WO2023037468A1 - Switching device, dc breaker device, and dc breaker system - Google Patents

Switching device, dc breaker device, and dc breaker system Download PDF

Info

Publication number
WO2023037468A1
WO2023037468A1 PCT/JP2021/033137 JP2021033137W WO2023037468A1 WO 2023037468 A1 WO2023037468 A1 WO 2023037468A1 JP 2021033137 W JP2021033137 W JP 2021033137W WO 2023037468 A1 WO2023037468 A1 WO 2023037468A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
switching device
mechanical
hollow cathode
plasma
Prior art date
Application number
PCT/JP2021/033137
Other languages
French (fr)
Japanese (ja)
Inventor
隆昭 村田
寿彰 松本
亮太 菅沼
芳明 網田
芳充 丹羽
崇裕 石黒
久生 宮崎
学史 吉田
重哉 木村
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to JP2023546646A priority Critical patent/JP7466789B2/en
Priority to PCT/JP2021/033137 priority patent/WO2023037468A1/en
Publication of WO2023037468A1 publication Critical patent/WO2023037468A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle

Definitions

  • Embodiments of the present invention relate to switching devices, DC interrupting devices, and DC interrupting systems.
  • Embodiments provide high-performance switching devices, DC interrupting devices, and DC interrupting systems.
  • a switching device includes a first electrode, a second electrode provided apart from the first electrode, a first grid provided between the first electrode and the second electrode, and the first electrode. 1 grid and a second grid provided between the second electrode; and an outer shell provided outside the plasma switch and forming a closed space between the plasma switch and the plasma switch Prepare.
  • the first electrode includes a hollow cathode portion for generating a negative glow during glow discharge by the plasma switch, and a magnetic field that is provided around the hollow cathode portion and intersects an electric field between the negative glow and the first electrode. and a magnetic field generator that generates a
  • the hollow cathode portion includes at least one material selected from B, C, Al, Si and Ga.
  • FIG. 1 is a schematic cross-sectional view illustrating a switching device according to a first embodiment
  • FIG. FIG. 2 is a schematic plan view taken along line AA' of FIG. 1
  • 2 is a schematic enlarged cross-sectional view illustrating part of the switching device of the first embodiment
  • FIG. 4A and 4B are schematic enlarged cross-sectional views for explaining the operation of the switching device of the first embodiment
  • FIG. FIG. 5 is a schematic enlarged cross-sectional view of part B of FIG. 4 for explaining the operation of the switching device of the first embodiment
  • FIG. 10 is a schematic cross-sectional view illustrating part of a switching device according to a second embodiment
  • FIG. 9A is a schematic plan view illustrating part of the switching device of the second embodiment.
  • FIG. 9(b) is a schematic cross-sectional view taken along line CC' in FIG. 9(a).
  • FIG. 11 is a schematic enlarged cross-sectional view for explaining the operation of the switching device of the second embodiment;
  • FIG. 11 is a schematic cross-sectional view illustrating a part of a switching device according to a third embodiment;
  • FIG. 12(a) is a schematic cross-sectional view taken along line DD' of FIG.
  • FIG. 12(b) is a schematic cross-sectional view taken along line FF' of FIG.
  • FIG. 12(c) is a schematic cross-sectional view taken along line GG' of FIG.
  • FIG. 12B is a schematic enlarged cross-sectional view of part J of FIG. 12A for explaining the operation of the switching device of the third embodiment
  • 14(a) to 14(d) are schematic diagrams for explaining the operation of the switching device of the third embodiment.
  • FIG. 11 is a schematic block diagram illustrating a DC interrupting device according to a fourth embodiment
  • FIG. 11 is a schematic equivalent circuit diagram illustrating part of a DC interrupting device of a fourth embodiment
  • FIG. 11 is a schematic block diagram for explaining the operation of the DC interrupting device of the fourth embodiment
  • It is an example of a typical timing chart for explaining operation of the direct-current interruption device of a 4th embodiment.
  • FIG. 11 is a schematic block diagram illustrating a DC interrupting device according to a fifth embodiment
  • FIG. 11 is a schematic block diagram illustrating a direct current interrupting system according to a sixth embodiment
  • FIG. 11 is a schematic block diagram illustrating a direct current interrupting system according to a seventh embodiment
  • FIG. 11 is a schematic block diagram illustrating a direct current interrupting device according to an eighth embodiment
  • FIG. 21 is a schematic perspective view illustrating a direct current interrupting device of an eighth embodiment
  • FIG. 12 is a schematic block diagram illustrating a DC interrupting device according to a ninth embodiment
  • FIG. 20 is a schematic block diagram illustrating a DC interrupting device according to a tenth embodiment
  • FIG. 20 is a schematic block diagram for explaining the operation of the DC interrupting device of the tenth embodiment
  • FIG. 1 is a schematic cross-sectional view illustrating a switching device according to this embodiment.
  • three-dimensional coordinate axes including X-axis, Y-axis and Z-axis may be used.
  • a top plate 12 and a bottom plate 13 of the insulating container 10, which will be described later, are doughnut-shaped flat plate members, and the top plate 12 and the bottom plate 13 are provided so as to be substantially parallel to the XY plane. It is assumed that the insulating container 10 and the plasma switch 20 are cylindrical and extend along the Z-axis direction.
  • a center line C10 is the center line of the cylinders of the insulating container 10 and the plasma switch 20 .
  • the positive direction of the Z-axis may be referred to as upward or upward, and the negative direction of the Z-axis may be referred to as downward or downward, but the direction of the Z-axis is limited to the direction of gravity. not a thing
  • the switching device 1 of this embodiment includes a plasma switch 20 .
  • Plasma switch 20 further comprises insulating container 10 and hydrogen storage metal 20H. At least part of the plasma switch 20 is housed in the insulating container 10 .
  • the insulating container 10 is an outer shell of the switching device 1 and is an example thereof.
  • the insulating container 10 includes, for example, an insulating cylinder 11, a top plate 12 and a bottom plate 13.
  • the insulating cylinder 11 is a cylindrical insulator.
  • the insulating cylinder 11 is made of an insulating material having sufficient strength, such as FRP (Fiber Reinforced Plastics) or ceramic.
  • the top plate 12 is a doughnut-shaped flat plate member including the opening 12H when viewed from the XY plane.
  • the opening 12H is provided around the center that intersects the centerline C10.
  • the bottom plate 13 is also a doughnut-shaped flat plate member including an opening (not shown). The diameters of these openings are provided according to the diameter of the plasma switch 20 when viewed from the XY plane.
  • the top plate 12 is connected to the upper end of the insulating cylinder 11 .
  • the bottom plate 13 is connected to the lower end of the insulating cylinder 11 .
  • the top plate 12 and the bottom plate 13 are conductive and made of metal, for example.
  • a first terminal T ⁇ b>1 is connected to the bottom plate 13
  • a second terminal T ⁇ b>2 is connected to the top plate 12 .
  • the top plate 12 and the bottom plate 13 are insulated.
  • a sealed space is formed between the insulating container 10 and the plasma switch 20 by providing the plasma switch 20 in the openings of the top plate 12 and the bottom plate 13 .
  • the sealed space is filled with an insulating gas 10G, and the insulating container 10 functions as a pressure container filled with the insulating gas 10G.
  • the insulating gas 10G is, for example, sulfur hexafluoride (SF 6 ) gas or the like.
  • the insulating container 10 is manufactured as an airtight container by joining the insulating cylinder 11, the top plate 12 and the bottom plate 13 by brazing welding, for example.
  • An insulating fold 14 is provided on the outer peripheral portion of the insulating cylinder 11 .
  • the insulating pleats 14 have, for example, polymeric creepage surfaces.
  • the insulating folds 14 are, for example, accordion-shaped flexible tubes. The insulating folds 14 are easily deformable, protect the outer periphery of the insulating cylinder 11 , and secure the creepage distance between the top plate 12 and the bottom plate 13 .
  • a support member 17 is provided inside the insulating container 10 .
  • the support member 17 is connected to the top plate 12 via a sealing flange 30 provided around the opening 12H.
  • the support member 17 and the sealing flange 30 are conductors, for example made of metal.
  • the plasma switch 20 is inserted through an opening in the bottom plate 13 and connected to the support member 17 via the upper electrode 21U.
  • the plasma switch 20 is connected to the bottom plate 13 via a sealing flange 31 provided around the opening of the bottom plate 13 .
  • the sealing flanges 30 and 31 are conductors, the first electrode 22 of the plasma switch 20 is electrically connected to the first terminal T1 through the bottom plate 13, and the second electrode 23 is connected through the top plate 12. is electrically connected to the second terminal T2.
  • the plasma switch 20 includes sidewalls 21S, a first electrode 22, a second electrode 23, a first grid 26, and a second grid 27.
  • the side wall 21S is a cylindrical member.
  • the side wall 21S is provided inside the insulating container 10 .
  • the sidewall 21S has an upper end connected to the second electrode 23 and a lower end connected to the first electrode 22 .
  • the side wall 21S is made of an insulating material, such as ceramic.
  • the first electrode 22 and the second electrode 23 are insulated inside the insulating container 10 by the side wall 21S.
  • the first electrode 22 is a bottomed cylindrical conductive member extending along the Z-axis.
  • the diameter of the circle of the first electrode 22 in XY plan view is substantially equal to the diameter of the circle of the side wall 21S in XY plan view.
  • An upper portion of the first electrode 22 is inserted through an opening in the bottom plate 13 .
  • the upper end of the first electrode 22 is connected to the side wall 21S inside the insulating container 10 .
  • the second electrode 23 is a bottomed cylindrical conductive member extending in the Z-axis direction.
  • the diameter of the circle of the second electrode 23 in XY plan view is set smaller than the diameter of the circle of the first electrode 22 and the side wall 21S in XY plan view.
  • the upper end portion of the second electrode 23 includes a brim-shaped portion that is smoothly bent toward the outside of the circumference. It is connected.
  • the positions of the first electrode 22, the side wall 21S and the second electrode 23 are determined so that the center lines C10 substantially match each other.
  • the first electrode 22 and the second electrode 23 are arranged to face each other.
  • the first electrode 22 includes a first layer 22A and a second layer 22D.
  • the first layer 22A is formed on the second layer 22D.
  • the first layer 22A is provided inside the bottomed cylindrical first electrode 22 .
  • the second layer 22D is provided outside the bottomed cylindrical first electrode 22 .
  • the upper end of the first electrode 22 is inserted through an opening in the bottom plate 13 and connected to the bottom plate 13 by a sealing flange 31 .
  • the first layer 22A is a conductor, it is thin, so it is illustrated with a thin dashed line to avoid complication of the drawing.
  • the first layer 22A contains, for example, at least one material selected from B, C, Al, Si and Ga.
  • the first electrode 22 is formed, for example, by vapor deposition using these raw materials.
  • the second electrode 23 includes, for example, at least one material selected from Ni, Cr, Mo, Cu, Ag, Au, Fe, Ir, and Pt.
  • the first layer 22A of the first electrode 22 may be made of, for example, a nitride semiconductor such as Al or Ga, an oxide semiconductor, diamond, graphite, sintered diamond, alumina cement, or the like.
  • the second electrode 23 may be, for example, graphite, which is a conductor with a high melting point.
  • a current density increasing portion 60 is provided in a portion of the first electrode 22 exposed from the insulating container 10 .
  • the current density increasing portion 60 includes a hollow cathode portion 62 and permanent magnets 64 .
  • the hollow cathode portion 62 is provided over the circumference of the circle in the XY plane view of the first electrode 22 and is formed of two fold-shaped electrodes projecting in the radial direction. The two pleated electrodes face each other and form a hollow cathode.
  • a plurality of hollow cathode portions 62 are provided so as to be stacked in the Z-axis direction.
  • a permanent magnet 64 is provided between two adjacent hollow cathode portions 62 .
  • the permanent magnet 64 is, for example, a rare earth magnet.
  • the permanent magnet 64 is, for example, a neodymium magnet, a samarium-cobalt magnet, or the like.
  • FIG. 2 is a schematic plan view taken along line AA' of FIG. 1.
  • FIG. FIG. 2 shows an arrangement example of the permanent magnets 64 provided on the hollow cathode portion 62 .
  • the plurality of permanent magnets 64 are provided on the second layer 22 ⁇ /b>D of the first electrode 22 , which protrudes outward in folds from the circumference of the circle in the XY plan view.
  • the permanent magnets 64 are arranged radially.
  • the permanent magnet 64 is arranged so that one magnetic pole faces the outside of the circle and the other magnetic pole faces the inside of the circle.
  • the magnetic poles facing outward are N poles and the magnetic poles facing inward are S poles.
  • FIG. 3 is a schematic enlarged cross-sectional view illustrating a part of the switching device of this embodiment.
  • An enlarged view of the current density increasing portion 60 is shown in FIG.
  • the first electrode 22 includes a plurality of hollow cathode portions 62, and the plurality of hollow cathode portions 62 are formed so as to be stacked in the Z-axis direction.
  • the multiple hollow cathode sections 62 each include two opposing electrodes 22A1 and 22A2. These electrodes 22A1 and 22A2 are formed by bending the first electrode 22 and are electrically connected.
  • the electrodes 22A1 and 22A2 are arranged substantially parallel with an interval a0.
  • the distance a0 between the electrodes 22A1 and 22A2 in the Z-axis direction is about twice the length of the ion sheath during glow discharge.
  • the ion sheath during glow discharge refers to a dark portion generated near the first electrode 22, which is the cathode, and the ion sheath is mostly formed by ions of the discharge gas 20G.
  • the permanent magnet 64 is provided around the first electrode 22 and provided between two hollow cathode portions 62 adjacent in the Z-axis direction. Although not shown, the permanent magnet 64 is fixed between two adjacent hollow cathode portions 62 by, for example, an insulating adhesive.
  • the surface on which the hollow cathode is formed is the surface of the first electrode 22 on which the first layer 22A is formed, and the hollow cathode is formed inside the plasma switch 20 .
  • the permanent magnet 64 is provided on the side of the surface of the first electrode 22 on which the second layer 22 ⁇ /b>D is provided, and is provided outside the first electrode 22 .
  • the arrangement of the permanent magnets 64 is set so that the magnetic lines of force generated by the respective permanent magnets 64 reinforce the magnetic field within the hollow cathode portion 62 .
  • the arrangement of the permanent magnets 64 is set through experiments, simulations, etc. so that the magnitude and direction of the magnetic field in the hollow cathode portion 62 are appropriate.
  • the space surrounded by the first electrode 22, the second electrode 23, and the sidewall 21S is a closed space, and the plasma switch 20 is hermetically sealed from the space outside the first electrode 22.
  • An opening is provided in the lower portion of the first electrode 22, and the sealing tube 21P is connected to the opening.
  • a sealed space inside the plasma switch 20 is filled with a discharge gas 20G via a sealing tube 21P.
  • the discharge gas 20G is a rarefied inert gas such as hydrogen, deuterium, helium, or argon.
  • the sealing tube 21P is hermetically sealed after the discharge gas 20G is introduced so that the inside of the plasma switch 20 has a predetermined pressure P.
  • the predetermined pressure P is less than 1 atmosphere, for example, 1 Torr or less.
  • the inside of the plasma switch 20 is in a decompressed state. 1 Torr is equal to 1/760 atmosphere and approximately equal to 133 Pa.
  • the plasma switch 20 when the breakdown voltage is plotted against the pd product, which is the product of the pressure P and the discharge gap d, the plotted curve is U-shaped.
  • the U-shaped curve is called the Paschen curve, and the plasma switch 20 operates to the left of the minimum of the U-shaped curve.
  • the pd product is small, the firing voltage becomes high and the plasma tends to be turned off. Also, near the minimum value of the U-shaped Paschen curve, the plasma switch tends to be turned on.
  • a first grid 26 is arranged between the first electrode 22 and the second electrode 23 .
  • a second grid 27 is arranged between the first grid 26 and the second electrode 23 .
  • the portions of the first grid 26 and the second grid 27 provided between the first electrode 22 and the second electrode 23 are both mesh-like.
  • a large-current plasma source is continuously maintained.
  • a second grid 27 is provided to extract electrons from this plasma source.
  • the potential of the second grid 27 is zero or negative.
  • the plasma switch 20 is turned on.
  • the plasma switch 20 is turned off by lowering the potential of the second grid 27 to zero or a negative potential.
  • the reason why the plasma switch 20 can be turned off is that the discharge gap d between the second grid 27 and the second electrode 23 is small and the pd product is small, so the discharge starting voltage can be increased, resulting in a non-sustained discharge. because The discharge gap d is appropriately designed so that the discharge between the second grid 27 and the second electrode 22 cannot be sustained without injection of electrons from the plasma source.
  • the sidewall 21S consists of four parts. That is, the side wall 21S includes a first side wall portion 21S1, a second side wall portion 21S2, a third side wall portion 21S3, and a fourth side wall portion 21S4. , are provided in this order.
  • the upper end of the first electrode 22 and the first side wall portion 21S1 are connected by a joint portion D11.
  • the first side wall portion 21S1 and the second side wall portion 21S2 are connected by a joint portion D12.
  • the second side wall portion 21S2 and the third side wall portion 21S3 are connected by a joint portion D13.
  • the third side wall portion 21S3 and the fourth side wall portion 21S4 are connected by a joint portion D15.
  • the upper ends of the fourth side wall 21S4 and the second electrode 23 are connected by a junction D14.
  • Each part of the first electrode 22, the second electrode 23, and the side wall 21S is airtightly connected by joints D11 to D15.
  • brazing is used to form the joints D11 to D15.
  • the first grid 26 is airtightly connected to the first shield 26S via the joint D12.
  • the first shield 26S is provided so as to surround the plasma switch 20 inside the insulating container 10 .
  • the second grid 27 is airtightly connected to the second shield 27S via the joint D13.
  • the second shield 27S is provided so as to surround the plasma switch 20 inside the insulating container 10 .
  • the first shield 26S and the second shield 27S are each connected to two leads 13L and drawn out of the switching device 1 through through holes provided in the bottom plate 13 .
  • the first grid 26 is electrically connected to the third terminal T3 for external circuit connection via the first shield 26S.
  • the second grid 27 is electrically connected to a fourth terminal T4 for external circuit connection via a second shield 27S.
  • a floating potential shield 28 is provided above the second grid 27 .
  • the floating potential shield 28 is a torus-shaped solid conductive member that is thick in the Z-axis direction and provided in the closed space of the plasma switch 20 .
  • the floating potential shield 28 is a floating potential shield that is not connected to any potential of the first electrode 22 , the second electrode 23 , the first grid 26 and the second grid 27 .
  • Floating potential outer shield 28K is connected to floating potential shield 28 via junction D15.
  • An outer shield 28K is provided inside the insulating container 10 so as to surround the plasma switch 20 .
  • An upper shield 32 is provided between the upper electrode 21U and the support member 17 .
  • the upper shield 32 is drawn out into the insulating container 10 and surrounds the upper electrode 21U while maintaining the airtightness of the insulating container 10 .
  • These shield structures are provided to mitigate the electric field inside the plasma switch 20 and inside the insulating container 10 .
  • the hydrogen storage metal 20H is provided below the plasma switch 20.
  • An opening is provided in the lower part of the first electrode 22 separately from the opening for the sealing pipe 21P, and the connecting pipe 21H is connected to the opening.
  • a hydrogen storage metal 20H is provided at the end of the connecting pipe 21H.
  • the hydrogen storage metal 20H stores hydrogen that creates the atmosphere of the discharge gas 20G introduced into the closed space of the plasma switch 20.
  • the hydrogen storage metal 20H includes, for example, a metal body that stores hydrogen and a heater that heats the metal body.
  • a fifth terminal T5 and a sixth terminal T6 are connected to both ends of the heater via leads 50L.
  • Hydrogen storage metal 20H is an example of a hydrogen storage part.
  • FIG. 4 is a schematic enlarged cross-sectional view for explaining the operation of the switching device of this embodiment.
  • the current density increasing portion 60 is shown enlarged and the lines of magnetic force generated by the permanent magnet 64 are indicated by curved arrows.
  • a straight arrow schematically indicates the direction of the magnetic field H generated in the hollow cathode portion 62 .
  • the permanent magnet 64 has an S pole directed toward the center line C10 of the plasma switch 20 and an N pole directed outward from the center line C10. Magnetic lines of force of the permanent magnet 64 are generated to exit from the north pole and enter the south pole.
  • the permanent magnet 64 is arranged between two hollow cathode portions 62 adjacent to each other in the Z-axis direction, the magnetic field H synthesized by the magnetic lines of force of at least the two upper and lower permanent magnets 64 is generated inside the hollow cathode portion 62 . generated.
  • the first electrode 22, which is the cathode of the plasma switch 20, includes the first layer 22A.
  • the first layer 22A contains at least one material selected from B, C, Al, Si, and Ga, and is, for example, nitride semiconductor such as AlN or GaN, diamond, or the like.
  • the first layer 22A is made of a material having such a negative electron affinity, and can increase the secondary electron emission coefficient. Thus, higher current densities are achieved than in glow discharges with cathodes without these materials.
  • the first electrode 22 includes the current density increasing portion 60 .
  • Current density increasing portion 60 includes a hollow cathode portion 62 .
  • the hollow cathode section 62 includes the electrodes 22A1 and 22A2 facing each other substantially in parallel, and the distance a0 between the electrodes 22A1 and 22A2 is about twice the ion sheath length during glow discharge. It is said that Therefore, the electrodes 22A1 and 22A2 function as hollow cathodes, and negative glow GN is formed in the hollow cathode portion 62, so that the current density can be improved.
  • FIG. 5 is a schematic enlarged cross-sectional view of the B portion of FIG. 4 for explaining the operation of the switching device of this embodiment.
  • FIG. 5 shows a negative glow GN formed between two opposing electrodes 22A1, 22A2.
  • FIG. 5 also shows the electric field E generated between the negative glow GN and the electrode 22A1 and the electric field E generated between the negative glow GN and the electrode 22A2.
  • the negative glow GN is generated substantially parallel to and facing the electrodes 22A1 and 22A2. Therefore, the electric field E generated between the negative glow GN and the electrodes 22A1 and 22A2 is generated in a direction substantially perpendicular to the electrodes 22A1 and 22A2, respectively.
  • the generated electric field E is generated in a direction from the negative glow GN toward the electrodes 22A1 and 22A2.
  • the arrangement of the permanent magnets 64 is adjusted so that the magnetic field H intersects the direction of the electric field E.
  • the permanent magnets 64 are arranged such that the magnetic field H is perpendicular to the electric field E.
  • the current density increasing unit 60 can increase the pd product in the Paschen curve without increasing the pressure in the plasma switch 20, so that ionization due to electron collision can be increased and the current density can be improved.
  • 6A to 7 are schematic equivalent circuit diagrams for explaining the operation of the switching device of this embodiment.
  • 6(a) to 6(c) show the plasma switch 20 including the first electrode 22, the second electrode 23, the first grid 26 and the second grid 27 as equivalent circuit diagrams.
  • the plasma switch 20 is in the initial state, and no potential is applied to the first terminal T1 to the fourth terminal T4.
  • FIG. 6(b) is a schematic diagram showing the plasma switch 20 in the first state ST1.
  • the first terminal T1 is set to the first potential V1
  • the second terminal T2 is set to the second potential V2
  • the third terminal T3 is set to the third potential V3
  • the fourth terminal T4 is set to the fourth potential V4.
  • the first state ST1 is a non-conducting state and the plasma switch 20 is off.
  • the relationship among the first potential V1, the second potential V2, the third potential V3 and the fourth potential V4 is set as follows.
  • the second potential V2 is higher than the first potential V1. That is, V1 ⁇ V2.
  • the third potential V3 is a potential between the first potential V1 and the second potential V2. That is, V1 ⁇ V3 ⁇ V2.
  • the fourth potential V4 is lower than the third potential V3. That is, V4 ⁇ V3.
  • the first potential V1 is, for example, a negative potential or a ground potential.
  • the second potential V2 is, for example, a positive potential.
  • the third potential V3 is, for example, an intermediate potential.
  • the fourth potential V4 is, for example, a negative potential.
  • FIG. 6(c) is a schematic diagram showing the plasma switch 20 in the second state ST2.
  • FIG. 6(c) is a schematic diagram showing the plasma switch 20 in the second state ST2.
  • the potentials of the first terminal T1, the second terminal T2, and the third terminal T3 are the same potentials as in the first state ST1. That is, the first terminal T1 is set to the first potential V1, the second terminal T2 is set to the second potential V2, and the third terminal T3 is set to the third potential V3.
  • the fourth terminal T4 is set to the fifth potential V5.
  • the fifth potential V5 is higher than the third potential V3. That is, V3 ⁇ V5.
  • the fifth potential V5 is, for example, a positive potential.
  • the second state ST2 is a conducting state, and the plasma switch 20 is turned on.
  • the current flowing between the first terminal T1 and the second terminal T2 in the second state ST2 is larger than the current flowing between the first terminal T1 and the second terminal T2 in the first state ST1.
  • the first state ST1 is, for example, a high resistance state.
  • the second state ST2 is, for example, a low resistance state.
  • the potentials of the first terminal T1 to the third terminal T3 are set to V1 to V3, and the potential of the fourth terminal T4 is switched between V4 and V5, thereby switching the non-conducting state and the conducting state. and can be switched.
  • the switching device 1 is, for example, a large-current high-voltage DC circuit breaker.
  • the first electrode 22 is, for example, a cathode, and the second electrode 23 is, for example, an anode.
  • the plasma switch 20 When the plasma switch 20 is in the first state ST1, a first plasma SP1P is generated in the first space SP1 between the first electrode 22 and the first grid 26. At this time, the first grid 26 and the second electrode 23 are in an insulated state. Therefore, the plasma switch 20 in the first state ST1 becomes non-conducting between the first terminal T1 and the second terminal T2.
  • the second plasma SP2P is generated in the second space SP2 between the first grid 26 and the second grid 27, and the second plasma SP2P is generated between the second grid 27 and the second electrode 23.
  • a third plasma SP3P is generated in the three-space SP3. Therefore, the plasma switch 20 in the second state becomes conductive between the first terminal T1 and the second terminal.
  • FIG. 7 is a schematic equivalent circuit diagram for explaining the operation of the switching device of this embodiment.
  • the inside of the plasma switch 20 is preliminarily filled with hydrogen together with a gas such as argon for the purpose of increasing the voltage, creating a reducing atmosphere, or compensating for the consumption of the hydrogen termination of the diamond semiconductor. ing.
  • the hydrogen storage metal 20H supplements the hydrogen in the plasma switch 20.
  • a heater not shown
  • hydrogen is taken out from the hydrogen storage metal 20H and hydrogen in the plasma switch 20 is replenished.
  • a fifth terminal T5 and a sixth terminal T6 are terminals for supplying power to a heater provided in the hydrogen storage metal 20H. Since hydrogen is supplied by heating the hydrogen storage metal 20H, the pressure in the plasma switch 20 can be stably maintained more easily than when hydrogen is supplied using a valve or the like.
  • the switching device 1 of this embodiment includes a plasma switch 20 in which a first electrode 22 includes a first layer 22A.
  • the first electrode 22 is a cathode of the plasma switch 20, and the first layer 22A contains at least one material selected from B, C, Al, Si and Ga, and includes nitride semiconductors such as AlN and GaN.
  • It is a wide bandgap semiconductor such as diamond, graphite, or sintered diamond, and is made of a material having negative electron affinity. Therefore, the secondary electron emission coefficient of the first electrode 22, which is a cathode, can be increased, and the current density of the plasma switch 20 can be improved.
  • the wide bandgap semiconductor to make it p-type or n-type, it is possible to increase the number of current bearers such as electrons or holes, and to further improve the current density.
  • the first electrode 22 includes a current density increasing portion 60.
  • Current density increasing portion 60 includes a hollow cathode portion 62 .
  • the hollow cathode portion 62 constitutes a hollow cathode with the electrodes 22A1 and 22A2 facing each other.
  • a negative glow GN is formed during glow discharge, and the hollow cathode portion 62 functions as a hollow cathode, so the current density of the plasma switch 20 can be improved.
  • the current density increasing section 60 includes magnetic field generating means with a permanent magnet 64 .
  • the permanent magnet 64 generates a magnetic field H that intersects the electric field E generated between the negative glow GN formed within the hollow cathode and the electrodes 22A1 and 22A2. Electrons running in the hollow cathode receive the Lorentz force orthogonal to the electric field E and the magnetic field H and run spirally. Therefore, the traveling distance of the electrons is extended, and the pd product in the Paschen curve can be substantially increased without increasing the pressure in the plasma switch 20, so the current density of the plasma switch 20 can be improved. .
  • a plurality of hollow cathode portions 62 can be provided so as to be stacked in the Z-axis direction, and the current density of the plasma switch 20 can be further improved according to the number of layers.
  • the switching device 1 of this embodiment further includes a hydrogen storage metal 20H.
  • the hydrogen storage metal 20H can be powered externally to fill the plasma switch 20 with hydrogen gas. Compared to the mechanical gas replenishment method, there is an advantage that gas replenishment can be performed easily.
  • the switching device 1 of this embodiment further includes an insulating container 10 . Since the insulating container 10 has an insulating gas 10G around the plasma switch 20, it becomes possible to coordinate insulation with the airtight structure of the plasma switch 20, and it is possible to apply the switching device 1 to high voltage applications. make it easier.
  • DC power transmission systems are attracting attention.
  • a direct-current multi-terminal power transmission system is considered promising as a system for integrating and transmitting electric power generated by wind power generation and solar power generation that are distributed over a long distance.
  • a DC interrupting device is provided for performing high-speed disconnection protection of a DC power transmission system in the unlikely event of an accident such as a DC ground fault or a DC short circuit.
  • a hybrid system that combines mechanical interruption and semiconductor element interruption has been developed for DC interruption devices (see, for example, Patent Document 2).
  • a hybrid type direct-current circuit breaker needs to achieve high withstand voltage and large current, so it may become a huge structure as described below.
  • a DC transmission system is designed with a transmission voltage of several 100 kV in order to ensure transmission efficiency.
  • the components of the DC interrupter must be of high voltage.
  • the semiconductor element interrupting circuit may be, for example, a unit in which power semiconductor elements such as IEGTs and IGBTs, capacitors, resistors, substrates, and the like are mounted. Since the withstand voltage of the power semiconductor element is several kV, it is necessary to connect the semiconductor element and the unit including the semiconductor element in series in order to apply it to the DC interrupting device having the withstand voltage of several 100 kV.
  • interrupting circuits using semiconductor elements having such a series connection structure generally have a tower configuration in which shelves are piled up, and may become an extremely large device.
  • replacement of the semiconductor element with a plasma switch is under consideration.
  • the discharge characteristics inside the plasma switch enable a compact gap design based on the Paschen characteristics, and it is relatively easy to increase the voltage to several 100 kV. On the other hand, it has been a problem to secure a current capacity that can be applied to the DC interrupter.
  • the plasma switch 20 has the first electrode 22 serving as a cathode made of a material having negative electron affinity such as a wide bandgap semiconductor. Also, the first electrode 22 has a current density increasing portion 60 . Therefore, in the plasma switch 20, the current density can be dramatically improved, and the current capacity applicable to the DC interruption device can be realized.
  • the dielectric support supporting the plasma switch 20 When the plasma switch 20 is surrounded by the atmosphere, if the voltage is increased to several hundred kV, the dielectric support supporting the plasma switch 20 must be extended in order to coordinate the insulation of the outer creeping surface that is in contact with the atmosphere. and the device tends to be extremely long. For this reason, there is a problem that the size of the device increases.
  • the plasma switch 20 is housed inside the insulating container 10 in which the insulating gas 10G is enclosed. Therefore, it is possible to maintain the airtightness of the insulating container 10 and the plasma switch 20 while coordinating the insulation, thereby realizing a high voltage without increasing the size.
  • FIG. 8 is a schematic cross-sectional view illustrating a part of the switching device according to this embodiment.
  • FIG. 8 shows a schematic cross-sectional view of the plasma switch 220 that constitutes the switching device of this embodiment.
  • this diagram does not show components corresponding to the insulating container 10 and the hydrogen storage metal 20H in the case of the above-described other embodiment that realizes high voltage, they can be provided in the same manner as in the case of the other embodiments. can be done. As shown in FIG.
  • the plasma switch 220 includes sidewalls 221S, a first electrode 222, a second electrode 223, a first grid 226, and a second grid 227.
  • the side wall 221S is a cylindrical insulating member.
  • the sidewall 221S has an upper end connected to the second electrode 223 and a lower end connected to the bottom plate 215 .
  • a first electrode 222 is provided on the bottom plate 215 so as to protrude into the plasma switch 220 .
  • the first electrode 222 includes a current density increasing portion 260 .
  • Current density increasing section 260 is provided in a closed space inside plasma switch 220 .
  • the first electrode 222, the second electrode 223 and the bottom plate 215 are circular conductive members in XY plan view.
  • the side wall 221S, the first electrode 222 and the bottom plate 215 are circular with substantially the same diameter when viewed in the XY plane. smaller than diameter.
  • the sidewalls 221S, the first electrode 222, the second electrode 223, and the bottom plate 215 are positioned relative to each other such that their centers parallel to the Z-axis substantially coincide with the centerline C20.
  • the internal space of the plasma switch 220 formed by the side wall 221S, the first electrode 222, the second electrode 223 and the bottom plate 215 is hermetically sealed and sealed with the discharge gas 20G.
  • the bottom plate 215 is provided with a sealing tube for enclosing the discharge gas 20G in the internal space of the plasma switch 220, and the discharge gas 20G is enclosed from the sealing tube.
  • a hydrogen storage metal is coupled to the bottom plate 215 as in the other embodiments described above.
  • a first grid 226 is arranged between the first electrode 222 and the second electrode 223 .
  • a second grid 227 is arranged between the first grid 226 and the second electrode 223 .
  • the portions of the first grid 226 and the second grid 227 provided between the first electrode 222 and the second electrode 223 are both mesh-like.
  • the first electrode 222 and the bottom plate 215 are connected to each other.
  • a first terminal T ⁇ b>1 is connected to the bottom plate 215
  • the first electrode 222 is connected to the first terminal T ⁇ b>1 via the bottom plate 215 .
  • a second terminal T2 is connected to the second electrode 223 .
  • the first grid 226 and the second grid 227 are connected to two leads 13L, respectively, and are connected to the third terminal T3 and the fourth T4.
  • the second electrode 223 smoothly protrudes inside the plasma switch 220 in the vicinity of the circumference of the circle in the XY plan view so as to relax the electric field inside the plasma switch 220 .
  • FIG. 9A is a schematic plan view illustrating a part of the switching device of this embodiment.
  • FIG. 9(b) is a schematic cross-sectional view taken along line CC' in FIG. 9(a).
  • the first electrode 222 is a bottomed cylindrical conductive member in the XY plan view.
  • the flat portion 222E corresponding to the bottom is provided at the upper end of the cylindrical portion and housed in the closed space inside the plasma switch 220.
  • the portion corresponding to the bottom does not necessarily have to be flat.
  • a plurality of concave portions 262 are provided in the upper flat portion 222E of the second electrode 222 .
  • the concave portion 262 has a substantially square shape in XY plan view, and two electrodes 222A1 and 222A2 are arranged to face each other. Electrodes 222A3 and 222A4 adjacent to the electrodes 222A1 and 222A2 are also arranged to face each other. In this example, the lower ends of electrodes 222A1-222A4 are electrically connected.
  • the distance a0 between the electrodes 222A1 and 222A2 is about twice the length of the ion sheath formed in the glow discharge state, as in the other embodiments described above.
  • the recess 262 functions as a hollow cathode.
  • the concave portion 262 has a substantially square shape when viewed from the XY plane, but it is not limited to a square shape and may have a substantially circular or elliptical shape.
  • the shape of the concave portion 262 in the XY plane view is substantially circular, the diameter of the circle is about twice the length of the ion sheath.
  • two sets of counter electrodes are used in this example, one set of counter electrodes may be used.
  • the first electrode 222 includes a first layer 222A and a second layer 222D.
  • the first layer 222A is formed on the second layer 222D.
  • the first layer 222A is provided over at least the flat portion 222E at the upper end of the first electrode 222 and the electrodes 222A1 to 222A4.
  • the first layer 222A is provided on the inner side of the plasma switch 220, and the second layer 222D may be exposed in other portions as in this example.
  • the first layer 222A and the second layer 222D are formed of the same materials as the first layer 22A and the second layer 22D for the other embodiments described above.
  • a conductor wire is wound around the portion of the concave portion 262 that is outside the plasma switch 220, and a coil 266 is formed by the wound conductor wire.
  • the power supply is connected so that the current flows counterclockwise when viewed in the XY plane.
  • FIG. 10 is a schematic enlarged cross-sectional view for explaining the operation of the switching device of this embodiment.
  • FIG. 10 shows in detail the configuration of the recess 262 formed in the first electrode 222 and the coil 266 provided around the recess 262 .
  • the direction of the current flowing through the conducting wire forming the coil 266 is indicated by ⁇ marks and X marks.
  • indicates the negative direction of the Y-axis
  • x indicates the positive direction of the Y-axis.
  • FIG. 10 when glow discharge is started, negative glow GN enters recess 262 .
  • An electric field E is generated between the negative glow GN and the electrodes 222A1, 222A2. Since the electrodes 222A1 and 222A2 are provided substantially parallel to the Z-axis, the electric field E is generated substantially parallel to the X-axis in this figure.
  • magnetic field lines are generated counterclockwise around each conductor.
  • magnetic field lines are generated clockwise around each conductor, and within the recess 262, a magnetic field H is generated by combining these magnetic field lines.
  • a magnetic field H is generated to intersect the electric field E, and preferably the configuration of the coils 266 is adjusted so that the magnetic field H is orthogonal to the electric field E.
  • the distance between the recesses 262 in the XY plane view is appropriately set through experiments, simulations, or the like so that the magnetic field H generated in the recesses 262 is perpendicular to the electric field E.
  • the operation and effect of the switching device of this embodiment will be described.
  • the recess 262 provided in the first electrode 222 functions as a hollow cathode, the negative glow GN formed within the recess 262 improves the current density of the plasma switch 220 .
  • a magnetic field H that intersects the electric field E generated between the negative glow GN and the electrodes 222A1 and 222A2 can be generated in a coil 266 provided around the recess 262. Electrons running in the electric field E are subjected to the Lorentz force perpendicular to the electric field E and the magnetic field H, so they run spirally. Therefore, the distance traveled in the electric field is substantially increased, so the pd product in the Paschen curve can be increased, and the current density in the plasma switch 220 can be improved.
  • the first layer 222A is made of a material having a negative electron affinity as in the other embodiments described above, the secondary electron emission coefficient can be increased, and the current density in the plasma switch 220 can be increased. can be improved.
  • first electrode 222 and the second electrode 223 can be made into a circular plate shape, it is possible to facilitate processing and assembly of these members.
  • FIG. 11 is a schematic cross-sectional view illustrating a part of the switching device according to this embodiment.
  • FIG. 11 shows a schematic cross-sectional view of a plasma switch 320 that constitutes the switching device of this embodiment.
  • this diagram does not show components corresponding to the insulating container 10 and the hydrogen storage metal 20H in the case of the above-described first embodiment that realizes high voltage, it is similar to the case of the first embodiment. can be provided.
  • the plasma switch 320 includes a first electrode 322, a second electrode 323, a first grid 326, a second grid 327, a top plate 321U, and a bottom plate 321L.
  • the first electrode 322 is a star-shaped cylindrical body in XY plan view. The upper end of the first electrode 322 is connected to the top plate 321U via the connecting portion 330. As shown in FIG.
  • the connection portion 330 and the top plate 321U are made of an insulating material and are insulated from the first electrode 322 .
  • a lower end of the first electrode 322 is connected to the bottom plate 321L via a connection portion 331 .
  • the connection portion 331 and the bottom plate 321L are made of a conductive material, and the first electrode 322 is electrically connected to the first terminal T1 connected to the bottom plate 321L via the connection portion 331 and the bottom plate 321L. ing.
  • a space surrounded by the first electrode 322, the top plate 321U and the bottom plate 321L is a closed space into which the discharge gas 20G is introduced.
  • the bottom plate 321L is provided with a sealing tube for enclosing the discharge gas 20G in the internal space of the plasma switch 320, and the discharge gas 20G is enclosed from the sealing tube.
  • a hydrogen storage metal is connected to the bottom plate 321L as in the other embodiments described above.
  • FIG. 12(a) is a schematic cross-sectional view taken along line DD' of FIG.
  • FIG. 12(b) is a schematic cross-sectional view taken along line FF' of FIG.
  • FIG. 12(c) is a schematic cross-sectional view taken along line GG' of FIG.
  • the first electrode 322 has a star shape in XY plan view and includes a current density increasing portion 360.
  • the star shape is a circular shape having a center that intersects the center line C30 and radially protruding portions are provided along the circumference.
  • a radially protruding portion is sometimes called a star-shaped protruding portion.
  • the tubular first electrode 322 and the tubular second electrode 323 extending in the Z-axis direction are positioned relative to each other so that their centers in XY plan view substantially coincide with the center line C30 parallel to the Z-axis.
  • the current density increasing section 360 includes a hollow cathode section 362 and a coil 366.
  • the hollow cathode portion 362 is provided on the star-shaped projecting portion of the first electrode 322 . That is, a plurality of hollow cathode portions 362 are provided over a circular circumference having a center that intersects the center line C30.
  • the first electrode 322 includes a first layer 322A and a second layer 322D, and the first layer 322A is provided on the second layer 322D.
  • the first layer 322A is provided inside the plasma switch 320, and the second layer 322D is provided outside the plasma switch 320.
  • the materials of the first layer 322A and the second layer 322D are the same as the materials of the first layer 22A and the second layer 22D, respectively, for the first embodiment described above.
  • a coil 366 is provided in each of the plurality of hollow cathode portions 362 .
  • the coil 366 is provided so as to surround the hollow cathode portion 362 .
  • the second electrode 323 is connected to the top plate 321U inside the plasma switch 320 by a support member 323U.
  • a lead electrode 315L is connected to the first electrode 323, and the lead electrode 315L is drawn out of the plasma switch 320 from the top plate 321U.
  • a second terminal T2 for external circuit connection is connected to the lead electrode 315L.
  • the second electrode 323 is a cylindrical conductive member, and has a circular shape with a center intersecting the center line C30 in XY plan view.
  • a first grid 326 is provided between the first electrode 322 and the second electrode 323 .
  • a second grid 327 is provided between the first grid 326 and the second electrode 323 .
  • the first grid 326 and the second grid 327 have cylindrical shapes with different radii, and are provided so as to surround the second electrode 323 .
  • the first grid 326 and the second grid 327 are connected to two leads 13L, respectively, and drawn out of the plasma switch 320 through the bottom plate 321L.
  • the first grid 326 is connected to the terminal T3 for external circuit connection
  • the second grid 327 is connected to the terminal T4 for external circuit connection.
  • FIG. 13 is a schematic enlarged cross-sectional view of part J in FIG. 12(a) for explaining the operation of the switching device of this embodiment.
  • 14(a) to 14(d) are schematic diagrams for explaining the operation of the switching device of this embodiment.
  • the first electrode 322 is formed in a star shape in XY plan view, and a hollow cathode portion 362 is formed in a radially protruding portion.
  • Hollow cathode portion 362 has two opposing electrodes 322A1 and 322A2. Electrodes 322A1 and 322A2 are connected at the most projecting portion. The distance between the electrodes 322A1 and 322A2 is about twice the length of the ion sheath formed in the glow discharge state, as in the other embodiments described above.
  • a negative glow GN is formed in the hollow cathode portion 362 .
