル作成には、シミュレーション等により電源周波数50Hzと60Hzとにおける2種類のテーブルを予め準備しておき、電源周波数検出手段18が検出した電源周波数に応じてテーブルを使い分けるようにする。このため、リプル電流演算手段14は、電源周波数検出手段18の検出に係る電源周波数を判断する(S3)。電源周波数が60Hzであると判断すると、60Hz用のテーブルに基づいてリプル電流を算出する(S4)。また、電源周波数が50Hzであると判断すると、50Hz用のテーブルに基づいてリプル電流を算出する(S5)。   On the other hand, the pulsation voltage detection means 12 detects the pulsation voltage (ΔV) of the DC bus voltage based on the DC bus voltage related to the detection by the DC bus voltage detection means 11 (S2). Then, the ripple current calculation means 14 calculates the ripple current flowing through the DC smoothing capacitor 7 based on the pulsation voltage (ΔV) of the DC bus voltage detected by the pulsation voltage detection means 12. Here, data relating to the relationship between the pulsation voltage (ΔV) and the ripple current, which is data used when the ripple current calculation means 14 calculates the ripple current, is stored in the storage means 20 in the form of a table, for example. For example, for table creation, two types of tables at power supply frequencies of 50 Hz and 60 Hz are prepared in advance by simulation or the like, and the table is used properly according to the power supply frequency detected by the power supply frequency detection means 18. For this reason, the ripple current calculation means 14 determines the power supply frequency related to the detection by the power supply frequency detection means 18 (S3). If it is determined that the power supply frequency is 60 Hz, a ripple current is calculated based on a table for 60 Hz (S4). If it is determined that the power supply frequency is 50 Hz, a ripple current is calculated based on a table for 50 Hz (S5).

さらに、リプル電流演算手段14は、出力電力演算手段17が算出したインバータ出力電力の値が基準値より大きい(インバータ出力電力の値>基準値)かどうかを判断する(S6)。ここで、基準値として、例えば上述したテーブル作成時におけるインバータ出力電力の値を用いる。そして、インバータ出力電力の値が基準値より大きいと判断すると、算出したリプル電流に補正量を加算し(S7)、信号を出力周波数補正手段16に送る。また、インバータ出力電力が基準値以下であると判断すると補正量を減算し(S8)、信号を出力周波数補正手段16に送る。ここで、増減算する補正量の値は、インバータ出力電力と脈動電圧(ΔV)とに応じて異なる。例えば、予めシミュレーション等により求めた補正量の値を、例えばテーブル化したデータとして記憶手段20に記憶させておき、増減算を行う際に用いる。   Further, the ripple current calculation means 14 determines whether or not the value of the inverter output power calculated by the output power calculation means 17 is larger than the reference value (inverter output power value> reference value) (S6). Here, as the reference value, for example, the value of the inverter output power at the time of creating the table described above is used. When it is determined that the value of the inverter output power is larger than the reference value, the correction amount is added to the calculated ripple current (S7), and a signal is sent to the output frequency correction means 16. If it is determined that the inverter output power is below the reference value, the correction amount is subtracted (S8), and a signal is sent to the output frequency correction means 16. Here, the value of the correction amount to be added or subtracted differs depending on the inverter output power and the pulsation voltage (ΔV). For example, a correction amount value obtained in advance by simulation or the like is stored in the storage unit 20 as, for example, tabulated data, and used when performing addition / subtraction.

そして、出力周波数補正手段16は、リプル電流演算手段14が算出したリプル電流に基づいて、補正処理を行う。補正処理については、まず、次式(2)を適用して、直流平滑コンデンサ7の芯温度上昇値ΔTを算出する。ここで、Iはリプル電流[Arms]、Rは直流平滑コンデンサ7の等価直列抵抗ESR[オーム]、βは放熱定数[W/℃・cm2 ]、Aは表面積[cm2 ]である。
ΔT=(I2 ×R)/(β×A) …(2)
Then, the output frequency correction unit 16 performs a correction process based on the ripple current calculated by the ripple current calculation unit 14. For the correction process, first, the following equation (2) is applied to calculate the core temperature increase value ΔT of the DC smoothing capacitor 7. Here, I is the ripple current [Arms], R is the equivalent series resistance ESR [Ohm] of the DC smoothing capacitor 7, β is the heat dissipation constant [W / ° C. · cm 2 ], and A is the surface area [cm 2 ].
ΔT = (I 2 × R) / (β × A) (2)

そして出力周波数補正手段16は、さらに芯温度上昇値ΔTに基づいて芯温度を算出する(S9)。そして、芯温度が素子(直流平滑コンデンサ7)の許容温度以上であるかどうかを判断する(S10)。   Then, the output frequency correction means 16 further calculates the core temperature based on the core temperature increase value ΔT (S9). Then, it is determined whether the core temperature is equal to or higher than the allowable temperature of the element (DC smoothing capacitor 7) (S10).

芯温度が素子の許容温度以上であると判断すると、出力周波数設定手段15において設定した出力周波数を、所定周波数(例えば1Hz)低下させる処理を行い(S11)、処理に係る出力周波数指令の信号をPWM信号演算部10に送る。そして、逆変換器8を駆動させて、インバータ出力電力を制限するようにして圧縮機1を運転させる(S13)。これにより直流平滑コンデンサ7に流れるリプル電流を低減させ、発熱を抑制することができる。一方、許容温度より低いと判断すると、処理を行わず(S12)、出力周波数を維持する出力周波数指令の信号をPWM信号演算部10に送り、逆変換器8を駆動させて、インバータ出力電力を供給を維持したまま、圧縮機1を運転させる(S13)。   When it is determined that the core temperature is equal to or higher than the allowable temperature of the element, the output frequency set in the output frequency setting means 15 is reduced by a predetermined frequency (for example, 1 Hz) (S11), and an output frequency command signal related to the process is obtained. This is sent to the PWM signal calculation unit 10. Then, the inverter 8 is driven to operate the compressor 1 so as to limit the inverter output power (S13). As a result, the ripple current flowing through the DC smoothing capacitor 7 can be reduced and heat generation can be suppressed. On the other hand, if it is determined that the temperature is lower than the permissible temperature, the process is not performed (S12), and an output frequency command signal for maintaining the output frequency is sent to the PWM signal calculation unit 10 to drive the inverse converter 8, and the inverter output power is increased. While maintaining the supply, the compressor 1 is operated (S13).

以上のように、本実施の形態の電動機駆動用装置によれば、リプル電流演算手段14が脈動電圧(ΔV)からリプル電流を算出処理する際、電源周波数検出手段18が検出した電源周波数、出力電力演算手段17の算出に係るインバータ出力電力に基づく変動等を考慮した算出を行うようにしたので、電源周波数、インバータ出力電力の変動に対応して、リプル電流を算出することができ、精度を向上することができる。このため、保護制御を行うか否かの基準となる芯温度の算出を適切に行うことができる。したがって、例えば保護制御が過剰に動作することを防ぐことができる。そして、冷凍サイクル装置への電力供給を不要に制限することなく適切な電力供給による圧縮機1の運転を行うことができる冷凍サイクル装置を得ることができる。   As described above, according to the motor driving device of the present embodiment, when the ripple current calculation means 14 calculates the ripple current from the pulsation voltage (ΔV), the power supply frequency and output detected by the power supply frequency detection means 18 are output. Since the calculation based on the inverter output power related to the calculation of the power calculation means 17 is performed, the ripple current can be calculated corresponding to the fluctuation of the power supply frequency and the inverter output power, and the accuracy is improved. Can be improved. For this reason, calculation of the core temperature used as the reference | standard of whether to perform protection control can be performed appropriately. Therefore, for example, it is possible to prevent the protection control from operating excessively. And the refrigerating-cycle apparatus which can perform the driving | operation of the compressor 1 by appropriate electric power supply can be obtained, without restrict | limiting the electric power supply to a refrigerating-cycle apparatus unnecessarily.

実施の形態2.
図5はこの発明の実施の形態2における電動機駆動用装置を中心とする冷凍サイクル装置の構成を示す図である。図5において、図1と同じ符号を伏している機器等については、実施の形態1で説明したことと同様の動作を行う。本実施の形態では、外部装置等がなく、電源周波数が検出できないような場合に、電源周波数検出手段18の代わりに、マイクロプロセッサー等を有する電源周波数演算手段19を設け、脈動電圧(ΔV)から電源周波数を算出するようにしたものである。
Embodiment 2. FIG.
FIG. 5 is a diagram showing a configuration of a refrigeration cycle apparatus centering on an electric motor driving apparatus according to Embodiment 2 of the present invention. In FIG. 5, the devices having the same reference numerals as those in FIG. 1 perform the same operation as described in the first embodiment. In the present embodiment, when there is no external device or the like and the power supply frequency cannot be detected, the power supply frequency calculation means 19 having a microprocessor or the like is provided instead of the power supply frequency detection means 18 so that the pulsating voltage (ΔV) is obtained. The power supply frequency is calculated.

図6は電源周波数演算手段19の電源周波数算出を説明するための図である。3相交流である交流電源9が整流器5により整流されると、直流平滑コンデンサ7の両端の直流母線電圧は電源周波数の6倍の周波数で脈動することが知られている。そこで、電源周波数演算手段19は、図6に示すように、脈動電圧検出手段12の検出に係る脈動電圧(ΔV)に基づいて1周期の時間を算出し、例えば6倍して逆数をとった値を電源周波数とする。   FIG. 6 is a diagram for explaining the calculation of the power supply frequency by the power supply frequency calculation means 19. It is known that when the AC power supply 9 which is a three-phase AC is rectified by the rectifier 5, the DC bus voltage at both ends of the DC smoothing capacitor 7 pulsates at a frequency six times the power supply frequency. Therefore, as shown in FIG. 6, the power source frequency calculation means 19 calculates the time of one cycle based on the pulsation voltage (ΔV) related to the detection by the pulsation voltage detection means 12, for example, multiplied by 6 to obtain the inverse. The value is the power supply frequency.

そして、実施の形態1と同様に、電源周波数演算手段19および出力電力演算手段17の値に基づいて、脈動電圧(ΔV)から算出するリプル電流を補正し、閾値を設定する。   Then, as in the first embodiment, the ripple current calculated from the pulsation voltage (ΔV) is corrected based on the values of the power supply frequency calculation means 19 and the output power calculation means 17, and a threshold value is set.

以上のように、実施の形態2によれば、電源周波数演算手段19が脈動電圧(ΔV)に基づいて電源周波数を算出することにより、電源周波数が検出できない環境においても、より正確にリプル電流を導き出すことができる。   As described above, according to the second embodiment, the power supply frequency calculation means 19 calculates the power supply frequency based on the pulsation voltage (ΔV), so that the ripple current can be more accurately obtained even in an environment where the power supply frequency cannot be detected. Can be derived.

実施の形態3.
上述の実施の形態においては、リプル電流演算手段14は電源周波数及びインバータ出力電力に基づいてリプル電流を算出するようにしたが、特に限定するものではない。場合によっては、電源周波数、インバータ出力電力のどちらか一方に基づいてリプル電流を算出するようにしても、従来よりもリプル電流算出における精度向上をはかることができる。基本的には電源周波数に基づく方が精度向上効果が高くなる。
Embodiment 3 FIG.
In the above-described embodiment, the ripple current calculation unit 14 calculates the ripple current based on the power supply frequency and the inverter output power, but is not particularly limited. In some cases, even if the ripple current is calculated based on either the power supply frequency or the inverter output power, the accuracy in calculating the ripple current can be improved as compared with the conventional case. Basically, the accuracy improvement effect is higher based on the power supply frequency.

上述した実施の形態では、電動機駆動用装置を空気調和装置の圧縮機1に適用する場合について説明したが、冷却装置に限定することなく、例えば冷凍装置、給湯機等のヒートポンプ装置等、冷媒回路を構成する他の冷凍サイクル装置にも適用することができる。   In the above-described embodiment, the case where the motor driving device is applied to the compressor 1 of the air conditioner has been described. However, the invention is not limited to the cooling device, but a refrigerant circuit such as a refrigeration device, a heat pump device such as a water heater, etc. It can apply also to the other refrigeration cycle apparatus which comprises.

1 圧縮機、2 凝縮器、2A 送風機、3 絞り装置、4 蒸発器、5 整流器、6 直流リアクトル、7 直流平滑コンデンサ、8 逆変換器、9 交流電源、10 PWM信号演算部、11 直流母線電圧検出手段、12 脈動電圧検出手段、13 出力電流検出手段、14 リプル電流演算手段、15 出力周波数設定手段、16 出力周波数補正手段、17 出力電力演算手段、18 電源周波数検出手段、19 電源周波数演算手段、20 記憶手段。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 2A Blower, 3 Throttling device, 4 Evaporator, 5 Rectifier, 6 DC reactor, 7 DC smoothing capacitor, 8 Inverter, 9 AC power supply, 10 PWM signal calculating part, 11 DC bus voltage Detection means, 12 pulsation voltage detection means, 13 output current detection means, 14 ripple current calculation means, 15 output frequency setting means, 16 output frequency correction means, 17 output power calculation means, 18 power supply frequency detection means, 19 power supply frequency calculation means 20 Storage means.

Claims (6)

整流器、直流リアクトル、直流平滑コンデンサ及び逆変換器を有し、電源からの電力を変換して電動機に供給するためのインバータ主回路と、
直流母線電圧を検出する直流母線電圧検出手段と、
前記直流母線電圧の脈動電圧を検出する脈動電圧検出手段と、
インバータ主回路の出力電流を検出する出力電流検出手段と、
前記電源における電源周波数を検出する電源周波数検出手段と、
前記出力電流に基づいてインバータ出力電力を演算する出力電力演算手段と、
前記電源周波数及び前記脈動電圧からリプル電流を算出し、前記インバータ出力電力とあらかじめ定めた基準値とを比較して、前記インバータ出力電力が基準値よりも大きければあらかじめ定めた補正量を前記リプル電流に加算し、前記インバータ出力電力が基準値以下であれば前記あらかじめ定めた補正量を前記リプル電流から減算するリプル電流演算手段と、
該リプル電流演算手段が補正したリプル電流に基づいて、設定されたインバータ主回路の出力周波数を補正処理し、出力周波数指令を出力する出力周波数補正手段と、
前記出力周波数指令に基づいて前記逆変換器に駆動信号を送る逆変換器駆動手段と
を備えることを特徴とする電動機駆動用装置。
An inverter main circuit having a rectifier, a DC reactor, a DC smoothing capacitor, and an inverter, for converting electric power from a power source and supplying the electric motor;
DC bus voltage detection means for detecting the DC bus voltage;
Pulsation voltage detection means for detecting the pulsation voltage of the DC bus voltage;
Output current detecting means for detecting the output current of the inverter main circuit;
Power supply frequency detection means for detecting a power supply frequency in the power supply;
Output power calculation means for calculating inverter output power based on the output current;
A ripple current is calculated from the power supply frequency and the pulsation voltage, the inverter output power is compared with a predetermined reference value, and if the inverter output power is larger than a reference value, a predetermined correction amount is calculated as the ripple current. Ripple current calculation means for subtracting the predetermined correction amount from the ripple current if the inverter output power is below a reference value ,
Output frequency correction means for correcting the output frequency of the set inverter main circuit based on the ripple current corrected by the ripple current calculation means and outputting an output frequency command;
Inverter drive means for sending a drive signal to the inverse converter based on the output frequency command.
前記出力周波数補正手段は、前記リプル電流に基づいて前記直流平滑コンデンサの芯温度を算出し、前記芯温度が許容温度を超えたものと判断すると、前記出力周波数よりも低い周波数の出力周波数指令を出力することを特徴とする請求項1に記載の電動機駆動用装置。   The output frequency correction means calculates the core temperature of the DC smoothing capacitor based on the ripple current, and determines that the core temperature exceeds an allowable temperature, and outputs an output frequency command having a frequency lower than the output frequency. The motor driving device according to claim 1, wherein the motor driving device is output. 前記電源周波数検出手段の代わりに、前記脈動電圧から前記電源周波数を演算する電源周波数演算手段を備えることを特徴とする請求項1又は2に記載の電動機駆動用装置。   The apparatus for driving an electric motor according to claim 1 or 2, further comprising power supply frequency calculation means for calculating the power supply frequency from the pulsating voltage instead of the power supply frequency detection means. 冷媒を圧縮して吐出する圧縮機と、熱交換により前記冷媒を凝縮させる凝縮器と、凝縮に係る冷媒を減圧させるための絞り装置と、減圧に係る冷媒と空気とを熱交換して前記冷媒を蒸発させる蒸発器とを配管接続して冷媒回路を構成し、
請求項1〜3のいずれかに記載の電動機駆動用装置を、前記圧縮機を駆動するために備えることを特徴とする冷凍サイクル装置。
A compressor that compresses and discharges the refrigerant; a condenser that condenses the refrigerant by heat exchange; a throttling device that depressurizes the refrigerant related to condensation; and A refrigerant circuit is configured by connecting a pipe with an evaporator that evaporates
A refrigeration cycle apparatus comprising the motor driving device according to any one of claims 1 to 3 for driving the compressor.
前記出力周波数が低下すると、前記絞り装置の開度を減少させて冷媒回路を循環する冷媒量を減少させ、前記圧縮機の吐出側の圧力を低下させることを特徴とする請求項4に記載の冷凍サイクル装置。   5. The pressure according to claim 4, wherein when the output frequency decreases, the opening degree of the expansion device is decreased to reduce the amount of refrigerant circulating in the refrigerant circuit, thereby reducing the pressure on the discharge side of the compressor. Refrigeration cycle equipment. 凝縮器における冷媒と空気との熱交換を促すための送風機をさらに備え、
前記出力周波数が低下すると、前記送風機の風量を多くして前記圧縮機の吐出側の圧力を低下させることを特徴とする請求項4又は5に記載の冷凍サイクル装置。
A fan for encouraging heat exchange between the refrigerant and air in the condenser;
6. The refrigeration cycle apparatus according to claim 4, wherein when the output frequency is reduced, the air volume of the blower is increased to reduce the pressure on the discharge side of the compressor.
JP2011203472A 2011-09-16 2011-09-16 Motor driving device and refrigeration cycle device Expired - Fee Related JP5818600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011203472A JP5818600B2 (en) 2011-09-16 2011-09-16 Motor driving device and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011203472A JP5818600B2 (en) 2011-09-16 2011-09-16 Motor driving device and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JP2013066299A JP2013066299A (en) 2013-04-11
JP5818600B2 true JP5818600B2 (en) 2015-11-18

Family

ID=48189294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203472A Expired - Fee Related JP5818600B2 (en) 2011-09-16 2011-09-16 Motor driving device and refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP5818600B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112016003749B1 (en) * 2013-08-21 2021-06-22 Toyota Jidosha Kabushiki Kaisha ELECTRIC MOTOR CONTROL APPARATUS
JP6207999B2 (en) 2013-12-20 2017-10-04 三菱重工業株式会社 Power supply frequency determination device and power supply frequency determination method
US9787246B2 (en) 2014-03-15 2017-10-10 Mitsubishi Electric Corporation Motor drive control device, compressor, air-sending device, and air-conditioning apparatus
JP7408345B2 (en) * 2019-10-24 2024-01-05 三菱重工サーマルシステムズ株式会社 Control device, electric compressor, control method, program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3310193B2 (en) * 1997-03-28 2002-07-29 株式会社東芝 Power converter
JPH1169834A (en) * 1997-08-12 1999-03-09 Fuji Electric Co Ltd Life alarm device of aluminum electrolytic capacitor for inverter device
JP4757680B2 (en) * 2006-03-24 2011-08-24 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2013066299A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
KR102308028B1 (en) Motor driving device and air conditioner including the same
KR102314037B1 (en) Mootor driver and air conditioner including the same
US9732991B2 (en) Motor driving device and air conditioner including the same
EP2063194B1 (en) Motor controller of air conditioner
US9641115B2 (en) Methods and systems for envelope and efficiency control in an electric motor
JP2013106455A (en) Dc power-supply device and air conditioner using the same
JP2007259629A (en) Motor drive power supply device and air conditioner
JP5818600B2 (en) Motor driving device and refrigeration cycle device
KR20140109165A (en) Power converting apparatus and air conditioner having the same
KR102203433B1 (en) Motor driving device and air conditioner including the same
KR102396563B1 (en) Motor driver and air conditioner including the same
KR102366586B1 (en) Motor driving device and air conditioner including the same
KR101965737B1 (en) Apparatus for driving compressor and motor of air conditioner
KR101936631B1 (en) Motor driving device and air conditioner including the same
KR101054438B1 (en) Electric motor drive of air conditioner
KR101054439B1 (en) Electric motor drive of air conditioner
KR100940097B1 (en) Motor controller of air conditioner
KR20110081594A (en) Motor driver of air conditioner
KR102366401B1 (en) Motor driving device and air conditioner including the same
KR102317144B1 (en) Mootor driver and air conditioner including the same
JP6476001B2 (en) Motor drive device
KR20200046849A (en) Air conditioner and method
KR102313302B1 (en) Motor driving device and air conditioner including the same
KR102379836B1 (en) Mootor driver and air conditioner including the same
KR102287513B1 (en) Motor driving device and air conditioner including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150929

R150 Certificate of patent or registration of utility model

Ref document number: 5818600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees