JP2012146821A - Superconductive coil device - Google Patents

Superconductive coil device Download PDF

Info

Publication number
JP2012146821A
JP2012146821A JP2011004017A JP2011004017A JP2012146821A JP 2012146821 A JP2012146821 A JP 2012146821A JP 2011004017 A JP2011004017 A JP 2011004017A JP 2011004017 A JP2011004017 A JP 2011004017A JP 2012146821 A JP2012146821 A JP 2012146821A
Authority
JP
Japan
Prior art keywords
superconducting coil
superconducting
cooling liquid
container
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011004017A
Other languages
Japanese (ja)
Inventor
Satoru Yagiu
悟 柳父
Takenori Sato
雄紀 佐藤
Hiroki Anji
寛貴 安司
Hiromichi Ogumo
浩道 大雲
Noboru Takao
登 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denki University
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Tokyo Denki University filed Critical Tokyo Electric Power Co Inc
Priority to JP2011004017A priority Critical patent/JP2012146821A/en
Publication of JP2012146821A publication Critical patent/JP2012146821A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconductive coil device which prevents short circuits between a superconductive coil and a container due to air bubbles generated in a cooling liquid.SOLUTION: A superconductive coil device incudes: a superconductive coil 10; a container 30 housing the superconductive coil 10 and a cooling liquid 20 maintaining the superconductive state of the superconductive coil 10; and a shield 40 which covers an upper surface and a side surface of the superconductive coil 10, is disposed in the cooling liquid 20 in the container 30, and is made of a conductive material.

Description

本発明は、超電導材料を用いた超電導コイルを冷却液体中に配置した超電導コイル装置に関する。   The present invention relates to a superconducting coil device in which a superconducting coil using a superconducting material is disposed in a cooling liquid.

電力需要の増大に伴って電力系統が大規模化しているため、短絡故障の際に流れる故障電流も増加している。このため、故障電流の大きさが遮断器の容量を超えないように、故障電流を抑制するための限流器の性能向上が求められている。例えば、超電導体の超電導状態と常電導状態間の転位(S/N転位)を利用する超電導限流器(SFCL)が提案されている。   As the power demand increases, the power system has become larger, so the fault current that flows during a short-circuit fault has also increased. For this reason, the performance improvement of the fault current limiter for suppressing a fault current is calculated | required so that the magnitude | size of a fault current may not exceed the capacity | capacitance of a circuit breaker. For example, a superconducting fault current limiter (SFCL) using a dislocation (S / N dislocation) between a superconducting state and a normal conducting state of a superconductor has been proposed.

超電導限流器として、超電導材料を用いた超電導コイルを冷却液体中に配置した超電導コイル装置を用いる方法が検討されている(例えば、特許文献1参照。)。超電導限流器は、通常時は超電導状態である超電導コイルが故障時に常電導状態に転位することにより、通常時は低インピーダンスであるが、故障時には高インピーダンスであるという限流器への要求を満たす。超電導コイルは、通常時に超電導状態を維持するために、液体窒素や液体ヘリウムなどの冷却液体中に配置される。   As a superconducting current limiting device, a method using a superconducting coil device in which a superconducting coil using a superconducting material is arranged in a cooling liquid has been studied (for example, see Patent Document 1). The superconducting fault current limiter is a superconducting coil that is normally in the superconducting state, and is transferred to the normal conducting state at the time of failure. Fulfill. The superconducting coil is arranged in a cooling liquid such as liquid nitrogen or liquid helium in order to maintain a superconducting state at normal times.

特開2007−273740号公報JP 2007-273740 A

超電導コイル装置の超電導コイルが超電導状態から常電導状態に転位した場合に、超電導コイルに生じた電気抵抗と超電導コイルに流れる電流とによって、超電導コイルが発熱する。この超電導コイルの発熱によって冷却液体が蒸発し、気泡が発生する。   When the superconducting coil of the superconducting coil device shifts from the superconducting state to the normal conducting state, the superconducting coil generates heat due to the electric resistance generated in the superconducting coil and the current flowing through the superconducting coil. Due to the heat generated by the superconducting coil, the cooling liquid evaporates and bubbles are generated.

このため、超電導コイル装置において、冷却液体が蒸発して発生した気泡を介して超電導コイルと冷却液体を収納する容器とが短絡してフラッシュオーバーが起こり、絶縁破壊が生じるという問題があった。   For this reason, the superconducting coil device has a problem in that the superconducting coil and the container containing the cooling liquid are short-circuited through bubbles generated by evaporation of the cooling liquid, causing flashover, resulting in dielectric breakdown.

上記問題点に鑑み、本発明は、冷却液体中に発生する気泡に起因する超電導コイルと容器との短絡を防止できる超電導コイル装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a superconducting coil device that can prevent a short circuit between a superconducting coil and a container caused by bubbles generated in a cooling liquid.

本発明の一態様によれば、(イ)超電導コイルと、(ロ)超電導コイル、及び超電導コイルの超電導状態を維持する冷却液体を収納する容器と、(ハ)超電導コイルの上面及び側面を覆って、容器内の冷却液体中に配置された導電性材料からなるシールドとを備える超電導コイル装置が提供される。   According to one aspect of the present invention, (a) a superconducting coil, (b) a superconducting coil, and a container containing a cooling liquid that maintains the superconducting state of the superconducting coil, and (c) covering the upper surface and side surfaces of the superconducting coil. Thus, there is provided a superconducting coil device including a shield made of a conductive material disposed in a cooling liquid in a container.

本発明によれば、冷却液体中に発生する気泡に起因する超電導コイルと容器との短絡を防止できる超電導コイル装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the superconducting coil apparatus which can prevent the short circuit with a superconducting coil and a container resulting from the bubble which generate | occur | produces in a cooling liquid can be provided.

本発明の実施形態に係る超電導コイル装置の構造を示す模式図である。It is a schematic diagram which shows the structure of the superconducting coil apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る超電導コイル装置の模式的な平面図である。It is a typical top view of a superconducting coil device concerning an embodiment of the present invention. 超電導コイルと容器間に発生する気泡の例を示す模式図である。It is a schematic diagram which shows the example of the bubble which generate | occur | produces between a superconducting coil and a container. 本発明の実施形態に係る超電導コイル装置において気泡が発生した例を示す模式図である。It is a schematic diagram which shows the example which the bubble generate | occur | produced in the superconducting coil apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る超電導コイル装置の超電導コイルが分割されている例を示す模式図である。It is a schematic diagram which shows the example by which the superconducting coil of the superconducting coil apparatus which concerns on embodiment of this invention is divided | segmented. 本発明の実施形態に係る超電導コイル装置が冷却システムを有する例を示す模式図である。It is a schematic diagram which shows the example in which the superconducting coil apparatus which concerns on embodiment of this invention has a cooling system. 本発明の実施形態に係る超電導コイル装置を超電導限流器に適用した例を示す模式図である。It is a schematic diagram which shows the example which applied the superconducting coil apparatus which concerns on embodiment of this invention to the superconducting fault current limiter.

次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、現実のものとは異なることに留意すべきである。また、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の実施形態は、特許請求の範囲において、種々の変更を加えることができる。   Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and different from the actual ones. Further, the following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the material, shape, structure, and arrangement of component parts. Etc. are not specified below. The embodiment of the present invention can be variously modified within the scope of the claims.

本発明の実施形態に係る超電導コイル装置1は、図1に示すように、超電導コイル10と、超電導コイル10及び超電導コイル10の超電導状態を維持する冷却液体20を収納する容器30と、超電導コイル10の上面及び側面を覆って、容器30内の冷却液体20中に配置された導電性材料からなるシールド40とを備える。   As shown in FIG. 1, a superconducting coil device 1 according to an embodiment of the present invention includes a superconducting coil 10, a superconducting coil 10, a container 30 containing a cooling liquid 20 that maintains the superconducting state of the superconducting coil 10, and a superconducting coil. 10, and a shield 40 made of a conductive material and disposed in the cooling liquid 20 in the container 30.

超電導コイル10は、例えば円筒状の絶縁物11の外周に超電導線材12を巻きつけた構造である。一般に、超電導線材12が電気抵抗のある状態(常電導状態)から超電導状態にS/N転位する温度を臨界温度という。また、超電導状態で超電導線材12に流せる電流の大きさを臨界電流値という。   The superconducting coil 10 has a structure in which, for example, a superconducting wire 12 is wound around the outer periphery of a cylindrical insulator 11. In general, the temperature at which the superconducting wire 12 undergoes S / N transition from a state having electrical resistance (normal conducting state) to a superconducting state is referred to as a critical temperature. The magnitude of the current that can be passed through the superconducting wire 12 in the superconducting state is called a critical current value.

冷却液体20は、例えば液体窒素や液体ヘリウムである。冷却液体20は、その沸点が超電導コイル10に使用される超電導線材12がS/N転位する臨界温度以下である液体が採用される。このため、超電導コイル10に流れる電流が臨界電流値未満である場合に、冷却液体20中の超電導線材12は超電導状態である。例えば、超電導コイル10の超電導線材12として液体窒素温度で超電導状態である高温超電導体を使用した場合には、冷却液体20に液体窒素を採用できる。   The cooling liquid 20 is, for example, liquid nitrogen or liquid helium. As the cooling liquid 20, a liquid whose boiling point is equal to or lower than the critical temperature at which the superconducting wire 12 used in the superconducting coil 10 undergoes S / N dislocation is employed. For this reason, when the current flowing through the superconducting coil 10 is less than the critical current value, the superconducting wire 12 in the cooling liquid 20 is in a superconducting state. For example, when a high-temperature superconductor that is in a superconducting state at the liquid nitrogen temperature is used as the superconducting wire 12 of the superconducting coil 10, liquid nitrogen can be adopted as the cooling liquid 20.

容器30は導電性材料からなり、使用時には接地される。冷却液体20は絶縁物であるため、容器30とシールド40とは電気的に絶縁されている。   The container 30 is made of a conductive material and is grounded when used. Since the cooling liquid 20 is an insulator, the container 30 and the shield 40 are electrically insulated.

シールド40には導電性の金属材料などが採用可能である。例えば、安価で軽量なアルミニウム(Al)などがシールド40の材料に好適である。後述するように、超電導コイル10の発熱によって冷却液体20が蒸発して発生した気泡は、シールド40の内側に留まる。   A conductive metal material or the like can be used for the shield 40. For example, inexpensive and lightweight aluminum (Al) is suitable for the material of the shield 40. As will be described later, bubbles generated by evaporation of the cooling liquid 20 due to heat generated by the superconducting coil 10 remain inside the shield 40.

図2に、超電導コイル装置1の平面図を示す。図1は、図2のI−I方向に沿った断面図である。   FIG. 2 shows a plan view of the superconducting coil device 1. FIG. 1 is a cross-sectional view taken along the II direction of FIG.

シールド40は、図2に示すように上方から見た形状は円形であり、図1に示すように側面から見た形状は逆U字型である。つまり、シールド40は上面が閉ざされた中空の円筒形状であり、超電導コイル10の上面及び側面を覆っている。なお、図1、2ではシールド40の形状が円筒形状である例を示したが、気泡がシールド40の内側に留まり、シールド40の外側に気泡が漏れない形状であれば、シールド40はどのような形状であってもよい。例えば、シールド40が立方体形状であってもよい。   The shape of the shield 40 viewed from above is circular as shown in FIG. 2, and the shape of the shield 40 viewed from the side is an inverted U shape as shown in FIG. That is, the shield 40 has a hollow cylindrical shape with the upper surface closed, and covers the upper surface and side surfaces of the superconducting coil 10. 1 and 2 show an example in which the shape of the shield 40 is a cylindrical shape, but what is the shape of the shield 40 as long as the bubbles stay inside the shield 40 and the bubbles do not leak outside the shield 40? It may be a simple shape. For example, the shield 40 may have a cubic shape.

ここで、超電導コイル10に過大電流が流れる場合を考える。例えば、超電導コイル装置1を用いた電力系統の短絡故障時などにおいて、超電導コイル10に流れる電流の大きさが超電導コイル10の臨界電流値を超えると、超電導コイル10は超電導状態から常電導状態に転位する。その結果、超電導コイル10に電気抵抗が発生する。超電導体に電気抵抗が発生する現象はクエンチと呼ばれている。   Here, a case where an excessive current flows through the superconducting coil 10 is considered. For example, when the magnitude of the current flowing through the superconducting coil 10 exceeds the critical current value of the superconducting coil 10 at the time of a short circuit failure of the power system using the superconducting coil device 1, the superconducting coil 10 changes from the superconducting state to the normal conducting state. Rearrange. As a result, an electrical resistance is generated in the superconducting coil 10. The phenomenon in which electric resistance is generated in the superconductor is called quenching.

超電導コイル10に電気抵抗が発生した場合、以下の式(1)に示す熱量Qが超電導コイル10に発生する:

Q=I2×R×t ・・・・・(1)

式(1)で、Iは超電導コイル10に流れる電流値、Rは超電導コイル10に発生した電気抵抗の大きさ、tは超電導コイル10に電流が流れる時間である。
When an electrical resistance is generated in the superconducting coil 10, a heat quantity Q shown in the following formula (1) is generated in the superconducting coil 10:

Q = I 2 × R × t (1)

In Equation (1), I is the value of current flowing through the superconducting coil 10, R is the magnitude of the electrical resistance generated in the superconducting coil 10, and t is the time during which current flows through the superconducting coil 10.

超電導コイル10での発熱により、超電導コイル10の周囲で冷却液体20が蒸発し、冷却液体20内に気泡が発生する。気泡は、冷却液体20中を上昇する。   Due to heat generation in the superconducting coil 10, the cooling liquid 20 evaporates around the superconducting coil 10, and bubbles are generated in the cooling liquid 20. Bubbles rise in the cooling liquid 20.

容器30は使用状態で接地されている。このため、例えば図3に示すように容器30内にシールド40が配置されていない場合には、超電導コイル10に電圧が印加されている状態で超電導コイル10と容器30間で気泡21が冷却液体20中に発生すると、矢印で示すように気泡21を介して超電導コイル10と容器30の側面との間が短絡されてフラッシュオーバーが起きる。   The container 30 is grounded in use. For this reason, for example, as shown in FIG. 3, when the shield 40 is not disposed in the container 30, the bubbles 21 are cooled between the superconducting coil 10 and the container 30 while the voltage is applied to the superconducting coil 10. When this occurs in 20, as indicated by an arrow, the superconducting coil 10 and the side surface of the container 30 are short-circuited via the bubble 21, and flashover occurs.

しかし、超電導コイル装置1では、超電導コイル10の発熱によって超電導コイル10の周囲に気泡21が発生した場合に、図4に示すように、気泡21と容器30の側面との間には導電体のシールド40が存在する。このため、超電導コイル装置1ではフラッシュオーバーが起こらない。   However, in the superconducting coil device 1, when bubbles 21 are generated around the superconducting coil 10 due to heat generated by the superconducting coil 10, a conductor is not formed between the bubbles 21 and the side surface of the container 30 as shown in FIG. 4. There is a shield 40. For this reason, flashover does not occur in the superconducting coil device 1.

超電導コイル10と容器30間には、数万〜数十万Vの電位差が生じている場合も多く、超電導コイル10の周囲に気泡21が発生した直後にフラッシュオーバーが起こることがある。しかし、超電導コイル装置1においては、気泡21と容器30間にシールド40が存在するため、超電導コイル10の側面で気泡21が発生した直後においてもフラッシュオーバーは起こらない。   In many cases, a potential difference of several tens of thousands to several hundred thousand V is generated between the superconducting coil 10 and the container 30, and a flashover may occur immediately after the bubbles 21 are generated around the superconducting coil 10. However, in the superconducting coil device 1, since the shield 40 exists between the bubble 21 and the container 30, flashover does not occur immediately after the bubble 21 is generated on the side surface of the superconducting coil 10.

また、超電導コイル装置1では、超電導コイル10の上面及び側面全体を覆うようにシールド40が設けられているため、超電導コイル10の周囲で発生した気泡21は冷却液体20中で散らばらない。つまり、気泡21は、シールド40の内側を上昇し、シールド40の上部の下方に集まる。シールド40内に溜まった気泡21は、周囲の冷却液体20との熱交換などにより冷却され、再凝縮する。   In the superconducting coil device 1, since the shield 40 is provided so as to cover the entire upper surface and side surfaces of the superconducting coil 10, the bubbles 21 generated around the superconducting coil 10 are not scattered in the cooling liquid 20. That is, the bubbles 21 rise inside the shield 40 and gather below the upper portion of the shield 40. The bubbles 21 accumulated in the shield 40 are cooled and recondensed by heat exchange with the surrounding cooling liquid 20 or the like.

したがって、気泡21は超電導コイル10とシールド40との間に保持され、気泡21が冷却液体20の表面まで上昇することはない。このため、超電導コイル装置1では、超電導コイル10と容器30とが冷却液体20の表面において気泡21を介して短絡することはなく、フラッシュオーバーは起こらない。   Therefore, the bubble 21 is held between the superconducting coil 10 and the shield 40, and the bubble 21 does not rise to the surface of the cooling liquid 20. For this reason, in the superconducting coil device 1, the superconducting coil 10 and the container 30 are not short-circuited via the bubbles 21 on the surface of the cooling liquid 20, and flashover does not occur.

更に、シールド40と容器30の間に気泡21は存在しえない。このため、絶縁性の冷却液体20によってシールド40と容器30の間の電気的な絶縁は保たれる。   Further, no bubbles 21 can exist between the shield 40 and the container 30. For this reason, the electrical insulation between the shield 40 and the container 30 is maintained by the insulating cooling liquid 20.

なお、図5に示すように超電導コイル10が、超電導コイル10a〜10cに分割して冷却液体20中に配置されている場合は、超電導コイル10a〜10cそれぞれの上面及び側面が、シールド40a〜40cによってそれぞれ覆われる。   In addition, as shown in FIG. 5, when the superconducting coil 10 is divided into superconducting coils 10a to 10c and arranged in the cooling liquid 20, the upper surfaces and side surfaces of the superconducting coils 10a to 10c are shields 40a to 40c. Covered by each.

超電導コイル装置1がシールド40の冷却システム50を有する例を、図6に示す。図6に示した冷却システム50は、容器30の外部に配置された冷却装置51と、シールド40の上面に配置されて冷却装置51に接続する冷却パイプ52とを有する。   An example in which the superconducting coil device 1 has a cooling system 50 for the shield 40 is shown in FIG. The cooling system 50 illustrated in FIG. 6 includes a cooling device 51 disposed outside the container 30 and a cooling pipe 52 disposed on the upper surface of the shield 40 and connected to the cooling device 51.

冷却装置51によって冷却パイプ52を冷却することにより、シールド40を介して、シールド40の下方に溜まった気泡21を効率よく冷却できる。例えば、冷却液体20が液体窒素である場合に、冷却パイプ52を50K程度に冷却することにより、気泡21が過冷却される。これにより、気泡21は液体に戻り、冷却液体20の一部として容器30内に収納される。そのため、シールド40には熱伝導性のよい材料を使用することが好ましい。   By cooling the cooling pipe 52 by the cooling device 51, the bubbles 21 accumulated below the shield 40 can be efficiently cooled via the shield 40. For example, when the cooling liquid 20 is liquid nitrogen, the bubbles 21 are supercooled by cooling the cooling pipe 52 to about 50K. Thereby, the bubble 21 returns to the liquid and is stored in the container 30 as a part of the cooling liquid 20. Therefore, it is preferable to use a material with good thermal conductivity for the shield 40.

以上に説明したように、本発明の実施形態に係る超電導コイル装置1では、超電導コイル10の発熱によって冷却液体20が蒸発して生じた気泡21は、シールド40の内側に溜められる。このため、気泡21に起因する超電導コイル10と容器30間でのフラッシュオーバーは起こらない。つまり、冷却液体20中に発生する気泡21に起因する超電導コイル10と容器30との短絡を防止できる超電導コイル装置1を実現できる。   As described above, in the superconducting coil device 1 according to the embodiment of the present invention, the bubbles 21 generated by the evaporation of the cooling liquid 20 due to the heat generated by the superconducting coil 10 are stored inside the shield 40. For this reason, flashover between the superconducting coil 10 and the container 30 due to the bubbles 21 does not occur. That is, the superconducting coil device 1 that can prevent a short circuit between the superconducting coil 10 and the container 30 caused by the bubbles 21 generated in the cooling liquid 20 can be realized.

実施形態に係る超電導コイル装置1は、例えば図7に示す超電導限流器100に使用される。超電導限流器100について、以下に説明する。   The superconducting coil device 1 according to the embodiment is used in, for example, a superconducting fault current limiter 100 shown in FIG. The superconducting fault current limiter 100 will be described below.

図7に示した超電導限流器100は、超電導コイル装置1と転流スイッチ2とが直列に接続され、超電導コイル装置1と転流スイッチ2の直列接続と並列に並列コイル3が接続された構成を有する分流型超電導限流器である。   In the superconducting current limiter 100 shown in FIG. 7, the superconducting coil device 1 and the commutation switch 2 are connected in series, and the parallel coil 3 is connected in parallel with the series connection of the superconducting coil device 1 and the commutation switch 2. A shunt-type superconducting fault current limiter having a configuration.

既に説明したように、超電導限流器は超電導体のS/N転位を利用する限流器であり、通常時は低インピーダンスであるが、故障時には高インピーダンスである超電導コイル装置を使用する。また、超電導限流器100では、過大電流が並列コイル3に流れるときに発生するエネルギーを用いて転流スイッチ2を開極することにより、超電導コイル装置1に流れる電流を遮断する。   As already described, the superconducting current limiter is a current limiting device that utilizes the S / N dislocation of the superconductor, and uses a superconducting coil device that normally has a low impedance but has a high impedance when a failure occurs. Further, in the superconducting current limiter 100, the current flowing through the superconducting coil device 1 is interrupted by opening the commutation switch 2 using the energy generated when an excessive current flows through the parallel coil 3.

転流スイッチ2には、例えば図7に示したような真空バルブ210と電磁反発板220を直列接続した構成を採用可能である。真空バルブ210は、超電導コイル装置1に接続する固定部211と、電磁反発板220に接続する可動部212とを有する。   For the commutation switch 2, for example, a configuration in which a vacuum valve 210 and an electromagnetic repulsion plate 220 as shown in FIG. 7 are connected in series can be employed. The vacuum valve 210 has a fixed part 211 connected to the superconducting coil device 1 and a movable part 212 connected to the electromagnetic repulsion plate 220.

超電導限流器100の動作を以下に説明する。通常通電時は、超電導コイル装置1の超電導コイル10は超電導状態にあり、超電導コイル装置1及び転流スイッチ2を介する電路に電流が流れる。短絡事故などによって超電導コイル装置1に過大電流が流れると、超電導コイル10は超電導状態から非超電導状態(高抵抗状態)に転位する。その結果、超電導限流器100は高インピーダンスになる。   The operation of superconducting fault current limiter 100 will be described below. During normal energization, the superconducting coil 10 of the superconducting coil device 1 is in a superconducting state, and a current flows through the electric path via the superconducting coil device 1 and the commutation switch 2. When an excessive current flows through the superconducting coil device 1 due to a short circuit accident or the like, the superconducting coil 10 shifts from the superconducting state to the non-superconducting state (high resistance state). As a result, the superconducting fault current limiter 100 becomes high impedance.

また、通常状態では、真空バルブ210の固定部211と可動部212が接触し、転流スイッチ2に電流が流れる。しかし、過大電流が超電導コイル装置1に流れて超電導コイル10が常電導状態になると、並列コイル3に過大電流が流れる。この場合に、並列コイル3との間に発生する電磁反発力によって、電磁反発板220が真空バルブ210から離れる方向に移動する。このため、真空バルブ210の固定部211と可動部212が分離して転流スイッチ2が開極し、超電導コイル装置1に電流が流れない。   In a normal state, the fixed portion 211 and the movable portion 212 of the vacuum valve 210 are in contact with each other, and a current flows through the commutation switch 2. However, when an excessive current flows through the superconducting coil device 1 and the superconducting coil 10 enters a normal conducting state, an excessive current flows through the parallel coil 3. In this case, the electromagnetic repulsion plate 220 moves in a direction away from the vacuum valve 210 by the electromagnetic repulsion force generated between the parallel coil 3. For this reason, the fixed part 211 and the movable part 212 of the vacuum valve 210 are separated, the commutation switch 2 is opened, and no current flows through the superconducting coil device 1.

つまり、図7に示した超電導限流器100では、短絡故障時などに過大電流が並列コイル3に流れることによって並列コイル3に生じるエネルギーが、転流スイッチ2を開極させるエネルギーとして使用される。これにより、超電導コイル装置1に流れる電流を遮断することによって、超電導コイル装置1での消費エネルギーが低減される。   That is, in the superconducting fault current limiter 100 shown in FIG. 7, the energy generated in the parallel coil 3 when an excessive current flows through the parallel coil 3 at the time of a short circuit failure or the like is used as energy for opening the commutation switch 2. . Thereby, the energy consumed in the superconducting coil device 1 is reduced by interrupting the current flowing through the superconducting coil device 1.

なお、並列コイル3に生じるエネルギーによって転流スイッチ2が開極するため、並列コイル3に流れる交流の半波程度の短時間で超電導コイル装置1に流れる電流が遮断される。   In addition, since the commutation switch 2 is opened by the energy generated in the parallel coil 3, the current flowing in the superconducting coil device 1 is cut off in a short time such as an alternating half-wave flowing in the parallel coil 3.

上記のように、超電導限流器100には転流スイッチ2駆動用の外部電源が不要である。このため、超電導限流器100は、転流スイッチ2の開極用の複雑な操作機構を必要とせず、かつ高速動作が可能である。   As described above, the superconducting fault current limiter 100 does not require an external power source for driving the commutation switch 2. For this reason, the superconducting fault current limiter 100 does not require a complicated operation mechanism for opening the commutation switch 2, and can operate at high speed.

図7に示した超電導限流器100において、例えば落雷や電力系統のケーブル間の接触などの故障により、臨界電流値以上の電流が超電導コイル装置1の超電導コイル10に流れた場合、超電導コイル10が超電導状態から常電導状態に転位する。その結果、超電導コイル10が発熱し、超電導コイル10の周囲で冷却液体20が蒸発して気泡21が生じる。しかし、発生した気泡21と容器30との間にシールド40が配置されている超電導コイル装置1を超電導限流器100に使用することにより、超電導コイル10と容器30間で起きるフラッシュオーバーを防止できる。このため、超電導限流器100の信頼性を向上することができる。   In the superconducting fault current limiter 100 shown in FIG. 7, when a current exceeding the critical current value flows through the superconducting coil 10 of the superconducting coil device 1 due to, for example, a lightning strike or contact between cables of the power system, the superconducting coil 10. Rearranges from the superconducting state to the normal conducting state. As a result, the superconducting coil 10 generates heat, and the cooling liquid 20 evaporates around the superconducting coil 10 to generate bubbles 21. However, by using the superconducting coil device 1 in which the shield 40 is disposed between the generated bubble 21 and the container 30 for the superconducting current limiter 100, flashover occurring between the superconducting coil 10 and the container 30 can be prevented. . For this reason, the reliability of the superconducting fault current limiter 100 can be improved.

都市部などの電力需要が伸びている地域の電力系統では、電源容量の増強によって短絡電流が既設電力機器の定格を超えることが予測される。このため、遮断器の遮断電流の増加や系統分割などによる対策が採られている。しかし、将来の短絡電流の増加に対しては、より根本的な対策として、超電導限流器の設置により短絡電流を抑制する方法も検討されている。超電導限流器が電力系統に適用されることになれば、系統保護遮断器の容量の増大や系統分離・再編成といった対策をとるためのコストが大幅に軽減される。そして、超電導限流器を電力系統に適用することにより、信頼性向上及び系統安定度確保などの有用な効果を期待できる。   In power systems in areas where power demand is growing, such as in urban areas, the short-circuit current is expected to exceed the rating of existing power equipment due to the increase in power supply capacity. For this reason, measures are taken by increasing the breaking current of the circuit breaker or dividing the system. However, as a more fundamental measure against the future increase in short-circuit current, a method of suppressing the short-circuit current by installing a superconducting current limiting device is also being studied. If the superconducting fault current limiter is applied to the electric power system, the cost for taking measures such as increasing the capacity of the system protective circuit breaker and system separation / reorganization can be greatly reduced. Then, by applying the superconducting fault current limiter to the power system, useful effects such as improved reliability and ensuring system stability can be expected.

本発明の実施形態に係る超電導コイル装置1を使用した例えば図7に示すような超電導限流器100によれば、気泡21に起因する超電導コイル10と容器30との短絡が防止された超電導限流器を、転流スイッチ2駆動用の外部電源なしで生成できる。このため、超電導限流器100のコストが低減される。   For example, according to the superconducting fault current limiter 100 as shown in FIG. 7 using the superconducting coil device 1 according to the embodiment of the present invention, the superconducting limit in which the short circuit between the superconducting coil 10 and the container 30 caused by the bubbles 21 is prevented. The flow device can be generated without an external power source for driving the commutation switch 2. For this reason, the cost of the superconducting fault current limiter 100 is reduced.

上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。即ち、本発明はここでは記載していない様々な実施形態等を含むことはもちろんである。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. That is, it goes without saying that the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

1…超電導コイル装置
2…転流スイッチ
3…並列コイル
10…超電導コイル
11…絶縁物
12…超電導線材
20…冷却液体
21…気泡
30…容器
40…シールド
50…冷却システム
51…冷却装置
52…冷却パイプ
100…超電導限流器
210…真空バルブ
211…固定部
212…可動部
220…電磁反発板
DESCRIPTION OF SYMBOLS 1 ... Superconducting coil apparatus 2 ... Commutation switch 3 ... Parallel coil 10 ... Superconducting coil 11 ... Insulator 12 ... Superconducting wire 20 ... Cooling liquid 21 ... Bubble 30 ... Container 40 ... Shield 50 ... Cooling system 51 ... Cooling device 52 ... Cooling Pipe 100 ... Superconducting current limiting device 210 ... Vacuum valve 211 ... Fixed part 212 ... Movable part 220 ... Electromagnetic repulsion plate

Claims (3)

超電導コイルと、
前記超電導コイル、及び前記超電導コイルの超電導状態を維持する冷却液体を収納する容器と、
前記超電導コイルの上面及び側面を覆って、前記容器内の前記冷却液体中に配置された導電性材料からなるシールド
とを備えることを特徴とする超電導コイル装置。
A superconducting coil;
A container for containing the superconducting coil and a cooling liquid for maintaining the superconducting state of the superconducting coil;
A superconducting coil device comprising: a shield made of a conductive material that covers an upper surface and a side surface of the superconducting coil and is disposed in the cooling liquid in the container.
前記超電導コイルが分割して前記冷却液体中に配置され、分割された前記超電導コイルそれぞれの上面及び側面が、複数の前記シールドによってそれぞれ覆われていることを特徴とする請求項1に記載の超電導コイル装置。   2. The superconducting device according to claim 1, wherein the superconducting coil is divided and arranged in the cooling liquid, and an upper surface and a side surface of each of the divided superconducting coils are respectively covered with the plurality of shields. Coil device. 前記シールドを冷却する冷却システムを更に備えることを特徴とする請求項1又は2に記載の超電導コイル装置。   The superconducting coil device according to claim 1, further comprising a cooling system for cooling the shield.
JP2011004017A 2011-01-12 2011-01-12 Superconductive coil device Pending JP2012146821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011004017A JP2012146821A (en) 2011-01-12 2011-01-12 Superconductive coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011004017A JP2012146821A (en) 2011-01-12 2011-01-12 Superconductive coil device

Publications (1)

Publication Number Publication Date
JP2012146821A true JP2012146821A (en) 2012-08-02

Family

ID=46790100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011004017A Pending JP2012146821A (en) 2011-01-12 2011-01-12 Superconductive coil device

Country Status (1)

Country Link
JP (1) JP2012146821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126006A1 (en) * 2013-02-13 2014-08-21 古河電気工業株式会社 Superconducting fault current limiter and cooling method for superconducting element within superconducting fault current limiter
CN111819106A (en) * 2018-03-08 2020-10-23 马勒国际有限公司 Induction charging device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174307A (en) * 1984-09-19 1986-04-16 Hitachi Ltd Superconductive device
JPS63155705A (en) * 1986-12-19 1988-06-28 Toshiba Corp Magnetic shield for superconducting magnet
JPH01107118U (en) * 1988-01-11 1989-07-19
JPH0260207U (en) * 1988-10-27 1990-05-02
JP2003303713A (en) * 2002-04-12 2003-10-24 Hitachi Ltd Cryogenic device
JP2005050737A (en) * 2003-07-30 2005-02-24 Tokyo Denki Univ Current limiting device
US20050198974A1 (en) * 2004-03-13 2005-09-15 Bruker Biospin Gmbh, Superconducting magnet system with pulse tube cooler
JP2007273740A (en) * 2006-03-31 2007-10-18 Toshiba Corp Superconducting apparatus
JP2009140639A (en) * 2007-12-04 2009-06-25 Tokyo Denki Univ Shunt type superconducting current limiter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174307A (en) * 1984-09-19 1986-04-16 Hitachi Ltd Superconductive device
JPS63155705A (en) * 1986-12-19 1988-06-28 Toshiba Corp Magnetic shield for superconducting magnet
JPH01107118U (en) * 1988-01-11 1989-07-19
JPH0260207U (en) * 1988-10-27 1990-05-02
JP2003303713A (en) * 2002-04-12 2003-10-24 Hitachi Ltd Cryogenic device
JP2005050737A (en) * 2003-07-30 2005-02-24 Tokyo Denki Univ Current limiting device
US20050198974A1 (en) * 2004-03-13 2005-09-15 Bruker Biospin Gmbh, Superconducting magnet system with pulse tube cooler
JP2007273740A (en) * 2006-03-31 2007-10-18 Toshiba Corp Superconducting apparatus
JP2009140639A (en) * 2007-12-04 2009-06-25 Tokyo Denki Univ Shunt type superconducting current limiter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126006A1 (en) * 2013-02-13 2014-08-21 古河電気工業株式会社 Superconducting fault current limiter and cooling method for superconducting element within superconducting fault current limiter
US10178799B2 (en) 2013-02-13 2019-01-08 Furukawa Electric Co., Ltd. Superconducting fault current limiter and cooling method for superconducting element within superconducting fault current limiter
CN111819106A (en) * 2018-03-08 2020-10-23 马勒国际有限公司 Induction charging device

Similar Documents

Publication Publication Date Title
JP4620637B2 (en) Resistive superconducting fault current limiter
EP0315976B1 (en) Superconducting current limiting apparatus
US8304650B2 (en) Arrangement for current limiting
RU183512U1 (en) HIGH VOLTAGE CURRENT LIMITING DEVICE BASED ON HIGH TEMPERATURE SUPERCONDUCTIVITY
US8705215B2 (en) High voltage fault current limiter having immersed phase coils
KR100717350B1 (en) Non-inductive winding wire-type solenoid bobbin
CN1246210A (en) Device and method relating to protection of object against over-currents comprising over-current reduction and current limitation
Junaid et al. Experimental test of superconductor fault-current switchgear using liquid nitrogen as the insulation and arc-quenching medium
KR20130014396A (en) Arrangement with a superconducting direct-current electric cable system
Yanabu et al. Historical review of high voltage switchgear developments in the 20th century for power transmission and distribution system in Japan
JP2012146821A (en) Superconductive coil device
JPH10285792A (en) Current limiter
JP2015500563A (en) Technology to protect superconducting members
KR100742499B1 (en) Core of magentic shield type superconducting cable and superconducting cable having the same
US11527885B2 (en) Superconducting fault current limiter
RU187625U1 (en) HIGH VOLTAGE CURRENT LIMITING DEVICE BASED ON HIGH TEMPERATURE SUPERCONDUCTIVITY
KR101011004B1 (en) Current Lead for High Voltage Superconducting Machine
RU208602U1 (en) Superconducting current limiting device for voltage class up to 1000 V
JP2016046843A (en) Circuit breaker for electric power
KR100572363B1 (en) DC reactor with thermal link
KR20130113001A (en) Superconducting power equipment with insulation spacer
JPH04120709A (en) Superconducting magnet apparatus
KR20080042273A (en) Insulation design method of 600kj class conduction cooled high-temperature superconducting magnetic energy storage
JPS6346544B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303