  • An electric field E is formed between the negative glow GN and the electrodes 322A1, 322A2.
  • the formation of the negative glow GN in the hollow cathode portion 362 improves the current density of the plasma switch 320 .
  • magnetic lines of force are generated around the conductor according to the right-handed screw rule according to the direction of the current flowing through the conductor that constitutes the coil 366 . When a current flows from the front of the paper to the back of the paper, magnetic lines of force are generated in the clockwise direction (FIG. 14(a)).
  • a rightward magnetic field H is generated above the one-dimensionally arranged conductors and a leftward magnetic field H is generated below the conductors by synthesis of the magnetic lines of force of the conductors. generated (FIG. 14(b)). Reversing the direction of the current reverses the direction of the magnetic field H (FIGS. 14(c) and 14(d)). Therefore, magnetic fields H are generated in the same direction within the hollow cathode portion 362 .
  • the magnetic field H within the hollow cathode portion 362 generated by the coil 366 is generated so as to intersect the electric field E. Therefore, the electrons traveling by the electric field E receive the Lorentz force and travel spirally between the negative glow GN and the electrodes 322A1 and 322A2. Therefore, the traveling distance of the electrons is substantially extended, the pd product in the Paschen curve is substantially increased, and the current density inside the plasma switch 320 can be improved.
  • the materials of the first layer 322A and the second layer 322D are the same as in the other embodiments described above, and the current density of the plasma switch 320 is improved as in the other embodiments.
  • the switching device of this embodiment includes the plasma switch 320 configured as described above, and can realize a switching device with dramatically improved current density, as in the case of the other embodiments described above.
  • the first electrode 322 of the plasma switch 320 has a star-shaped cylindrical shape when viewed from the XY plane.
  • the first electrode 322 can be easily formed by rolling a base material formed into a corrugated plate shape so as to form a plurality of protruding portions that form the hollow cathode portion 362 and joining the ends thereof. be.
  • the permanent magnet 64 is used as the magnetic field generating means for the hollow cathode portion 62, and in the case of the other embodiments, the coil is used as the magnetic field generating means.
  • the magnetic field generating means is not limited to the examples of each of these embodiments, and can be applied by replacing each other.
  • a coil may be used in place of the permanent magnet 64 in the case of the first embodiment.
  • the coil can be provided so as to generate a magnetic field directed outward from the center in the XY plane view generated by the permanent magnet 64 .
  • permanent magnets may be used instead of the coils 266 and 366 in the case of the second and third embodiments.
  • a magnetic field When a magnetic field is generated by a permanent magnet, it is not limited to arranging individual permanent magnets, but may be integrally molded permanent magnets. An integral permanent magnet allows the manufacturing process of the plasma switch to be simpler.
  • a DC interrupting device using at least one of the switching devices of the other embodiments described above will be described below.
  • a DC interrupter is, for example, a device that interrupts a DC system when a system fault or the like occurs in the DC system.
  • "normal” means a state in which a normal current flows in the DC system
  • "at the time of an accident” means a state in which an excessive current flows due to lightning or the like.
  • a DC system may include, for example, a DC power transmission and the like.
  • FIG. 15 is a schematic block diagram for explaining the operation of the DC interrupter of this embodiment.
  • FIG. 15 shows the configuration of a DC power transmission system K1 including the DC interrupting device 400 in addition to the DC interrupting device 400 of the present embodiment.
  • the DC power transmission system K1 includes, for example, a positive power transmission line 1300 that connects a first DC power transmission network 1200A and a second DC power transmission network 1200B on the positive side, and a negative power transmission line 1400 that connects on the negative side. , including.
  • the DC interrupting device 400 of this embodiment has the same effects as the switching device 1 of the other embodiments described above. Furthermore, in this embodiment, the DC interrupter 400 is provided in the positive power transmission line 1300 of the DC power transmission system K1.
  • the DC interrupter 400 is provided in the positive power transmission line 1300 of the DC power transmission system K1.
  • an example of power transmission from the first DC power transmission network 1200A to the second DC power transmission network 1200B on the positive power transmission line 1300 will be mainly described.
  • the DC interrupting device 400 includes a mechanical disconnector 410, a mechanical circuit breaker 420, a parallel circuit 430, and an H bridge circuit 440.
  • DC interrupter 400 includes first terminal 401 and second terminal 402 .
  • DC interrupting device 400 is connected to first DC transmission network 1200A via first terminal 401 .
  • the DC interrupter 400 is connected to the second DC power grid 1200B via the second terminal 402 .
  • the mechanical circuit breaker 420 is connected in series with the mechanical disconnector 410 .
  • Parallel circuit 430 is connected in parallel to the series circuit of mechanical disconnector 410 and mechanical breaker 420 .
  • parallel circuit 430 includes plasma switching unit 431 and reactor 432 .
  • Plasma switching unit 431 and reactor 432 are connected in series.
  • An arrestor 450 is connected in parallel with the plasma switching unit 431 .
  • H bridge circuit 440 One end of the H bridge circuit 440 is connected to the connection node between the mechanical disconnector 410 and the mechanical circuit breaker 420 .
  • the other end of H bridge circuit 440 is connected to a connection node between plasma switching unit 431 and reactor 432 .
  • the mechanical disconnector 410 Various known configurations can be used for the mechanical disconnector 410 .
  • the parallel circuit 430 is used to interrupt the direct current, as will be described later, so the mechanical disconnector 410 itself does not need to have a current interrupting capability. For this reason, the mechanical disconnector 410 is sufficient as long as it has a mechanical contact and has a dielectric strength that withstands the DC voltage required to disconnect the fault point in the state where the contact is disconnected.
  • the mechanical disconnector 410 disconnects the circuit by, for example, providing a rotating contact between the terminals of the circuit, and rotating the rotating contact to contact or separate from the fixed contact attached to each terminal. can be configured to perform
  • the mechanical disconnector 410 is normally controlled to be in a conductive state, that is, in a state where the contacts are in contact.
  • Current from first DC power grid 1200A flows through mechanical disconnect switch 410 to second DC power grid 1200B.
  • control is performed so that current flows through the parallel circuit 430, and when the current flowing through the mechanical disconnector 410 becomes substantially zero, the mechanical disconnector 410 is switched to a non-conducting state and the circuit is disconnected.
  • the mechanical circuit breaker 420 has a mechanical contact, and it is sufficient if it has the ability to cut off a small current by opening the contact.
  • the mechanical circuit breaker 420 for example, provides a rotary contact between the terminals of the circuit, and rotates the rotary contact to make contact with or separate from the fixed contact attached to each terminal, thereby generating a small current. It can be set as the structure which interrupts.
  • the mechanical circuit breaker 420 is normally controlled so that it is in a conductive state, that is, in a state where the contacts are in contact.
  • Current from first DC power grid 1200A flows through mechanical disconnector 410 and mechanical breaker 420 to second DC power grid 1200B.
  • a current sensor (not shown) is attached to the mechanical circuit breaker 420 .
  • a fault that occurs in the DC power transmission system K1 is detected, for example, by measuring the current flowing through the mechanical circuit breaker 420 with a current sensor and comparing it with a threshold indicating a fault.
  • the plasma switching unit 431 includes a first switching device 431A and a second switching device 431B. Both the first switching device 431A and the second switching device 431B can be, for example, any one of the switching devices of the first to third embodiments.
  • the first switching device 431A and the second switching device 431B are connected in anti-parallel.
  • the first electrode 22 is connected to the second terminal 402 and the second electrode 23 is connected to the first terminal 401 .
  • the second switching device 431 B the first electrode 22 is connected to the first terminal 401 and the second electrode 23 is connected to the second terminal 402 .
  • Both the first switching device 431A and the second switching device 431B operate in the event of a ground fault or short-circuit accident in the DC power transmission system K1, and are normally in a non-conducting state and do not operate.
  • the reactor 432 is connected in series with both the first switching device 431A and the second switching device 431B.
  • the first switching device 431A is in charge of interrupting current flowing from the first DC power grid 1200A to the second DC power grid 1200B.
  • the second switching device 431B is responsible for interrupting current flowing from the second DC power grid 1200B to the first DC power grid 1200A.
  • the current interruption operation by the second switching device 431B will be described below, the current interruption operation by the first switching device 431A can also be explained in the same manner by changing the direction in which the current to be interrupted flows. be.
  • Both the first switching device 431A and the second switching device 431B are switching devices that include the plasma switch 20 (hereinafter referred to as plasma switching devices).
  • the plasma switching device is in the first state ST1 or the second state ST2 based on the potentials of the third terminal T3 and the fourth terminal T4.
  • the first state ST1 is a non-conducting state and the second state ST2 is a conducting state.
  • the plasma switching device is a switching device that shifts from the first state ST1 to the second state ST2 and from the second state ST2 to the first state ST1 by switching the potential of the fourth terminal T4.
  • the second switching device 431B connected in inverse parallel to the first switching device 431A is in a second conductive state and a non-conductive state by controlling the potentials of the third terminal T3 and the fourth terminal T4, respectively. A first state is switched.
  • the arrester 450 absorbs the surge voltage generated across the plasma switching unit 431 when the plasma switching unit 431 is switched from the conducting state to the non-conducting state, enabling safe current interruption.
  • Reactor 432 is provided to reduce the current change rate. Reactor 432 enables current control by H bridge circuit 440 .
  • the H bridge circuit 440 includes a plurality of H bridge units 441. A plurality of H bridge units 441 are connected in series.
  • FIG. 16 is a schematic equivalent circuit diagram illustrating part of the DC interrupter of this embodiment.
  • FIG. 16 shows a circuit configuration example of the H bridge unit 441.
  • H-bridge unit 441 includes switching element 442 , diode 444 and capacitor 445 .
  • the H-bridge circuit 440 controls the current flowing through the mechanical breaker 420 by controlling the output voltage.
  • the switching elements 442 are connected in series.
  • the diodes 444 are connected in anti-parallel to the switching elements 442 respectively.
  • a series-connected switching element 442 constitutes a leg 443 .
  • the switching element 442 is a semiconductor element having self-extinguishing capability, such as an IEGT (Injection Enhanced Gate Transistor), an IGBT (Insulated Gate Bipolar Transistor), a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor), or the like.
  • Capacitor 445 is charged by current flowing through positive transmission line 1300 during steady state operation.
  • FIGS. 17 and 19(a) to 20(b) are diagrams for explaining the flow from the normal state to the protection operation when an accident occurs in the DC power transmission system K1.
  • the current flowing from the first DC power transmission network 1200A to the second DC power transmission network 1200B flows into the DC interrupter 400 via the first terminal 401 as indicated by the arrow in the figure. , flows out from the second terminal 402 .
  • FIG. 18 is an example of a schematic timing chart for explaining the operation of the DC interrupter of this embodiment. For example, it is possible to obtain a timing chart as shown in FIG. 18 by utilizing simulation or the like.
  • the circuit model of the DC interrupting device 400 shown in FIG. A ground fault caused by lightning or the like is generated in the positive power transmission line 1300 .
  • the simulation assumes that a ground fault occurred at the accident point FP.
  • the fault point FP is between the DC interrupter 400 in the positive power transmission line 1300 and the second DC power transmission network 1200B.
  • a solid line LN1 in FIG. 18 indicates the current flowing through the mechanical circuit breaker 420.
  • a dashed-dotted line LN2 indicates the current flowing through the H-bridge circuit 440.
  • FIG. A two-dot chain line LN 3 indicates the current flowing through the plasma switching unit 431 .
  • the DC interrupter 400 performs a two-step interruption operation. First, at the initial stage when the fault current is small, the mechanical circuit breaker 420 performs the breaking operation to commutate the fault current to the parallel circuit 430, and at the later stage when the fault current increases, the plasma switching unit 431 performs the breaking operation. I do. A detailed description will be given below.
  • the output voltage V_H of the H bridge circuit 440 is calculated by the following equation (1).
  • V_H G(s) ⁇ (Idc_M ⁇ 0) (1)
  • G(s) is the Laplace-transformed control gain.
  • the control gain G(s) represents, for example, a transfer function of general proportional-plus-integral control.
  • the switching element 442 of each H bridge unit 441 is pulse width modulation controlled, and the H bridge circuit 440 applies the output voltage VH of formula (1) across the mechanical circuit breaker 420 .
  • the duty ratio of pulse width modulation is set in advance, for example.
  • a current Idc_M flowing through the mechanical circuit breaker 420 is controlled to be substantially zero by applying the output voltage VH of Equation (1).
  • the current Idc_M flowing through the mechanical breaker 420 is controlled to substantially zero in the period P1, as indicated by the solid line LN1 in FIG.
  • mechanical breaker 420 is transitioned to a non-conducting state. Since the current flowing through the mechanical circuit breaker 420 is substantially zero, the current can be interrupted without arcing between the contacts even if the contacts are switched to the non-conducting state. Therefore, the current can be interrupted at high speed.
  • the output voltage of the H-bridge unit 441 is directly applied to the mechanical circuit breaker 420 with almost zero conduction resistance, and a short-circuit current may flow, making current control impossible.
  • the parallel circuit 430 is provided with a reactor 432 , and the H bridge circuit 440 is connected in series with this reactor 432 .
  • the reactor 432 suppresses abrupt current changes due to the application of the output voltage of the H-bridge unit 441 to the mechanical circuit breaker 420, so that the current flowing through the mechanical circuit breaker 420 can be controlled.
  • the current change rate dIdc_M/dt of the current Idc_M flowing through the mechanical circuit breaker 420 is expressed by the following equation (2) using the inductance value L of the reactor 432 .
  • the inductance value L 0. Therefore, unless the output voltage V_H of the H bridge unit 441 is zero, the current change rate dIdc_M/dt becomes infinite, and the current flowing through the mechanical circuit breaker 420 is Control of Idc_M becomes impossible.
  • the inductance value L is inserted in the above equation, so the current change rate dIdc_M/dt becomes finite. Therefore, it is possible to control the current change rate dIdc_M/dt according to the magnitude of the output voltage V_H of the H bridge unit 441 . This prevents direct application of the output voltage of the H-bridge unit 441 to the mechanical circuit breaker 420, and allows current control to make the current Idc_M flowing through the mechanical circuit breaker 420 substantially zero.
  • the output voltage control by the H bridge circuit 440 controls the current Idc_M flowing through the mechanical circuit breaker 420 until it becomes substantially zero. After time t3 has elapsed, as shown in FIG. It returns to the positive transmission line 1300 through the parallel circuit 430 . Therefore, the current Idc_M flowing through the mechanical circuit breaker 420 becomes substantially zero. In this state, the mechanical circuit breaker 420 is switched to the non-conducting state. Since the current flowing through the mechanical circuit breaker 420 is substantially zero, even if the contact is switched to the non-conducting state, unlike normal direct current conduction, an arc will not be drawn and the current will continue to flow. Therefore, the current can be interrupted at high speed.
  • All the switching elements 442 of the H-bridge unit 441 are turned off, as indicated by the dashed-dotted line LN2 in FIG. Then, the voltage previously stored in the capacitor 445 of the H-bridge unit 441 is applied in a direction to reduce the fault current continuing to flow through the mechanical disconnector 410 . This reduces the fault current flowing through the mechanical disconnector 410 . As the fault current flowing through the mechanical disconnector 410 is reduced, the fault current is commutated to the parallel circuit 430 connected in parallel to the mechanical disconnector 410 .
  • the current flowing through the plasma switching unit 431 increases. becomes zero and all fault currents flow through the plasma switching unit 431 .
  • This operating state is shown in FIG.
  • the mechanical disconnector 410 is turned off. Since little current is flowing through the mechanical disconnector 410, the mechanical disconnector 410 can interrupt the current without arcing between the contacts.
  • the DC interrupter 400 of this embodiment since current normally flows through the mechanical disconnecting switch 410 and the mechanical circuit breaker 420, conduction loss can be reduced to almost zero. Therefore, high power transmission efficiency is realized.
  • the output voltage control using the H-bridge circuit 440 induces a current in the parallel circuit 430 so that the current flowing through the mechanical disconnector 410 can be controlled without arcing between the contacts of the mechanical disconnector 410 . can be detached. Therefore, even if the mechanical disconnector 410 does not have a current interrupting capability, it is possible to safely disconnect the fault point.
  • the parallel circuit 430 includes the plasma switching unit 431, it can realize fast current interruption.
  • the plasma switching unit 431 is composed of a plasma switching device. Therefore, the device can be made extremely compact compared to the case where the parallel circuit is configured by semiconductor elements. Therefore, the power transmission efficiency can be improved, and the installation area and volume of the DC circuit breaker equipment in the DC multi-terminal power transmission equipment can be significantly reduced, contributing to the reduction of the equipment cost.
  • FIG. 21 is a schematic block diagram illustrating the DC interrupter according to this embodiment.
  • FIG. 21 shows the DC interrupting device 500 of the present embodiment as well as the DC transmission system K2 that constitutes the DC interrupting device 500.
  • the DC power transmission system K2 is similar to the above-described fourth embodiment in that the DC interrupting device 500 is connected between the first DC power transmission network 1200A and the second DC power transmission network 1200B. is different from the case of The direct-current interrupting device 500 differs from the above-described fourth embodiment in that it includes a plurality of mechanical disconnectors 410 and that a parallel circuit 530 includes a plurality of plasma switching units 431 .
  • the same reference numerals are given to the same components as in the other embodiments described above, and detailed description thereof will be omitted as appropriate.
  • a DC interrupter 500 includes a first terminal 501 and a second terminal 502 .
  • DC interrupter 500 is connected to first DC power grid 1200A through first terminal 501 and to second DC power grid 1200B through second terminal 502 .
  • the DC interrupting device 500 includes a plurality of mechanical disconnectors 410 and parallel circuits 530 .
  • a plurality of mechanical disconnectors 410 are connected in series.
  • a plurality of series-connected mechanical disconnectors 410 are connected in series to a mechanical circuit breaker 420 .
  • a series circuit of a plurality of mechanical disconnectors 410 and mechanical circuit breakers 420 is connected between first terminal 501 and second terminal 502 .
  • the parallel circuit 530 includes multiple plasma switching units 431 .
  • a plurality of plasma switching units 431 are connected in series.
  • An arrestor 450 is connected in parallel to each of the plurality of plasma switching units 431 .
  • Parallel circuit 530 includes reactor 432 .
  • the reactor 432 is connected in series with the series circuit of the plasma switching unit 431 .
  • the series-connected mechanical disconnectors 410 are opened and closed at the same timing.
  • the plasma switching units 431 connected in series are also opened and closed at the same timing. Therefore, the DC interrupter 500 of this embodiment operates in the same manner as the DC interrupter 400 of the above-described fourth embodiment.
  • the effects of the DC interrupter 500 of this embodiment will be described.
  • the DC interrupter 500 of this embodiment has the same effects as the DC interrupter 400 of the fourth embodiment described above.
  • the DC interrupter 500 comprises a plurality of mechanical disconnectors 410 and a plurality of plasma switching units 431 connected in series. Therefore, by appropriately setting the number of series connections of these series circuits, it is possible to appropriately respond to voltages at various locations in the DC power transmission system K2.
  • plasma switching units 431 of the same standard can be manufactured, and the number of series connections can be set according to the DC power grid to be installed. can contribute to the improvement of
  • FIG. 22 is a schematic block diagram illustrating a direct-current interruption system according to this embodiment.
  • FIG. 22 does not show the first DC power transmission network 1200A, the second DC power transmission network 1200B, the positive power transmission line 1300 and the negative power transmission line 1400,
  • a first DC power grid 1200A can be connected via a wire 1300 and a second DC power grid 1200B can be connected via a positive power transmission line 1300 to the second terminal 402 .
  • the DC power transmission system K3 can be configured.
  • a direct-current interruption system 600 of this embodiment differs from the above-described fourth and fifth embodiments in that a controller 601 is provided.
  • a DC interrupting system 600 includes a DC interrupting device 400 and a control device 601 .
  • Control device 601 is connected to DC interrupter 400 .
  • the control device 601 includes a communication section 610 , a determination section 620 and an operation section 630 .
  • Determining unit 620 and operating unit 630 are implemented, for example, by a hardware processor such as a CPU (Central Processing Unit) executing programs and software. Some or all of these components are hardware (circuits) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), GPU (Graphics Processing Unit) (including circuitry), or by cooperation of software and hardware.
  • LSI Large Scale Integration
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • GPU Graphics Processing Unit
  • the program may be stored in advance in a storage device such as the controller's HDD or flash memory (a storage device with a non-transitory storage medium), or stored in a removable storage medium such as a DVD or CD-ROM. and may be installed in the storage device by loading the storage medium (non-transitory storage medium) into the drive device.
  • the program may be stored in the storage unit.
  • the control device 601 switches the plasma switching unit 431 and the H bridge unit 441 to a conductive state, and controls the output voltage of the H bridge circuit 440 to control the current flowing through the mechanical breaker 420. is limited to shift the mechanical circuit breaker 420 to a non-conducting state.
  • the control device 601 shifts the H-bridge unit 441 to a non-conducting state, applies voltage to the capacitor 445 in the H-bridge circuit 440, commutates the fault current to the parallel circuit 430, and shifts the mechanical disconnector 410 to a non-conducting state. Let The controller 601 interrupts the fault current with the plasma switching unit 431 .
  • the control device 601 is an example of a control unit.
  • the communication unit 610 is, for example, a wireless communication module for transmitting and receiving various information.
  • Communication unit 610 receives accident information transmitted from, for example, a management center, and outputs the information to determination unit 620 .
  • the communication unit 610 for example, transmits control signals generated by the operation unit 630 to various devices included in the DC interrupter 400 .
  • the determination unit 620 determines whether an accident has occurred in the DC power transmission system K3. When determination unit 620 determines that an accident has occurred in DC power transmission system K3, it notifies operation unit 630 of accident occurrence information including the occurrence of the accident and the circumstances of the accident.
  • the operation unit 630 generates a disconnecting switch operation signal, a circuit breaker operation signal, a switch operation signal, and a bridge operation signal based on the accident occurrence information notified by the determination unit 620 .
  • the disconnecting switch operation signal is a signal for operating the mechanical disconnecting switch 410 .
  • the circuit breaker operation signal is a signal for operating the mechanical circuit breaker 420 .
  • a switch operation signal is a signal for operating the plasma switching unit 431 .
  • a bridge operation signal is a signal for operating the H bridge unit 441 .
  • the operation unit 630 directs the generated disconnector operation signal, circuit breaker operation signal, switch operation signal, and bridge operation signal to the mechanical disconnector 410, the mechanical circuit breaker 420, the plasma switching unit 431, and the H bridge unit 441, respectively. and causes the communication unit 610 to transmit it.
  • the switch operation signal includes the first switch operation signal to the fourth switch operation signal.
  • the first switch operation signal is information for switching the potential of the third terminal T3 corresponding to the first grid 26 of the first switching device 431A.
  • the second switch operation signal is information for switching the potential of the fourth terminal T4 corresponding to the second grid 27 of the first switching device 431A.
  • the third switch operation signal is information for switching the potential of the third terminal T3 corresponding to the first grid 26 of the second switching device 431B.
  • the fourth switch operation signal is information for switching the potential of the fourth terminal T4 corresponding to the second grid 27 of the second switching device 431B.
  • the accident occurrence information includes, for example, the power transmission direction of DC power transmission and information on the occurrence of an accident in the DC system.
  • Determination unit 620 includes a function of recognizing the power transmission direction of DC power transmission and a function of determining the occurrence of an accident in the DC system. For example, when the power transmission direction is from the first terminal 401 to the second terminal 402, the determination unit 620 selects the first switching device 431A as means for finally interrupting the current when an accident occurs. For example, when the power transmission direction is from the second terminal 402 to the first terminal 401, the determination unit 620 selects the second switching device 431B as means for finally interrupting the current when an accident occurs.
  • the DC interrupting device 400 is connected, for example, to the DC transmission line on the positive electrode side. For this reason, the DC interrupter 400 is configured to ensure appropriate insulation from the ground.
  • the control device 601 is installed, for example, near various devices of the DC interrupter 400, and is installed on the ground at ground potential. For this reason, the control device 601 transmits operation signals to each device by wire cable means via an insulating transformer or optical fiber cable means electrically insulated by an optical signal.
  • the effect of the direct-current interruption system 600 of this embodiment will be described.
  • the DC interrupting system 600 of this embodiment has the same effects as the DC interrupting device 400 of the fourth embodiment described above. Since the DC interruption system 600 of the present embodiment includes the control device 601, it determines the power transmission direction and determines which of the first switching device 431A and the second switching device 431B should be cut off when an accident occurs. select. Therefore, it is possible to interrupt the fault current in both directions.
  • FIG. 23 is a schematic block diagram illustrating a direct-current interruption system according to this embodiment.
  • FIG. 23 does not show the first DC power transmission network 1200A, the second DC power transmission network 1200B, the positive power transmission line 1300 and the negative power transmission line 1400,
  • a first DC power grid 1200A can be connected via a wire 1300 and a second DC power grid 1200B can be connected via a positive power transmission line 1300 to the second terminal 402 .
  • the DC power transmission system K4 can be configured.
  • a DC interrupting system 700 of this embodiment includes a control device 701 different from the control device 601 of the sixth embodiment described above.
  • the same constituent elements are denoted by the same reference numerals, and detailed description thereof will be omitted as appropriate.
  • a DC interrupting system 700 includes a DC interrupting device 400 and a control device 701 .
  • the control device 701 includes a hydrogen amount control section 740 .
  • control device 701 the communication unit 610, the determination unit 620, and the operation unit 630 function and operate in the same manner as in the sixth embodiment described above.
  • the communication unit 610 receives the number of operations of the first switching device 431A and the second switching device 431B, and outputs it to the hydrogen amount control unit 740.
  • Hydrogen amount control unit 740 monitors hydrogen consumption, hydrogen concentration, and withstand voltage at the surface termination of first electrode 22 in each of first switching device 431A and second switching device 431B, based on the output number of operations. Monitor levels. Based on these monitoring results, the hydrogen amount control unit 740 determines whether or not the plasma switches 20 in each of the first switching device 431A and the second switching device 431B need to be replenished with hydrogen.
  • the hydrogen amount control unit 740 determines that it is necessary to replenish hydrogen, it causes the communication unit 610 to transmit a replenishment operation signal to the first switching device 431A and the second switching device 431B.
  • the filling operation signal is a signal for heating the hydrogen storage metal 20H to release hydrogen and filling the plasma switch 20 with hydrogen.
  • the DC interrupting system 700 of this embodiment has the following effects in addition to the same effects as the DC interrupting device 400 of the fourth embodiment. That is, when the hydrogen concentration in the plasma switch 20 in the first switching device 431A and the second switching device 431B decreases, the DC cutoff system 700 supplies hydrogen without inhibiting the reduced pressure in the plasma switch 20. be able to.
  • FIG. 24 is a schematic block diagram illustrating the DC interrupting device according to this embodiment.
  • FIG. 25 is a schematic perspective view illustrating the direct current interrupting device of this embodiment.
  • FIG. 24 does not show the first DC transmission network 1200A, the second DC transmission network 1200B, the positive transmission line 1300 and the negative transmission line 1400, the positive transmission line is connected to the first terminal of the DC interrupter 800.
  • a first DC power grid 1200A can be connected via 1300 and a second DC power grid 1200B can be connected via a positive power line 1300 to the second terminal.
  • the DC power transmission system K5 can be configured.
  • a direct current interrupter 800 of this embodiment includes a mechanical cutoff valve 801, a plasma switch valve 802, and an H bridge valve 803.
  • the mechanical shutoff valve 801 includes a mechanical disconnector 410 and a mechanical circuit breaker 420 .
  • a mechanical disconnector 410 is connected in series, and a mechanical circuit breaker 420 is connected in series to the series circuit of the mechanical disconnectors 410 .
  • the mechanical shutoff valve 801 has terminals 801a, 801b, 801c.
  • a series circuit of mechanical disconnector 410 and mechanical circuit breaker 420 is connected between terminals 801a and 801c.
  • the plasma switch valve 802 includes a plasma switching unit 431 and an arrester 450.
  • a plurality of plasma switching units 431 are connected in series, and an arrester 450 is connected in parallel to each of the plurality of plasma switching units 431 .
  • the plasma switch valve 802 has terminals 802a and 802b.
  • a series circuit of plasma switching units 431 is connected between terminals 802a and 802b.
  • the H bridge valve 803 includes an H bridge unit 441 and a reactor 432. In the H bridge valve 803 of this example, multiple H bridge units 441 are connected in series.
  • the H bridge valve 803 has terminals 803a, 803b and 803c.
  • the series circuit of H bridge unit 441 is connected between terminals 803a and 803c.
  • Reactor 432 is connected between terminals 803a and 803b.
  • a terminal 801 a of the mechanical shutoff valve 801 is electrically connected to a terminal 802 a of the plasma switch valve 802 .
  • Terminal 802b of plasma switch valve 802 is electrically connected to terminal 803a of H-bridge valve 803 .
  • Terminals 803b and 803c of H-bridge valve 803 are connected to terminals 801c and 801b of mechanical isolation valve 801, respectively.
  • the mechanical shutoff valve 801, the plasma switch valve 802 and the H bridge valve 803 are housed in different housings 800a to 800c and arranged independently of each other.
  • the mechanical shutoff valve 801 is mounted, for example, on an independent mount (not shown).
  • the mechanical shut-off valve 801, plasma switch valve 802 and H-bridge valve 803 operate in the same manner as the DC shut-off device 400 of the fourth embodiment, for example, described above.
  • the direct-current interrupting device 800 of this embodiment has the following effects in addition to the same effects as those of the direct-current interrupting devices 400 and 500 of the above-described fourth and fifth embodiments. That is, in the direct current interrupter 800, the mechanical cutoff valve 801 is mounted on an independent stand. For this reason, it is easy to prevent the operational vibration accompanying opening and closing of the electrodes of the mechanical disconnecting switch 410 and the mechanical circuit breaker 420 mounted on the mechanical shutoff valve 801 from being transmitted to the plasma switch valve 802 and the H bridge valve 803. can be realized. Therefore, reliability such as durability can be improved.
  • the mechanical cutoff valve 801, the plasma switch valve 802 and the H bridge valve 803 are arranged independently. Therefore, even after the installation of the direct-current interrupting device 800, work can be performed from the side of each valve, and maintenance can be facilitated.
  • the mechanical disconnecting switch 410, the mechanical circuit breaker 420, the plasma switching unit 431, and the H-bridge unit 441 are arranged and housed in one housing or base material, the installation area of the housing or base material becomes large, and the direct current Access to the back of the shut-off device becomes difficult.
  • the housing and base material since the weight of the device borne by one housing and base material also increases, the housing and base material must be strongly configured, which increases the overall weight and cost.
  • the mechanical cutoff valve 801, the plasma switch valve 802 and the H bridge valve 803 are arranged independently. For this reason, items to be taken into consideration regarding handling of the component parts are limited, and assembling efficiency can be improved. Furthermore, the quality can be improved by testing each valve. Therefore, it is possible to improve the durability, maintainability, assemblability, and quality of the DC interrupter 800 using the plasma switching device.
  • FIG. 26 is a schematic block diagram illustrating the DC interrupter according to this embodiment.
  • FIG. 26 shows the configuration of a DC power transmission system K6 including the DC interrupting device 900 in addition to the DC interrupting device 900 of the present embodiment.
  • the DC power transmission system K6 is similar to the above-described fourth embodiment in that a DC interrupting device 900 is connected between the first DC power transmission network 1200A and the second DC power transmission network 1200B. is different from the case of
  • the same reference numerals are given to the same components as in the other embodiments described above, and detailed description thereof will be omitted as appropriate.
  • a direct current interrupting device 900 differs from that of the fourth embodiment in that it does not include an H bridge circuit 440 . That is, the DC interrupting device 900 includes a mechanical disconnector 410 , a mechanical circuit breaker 420 and a parallel circuit 430 .
  • the mechanical disconnector 410 and the mechanical circuit breaker 420 are connected in series.
  • Parallel circuit 430 is connected in parallel to the series circuit of mechanical disconnector 410 and mechanical breaker 420 .
  • the DC interrupter 900 has a first terminal 901 and a second terminal 902, and the mechanical disconnector 410, the mechanical circuit breaker 420 and the parallel circuit 430 are connected between the first terminal 901 and the second terminal 902. It is connected to the.
  • a reactance may be connected in series with the parallel circuit 430 and connected in parallel with the series circuit of the mechanical disconnector 410 and the mechanical breaker 420 .
  • the DC interrupting device 900 of the present embodiment can significantly improve the voltage drop in the second state in which the plasma switches 20 of the first switching device 431A and the second switching device 431B are conductive.
  • the operation of the DC interrupting device 900 of this embodiment will be described separately for normal operation, accident operation, and operation. At the time of the accident, a case where a DC short-circuit fault occurs in the second DC transmission network 1200B will be described.
  • first switching device 431A and the second switching device 431B are in a non-conducting first state ST1.
  • current from first DC power grid 1200A flows to second DC power grid 1200B via mechanical disconnector 410 and mechanical circuit breaker 420 and does not flow to parallel circuit 430 .
  • the mechanical disconnector 410 starts operating in the direction in which the contact electrode opens.
  • the contact electrodes of the mechanical disconnector 410 begin to separate, an arc is generated between the contact electrodes and an arc voltage is generated at the same time.
  • Current continues to attempt to continue to flow, but the fault current flowing through mechanical disconnector 410 is shunted to parallel circuit 430 .
  • the voltage drop in the second state ST2 of the plasma switching unit 431 is sufficiently low, most of the fault current flowing through the mechanical disconnector 410 is commutated to the parallel circuit 430. Furthermore, by blowing compressed gas to the part where the contact electrode of the mechanical disconnector 410 is separated to suppress the contact electrode and its surroundings from becoming plasma, the contact electrode opening operation is continued toward the maximum gap. , the arc voltage increases, and the fault current easily flows through the parallel circuit 430, the arc of the mechanical disconnector 410 disappears, and the current becomes zero.
  • the insulation recovery time of the mechanical circuit breaker 420 is awaited, and the second switching device 431B of the plasma switching unit 431 is switched from the conductive second state ST2 to the non-conductive state.
  • the current flowing through the parallel circuit 430 is cut off by switching to the first state ST1. In this way, the fault current interruption by the DC interruption device 900 is completed.
  • the direct current interrupting device 900 of the present embodiment has the following effects in addition to the effects similar to those of the direct current interrupting device 400 of the fourth embodiment, for example. That is, the direct-current interrupting device 900 of this embodiment does not need to be provided with an H-bridge circuit, so it can contribute to cost reduction and miniaturization. Furthermore, by reducing the number of device parts, it is possible to improve maintainability, productivity, and reliability.
  • FIG. 27 is a schematic block diagram illustrating a DC interrupting device according to this embodiment.
  • FIG. 27 shows a DC transmission system K7 including a plurality of DC transmission networks and a plurality of DC interrupters.
  • the DC power transmission system K7 includes a first DC interrupter 1000A to a third DC interrupter 1000C.
  • the DC interrupters 1000A to 1000C of this embodiment have the same configuration.
  • the DC interrupters 1000A-1000C comprise a plasma switching unit 1030.
  • the plasma switching unit 1030 differs from the plasma switching unit 431 of the fourth embodiment in that it is composed of a second switching device 431B and does not include a first switching device 431A.
  • the configuration of the DC interrupting devices 1000A to 1000C is the same as the configuration of the DC interrupting device 400 in the case of the fourth embodiment.
  • the same constituent elements are denoted by the same reference numerals, and detailed description thereof will be omitted as appropriate.
  • the DC transmission system K7 includes three DC transmission networks: a first DC transmission network 1200A, a second DC transmission network 1200B and a third DC transmission network 1200C.
  • First DC power grid 1200A, second DC power grid 1200B, and third DC power grid 1200C all include AC/DC power converters (not shown).
  • the positive power transmission line 1300 of the first DC interrupter 1000A is provided with a first terminal 1001a on the side of the first DC power transmission network 1200A, and a second terminal 1002a on the opposite side of the first DC power transmission network 1200A.
  • the positive power transmission line 1300 of the second DC interrupter 1000B is provided with a first terminal 1001b on the second DC power grid 1200B side and a second terminal 1002b on the opposite side of the second DC power grid 1200B.
  • the positive power transmission line 1300 of the third DC interrupter 1000C is provided with a first terminal 1001c on the side of the third DC power grid 1200C, and a second terminal 1002c on the opposite side of the third DC power grid 1200C. .
  • FIG. 28 is a schematic block diagram for explaining the operation of the DC interrupter of this embodiment.
  • the positive transmission line 1300 and the negative transmission line 1400 transmit DC. It is assumed that
  • Accident case 1 is a case where a ground fault occurs at the first fault point FP1 of the positive transmission line 1300 between the first DC transmission network 1200A and the first DC interrupting device 1000A.
  • the voltage at the first fault point FP1 becomes ground potential. Therefore, the fault current flows toward the first fault point FP1. That is, current flows from the first DC transmission network 1200A side toward the first fault point FP1, and then from the second DC transmission network 1200B side and the third DC transmission network 1200C side toward the first fault point FP1.
  • the first DC interrupter 1000A performs protective operation, interrupts the fault current, and disconnects the first fault point FP1 from the positive power transmission line 1300.
  • the second DC power grid 1200B and the third DC power grid 1200C transmit power from the third DC power grid 1200C toward the second DC power grid 1200B by disconnecting the first fault point FP1 from the positive power transmission line 1300. can be continued or resumed.
  • Accident case 2 is a case where a ground fault occurs at second fault point FP2 of positive transmission line 1300 connecting first DC transmission network 1200A, second DC transmission network 1200B, and third DC transmission network 1200C.
  • the fault current flows toward the second fault point FP2. That is, from the first DC power grid 1200A side to the second fault point FP2, from the second DC power grid 1200B side to the second fault point FP2, and from the third DC power grid 1200C side to the second fault point FP2. , the fault current flows.
  • each of the first DC interrupting device 1000A to the third DC interrupting device 1000C performs protective operation, interrupts the fault current, and disconnects the second fault point FP2 from the positive power transmission line 1300.
  • the protection operation is an operation of switching the plasma switches of the first to third DC interrupting devices 1000A to 1000C from the first state (non-conducting state) to the second state (conducting state). In accident case 2, interconnection with any of the first DC power grid 1200A to the third DC power grid 1200C is impossible unless the second fault point FP2 is restored.
  • Accident case 3 is a case where a ground fault occurs at the third fault point FP3 of the positive transmission line 1300 between the second DC transmission network 1200B and the second DC interrupting device 1000B.
  • the fault current flows toward the third fault point FP3. That is, the fault current flows from the second DC power transmission network 1200B side toward the third fault point FP3, and from the first DC power transmission network 1200A side and the third DC power transmission network 1200C side toward the third fault point FP3. .
  • the second DC interrupter 1000B performs protective operation, interrupts the fault current, and disconnects the third fault point FP3 from the positive power transmission line 1300.
  • 1200A of 1st DC power transmission networks and 1200C of 3rd DC power transmission networks will be in an interconnection possible state by cutting off the 3rd fault point FP3 from the positive power transmission line 1300.
  • FIG. 1200A of 1st DC power transmission networks and 1200C of 3rd DC power transmission networks will be in an interconnection possible state by cutting off the 3rd fault point FP3 from the positive power transmission line 1300.
  • Accident case 4 is a case where a ground fault occurred at the fourth fault point FP4 of the positive power transmission line 1300 between the third DC transmission network 1200C and the third DC interrupting device 1000C.
  • the voltage at the fourth fault point FP4 becomes ground potential. Therefore, the fault current flows toward the fourth fault point FP4. That is, current flows from the first DC power grid 1200A side and the second DC power grid 1200B side toward the fourth fault point FP4, and from the third DC power grid 1200C side toward the fourth fault point FP4.
  • the third DC interrupting device 1000C performs protective operation, interrupts the fault current, and disconnects the fourth fault point FP4 from the positive power transmission line 1300.
  • the first DC power transmission network 1200A and the second DC power transmission network 1200B transmit power from the first DC power transmission network 1200A toward the second DC power transmission network 1200B by disconnecting the fourth fault point FP4 from the positive power transmission line 1300. or resume power transmission.
  • the effects of the DC interrupter of this embodiment will be described.
  • the DC interrupting devices 1000A to 1000C of this embodiment have the following effects in addition to the same effects as the DC interrupting devices of the other embodiments described above. That is, even if the DC circuit breakers 1000A to 1000C are one-way interrupting DC circuit breakers, they can isolate the fault point of the DC multi-terminal transmission line and suppress the expansion of the fault.
  • the first electrode connected to the first terminal is connected to the second terminal, and the second electrode separated from the first electrode is connected to the third terminal.
  • a switching device comprising a plasma switch and an outer shell provided outside the plasma switch and forming a sealed space between the plasma switch and the plasma switch, wherein the sealed space is filled with an insulating gas.
  • a compact switching device and a DC interrupting device can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

A switching device according to an embodiment comprises: a first electrode; a second electrode provided apart from the first electrode; a plasma switch that includes a first grid provided between the first electrode and the second electrode, and a second grid provided between the first grid and the second electrode; and an outer shell part that is provided outside the plasma switch, and forms a sealed space with the plasma switch. The first electrode includes: a hollow cathode part in which the plasma switch generates a negative glow during glow discharge; and a magnetic-field-generating unit that is provided around the hollow cathode part, and that generates a magnetic field that intersects the electric field between the negative glow and the first electrode. The hollow cathode part includes at least one material from among B, C, Al, Si and Ga.

Description

スイッチング装置、直流遮断装置および直流遮断システムSwitching devices, DC interrupters and DC interrupting systems
 本発明の実施形態は、スイッチング装置、直流遮断装置および直流遮断システムに関する。 Embodiments of the present invention relate to switching devices, DC interrupting devices, and DC interrupting systems.
 プラズマスイッチを利用したスイッチング装置がある。プラズマスイッチの電流容量を向上させることにより、応用範囲を拡大させることが期待されている。 There is a switching device that uses a plasma switch. It is expected that the application range will be expanded by improving the current capacity of the plasma switch.
米国特許第5828176号明細書U.S. Pat. No. 5,828,176 特許第6430294号公報Japanese Patent No. 6430294
 実施形態は、高性能なスイッチング装置、直流遮断装置および直流遮断システムを提供する。 Embodiments provide high-performance switching devices, DC interrupting devices, and DC interrupting systems.
 実施形態に係るスイッチング装置は、第1電極と、前記第1電極から離れて設けられた第2電極と、前記第1電極と前記第2電極の間に設けられた第1グリッドと、前記第1グリッドと前記第2電極の間に設けられた第2グリッドと、を含むプラズマスイッチと、前記プラズマスイッチの外側に設けられ、前記プラズマスイッチとの間に密閉空間を形成する外郭部と、を備える。前記第1電極は、前記プラズマスイッチがグロー放電時に負グローを生成するホローカソード部と、前記ホローカソード部の周囲に設けられ、前記負グローと前記第1電極との間の電界に交差する磁界を発生する磁界発生部と、を含む。前記ホローカソード部は、B、C、Al、SiおよびGaのうち少なくとも1つの材料を含む。 A switching device according to an embodiment includes a first electrode, a second electrode provided apart from the first electrode, a first grid provided between the first electrode and the second electrode, and the first electrode. 1 grid and a second grid provided between the second electrode; and an outer shell provided outside the plasma switch and forming a closed space between the plasma switch and the plasma switch Prepare. The first electrode includes a hollow cathode portion for generating a negative glow during glow discharge by the plasma switch, and a magnetic field that is provided around the hollow cathode portion and intersects an electric field between the negative glow and the first electrode. and a magnetic field generator that generates a The hollow cathode portion includes at least one material selected from B, C, Al, Si and Ga.
第1の実施形態に係るスイッチング装置を例示する模式的な断面図である。1 is a schematic cross-sectional view illustrating a switching device according to a first embodiment; FIG. 図1のAA’線における模式的な矢視平面図である。FIG. 2 is a schematic plan view taken along line AA' of FIG. 1; 第1の実施形態のスイッチング装置の一部を例示する模式的な拡大断面図である。2 is a schematic enlarged cross-sectional view illustrating part of the switching device of the first embodiment; FIG. 第1の実施形態のスイッチング装置の動作を説明するための模式的な拡大断面図である。4A and 4B are schematic enlarged cross-sectional views for explaining the operation of the switching device of the first embodiment; FIG. 第1の実施形態のスイッチング装置の動作を説明するための図4のB部の模式的な拡大断面図である。FIG. 5 is a schematic enlarged cross-sectional view of part B of FIG. 4 for explaining the operation of the switching device of the first embodiment; 図6(a)~図6(c)は、第1の実施形態のスイッチング装置の動作を説明するための模式的な等価回路図である。6A to 6C are schematic equivalent circuit diagrams for explaining the operation of the switching device of the first embodiment. 第1の実施形態のスイッチング装置の動作を説明するための模式的な等価回路図である。4 is a schematic equivalent circuit diagram for explaining the operation of the switching device of the first embodiment; FIG. 第2の実施形態に係るスイッチング装置の一部を例示する模式的な断面図である。FIG. 10 is a schematic cross-sectional view illustrating part of a switching device according to a second embodiment; 図9(a)は、第2の実施形態のスイッチング装置の一部を例示する模式的な平面図である。図9(b)は、図9(a)のCC’線における模式的な矢視断面図である。FIG. 9A is a schematic plan view illustrating part of the switching device of the second embodiment. FIG. 9(b) is a schematic cross-sectional view taken along line CC' in FIG. 9(a). 第2の実施形態のスイッチング装置の動作を説明するための模式的な拡大断面図である。FIG. 11 is a schematic enlarged cross-sectional view for explaining the operation of the switching device of the second embodiment; 第3の実施形態に係るスイッチング装置の一部を例示する模式的な断面図である。FIG. 11 is a schematic cross-sectional view illustrating a part of a switching device according to a third embodiment; 図12(a)は、図11のDD’線における模式的な矢視断面図である。図12(b)は、図11のFF’線における模式的な矢視断面図である。図12(c)は、図11のGG’線における模式的な矢視断面図である。FIG. 12(a) is a schematic cross-sectional view taken along line DD' of FIG. FIG. 12(b) is a schematic cross-sectional view taken along line FF' of FIG. FIG. 12(c) is a schematic cross-sectional view taken along line GG' of FIG. 第3の実施形態のスイッチング装置の動作を説明するための図12(a)のJ部の模式的な拡大断面図である。FIG. 12B is a schematic enlarged cross-sectional view of part J of FIG. 12A for explaining the operation of the switching device of the third embodiment; 図14(a)~図14(d)は、第3の実施形態のスイッチング装置の動作を説明するための模式図である。14(a) to 14(d) are schematic diagrams for explaining the operation of the switching device of the third embodiment. 第4の実施形態に係る直流遮断装置を例示する模式的なブロック図である。FIG. 11 is a schematic block diagram illustrating a DC interrupting device according to a fourth embodiment; 第4の実施形態の直流遮断装置の一部を例示する模式的な等価回路図である。FIG. 11 is a schematic equivalent circuit diagram illustrating part of a DC interrupting device of a fourth embodiment; 第4の実施形態の直流遮断装置の動作を説明するための模式的なブロック図である。FIG. 11 is a schematic block diagram for explaining the operation of the DC interrupting device of the fourth embodiment; 第4の実施形態の直流遮断装置の動作を説明するための模式的なタイミングチャートの例である。It is an example of a typical timing chart for explaining operation of the direct-current interruption device of a 4th embodiment. 図19(a)および図19(b)は、第4の実施形態の直流遮断装置の動作を説明するための模式的なブロック図である。19(a) and 19(b) are schematic block diagrams for explaining the operation of the DC interrupter of the fourth embodiment. 図20(a)および図20(b)は、第4の実施形態の直流遮断装置の動作を説明するための模式的なブロック図である。20(a) and 20(b) are schematic block diagrams for explaining the operation of the DC interrupter of the fourth embodiment. 第5の実施形態に係る直流遮断装置を例示する模式的なブロック図である。FIG. 11 is a schematic block diagram illustrating a DC interrupting device according to a fifth embodiment; 第6の実施形態に係る直流遮断システムを例示する模式的なブロック図である。FIG. 11 is a schematic block diagram illustrating a direct current interrupting system according to a sixth embodiment; 第7の実施形態に係る直流遮断システムを例示する模式的なブロック図である。FIG. 11 is a schematic block diagram illustrating a direct current interrupting system according to a seventh embodiment; 第8の実施形態に係る直流遮断装置を例示する模式的なブロック図である。FIG. 11 is a schematic block diagram illustrating a direct current interrupting device according to an eighth embodiment; 第8の実施形態の直流遮断装置を例示する模式的な斜視図である。FIG. 21 is a schematic perspective view illustrating a direct current interrupting device of an eighth embodiment; 第9の実施形態に係る直流遮断装置を例示する模式的なブロック図である。FIG. 12 is a schematic block diagram illustrating a DC interrupting device according to a ninth embodiment; 第10の実施形態に係る直流遮断装置を例示する模式的なブロック図である。FIG. 20 is a schematic block diagram illustrating a DC interrupting device according to a tenth embodiment; 第10の実施形態の直流遮断装置の動作を説明するための模式的なブロック図である。FIG. 20 is a schematic block diagram for explaining the operation of the DC interrupting device of the tenth embodiment;
 以下、図面を参照しつつ、本発明の実施形態について説明する。
 なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
 なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して詳細な説明を適宜省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Note that the drawings are schematic or conceptual, and the relationship between the thickness and width of each portion, the size ratio between portions, and the like are not necessarily the same as the actual ones. Also, even when the same parts are shown, the dimensions and ratios may be different depending on the drawing.
In addition, in the present specification and each figure, the same reference numerals are given to the same elements as those described above with respect to the previous figures, and detailed description thereof will be omitted as appropriate.
 (第1の実施形態)
 図1は、本実施形態に係るスイッチング装置を例示する模式的な断面図である。
 以下の説明において、X軸、Y軸およびZ軸を含む3次元座標軸を用いることがある。後述する絶縁容器10の天板12および底板13は、ドーナツ状の平板部材であり、天板12および底板13は、XY平面にほぼ平行となるように設けられるものとする。絶縁容器10やプラズマスイッチ20は、円筒状をなしており、この円筒はZ軸方向に沿って延伸しているものとする。中心線C10は、これら絶縁容器10やプラズマスイッチ20の円筒の中心線である。
 また、以下の説明において、便宜上、Z軸の正方向を上や上方、Z軸の負方向を下や下方のようにいう場合があるが、Z軸の方向は、重力の方向に限定されるものではない。
(First embodiment)
FIG. 1 is a schematic cross-sectional view illustrating a switching device according to this embodiment.
In the following description, three-dimensional coordinate axes including X-axis, Y-axis and Z-axis may be used. A top plate 12 and a bottom plate 13 of the insulating container 10, which will be described later, are doughnut-shaped flat plate members, and the top plate 12 and the bottom plate 13 are provided so as to be substantially parallel to the XY plane. It is assumed that the insulating container 10 and the plasma switch 20 are cylindrical and extend along the Z-axis direction. A center line C10 is the center line of the cylinders of the insulating container 10 and the plasma switch 20 .
In the following description, for convenience, the positive direction of the Z-axis may be referred to as upward or upward, and the negative direction of the Z-axis may be referred to as downward or downward, but the direction of the Z-axis is limited to the direction of gravity. not a thing
 本実施形態のスイッチング装置1は、プラズマスイッチ20を備える。プラズマスイッチ20は、絶縁容器10および水素貯蔵金属20Hをさらに備える。プラズマスイッチ20の少なくとも一部は、絶縁容器10に収容されている。絶縁容器10は、スイッチング装置1の外郭部であり、その一例である。 The switching device 1 of this embodiment includes a plasma switch 20 . Plasma switch 20 further comprises insulating container 10 and hydrogen storage metal 20H. At least part of the plasma switch 20 is housed in the insulating container 10 . The insulating container 10 is an outer shell of the switching device 1 and is an example thereof.
 絶縁容器10は、例えば、絶縁筒11、天板12および底板13を含む。絶縁筒11は、筒状の絶縁体である。絶縁筒11は、十分な強度を有する絶縁性の材料で形成されており、例えば、FRP(Fiber Reinforced Plastics)製またはセラミック製等である。 The insulating container 10 includes, for example, an insulating cylinder 11, a top plate 12 and a bottom plate 13. The insulating cylinder 11 is a cylindrical insulator. The insulating cylinder 11 is made of an insulating material having sufficient strength, such as FRP (Fiber Reinforced Plastics) or ceramic.
 天板12は、開口12Hを含むXY平面視でドーナツ状の平板部材である。開口12Hは、中心線C10に交差する中心の周囲に設けられている。図示しないが、底板13も天板12と同様に、開口を含むドーナツ状の平板部材である。これらの開口の径は、プラズマスイッチ20のXY平面視での径に応じて設けられている。天板12は、絶縁筒11の上端に接続されている。底板13は、絶縁筒11の下端に接続されている。 The top plate 12 is a doughnut-shaped flat plate member including the opening 12H when viewed from the XY plane. The opening 12H is provided around the center that intersects the centerline C10. Like the top plate 12, the bottom plate 13 is also a doughnut-shaped flat plate member including an opening (not shown). The diameters of these openings are provided according to the diameter of the plasma switch 20 when viewed from the XY plane. The top plate 12 is connected to the upper end of the insulating cylinder 11 . The bottom plate 13 is connected to the lower end of the insulating cylinder 11 .
 天板12および底板13は、導電性を有しており、例えば金属製である。底板13には、第1端子T1が接続され、天板12には、第2端子T2が接続されている。天板12と底板13との間に絶縁筒11が介在されることにより、天板12と底板13との間は、絶縁される。天板12および底板13の開口にプラズマスイッチ20が設けられることによって、絶縁容器10とプラズマスイッチ20との間に密閉された空間が形成される。密閉された空間には、絶縁ガス10Gが充填され、絶縁容器10は、絶縁ガス10Gが充填された圧力容器として機能する。絶縁ガス10Gは、例えば、六フッ化硫黄(SF)ガス等である。 The top plate 12 and the bottom plate 13 are conductive and made of metal, for example. A first terminal T<b>1 is connected to the bottom plate 13 , and a second terminal T<b>2 is connected to the top plate 12 . By interposing the insulating cylinder 11 between the top plate 12 and the bottom plate 13, the top plate 12 and the bottom plate 13 are insulated. A sealed space is formed between the insulating container 10 and the plasma switch 20 by providing the plasma switch 20 in the openings of the top plate 12 and the bottom plate 13 . The sealed space is filled with an insulating gas 10G, and the insulating container 10 functions as a pressure container filled with the insulating gas 10G. The insulating gas 10G is, for example, sulfur hexafluoride (SF 6 ) gas or the like.
 絶縁容器10は、例えば絶縁筒11、天板12および底板13をろう付け溶接によって接合して気密容器として製造される。 The insulating container 10 is manufactured as an airtight container by joining the insulating cylinder 11, the top plate 12 and the bottom plate 13 by brazing welding, for example.
 絶縁筒11の外周部には、絶縁ひだ14が設けられている。絶縁ひだ14は、例えば、ポリマー沿面を有する。絶縁ひだ14は、例えば、蛇腹状をなすフレキシブル管である。絶縁ひだ14は、容易に変形可能であり、絶縁筒11の外周を保護するとともに、天板12と底板13との間の沿面距離を確保している。 An insulating fold 14 is provided on the outer peripheral portion of the insulating cylinder 11 . The insulating pleats 14 have, for example, polymeric creepage surfaces. The insulating folds 14 are, for example, accordion-shaped flexible tubes. The insulating folds 14 are easily deformable, protect the outer periphery of the insulating cylinder 11 , and secure the creepage distance between the top plate 12 and the bottom plate 13 .
 絶縁容器10の内部には、支持部材17が設けられている。支持部材17は、開口12Hの周にわたって設けられた封止フランジ30を介して天板12に接続されている。支持部材17および封止フランジ30は、導電体であり、例えば金属製である。 A support member 17 is provided inside the insulating container 10 . The support member 17 is connected to the top plate 12 via a sealing flange 30 provided around the opening 12H. The support member 17 and the sealing flange 30 are conductors, for example made of metal.
 プラズマスイッチ20は、底板13の開口から挿通され、上部電極21Uを介して支持部材17に接続されている。プラズマスイッチ20は、底板13の開口の周にわたって設けられた封止フランジ31を介して底板13に接続されている。封止フランジ30,31は、導電体であり、プラズマスイッチ20の第1電極22は、底板13を介して第1端子T1に電気的に接続され、第2電極23は、天板12を介して第2端子T2に電気的に接続されている。 The plasma switch 20 is inserted through an opening in the bottom plate 13 and connected to the support member 17 via the upper electrode 21U. The plasma switch 20 is connected to the bottom plate 13 via a sealing flange 31 provided around the opening of the bottom plate 13 . The sealing flanges 30 and 31 are conductors, the first electrode 22 of the plasma switch 20 is electrically connected to the first terminal T1 through the bottom plate 13, and the second electrode 23 is connected through the top plate 12. is electrically connected to the second terminal T2.
 プラズマスイッチ20は、側壁21Sと、第1電極22と、第2電極23と、第1グリッド26と、第2グリッド27と、を含む。側壁21Sは、円筒状の部材である。側壁21Sは、絶縁容器10の内部に設けられている。側壁21Sの上端は、第2電極23に接続され、側壁21Sの下端は、第1電極22に接続されている。側壁21Sは、絶縁性の材料で形成されており、例えばセラミック製である。第1電極22および第2電極23は、絶縁容器10の内部で、側壁21Sによって、絶縁されている。 The plasma switch 20 includes sidewalls 21S, a first electrode 22, a second electrode 23, a first grid 26, and a second grid 27. The side wall 21S is a cylindrical member. The side wall 21S is provided inside the insulating container 10 . The sidewall 21S has an upper end connected to the second electrode 23 and a lower end connected to the first electrode 22 . The side wall 21S is made of an insulating material, such as ceramic. The first electrode 22 and the second electrode 23 are insulated inside the insulating container 10 by the side wall 21S.
 第1電極22は、Z軸に沿って延伸する有底円筒状の導電性部材である。第1電極22のXY平面視での円の径は、側壁21SのXY平面視での円の径とほぼ等しい。第1電極22の上部は、底板13の開口に挿通されている。第1電極22の上端は、絶縁容器10内で側壁21Sに接続されている。 The first electrode 22 is a bottomed cylindrical conductive member extending along the Z-axis. The diameter of the circle of the first electrode 22 in XY plan view is substantially equal to the diameter of the circle of the side wall 21S in XY plan view. An upper portion of the first electrode 22 is inserted through an opening in the bottom plate 13 . The upper end of the first electrode 22 is connected to the side wall 21S inside the insulating container 10 .
 第2電極23は、Z軸方向に延伸する有底円筒状の導電性部材である。第2電極23のXY平面視での円の径は、第1電極22および側壁21SのXY平面視での円の径よりも小さく設定されている。第2電極23の上端部は、円周の外側に向かってなめらかに曲げられたつば状の部分を含んでおり、つば状に曲げられXY平面にほぼ平行な面状の部分で上部電極21Uに接続されている。 The second electrode 23 is a bottomed cylindrical conductive member extending in the Z-axis direction. The diameter of the circle of the second electrode 23 in XY plan view is set smaller than the diameter of the circle of the first electrode 22 and the side wall 21S in XY plan view. The upper end portion of the second electrode 23 includes a brim-shaped portion that is smoothly bent toward the outside of the circumference. It is connected.
 第1電極22、側壁21Sおよび第2電極23は、中心線C10がほぼ一致するように互いの位置が決められる。第1電極22および第2電極23は、互いに対向して配置される。 The positions of the first electrode 22, the side wall 21S and the second electrode 23 are determined so that the center lines C10 substantially match each other. The first electrode 22 and the second electrode 23 are arranged to face each other.
 第1電極22は、第1層22Aおよび第2層22Dを含んでいる。第1層22Aは、第2層22D上に形成されている。第1層22Aは、有底円筒状の第1電極22の内側に設けられている。第2層22Dは、有底円筒状の第1電極22の外側に設けられている。第1電極22の上端部は、底板13の開口に挿通されており、封止フランジ31によって、底板13に接続されている。第1層22Aは、導電体であるが、厚さが薄いため、図示の煩雑さを回避するために細い破線で図示するものとする。 The first electrode 22 includes a first layer 22A and a second layer 22D. The first layer 22A is formed on the second layer 22D. The first layer 22A is provided inside the bottomed cylindrical first electrode 22 . The second layer 22D is provided outside the bottomed cylindrical first electrode 22 . The upper end of the first electrode 22 is inserted through an opening in the bottom plate 13 and connected to the bottom plate 13 by a sealing flange 31 . Although the first layer 22A is a conductor, it is thin, so it is illustrated with a thin dashed line to avoid complication of the drawing.
 第1層22Aは、例えば、B、C、Al、SiおよびGaのうち少なくとも1つの材料を含む。第1電極22は、例えば、これらの原料を用いた気相成長などによって形成されている。第2電極23は、例えば、Ni、Cr、Mo、Cu、Ag、Au、Fe、Ir、およびPtのうち少なくとも1つの材料を含む。 The first layer 22A contains, for example, at least one material selected from B, C, Al, Si and Ga. The first electrode 22 is formed, for example, by vapor deposition using these raw materials. The second electrode 23 includes, for example, at least one material selected from Ni, Cr, Mo, Cu, Ag, Au, Fe, Ir, and Pt.
 第1電極22の第1層22Aは、例えば、AlやGa等の窒化物半導体や酸化物半導体、ダイヤモンド、黒鉛(グラファイト)、焼結ダイヤモンド、アルミナセメント等でもよい。第2電極23は、例えば、高融点伝導体のグラファイトなどでもよい。 The first layer 22A of the first electrode 22 may be made of, for example, a nitride semiconductor such as Al or Ga, an oxide semiconductor, diamond, graphite, sintered diamond, alumina cement, or the like. The second electrode 23 may be, for example, graphite, which is a conductor with a high melting point.
 第1電極22のうち、絶縁容器10から露出されている部分には、電流密度増大部60が設けられている。電流密度増大部60は、ホローカソード部62と、永久磁石64と、を含む。ホローカソード部62は、第1電極22のXY平面視での円の円周にわたって設けられ、径方向に張り出す2つのひだ状の電極によって形成されている。2つのひだ状の電極は対向しており、ホローカソードを形成する。この例では、ホローカソード部62は、Z軸方向に積層するように複数箇所設けられている。永久磁石64は、隣接する2つのホローカソード部62の間に設けられている。 A current density increasing portion 60 is provided in a portion of the first electrode 22 exposed from the insulating container 10 . The current density increasing portion 60 includes a hollow cathode portion 62 and permanent magnets 64 . The hollow cathode portion 62 is provided over the circumference of the circle in the XY plane view of the first electrode 22 and is formed of two fold-shaped electrodes projecting in the radial direction. The two pleated electrodes face each other and form a hollow cathode. In this example, a plurality of hollow cathode portions 62 are provided so as to be stacked in the Z-axis direction. A permanent magnet 64 is provided between two adjacent hollow cathode portions 62 .
 永久磁石64は、例えば希土類磁石である。永久磁石64は、例えば、ネオジム磁石やサマリウムコバルト磁石等である。 The permanent magnet 64 is, for example, a rare earth magnet. The permanent magnet 64 is, for example, a neodymium magnet, a samarium-cobalt magnet, or the like.
 図2は、図1のAA’線における模式的な矢視平面図である。
 図2には、ホローカソード部62上に設けられた永久磁石64の配置例が示されている。
 図2に示すように、複数の永久磁石64は、第1電極22のうち、XY平面視での円の円周から外側にひだ状に張り出した第2層22D上に設けられている。永久磁石64は、放射状に配置されている。永久磁石64は、一方の磁極が円の外側を向き、他方の磁極が円の内側を向くように配置されている。この例では、外側を向く磁極はN極とされ、内側を向く磁極はS極とされているが、これに限らず、S極を外側に向け、N極を内側に向けてもよい。
2 is a schematic plan view taken along line AA' of FIG. 1. FIG.
FIG. 2 shows an arrangement example of the permanent magnets 64 provided on the hollow cathode portion 62 .
As shown in FIG. 2 , the plurality of permanent magnets 64 are provided on the second layer 22</b>D of the first electrode 22 , which protrudes outward in folds from the circumference of the circle in the XY plan view. The permanent magnets 64 are arranged radially. The permanent magnet 64 is arranged so that one magnetic pole faces the outside of the circle and the other magnetic pole faces the inside of the circle. In this example, the magnetic poles facing outward are N poles and the magnetic poles facing inward are S poles.
 図3は、本実施形態のスイッチング装置の一部を例示する模式的な拡大断面図である。
 図3には、電流密度増大部60の拡大図が示されている。
 図3に示すように、電流密度増大部60では、第1電極22は、複数のホローカソード部62を含み、複数のホローカソード部62は、Z軸方向に積層されるように形成されている。複数のホローカソード部62は、2つの対向する電極22A1,22A2をそれぞれ含んでいる。これらの電極22A1,22A2は、第1電極22が屈曲されて形成されており、電気的に接続されている。電極22A1,22A2は、ほぼ平行に間隔a0で配置されている。電極22A1,22A2のZ軸方向の間隔a0は、グロー放電時のイオンシースの長さの2倍程度とされる。グロー放電時のイオンシースとは、陰極である第1電極22の付近に生成される暗部をいい、イオンシースは、ほとんど放電ガス20Gのイオンによって形成される。
FIG. 3 is a schematic enlarged cross-sectional view illustrating a part of the switching device of this embodiment.
An enlarged view of the current density increasing portion 60 is shown in FIG.
As shown in FIG. 3, in the current density increasing portion 60, the first electrode 22 includes a plurality of hollow cathode portions 62, and the plurality of hollow cathode portions 62 are formed so as to be stacked in the Z-axis direction. . The multiple hollow cathode sections 62 each include two opposing electrodes 22A1 and 22A2. These electrodes 22A1 and 22A2 are formed by bending the first electrode 22 and are electrically connected. The electrodes 22A1 and 22A2 are arranged substantially parallel with an interval a0. The distance a0 between the electrodes 22A1 and 22A2 in the Z-axis direction is about twice the length of the ion sheath during glow discharge. The ion sheath during glow discharge refers to a dark portion generated near the first electrode 22, which is the cathode, and the ion sheath is mostly formed by ions of the discharge gas 20G.
 永久磁石64は、第1電極22の周囲に設けられており、Z軸方向に隣接する2つのホローカソード部62の間に設けられている。図示しないが、永久磁石64は、例えば絶縁性の接着剤等により、隣接する2つのホローカソード部62の間に固定される。 The permanent magnet 64 is provided around the first electrode 22 and provided between two hollow cathode portions 62 adjacent in the Z-axis direction. Although not shown, the permanent magnet 64 is fixed between two adjacent hollow cathode portions 62 by, for example, an insulating adhesive.
 ホローカソード部62において、ホローカソードが形成された面は、第1電極22のうち、第1層22Aが形成された面であり、ホローカソードは、プラズマスイッチ20の内部に形成される。永久磁石64は、第1電極22のうち、第2層22Dが設けられた面の側に設けられ、第1電極22の外側に設けられている。 In the hollow cathode portion 62 , the surface on which the hollow cathode is formed is the surface of the first electrode 22 on which the first layer 22A is formed, and the hollow cathode is formed inside the plasma switch 20 . The permanent magnet 64 is provided on the side of the surface of the first electrode 22 on which the second layer 22</b>D is provided, and is provided outside the first electrode 22 .
 永久磁石64の配置は、それぞれの永久磁石64が生成する磁力線がホローカソード部62内の磁界を強め合うように設定される。例えば、永久磁石64の配置は、実験やシミュレーション等を用いて、ホローカソード部62内の磁界の大きさや方向が適切になるように設定される。 The arrangement of the permanent magnets 64 is set so that the magnetic lines of force generated by the respective permanent magnets 64 reinforce the magnetic field within the hollow cathode portion 62 . For example, the arrangement of the permanent magnets 64 is set through experiments, simulations, etc. so that the magnitude and direction of the magnetic field in the hollow cathode portion 62 are appropriate.
 図1に戻って説明を続ける。
 プラズマスイッチ20では、第1電極22、第2電極23および側壁21Sで囲まれた空間は、密閉空間とされ、プラズマスイッチ20は、第1電極22の外側の空間から気密状態とされている。第1電極22の下部には、開口が設けられており、封止管21Pが開口に接続されている。プラズマスイッチ20の内側の密閉空間には、封止管21Pを介して、放電ガス20Gが封入される。放電ガス20Gは、水素や重水素、ヘリウム、アルゴンなどの不活性ガスの希薄ガスである。封止管21Pは、プラズマスイッチ20の内部が所定の圧力Pとなるように放電ガス20Gが導入された後に気密封止される。所定の圧力Pは、1気圧未満であり、例えば1Torr以下とされる。プラズマスイッチ20の内部は、減圧状態とされる。1Torrは、1/760気圧に等しく、133Paにほぼ等しい。
Returning to FIG. 1, the description continues.
In the plasma switch 20, the space surrounded by the first electrode 22, the second electrode 23, and the sidewall 21S is a closed space, and the plasma switch 20 is hermetically sealed from the space outside the first electrode 22. An opening is provided in the lower portion of the first electrode 22, and the sealing tube 21P is connected to the opening. A sealed space inside the plasma switch 20 is filled with a discharge gas 20G via a sealing tube 21P. The discharge gas 20G is a rarefied inert gas such as hydrogen, deuterium, helium, or argon. The sealing tube 21P is hermetically sealed after the discharge gas 20G is introduced so that the inside of the plasma switch 20 has a predetermined pressure P. The predetermined pressure P is less than 1 atmosphere, for example, 1 Torr or less. The inside of the plasma switch 20 is in a decompressed state. 1 Torr is equal to 1/760 atmosphere and approximately equal to 133 Pa.
 プラズマスイッチ20において、圧力Pと放電ギャップdとの積であるpd積に対し耐圧をプロットすると、プロットされたカーブは、U字形となる。U字形のカーブは、パッシェンカーブと呼ばれ、プラズマスイッチ20は、U字形のカーブの最小値の左側で動作する。pd積が小さいときには、放電開始電圧は高くなり、プラズマがオフ状態となりやすい。また、U字形のパッシェンカーブの最小値の近くでは、プラズマスイッチをオン状態としやすい。 In the plasma switch 20, when the breakdown voltage is plotted against the pd product, which is the product of the pressure P and the discharge gap d, the plotted curve is U-shaped. The U-shaped curve is called the Paschen curve, and the plasma switch 20 operates to the left of the minimum of the U-shaped curve. When the pd product is small, the firing voltage becomes high and the plasma tends to be turned off. Also, near the minimum value of the U-shaped Paschen curve, the plasma switch tends to be turned on.
 第1電極22と第2電極23との間には、第1グリッド26が配置されている。第1グリッド26と第2電極23との間には第2グリッド27が配置されている。第1グリッド26および第2グリッド27において、第1電極22と第2電極23との間に設けられた部分は、いずれもメッシュ状とされている。 A first grid 26 is arranged between the first electrode 22 and the second electrode 23 . A second grid 27 is arranged between the first grid 26 and the second electrode 23 . The portions of the first grid 26 and the second grid 27 provided between the first electrode 22 and the second electrode 23 are both mesh-like.
 第1グリッド26と第1電極22との間では放電ギャップdを大きくとり、パッシェンカーブの最小値付近で動作させることで、大電流のプラズマ源を持続的に保持させる。このプラズマ源から電子を引き出すために、第2グリッド27が設けられている。 By setting a large discharge gap d between the first grid 26 and the first electrode 22 and operating near the minimum value of the Paschen curve, a large-current plasma source is continuously maintained. A second grid 27 is provided to extract electrons from this plasma source.
 オフ状態では、第2グリッド27の電位は、ゼロまたは負電位とされている。第2グリッド27の電位を、例えば第1グリッド26と同じ電位まで上げることによって、電子は、第1グリッド26と第1電極22との間のプラズマ源から第2グリッド27を通り抜けて第2電極23まで到達できるようになる。そのため、プラズマスイッチ20はオン状態になる。その後、第2グリッド27の電位をゼロまたは負電位に下げることによって、プラズマスイッチ20は、オフ状態とされる。プラズマスイッチ20をオフにできるのは、第2グリッド27と第2電極23との間の放電ギャップdが小さく、pd積が小さいため、放電開始電圧を高くすることができ、非持続放電となっているからである。プラズマ源からの電子の注入がないと、第2グリッド27と第2電極22との間の放電は維持できないように放電ギャップdは適切に設計される。 In the off state, the potential of the second grid 27 is zero or negative. By raising the potential of the second grid 27 to, for example, the same potential as the first grid 26, electrons pass from the plasma source between the first grid 26 and the first electrode 22 through the second grid 27 to the second electrode. You can reach up to 23. Therefore, the plasma switch 20 is turned on. After that, the plasma switch 20 is turned off by lowering the potential of the second grid 27 to zero or a negative potential. The reason why the plasma switch 20 can be turned off is that the discharge gap d between the second grid 27 and the second electrode 23 is small and the pd product is small, so the discharge starting voltage can be increased, resulting in a non-sustained discharge. because The discharge gap d is appropriately designed so that the discharge between the second grid 27 and the second electrode 22 cannot be sustained without injection of electrons from the plasma source.
 この例では、側壁21Sは、4つの部分からなっている。すなわち、側壁21Sは、第1側壁部21S1、第2側壁部21S2、第3側壁部21S3および第4側壁部21S4を含んでおり、第1電極22の上端から第2電極23の上端に向かって、この順に設けられている。第1電極22の上端および第1側壁部21S1は、接合部D11によって接続されている。第1側壁部21S1および第2側壁部21S2は、接合部D12によって接続されている。第2側壁部21S2および第3側壁部21S3は、接合部D13によって接続されている。第3側壁部21S3および第4側壁部21S4は、接合部D15によって接続されている。第4側壁21S4および第2電極23の上端は、接合部D14によって接続されている。第1電極22、第2電極23および側壁21Sの各部は、接合部D11~D15によって気密性を保持するように接続されている。接合部D11~D15の形成には、例えば、ろう付けが用いられる。 In this example, the sidewall 21S consists of four parts. That is, the side wall 21S includes a first side wall portion 21S1, a second side wall portion 21S2, a third side wall portion 21S3, and a fourth side wall portion 21S4. , are provided in this order. The upper end of the first electrode 22 and the first side wall portion 21S1 are connected by a joint portion D11. The first side wall portion 21S1 and the second side wall portion 21S2 are connected by a joint portion D12. The second side wall portion 21S2 and the third side wall portion 21S3 are connected by a joint portion D13. The third side wall portion 21S3 and the fourth side wall portion 21S4 are connected by a joint portion D15. The upper ends of the fourth side wall 21S4 and the second electrode 23 are connected by a junction D14. Each part of the first electrode 22, the second electrode 23, and the side wall 21S is airtightly connected by joints D11 to D15. For example, brazing is used to form the joints D11 to D15.
 第1グリッド26は、接合部D12を介して、気密性を保持しつつ、第1シールド26Sに接続されている。第1シールド26Sは、絶縁容器10の内部でプラズマスイッチ20の周囲を取り巻くように設けられている。第2グリッド27は、接合部D13を介して、気密性を保持しつつ、第2シールド27Sに接続されている。第2シールド27Sは、絶縁容器10の内部でプラズマスイッチ20を取り巻くように設けられている。 The first grid 26 is airtightly connected to the first shield 26S via the joint D12. The first shield 26S is provided so as to surround the plasma switch 20 inside the insulating container 10 . The second grid 27 is airtightly connected to the second shield 27S via the joint D13. The second shield 27S is provided so as to surround the plasma switch 20 inside the insulating container 10 .
 第1シールド26Sおよび第2シールド27Sは、2本のリード13Lにそれぞれ接続され、底板13に設けられた貫通孔を介して、スイッチング装置1の外部に引き出される。第1グリッド26は、第1シールド26Sを介して、外部回路接続用の第3端子T3に電気的に接続される。第2グリッド27は、第2シールド27Sを介して、外部回路接続用の第4端子T4に電気的に接続される。 The first shield 26S and the second shield 27S are each connected to two leads 13L and drawn out of the switching device 1 through through holes provided in the bottom plate 13 . The first grid 26 is electrically connected to the third terminal T3 for external circuit connection via the first shield 26S. The second grid 27 is electrically connected to a fourth terminal T4 for external circuit connection via a second shield 27S.
 第2グリッド27の上方には、浮遊電位シールド28が設けられている。浮遊電位シールド28は、プラズマスイッチ20の密閉空間内に設けられた、Z軸方向に肉厚のトーラス状の中実の導電性部材である。浮遊電位シールド28は、第1電極22、第2電極23、第1グリッド26および第2グリッド27のいずれの電位にも接続されない浮遊電位のシールドである。浮遊電位の外部シールド28Kは、接合部D15を介して、浮遊電位シールド28に接続されている。外部シールド28Kは、絶縁容器10の内部で、プラズマスイッチ20を取り巻くように設けられている。 A floating potential shield 28 is provided above the second grid 27 . The floating potential shield 28 is a torus-shaped solid conductive member that is thick in the Z-axis direction and provided in the closed space of the plasma switch 20 . The floating potential shield 28 is a floating potential shield that is not connected to any potential of the first electrode 22 , the second electrode 23 , the first grid 26 and the second grid 27 . Floating potential outer shield 28K is connected to floating potential shield 28 via junction D15. An outer shield 28K is provided inside the insulating container 10 so as to surround the plasma switch 20 .
 上部電極21Uと支持部材17との間には、上部シールド32が設けられている。上部シールド32は、絶縁容器10の気密性を保持しつつ、絶縁容器10の内部に引き出されて、上部電極21Uを取り巻くように設けられている。 An upper shield 32 is provided between the upper electrode 21U and the support member 17 . The upper shield 32 is drawn out into the insulating container 10 and surrounds the upper electrode 21U while maintaining the airtightness of the insulating container 10 .
 これらのシールド構造は、プラズマスイッチ20内および絶縁容器10内の電界を緩和するために設けられている。 These shield structures are provided to mitigate the electric field inside the plasma switch 20 and inside the insulating container 10 .
 水素貯蔵金属20Hは、プラズマスイッチ20の下部に設けられている。第1電極22の下部には、封止管21Pのための開口とは別に開口が設けられており、開口には、連結管21Hが接続されている。水素貯蔵金属20Hは、連結管21Hの端部に設けられている。水素貯蔵金属20Hは、プラズマスイッチ20の密閉空間内に導入された放電ガス20Gの雰囲気を生成する水素を貯蔵する。  The hydrogen storage metal 20H is provided below the plasma switch 20. An opening is provided in the lower part of the first electrode 22 separately from the opening for the sealing pipe 21P, and the connecting pipe 21H is connected to the opening. A hydrogen storage metal 20H is provided at the end of the connecting pipe 21H. The hydrogen storage metal 20H stores hydrogen that creates the atmosphere of the discharge gas 20G introduced into the closed space of the plasma switch 20. FIG. 
 水素貯蔵金属20Hは、図示しないが、例えば、水素を貯蔵する金属本体および金属本体を加熱するヒータを含んでいる。ヒータの両端には、リード50Lを介して第5端子T5および第6端子T6が接続されている。水素貯蔵金属20Hは、水素貯蔵部の一例である。 Although not shown, the hydrogen storage metal 20H includes, for example, a metal body that stores hydrogen and a heater that heats the metal body. A fifth terminal T5 and a sixth terminal T6 are connected to both ends of the heater via leads 50L. Hydrogen storage metal 20H is an example of a hydrogen storage part.
 本実施形態のスイッチング装置1の動作について説明する。
 図4は、本実施形態のスイッチング装置の動作を説明するための模式的な拡大断面図である。
 図4には、電流密度増大部60が拡大して示されており、永久磁石64によって生成される磁力線が曲線の矢印で示されている。直線で示された矢印は、ホローカソード部62に生成される磁界Hの方向を模式的に示している。
 図4に示すように、永久磁石64は、プラズマスイッチ20の中心線C10に向かうようにS極が配置され、中心線C10から外側に向かうようにN極が配置されている。永久磁石64の磁力線は、N極から出てS極に入るように生成される。永久磁石64は、Z軸方向に隣接する2つのホローカソード部62の間に配置されるので、ホローカソード部62の内部には、少なくとも上下2つの永久磁石64の磁力線によって合成された磁界Hが生成される。
The operation of the switching device 1 of this embodiment will be described.
FIG. 4 is a schematic enlarged cross-sectional view for explaining the operation of the switching device of this embodiment.
In FIG. 4, the current density increasing portion 60 is shown enlarged and the lines of magnetic force generated by the permanent magnet 64 are indicated by curved arrows. A straight arrow schematically indicates the direction of the magnetic field H generated in the hollow cathode portion 62 .
As shown in FIG. 4, the permanent magnet 64 has an S pole directed toward the center line C10 of the plasma switch 20 and an N pole directed outward from the center line C10. Magnetic lines of force of the permanent magnet 64 are generated to exit from the north pole and enter the south pole. Since the permanent magnet 64 is arranged between two hollow cathode portions 62 adjacent to each other in the Z-axis direction, the magnetic field H synthesized by the magnetic lines of force of at least the two upper and lower permanent magnets 64 is generated inside the hollow cathode portion 62 . generated.
 本実施形態のスイッチング装置1では、プラズマスイッチ20の陰極である第1電極22が第1層22Aを含んでいる。第1層22Aは、B、C、Al、SiおよびGaのうち少なくとも1つの材料を含んでおり、例えば、AlN、GaN等の窒化物半導体やダイヤモンド等である。第1層22Aは、このような負の電子親和力を有する材料で形成されており、2次電子放出係数を高めることができる。したがって、これらの材料を用いない陰極によるグロー放電の場合よりも高い電流密度が実現される。 In the switching device 1 of this embodiment, the first electrode 22, which is the cathode of the plasma switch 20, includes the first layer 22A. The first layer 22A contains at least one material selected from B, C, Al, Si, and Ga, and is, for example, nitride semiconductor such as AlN or GaN, diamond, or the like. The first layer 22A is made of a material having such a negative electron affinity, and can increase the secondary electron emission coefficient. Thus, higher current densities are achieved than in glow discharges with cathodes without these materials.
 本実施形態のスイッチング装置1では、第1電極22は、電流密度増大部60を含んでいる。電流密度増大部60は、ホローカソード部62を含む。図3に関連して説明したように、ホローカソード部62は、ほぼ平行に対向する電極22A1,22A2を含んでおり、電極22A1,22A2の間隔a0は、グロー放電時のイオンシースの2倍程度とされている。したがって、電極22A1,22A2は、ホローカソードとして機能し、ホローカソード部62に負グローGNが形成されるので、電流密度を向上させることができる。  In the switching device 1 of the present embodiment, the first electrode 22 includes the current density increasing portion 60 . Current density increasing portion 60 includes a hollow cathode portion 62 . As described with reference to FIG. 3, the hollow cathode section 62 includes the electrodes 22A1 and 22A2 facing each other substantially in parallel, and the distance a0 between the electrodes 22A1 and 22A2 is about twice the ion sheath length during glow discharge. It is said that Therefore, the electrodes 22A1 and 22A2 function as hollow cathodes, and negative glow GN is formed in the hollow cathode portion 62, so that the current density can be improved.
 図5は、本実施形態のスイッチング装置の動作を説明するための図4のB部の模式的な拡大断面図である。
 図5には、2つの対向する電極22A1,22A2の間に形成された負グローGNが示されている。図5には、負グローGNと電極22A1との間に生成される電界E、負グローと電極22A2との間に生成される電界Eも合わせて示されている。
 図5に示すように、負グローGNは、電極22A1,22A2に、ほぼ平行に対向して生成される。したがって、負グローGNと電極22A1,22A2との間に生成される電界Eは、電極22A1,22A2にほぼ垂直な方向にそれぞれ生成される。生成された電界Eは、負グローGNから電極22A1,22A2に向かう方向に生成される。
FIG. 5 is a schematic enlarged cross-sectional view of the B portion of FIG. 4 for explaining the operation of the switching device of this embodiment.
FIG. 5 shows a negative glow GN formed between two opposing electrodes 22A1, 22A2. FIG. 5 also shows the electric field E generated between the negative glow GN and the electrode 22A1 and the electric field E generated between the negative glow GN and the electrode 22A2.
As shown in FIG. 5, the negative glow GN is generated substantially parallel to and facing the electrodes 22A1 and 22A2. Therefore, the electric field E generated between the negative glow GN and the electrodes 22A1 and 22A2 is generated in a direction substantially perpendicular to the electrodes 22A1 and 22A2, respectively. The generated electric field E is generated in a direction from the negative glow GN toward the electrodes 22A1 and 22A2.
 磁界Hは、電界Eの方向に交差するように、永久磁石64の配置が調整される。好ましくは、磁界Hは、電界Eに直交する方向となるように、永久磁石64の配置が設定される。 The arrangement of the permanent magnets 64 is adjusted so that the magnetic field H intersects the direction of the electric field E. Preferably, the permanent magnets 64 are arranged such that the magnetic field H is perpendicular to the electric field E. FIG.
 電界Eおよび磁界Hは交差しているので、電界E中を走行する電子は、電界Eおよび磁界Hに直交する方向にローレンツ力を受ける。そのため、電子は、らせん状に回転しながら、電極22A1,22A2から負グローGNに到達するので、電子の走行距離が伸びる。このことは、負グローGNと電極22A1,22A2との間の距離が実質的に長くなったことと同じである。したがって、電流密度増大部60は、プラズマスイッチ20内の圧力を上げることなく、パッシェンカーブにおけるpd積を大きくすることができるので、電子衝突による電離を増やして、電流密度を向上させることができる。 Since the electric field E and the magnetic field H intersect, the electrons traveling in the electric field E receive the Lorentz force in the direction perpendicular to the electric field E and the magnetic field H. Therefore, the electrons reach the negative glow GN from the electrodes 22A1 and 22A2 while spirally rotating, so that the traveling distance of the electrons increases. This is the same as substantially increasing the distance between the negative glow GN and the electrodes 22A1 and 22A2. Therefore, the current density increasing unit 60 can increase the pd product in the Paschen curve without increasing the pressure in the plasma switch 20, so that ionization due to electron collision can be increased and the current density can be improved.
 図6(a)~図7は、本実施形態のスイッチング装置の動作を説明するための模式的な等価回路図である。
 図6(a)~図6(c)には、第1電極22、第2電極23、第1グリッド26および第2グリッド27を含むプラズマスイッチ20が等価回路図として示されている。
 図6(a)に示すように、プラズマスイッチ20は初期状態であり、第1端子T1~第4端子T4には、何らの電位も印加されていない。
6A to 7 are schematic equivalent circuit diagrams for explaining the operation of the switching device of this embodiment.
6(a) to 6(c) show the plasma switch 20 including the first electrode 22, the second electrode 23, the first grid 26 and the second grid 27 as equivalent circuit diagrams.
As shown in FIG. 6(a), the plasma switch 20 is in the initial state, and no potential is applied to the first terminal T1 to the fourth terminal T4.
 図6(b)は、第1状態ST1のプラズマスイッチ20を示す模式図である。第1端子T1は第1電位V1に設定され、第2端子T2が第2電位V2に設定され、第3端子T3が、第3電位V3に設定され、第4端子T4が、第4電位V4に設定される。第1状態ST1は、非導通状態であり、プラズマスイッチ20はオフしている。 FIG. 6(b) is a schematic diagram showing the plasma switch 20 in the first state ST1. The first terminal T1 is set to the first potential V1, the second terminal T2 is set to the second potential V2, the third terminal T3 is set to the third potential V3, and the fourth terminal T4 is set to the fourth potential V4. is set to The first state ST1 is a non-conducting state and the plasma switch 20 is off.
 第1状態ST1では、第1電位V1、第2電位V2、第3電位V3および第4電位V4の関係は以下のように設定される。第2電位V2は、第1電位V1よりも高い。すなわち、V1<V2である。第3電位V3は、第1電位V1と第2電位V2との間の電位である。すなわち、V1<V3<V2である。第4電位V4は、第3電位V3よりも低い。すなわち、V4<V3である。第1電位V1は、例えば、負電位またはグランド電位である。第2電位V2は、例えば、正電位である。第3電位V3は、例えば、中間電位である。第4電位V4は、例えば、負電位である。 In the first state ST1, the relationship among the first potential V1, the second potential V2, the third potential V3 and the fourth potential V4 is set as follows. The second potential V2 is higher than the first potential V1. That is, V1<V2. The third potential V3 is a potential between the first potential V1 and the second potential V2. That is, V1<V3<V2. The fourth potential V4 is lower than the third potential V3. That is, V4<V3. The first potential V1 is, for example, a negative potential or a ground potential. The second potential V2 is, for example, a positive potential. The third potential V3 is, for example, an intermediate potential. The fourth potential V4 is, for example, a negative potential.
 図6(c)は、第2状態ST2のプラズマスイッチ20を示す模式図である。
 図6(c)は、第2状態ST2のプラズマスイッチ20を示す模式図である。第1端子T1、第2端子T2および第3端子T3の電位は、第1状態ST1の場合と同じ電位とされる。すなわち、第1端子T1は第1電位V1に設定され、第2端子T2は第2電位V2に設定され、第3端子T3は第3電位V3に設定される。
FIG. 6(c) is a schematic diagram showing the plasma switch 20 in the second state ST2.
FIG. 6(c) is a schematic diagram showing the plasma switch 20 in the second state ST2. The potentials of the first terminal T1, the second terminal T2, and the third terminal T3 are the same potentials as in the first state ST1. That is, the first terminal T1 is set to the first potential V1, the second terminal T2 is set to the second potential V2, and the third terminal T3 is set to the third potential V3.
 第2状態ST2では、第4端子T4が、第5電位V5に設定される。第5電位V5は、第3電位V3よりも高い。すなわち、V3<V5である。第5電位V5は、例えば正電位である。第2状態ST2は、導通状態であり、プラズマスイッチ20はオンする。 In the second state ST2, the fourth terminal T4 is set to the fifth potential V5. The fifth potential V5 is higher than the third potential V3. That is, V3<V5. The fifth potential V5 is, for example, a positive potential. The second state ST2 is a conducting state, and the plasma switch 20 is turned on.
 第1状態ST1において第1端子T1と第2端子T2との間に流れる電流よりも、第2状態ST2において第1端子T1と第2端子T2との間に流れる電流は大きい。第1状態ST1は、例えば、高抵抗状態である。第2状態ST2は、例えば、低抵抗状態である。 The current flowing between the first terminal T1 and the second terminal T2 in the second state ST2 is larger than the current flowing between the first terminal T1 and the second terminal T2 in the first state ST1. The first state ST1 is, for example, a high resistance state. The second state ST2 is, for example, a low resistance state.
 つまり、プラズマスイッチ20では、第1端子T1~第3端子T3の電位をV1~V3に設定し、第4端子T4の電位をV4とV5との間で切り換えることによって、非導通状態と導通状態とをスイッチングすることができる。 That is, in the plasma switch 20, the potentials of the first terminal T1 to the third terminal T3 are set to V1 to V3, and the potential of the fourth terminal T4 is switched between V4 and V5, thereby switching the non-conducting state and the conducting state. and can be switched.
 スイッチング装置1は、例えば、大電流の高電圧直流遮断器である。第1電極22は例えば陰極であり、第2電極23は例えば陽極である。 The switching device 1 is, for example, a large-current high-voltage DC circuit breaker. The first electrode 22 is, for example, a cathode, and the second electrode 23 is, for example, an anode.
 プラズマスイッチ20が第1状態ST1である場合、第1電極22と第1グリッド26との間の第1空間SP1に第1プラズマSP1Pが生成される。このとき、第1グリッド26と第2電極23の間は絶縁状態である。このため、第1状態ST1のプラズマスイッチ20は、第1端子T1と第2端子T2の間で非導通状態となる。 When the plasma switch 20 is in the first state ST1, a first plasma SP1P is generated in the first space SP1 between the first electrode 22 and the first grid 26. At this time, the first grid 26 and the second electrode 23 are in an insulated state. Therefore, the plasma switch 20 in the first state ST1 becomes non-conducting between the first terminal T1 and the second terminal T2.
 プラズマスイッチ20が第2状態ST2である場合、第1グリッド26と第2グリッド27の間の第2空間SP2に第2プラズマSP2Pが生成され、第2グリッド27と第2電極23の間の第3空間SP3に第3プラズマSP3Pが生成される。このため、第2状態のプラズマスイッチ20は、第1端子T1と第2端子の間で導通状態となる。 When the plasma switch 20 is in the second state ST2, the second plasma SP2P is generated in the second space SP2 between the first grid 26 and the second grid 27, and the second plasma SP2P is generated between the second grid 27 and the second electrode 23. A third plasma SP3P is generated in the three-space SP3. Therefore, the plasma switch 20 in the second state becomes conductive between the first terminal T1 and the second terminal.
 プラズマスイッチ20内に水素を補填する手順について説明する。
 図7は、本実施形態のスイッチング装置の動作を説明するための模式的な等価回路図である。
 プラズマスイッチ20の内部は、高電圧化や還元雰囲気にしたい、あるいは、ダイヤモンド半導体の水素終端の消耗の補填などの目的で、プラズマスイッチ20の内部には、アルゴン等のガスとともに水素が予め封入されている。
A procedure for filling the plasma switch 20 with hydrogen will be described.
FIG. 7 is a schematic equivalent circuit diagram for explaining the operation of the switching device of this embodiment.
The inside of the plasma switch 20 is preliminarily filled with hydrogen together with a gas such as argon for the purpose of increasing the voltage, creating a reducing atmosphere, or compensating for the consumption of the hydrogen termination of the diamond semiconductor. ing.
 水素貯蔵金属20Hは、プラズマスイッチ20内の水素を補填する。水素貯蔵金属20Hを、図示しないヒータで加熱することにより、水素貯蔵金属20Hから水素を取り出して、プラズマスイッチ20内の水素を補填する。第5端子T5および第6端子T6は、水素貯蔵金属20Hに設けられたヒータに電力を供給するための端子である。水素貯蔵金属20Hを加熱して水素を供給するので、例えば、弁などを用いた水素の供給などと比較して、プラズマスイッチ20内の圧力を安定的に維持させやすくすることができる。 The hydrogen storage metal 20H supplements the hydrogen in the plasma switch 20. By heating the hydrogen storage metal 20H with a heater (not shown), hydrogen is taken out from the hydrogen storage metal 20H and hydrogen in the plasma switch 20 is replenished. A fifth terminal T5 and a sixth terminal T6 are terminals for supplying power to a heater provided in the hydrogen storage metal 20H. Since hydrogen is supplied by heating the hydrogen storage metal 20H, the pressure in the plasma switch 20 can be stably maintained more easily than when hydrogen is supplied using a valve or the like.
 本実施形態のスイッチング装置1の効果について説明する。
 本実施形態のスイッチング装置1は、第1電極22が第1層22Aを含むプラズマスイッチ20を備えている。第1電極22は、プラズマスイッチ20の陰極であり、第1層22Aは、B、C、Al、SiおよびGaのうち少なくとも1つの材料を含んでおり、例えば、AlN、GaN等の窒化物半導体やダイヤモンド、黒鉛(グラファイト)、焼結ダイヤモンド等のワイドバンドギャップ半導体であり、負の電子親和力を有する材料で形成されている。そのため、陰極である第1電極22の2次電子放出係数を高めることができ、プラズマスイッチ20の電流密度を向上させることができる。ワイドバンドギャップ半導体をp形あるいはn形とするためのドーピングを行うことにより、電子あるいはホールといった電流の担い手を増やすことができ、電流密度をさらに向上させることができる。
Effects of the switching device 1 of the present embodiment will be described.
The switching device 1 of this embodiment includes a plasma switch 20 in which a first electrode 22 includes a first layer 22A. The first electrode 22 is a cathode of the plasma switch 20, and the first layer 22A contains at least one material selected from B, C, Al, Si and Ga, and includes nitride semiconductors such as AlN and GaN. It is a wide bandgap semiconductor such as diamond, graphite, or sintered diamond, and is made of a material having negative electron affinity. Therefore, the secondary electron emission coefficient of the first electrode 22, which is a cathode, can be increased, and the current density of the plasma switch 20 can be improved. By doping the wide bandgap semiconductor to make it p-type or n-type, it is possible to increase the number of current bearers such as electrons or holes, and to further improve the current density.
 第1電極22は、電流密度増大部60を含んでいる。電流密度増大部60は、ホローカソード部62を含んでいる。ホローカソード部62は、対向する電極22A1,22A2によるホローカソードを構成する。ホローカソード部62では、グロー放電時に負グローGNが形成され、ホローカソード部62は、ホローカソードとして機能するので、プラズマスイッチ20の電流密度を向上させることができる。 The first electrode 22 includes a current density increasing portion 60. Current density increasing portion 60 includes a hollow cathode portion 62 . The hollow cathode portion 62 constitutes a hollow cathode with the electrodes 22A1 and 22A2 facing each other. In the hollow cathode portion 62, a negative glow GN is formed during glow discharge, and the hollow cathode portion 62 functions as a hollow cathode, so the current density of the plasma switch 20 can be improved.
 電流密度増大部60は、永久磁石64による磁界発生手段を含んでいる。永久磁石64は、ホローカソード内に形成された負グローGNと電極22A1,22A2との間に生成される電界Eに交差する磁界Hを生成する。ホローカソード内を走行する電子は、電界Eおよび磁界Hに直交するローレンツ力を受けてらせん状に走行する。そのため、電子の走行距離は、延長され、プラズマスイッチ20内の圧力を高めることなく、パッシェンカーブにおけるpd積を実質的に大きくすることができるので、プラズマスイッチ20の電流密度を向上させることができる。 The current density increasing section 60 includes magnetic field generating means with a permanent magnet 64 . The permanent magnet 64 generates a magnetic field H that intersects the electric field E generated between the negative glow GN formed within the hollow cathode and the electrodes 22A1 and 22A2. Electrons running in the hollow cathode receive the Lorentz force orthogonal to the electric field E and the magnetic field H and run spirally. Therefore, the traveling distance of the electrons is extended, and the pd product in the Paschen curve can be substantially increased without increasing the pressure in the plasma switch 20, so the current density of the plasma switch 20 can be improved. .
 ホローカソード部62は、Z軸方向に積層するように複数設けることができ、積層数に応じてプラズマスイッチ20の電流密度をさらに向上させることが可能になる。 A plurality of hollow cathode portions 62 can be provided so as to be stacked in the Z-axis direction, and the current density of the plasma switch 20 can be further improved according to the number of layers.
 本実施形態のスイッチング装置1は、水素貯蔵金属20Hをさらに備える。水素貯蔵金属20Hは、外部から電力を供給し、プラズマスイッチ20内に水素ガスを補填することができる。機械式のガス補填方式に比べて、ガス補填を容易に行うことができるとのメリットがある。 The switching device 1 of this embodiment further includes a hydrogen storage metal 20H. The hydrogen storage metal 20H can be powered externally to fill the plasma switch 20 with hydrogen gas. Compared to the mechanical gas replenishment method, there is an advantage that gas replenishment can be performed easily.
 本実施形態のスイッチング装置1は、絶縁容器10をさらに備える。絶縁容器10は、プラズマスイッチ20の周囲を絶縁ガス10Gとすることによって、プラズマスイッチ20の気密構造との絶縁協調をとることが可能になり、スイッチング装置1を高電圧の用途に適用することを容易にする。 The switching device 1 of this embodiment further includes an insulating container 10 . Since the insulating container 10 has an insulating gas 10G around the plasma switch 20, it becomes possible to coordinate insulation with the airtight structure of the plasma switch 20, and it is possible to apply the switching device 1 to high voltage applications. make it easier.
 直流送電システムが注目されている。例えば、遠方で、かつ分散配置された風力発電や太陽光発電の電力を集積して送電するシステムとして直流多端子送電システムが有力視されている。直流多端子送電システムでは、例えば、直流地絡や直流短絡などの万一の事故が発生した場合に、直流送電系の高速な切り離し保護を行うための直流遮断装置が設けられる。 DC power transmission systems are attracting attention. For example, a direct-current multi-terminal power transmission system is considered promising as a system for integrating and transmitting electric power generated by wind power generation and solar power generation that are distributed over a long distance. In a DC multi-terminal power transmission system, for example, a DC interrupting device is provided for performing high-speed disconnection protection of a DC power transmission system in the unlikely event of an accident such as a DC ground fault or a DC short circuit.
 直流遮断装置には、機械遮断と半導体素子遮断とを組み合わせたハイブリッド方式が開発されている(例えば、特許文献2等参照)。ハイブリッド方式の直流遮断装置は、高耐圧化と大電流化を実現する必要から、以下に説明するように、巨大な構造物となる場合がある。 A hybrid system that combines mechanical interruption and semiconductor element interruption has been developed for DC interruption devices (see, for example, Patent Document 2). A hybrid type direct-current circuit breaker needs to achieve high withstand voltage and large current, so it may become a huge structure as described below.
 直流送電システムは、送電効率を確保するため、数100kVの送電電圧で設計される。このようなシステムに適用できるように、直流遮断装置の構成要素は、高電圧化される必要がある。ハイブリッド方式の直流遮断装置において、半導体素子遮断用回路は、例えば、IEGTやIGBTなどのパワー半導体素子や、コンデンサ、抵抗、基板などを実装したユニットとされる場合がある。パワー半導体素子の耐電圧は数kVであるため、数100kVの耐電圧を有する直流遮断装置に適用するには、半導体素子や半導体素子を含むユニットを直列に接続する必要がある。 A DC transmission system is designed with a transmission voltage of several 100 kV in order to ensure transmission efficiency. In order to be applicable to such systems, the components of the DC interrupter must be of high voltage. In a hybrid DC interrupter, the semiconductor element interrupting circuit may be, for example, a unit in which power semiconductor elements such as IEGTs and IGBTs, capacitors, resistors, substrates, and the like are mounted. Since the withstand voltage of the power semiconductor element is several kV, it is necessary to connect the semiconductor element and the unit including the semiconductor element in series in order to apply it to the DC interrupting device having the withstand voltage of several 100 kV.
 このような直列接続構造を有する半導体素子による遮断用回路は、一般に、所定の絶縁を確保するために、棚段を積み上げるようなタワー構成の装置となり、極めて巨大な装置となる場合がある。このような直流遮断装置を小型化するために、半導体素子をプラズマスイッチに置き換えることが検討されている。 In order to ensure a certain level of insulation, interrupting circuits using semiconductor elements having such a series connection structure generally have a tower configuration in which shelves are piled up, and may become an extremely large device. In order to reduce the size of such a direct-current interrupting device, replacement of the semiconductor element with a plasma switch is under consideration.
 プラズマスイッチの内部の放電特性は、パッシェン特性に準じたコンパクトなギャップ設計が可能であり、数100kVの高電圧化を比較的容易に行うことができる。一方で、直流遮断装置に適用可能な電流容量を確保することが課題とされてきた。 The discharge characteristics inside the plasma switch enable a compact gap design based on the Paschen characteristics, and it is relatively easy to increase the voltage to several 100 kV. On the other hand, it has been a problem to secure a current capacity that can be applied to the DC interrupter.
 本実施形態のスイッチング装置1は、上述のように、プラズマスイッチ20がワイドバンドギャップ半導体のような負の電子親和力を有する材料で形成された陰極となる第1電極22を有する。また、第1電極22は、電流密度増大部60を有している。そのためプラズマスイッチ20では、飛躍的に電流密度を向上させ、直流遮断装置に適用可能な電流容量を実現することができる。 In the switching device 1 of the present embodiment, as described above, the plasma switch 20 has the first electrode 22 serving as a cathode made of a material having negative electron affinity such as a wide bandgap semiconductor. Also, the first electrode 22 has a current density increasing portion 60 . Therefore, in the plasma switch 20, the current density can be dramatically improved, and the current capacity applicable to the DC interruption device can be realized.
 プラズマスイッチ20の周囲を大気とする場合には、数百kVに高電圧化していくと、大気に接する外部沿面の絶縁協調をとるためには、プラズマスイッチ20を支持する誘電支持体を伸長させなければならず、装置が極端に長くなる傾向にある。このため、装置として大型化する問題がある。 When the plasma switch 20 is surrounded by the atmosphere, if the voltage is increased to several hundred kV, the dielectric support supporting the plasma switch 20 must be extended in order to coordinate the insulation of the outer creeping surface that is in contact with the atmosphere. and the device tends to be extremely long. For this reason, there is a problem that the size of the device increases.
 本実施形態のスイッチング装置1では、内部に絶縁ガス10Gを封入した絶縁容器10の内部にプラズマスイッチ20の少なくとも一部を収納する。そのため、絶縁容器10およびプラズマスイッチ20の気密性を保持しつつ絶縁協調をとって大型化することなく高電圧化を実現することができる。 In the switching device 1 of the present embodiment, at least a part of the plasma switch 20 is housed inside the insulating container 10 in which the insulating gas 10G is enclosed. Therefore, it is possible to maintain the airtightness of the insulating container 10 and the plasma switch 20 while coordinating the insulation, thereby realizing a high voltage without increasing the size.
 (第2の実施形態)
 本実施形態の場合には、電流密度増大部260の構成が上述の他の実施形態の場合と相違する。他の実施形態の場合と同一の構成要素には、同一の符号を付して、詳細な説明を適宜省略する。
 図8は、本実施形態に係るスイッチング装置の一部を例示する模式的な断面図である。
 図8には、本実施形態のスイッチング装置を構成するプラズマスイッチ220の模式的な断面図が示されている。この図では、高電圧化を実現する上述の他の実施形態の場合の絶縁容器10や水素貯蔵金属20Hに対応する構成要素が示されていないが、他の実施形態の場合と同様に設けることができる。
 図8に示すように、プラズマスイッチ220は、側壁221Sと、第1電極222と、第2電極223と、第1グリッド226と、第2グリッド227と、を含む。側壁221Sは、円筒状の絶縁性の部材である。側壁221Sの上端は、第2電極223に接続され、側壁21Sの下端は、底板215に接続されている。底板215には、プラズマスイッチ220の内部に突出するように第1電極222が設けられている。第1電極222は、電流密度増大部260を含んでいる。電流密度増大部260は、プラズマスイッチ220の内部の密閉空間内に設けられている。
(Second embodiment)
In the case of this embodiment, the configuration of the current density increasing section 260 is different from that of the other embodiments described above. The same reference numerals are given to the same components as in other embodiments, and detailed description thereof will be omitted as appropriate.
FIG. 8 is a schematic cross-sectional view illustrating a part of the switching device according to this embodiment.
FIG. 8 shows a schematic cross-sectional view of the plasma switch 220 that constitutes the switching device of this embodiment. Although this diagram does not show components corresponding to the insulating container 10 and the hydrogen storage metal 20H in the case of the above-described other embodiment that realizes high voltage, they can be provided in the same manner as in the case of the other embodiments. can be done.
As shown in FIG. 8, the plasma switch 220 includes sidewalls 221S, a first electrode 222, a second electrode 223, a first grid 226, and a second grid 227. As shown in FIG. The side wall 221S is a cylindrical insulating member. The sidewall 221S has an upper end connected to the second electrode 223 and a lower end connected to the bottom plate 215 . A first electrode 222 is provided on the bottom plate 215 so as to protrude into the plasma switch 220 . The first electrode 222 includes a current density increasing portion 260 . Current density increasing section 260 is provided in a closed space inside plasma switch 220 .
 第1電極222、第2電極223および底板215は、XY平面視で円形の導電性部材である。側壁221S、第1電極222および底板215は、XY平面視で径がほぼ等しい円形であり、第2電極222のXY平面視での円の径は、側壁221S、第1電極222および底板215の径よりも小さい。側壁221S、第1電極222、第2電極223および底板215は、Z軸に平行な中心が中心線C20にほぼ一致するように互いの位置が決められる。 The first electrode 222, the second electrode 223 and the bottom plate 215 are circular conductive members in XY plan view. The side wall 221S, the first electrode 222 and the bottom plate 215 are circular with substantially the same diameter when viewed in the XY plane. smaller than diameter. The sidewalls 221S, the first electrode 222, the second electrode 223, and the bottom plate 215 are positioned relative to each other such that their centers parallel to the Z-axis substantially coincide with the centerline C20.
 側壁221S、第1電極222、第2電極223および底板215によって形成されるプラズマスイッチ220の内部空間は、密閉されており、放電ガス20Gが封入されて気密状態とされている。図示しないが、底板215には、プラズマスイッチ220の内部空間に放電ガス20Gを封入するための封止管が設けられており、封止管から放電ガス20Gが封入される。好ましくは、底板215には、上述の他の実施形態の場合と同様に水素貯蔵金属が連結される。 The internal space of the plasma switch 220 formed by the side wall 221S, the first electrode 222, the second electrode 223 and the bottom plate 215 is hermetically sealed and sealed with the discharge gas 20G. Although not shown, the bottom plate 215 is provided with a sealing tube for enclosing the discharge gas 20G in the internal space of the plasma switch 220, and the discharge gas 20G is enclosed from the sealing tube. Preferably, a hydrogen storage metal is coupled to the bottom plate 215 as in the other embodiments described above.
 第1電極222と第2電極223との間には、第1グリッド226が配置されている。第1グリッド226と第2電極223との間には第2グリッド227が配置されている。第1グリッド226および第2グリッド227において、第1電極222と第2電極223との間に設けられた部分は、いずれもメッシュ状とされている。 A first grid 226 is arranged between the first electrode 222 and the second electrode 223 . A second grid 227 is arranged between the first grid 226 and the second electrode 223 . The portions of the first grid 226 and the second grid 227 provided between the first electrode 222 and the second electrode 223 are both mesh-like.
 第1電極222および底板215は、互いに接続されている。底板215には第1端子T1が接続され、第1電極222は、底板215を介して第1端子T1に接続されている。第2電極223には、第2端子T2が接続されている。第1グリッド226および第2グリッド227は、2本のリード13Lにそれぞれ接続され、第3端子T3および第4T4に接続されている。 The first electrode 222 and the bottom plate 215 are connected to each other. A first terminal T<b>1 is connected to the bottom plate 215 , and the first electrode 222 is connected to the first terminal T<b>1 via the bottom plate 215 . A second terminal T2 is connected to the second electrode 223 . The first grid 226 and the second grid 227 are connected to two leads 13L, respectively, and are connected to the third terminal T3 and the fourth T4.
 第2電極223は、プラズマスイッチ220の内部の電界を緩和するように、XY平面視における円の円周の近傍では、なめらかにプラズマスイッチ220の内部にせりだしている。 The second electrode 223 smoothly protrudes inside the plasma switch 220 in the vicinity of the circumference of the circle in the XY plan view so as to relax the electric field inside the plasma switch 220 .
 第1電極222の構成について説明する。
 図9(a)は、本実施形態のスイッチング装置の一部を例示する模式的な平面図である。図9(b)は、図9(a)のCC’線における模式的な矢視断面図である。
 図9(a)および図9(b)に示すように、第1電極222は、XY平面視で有底円筒状の導電性の部材である。この例では、底にあたる平坦部222Eは、円筒部の上端に設けられ、プラズマスイッチ220の内部の密閉空間に収納される。なお、底にあたる部分は、必ずしも平坦でなくてもよい。
A configuration of the first electrode 222 will be described.
FIG. 9A is a schematic plan view illustrating a part of the switching device of this embodiment. FIG. 9(b) is a schematic cross-sectional view taken along line CC' in FIG. 9(a).
As shown in FIGS. 9A and 9B, the first electrode 222 is a bottomed cylindrical conductive member in the XY plan view. In this example, the flat portion 222E corresponding to the bottom is provided at the upper end of the cylindrical portion and housed in the closed space inside the plasma switch 220. As shown in FIG. Note that the portion corresponding to the bottom does not necessarily have to be flat.
 第2電極222の上部の平坦部222Eには、複数の凹部262が設けられている。凹部262は、この例では、XY平面視でほぼ正方形をしており、2つの電極222A1,222A2が対向して配置されている。電極222A1,222A2に隣接する電極222A3,222A4も対向して配置されている。この例では、電極222A1~222A4の下端は電気的に接続されている。電極222A1,222A2の間隔a0は、グロー放電状態のときに形成されるイオンシースの長さの2倍程度とされるのは、上述の他の実施形態の場合と同様である。凹部262は、ホローカソードとして機能する。 A plurality of concave portions 262 are provided in the upper flat portion 222E of the second electrode 222 . In this example, the concave portion 262 has a substantially square shape in XY plan view, and two electrodes 222A1 and 222A2 are arranged to face each other. Electrodes 222A3 and 222A4 adjacent to the electrodes 222A1 and 222A2 are also arranged to face each other. In this example, the lower ends of electrodes 222A1-222A4 are electrically connected. The distance a0 between the electrodes 222A1 and 222A2 is about twice the length of the ion sheath formed in the glow discharge state, as in the other embodiments described above. The recess 262 functions as a hollow cathode.
 凹部262は、この例では、XY平面視でほぼ正方形であるとしたが、正方形に限らずほぼ円形や楕円形等としてもよい。凹部262のXY平面視での形状をほぼ円形とした場合には、円の径は、イオンシースの長さの2倍程度とされる。この例では、2組の対向電極としたが、対向電極は1組であってもよい。 In this example, the concave portion 262 has a substantially square shape when viewed from the XY plane, but it is not limited to a square shape and may have a substantially circular or elliptical shape. When the shape of the concave portion 262 in the XY plane view is substantially circular, the diameter of the circle is about twice the length of the ion sheath. Although two sets of counter electrodes are used in this example, one set of counter electrodes may be used.
 第1電極222は、第1層222Aおよび第2層222Dを含む。第1層222Aは、第2層222D上に形成されている。第1層222Aは、少なくとも、第1電極222の上端の平坦部222Eおよび電極222A1~222A4上にわたって設けられている。第1層222Aは、プラズマスイッチ220の内部の側に設けられており、他の部分は、この例のように、第2層222Dが露出していてもよい。第1層222Aおよび第2層222Dは、上述の他の実施形態の場合の第1層22Aおよび第2層22Dと同じ材料で形成される。 The first electrode 222 includes a first layer 222A and a second layer 222D. The first layer 222A is formed on the second layer 222D. The first layer 222A is provided over at least the flat portion 222E at the upper end of the first electrode 222 and the electrodes 222A1 to 222A4. The first layer 222A is provided on the inner side of the plasma switch 220, and the second layer 222D may be exposed in other portions as in this example. The first layer 222A and the second layer 222D are formed of the same materials as the first layer 22A and the second layer 22D for the other embodiments described above.
 凹部262のプラズマスイッチ220の外側となる部分には、導線が巻回されており、巻回された導線によりコイル266が形成されている。この例では、XY平面視で、反時計回りに電流が流れるように電源が接続される。 A conductor wire is wound around the portion of the concave portion 262 that is outside the plasma switch 220, and a coil 266 is formed by the wound conductor wire. In this example, the power supply is connected so that the current flows counterclockwise when viewed in the XY plane.
 本実施形態のスイッチング装置の動作について説明する。
 本実施形態のスイッチング装置では、凹部262に形成されたコイルによって生成された磁界Hの方向を凹部262内で生成された電界Eに交差させることにより、電界E中を走行する電子の走行距離を実質的に延長する。
 図10は、本実施形態のスイッチング装置の動作を説明するための模式的な拡大断面図である。
 図10には、第1電極222に形成された凹部262および凹部262の周囲に設けられたコイル266の構成が詳細に示されている。図10において、●印および×印でコイル266を構成する導線に流れる電流の向きが示されている。●印は、Y軸の負方向、×印は、Y軸の正方向であることを表している。
 図10に示すように、グロー放電が開始されると、凹部262に負グローGNが入り込む。負グローGNと電極222A1,222A2との間には、電界Eが生成される。電極222A1,222A2は、Z軸にほぼ平行に設けられているので、この図において、電界Eは、X軸にほぼ平行に生成される。
The operation of the switching device of this embodiment will be described.
In the switching device of the present embodiment, the direction of the magnetic field H generated by the coil formed in the recess 262 intersects the electric field E generated in the recess 262, so that the traveling distance of electrons traveling in the electric field E is reduced. extend substantially.
FIG. 10 is a schematic enlarged cross-sectional view for explaining the operation of the switching device of this embodiment.
FIG. 10 shows in detail the configuration of the recess 262 formed in the first electrode 222 and the coil 266 provided around the recess 262 . In FIG. 10, the direction of the current flowing through the conducting wire forming the coil 266 is indicated by ● marks and X marks. ● indicates the negative direction of the Y-axis, and x indicates the positive direction of the Y-axis.
As shown in FIG. 10, when glow discharge is started, negative glow GN enters recess 262 . An electric field E is generated between the negative glow GN and the electrodes 222A1, 222A2. Since the electrodes 222A1 and 222A2 are provided substantially parallel to the Z-axis, the electric field E is generated substantially parallel to the X-axis in this figure.
 コイル266には、図の向きの直流電流が流れる。凹部262の左側の導線では、各導線のまわりに反時計回りに磁力線が生成される。凹部262の右側の導線では、各導線のまわりに時計回りに磁力線が生成される、凹部262内には、これらの磁力線が合成された磁界Hが生成される。 A direct current flows through the coil 266 in the direction shown in the figure. For the conductors on the left side of the recess 262, magnetic field lines are generated counterclockwise around each conductor. In the conductors on the right side of the recess 262, magnetic field lines are generated clockwise around each conductor, and within the recess 262, a magnetic field H is generated by combining these magnetic field lines.
 磁界Hは、電界Eに交差するように生成され、好ましくは、磁界Hが電界Eに直交するように、コイル266の構成が調整される。複数の凹部262のXY平面視での間隔は、凹部262内で生成される磁界Hが電界Eに直交するように実験やシミュレーション等を用いて適切に設定される。 A magnetic field H is generated to intersect the electric field E, and preferably the configuration of the coils 266 is adjusted so that the magnetic field H is orthogonal to the electric field E. The distance between the recesses 262 in the XY plane view is appropriately set through experiments, simulations, or the like so that the magnetic field H generated in the recesses 262 is perpendicular to the electric field E. FIG.
 本実施形態のスイッチング装置の動作および効果について説明する。
 本実施形態では、第1電極222に設けられた凹部262がホローカソードとして機能するので、凹部262内に形成された負グローGNによって、プラズマスイッチ220の電流密度が向上される。
The operation and effect of the switching device of this embodiment will be described.
In this embodiment, since the recess 262 provided in the first electrode 222 functions as a hollow cathode, the negative glow GN formed within the recess 262 improves the current density of the plasma switch 220 .
 凹部262の周囲に設けられたコイル266に、負グローGNと電極222A1,222A2との間に生成された電界Eに交差する磁界Hを生成することができる。電界E中を走行する電子は、電界Eおよび磁界Hに直交するローレンツ力を受けるので、らせん状に走行する。そのため、電界中の走行距離が実質的に長くなるので、パッシェンカーブにおけるpd積を大きくすることができ、プラズマスイッチ220内の電流密度を向上させることができる。 A magnetic field H that intersects the electric field E generated between the negative glow GN and the electrodes 222A1 and 222A2 can be generated in a coil 266 provided around the recess 262. Electrons running in the electric field E are subjected to the Lorentz force perpendicular to the electric field E and the magnetic field H, so they run spirally. Therefore, the distance traveled in the electric field is substantially increased, so the pd product in the Paschen curve can be increased, and the current density in the plasma switch 220 can be improved.
 第1層222Aは、上述の他の実施形態の場合と同様に負の電子親和力を有する材料で形成されているので、2次電子放出係数を高めることができ、プラズマスイッチ220内の電流密度を向上させることができる。 Since the first layer 222A is made of a material having a negative electron affinity as in the other embodiments described above, the secondary electron emission coefficient can be increased, and the current density in the plasma switch 220 can be increased. can be improved.
 本実施形態では、第1電極222および第2電極223を円形平板状とすることができるので、これらの部材の加工や組み立てをより容易にすることができる。 In the present embodiment, since the first electrode 222 and the second electrode 223 can be made into a circular plate shape, it is possible to facilitate processing and assembly of these members.
 (第3の実施形態)
 本実施形態の場合には、第2電極322の構成が上述の他の実施形態の場合と相違する。同一の構成要素には、同一の符号を付して詳細な説明を適宜省略する。
 図11は、本実施形態に係るスイッチング装置の一部を例示する模式的な断面図である。
 図11には、本実施形態のスイッチング装置を構成するプラズマスイッチ320の模式的な断面図が示されている。この図では、高電圧化を実現する上述の第1の実施形態の場合の絶縁容器10や水素貯蔵金属20Hに対応する構成要素が示されていないが、第1の実施形態の場合と同様に設けることができる。
(Third Embodiment)
In the case of this embodiment, the configuration of the second electrode 322 is different from that in the other embodiments described above. The same constituent elements are denoted by the same reference numerals, and detailed description thereof will be omitted as appropriate.
FIG. 11 is a schematic cross-sectional view illustrating a part of the switching device according to this embodiment.
FIG. 11 shows a schematic cross-sectional view of a plasma switch 320 that constitutes the switching device of this embodiment. Although this diagram does not show components corresponding to the insulating container 10 and the hydrogen storage metal 20H in the case of the above-described first embodiment that realizes high voltage, it is similar to the case of the first embodiment. can be provided.
 図11に示すように、プラズマスイッチ320は、第1電極322と、第2電極323と、第1グリッド326と、第2グリッド327と、天板321Uと、底板321Lと、を含む。第1電極322は、後述するように、XY平面視で星形の筒状体である。第1電極322の上端は、接続部330を介して天板321Uに接続されている。接続部330および天板321Uは、絶縁性の材料で形成されており、第1電極322とは絶縁されている。第1電極322の下端は、接続部331を介して底板321Lに接続されている。接続部331および底板321Lは、導電性の材料で形成されており、第1電極322は、底板321Lに接続された第1端子T1に、接続部331および底板321Lを介して電気的に接続されている。 As shown in FIG. 11, the plasma switch 320 includes a first electrode 322, a second electrode 323, a first grid 326, a second grid 327, a top plate 321U, and a bottom plate 321L. As will be described later, the first electrode 322 is a star-shaped cylindrical body in XY plan view. The upper end of the first electrode 322 is connected to the top plate 321U via the connecting portion 330. As shown in FIG. The connection portion 330 and the top plate 321U are made of an insulating material and are insulated from the first electrode 322 . A lower end of the first electrode 322 is connected to the bottom plate 321L via a connection portion 331 . The connection portion 331 and the bottom plate 321L are made of a conductive material, and the first electrode 322 is electrically connected to the first terminal T1 connected to the bottom plate 321L via the connection portion 331 and the bottom plate 321L. ing.
 第1電極322、天板321Uおよび底板321Lで囲まれた空間は、密閉空間とされ、放電ガス20Gが導入されている。図示しないが、底板321Lには、プラズマスイッチ320の内部空間に放電ガス20Gを封入するための封止管が設けられており、封止管から放電ガス20Gが封入される。好ましくは、底板321Lには、上述の他の実施形態の場合と同様に水素貯蔵金属が連結される。 A space surrounded by the first electrode 322, the top plate 321U and the bottom plate 321L is a closed space into which the discharge gas 20G is introduced. Although not shown, the bottom plate 321L is provided with a sealing tube for enclosing the discharge gas 20G in the internal space of the plasma switch 320, and the discharge gas 20G is enclosed from the sealing tube. Preferably, a hydrogen storage metal is connected to the bottom plate 321L as in the other embodiments described above.
 図12(a)は、図11のDD’線における模式的な矢視断面図である。図12(b)は、図11のFF’線における模式的な矢視断面図である。図12(c)は、図11のGG’線における模式的な矢視断面図である。
 図12(a)~図12(c)に示すように、第1電極322は、XY平面視で星形をしており、電流密度増大部360を含んでいる。星形とは、中心線C30に交差する中心を有する円形の径方向に放射状に突出する部分が円周にわたって設けられている形状である。放射状に突出する部分を星形の突出部分ということがある。Z軸方向に延伸する筒状の第1電極322および第2電極323は、XY平面視での中心がZ軸に平行な中心線C30にほぼ一致するように互いの位置が決められている。
FIG. 12(a) is a schematic cross-sectional view taken along line DD' of FIG. FIG. 12(b) is a schematic cross-sectional view taken along line FF' of FIG. FIG. 12(c) is a schematic cross-sectional view taken along line GG' of FIG.
As shown in FIGS. 12(a) to 12(c), the first electrode 322 has a star shape in XY plan view and includes a current density increasing portion 360. As shown in FIG. The star shape is a circular shape having a center that intersects the center line C30 and radially protruding portions are provided along the circumference. A radially protruding portion is sometimes called a star-shaped protruding portion. The tubular first electrode 322 and the tubular second electrode 323 extending in the Z-axis direction are positioned relative to each other so that their centers in XY plan view substantially coincide with the center line C30 parallel to the Z-axis.
 電流密度増大部360は、ホローカソード部362と、コイル366と、を含む。ホローカソード部362は、第1電極322の星形の突出部分に設けられている。つまり、ホローカソード部362は、中心線C30交差する中心を有する円形の円周にわたって、複数設けられている。 The current density increasing section 360 includes a hollow cathode section 362 and a coil 366. The hollow cathode portion 362 is provided on the star-shaped projecting portion of the first electrode 322 . That is, a plurality of hollow cathode portions 362 are provided over a circular circumference having a center that intersects the center line C30.
 第1電極322は、第1層322Aおよび第2層322Dを含んでおり、第1層322Aは、第2層322D上に設けられている。第1層322Aは、プラズマスイッチ320の内部にわたって設けられており、第2層322Dは、プラズマスイッチ320の外部に設けられている。第1層322Aおよび第2層322Dの材料は、上述の第1の実施形態の場合の第1層22Aおよび第2層22Dの材料とそれぞれ同じである。 The first electrode 322 includes a first layer 322A and a second layer 322D, and the first layer 322A is provided on the second layer 322D. The first layer 322A is provided inside the plasma switch 320, and the second layer 322D is provided outside the plasma switch 320. As shown in FIG. The materials of the first layer 322A and the second layer 322D are the same as the materials of the first layer 22A and the second layer 22D, respectively, for the first embodiment described above.
 コイル366は、複数のホローカソード部362のそれぞれに設けられている。コイル366は、ホローカソード部362の周囲を取り巻くように設けられている。 A coil 366 is provided in each of the plurality of hollow cathode portions 362 . The coil 366 is provided so as to surround the hollow cathode portion 362 .
 図11に戻って説明を続ける。
 第2電極323は、支持部材323Uにより、プラズマスイッチ320の内部で天板321Uに接続されている。第1電極323には、リード電極315Lが接続されており、リード電極315Lは、天板321Uからプラズマスイッチ320の外部に引き出されている。リード電極315Lには、外部回路接続用の第2端子T2が接続されている。
Returning to FIG. 11, the description continues.
The second electrode 323 is connected to the top plate 321U inside the plasma switch 320 by a support member 323U. A lead electrode 315L is connected to the first electrode 323, and the lead electrode 315L is drawn out of the plasma switch 320 from the top plate 321U. A second terminal T2 for external circuit connection is connected to the lead electrode 315L.
 第2電極323は、円筒状の導電性の部材であり、XY平面視で中心線C30に交差する中心を有する円形である。第1グリッド326は、第1電極322と第2電極323との間に設けられている。第2グリッド327は、第1グリッド326と第2電極323との間に設けられている。第1グリッド326および第2グリッド327は、半径の異なる円筒形状をしており、第2電極323を取り巻くように設けられている。 The second electrode 323 is a cylindrical conductive member, and has a circular shape with a center intersecting the center line C30 in XY plan view. A first grid 326 is provided between the first electrode 322 and the second electrode 323 . A second grid 327 is provided between the first grid 326 and the second electrode 323 . The first grid 326 and the second grid 327 have cylindrical shapes with different radii, and are provided so as to surround the second electrode 323 .
 第1グリッド326および第2グリッド327は、2本のリード13Lにそれぞれ接続され、底板321Lを貫通してプラズマスイッチ320の外部に引き出される。第1グリッド326は、外部回路接続用の端子T3に接続され、第2グリッド327は、外部回路接続用の端子T4に接続される。 The first grid 326 and the second grid 327 are connected to two leads 13L, respectively, and drawn out of the plasma switch 320 through the bottom plate 321L. The first grid 326 is connected to the terminal T3 for external circuit connection, and the second grid 327 is connected to the terminal T4 for external circuit connection.
 本実施形態のスイッチング装置の動作について説明する。
 図13は、本実施形態のスイッチング装置の動作を説明するための図12(a)のJ部の模式的な拡大断面図である。
 図14(a)~図14(d)は、本実施形態のスイッチング装置の動作を説明するための模式図である。
 図13に示すように、第1電極322は、XY平面視で星形に形成されており、放射状に突出する部分にホローカソード部362が形成される。ホローカソード部362は、2つの対向する電極322A1,322A2を有する。電極322A1,322A2は、もっとも突出した部分で接続されている。電極322A1,322A2の間隔は、グロー放電状態のときに形成されるイオンシースの長さの2倍程度とされるのは、上述の他の実施形態の場合と同様である。
The operation of the switching device of this embodiment will be described.
FIG. 13 is a schematic enlarged cross-sectional view of part J in FIG. 12(a) for explaining the operation of the switching device of this embodiment.
14(a) to 14(d) are schematic diagrams for explaining the operation of the switching device of this embodiment.
As shown in FIG. 13, the first electrode 322 is formed in a star shape in XY plan view, and a hollow cathode portion 362 is formed in a radially protruding portion. Hollow cathode portion 362 has two opposing electrodes 322A1 and 322A2. Electrodes 322A1 and 322A2 are connected at the most projecting portion. The distance between the electrodes 322A1 and 322A2 is about twice the length of the ion sheath formed in the glow discharge state, as in the other embodiments described above.
 グロー放電状態となると、ホローカソード部362には、負グローGNが形成される。電界Eは、負グローGNと電極322A1,322A2との間に形成される。ホローカソード部362内に負グローGNが形成されることにより、プラズマスイッチ320の電流密度が向上される。
 図14(a)~図14(d)に示すように、コイル366を構成する導線に流れる電流の方向に応じて右ねじの法則により、導線のまわりに磁力線が生成される。紙面の手前から紙面の奥に向かって電流が流れる場合には、時計回りの向きに磁力線は生成される(図14(a))。このような導線を1次元に配列すると、各導線の磁力線の合成により、1次元に配列された導線の上方には、右向きの磁界Hが生成され、導線の下方には、左向きの磁界Hが生成される(図14(b))。電流の向きを逆にすると、磁界Hの方向は逆となる(図14(c)および図14(d))。したがって、ホローカソード部362内では、同じ向きの磁界Hが生成される。
In the glow discharge state, a negative glow GN is formed in the hollow cathode portion 362 . An electric field E is formed between the negative glow GN and the electrodes 322A1, 322A2. The formation of the negative glow GN in the hollow cathode portion 362 improves the current density of the plasma switch 320 .
As shown in FIGS. 14( a ) to 14 ( d ), magnetic lines of force are generated around the conductor according to the right-handed screw rule according to the direction of the current flowing through the conductor that constitutes the coil 366 . When a current flows from the front of the paper to the back of the paper, magnetic lines of force are generated in the clockwise direction (FIG. 14(a)). When such conductors are arranged one-dimensionally, a rightward magnetic field H is generated above the one-dimensionally arranged conductors and a leftward magnetic field H is generated below the conductors by synthesis of the magnetic lines of force of the conductors. generated (FIG. 14(b)). Reversing the direction of the current reverses the direction of the magnetic field H (FIGS. 14(c) and 14(d)). Therefore, magnetic fields H are generated in the same direction within the hollow cathode portion 362 .
 コイル366によって生成されるホローカソード部362内の磁界Hは、電界Eと交差するように生成される。そのため、電界Eによって走行する電子は、ローレンツ力を受けて、負グローGNと電極322A1,322A2との間をらせん状に走行する。したがって、電子に走行距離は、実質的に延長され、パッシェンカーブにおけるpd積を実質的に大きくすることとなり、プラズマスイッチ320の内部の電流密度を向上させることができる。 The magnetic field H within the hollow cathode portion 362 generated by the coil 366 is generated so as to intersect the electric field E. Therefore, the electrons traveling by the electric field E receive the Lorentz force and travel spirally between the negative glow GN and the electrodes 322A1 and 322A2. Therefore, the traveling distance of the electrons is substantially extended, the pd product in the Paschen curve is substantially increased, and the current density inside the plasma switch 320 can be improved.
 第1層322Aおよび第2層322Dの材料は、上述の他の実施形態の場合と同じであり、他の実施形態の場合と同様に、プラズマスイッチ320の電流密度が向上される。 The materials of the first layer 322A and the second layer 322D are the same as in the other embodiments described above, and the current density of the plasma switch 320 is improved as in the other embodiments.
 本実施形態のスイッチング装置の効果について説明する。
 本実施形態のスイッチング装置は、上述の構成のプラズマスイッチ320を備えており、上述の他の実施形態の場合と同様に、飛躍的に電流密度が向上されたスイッチング装置を実現することができる。
The effect of the switching device of this embodiment will be described.
The switching device of this embodiment includes the plasma switch 320 configured as described above, and can realize a switching device with dramatically improved current density, as in the case of the other embodiments described above.
 本実施形態のスイッチング装置では、プラズマスイッチ320の第1電極322がXY平面視で星形の筒状とされている。ホローカソード部362を形成する複数の突出部となるように波板状に成形された基材をまるめて端部を接合することによって、容易に第1電極322とすることができるとのメリットもある。 In the switching device of the present embodiment, the first electrode 322 of the plasma switch 320 has a star-shaped cylindrical shape when viewed from the XY plane. There is also an advantage that the first electrode 322 can be easily formed by rolling a base material formed into a corrugated plate shape so as to form a plurality of protruding portions that form the hollow cathode portion 362 and joining the ends thereof. be.
 このようにして、本実施形態のスイッチング装置を実現することができる。 In this way, the switching device of this embodiment can be realized.
 上述において、第1の実施形態の場合では、ホローカソード部62への磁界発生手段として永久磁石64を用い、他の実施形態の場合では、磁界発生手段としてコイルを用いる。磁界発生手段は、これら各実施形態の例に限らず、相互に置き換えて適用することができる。例えば、第1の実施形態の場合について、永久磁石64に代えてコイルを用いてもよい。コイルは、永久磁石64が生成するXY平面視での中心から外側に向かう方向の磁界を生成するように設けることができる。例えば、第2の実施形態および第3の実施形態の場合の場合において、コイル266,366に代えて、永久磁石を用いてもよい。 In the above description, in the case of the first embodiment, the permanent magnet 64 is used as the magnetic field generating means for the hollow cathode portion 62, and in the case of the other embodiments, the coil is used as the magnetic field generating means. The magnetic field generating means is not limited to the examples of each of these embodiments, and can be applied by replacing each other. For example, a coil may be used in place of the permanent magnet 64 in the case of the first embodiment. The coil can be provided so as to generate a magnetic field directed outward from the center in the XY plane view generated by the permanent magnet 64 . For example, permanent magnets may be used instead of the coils 266 and 366 in the case of the second and third embodiments.
 永久磁石によって磁界発生する場合に、個別の永久磁石を配置する場合に限らず、一体として成形された永久磁石としてもよい。一体とされた永久磁石とすることによって、プラズマスイッチの製造工程をより簡素にすることが可能になる。 When a magnetic field is generated by a permanent magnet, it is not limited to arranging individual permanent magnets, but may be integrally molded permanent magnets. An integral permanent magnet allows the manufacturing process of the plasma switch to be simpler.
 (第4の実施形態)
 以下では、上述の他の実施形態のスイッチング装置のうち少なくとも1つを用いた直流遮断装置について説明する。
 直流遮断装置は、例えば、直流系統において、系統事故などが生じたときに、直流系統を遮断する装置である。以下の説明において、通常時とは、直流系統において正常な電流が流れている状態をいい、事故時とは、雷等に起因して、過大な電流が流れた状態をいうものとする。直流系統は、例えば、直流送電等を含むことができる。
 図15は、本実施形態の直流遮断装置の動作を説明するための模式的なブロック図である。
 図15には、本実施形態の直流遮断装置400のほか、直流遮断装置400を含む直流送電系統K1の構成が示されている。
 図15に示すように、直流送電系統K1は、例えば、第1直流送電網1200Aと第2直流送電網1200Bを正側でつなぐ正側送電線1300と、負側でつなぐ負側送電線1400と、を含む。
(Fourth embodiment)
A DC interrupting device using at least one of the switching devices of the other embodiments described above will be described below.
A DC interrupter is, for example, a device that interrupts a DC system when a system fault or the like occurs in the DC system. In the following description, "normal" means a state in which a normal current flows in the DC system, and "at the time of an accident" means a state in which an excessive current flows due to lightning or the like. A DC system may include, for example, a DC power transmission and the like.
FIG. 15 is a schematic block diagram for explaining the operation of the DC interrupter of this embodiment.
FIG. 15 shows the configuration of a DC power transmission system K1 including the DC interrupting device 400 in addition to the DC interrupting device 400 of the present embodiment.
As shown in FIG. 15, the DC power transmission system K1 includes, for example, a positive power transmission line 1300 that connects a first DC power transmission network 1200A and a second DC power transmission network 1200B on the positive side, and a negative power transmission line 1400 that connects on the negative side. ,including.
 本実施形態の直流遮断装置400は、上述した他の実施形態のスイッチング装置1と同様の作用効果を奏する。さらに、本実施形態において、直流遮断装置400は、直流送電系統K1の正側送電線1300に設けられている。ここでは、正側送電線1300において、第1直流送電網1200Aから第2直流送電網1200Bへ送電される例を主に説明する。 The DC interrupting device 400 of this embodiment has the same effects as the switching device 1 of the other embodiments described above. Furthermore, in this embodiment, the DC interrupter 400 is provided in the positive power transmission line 1300 of the DC power transmission system K1. Here, an example of power transmission from the first DC power transmission network 1200A to the second DC power transmission network 1200B on the positive power transmission line 1300 will be mainly described.
 直流遮断装置400は、機械式断路器410と、機械式遮断器420と、並列回路430と、Hブリッジ回路440と、を備える。直流遮断装置400は、第1端子401および第2端子402を含む。直流遮断装置400は、第1端子401を介して、第1直流送電網1200Aに接続される。直流遮断装置400は、第2端子402を介して、第2直流送電網1200Bに接続される。 The DC interrupting device 400 includes a mechanical disconnector 410, a mechanical circuit breaker 420, a parallel circuit 430, and an H bridge circuit 440. DC interrupter 400 includes first terminal 401 and second terminal 402 . DC interrupting device 400 is connected to first DC transmission network 1200A via first terminal 401 . The DC interrupter 400 is connected to the second DC power grid 1200B via the second terminal 402 .
 機械式遮断器420は、機械式断路器410に直列に接続されている。並列回路430は、機械式断路器410および機械式遮断器420の直列回路に並列に接続されている。 The mechanical circuit breaker 420 is connected in series with the mechanical disconnector 410 . Parallel circuit 430 is connected in parallel to the series circuit of mechanical disconnector 410 and mechanical breaker 420 .
 より具体的には、並列回路430は、プラズマスイッチングユニット431とリアクトル432とを含む。プラズマスイッチングユニット431およびリアクトル432は、直列に接続されている。プラズマスイッチングユニット431に並列にアレスタ450が接続されている。 More specifically, parallel circuit 430 includes plasma switching unit 431 and reactor 432 . Plasma switching unit 431 and reactor 432 are connected in series. An arrestor 450 is connected in parallel with the plasma switching unit 431 .
 Hブリッジ回路440の一端は、機械式断路器410と機械式遮断器420との接続ノードに接続されている。Hブリッジ回路440の他端は、プラズマスイッチングユニット431とリアクトル432との接続ノードに接続されている。 One end of the H bridge circuit 440 is connected to the connection node between the mechanical disconnector 410 and the mechanical circuit breaker 420 . The other end of H bridge circuit 440 is connected to a connection node between plasma switching unit 431 and reactor 432 .
 機械式断路器410は、公知の種々の構成を用いることができる。本実施形態では、後述するように並列回路430を用いて直流電流を遮断するため、機械式断路器410自体に電流遮断能力は不要である。このため、機械式断路器410は、機械接点を持つものであって、接点が切り離された状態で、事故点を切り離すのに必要な直流電圧に耐える絶縁耐圧を持つものであれば足りる。機械式断路器410は、例えば、回路の端子間に回動接触子を設け、この回動接触子が回動して各端子に取り付けられた固定接触子と接離することによって、回路の切り離しを行う構成とすることができる。 Various known configurations can be used for the mechanical disconnector 410 . In the present embodiment, the parallel circuit 430 is used to interrupt the direct current, as will be described later, so the mechanical disconnector 410 itself does not need to have a current interrupting capability. For this reason, the mechanical disconnector 410 is sufficient as long as it has a mechanical contact and has a dielectric strength that withstands the DC voltage required to disconnect the fault point in the state where the contact is disconnected. The mechanical disconnector 410 disconnects the circuit by, for example, providing a rotating contact between the terminals of the circuit, and rotating the rotating contact to contact or separate from the fixed contact attached to each terminal. can be configured to perform
 機械式断路器410は、通常時には導通状態、すなわち接点が接触した状態になるように制御される。第1直流送電網1200Aからの電流は、機械式断路器410を通過して第2直流送電網1200Bへ流れる。事故時は、後述するが、並列回路430に電流が流れるように制御が行われ、機械式断路器410を流れる電流が略ゼロになったところで、非導通状態に切り換えられ、回路が切り離される。 The mechanical disconnector 410 is normally controlled to be in a conductive state, that is, in a state where the contacts are in contact. Current from first DC power grid 1200A flows through mechanical disconnect switch 410 to second DC power grid 1200B. At the time of an accident, as will be described later, control is performed so that current flows through the parallel circuit 430, and when the current flowing through the mechanical disconnector 410 becomes substantially zero, the mechanical disconnector 410 is switched to a non-conducting state and the circuit is disconnected.
 機械式遮断器420は、公知の種々の構成を用いることができる。機械式遮断器420は、機械接点を持つものであって、接点を開くことにより小電流を遮断する能力を有するものであれば足りる。機械式遮断器420は、例えば、回路の端子間に回動接触子を設け、この回動接触子が回動して各端子に取り付けられた固定接触子と接離することによって、小電流の遮断を行う構成とすることができる。 Various known configurations can be used for the mechanical circuit breaker 420 . The mechanical circuit breaker 420 has a mechanical contact, and it is sufficient if it has the ability to cut off a small current by opening the contact. The mechanical circuit breaker 420, for example, provides a rotary contact between the terminals of the circuit, and rotates the rotary contact to make contact with or separate from the fixed contact attached to each terminal, thereby generating a small current. It can be set as the structure which interrupts.
 機械式遮断器420は、通常時には導通状態、すなわち接点が接触した状態になるように制御される。第1直流送電網1200Aからの電流は、機械式断路器410および機械式遮断器420を通過して第2直流送電網1200Bへ流れる。事故時には、機械式遮断器420に流れる電流が増大する。機械式遮断器420には、図示しない電流センサが取り付けられている。直流送電系統K1において発生する事故は、例えば、機械式遮断器420に流れる電流を電流センサで測定し、事故を示すしきい値と比較することで検出される。詳細は後述するが、事故時に、Hブリッジ回路440に電流が流れ、機械式遮断器420を流れる電流が略ゼロになる制御が行われる。機械式遮断器420は、流れる電流が略ゼロになったところで非導状態に切り換えられ、回路が切り離される。 The mechanical circuit breaker 420 is normally controlled so that it is in a conductive state, that is, in a state where the contacts are in contact. Current from first DC power grid 1200A flows through mechanical disconnector 410 and mechanical breaker 420 to second DC power grid 1200B. In the event of an accident, the current flowing through mechanical breaker 420 increases. A current sensor (not shown) is attached to the mechanical circuit breaker 420 . A fault that occurs in the DC power transmission system K1 is detected, for example, by measuring the current flowing through the mechanical circuit breaker 420 with a current sensor and comparing it with a threshold indicating a fault. Although the details will be described later, in the event of an accident, current flows through the H-bridge circuit 440 and control is performed so that the current flowing through the mechanical circuit breaker 420 becomes substantially zero. The mechanical circuit breaker 420 is switched to a non-conducting state when the flowing current becomes substantially zero, and the circuit is cut off.
 プラズマスイッチングユニット431は、第1スイッチング装置431Aと第2スイッチング装置431Bとを含む。第1スイッチング装置431Aおよび第2スイッチング装置431Bは、いずれも例えば上記第1から第3の実施形態のスイッチング装置のいずれかとすることができる。 The plasma switching unit 431 includes a first switching device 431A and a second switching device 431B. Both the first switching device 431A and the second switching device 431B can be, for example, any one of the switching devices of the first to third embodiments.
 第1スイッチング装置431Aおよび第2スイッチング装置431Bは、逆並列に接続されている。第1スイッチング装置431Aでは、第1電極22は第2端子402に接続され、第2電極23は第1端子401に接続されている。第2スイッチング装置431Bでは、第1電極22は第1端子401に接続され、第2電極23は第2端子402に接続されている。 The first switching device 431A and the second switching device 431B are connected in anti-parallel. In the first switching device 431 A, the first electrode 22 is connected to the second terminal 402 and the second electrode 23 is connected to the first terminal 401 . In the second switching device 431 B, the first electrode 22 is connected to the first terminal 401 and the second electrode 23 is connected to the second terminal 402 .
 第1スイッチング装置431Aおよび第2スイッチング装置431Bは、いずれも直流送電系統K1の地絡事故や短絡事故等の場合に動作し、通常時には非導通状態であり動作しない。リアクトル432は、第1スイッチング装置431Aと、第2スイッチング装置431Bの双方に対して直列に接続される。 Both the first switching device 431A and the second switching device 431B operate in the event of a ground fault or short-circuit accident in the DC power transmission system K1, and are normally in a non-conducting state and do not operate. The reactor 432 is connected in series with both the first switching device 431A and the second switching device 431B.
 本実施形態では、第1スイッチング装置431Aは、第1直流送電網1200Aから第2直流送電網1200Bへ流れる電流の遮断を担当する。第2スイッチング装置431Bは、第2直流送電網1200Bから第1直流送電網1200Aへ流れる電流の遮断を担当する。以下では、第2スイッチング装置431Bによる電流の遮断動作について説明するが、遮断すべき電流が流れる方向を変えることにより、第1スイッチング装置431Aによる電流の遮断動作についても同様に説明することが可能である。 In this embodiment, the first switching device 431A is in charge of interrupting current flowing from the first DC power grid 1200A to the second DC power grid 1200B. The second switching device 431B is responsible for interrupting current flowing from the second DC power grid 1200B to the first DC power grid 1200A. Although the current interruption operation by the second switching device 431B will be described below, the current interruption operation by the first switching device 431A can also be explained in the same manner by changing the direction in which the current to be interrupted flows. be.
 第1スイッチング装置431Aおよび第2スイッチング装置431Bは、いずれもプラズマスイッチ20を備えるスイッチング装置(以下、プラズマスイッチング装置という)である。プラズマスイッチング装置は、第1から第3の実施形態で説明したように、第3端子T3と第4端子T4の電位に基づいて第1状態ST1、あるいは第2状態ST2となる。第1状態ST1は非導通状態であり、第2状態ST2は導通状態である。プラズマスイッチング装置は、第4端子T4の電位を切り換えることにより、第1状態ST1から第2状態ST2に移行し、第2状態ST2から第1状態ST1に移行するスイッチング装置である。 Both the first switching device 431A and the second switching device 431B are switching devices that include the plasma switch 20 (hereinafter referred to as plasma switching devices). As explained in the first to third embodiments, the plasma switching device is in the first state ST1 or the second state ST2 based on the potentials of the third terminal T3 and the fourth terminal T4. The first state ST1 is a non-conducting state and the second state ST2 is a conducting state. The plasma switching device is a switching device that shifts from the first state ST1 to the second state ST2 and from the second state ST2 to the first state ST1 by switching the potential of the fourth terminal T4.
 第1スイッチング装置431Aと逆並列に接続された第2スイッチング装置431Bは、第3端子T3と第4端子T4の電位をそれぞれ制御することによって、導通状態である第2状態と非導通状態である第1状態とが切り換えられる。 The second switching device 431B connected in inverse parallel to the first switching device 431A is in a second conductive state and a non-conductive state by controlling the potentials of the third terminal T3 and the fourth terminal T4, respectively. A first state is switched.
 アレスタ450は、プラズマスイッチングユニット431が導通状態から非導通状態に切り換えられたときに、プラズマスイッチングユニット431の両端に発生するサージ電圧を吸収して安全な電流遮断を可能とする。リアクトル432は、電流変化率を低減するために設けられている。リアクトル432は、Hブリッジ回路440による電流制御を可能とする。 The arrester 450 absorbs the surge voltage generated across the plasma switching unit 431 when the plasma switching unit 431 is switched from the conducting state to the non-conducting state, enabling safe current interruption. Reactor 432 is provided to reduce the current change rate. Reactor 432 enables current control by H bridge circuit 440 .
 Hブリッジ回路440は、複数のHブリッジユニット441を含む。複数のHブリッジユニット441は、直列に接続されている。 The H bridge circuit 440 includes a plurality of H bridge units 441. A plurality of H bridge units 441 are connected in series.
 図16は、本実施形態の直流遮断装置の一部を例示する模式的な等価回路図である。
 図16には、Hブリッジユニット441の回路構成例が示されている。Hブリッジユニット441は、スイッチング素子442、ダイオード444およびコンデンサ445を含む。Hブリッジ回路440は、出力電圧制御により機械式遮断器420に流れる電流を制御する。
FIG. 16 is a schematic equivalent circuit diagram illustrating part of the DC interrupter of this embodiment.
FIG. 16 shows a circuit configuration example of the H bridge unit 441. As shown in FIG. H-bridge unit 441 includes switching element 442 , diode 444 and capacitor 445 . The H-bridge circuit 440 controls the current flowing through the mechanical breaker 420 by controlling the output voltage.
 スイッチング素子442は、直列に接続されている。ダイオード444は、スイッチング素子442にそれぞれ逆並列に接続されている。直列に接続されたスイッチング素子442は、レグ443を構成する。Hブリッジユニット441では、2つのレグ443およびコンデンサ445が並列に接続されている。スイッチング素子442は、自己消弧能力を有する半導体素子であり、例えば、IEGT(Injection Enhanced Gate Transistor)やIGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)等である。コンデンサ445は、定常動作時に正側送電線1300を流れる電流によって充電される。 The switching elements 442 are connected in series. The diodes 444 are connected in anti-parallel to the switching elements 442 respectively. A series-connected switching element 442 constitutes a leg 443 . In H-bridge unit 441, two legs 443 and capacitor 445 are connected in parallel. The switching element 442 is a semiconductor element having self-extinguishing capability, such as an IEGT (Injection Enhanced Gate Transistor), an IGBT (Insulated Gate Bipolar Transistor), a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor), or the like. Capacitor 445 is charged by current flowing through positive transmission line 1300 during steady state operation.
 本実施形態の直流遮断装置400の動作について、図17~図20(b)を参照して説明する。動作の説明では、通常時と事故時に分けて説明する。通常時は、機械式断路器410および機械式遮断器420は導通状態とされ、プラズマスイッチングユニット431およびHブリッジ回路440は非導通状態とされる。図17、図19(a)~図20(b)は、直流送電系統K1において、通常状態から事故発生時の保護動作に至るまでの流れを説明する図である。
 図17に示すように、通常時では、第1直流送電網1200Aから第2直流送電網1200Bに流れる電流は、図の矢印のように、第1端子401を介して直流遮断装置400に流入し、第2端子402から流出する。直流遮断装置400では、電流は、機械式断路器410および機械式遮断器420に流れ、並列回路430およびHブリッジ回路440には流れない。
The operation of the DC interrupter 400 of this embodiment will be described with reference to FIGS. 17 to 20(b). In the explanation of the operation, the explanation will be divided into the normal case and the accident case. Normally, the mechanical disconnecting switch 410 and the mechanical circuit breaker 420 are in a conducting state, and the plasma switching unit 431 and the H bridge circuit 440 are in a non-conducting state. FIGS. 17 and 19(a) to 20(b) are diagrams for explaining the flow from the normal state to the protection operation when an accident occurs in the DC power transmission system K1.
As shown in FIG. 17, normally, the current flowing from the first DC power transmission network 1200A to the second DC power transmission network 1200B flows into the DC interrupter 400 via the first terminal 401 as indicated by the arrow in the figure. , flows out from the second terminal 402 . In DC interrupter 400 , current flows through mechanical disconnector 410 and mechanical breaker 420 and does not flow through parallel circuit 430 and H-bridge circuit 440 .
 図18は、本実施形態の直流遮断装置の動作を説明するための模式的なタイミングチャートの例である。
 例えば、シミュレーション等を活用することにより、図18のようなタイミングチャートを得ることが可能である。
 以下では、第1直流送電網1200Aを模擬した回路構成の中に、図17に示した直流遮断装置400の回路モデルを接続し、直流遮断装置400に直流電圧320kVを印加した状態とした後、正側送電線1300に雷などに起因する地絡事故を発生させる。
FIG. 18 is an example of a schematic timing chart for explaining the operation of the DC interrupter of this embodiment.
For example, it is possible to obtain a timing chart as shown in FIG. 18 by utilizing simulation or the like.
In the following, the circuit model of the DC interrupting device 400 shown in FIG. A ground fault caused by lightning or the like is generated in the positive power transmission line 1300 .
 図19(a)~図20(b)に示すように、シミュレーションでは、事故地点FPで地絡事故が発生したものと想定している。事故地点FPは、正側送電線1300における直流遮断装置400と第2直流送電網1200Bとの間である。 As shown in FIGS. 19(a) to 20(b), the simulation assumes that a ground fault occurred at the accident point FP. The fault point FP is between the DC interrupter 400 in the positive power transmission line 1300 and the second DC power transmission network 1200B.
 図18中の実線LN1は機械式遮断器420を流れる電流を示す。一点鎖線LN2はHブリッジ回路440を流れる電流を示す。二点鎖線LN3はプラズマスイッチングユニット431を流れる電流を示す。 A solid line LN1 in FIG. 18 indicates the current flowing through the mechanical circuit breaker 420. A dashed-dotted line LN2 indicates the current flowing through the H-bridge circuit 440. FIG. A two-dot chain line LN 3 indicates the current flowing through the plasma switching unit 431 .
 事故発生時においては、事故電流は時間とともに増大していく。直流遮断装置400は、全体として見ると2段階の遮断動作を行う。まず、事故電流の小さい初期の段階で、機械式遮断器420の遮断動作を行って事故電流を並列回路430に転流させ、事故電流の増大した後期の段階で、プラズマスイッチングユニット431による遮断動作を行う。以下、詳細に説明する。 When an accident occurs, the fault current increases over time. As a whole, the DC interrupter 400 performs a two-step interruption operation. First, at the initial stage when the fault current is small, the mechanical circuit breaker 420 performs the breaking operation to commutate the fault current to the parallel circuit 430, and at the later stage when the fault current increases, the plasma switching unit 431 performs the breaking operation. I do. A detailed description will be given below.
 図18および図19(a)に示すように、時間t1において、事故地点FPで地絡事故が発生すると、実線LN1で示す機械式遮断器420に流れる電流は、増大する。機械式遮断器420に取り付けられた電流センサは、機械式遮断器420に流れる電流Idc_Mを検出し、電流Idc_Mは、予め設定された事故発生検出しきい値Idc_Jと比較される。 As shown in FIGS. 18 and 19(a), when a ground fault occurs at the fault point FP at time t1, the current flowing through the mechanical circuit breaker 420 indicated by the solid line LN1 increases. A current sensor attached to the mechanical circuit breaker 420 detects a current Idc_M flowing through the mechanical circuit breaker 420, and the current Idc_M is compared with a preset fault occurrence detection threshold Idc_J.
 図18の実線LN1および図19(b)に示すように、時間t2において、電流Idc_Mは、事故発生検出しきい値Idc_Jを超過する。第2スイッチング装置431Bの第4端子T4の電位は、第4電位V4から第5電位V5に遷移されて、第2スイッチング装置431Bは、導通状態となる。同時に、Hブリッジ回路440の出力電圧制御が開始される。 As shown by solid line LN1 in FIG. 18 and FIG. 19(b), current Idc_M exceeds accident occurrence detection threshold Idc_J at time t2. The potential of the fourth terminal T4 of the second switching device 431B is changed from the fourth potential V4 to the fifth potential V5, and the second switching device 431B becomes conductive. At the same time, the output voltage control of H bridge circuit 440 is started.
 具体的には、Hブリッジ回路440の出力電圧V_Hは以下の(1)式により演算される。 Specifically, the output voltage V_H of the H bridge circuit 440 is calculated by the following equation (1).
 V_H=G(s)×(Idc_M-0)・・・(1)
 上記(1)式において、G(s)はラプラス変換された制御ゲインである。制御ゲインG(s)は、例えば一般的な比例積分制御による伝達関数を表している。
V_H=G(s)×(Idc_M−0) (1)
In the above equation (1), G(s) is the Laplace-transformed control gain. The control gain G(s) represents, for example, a transfer function of general proportional-plus-integral control.
 各Hブリッジユニット441のスイッチング素子442は、パルス幅変調制御され、Hブリッジ回路440は、(1)式の出力電圧VHを機械式遮断器420の両端に印加する。パルス幅変調のデューティ比は、例えば、予め設定されている。機械式遮断器420に流れる電流Idc_Mは、式(1)の出力電圧VHが印加されたことによって、略ゼロとなるように制御される。 The switching element 442 of each H bridge unit 441 is pulse width modulation controlled, and the H bridge circuit 440 applies the output voltage VH of formula (1) across the mechanical circuit breaker 420 . The duty ratio of pulse width modulation is set in advance, for example. A current Idc_M flowing through the mechanical circuit breaker 420 is controlled to be substantially zero by applying the output voltage VH of Equation (1).
 このようなHブリッジ回路440による制御により、図18の実線LN1で示したように、期間P1では、機械式遮断器420に流れる電流Idc_Mは、略ゼロになるまで制御される。時間t3において、機械式遮断器420は、非導通状態に移行される。機械式遮断器420に流れる電流は、略ゼロとなっているため、接点を非導通状態に移行させても、接点間にアークを生じさせることなく電流を遮断することができる。そのため、高速に電流を遮断することができる。 By such control by the H bridge circuit 440, the current Idc_M flowing through the mechanical breaker 420 is controlled to substantially zero in the period P1, as indicated by the solid line LN1 in FIG. At time t3, mechanical breaker 420 is transitioned to a non-conducting state. Since the current flowing through the mechanical circuit breaker 420 is substantially zero, the current can be interrupted without arcing between the contacts even if the contacts are switched to the non-conducting state. Therefore, the current can be interrupted at high speed.
 Hブリッジユニット441による出力電圧制御を行う場合は、ほぼ導通抵抗ゼロの機械式遮断器420にHブリッジユニット441の出力電圧が直接印加され、短絡電流が流れて、電流制御ができなくなるおそれがある。本実施形態では、並列回路430にリアクトル432が設けられており、Hブリッジ回路440は、このリアクトル432に直列に接続されている。このリアクトル432によって、機械式遮断器420にHブリッジユニット441の出力電圧印加による電流の急峻な変化が抑制されるため、機械式遮断器420に流れる電流の制御が可能となる。 When the output voltage is controlled by the H-bridge unit 441, the output voltage of the H-bridge unit 441 is directly applied to the mechanical circuit breaker 420 with almost zero conduction resistance, and a short-circuit current may flow, making current control impossible. . In this embodiment, the parallel circuit 430 is provided with a reactor 432 , and the H bridge circuit 440 is connected in series with this reactor 432 . The reactor 432 suppresses abrupt current changes due to the application of the output voltage of the H-bridge unit 441 to the mechanical circuit breaker 420, so that the current flowing through the mechanical circuit breaker 420 can be controlled.
 具体的に説明すると、機械式遮断器420に流れる電流Idc_Mの電流変化率dIdc_M/dtは、リアクトル432のインダクタンス値Lを用いて以下の(2)式で表される。 Specifically, the current change rate dIdc_M/dt of the current Idc_M flowing through the mechanical circuit breaker 420 is expressed by the following equation (2) using the inductance value L of the reactor 432 .
 dIdc_M/dt=V_H/L・・・(2)  dIdc_M/dt=V_H/L (2)
 リアクトル432がない場合、インダクタンス値L=0となるため、Hブリッジユニット441の出力電圧V_Hがゼロでない限り、電流変化率dIdc_M/dtは無限大となってしまい、機械式遮断器420に流れる電流Idc_Mの制御ができなくなる。本実施形態では、並列回路430にリアクトル432を設けることによって、上記式においてインダクタンス値Lが挿入されるため、電流変化率dIdc_M/dtが有限となる。したがって、Hブリッジユニット441の出力電圧V_Hの大きさに応じて電流変化率dIdc_M/dtを制御することが可能となる。これによって、機械式遮断器420にHブリッジユニット441の出力電圧が直接印加されることを防止し、機械式遮断器420を流れる電流Idc_Mを略ゼロにする電流制御が可能となる。 Without the reactor 432, the inductance value L=0. Therefore, unless the output voltage V_H of the H bridge unit 441 is zero, the current change rate dIdc_M/dt becomes infinite, and the current flowing through the mechanical circuit breaker 420 is Control of Idc_M becomes impossible. In this embodiment, by providing the reactor 432 in the parallel circuit 430, the inductance value L is inserted in the above equation, so the current change rate dIdc_M/dt becomes finite. Therefore, it is possible to control the current change rate dIdc_M/dt according to the magnitude of the output voltage V_H of the H bridge unit 441 . This prevents direct application of the output voltage of the H-bridge unit 441 to the mechanical circuit breaker 420, and allows current control to make the current Idc_M flowing through the mechanical circuit breaker 420 substantially zero.
 Hブリッジ回路440による出力電圧制御により、機械式遮断器420に流れる電流Idc_Mは、略ゼロになるまで制御される。時間t3の経過後、図20(a)に示すように、正側送電線1300を流れる電流は、機械式遮断器420を通らずにHブリッジ回路440を通り、さらにHブリッジ回路440に接続された並列回路430を通って、正側送電線1300に戻る。このため、機械式遮断器420に流れる電流Idc_Mが略ゼロになる。この状態で機械式遮断器420を非導通状態に移行させる。機械式遮断器420に流れる電流は略ゼロとなっているため、接点を非導通状態に移行させても通常の直流電流導通時のように、アークを引いて電流が流れ続けることがない。そのため、高速に電流を遮断することができる。 The output voltage control by the H bridge circuit 440 controls the current Idc_M flowing through the mechanical circuit breaker 420 until it becomes substantially zero. After time t3 has elapsed, as shown in FIG. It returns to the positive transmission line 1300 through the parallel circuit 430 . Therefore, the current Idc_M flowing through the mechanical circuit breaker 420 becomes substantially zero. In this state, the mechanical circuit breaker 420 is switched to the non-conducting state. Since the current flowing through the mechanical circuit breaker 420 is substantially zero, even if the contact is switched to the non-conducting state, unlike normal direct current conduction, an arc will not be drawn and the current will continue to flow. Therefore, the current can be interrupted at high speed.
 図18の一点鎖線LN2に示したように、Hブリッジユニット441のスイッチング素子442をすべてオフにする。すると、Hブリッジユニット441のコンデンサ445に予め蓄えていた電圧が、機械式断路器410を流れ続ける事故電流を減少させる方向に印加される。これによって、機械式断路器410を流れる事故電流は減少する。機械式断路器410に流れる事故電流が減少した分、機械式断路器410に並列に接続された並列回路430に事故電流が転流される。 All the switching elements 442 of the H-bridge unit 441 are turned off, as indicated by the dashed-dotted line LN2 in FIG. Then, the voltage previously stored in the capacitor 445 of the H-bridge unit 441 is applied in a direction to reduce the fault current continuing to flow through the mechanical disconnector 410 . This reduces the fault current flowing through the mechanical disconnector 410 . As the fault current flowing through the mechanical disconnector 410 is reduced, the fault current is commutated to the parallel circuit 430 connected in parallel to the mechanical disconnector 410 .
 図18の二点鎖線LN3で示したように、時間t3において、プラズマスイッチングユニット431に流れる電流が増大し、期間P2の経過により、最終的に時間t4において、機械式断路器410に流れる電流はゼロになり、すべての事故電流がプラズマスイッチングユニット431を流れるようになる。この動作状態を図20(b)に示す。このタイミングで、機械式断路器410はオフに遷移される。電流は、機械式断路器410にはほとんど流れていないため、機械式断路器410は、接点間にアークを生じることなく、電流を遮断することができる。 As indicated by the two-dot chain line LN3 in FIG. 18, at time t3, the current flowing through the plasma switching unit 431 increases. becomes zero and all fault currents flow through the plasma switching unit 431 . This operating state is shown in FIG. At this timing, the mechanical disconnector 410 is turned off. Since little current is flowing through the mechanical disconnector 410, the mechanical disconnector 410 can interrupt the current without arcing between the contacts.
 最後に、図20(b)に示した動作状態において、時間t5が経過すると、第2スイッチング装置431Bの第4端子T4の第5電位V5を第4電位V4に切り換えて、並列回路430に流れる事故電流を遮断する。このとき発生するサージ電圧はアレスタ450に吸収され、電流遮断が完了する。 Finally, in the operating state shown in FIG. 20B, when time t5 elapses, the fifth potential V5 of the fourth terminal T4 of the second switching device 431B is switched to the fourth potential V4, and the potential V4 flows through the parallel circuit 430. Interrupt the fault current. The surge voltage generated at this time is absorbed by the arrester 450, and current interruption is completed.
 本実施形態の直流遮断装置400の効果について説明する。
 本実施形態の直流遮断装置400においては、通常時には、電流が機械式断路器410および機械式遮断器420を流れるため、導通損失をほぼゼロとすることができる。そのため、高い送電効率が実現される。事故時には、Hブリッジ回路440を用いた出力電圧制御により、並列回路430に電流を誘導して機械式断路器410を流れる電流を、機械式断路器410の接点間にアークを生じさせずに回路の切り離しを行うことができる。そのため、電流遮断能力のない機械式断路器410であっても、安全に事故点の切り離しを行うことができる。さらに、並列回路430は、プラズマスイッチングユニット431を含んでいるので、高速の電流遮断を実現することができる。
The effects of the DC interrupter 400 of this embodiment will be described.
In the DC interrupting device 400 of the present embodiment, since current normally flows through the mechanical disconnecting switch 410 and the mechanical circuit breaker 420, conduction loss can be reduced to almost zero. Therefore, high power transmission efficiency is realized. In the event of an accident, the output voltage control using the H-bridge circuit 440 induces a current in the parallel circuit 430 so that the current flowing through the mechanical disconnector 410 can be controlled without arcing between the contacts of the mechanical disconnector 410 . can be detached. Therefore, even if the mechanical disconnector 410 does not have a current interrupting capability, it is possible to safely disconnect the fault point. Furthermore, since the parallel circuit 430 includes the plasma switching unit 431, it can realize fast current interruption.
 さらに、プラズマスイッチングユニット431は、プラズマスイッチング装置で構成されている。このため、並列回路を半導体素子によって構成した場合に比べて、極めてコンパクトな装置とすることができる。したがって、送電効率向上させるとともに、直流多端子送電設備における直流遮断器の設備の設置面積および容積を大幅に縮小し、設備コストの低減に寄与することができる。 Furthermore, the plasma switching unit 431 is composed of a plasma switching device. Therefore, the device can be made extremely compact compared to the case where the parallel circuit is configured by semiconductor elements. Therefore, the power transmission efficiency can be improved, and the installation area and volume of the DC circuit breaker equipment in the DC multi-terminal power transmission equipment can be significantly reduced, contributing to the reduction of the equipment cost.
 (第5の実施形態)
 図21は、本実施形態に係る直流遮断装置を例示する模式的なブロック図である。
 図21には、本実施形態の直流遮断装置500のほか、直流遮断装置500を構成する直流送電系統K2が示されている。
 図21に示すように、直流送電系統K2は、第1直流送電網1200Aと第2直流送電網1200Bとの間に、直流遮断装置500が接続されている点で、上述の第4の実施形態の場合と相違する。直流遮断装置500は、複数の機械式断路器410を含む点、および並列回路530が複数のプラズマスイッチングユニット431を含む点で、上述の第4の実施形態の場合と相違する。上述の他の実施形態の場合と同一の構成要素には、同一の符号を付して詳細な説明を適宜省略する。
(Fifth embodiment)
FIG. 21 is a schematic block diagram illustrating the DC interrupter according to this embodiment.
FIG. 21 shows the DC interrupting device 500 of the present embodiment as well as the DC transmission system K2 that constitutes the DC interrupting device 500. As shown in FIG.
As shown in FIG. 21, the DC power transmission system K2 is similar to the above-described fourth embodiment in that the DC interrupting device 500 is connected between the first DC power transmission network 1200A and the second DC power transmission network 1200B. is different from the case of The direct-current interrupting device 500 differs from the above-described fourth embodiment in that it includes a plurality of mechanical disconnectors 410 and that a parallel circuit 530 includes a plurality of plasma switching units 431 . The same reference numerals are given to the same components as in the other embodiments described above, and detailed description thereof will be omitted as appropriate.
 直流遮断装置500は、第1端子501および第2端子502を含む。直流遮断装置500では、第1端子501を介して第1直流送電網1200Aに接続され、第2端子502を介して第2直流送電網1200Bに接続される。直流遮断装置500は、複数の機械式断路器410と、並列回路530と、を備える。複数の機械式断路器410は、直列に接続されている。直列に接続された複数の機械式断路器410は、機械式遮断器420に直列に接続されている。複数の機械式断路器410および機械式遮断器420の直列回路は、第1端子501と第2端子502との間に接続されている。 A DC interrupter 500 includes a first terminal 501 and a second terminal 502 . DC interrupter 500 is connected to first DC power grid 1200A through first terminal 501 and to second DC power grid 1200B through second terminal 502 . The DC interrupting device 500 includes a plurality of mechanical disconnectors 410 and parallel circuits 530 . A plurality of mechanical disconnectors 410 are connected in series. A plurality of series-connected mechanical disconnectors 410 are connected in series to a mechanical circuit breaker 420 . A series circuit of a plurality of mechanical disconnectors 410 and mechanical circuit breakers 420 is connected between first terminal 501 and second terminal 502 .
 並列回路530は、複数のプラズマスイッチングユニット431を含む。複数のプラズマスイッチングユニット431は、直列に接続されている。複数のプラズマスイッチングユニット431のそれぞれには、アレスタ450が並列に接続されている。並列回路530は、リアクトル432を含んでいる。リアクトル432は、プラズマスイッチングユニット431の直列回路に直列に接続されている。 The parallel circuit 530 includes multiple plasma switching units 431 . A plurality of plasma switching units 431 are connected in series. An arrestor 450 is connected in parallel to each of the plurality of plasma switching units 431 . Parallel circuit 530 includes reactor 432 . The reactor 432 is connected in series with the series circuit of the plasma switching unit 431 .
 本実施形態の直流遮断装置500の動作においては、直列接続された機械式断路器410は、同じタイミングで開閉される。直列接続されたプラズマスイッチングユニット431も同じタイミングで開閉される。したがって、本実施形態の直流遮断装置500は、上述の第4の実施形態の場合の直流遮断装置400と同様に動作する。 In the operation of the DC interrupter 500 of this embodiment, the series-connected mechanical disconnectors 410 are opened and closed at the same timing. The plasma switching units 431 connected in series are also opened and closed at the same timing. Therefore, the DC interrupter 500 of this embodiment operates in the same manner as the DC interrupter 400 of the above-described fourth embodiment.
 本実施形態の直流遮断装置500の効果について説明する。
 本実施形態の直流遮断装置500は、上述した第4の実施形態の直流遮断装置400と同様の効果を奏する。さらに、直流遮断装置500は、直列に接続された複数の機械式断路器410および複数のプラズマスイッチングユニット431を備えている。このため、これらの直列回路の直列接続数を適切に設定することにより、直流送電系統K2における各所の電圧に対して適切に対応することができる。具体的には、同じ規格のプラズマスイッチングユニット431を製造し、設置する直流送電網に応じて直列接続数を設定することができるので、装置の標準化をはかることが可能になり、標準化による生産性の向上に寄与することができる。
The effects of the DC interrupter 500 of this embodiment will be described.
The DC interrupter 500 of this embodiment has the same effects as the DC interrupter 400 of the fourth embodiment described above. Furthermore, the DC interrupter 500 comprises a plurality of mechanical disconnectors 410 and a plurality of plasma switching units 431 connected in series. Therefore, by appropriately setting the number of series connections of these series circuits, it is possible to appropriately respond to voltages at various locations in the DC power transmission system K2. Specifically, plasma switching units 431 of the same standard can be manufactured, and the number of series connections can be set according to the DC power grid to be installed. can contribute to the improvement of
 (第6の実施形態)
 図22は、本実施形態に係る直流遮断システムを例示する模式的なブロック図である。
 図22には、第1直流送電網1200A、第2直流送電網1200B、正側送電線1300および負側送電線1400が図示されていないが、直流遮断装置400の第1端子401に正側送電線1300を介して第1直流送電網1200Aを接続し、第2端子402に正側送電線1300を介して第2直流送電網1200Bを接続することができる。これにより、直流送電系統K3を構成することができる。
 本実施形態の直流遮断システム600は、制御装置601を備える点で、上述した第4、第5の実施形態の場合と相違する。同一の構成要素には、同一の符号を付して詳細な説明を適宜省略する。
 図22に示すように、直流遮断システム600は、直流遮断装置400と、制御装置601と、を備える。制御装置601は、直流遮断装置400に接続されている。
(Sixth embodiment)
FIG. 22 is a schematic block diagram illustrating a direct-current interruption system according to this embodiment.
Although FIG. 22 does not show the first DC power transmission network 1200A, the second DC power transmission network 1200B, the positive power transmission line 1300 and the negative power transmission line 1400, A first DC power grid 1200A can be connected via a wire 1300 and a second DC power grid 1200B can be connected via a positive power transmission line 1300 to the second terminal 402 . Thereby, the DC power transmission system K3 can be configured.
A direct-current interruption system 600 of this embodiment differs from the above-described fourth and fifth embodiments in that a controller 601 is provided. The same constituent elements are denoted by the same reference numerals, and detailed description thereof will be omitted as appropriate.
As shown in FIG. 22 , a DC interrupting system 600 includes a DC interrupting device 400 and a control device 601 . Control device 601 is connected to DC interrupter 400 .
 制御装置601は、通信部610と、判定部620と、操作部630と、を含む。判定部620および操作部630は、例えば、CPU(Central Processing Unit)等のハードウェアプロセッサがプログラムやソフトウェアを実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)等のハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予めコントローラのHDDやフラッシュメモリ等の記憶装置(非一過性の記憶媒体を備える記憶装置)に格納されていてもよいし、DVDやCD-ROM等の着脱可能な記憶媒体に格納されており、記憶媒体(非一過性の記憶媒体)がドライブ装置に装着されることで記憶装置にインストールされてもよい。プログラムは、記憶部に記憶されていてもよい。 The control device 601 includes a communication section 610 , a determination section 620 and an operation section 630 . Determining unit 620 and operating unit 630 are implemented, for example, by a hardware processor such as a CPU (Central Processing Unit) executing programs and software. Some or all of these components are hardware (circuits) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), GPU (Graphics Processing Unit) (including circuitry), or by cooperation of software and hardware. The program may be stored in advance in a storage device such as the controller's HDD or flash memory (a storage device with a non-transitory storage medium), or stored in a removable storage medium such as a DVD or CD-ROM. and may be installed in the storage device by loading the storage medium (non-transitory storage medium) into the drive device. The program may be stored in the storage unit.
 制御装置601は、例えば、直流送電系統K3での事故発生時に、プラズマスイッチングユニット431およびHブリッジユニット441を導通状態に移行させ、Hブリッジ回路440の出力電圧制御により機械式遮断器420に流れる電流を制限して機械式遮断器420を非導通状態に移行させる。 For example, when an accident occurs in the DC power transmission system K3, the control device 601 switches the plasma switching unit 431 and the H bridge unit 441 to a conductive state, and controls the output voltage of the H bridge circuit 440 to control the current flowing through the mechanical breaker 420. is limited to shift the mechanical circuit breaker 420 to a non-conducting state.
 制御装置601は、Hブリッジユニット441を非導通状態に移行させ、Hブリッジ回路440におけるコンデンサ445の電圧印加により並列回路430に事故電流を転流させて機械式断路器410を非導通状態に移行させる。制御装置601は、プラズマスイッチングユニット431で事故電流を遮断する。制御装置601は、制御部の一例である。 The control device 601 shifts the H-bridge unit 441 to a non-conducting state, applies voltage to the capacitor 445 in the H-bridge circuit 440, commutates the fault current to the parallel circuit 430, and shifts the mechanical disconnector 410 to a non-conducting state. Let The controller 601 interrupts the fault current with the plasma switching unit 431 . The control device 601 is an example of a control unit.
 通信部610は、例えば、各種情報を送信および受信するための無線通信モジュールである。通信部610は、例えば、管理センターなどにより送信される事故情報を受信し、判定部620に出力する。通信部610は、例えば、操作部630が生成する制御信号を、直流遮断装置400に含まれる各種機器に送信する。 The communication unit 610 is, for example, a wireless communication module for transmitting and receiving various information. Communication unit 610 receives accident information transmitted from, for example, a management center, and outputs the information to determination unit 620 . The communication unit 610 , for example, transmits control signals generated by the operation unit 630 to various devices included in the DC interrupter 400 .
 判定部620は、通信部610により出力される事故情報に基づいて、直流送電系統K3における事故の発生を判定する。判定部620は、直流送電系統K3に事故が発生したと判定した場合、事故の発生および事故の状況を含む事故発生情報を操作部630に通知する。 Based on the accident information output by the communication unit 610, the determination unit 620 determines whether an accident has occurred in the DC power transmission system K3. When determination unit 620 determines that an accident has occurred in DC power transmission system K3, it notifies operation unit 630 of accident occurrence information including the occurrence of the accident and the circumstances of the accident.
 操作部630は、判定部620により通知された事故発生情報に基づいて、断路器操作信号、遮断機操作信号、スイッチ操作信号およびブリッジ操作信号を生成する。断路器操作信号は、機械式断路器410を操作する信号である。遮断機操作信号は、機械式遮断器420を操作する信号である。スイッチ操作信号は、プラズマスイッチングユニット431を操作する信号である。ブリッジ操作信号は、Hブリッジユニット441を操作する信号である。 The operation unit 630 generates a disconnecting switch operation signal, a circuit breaker operation signal, a switch operation signal, and a bridge operation signal based on the accident occurrence information notified by the determination unit 620 . The disconnecting switch operation signal is a signal for operating the mechanical disconnecting switch 410 . The circuit breaker operation signal is a signal for operating the mechanical circuit breaker 420 . A switch operation signal is a signal for operating the plasma switching unit 431 . A bridge operation signal is a signal for operating the H bridge unit 441 .
 操作部630は、生成した断路器操作信号、遮断機操作信号、スイッチ操作信号およびブリッジ操作信号を、それぞれ機械式断路器410、機械式遮断器420、プラズマスイッチングユニット431およびHブリッジユニット441に向けて、通信部610に送信させる。 The operation unit 630 directs the generated disconnector operation signal, circuit breaker operation signal, switch operation signal, and bridge operation signal to the mechanical disconnector 410, the mechanical circuit breaker 420, the plasma switching unit 431, and the H bridge unit 441, respectively. and causes the communication unit 610 to transmit it.
 スイッチ操作信号には、第1スイッチ操作信号から第4スイッチ操作信号が含まれる。第1スイッチ操作信号は、第1スイッチング装置431Aの第1グリッド26に対応する第3端子T3の電位を切り換える情報である。第2スイッチ操作信号は、第1スイッチング装置431Aの第2グリッド27に対応する第4端子T4の電位を切り換える情報である。第3スイッチ操作信号は、第2スイッチング装置431Bの第1グリッド26に対応する第3端子T3の電位を切り換える情報である。第4スイッチ操作信号は、第2スイッチング装置431Bの第2グリッド27に対応する第4端子T4の電位を切り換える情報である。 The switch operation signal includes the first switch operation signal to the fourth switch operation signal. The first switch operation signal is information for switching the potential of the third terminal T3 corresponding to the first grid 26 of the first switching device 431A. The second switch operation signal is information for switching the potential of the fourth terminal T4 corresponding to the second grid 27 of the first switching device 431A. The third switch operation signal is information for switching the potential of the third terminal T3 corresponding to the first grid 26 of the second switching device 431B. The fourth switch operation signal is information for switching the potential of the fourth terminal T4 corresponding to the second grid 27 of the second switching device 431B.
 事故発生情報は、例えば、直流送電の送電方向、および直流系統での事故の発生の情報を含む。判定部620は、直流送電の送電方向は認識する機能および直流系統での事故発生を判断する機能を含む。判定部620は、例えば、送電方向が第1端子401から第2端子402である場合には、事故発生時に最終的に電流を遮断する手段として、第1スイッチング装置431Aを選択する。判定部620は、例えば、送電方向が第2端子402から第1端子401である場合には、事故発生時に最終的に電流を遮断する手段として、第2スイッチング装置431Bを選択する。 The accident occurrence information includes, for example, the power transmission direction of DC power transmission and information on the occurrence of an accident in the DC system. Determination unit 620 includes a function of recognizing the power transmission direction of DC power transmission and a function of determining the occurrence of an accident in the DC system. For example, when the power transmission direction is from the first terminal 401 to the second terminal 402, the determination unit 620 selects the first switching device 431A as means for finally interrupting the current when an accident occurs. For example, when the power transmission direction is from the second terminal 402 to the first terminal 401, the determination unit 620 selects the second switching device 431B as means for finally interrupting the current when an accident occurs.
 直流遮断装置400は、例えば、正極側の直流送電線に接続される。このため、直流遮断装置400は、大地から相応の絶縁を確保して構成される。制御装置601は、例えば、直流遮断装置400の各種機器の近くに設置されるが、大地電位の地上に据え付けられる。このため、制御装置601は、絶縁トランスを介した電線ケーブル手段や、光信号によって電気的な絶縁をとった光ファイバーケーブル手段により、各機器に操作信号を送信する。 The DC interrupting device 400 is connected, for example, to the DC transmission line on the positive electrode side. For this reason, the DC interrupter 400 is configured to ensure appropriate insulation from the ground. The control device 601 is installed, for example, near various devices of the DC interrupter 400, and is installed on the ground at ground potential. For this reason, the control device 601 transmits operation signals to each device by wire cable means via an insulating transformer or optical fiber cable means electrically insulated by an optical signal.
 本実施形態の直流遮断システム600の効果について説明する。
 本実施形態の直流遮断システム600は、上述した第4の実施形態の直流遮断装置400と同様の作用効果を奏する。本実施形態の直流遮断システム600は、制御装置601を備えているので、送電方向を判断し、事故が発生した場合に、第1スイッチング装置431Aおよび第2スイッチング装置431Bのいずれを遮断するかを選択する。このため、双方向の事故電流を遮断することができる。
The effect of the direct-current interruption system 600 of this embodiment will be described.
The DC interrupting system 600 of this embodiment has the same effects as the DC interrupting device 400 of the fourth embodiment described above. Since the DC interruption system 600 of the present embodiment includes the control device 601, it determines the power transmission direction and determines which of the first switching device 431A and the second switching device 431B should be cut off when an accident occurs. select. Therefore, it is possible to interrupt the fault current in both directions.
 (第7の実施形態)
 図23は、本実施形態に係る直流遮断システムを例示する模式的なブロック図である。
 図23には、第1直流送電網1200A、第2直流送電網1200B、正側送電線1300および負側送電線1400が図示されていないが、直流遮断装置400の第1端子401に正側送電線1300を介して第1直流送電網1200Aを接続し、第2端子402に正側送電線1300を介して第2直流送電網1200Bを接続することができる。これにより、直流送電系統K4を構成することができる。
 本実施形態の直流遮断システム700は、上述した第6の実施形態の制御装置601とは異なる制御装置701を備える。同一の構成要素には、同一の符号を付して詳細な説明を適宜省略する。
 図23に示すように、直流遮断システム700は、直流遮断装置400と、制御装置701と、を備える。制御装置701は、水素量制御部740を含む。
(Seventh embodiment)
FIG. 23 is a schematic block diagram illustrating a direct-current interruption system according to this embodiment.
Although FIG. 23 does not show the first DC power transmission network 1200A, the second DC power transmission network 1200B, the positive power transmission line 1300 and the negative power transmission line 1400, A first DC power grid 1200A can be connected via a wire 1300 and a second DC power grid 1200B can be connected via a positive power transmission line 1300 to the second terminal 402 . Thereby, the DC power transmission system K4 can be configured.
A DC interrupting system 700 of this embodiment includes a control device 701 different from the control device 601 of the sixth embodiment described above. The same constituent elements are denoted by the same reference numerals, and detailed description thereof will be omitted as appropriate.
As shown in FIG. 23 , a DC interrupting system 700 includes a DC interrupting device 400 and a control device 701 . The control device 701 includes a hydrogen amount control section 740 .
 制御装置701において、通信部610、判定部620および操作部630は、上述した第6の実施形態の場合と同様に機能し、動作する。 In the control device 701, the communication unit 610, the determination unit 620, and the operation unit 630 function and operate in the same manner as in the sixth embodiment described above.
 通信部610は、第1スイッチング装置431Aおよび第2スイッチング装置431Bの動作回数を受信し、水素量制御部740に出力する。 The communication unit 610 receives the number of operations of the first switching device 431A and the second switching device 431B, and outputs it to the hydrogen amount control unit 740.
 水素量制御部740は、出力された動作回数に基づいて、第1スイッチング装置431Aおよび第2スイッチング装置431Bのそれぞれにおける第1電極22の表面終端の水素消費の監視、水素濃度の監視、耐電圧レベルの監視を行う。水素量制御部740は、これらの監視結果に基づいて、第1スイッチング装置431Aおよび第2スイッチング装置431Bのそれぞれにおけるプラズマスイッチ20に水素を補填するか必要があるか否かを判定する。 Hydrogen amount control unit 740 monitors hydrogen consumption, hydrogen concentration, and withstand voltage at the surface termination of first electrode 22 in each of first switching device 431A and second switching device 431B, based on the output number of operations. Monitor levels. Based on these monitoring results, the hydrogen amount control unit 740 determines whether or not the plasma switches 20 in each of the first switching device 431A and the second switching device 431B need to be replenished with hydrogen.
 水素量制御部740は、水素を補填する必要があると判定した場合に、第1スイッチング装置431Aおよび第2スイッチング装置431Bに向けて補填操作信号を通信部610に送信させる。補填操作信号は、水素貯蔵金属20Hを加熱して水素を放出させ、プラズマスイッチ20内に水素を補填させるための信号である。 When the hydrogen amount control unit 740 determines that it is necessary to replenish hydrogen, it causes the communication unit 610 to transmit a replenishment operation signal to the first switching device 431A and the second switching device 431B. The filling operation signal is a signal for heating the hydrogen storage metal 20H to release hydrogen and filling the plasma switch 20 with hydrogen.
 本実施形態の直流遮断システム700は、上述の第4の実施形態の直流遮断装置400と同様の効果のほか以下の効果を奏する。
 すなわち、直流遮断システム700は、第1スイッチング装置431Aおよび第2スイッチング装置431Bにおけるプラズマスイッチ20内の水素濃度が低下した際に、プラズマスイッチ20内の減圧圧力を阻害することなく、水素を供給することができる。
The DC interrupting system 700 of this embodiment has the following effects in addition to the same effects as the DC interrupting device 400 of the fourth embodiment.
That is, when the hydrogen concentration in the plasma switch 20 in the first switching device 431A and the second switching device 431B decreases, the DC cutoff system 700 supplies hydrogen without inhibiting the reduced pressure in the plasma switch 20. be able to.
 (第8の実施形態)
 図24は、本実施形態に係る直流遮断装置を例示する模式的なブロック図である。
 図25は、本実施形態の直流遮断装置を例示する模式的な斜視図である。
 図24には、第1直流送電網1200A、第2直流送電網1200B、正側送電線1300および負側送電線1400が図示されていないが、直流遮断装置800の第1端子に正側送電線1300を介して第1直流送電網1200Aを接続し、第2端子に正側送電線1300を介して第2直流送電網1200Bを接続することができる。これにより、直流送電系統K5を構成することができる。
 図24に示すように、本実施形態の直流遮断装置800は、機械遮断バルブ801と、プラズマスイッチバルブ802と、Hブリッジバルブ803と、を備える。
(Eighth embodiment)
FIG. 24 is a schematic block diagram illustrating the DC interrupting device according to this embodiment.
FIG. 25 is a schematic perspective view illustrating the direct current interrupting device of this embodiment.
Although FIG. 24 does not show the first DC transmission network 1200A, the second DC transmission network 1200B, the positive transmission line 1300 and the negative transmission line 1400, the positive transmission line is connected to the first terminal of the DC interrupter 800. A first DC power grid 1200A can be connected via 1300 and a second DC power grid 1200B can be connected via a positive power line 1300 to the second terminal. Thereby, the DC power transmission system K5 can be configured.
As shown in FIG. 24, a direct current interrupter 800 of this embodiment includes a mechanical cutoff valve 801, a plasma switch valve 802, and an H bridge valve 803.
 機械遮断バルブ801は、機械式断路器410と機械式遮断器420を含む。この例の機械遮断バルブ801では、複数の機械式断路器410が直列に接続され、機械式断路器410の直列回路に機械式遮断器420が直列に接続されている。機械遮断バルブ801は、端子801a,801b,801cを有している。機械式断路器410および機械式遮断器420の直列回路は、端子801a,801cの間に接続されている。 The mechanical shutoff valve 801 includes a mechanical disconnector 410 and a mechanical circuit breaker 420 . In the mechanical shutoff valve 801 of this example, a plurality of mechanical disconnectors 410 are connected in series, and a mechanical circuit breaker 420 is connected in series to the series circuit of the mechanical disconnectors 410 . The mechanical shutoff valve 801 has terminals 801a, 801b, 801c. A series circuit of mechanical disconnector 410 and mechanical circuit breaker 420 is connected between terminals 801a and 801c.
 プラズマスイッチバルブ802は、プラズマスイッチングユニット431とアレスタ450とを含む。この例のプラズマスイッチバルブ802では、複数のプラズマスイッチングユニット431が直列に接続され、複数のプラズマスイッチングユニット431のそれぞれにアレスタ450が並列に接続されている。プラズマスイッチバルブ802は、端子802a,802bを有している。プラズマスイッチングユニット431の直列回路は、端子802a,802bの間に接続されている。 The plasma switch valve 802 includes a plasma switching unit 431 and an arrester 450. In the plasma switch valve 802 of this example, a plurality of plasma switching units 431 are connected in series, and an arrester 450 is connected in parallel to each of the plurality of plasma switching units 431 . The plasma switch valve 802 has terminals 802a and 802b. A series circuit of plasma switching units 431 is connected between terminals 802a and 802b.
 Hブリッジバルブ803は、Hブリッジユニット441とリアクトル432とを含む。この例のHブリッジバルブ803では、複数のHブリッジユニット441は、直列に接続されている。Hブリッジバルブ803は、端子803a,803b,803cを有している。Hブリッジユニット441の直列回路は、端子803a,803cの間に接続されている。リアクトル432は、端子803a,803bの間に接続されている。 The H bridge valve 803 includes an H bridge unit 441 and a reactor 432. In the H bridge valve 803 of this example, multiple H bridge units 441 are connected in series. The H bridge valve 803 has terminals 803a, 803b and 803c. The series circuit of H bridge unit 441 is connected between terminals 803a and 803c. Reactor 432 is connected between terminals 803a and 803b.
 機械遮断バルブ801の端子801aは、プラズマスイッチバルブ802の端子802aに電気的に接続されている。プラズマスイッチバルブ802の端子802bは、Hブリッジバルブ803の端子803aに電気的に接続されている。Hブリッジバルブ803の端子803b,803cは、機械遮断バルブ801の端子801c,801bにそれぞれ接続されている。 A terminal 801 a of the mechanical shutoff valve 801 is electrically connected to a terminal 802 a of the plasma switch valve 802 . Terminal 802b of plasma switch valve 802 is electrically connected to terminal 803a of H-bridge valve 803 . Terminals 803b and 803c of H-bridge valve 803 are connected to terminals 801c and 801b of mechanical isolation valve 801, respectively.
 図25に示すように、機械遮断バルブ801、プラズマスイッチバルブ802およびHブリッジバルブ803は、それぞれ異なる筐体800a~800cに収納されており、互いに独立して配設される。機械遮断バルブ801は、例えば図示しない独立した架台上に載置されている。機械遮断バルブ801、プラズマスイッチバルブ802およびHブリッジバルブ803は、上述した例えば第4の実施形態の直流遮断装置400と同様に動作する。 As shown in FIG. 25, the mechanical shutoff valve 801, the plasma switch valve 802 and the H bridge valve 803 are housed in different housings 800a to 800c and arranged independently of each other. The mechanical shutoff valve 801 is mounted, for example, on an independent mount (not shown). The mechanical shut-off valve 801, plasma switch valve 802 and H-bridge valve 803 operate in the same manner as the DC shut-off device 400 of the fourth embodiment, for example, described above.
 本実施形態の直流遮断装置800の効果について説明する。
 本実施形態の直流遮断装置800は、上述の第4の実施形態や第5の実施形態の場合の直流遮断装置400,500と同様の効果のほか、以下の効果を奏する。すなわち、直流遮断装置800では、機械遮断バルブ801は、独立した架台に載置される。このため、機械遮断バルブ801に実装されている機械式断路器410および機械式遮断器420の電極開閉に伴う操作振動が、プラズマスイッチバルブ802とHブリッジバルブ803に伝わらないようにすることを容易に実現できる。したがって、耐久性などの信頼性を向上させることができる。
The effects of the DC interrupter 800 of this embodiment will be described.
The direct-current interrupting device 800 of this embodiment has the following effects in addition to the same effects as those of the direct-current interrupting devices 400 and 500 of the above-described fourth and fifth embodiments. That is, in the direct current interrupter 800, the mechanical cutoff valve 801 is mounted on an independent stand. For this reason, it is easy to prevent the operational vibration accompanying opening and closing of the electrodes of the mechanical disconnecting switch 410 and the mechanical circuit breaker 420 mounted on the mechanical shutoff valve 801 from being transmitted to the plasma switch valve 802 and the H bridge valve 803. can be realized. Therefore, reliability such as durability can be improved.
 本実施形態の直流遮断装置800では、機械遮断バルブ801、プラズマスイッチバルブ802およびHブリッジバルブ803はそれぞれ独立して配設されている。このため、直流遮断装置800の設置後であっても、各バルブの側方からの作業が可能となり、メンテナンスを容易にすることができる。 In the direct current interrupting device 800 of this embodiment, the mechanical cutoff valve 801, the plasma switch valve 802 and the H bridge valve 803 are arranged independently. Therefore, even after the installation of the direct-current interrupting device 800, work can be performed from the side of each valve, and maintenance can be facilitated.
 例えば、1つの筐体や基材に機械式断路器410、機械式遮断器420、プラズマスイッチングユニット431およびHブリッジユニット441を配置し収納すると、筐体や基材の設置面積が広くなり、直流遮断装置の奥の方へのアクセスが難しくなる。また、1つの筐体や基材で負担する機器重量も増加するため、筐体や基材を強固に構成する必要があり、全体重量が増加し、コストも高くなる。 For example, if the mechanical disconnecting switch 410, the mechanical circuit breaker 420, the plasma switching unit 431, and the H-bridge unit 441 are arranged and housed in one housing or base material, the installation area of the housing or base material becomes large, and the direct current Access to the back of the shut-off device becomes difficult. In addition, since the weight of the device borne by one housing and base material also increases, the housing and base material must be strongly configured, which increases the overall weight and cost.
 この点、本実施形態の直流遮断装置800では、機械遮断バルブ801、プラズマスイッチバルブ802およびHブリッジバルブ803はそれぞれ独立して配設されている。このため、構成用品の取り扱いに対する注意項目が限定され組立性を向上させることができる。さらに、バルブ単位での試験による品質向上をはかることができる。したがって、プラズマスイッチング装置を用いた直流遮断装置800の耐久性、保守性、組立性、品質を向上させることができる。 In this regard, in the DC interrupter 800 of this embodiment, the mechanical cutoff valve 801, the plasma switch valve 802 and the H bridge valve 803 are arranged independently. For this reason, items to be taken into consideration regarding handling of the component parts are limited, and assembling efficiency can be improved. Furthermore, the quality can be improved by testing each valve. Therefore, it is possible to improve the durability, maintainability, assemblability, and quality of the DC interrupter 800 using the plasma switching device.
 (第9の実施形態)
 図26は、本実施形態に係る直流遮断装置を例示する模式的なブロック図である。
 図26には、本実施形態の直流遮断装置900のほか、直流遮断装置900を含む直流送電系統K6の構成が示されている。
 図26に示すように、直流送電系統K6は、第1直流送電網1200Aと第2直流送電網1200Bとの間に、直流遮断装置900が接続されている点で、上述の第4の実施形態の場合と相違する。上述の他の実施形態の場合と同一の構成要素には、同一の符号を付して詳細な説明を適宜省略する。
(Ninth embodiment)
FIG. 26 is a schematic block diagram illustrating the DC interrupter according to this embodiment.
FIG. 26 shows the configuration of a DC power transmission system K6 including the DC interrupting device 900 in addition to the DC interrupting device 900 of the present embodiment.
As shown in FIG. 26, the DC power transmission system K6 is similar to the above-described fourth embodiment in that a DC interrupting device 900 is connected between the first DC power transmission network 1200A and the second DC power transmission network 1200B. is different from the case of The same reference numerals are given to the same components as in the other embodiments described above, and detailed description thereof will be omitted as appropriate.
 直流遮断装置900は、Hブリッジ回路440を備えていない点で第4の実施形態の場合と相違する。すなわち、直流遮断装置900は、機械式断路器410と、機械式遮断器420と、並列回路430と、を備える。 A direct current interrupting device 900 differs from that of the fourth embodiment in that it does not include an H bridge circuit 440 . That is, the DC interrupting device 900 includes a mechanical disconnector 410 , a mechanical circuit breaker 420 and a parallel circuit 430 .
 機械式断路器410および機械式遮断器420は、直列に接続されている。並列回路430は、機械式断路器410および機械式遮断器420の直列回路に並列に接続されている。直流遮断装置900は、第1端子901および第2端子902を有しており、機械式断路器410、機械式遮断器420および並列回路430は、第1端子901と第2端子902との間に接続されている。並列回路430に直列にリアクタンスを接続して、機械式断路器410および機械式遮断器420の直列回路に並列接続するようにしてもよい。 The mechanical disconnector 410 and the mechanical circuit breaker 420 are connected in series. Parallel circuit 430 is connected in parallel to the series circuit of mechanical disconnector 410 and mechanical breaker 420 . The DC interrupter 900 has a first terminal 901 and a second terminal 902, and the mechanical disconnector 410, the mechanical circuit breaker 420 and the parallel circuit 430 are connected between the first terminal 901 and the second terminal 902. It is connected to the. A reactance may be connected in series with the parallel circuit 430 and connected in parallel with the series circuit of the mechanical disconnector 410 and the mechanical breaker 420 .
 本実施形態の直流遮断装置900は、第1スイッチング装置431Aおよび第2スイッチング装置431Bのプラズマスイッチ20が導通状態である第2状態のときの電圧降下が大幅に改良できたものである。 The DC interrupting device 900 of the present embodiment can significantly improve the voltage drop in the second state in which the plasma switches 20 of the first switching device 431A and the second switching device 431B are conductive.
 本実施形態の直流遮断装置900の動作について、通常時の動作と事故時と動作とに分けて説明する。事故時については、第2直流送電網1200Bで直流短絡事故が発生した場合について説明する。 The operation of the DC interrupting device 900 of this embodiment will be described separately for normal operation, accident operation, and operation. At the time of the accident, a case where a DC short-circuit fault occurs in the second DC transmission network 1200B will be described.
 通常時は、機械式断路器410は導通状態とされ、第1スイッチング装置431Aおよび第2スイッチング装置431Bは非導通状態である第1状態ST1とされている。このとき、第1直流送電網1200Aからの電流は、機械式断路器410および機械式遮断器420を介して、第2直流送電網1200Bへ流れ、並列回路430には流れない。 Normally, the mechanical disconnector 410 is in a conducting state, and the first switching device 431A and the second switching device 431B are in a non-conducting first state ST1. At this time, current from first DC power grid 1200A flows to second DC power grid 1200B via mechanical disconnector 410 and mechanical circuit breaker 420 and does not flow to parallel circuit 430 .
 事故発生時には、機械式断路器410に取り付けられた電流センサが事故発生検出しきい値Idc_Jを超える電流Idc_Mを検出した場合には、第2スイッチング装置431Bを第2状態ST2に切り換える。 When an accident occurs, if the current sensor attached to the mechanical disconnector 410 detects a current Idc_M exceeding the accident occurrence detection threshold value Idc_J, the second switching device 431B is switched to the second state ST2.
 機械式断路器410に取り付けられた電流センサが電流Idc_Mの検出と同時に、機械式断路器410は、接点電極が開く方向に動作を開始する。機械式断路器410の接点電極が離れ始めると接点電極間にはアークが発生し、同時にアーク電圧が発生する。電流は継続して流れ続けようとするが、機械式断路器410を流れる事故電流は、並列回路430に分流する。 At the same time that the current sensor attached to the mechanical disconnector 410 detects the current Idc_M, the mechanical disconnector 410 starts operating in the direction in which the contact electrode opens. When the contact electrodes of the mechanical disconnector 410 begin to separate, an arc is generated between the contact electrodes and an arc voltage is generated at the same time. Current continues to attempt to continue to flow, but the fault current flowing through mechanical disconnector 410 is shunted to parallel circuit 430 .
 プラズマスイッチングユニット431の第2状態ST2における電圧降下が十分に低い場合には、機械式断路器410を流れる事故電流は、ほとんどが並列回路430に転流する。さらに、機械式断路器410の接点電極が離れる部位に圧縮ガスを吹き付けて接点電極やその周囲のプラズマ化を抑制し、接点電極の開極動作を最大ギャップに向けて継続する動作とすることで、アーク電圧が高くなり、さらに並列回路430に事故電流が流れやすくなり、機械式断路器410のアークが消え、電流がゼロになる。 If the voltage drop in the second state ST2 of the plasma switching unit 431 is sufficiently low, most of the fault current flowing through the mechanical disconnector 410 is commutated to the parallel circuit 430. Furthermore, by blowing compressed gas to the part where the contact electrode of the mechanical disconnector 410 is separated to suppress the contact electrode and its surroundings from becoming plasma, the contact electrode opening operation is continued toward the maximum gap. , the arc voltage increases, and the fault current easily flows through the parallel circuit 430, the arc of the mechanical disconnector 410 disappears, and the current becomes zero.
 機械式断路器410の電流がゼロとなった後、機械式遮断器420が持つ絶縁回復時間を待って、プラズマスイッチングユニット431の第2スイッチング装置431Bを導通状態である第2状態ST2から非導通状態である第1状態ST1に切り換えて、並列回路430に流れる電流を遮断する。こうして、直流遮断装置900による事故電流遮断が完了する。 After the current of the mechanical disconnector 410 becomes zero, the insulation recovery time of the mechanical circuit breaker 420 is awaited, and the second switching device 431B of the plasma switching unit 431 is switched from the conductive second state ST2 to the non-conductive state. The current flowing through the parallel circuit 430 is cut off by switching to the first state ST1. In this way, the fault current interruption by the DC interruption device 900 is completed.
 本実施形態の直流遮断装置900の効果について説明する。
 本実施形態の直流遮断装置900は、上述した例えば第4の実施形態の直流遮断装置400と同様の効果のほか、以下の効果を奏する。すなわち、本実施形態の直流遮断装置900は、Hブリッジ回路を備える必要がないので、低コスト化、小型化に寄与することができる。さらに、装置部品点数を削減したことによる、保守性、生産性、信頼性を向上させることができる。
The effects of the DC interrupter 900 of this embodiment will be described.
The direct current interrupting device 900 of the present embodiment has the following effects in addition to the effects similar to those of the direct current interrupting device 400 of the fourth embodiment, for example. That is, the direct-current interrupting device 900 of this embodiment does not need to be provided with an H-bridge circuit, so it can contribute to cost reduction and miniaturization. Furthermore, by reducing the number of device parts, it is possible to improve maintainability, productivity, and reliability.
 (第10の実施形態)
 図27は、本実施形態に係る直流遮断装置を例示する模式的なブロック図である。
 図27には、複数の直流送電網および複数の直流遮断装置を含む直流送電系統K7が示されている。
 図27に示すように、直流送電系統K7は、第1直流遮断装置1000A~第3直流遮断装置1000Cを含む。本実施形態の直流遮断装置1000A~1000Cは、同一の構成を備えている。直流遮断装置1000A~1000Cは、プラズマスイッチングユニット1030を備える。プラズマスイッチングユニット1030は、第2スイッチング装置431Bで構成され、第1スイッチング装置431Aは設けられていない点で、第4の実施形態の場合のプラズマスイッチングユニット431と相違する。他の点では、直流遮断装置1000A~1000Cの構成は、第4の実施形態の場合の直流遮断装置400の構成と同じである。同一の構成要素には、同一の符号を付して詳細な説明を適宜省略する。
(Tenth embodiment)
FIG. 27 is a schematic block diagram illustrating a DC interrupting device according to this embodiment.
FIG. 27 shows a DC transmission system K7 including a plurality of DC transmission networks and a plurality of DC interrupters.
As shown in FIG. 27, the DC power transmission system K7 includes a first DC interrupter 1000A to a third DC interrupter 1000C. The DC interrupters 1000A to 1000C of this embodiment have the same configuration. The DC interrupters 1000A-1000C comprise a plasma switching unit 1030. The plasma switching unit 1030 differs from the plasma switching unit 431 of the fourth embodiment in that it is composed of a second switching device 431B and does not include a first switching device 431A. In other respects, the configuration of the DC interrupting devices 1000A to 1000C is the same as the configuration of the DC interrupting device 400 in the case of the fourth embodiment. The same constituent elements are denoted by the same reference numerals, and detailed description thereof will be omitted as appropriate.
 直流送電系統K7は、第1直流送電網1200A、第2直流送電網1200Bおよび第3直流送電網1200Cの3つの直流送電網を含む。第1直流送電網1200A、第2直流送電網1200Bおよび第3直流送電網1200Cは、いずれも図示しない交直電力変換装置を含んでいる。 The DC transmission system K7 includes three DC transmission networks: a first DC transmission network 1200A, a second DC transmission network 1200B and a third DC transmission network 1200C. First DC power grid 1200A, second DC power grid 1200B, and third DC power grid 1200C all include AC/DC power converters (not shown).
 第1直流遮断装置1000Aの正側送電線1300には、第1直流送電網1200A側に第1端子1001aが設けられ、第1直流送電網1200Aの反対側に第2端子1002aが設けられている。第2直流遮断装置1000Bの正側送電線1300には、第2直流送電網1200B側に第1端子1001b設けられ、第2直流送電網1200Bの反対側に第2端子1002bが設けられている。第3直流遮断装置1000Cの正側送電線1300には、第3直流送電網1200C側に第1端子1001cが設けられ、第3直流送電網1200Cの反対側に第2端子1002cが設けられている。 The positive power transmission line 1300 of the first DC interrupter 1000A is provided with a first terminal 1001a on the side of the first DC power transmission network 1200A, and a second terminal 1002a on the opposite side of the first DC power transmission network 1200A. . The positive power transmission line 1300 of the second DC interrupter 1000B is provided with a first terminal 1001b on the second DC power grid 1200B side and a second terminal 1002b on the opposite side of the second DC power grid 1200B. The positive power transmission line 1300 of the third DC interrupter 1000C is provided with a first terminal 1001c on the side of the third DC power grid 1200C, and a second terminal 1002c on the opposite side of the third DC power grid 1200C. .
 第1~第3直流遮断装置1000A~1000Cの動作について、複数の事故ケースを例示して説明する。
 図28は、本実施形態の直流遮断装置の動作を説明するための模式的なブロック図である。
 以下の説明において、直流送電系統K7では、第2直流送電網1200Bに向けて、第1直流送電網1200Aと第3直流送電網1200Cから、正側送電線1300と負側送電線1400により直流送電しているものとする。
The operations of the first to third DC interrupting devices 1000A to 1000C will be described by exemplifying a plurality of accident cases.
FIG. 28 is a schematic block diagram for explaining the operation of the DC interrupter of this embodiment.
In the following description, in the DC transmission system K7, from the first DC transmission network 1200A and the third DC transmission network 1200C toward the second DC transmission network 1200B, the positive transmission line 1300 and the negative transmission line 1400 transmit DC. It is assumed that
 まず、事故ケース1について説明する。事故ケース1は、第1直流送電網1200Aと第1直流遮断装置1000Aとの間の正側送電線1300の第1事故点FP1で地絡事故が発生したケースである。 First, accident case 1 will be explained. Accident case 1 is a case where a ground fault occurs at the first fault point FP1 of the positive transmission line 1300 between the first DC transmission network 1200A and the first DC interrupting device 1000A.
 第1事故点FP1で地絡事故が発生することにより、第1事故点FP1の電圧は大地電位となる。このため、事故電流は、第1事故点FP1に向けて流れる。すなわち、第1直流送電網1200A側から第1事故点FP1に向けて、そして、第2直流送電網1200B側と第3直流送電網1200C側からの電流が第1事故点FP1に向けて流れ込む。 Due to the occurrence of a ground fault at the first fault point FP1, the voltage at the first fault point FP1 becomes ground potential. Therefore, the fault current flows toward the first fault point FP1. That is, current flows from the first DC transmission network 1200A side toward the first fault point FP1, and then from the second DC transmission network 1200B side and the third DC transmission network 1200C side toward the first fault point FP1.
 このとき、第1直流遮断装置1000Aが保護動作し、事故電流を遮断して、第1事故点FP1を正側送電線1300から切り離す。第2直流送電網1200Bおよび第3直流送電網1200Cは、第1事故点FP1が正側送電線1300から切り離されたことで、第2直流送電網1200Bに向けて第3直流送電網1200Cから送電を継続、または、再開できる。 At this time, the first DC interrupter 1000A performs protective operation, interrupts the fault current, and disconnects the first fault point FP1 from the positive power transmission line 1300. The second DC power grid 1200B and the third DC power grid 1200C transmit power from the third DC power grid 1200C toward the second DC power grid 1200B by disconnecting the first fault point FP1 from the positive power transmission line 1300. can be continued or resumed.
 次に、事故ケース2について説明する。事故ケース2は、第1直流送電網1200A、第2直流送電網1200Bおよび第3直流送電網1200Cを接続する正側送電線1300の第2事故点FP2で地絡事故が発生したケースである。 Next, accident case 2 will be explained. Accident case 2 is a case where a ground fault occurs at second fault point FP2 of positive transmission line 1300 connecting first DC transmission network 1200A, second DC transmission network 1200B, and third DC transmission network 1200C.
 第2事故点FP2で地絡事故が発生することにより、第2事故点FP2の電圧は大地電位となる。このため、事故電流は第2事故点FP2に向けて流れる。すなわち、第1直流送電網1200A側から第2事故点FP2に、第2直流送電網1200B側から第2事故点FP2に、そして、第3直流送電網1200C側から第2事故点FP2に向けて、事故電流が流れ込む。 Due to the ground fault occurring at the second fault point FP2, the voltage at the second fault point FP2 becomes the ground potential. Therefore, the fault current flows toward the second fault point FP2. That is, from the first DC power grid 1200A side to the second fault point FP2, from the second DC power grid 1200B side to the second fault point FP2, and from the third DC power grid 1200C side to the second fault point FP2. , the fault current flows.
 このとき、第1直流遮断装置1000A~第3直流遮断装置1000Cのそれぞれが保護動作し、事故電流を遮断して、第2事故点FP2を正側送電線1300から切り離す。保護動作とは、第1~第3直流遮断装置1000A~1000Cのプラズマスイッチを第1状態(非導通状態)から第2状態(導通状態)に切り換える動作である。事故ケース2では、第2事故点FP2を復旧しない限り、第1直流送電網1200A~第3直流送電網1200Cのいずれとも連系できないこととなる。 At this time, each of the first DC interrupting device 1000A to the third DC interrupting device 1000C performs protective operation, interrupts the fault current, and disconnects the second fault point FP2 from the positive power transmission line 1300. The protection operation is an operation of switching the plasma switches of the first to third DC interrupting devices 1000A to 1000C from the first state (non-conducting state) to the second state (conducting state). In accident case 2, interconnection with any of the first DC power grid 1200A to the third DC power grid 1200C is impossible unless the second fault point FP2 is restored.
 次に、事故ケース3について説明する。事故ケース3は、第2直流送電網1200Bと第2直流遮断装置1000Bの間の正側送電線1300の第3事故点FP3で地絡事故が発生したケースである。 Next, accident case 3 will be explained. Accident case 3 is a case where a ground fault occurs at the third fault point FP3 of the positive transmission line 1300 between the second DC transmission network 1200B and the second DC interrupting device 1000B.
 第3事故点FP3で地絡事故が発生することにより、第3事故点FP3の電圧は大地電位となる。このため、事故電流は第3事故点FP3に向けて流れる。すなわち、第2直流送電網1200B側から第3事故点FP3に向けて、そして、第1直流送電網1200A側と第3直流送電網1200C側から第3事故点FP3に向けて、事故電流が流れ込む。 Due to the ground fault occurring at the third fault point FP3, the voltage at the third fault point FP3 becomes the ground potential. Therefore, the fault current flows toward the third fault point FP3. That is, the fault current flows from the second DC power transmission network 1200B side toward the third fault point FP3, and from the first DC power transmission network 1200A side and the third DC power transmission network 1200C side toward the third fault point FP3. .
 このとき、第2直流遮断装置1000Bが保護動作し、事故電流を遮断して、第3事故点FP3を正側送電線1300から切り離す。第1直流送電網1200Aと第3直流送電網1200Cは、第3事故点FP3が正側送電線1300から切り離されたことで、連系可能状態となる。 At this time, the second DC interrupter 1000B performs protective operation, interrupts the fault current, and disconnects the third fault point FP3 from the positive power transmission line 1300. 1200A of 1st DC power transmission networks and 1200C of 3rd DC power transmission networks will be in an interconnection possible state by cutting off the 3rd fault point FP3 from the positive power transmission line 1300. FIG.
 次に、事故ケース4について説明する。事故ケース4は、第3直流送電網1200Cと第3直流遮断装置1000Cとの間の正側送電線1300の第4事故点FP4で地絡事故が発生したケースである。 Next, accident case 4 will be explained. Accident case 4 is a case where a ground fault occurred at the fourth fault point FP4 of the positive power transmission line 1300 between the third DC transmission network 1200C and the third DC interrupting device 1000C.
 第4事故点FP4で地絡事故が発生することにより、第4事故点FP4の電圧は大地電位となる。このため、事故電流は、第4事故点FP4に向けて流れる。すなわち、第1直流送電網1200A側と第2直流送電網1200B側から第4事故点FP4に向けて、そして、第3直流送電網1200C側からの電流が第4事故点FP4に向けて流れ込む。 Due to the occurrence of a ground fault at the fourth fault point FP4, the voltage at the fourth fault point FP4 becomes ground potential. Therefore, the fault current flows toward the fourth fault point FP4. That is, current flows from the first DC power grid 1200A side and the second DC power grid 1200B side toward the fourth fault point FP4, and from the third DC power grid 1200C side toward the fourth fault point FP4.
 このとき、第3直流遮断装置1000Cが保護動作し、事故電流を遮断して、第4事故点FP4を正側送電線1300から切り離す。第1直流送電網1200Aおよび第2直流送電網1200Bは、第4事故点FP4が正側送電線1300から切り離されたことで、第2直流送電網1200Bに向けて第1直流送電網1200Aから送電を継続、または、送電を再開できる。 At this time, the third DC interrupting device 1000C performs protective operation, interrupts the fault current, and disconnects the fourth fault point FP4 from the positive power transmission line 1300. The first DC power transmission network 1200A and the second DC power transmission network 1200B transmit power from the first DC power transmission network 1200A toward the second DC power transmission network 1200B by disconnecting the fourth fault point FP4 from the positive power transmission line 1300. or resume power transmission.
 本実施形態の直流遮断装置の効果について説明する。
 本実施形態の直流遮断装置1000A~1000Cは、上述の他の実施形態の場合直流遮断装置と同様の効果のほか、以下の効果を奏する。すなわち、直流遮断装置1000A~1000Cは、片方向遮断の直流遮断器であっても、直流多端子送電線の事故点を切り離し、事故の拡大を抑制することができる。
The effects of the DC interrupter of this embodiment will be described.
The DC interrupting devices 1000A to 1000C of this embodiment have the following effects in addition to the same effects as the DC interrupting devices of the other embodiments described above. That is, even if the DC circuit breakers 1000A to 1000C are one-way interrupting DC circuit breakers, they can isolate the fault point of the DC multi-terminal transmission line and suppress the expansion of the fault.
 以上説明した少なくとも1つの実施形態によれば、第1端子が接続された第1電極、第2端子が接続され、前記第1電極と離れて配置された第2電極、第3端子が接続され、前記第1電極と前記第2電極の間に配置された第1グリッド、および、第4端子が接続され、前記第1グリッドと前記第2電極の間に配置された第2グリッド、を有するプラズマスイッチと、前記プラズマスイッチの外側に設けられ、前記プラズマスイッチとの間に密閉空間を形成する外郭部と、を備え、前記密閉空間に絶縁ガスが充填されている、スイッチング装置であることにより、小型のスイッチング装置および直流遮断装置を提供することができる。 According to at least one embodiment described above, the first electrode connected to the first terminal is connected to the second terminal, and the second electrode separated from the first electrode is connected to the third terminal. , a first grid arranged between the first electrode and the second electrode, and a second grid connected to a fourth terminal and arranged between the first grid and the second electrode. A switching device comprising a plasma switch and an outer shell provided outside the plasma switch and forming a sealed space between the plasma switch and the plasma switch, wherein the sealed space is filled with an insulating gas. , a compact switching device and a DC interrupting device can be provided.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, as well as the scope of the invention described in the claims and equivalents thereof.

Claims (18)

  1.  第1電極と、前記第1電極から離れて設けられた第2電極と、前記第1電極と前記第2電極の間に設けられた第1グリッドと、前記第1グリッドと前記第2電極の間に設けられた第2グリッドと、を含むプラズマスイッチと、
     前記プラズマスイッチの外側に設けられ、前記プラズマスイッチとの間に密閉空間を形成する外郭部と、
     を備え、
     前記第1電極は、
     前記プラズマスイッチがグロー放電時に負グローを生成するホローカソード部と、
     前記ホローカソード部の周囲に設けられ、前記負グローと前記第1電極との間の電界に交差する磁界を発生する磁界発生部と、
     を含み、
     前記ホローカソード部は、B、C、Al、SiおよびGaのうち少なくとも1つの材料を含むスイッチング装置。
    a first electrode, a second electrode provided apart from the first electrode, a first grid provided between the first electrode and the second electrode, and a space between the first grid and the second electrode a plasma switch comprising a second grid disposed therebetween;
    an outer shell provided outside the plasma switch and forming a closed space with the plasma switch;
    with
    The first electrode is
    a hollow cathode portion in which the plasma switch produces a negative glow during glow discharge;
    a magnetic field generator provided around the hollow cathode and generating a magnetic field that intersects the electric field between the negative glow and the first electrode;
    including
    The switching device, wherein the hollow cathode section comprises at least one material of B, C, Al, Si and Ga.
  2.  前記ホローカソード部は、ダイヤモンド、黒鉛、窒化物半導体およびアルミナセメントのうち少なくとも1つの材料を含む請求項1記載のスイッチング装置。 The switching device according to claim 1, wherein the hollow cathode section contains at least one material selected from diamond, graphite, a nitride semiconductor, and alumina cement.
  3.  前記磁界発生部は、前記負グローと前記第1電極との間の電界に直交する磁界を発生する請求項1記載のスイッチング装置。 The switching device according to claim 1, wherein the magnetic field generator generates a magnetic field perpendicular to the electric field between the negative glow and the first electrode.
  4.  前記第1電極は、第1方向および前記第1方向に交差する第2方向を含む平面視で円形であり、前記第1方向および前記第2方向に交差する第3方向に延伸する円筒形状をなし、
     前記ホローカソード部は、前記円形の径方向に延伸して設けられた請求項3記載のスイッチング装置。
    The first electrode has a circular shape in plan view including a first direction and a second direction intersecting the first direction, and has a cylindrical shape extending in a third direction intersecting the first direction and the second direction. none,
    4. A switching device according to claim 3, wherein said hollow cathode portion extends in a radial direction of said circular shape.
  5.  前記ホローカソード部は、複数個設けられ、
     前記複数のホローカソード部は、前記第3方向に積層されるように設けられた請求項4記載のスイッチング装置。
    A plurality of the hollow cathode portions are provided,
    5. The switching device according to claim 4, wherein the plurality of hollow cathode portions are provided so as to be stacked in the third direction.
  6.  前記第1電極は、第1方向および前記第1方向に交差する第2方向を含む平板に形成され、
     前記ホローカソード部は、前記平板に、前記第1方向および前記第2方向に交差する第3方向に向かって設けられた凹部に設けられた請求項3記載のスイッチング装置。
    the first electrode is formed in a flat plate including a first direction and a second direction crossing the first direction;
    4. The switching device according to claim 3, wherein said hollow cathode portion is provided in a concave portion provided in said flat plate in a third direction crossing said first direction and said second direction.
  7.  前記ホローカソード部は、複数設けられた請求項6記載のスイッチング装置。 The switching device according to claim 6, wherein a plurality of said hollow cathode portions are provided.
  8.  前記ホローカソード部は、第1方向および前記第1方向に交差する第2方向を含む平面視での円の径方向に突出して設けられた請求項3記載のスイッチング装置。 4. The switching device according to claim 3, wherein the hollow cathode portion protrudes in a radial direction of a circle in plan view including a first direction and a second direction intersecting the first direction.
  9.  前記ホローカソード部は、前記円の周にわたって放射状に複数設けられた請求項8記載のスイッチング装置。 The switching device according to claim 8, wherein a plurality of said hollow cathode portions are provided radially around said circle.
  10.  前記磁界発生部は、永久磁石を含む請求項1記載のスイッチング装置。 The switching device according to claim 1, wherein the magnetic field generator includes a permanent magnet.
  11.  前記磁界発生部は、前記ホローカソード部を取り巻く導線で形成されたコイルを含む請求項1記載のスイッチング装置。 2. The switching device according to claim 1, wherein the magnetic field generating section includes a coil formed of a conductive wire surrounding the hollow cathode section.
  12.  前記外郭部は、
     前記プラズマスイッチの外側に配置された絶縁筒と、
     前記絶縁筒の開口をそれぞれ閉塞する端板と、
     前記プラズマスイッチにおける前記第1電極、前記第2電極、前記第1グリッドおよび前記第2グリッドを接合する接合部と、
     を含む圧力容器を含む請求項1記載のスイッチング装置。
    The outer shell is
    an insulating cylinder arranged outside the plasma switch;
    end plates for closing the openings of the insulating cylinders;
    a junction that joins the first electrode, the second electrode, the first grid, and the second grid in the plasma switch;
    2. The switching device of claim 1, comprising a pressure vessel containing:
  13.  機械式断路器と、
     前記機械式断路器に直列に接続された機械式遮断器と、
     請求項1~12のいずれか1つに記載のスイッチング装置と、
     を備え、
     前記スイッチング装置は、前記機械式断路器および前記機械式遮断器の直列回路に並列に接続され、
     前記スイッチング装置は、前記機械式遮断器が開放された後に導通し、
     前記機械式断路器は、前記スイッチング装置が導通後に遮断される直流遮断装置。
    a mechanical disconnector;
    a mechanical circuit breaker connected in series with the mechanical disconnector;
    a switching device according to any one of claims 1 to 12;
    with
    the switching device is connected in parallel to the series circuit of the mechanical disconnector and the mechanical circuit breaker;
    the switching device conducts after the mechanical circuit breaker is opened;
    The mechanical disconnector is a direct current interrupting device that cuts off after the switching device is turned on.
  14.  前記スイッチング装置に直列に接続されたリアクトルと、
     前記機械式断路器および前記機械式遮断器の接続ノードと前記スイッチング装置および前記リアクトルの接続ノードとの間に接続されたHブリッジ回路と、
     をさらに備え、
     前記Hブリッジ回路は、前記機械式遮断器が開放された後に動作を開始し、
     前記スイッチング装置は、前記Hブリッジ回路が動作を開始した後に導通する請求項13記載の直流遮断装置。
    a reactor connected in series with the switching device;
    an H-bridge circuit connected between a connection node of the mechanical disconnector and the mechanical circuit breaker and a connection node of the switching device and the reactor;
    further comprising
    the H-bridge circuit starts operating after the mechanical breaker is opened;
    14. The direct current interrupting device according to claim 13, wherein the switching device conducts after the H-bridge circuit starts operating.
  15.  前記スイッチング装置は、複数設けられ、
     前記複数のスイッチング装置は、直列に接続された請求項13記載の直流遮断装置。
    A plurality of the switching devices are provided,
    14. The DC interrupting device according to claim 13, wherein said plurality of switching devices are connected in series.
  16.  第1筐体と、
     前記第1筐体とは異なる第2筐体と、
     前記第1筐体および前記第2筐体とは異なる第3筐体と、
     をさらに備え、
     前記第1筐体は、前記機械式断路器および前記機械式遮断器の直列回路を収納し、
     前記第2筐体は、前記スイッチング装置を収納し、
     前記第3筐体は、前記リアクトルおよび前記Hブリッジ回路を収納した請求項14記載の直流遮断装置。
    a first housing;
    a second housing different from the first housing;
    a third housing different from the first housing and the second housing;
    further comprising
    The first housing houses a series circuit of the mechanical disconnector and the mechanical circuit breaker,
    The second housing houses the switching device,
    15. The direct current interrupting device according to claim 14, wherein the third housing accommodates the reactor and the H bridge circuit.
  17.  機械式断路器と、
     前記機械式断路器に直列に接続された機械式遮断器と、
     請求項1から11のいずれか1つに記載のスイッチング装置と、
     前記スイッチング装置を制御する制御装置と、
     を備え、
     前記スイッチング装置は、前記機械式断路器および前記機械式遮断器の直列回路に並列に接続され、
     前記制御装置は、前記機械式遮断器が開放された後に前記スイッチング装置を導通させ、
     前記スイッチング装置が導通後に前記機械式断路器を遮断する直流遮断システム。
    a mechanical disconnector;
    a mechanical circuit breaker connected in series with the mechanical disconnector;
    a switching device according to any one of claims 1 to 11;
    a control device that controls the switching device;
    with
    the switching device is connected in parallel to the series circuit of the mechanical disconnector and the mechanical circuit breaker;
    The control device conducts the switching device after the mechanical circuit breaker is opened,
    A direct current interrupting system that interrupts the mechanical disconnector after the switching device conducts.
  18.  前記スイッチング装置は、前記プラズマスイッチの内部に水素を供給する水素貯蔵金属を含み、
     前記制御装置は、前記水素貯蔵金属から前記プラズマスイッチの内部に水素を供給する指令を生成する請求項17記載の直流遮断システム。
    the switching device includes a hydrogen storage metal that supplies hydrogen to the interior of the plasma switch;
    18. The direct current interruption system of claim 17, wherein the controller generates a command to supply hydrogen from the hydrogen storage metal to the interior of the plasma switch.
PCT/JP2021/033137 2021-09-09 2021-09-09 Switching device, dc breaker device, and dc breaker system WO2023037468A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023546646A JP7466789B2 (en) 2021-09-09 2021-09-09 Switching device, DC interrupting device and DC interrupting system
PCT/JP2021/033137 WO2023037468A1 (en) 2021-09-09 2021-09-09 Switching device, dc breaker device, and dc breaker system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033137 WO2023037468A1 (en) 2021-09-09 2021-09-09 Switching device, dc breaker device, and dc breaker system

Publications (1)

Publication Number Publication Date
WO2023037468A1 true WO2023037468A1 (en) 2023-03-16

Family

ID=85506200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033137 WO2023037468A1 (en) 2021-09-09 2021-09-09 Switching device, dc breaker device, and dc breaker system

Country Status (2)

Country Link
JP (1) JP7466789B2 (en)
WO (1) WO2023037468A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500109A (en) * 1988-06-16 1991-01-10 ヒユーズ・エアクラフト・カンパニー Plasma switch with disordered chromium cold cathode
JPH05190100A (en) * 1991-03-26 1993-07-30 Hughes Aircraft Co Hollow cathode plasma switch device having magnetic field

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3500109B2 (en) 2000-03-30 2004-02-23 株式会社三五 Exhaust gas treatment device manufacturing method
JP5190100B2 (en) 2010-10-28 2013-04-24 株式会社ソフイア Game machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500109A (en) * 1988-06-16 1991-01-10 ヒユーズ・エアクラフト・カンパニー Plasma switch with disordered chromium cold cathode
JPH05190100A (en) * 1991-03-26 1993-07-30 Hughes Aircraft Co Hollow cathode plasma switch device having magnetic field

Also Published As

Publication number Publication date
JPWO2023037468A1 (en) 2023-03-16
JP7466789B2 (en) 2024-04-12

Similar Documents

Publication Publication Date Title
US8269130B2 (en) Retainer, vacuum interrupter, and electrical switching apparatus including the same
EP2214191A2 (en) Gas-insulated equipment
TWI421893B (en) Circuit breaker
JP3577247B2 (en) Switchgear
EP3276764B1 (en) Dc circuit breaker device and method for controlling same
WO2023037468A1 (en) Switching device, dc breaker device, and dc breaker system
JP4177628B2 (en) Compound insulation type gas insulated switchgear
ES2538594T3 (en) Vacuum switch
KR100345839B1 (en) Transient recovery voltage control method and gas insulated switchgear using it
JP3623333B2 (en) Substation equipment
CN210467524U (en) DC isolation transformer with same iron core and expandable structure
JP4222848B2 (en) Gas insulated switchgear
CN117716460A (en) Gas-insulated switchgear
US6219225B1 (en) Gas insulated switch gear and method for assembling therefor
CN210120027U (en) Insulating sleeve of direct-current isolation transformer
JP7362943B2 (en) Switching devices and DC interrupters
JP2003281981A (en) Vacuum switching device
JP2011160637A (en) Gas insulated switchgear
JP2003308767A (en) Vacuum switch
JP3985409B2 (en) Current transformer for gas-insulated electrical equipment
RU208602U1 (en) Superconducting current limiting device for voltage class up to 1000 V
JP2012146821A (en) Superconductive coil device
JP2004056927A (en) Gas isolation switching device
JP2003168351A (en) Vacuum valve
JP4283962B2 (en) Switchgear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956765

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546646

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE