WO2023036244A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2023036244A1
WO2023036244A1 PCT/CN2022/117826 CN2022117826W WO2023036244A1 WO 2023036244 A1 WO2023036244 A1 WO 2023036244A1 CN 2022117826 W CN2022117826 W CN 2022117826W WO 2023036244 A1 WO2023036244 A1 WO 2023036244A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
liquid
liquid supply
side flow
ice
Prior art date
Application number
PCT/CN2022/117826
Other languages
English (en)
French (fr)
Inventor
豊岛昌志
加藤直树
小松肇
增田英夫
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
Aqua 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, Aqua 株式会社 filed Critical 海尔智家股份有限公司
Priority to CN202280062104.8A priority Critical patent/CN117980672A/zh
Publication of WO2023036244A1 publication Critical patent/WO2023036244A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators

Definitions

  • the present invention relates to a refrigerator including an ice making device.
  • Refrigerators including ice making devices are becoming widely available.
  • a refrigerator including an ice maker includes a water supply tank and a water pump for sucking up water in the water supply tank to supply to the ice making tray.
  • a refrigerator having better operability when connecting and disconnecting a water pump and a water supply tank for example, refer to Patent Document 1-JP-A-2021-25712.
  • the water supply tank and the water pump are located in the central part of the refrigerator body in the height direction, so that the area most suitable for storage is occupied by the water supply tank and the water pump, and the storage area cannot be effectively used.
  • An object of the present invention is to provide a refrigerator that can effectively utilize a storage area while including an ice making device.
  • the refrigerator according to the present invention is a refrigerator having a main body and a revolving door mounted on the main body in an openable and closable state.
  • a dispenser receiving portion into which a neck of a liquid container disposed with a liquid outlet facing downward is inserted, and a liquid supply side flow path attached to the dispenser receiving portion , communicated with the liquid outlet of the liquid container; and an ice-making part, which is arranged on the main body, has an ice-making tray and an ice-making side flow path with a liquid outlet above the ice-making tray;
  • the liquid supply side flow path communicates with the ice making side flow path at least when the revolving door is closed, and the liquid in the liquid container flows through the liquid supply side flow path and the ice making side flow path under the action of gravity.
  • the side flow path is supplied to the ice tray.
  • the liquid container is arranged not on the main body of the refrigerator but on the revolving door, and the liquid flows and is supplied to the ice tray by gravity, so there is no liquid supply pump. Accordingly, the area suitable for storage around the ice tray of the main body of the refrigerator is not occupied by the liquid container and the liquid supply pump. Thus, it is possible to provide a refrigerator that can effectively use the storage area while including the ice making device.
  • the liquid-supply-side flow path and the ice-making-side flow path are composed of pipes, and the end region of one flow path is inserted into the end region of the other flow path, and in the inserted state Next, a liquid-tight state is formed between the outer surface of the end region of one of the flow paths and the inner surface of the front region of the end region of the other flow path; when the revolving door is closed, the The end region of one of the flow paths is inserted into the end region of the other flow path, and the flow path on the liquid supply side communicates with the flow path on the ice making side; An end region of one flow path is not inserted into an end region of the other flow path, and the liquid supply side flow path does not communicate with the ice making side flow path.
  • the liquid supply side flow path and the ice making side flow path are composed of pipes, and there is no liquid supply pump, so the pipes can be reliably and easily removed from the revolving door or the main body of the refrigerator, and the pipes can be cleaned or maintained.
  • the end area of one of the flow paths is connected/disconnected with the end area of the other flow path in accordance with the switch of the revolving door, so when the revolving door is opened and closed, there will not be a problem between one flow path and the other flow path. interference, smooth switching can be achieved.
  • At least one of the end region of the one flow path and the end region of the other flow path is movably supported by an elastic member.
  • the end region of one of the flow paths and the end region of the other flow path is supported in a movable state by the elastic member, even in the end region of one of the flow paths and the other flow path Even if the positions of the end regions of the flow paths are slightly shifted, the end region of one of the flow paths is reliably inserted into the end region of the other flow path, and the flow path on the liquid supply side and the flow path on the ice making side can be reliably connected. connected.
  • the dispenser receiving portion includes an on/off valve that is switched by an actuator; when the on/off valve is opened, the liquid in the liquid container The outlet communicates with the liquid supply side flow path, and in the state where the on/off valve is closed, the liquid outlet of the liquid container is disconnected from the liquid supply side flow path; the actuating device is arranged on At the main body, in a state where the revolving door is closed, the driving surface of the actuator device and the driven surface of the opening/closing valve are at positions facing each other, the opening/closing valve can be opened and closed, and In the open state of the revolving door, the driving surface of the actuator device and the driven surface of the opening/closing valve are not in positions facing each other, and the opening/closing valve remains in a closed state.
  • the on/off valve in the state where the revolving door is closed, the on/off valve is switched by the actuating device, and a specified amount of liquid in the liquid container can be supplied to the ice making tray, and in the state where the revolving door is opened, the open The on/off valve is always kept closed, which can prevent the liquid in the liquid container from leaking out.
  • the driving surface of the actuator device and the driven surface of the opening/closing valve are not positioned at each other. relative position, and the opening/closing valve is kept closed, and in the case of being opened more than a second angle relative to the closed position of the revolving door, the second angle is an angle greater than the first angle , the flow path on the liquid supply side is not connected to the flow path on the ice making side.
  • the on/off valve becomes closed when the rotating angle of the revolving door reaches the first angle, and the liquid stops flowing out of the liquid container. If the flow path on the liquid supply side and the flow path on the ice making side become disconnected when reaching the first angle, the liquid accumulated in the flow path on the liquid supply side may flow out from the liquid outlet of the flow path on the liquid supply side .
  • the flow path on the liquid supply side and the flow path on the ice making side are still in a communication state after reaching the first angle, the liquid accumulated in the flow path on the liquid supply side flows toward the flow path side on the ice making side, and
  • the second angle is reached, when the flow path on the liquid supply side and the flow path on the ice making side become disconnected, a state in which no liquid is accumulated in the flow path on the liquid supply side can be established. In this way, even if the revolving door is opened when the liquid in the liquid container is being supplied to the ice making tray, the revolving door can be opened smoothly without water leaking to the outside.
  • the refrigerator according to the present invention includes a sensor for measuring the weight of the liquid container into which the neck is inserted at the dispenser receiving part, and the opening/closing ratio is determined based on the measured value of the sensor. The time the valve is open.
  • the opening time of the on/off valve is determined based on the measured value of the sensor for measuring the weight of the liquid container, so a certain amount of liquid can always be reliably supplied to the ice tray.
  • Fig. 1A is a perspective view showing a refrigerator according to an embodiment of the present invention viewed from the front.
  • FIG. 1B is an enlarged perspective view of a region indicated by arrow A in FIG. 1A .
  • Fig. 2A is a perspective view showing the refrigerator according to one embodiment of the present invention viewed from the rear, and is a diagram in which the side of the outer casing is removed so that the inside can be seen.
  • FIG. 2B is an enlarged perspective view of a region indicated by arrow B in FIG. 2A .
  • FIG. 3 is a diagram schematically showing the structure of an ice making device according to an embodiment of the present invention included in the refrigerator shown in FIG. 1A .
  • Fig. 4 is a perspective view showing the pipes constituting the flow path on the ice making side of the ice making device according to the embodiment of the present invention when it is removed.
  • 5A is a plan view showing a first example of the connection mechanism of the liquid supply side flow path and the ice making side flow path, showing a state where the revolving door is opened and the liquid supply side flow path and the ice making side flow path are not in communication diagram.
  • 5B is a plan view showing a first example of the connection mechanism of the liquid supply side flow path and the ice making side flow path, showing a state where the revolving door is closed and the liquid supply side flow path and the ice making side flow path are in communication. picture.
  • Fig. 5C is a perspective view of the connection protrusion side showing the first example of the connection mechanism of the liquid supply side flow path and the ice making side flow path.
  • 6A is a side view showing a first example of an opening and closing mechanism of a liquid container mounted to a dispenser receiving portion and an on/off valve for opening and closing a liquid outlet of the liquid container.
  • FIG. 6B is an enlarged schematic view of the opening and closing mechanism of FIG. 6A , and is a diagram showing a closed state of the on/off valve.
  • FIG. 6C is an enlarged schematic view of the opening and closing mechanism of FIG. 6A , and is a diagram showing an open state of the on/off valve.
  • Fig. 7 is a perspective view showing a second example of the actuating device of the opening and closing mechanism.
  • Fig. 8A is a diagram showing the operating state of the opening and closing mechanism and the connection state of the liquid supply side flow path and the ice making side flow path when the revolving door is opened from the closed state, showing the state when the revolving door is opened only at the first angle picture.
  • Fig. 8B is a diagram showing the operating state of the opening and closing mechanism and the connection state of the liquid supply side flow path and the ice making side flow path when the revolving door is opened from the closed state, and it shows the state when the revolving door is opened only at the second angle. picture.
  • FIG. 9A is a diagram illustrating a modification example of a connection region between the liquid supply side flow path and the ice making side flow path, and is a diagram showing a state where the liquid supply side flow path and the ice making side flow path are not in communication.
  • FIG. 9B is a diagram showing a modification example at the connection region of the liquid supply side flow path and the ice making side flow path, and is a diagram showing a state in which the liquid supply side flow path and the ice making side flow path communicate.
  • Fig. 10 is a diagram showing a dispenser receiving portion including a weight sensor for measuring the weight of a liquid container.
  • Fig. 11 is a perspective view showing a modified example of the foldable dispenser receiver.
  • FIG. 12A is a perspective view showing a second example of the connection mechanism of the liquid supply side flow path and the ice making side flow path.
  • Fig. 12B is a plan view showing the connection function shown in Fig. 12A, and is a view showing a state where the hose is pulled in.
  • Fig. 12C is a plan view showing the connection function shown in Fig. 12A, and is a view showing a state in which the hose is pulled out.
  • FIG. 13A is a perspective view showing a third example of the connection mechanism between the liquid supply side flow path and the ice making side flow path, showing a state where the revolving door is opened.
  • 13B is a perspective view showing a third example of the connection mechanism between the liquid supply side flow path and the ice making side flow path, and is a view showing a state in which the revolving door is closed.
  • FIG. 1A is a perspective view of refrigerator 2 according to one embodiment of the present invention seen from the front.
  • FIG. 1B is an enlarged perspective view of a region indicated by arrow A in FIG. 1A .
  • Fig. 2A is a perspective view of refrigerator 2 according to one embodiment of the present invention seen from the rear side, and is a diagram in which the side of the outer casing is removed so that the inside can be seen.
  • FIG. 2B is an enlarged perspective view of a region indicated by arrow B in FIG. 2A .
  • FIG. 3 is a diagram schematically showing the structure of ice making device 8 according to an embodiment of the present invention included in the refrigerator shown in FIG. 1A .
  • Refrigerator 2 includes main body 4 and revolving doors 6A, 6B attached to the front side of main body 4 in a state capable of being opened and closed.
  • the revolving doors 6A, 6B are arranged on the front surface of the main body 4 left and right, and both are left and right side-by-side doors that open outward.
  • the lower sides of the revolving doors 6A, 6B also include revolving doors or pull-out storage compartments. A further detailed description about the overall structure of the refrigerator 2 is omitted.
  • the refrigerator 2 includes an ice making device 8 .
  • the ice making device 8 is composed of a liquid supply unit 10 and an ice making unit 20 .
  • the ice making tray 22 constituting the ice making device 8 is arranged in the center region in the height direction of the main body 4 of the refrigerator 2 . If described in more detail, ice tray 22 is arranged slightly below the lower end of revolving door 6A on the left side seen from the front side. The upper surface of ice tray 22 is open, and a plurality of ice making regions are formed by partition walls. As the ice making tray 22, an ice making tray having any number of ice making areas of any size may be used.
  • the main body 4 of the refrigerator 2 is provided with an ice making side flow path 24 for supplying liquid to the ice making side flow path 22 , and a liquid outlet 24B as a liquid outlet of the ice making side flow path 24 is arranged above the ice making tray 22 .
  • Liquid inlet 24A which is the end of ice-making side flow path 24 opposite to liquid outlet 24B, is disposed near the end of revolving door 6A in the closed state on the rotation axis side (see FIG. 1B ).
  • the ice making unit 20 of the ice making device 8 is disposed on the main body 4 side of the refrigerator 2, and has an ice making tray 22 and an ice making side flow with a liquid outlet 24B located above the ice making tray 22. Road 24.
  • the liquid container P for storing the liquid supplied to the ice making tray 22 is not provided in the main body 4 of the refrigerator 2 but arranged on the revolving door 6A.
  • the liquid container P for example, a commercially available plastic bottle filled with drinking water can be used. However, it is not limited thereto, and any liquid container in the shape of a bottle made of resin, glass or metal can be used.
  • the dispenser receiver 12 is disposed in the storage recess of the revolving door 6A.
  • the liquid container P is mounted to the dispenser receiver 12 in an upside-down manner so that the liquid outlet faces downward. With the liquid outlet facing downward, the neck of the bottle-shaped liquid container P is inserted and held in the dispenser receiver 12 . If described in further detail, the inner surface of the insertion hole of the dispenser receiver 12 is in contact with the outer surface of the neck of the inverted liquid container P, thereby holding the liquid container P. As shown in FIG.
  • the depth of the insertion hole inserted into the dispenser receiver 12 varies depending on the shape and size of the neck of the liquid container P, and therefore the height position of the liquid outlet of the liquid container P also varies more or less.
  • the insertion hole of the dispenser receiver 12 according to the present embodiment has a sufficient depth (height dimension) suitable for necks of arbitrary shapes and sizes.
  • a supporting device for supporting the container body portion of the liquid container P may also be included.
  • the liquid supply side flow path 14 is installed on the lower side of the insertion hole of the dispenser receiver 12 . In this way, the liquid outlet of the liquid container P communicates with the liquid supply side flow path 14 . As will be described later, an on/off valve 32 for opening and closing the flow path is installed between the liquid outlet of the liquid container P and the liquid supply side flow path 14 .
  • the liquid supply side flow path 14 extends from the dispenser receiving portion 12 to the end portion on the rotation shaft side of the rotary door 6A. Then, in the state where the revolving door 6A is closed, the liquid outlet 14A of the liquid supply side flow path 14 is connected to the liquid inlet 24A of the above-mentioned ice making side flow path 24, so that the liquid supply side flow path 14 communicates with the ice making side flow path 24. .
  • the liquid in the liquid container P flows out from the liquid outlet under the action of gravity, flows to the outlet 14A side in the liquid supply side flow path 14, further flows into the ice making side flow path 24 from the inlet 24A, and is supplied from the liquid outlet 24B. to the ice tray 22.
  • the liquid outlet of the liquid container P is arranged at a higher position than the liquid outlet 24B of the ice-making side flow path 24 .
  • the liquid supply unit 10 of the ice making device 8 is arranged on the side of the revolving door 6A, and has a dispenser receiver 12 into which the neck of the liquid container P arranged with the liquid outlet facing downward is inserted. , and the liquid supply side flow path 14 connected to the liquid outlet of the liquid container P attached to the dispenser receiving portion 12 .
  • the refrigerator 2 has the main body 4 and the revolving door 6A attached to the main body 4 in an openable and closable state, and includes the liquid supply part 10 arranged on the revolving door 6A and the revolving door arranged on the main body 4.
  • the ice making part 20 on the top, the liquid supply part 10 has the dispenser receiving part 12 for inserting the neck of the liquid container P arranged so that the liquid outlet faces downward, and the liquid container P mounted to the dispenser receiving part 12.
  • the outlet is connected to the liquid supply side flow path 14, and the ice making part 20 has an ice making tray 22 and an ice making side flow path 24 with a liquid outlet 24B located above the ice making tray 22, at least in the state where the revolving door 6A is closed
  • the liquid supply side flow path 14 communicates with the ice making side flow path 24 , and the liquid in the liquid container P flows through the liquid supply side flow path 14 and the ice making side flow path 24 under the action of gravity to be supplied to the ice making tray 22 .
  • the liquid container P is arranged not on the main body 4 of the refrigerator 2 but on the revolving door 6A, and the liquid flows by gravity and is supplied to the ice tray 22. , so there is no feed pump. Therefore, the area suitable for storage around the ice tray 22 of the main body 4 of the refrigerator 2 is not occupied by the liquid container and the liquid supply pump. In this way, it is possible to provide the refrigerator 2 that can effectively use the storage area while including the ice making device 8 .
  • FIG. 4 is a perspective view showing the pipes constituting the ice-making side flow path 24 of the ice-making device 8 according to the embodiment of the present invention when it is removed.
  • the liquid supply side flow path 14 and the ice making side flow path 24 are composed of pipes.
  • the ice-making side flow path 24 is arranged in a region between the inner container and the outer casing of the main body 4 and is covered by a detachable cover 4A.
  • the pipes constituting the ice-making side flow path 24 can be easily detached by removing the cover 4A. In this way, cleaning and maintenance of the piping of the ice-making side flow path 24 can be easily and reliably performed.
  • FIG. 5A and 5B are plan views showing a first example of the connection mechanism of the liquid supply side flow path 14 and the ice making side flow path 24, and FIG. 5B is a diagram showing a state in which the rotary door 6A is closed and the liquid supply side flow path 14 and the ice making side flow path 24 are in communication.
  • FIG. 5C is a perspective view of the connection protrusion 16 side showing the first example of the connection mechanism of the liquid supply side flow path 14 and the ice making side flow path 24 . In FIG. 5C , there is shown a state where the casing 16A shown in FIGS. 5A and 5B is removed.
  • connection protrusion 16 the end region on the outlet side of the liquid supply side flow path 14 is provided with a connection protrusion 16 , and the end opening of the connection protrusion 16 forms the liquid outlet 14A of the liquid supply side flow path 14 .
  • inlet-side end region of the ice-making side flow path 24 is provided with a connection recess 26 , and the end opening of the connection recess 26 forms a liquid inlet 24A of the ice-making side flow path 24 .
  • connection convex portion 16 of the end region of the liquid supply side flow path 14 is not inserted into the connection concave portion 26 of the end region of the ice making side flow path 24, and the liquid supply The side channel 14 and the ice-making side channel 24 are not in communication.
  • FIG. 5A in the state where the revolving door 6A is opened, the connection convex portion 16 of the end region of the liquid supply side flow path 14 is not inserted into the connection concave portion 26 of the end region of the ice making side flow path 24, and the liquid supply The side channel 14 and the ice-making side channel 24 are not in communication.
  • the connecting convex portion 16 at the end region of the flow path 14 on the liquid supply side is inserted into the connecting concave portion 26 at the end region of the flow path 24 on the ice making side
  • the liquid-supply-side flow path 14 and the ice-making-side flow path 24 are in a communicating state.
  • the connecting convex portion 16 of the liquid supply side flow path 14 is inserted into the connecting concave portion 26 of the ice making side flow path 24
  • the outer surface of the connecting convex portion 16 and the inner surface of the connecting concave portion 26 are in a liquid-tight state.
  • a liquid-tight state is formed by a sealing member (such as an annular seal ring) provided on the connecting convex portion 16 .
  • the liquid supply side flow path 14 is provided with the connection convex portion 16 and the ice making side flow path 24 is provided with the connection concave portion 26 as described above.
  • the liquid supply side flow path 14 is provided with the connection concave portion to make ice
  • the side channel 24 is provided with a connection protrusion.
  • a connection mechanism of any other structure may be adopted as long as it is a structure in which one of the end regions of the liquid-supply-side flow path 14 and the ice-making-side flow path 24 is liquid-tight in a state where the revolving door 6A is closed. One state is inserted into the other, and the inserted state is released in the state where the revolving door 6A is opened.
  • the liquid supply side flow path 14 and the ice making side flow path 24 are composed of pipes, and one of the flow paths 14 ( 24) is inserted into the end region of the other flow path 24(14), and makes the outer surface of the end region of one of the flow paths 14(24) and the other flow path 24(14) in the inserted state A liquid-tight state is formed between the inner surfaces of the end regions, and when the revolving door 6A is closed, the end region of one flow path 14 (24) is inserted into the end region of the other flow path 24 (14) and the liquid supply side
  • the flow path 14 communicates with the ice-making side flow path 24, and in the state where the revolving door 6A is opened, the end area of one of the flow paths 14 (24) is not inserted into the end area of the other flow path 24 (14) and liquid is supplied.
  • the side channel 14 does not communicate with the ice-making side channel 24 .
  • the end region of one of the flow paths 14 (24) is connected/disconnected with the end region of the other flow path 24 (14) in conjunction with the opening and closing of the revolving door 6A.
  • the door 6A is rotated, there is no interference between one flow path 14 (24) and the other flow path 24 (14), and smooth opening and closing can be realized.
  • connection protrusion 16 is mounted on the inner wall of the case 16A via the spring 16B.
  • the connection protrusion 16 is attached to the housing 16A in a state where it can move up, down, left, and right in plan view (refer to the dotted line arrow in FIG. 5C ). That is, the connection protrusion 16 is supported in a movable state by the spring 16B.
  • the connecting convex portion 16 can be reliably inserted into the connection concave portion 26, and the liquid supply side flow path 14 and the ice-making side flow path 24 can be reliably connected.
  • the connecting convex portion 16 is supported in a movable state by the spring 16B, but the present invention is not limited thereto. Conversely, a case where the connection recess 26 is supported in a movable state by a spring is also possible. Further, a case where both the connection convex portion 16 and the connection concave portion 26 are supported by springs in a movable state is also possible.
  • the spring 16B may be formed of a metal material or a resin material. In addition, instead of the spring 16B, an elastic member such as elastic rubber may be used to support the connecting convex portion 16 .
  • connection mechanism As described above, at least one of the end region of one of the flow paths 14 (24) and the end region of the other flow path 24 (14) is moved in a movable manner by the elastic member 16B. State support. Thus, even if the position of the end region of one of the flow paths 14 ( 24 ) is slightly shifted from that of the other flow path 24 ( 14 ), the end of one of the flow paths 14 ( 24 ) The region can also be reliably inserted into the end region of the other flow path 24 (14), and the liquid supply side flow path 14 and the ice making side flow path 24 can be reliably communicated.
  • FIG. 6A is a side view showing a first example of the opening and closing mechanism 30 of the liquid container P mounted to the dispenser receiver 12 and the on/off valve 32 for opening and closing the liquid outlet of the liquid container P.
  • FIG. 6B and FIG. 6C are enlarged schematic diagrams of the opening and closing mechanism 30 of FIG. 6A
  • FIG. 6B is a diagram showing a situation where the on/off valve 32 is in a closed state
  • FIG. 6C is a diagram showing a situation where the on/off valve 32 is in an open state. diagram. All figures show the case where the revolving door 6A is in the closed state.
  • the dispenser receiver 12 of the ice making device 8 includes an on/off valve 32 that is opened and closed by an actuator 34 .
  • the actuating means 34 are provided on the body 4 of the refrigerator 2 .
  • the opening and closing mechanism 30 is constituted by the opening/closing valve 32 and the actuator 34 .
  • the on/off valve 32 includes a nozzle portion 32A and a handle portion 32B attached to the nozzle portion 32A.
  • the nozzle part 32A is arranged between the liquid outlet of the liquid container P and the liquid supply side flow path 14, and can switch between the connected state and the disconnected state.
  • the nozzle portion 32A is in a closed state. In this case, the liquid in the liquid container P does not flow out.
  • FIG. 6C when the handle portion 32B is located at the upper position, the nozzle portion 32A is in an open state. In this case, the liquid in the liquid container P flows out.
  • the actuating device 34 is provided on the main body 4 side of the refrigerator 2.
  • the revolving door 6A is closed and the actuating device 34 is located on the lower side of the handle portion 32B.
  • a telescopic air cylinder having a head 34A at the end is used.
  • the shaft of the air cylinder expands and contracts with a built-in magnetic control valve or an electric motor.
  • the driving surface 34A1 of the actuator device 34 and the driven surface 32B1 of the opening/closing valve 32 are in positions facing each other.
  • the driving surface 34A1 of the head portion 34A is separated from the driven surface 32B1 of the handle portion 32B of the on/off valve 32 .
  • the nozzle part 32A is kept closed by the pressure of the spring built in the nozzle part 32A.
  • the driving surface 34A1 of the head portion 34A comes into contact with the driven surface 32B1 of the handle portion 32B of the on/off valve 32 to move the handle portion 32B upward.
  • the nozzle portion 32A is opened, and at this time, the liquid in the liquid container P flows out to the liquid supply side flow path 14 side.
  • the shaft of the actuator 34 is retracted (pulled in) again, the spout portion 32A returns to the closed state again by the pressure of the spring built in the spout portion 32A, and the liquid outlet of the liquid container P is closed.
  • the actuator device 34 is not located on the lower side of the handle portion 32B.
  • the driving surface 34A1 of the actuator 34 and the driven surface 32B1 of the opening/closing valve 32 are not positioned to face each other, and the nozzle portion 32A is kept closed by the pressure of the spring built in the nozzle portion 32A. state. That is, in a state where the revolving door 6A is opened, the liquid in the liquid container P can be prevented from flowing out.
  • FIG. 7 is a perspective view showing a second example of the actuating device 36 of the opening and closing mechanism 30 .
  • the actuator 36 of this example is constituted by an electric motor 36A with a pinion mounted on a drive shaft, and a rack 36B engaged with the pinion.
  • the rack 36B is moved upward by the rotation of the electric motor 36A, the nozzle portion 32A is opened, and the liquid in the liquid container P flows out to the liquid supply side flow path 14 side.
  • the electric motor 36A reversely rotates to move the rack 36B downward, the nozzle 32A returns to the closed state again by the pressure of the spring built in the nozzle 32A, and the liquid outlet of the liquid container P is closed.
  • the dispenser receiving portion 12 includes the on/off valve 32 opened and closed by the actuator 34 (36), and when the on/off valve 32 is opened In the state, the liquid outlet of the liquid container P communicates with the liquid supply side flow path 14, and in the state where the on/off valve 32 is closed, the liquid outlet of the liquid container P is disconnected from the liquid supply side flow path 14, and the actuating device 34 (36) is disposed on the main body 4, and in the state where the revolving door 6A is closed, the driving surface (for example 34A1) of the actuator device 34 (36) and the driven surface (for example 32B1) of the opening/closing valve 32 are positioned at each other.
  • the on/off valve 32 can be switched by the actuating device 34 (36) to supply a specified amount of liquid in the liquid container P to the ice making tray 22, while the revolving door 6A In the opened state, the on/off valve 32 is always kept closed, and the liquid in the liquid container P can be prevented from leaking out.
  • FIGS. 8A and 8B are diagrams showing the operating state of the opening and closing mechanism and the connection state of the liquid supply side flow path 14 and the ice making side flow path 24 when the revolving door 6A is opened from the closed state.
  • 6A is a diagram when only the first angle ⁇ 1 is opened
  • FIG. 8B is a diagram showing when the revolving door 6A is opened only the second angle ⁇ 2.
  • the following case will be described as an example: when the revolving door 6A is closed, the on/off valve 32 is opened to supply the liquid in the liquid container P to the The revolving door 6A is opened during the ice making tray 22 . Shown here is the use of the actuating device 34 of the first example.
  • the revolving door 6A can be opened smoothly without water leaking to the outside.
  • the control process of returning the actuator 34 (36) to the closed state is performed in the case where the rotary door 6A is opened when the liquid in the liquid container P is being supplied to the ice making tray 22, the control process of returning the actuator 34 (36) to the closed state is performed. In this way, even when the revolving door 6A being opened is closed, the actuator device 34 ( 36 ) is prevented from interfering with the on/off valve 32 .
  • FIGS. 9A and 9B are diagrams showing modification examples at the connection area of the liquid supply side flow path 14 and the ice making side flow path 24, and FIG. 9A shows that the liquid supply side flow path 14 and the ice making side flow path 24 are in 9B is a diagram showing a state in which the liquid supply side flow channel 14 and the ice making side flow channel 24 are in communication.
  • the end region on the outlet side of the liquid supply side flow path 14 is provided with a first sealing member 18 whose end opening forms the outlet 14A of the liquid supply side flow path 14 .
  • a second sealing member 28 is provided at an end region on the inlet side of the ice-making side flow path 24 , and the end opening of the second sealing member 28 (excluding the protrusion 28A) forms an inlet 24A of the ice-making side flow path 24 . .
  • the first seal member 18 includes a seal seat 18A pressed by a spring 18B. Normally, the seal seat 18A comes into contact with the inner wall portion of the first seal member 18 by the pressure of the spring 18B, and the liquid supply side flow path 14 is in a closed state.
  • the second sealing member 28 includes a protrusion 28A protruding toward the front end. When the rotary door 6A is opened, the outlet 14A of the liquid supply side channel 14 is closed by the pressure of the spring 18B.
  • the protrusion 28A of the second sealing member 28 is inserted into the opening of the first sealing member 18 to make the outlet 14A of the liquid supply side flow path 14 open. state. Thereby, the liquid in the liquid container P can be supplied to the ice tray 22 at any time.
  • the outlet 14A of the liquid supply side flow path 14 is always closed, so that the liquid can be prevented from flowing out from the liquid supply side flow path 14 .
  • FIG. 10 is a diagram showing the dispenser receiver 12 including the weight sensor 40 for measuring the weight of the liquid container P.
  • a weight sensor 40 is mounted on the underside. The weight of the liquid container P can be measured by the weight sensor 40 in a state where the neck insertion liquid outlet faces downward.
  • the timing at which the on/off valve 32 is opened is controlled to be determined based on the measured value of the sensor 40 for measuring the weight of the liquid container P. As shown in FIG. In this way, a certain amount of liquid can be reliably supplied to the ice tray 22 at all times.
  • FIG. 11 is a perspective view showing a modified example of the foldable dispenser receiver 12 .
  • this dispenser receiver 12 is capable of folding upper and lower parts.
  • the liquid container P is received in an unfolded state as shown in (a) of FIG. 11 , and the liquid in the liquid container P can be supplied to the ice making tray 22.
  • the storage area of the revolving door 6A can be increased in the folded state as in (b) of FIG. 11 .
  • a beverage container such as a plastic bottle can be stored in the storage recess of the revolving door 6A in a normal placement with the liquid outlet facing upward.
  • 12A is a perspective view showing a second example of the connection mechanism of the liquid supply side flow path 14 and the ice making side flow path 24 .
  • 12B and 12C are plan views showing the connection function shown in FIG. 12A
  • FIG. 12B is a view showing a state where the hose is pulled in
  • FIG. 12C is a view showing a state where the hose is pulled out.
  • the inlet-side region of the ice-making-side flow path 24 is constituted by a hose 62 mounted to the telescoping connection portion 60 .
  • the telescopic connection part 60 is attached to the main body 4 side of the refrigerator 2, and the fixed side end part of the hose 62 communicates with the liquid outlet 24B on the ice tray 22 side.
  • the moving side end of the hose 62 forms an inlet 24A connected to the liquid supply side flow path 14 .
  • the telescoping link 60 is rotatable, mounted on two rollers 64A, 64B connected to the main body of the telescoping link 60 .
  • the roller 64B is pressed by a spring 66 in such a way that the end region of the hose 62 on the moving side is pulled into the telescoping connection 60 .
  • the hose 62 is pulled out from the telescopic connection portion 60 to the outside, and the revolving door 6A can be turned into an open state so that the liquid supply side flow path 14 and the ice making side flow path 24 Still connected.
  • the open revolving door 6A is closed, the hose 62 is pulled into the telescopic connection part 60 by the pressure of the spring 66, so the hose 62 does not interfere with the revolving door 6A, and the revolving door 6A can be turned off.
  • the rotary door 6A can be smoothly opened and closed with the liquid supply side flow path 14 and the ice making side flow path 24 maintaining the communication state as it is.
  • FIG. 13A and 13B are perspective views showing a third example of the connection mechanism between the liquid supply side flow path 14 and the ice making side flow path 24.
  • FIG. A diagram of a state in which the revolving door 6A is closed. In each drawing, (a) shows the entirety of the refrigerator, and (b) is an enlarged view showing a circled area in the drawing of (a).
  • the liquid-supply-side flow path 14 and the ice-making-side flow path 24 are connected by a rotary joint 70 disposed at the position of the rotary shaft of the rotary door 6A.
  • the rotary joint 70 is mounted to the main body 4 of the refrigerator 2 .
  • the liquid supply side flow path 14 and the ice making side flow path 24 are always in a communication state. With such a rotary joint 70 , it is possible to smoothly open and close the rotary door 6A so that the liquid supply side flow path 14 and the ice making side flow path 24 maintain the communication state as it is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices For Dispensing Beverages (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

提供在包括制冰装置的同时能够有效地利用收纳区域的冰箱。冰箱(2)包括主体(4)和安装到主体(4)的旋转门(6A),以及配设在旋转门(6A)上的供液部(10)和配设在主体(4)上的制冰部(20),供液部(10)具有供被配设成液体出口朝下的液体容器P的颈部插入的分配器接收部(12)和安装到分配器接收部(12)的与液体容器P的液体出口连通的供液侧流路(14),制冰部(20)具有制冰盘(22)和具有位于制冰盘(22)上方的出液口(24B)的制冰侧流路(24),至少在旋转门(6A)关闭的状态下,供液侧流路(14)与制冰侧流路(24)连通,液体容器P内的液体在重力作用下流经供液侧流路(14)和制冰侧流路(24)而供给至制冰盘(22)。

Description

冰箱 技术领域
本发明涉及包括制冰装置的冰箱。
背景技术
包括制冰装置的冰箱正广泛普及。在包括制冰装置的冰箱中,在很多情况下包括供水箱和将供水箱内的水吸上来以供给到制冰盘的水泵。在这样的冰箱中,提出了一种在将水泵和供水箱连接和分离时具有更好的操作性的冰箱(例如,参考专利文献1-特开2021-25712号公报)。
然而,在专利文献1中记载的冰箱中,供水箱和水泵位于冰箱主体的高度方向上的中央部分,导致最适合收纳的区域被供水箱和水泵占用了,无法有效地利用收纳区域。
发明内容
利用本发明的目的是提供一种冰箱,其在包括制冰装置的同时也能有效地利用收纳区域。
本发明所涉及的冰箱,其是具有主体和以能开关的状态安装在所述主体上的旋转门的冰箱,所述冰箱包括:分配器接收部,其配设在所述旋转门上,具有分配器接收部和供液侧流路,所述分配器接收部供被配设成液体出口朝下的液体容器的颈部插入,并且所述供液侧流路安装到所述分配器接收部,与所述液体容器的液体出口连通;以及制冰部,其配设在所述主体上,具有制冰盘和具有位于所述制冰盘上方的出液口的制冰侧流路;所述供液侧流路与所述制冰侧流路至少在所述旋转门关闭的状态下连通,所述液体容器内的液体在重力作用下流经所述供液侧流路和所述制冰侧流路而供给至所述制冰盘。
在本发明中,液体容器不是配设在冰箱的主体上而是配设在旋转门上,并且液体在重力作用下流动并供给至制冰盘,因此不存在供液泵。由此,冰箱主体的制冰盘周围的适于收纳的区域不会被液体容器和供液泵所占用。这样就能够提供在包括制冰装置的同时能够有效地利用收纳区域的冰箱。
此外,本发明所涉及的冰箱,所述供液侧流路和所述制冰侧流路由配管构成,其中一个流路的端部区域插入另一流路的端部区域内,并且在插入的状态下,在所述其中一个流路的端部区域的外表面与所述另一流路的端部区前域的内表面之间形成液密状态;在所述旋转门关闭的状态下,所述其中一个流路的端部区域插入所述另一流路的端部区域,并且所述供液侧流路与所述制冰侧流路连通;在所述旋转门打开的状态下,所述其中一个流路的端部区域没有插入所述另一流路的端部区域,并且所述供液侧流路与所述制冰侧流路不连通。
在本发明中,供液侧流路和制冰侧流路由配管构成,并且不存在供液泵,因此可以可靠且容易地从旋转门或冰箱主体卸下配管并清洗或维护配管。此外,使得其中一个流路的端部区域与另一流路的端部区域配合旋转门的开关而 连接/不连接,因此在开关旋转门时,其中一个流路与另一流路之间不会发生干涉,可以实现顺畅的开关。
此外,本发明所涉及的冰箱,所述其中一个流路的端部区域和所述另一流路的端部区域中的至少一个由弹性部件以可移动的状态支撑。
在本发明中,由于其中一个流路的端部区域和另一流路的端部区域中的至少一个由弹性部件以可移动的状态支撑,因此即使是在其中一个流路的端部区域和另一流路的端部区域的位置稍微偏移的情况下,其中一个流路的端部区域也可靠地插入另一流路的端部区域,并且供液侧流路与制冰侧流路能够可靠地连通。
此外,本发明所涉及的冰箱,所述分配器接收部处包括通过致动装置(actuator)而开关的开/关阀;在所述开/关阀打开的状态下,所述液体容器的液体出口与所述供液侧流路连通,在所述开/关阀关闭的状态下,所述液体容器的液体出口与所述供液侧流路之间断开;所述致动装置配设在所述主体处,在所述旋转门关闭的状态下,所述致动装置的驱动面与所述开/关阀的被驱动面处于彼此相对的位置,能开关所述开/关阀,并且在所述旋转门敞开的状态下,所述致动装置的驱动面与所述开/关阀的被驱动面不处于彼此相对的位置,并且所述开/关阀保持关闭的状态。
在本发明中,在旋转门关闭的状态下,通过致动装置来开关开/关阀,能够将指定量的液体容器内的液体供给至制冰盘,而在旋转门打开的状态下,开/关阀总是保持关闭,能够防止液体容器内的液体向外漏出。
此外,本发明所涉及的冰箱,在相对于所述旋转门关闭的位置打开第一角度以上的情况下,所述致动装置的驱动面与所述开/关阀的被驱动面不处于彼此相对的位置,且所述开/关阀保持关闭的状态,并且在相对于所述旋转门关闭的位置打开第二角度以上的情况下,所述第二角度是大于所述第一角度的角度,所述供液侧流路与制冰侧流路不连通。
在当液体容器内的液体正供给至制冰盘时打开旋转门的情况下,在旋转门的旋转角到达第一角度的时候开/关阀变为关闭,于是液体停止从液体容器流出。假如在到达第一角度的时候供液侧流路和制冰侧流路还变为不连通,则积存在供液侧流路内的液体可能会从供液侧流路的液体出口向外流出。然而,在本发明中,由于在到达第一角度后供液侧流路与制冰侧流路仍保持连通状态,因此积存在供液侧流路内的液体流向制冰侧流路侧,并且在到达第二角度的时候,当供液侧流路和制冰侧流路变为不连通时,能够形成供液侧流路内没有液体积存的状态。这样,即使当液体容器内的液体正供给至制冰盘时打开了旋转门,也能够顺畅地打开旋转门而没有水漏到外部。
此外,本发明所涉及的冰箱,在所述分配器接收部处包括用于测量所述颈部被插入的所述液体容器的重量的传感器,根据所述传感器的测定值来制定所述开/关阀打开的时间。
在被配设为液体出口朝下的液体容器内的液体在重力作用下供给至制冰盘的情况下,随着液体从液体容器流出,液体容器内的液体的液面下降且液体出 口处的压力降低,于是液体的流速降低。在本发明中,根据用于测量液体容器的重量的传感器的测定值来制定开/关阀打开的时间,因此能够总是可靠地向制冰盘供给一定量的液体。
根据本发明,能够提供在包括制冰装置的同时也能有效地利用收纳区域的冰箱。
附图说明
图1A是示出从前侧看本发明的一个实施例所涉及的冰箱的立体图。
图1B是图1A中的箭头A所示的区域的放大示出的立体图。
图2A是示出从后侧看本发明的一个实施例所涉及的冰箱的立体图,是去除了外壳的侧面以便能够看到内部的图。
图2B是图2A中的箭头B所示的区域的放大示出的立体图。
图3是示意性地示出包括在图1A所示的冰箱中的本发明的一个实施例所涉及的制冰装置的结构的图。
图4是示出在拆卸下构成本发明的一个实施例所涉及的制冰装置的制冰侧流路的配管时的立体图。
图5A是示出供液侧流路和制冰侧流路的连接机构的第一示例的平面图,是示出了旋转门打开并且供液侧流路与制冰侧流路处于不连通的状态的图。
图5B是示出供液侧流路和制冰侧流路的连接机构的第一示例的平面图,是示出了旋转门关闭并且供液侧流路与制冰侧流路处于连通的状态的图。
图5C是示出供液侧流路和制冰侧流路的连接机构的第一示例的连接凸部侧的立体图。
图6A是示出安装到分配器接收部的液体容器和用于开关液体容器的液体出口的开/关阀的开闭机构的第一示例的侧视图。
图6B是图6A的开闭机构的放大示意图,是示出了开/关阀处于关闭状态的图。
图6C是图6A的开闭机构的放大示意图,是示出了开/关阀处于打开状态的图。
图7是示出开闭机构的致动装置的第二示例的立体图。
图8A是示出旋转门从关闭状态打开时,开闭机构的动作状态以及供液侧流路和制冰侧流路的连接状态的图,是示出了旋转门打开仅第一角度时的图。
图8B是示出旋转门从关闭状态打开时,开闭机构的动作状态以及供液侧流路和制冰侧流路的连接状态的图,是示出了旋转门打开仅第二角度时的图。
图9A是示出供液侧流路和制冰侧流路的连接区域处的变型示例的图,是示出了供液侧流路和制冰侧流路处于不连通的状态的图。
图9B是示出供液侧流路和制冰侧流路的连接区域处的变型示例的图,是示出了供液侧流路和制冰侧流路连通的状态的图。
图10是示出包括重量传感器的分配器接收部的图,重量传感器用于测量液体容器的重量。
图11是示出能折叠的分配器接收部的变型示例的立体图。
图12A是示出供液侧流路和制冰侧流路的连接机构的第二示例的立体图。
图12B是示出图12A所示的连接功能的平面图,是示出了软管被拉入的状态的图。
图12C是示出图12A所示的连接功能的平面图,是示出了软管被拉出的状态的图。
图13A是示出供液侧流路和制冰侧流路的连接机构的第三示例的立体图,是示出了旋转门打开的状态的图。
图13B是示出供液侧流路和制冰侧流路的连接机构的第三示例的立体图,是示出了旋转门关闭的状态的图。
具体实施方式
接下来参考附图来对用于实施本发明的实施例进行说明。接下来说明的冰箱是用于具现化本发明的技术思想的内容,只要没有特定的记载,本发明就不限于接下来的内容。在各图中,存在具有同样功能的部件附有同样符号的情况。为了明确地进行说明,存在夸张地示出各图所示的部件的大小或位置关系等的情况。后文的记载和附图中的上下方向示出了三维空间中的竖直方向。
<一个实施例所涉及的冰箱)
图1A是从前侧看本发明的一个实施例所涉及的冰箱2的立体图。图1B是图1A中的箭头A所示的区域的放大示出的立体图。图2A是从后侧看本发明的一个实施例所涉及的冰箱2的立体图,是去除了外壳的侧面以便能够看到内部的图。图2B是图2A中的箭头B所示的区域的放大示出的立体图。图3是示意性地示出包括在图1A所示的冰箱中的本发明的一个实施例所涉及的制冰装置8的结构的图。
本实施例所涉及的冰箱2包括主体4,以及以能开关的状态安装在主体4的前侧的旋转门6A、6B。旋转门6A、6B左右排列在主体4的前表面上,都是向外侧打开的左右对开门。旋转门6A、6B的下侧还包括旋转门或拉出式收纳室。省略了关于冰箱2的总体结构的进一步详细的说明。
<制冰装置>
本实施例所涉及的冰箱2包括制冰装置8。如下文详细示出的那样,该制冰装置8由供液部10和制冰部20构成。
<制冰部>
如图3示意性地示出的,构成本实施例所涉及的制冰装置8的制冰盘22配设在冰箱2的主体4的高度方向上的中央区域。若进一步详细描述的话,制冰盘22配设在比从前侧看的左侧的旋转门6A的下端稍微更下侧。制冰盘22的上表面开口,并利用间隔壁而形成有多个制冰区域。作为制冰盘22,可以使用具有任意大小的任意数量的制冰区域的制冰盘。
冰箱2的主体4上配设有用于向制冰盘22供给液体的制冰侧流路24,作为制冰侧流路24的液体出口的出液口24B配设在制冰盘22上方。作为与制冰侧 流路24的出液口24B相反侧的端部的液体入口24A配设在关闭状态的旋转门6A的旋转轴侧的端部附近(参考图1B)。
这样,本实施例所涉及的制冰装置8的制冰部20配设在冰箱2的主体4侧,具有制冰盘22和具有位于制冰盘22上方的出液口24B的制冰侧流路24。
<供液部>
另一方面,在本实施例所涉及的制冰装置8中,用于贮藏供给至制冰盘22的液体的液体容器P不在冰箱2的主体4中,而是配设在旋转门6A上。可以使用例如装有饮用水的市售塑料瓶作为液体容器P。但是不限于此,可以使用树脂制、玻璃制或金属制的瓶状的任何液体容器。
分配器接收部12配设在旋转门6A的收纳凹部处。在本实施例中,液体容器P以倒置的方式安装到分配器接收部12,使得液体出口朝下。在液体出口朝下的状态下,瓶状的液体容器P的颈部被插入并保持在分配器接收部12。若进一步详细描述的话,分配器接收部12的插入孔的内表面与倒置的液体容器P的颈部的外表面接触,从而保持液体容器P。
插入分配器接收部12的插入孔的深度取决于液体容器P的颈部的形状、大小而不同,因此液体容器P的液体出口的高度位置或多或少也是不同的。然而,本实施例所涉及的分配器接收部12的插入孔具有适应于任意形状、大小的颈部的足够的深度(高度尺寸)。进一步地,还可以包括用于支撑液体容器P的容器本体部分的支撑装置。
供液侧流路14安装在分配器接收部12的插入孔的下侧。这样,使得液体容器P的液体出口与供液侧流路14连通。如后所述,液体容器P的液体出口与供液侧流路14之间安装有用于进行流路的开关的开/关阀32。
供液侧流路14从分配器接收部12延伸到旋转门6A的旋转轴侧的端部。然后,在旋转门6A关闭的状态下,供液侧流路14的液体出口14A与上述制冰侧流路24的液体入口24A相连,使得供液侧流路14与制冰侧流路24连通。这样,液体容器P内的液体在重力作用下从液体出口流出,在供液侧流路14内流向出口14A侧,进一步从入口24A流入制冰侧流路24内,并从出液口24B供给至制冰盘22。液体容器P的液体出口配设在比制冰侧流路24的出液口24B更高的位置处。
这样,本实施例所涉及的制冰装置8的供液部10配设在旋转门6A侧,并且具有供被配设成液体出口朝下的液体容器P的颈部插入的分配器接收部12、以及安装到分配器接收部12的与液体容器P的液体出口连通的供液侧流路14。
如上所述,本实施例所涉及的冰箱2具有主体4和以能开关的状态安装到主体4的旋转门6A,并且包括配设在旋转门6A上的供液部10和配设在主体4上的制冰部20,供液部10具有供被配设成液体出口朝下的液体容器P的颈部插入的分配器接收部12和安装到分配器接收部12的与液体容器P的液体出口连通的供液侧流路14,并且制冰部20具有制冰盘22和具有位于制冰盘22上方的出液口24B的制冰侧流路24,至少在旋转门6A关闭的状态下,供液侧流路 14与制冰侧流路24连通,液体容器P内的液体在重力作用下流经供液侧流路14和制冰侧流路24而供给至制冰盘22。
这样,在本实施例所涉及的冰箱2中,液体容器P没有配设在冰箱2的主体4上而是配设在旋转门6A上,并且液体在重力作用下流动而供给至制冰盘22,因此不存在供液泵。由此,冰箱2的主体4的制冰盘22周围的适于收纳的区域就不会被液体容器和供液泵所占用。这样就能够提供在包括制冰装置8的同时也能有效地利用收纳区域的冰箱2。
<配管的装卸结构>
图4是示出在拆卸下构成本发明的一个实施例所涉及的制冰装置8的制冰侧流路24的配管时的立体图。在本实施例所涉及的制冰装置8中,供液侧流路14和制冰侧流路24由配管构成。例如,如图4所示,制冰侧流路24配设在主体4的内胆与外壳之间的区域,被能拆卸的盖子4A所覆盖。能够容易地取下盖子4A并拆卸下构成制冰侧流路24的配管。这样,能够容易且可靠地进行制冰侧流路24的配管的清洗和维护。关于供液侧流路14也是一样,可以容易且可靠地将配管从旋转门6A卸下并进行配管的清洗和维护。
<供液侧流路和制冰侧流路的连接机构的第一示例>
图5A、图5B是示出供液侧流路14和制冰侧流路24的连接机构的第一示例的平面图,图5A是示出旋转门6A打开并且供液侧流路14与制冰侧流路24处于不连通的状态的图,图5B是示出旋转门6A关闭并且供液侧流路14与制冰侧流路24处于连通的状态的图。图5C是示出供液侧流路14和制冰侧流路24的连接机构的第一示例的连接凸部16侧的立体图。在图5C中,示出了去除图5A、5B所示的壳体16A的状态。
在该连接机构的第一示例中,供液侧流路14的出口侧的端部区域设有连接凸部16,并且连接凸部16的端部开口形成供液侧流路14的液体出口14A。另一方面,制冰侧流路24的入口侧的端部区域设有连接凹部26,并且连接凹部26的端部开口形成制冰侧流路24的液体入口24A。
如图5A所示,在旋转门6A打开的状态下,供液侧流路14的端部区域的连接凸部16没有插入制冰侧流路24的端部区域的连接凹部26,并且供液侧流路14与制冰侧流路24处于不连通状态。另一方面,如图5B所示,在旋转门6A关闭的状态下,供液侧流路14的端部区域的连接凸部16插入制冰侧流路24的端部区域的连接凹部26,并且供液侧流路14与制冰侧流路24处于连通的状态。在供液侧流路14的连接凸部16插入制冰侧流路24的连接凹部26的状态下,连接凸部16的外表面与连接凹部26的内表面之间成为液密状态。具体地,通过设在连接凸部16上的密封部件(例如环形密封圈)来形成液密状态。
不限于如上所述的供液侧流路14设有连接凸部16并且制冰侧流路24设有连接凹部26的情况,与此相反的供液侧流路14设有连接凹部而制冰侧流路24设有连接凸部的情况也是可以的。此外,可以采用其他任意构造的连接机构,只要是如下构造即可:在旋转门6A关闭的状态下供液侧流路14和制冰侧流路 24的端部区域中的一个以液密的状态插入另一个,而在旋转门6A打开的状态下该插入状态解除。
在如上所述的供液侧流路14和制冰侧流路24的连接机构的第一示例中,供液侧流路14和制冰侧流路24由配管构成,其中一个流路14(24)的端部区域插入另一流路24(14)的端部区域内,并且使得在插入状态下其中一个流路14(24)的端部区域的外表面与另一流路24(14)的端部区域的内表面之间形成液密状态,在旋转门6A关闭的状态下,其中一个流路14(24)的端部区域插入另一流路24(14)的端部区域并且供液侧流路14与制冰侧流路24连通,而在旋转门6A打开的状态下,其中一个流路14(24)的端部区域没有插入另一流路24(14)的端部区域并且供液侧流路14与制冰侧流路24不连通。
在连接机构的第一示例中,其中一个流路14(24)的端部区域与另一流路24(14)的端部区域配合旋转门6A的开闭而连接/不连接,因此在开闭旋转门6A时,其中一个流路14(24)和另一流路24(14)之间不会发生干涉,可以实现顺畅的开闭。
在图5C中,示出了去除壳体16B的状态,但是在连接机构的第一示例中,连接凸部16经由弹簧16B安装在壳体16A的内壁上。这样,连接凸部16以在平面视图中可上下左右移动(参考图5C的虚线箭头)的状态安装到壳体16A。也就是说,连接凸部16通过弹簧16B而以可移动的状态支撑。由此,即使供液侧流路14的出口14A的位置与制冰侧流路24的入口24A的位置稍微偏移,连接凸部16也能可靠地插入连接凹部26,并且供液侧流路14和制冰侧流路24能够可靠地连接。
在上述记载中,连接凸部16通过弹簧16B以可移动的状态支撑,但是不限于此。相反,连接凹部26通过弹簧以可移动的状态支撑的情况也是可以的。进一步地,连接凸部16和连接凹部26二者都通过弹簧以可移动的状态支撑的情况也是可以的。弹簧16B既可以由金属材料形成也可以由树脂材料形成。此外,作为弹簧16B的代替,也可以用弹性橡胶之类的弹性部件来支撑连接凸部16。
在如上所述的连接机构的第一示例中,其中一个流路14(24)的端部区域和另一流路24(14)的端部区域中的至少一个通过弹性部件16B而以可移动的状态支撑。由此,即使是在其中一个流路14(24)的端部区域和另一流路24(14)的端部区域的位置稍微偏移的情况下,其中一个流路14(24)的端部区域也能可靠地插入另一流路24(14)的端部区域,并且供液侧流路14和制冰侧流路24能够可靠地连通。
<开/关阀的开闭机构>
<开闭机构的第一示例>
图6A是示出安装到分配器接收部12的液体容器P和用于开关液体容器P的液体出口的开/关阀32的开闭机构30的第一示例的侧视图。图6B、图6C是图6A的开闭机构30的放大示意图,图6B是示出开/关阀32处于关闭状态的情 况的图,图6C是示出开/关阀32处于打开状态的情况的图。所有图都示出了旋转门6A处于关闭状态的情况。
本实施例所涉及的制冰装置8的分配器接收部12包括通过致动装置34进行开关的开/关阀32。致动装置34配设在冰箱的2的主体4上。通过开/关阀32和致动装置34构成开闭机构30。开/关阀32包括管口部32A和安装到管口部32A的手柄部32B。管口部32A配设在液体容器P的液体出口与供液侧流路14之间,并且能够使二者在连通状态与断开状态之间切换。
如图6B所示,在手柄部32B位于下侧位置的情况下,管口部32A成为关闭的状态。在这种情况下,液体容器P内的液体不向外流出。另一方面,如图6C所示,在手柄部32B位于上侧位置的情况下,管口部32A成为打开的状态。在这种情况下,液体容器P内的液体向外流出。
在本实施例中,致动装置34配设在冰箱2的主体4侧,在图6A至图6C中,示出了旋转门6A关闭并且致动装置34位于手柄部32B的下侧的情况。作为致动装置34,采用在端部具有头部34A的轴伸缩的气缸。气缸的轴利用内置磁控阀或电动马达等而伸缩。
在旋转门6A关闭的状态下,致动装置34的驱动面34A1与开/关阀32的被驱动面32B1处于彼此相对的位置。如图6B所示,轴缩回(拉入)的状态下,头部34A的驱动面34A1与开/关阀32的手柄部32B的被驱动面32B1处于分开的状态。在该状态下,藉由内置于管口部32A中的弹簧的压力,管口部32A保持关闭的状态。
当轴向外侧伸出时,头部34A的驱动面34A1与开/关阀32的手柄部32B的被驱动面32B1抵接并使手柄部32B向上方移动。然后,如图6C所示,在手柄部32B到达上侧位置的情况下,管口部32A成为打开的状态,此时,液体容器P内的液体向供液侧流路14侧流出。当致动装置34的轴再次缩回(拉入)时,藉由内置于管口部32A中的弹簧的压力,管口部32A再次回到关闭的状态,并且液体容器P的液体出口封闭。
另一方面,在旋转门6A打开的状态下,致动装置34不位于手柄部32B的下侧。由此,致动装置34的驱动面34A1与开/关阀32的被驱动面32B1不处于彼此相对的位置,藉由内置于管口部32A中的弹簧的压力,管口部32A保持关闭的状态。也就是说,在旋转门6A打开的状态下,能够防止液体容器P内的液体向外流出。
<开闭机构的第二示例>
图7是示出开闭机构30的致动装置36的第二示例的立体图。本示例的致动装置36由在驱动轴上安装有小齿轮的电动马达36A和与小齿轮咬合的齿条36B构成。在齿条36B通过电动马达36A的旋转而向上方移动时,管口部32A打开,并且液体容器P内的液体向供液侧流路14侧流出。然后,当电动马达36A逆向旋转使齿条36B向下方移动时,利用内置于管口部32A中的弹簧的压力,管口部32A再次回到关闭的状态,并且液体容器P的液体出口封闭。
如上所述,在本实施例所涉及的制冰装置8中,分配器接收部12处包括通过致动装置34(36)而开关的开/关阀32,并且在开/关阀32打开的状态下,液体容器P的液体出口与供液侧流路14连通,而在开/关阀32关闭的状态下,液体容器P的液体出口与供液侧流路14之间断开,致动装置34(36)配设在主体4上,在旋转门6A关闭的状态下,致动装置34(36)的驱动面(例如34A1)与开/关阀32的被驱动面(例如32B1)处于彼此相对的位置,从而能够开关开/关阀32,而在旋转门6A敞开的状态下,致动装置34(36)的驱动面(例如34A1)与开/关阀32的被驱动面(例如32B1)不处于彼此相对的位置,从而使开/关阀32保持关闭的状态。
这样,在旋转门6A关闭的状态下,能够通过致动装置34(36)来开关开/关阀32以将指定量的液体容器P内的液体供给至制冰盘22,而在旋转门6A打开的状态下,开/关阀32总是保持关闭,并且能够防止液体容器P内的液体向外漏出。
<打开旋转门时的状况>
图8A和图8B是示出旋转门6A从关闭状态打开时,开闭机构的动作状态以及供液侧流路14和制冰侧流路24的连接状态的图,图8A是示出旋转门6A打开仅第一角度θ1时的图,图8B是示出旋转门6A打开仅第二角度θ2时的图。在后文中,以如下情况为例进行说明:在旋转门6A关闭的状态时,打开开/关阀32使液体容器P内的液体经由供液侧流路14和制冰侧流路24供给至制冰盘22期间旋转门6A被打开。这里示出的是使用第一示例的致动装置34的情况。
在旋转门6A被从关闭状态打开时,当旋转角度到达第一角度θ1处时,如图8A所示,致动装置34的驱动面34A1与开/关阀32的被驱动面32B1从彼此相对的位置脱离,开/关阀32利用弹簧的压力由打开变为关闭,从而保持关闭的状态。在继续打开旋转门6A使得旋转角度到达第二角度θ2处时,第二角度θ2是大于第一角度θ1的角度,如图8B所示,供液侧流路14与制冰侧流路24变为不连通。
当在开/关阀32处于打开状态使液体容器P内的液体供给至制冰盘22打开旋转门6A时,在旋转角度到达第一角度θ1的时候液体从液体容器P的流出停止。然而,由于有液体积存在供液侧流路14内,因此假如在旋转角度到达第一角度θ1的时候就使供液侧流路14和制冰侧流路24也变为不连通,那么可能会有积存在供液侧流路14内的液体从液体出口14A向外流出的问题。
然而,在本实施例中,即使旋转门6A的旋转角度到达第一角度θ1也仍保持供液侧流路14与制冰侧流路24连通的状态,因此积存在供液侧流路14内的液体流向制冰侧流路24。此后,当旋转门6A的旋转角度到达第二角度的时候,供液侧流路14与制冰侧流路24变为不连通,但供液侧流路14内基本上没有液体残存,因此能够防止液体从供液侧流路14向外部流出。即使仍有少量液体残存在供液侧流路14中,由于液体容器P的液体出口被封闭,因此液体容器P内的液体头部也不会滴落,能够利用表面张力防止液体向外流出。
这样,即使是在液体容器P内的液体正供给至制冰盘22时打开旋转门6A,水也不会漏到外部,并且能够顺畅地打开旋转门6A。在本实施例中,在当液体容器P内的液体正供给至制冰盘22时打开旋转门6A的情况下,进行致动装置34(36)返回关闭状态的控制处理。这样,即使是在正在打开的旋转门6A被关闭的情况下,也能防止致动装置34(36)与开/关阀32发生干涉。
<连接区域处的变型示例>
图9A、图9B是示出供液侧流路14和制冰侧流路24的连接区域处的变型示例的图,图9A是示出供液侧流路14和制冰侧流路24处于不连通的状态的图,图9B是示出供液侧流路14和制冰侧流路24连通的状态的图。
在该变型示例中,供液侧流路14的出口侧的端部区域设有第一密封部件18,第一密封部件18的端部开口形成供液侧流路14的出口14A。另一方面,制冰侧流路24的入口侧的端部区域设有第二密封部件28,第二密封部件28的端部开口(突起部28A除外)形成制冰侧流路24的入口24A。
第一密封部件18包括用弹簧18B压住的密封座18A。通常,密封座18A因弹簧18B的压力而抵接到第一密封部件18的内侧壁部,并且供液侧流路14变为关闭的状态。第二密封部件28处包括向前端突出的突起部28A。在旋转门6A打开的状态下,供液侧流路14的出口14A因弹簧18B的压力而变为关闭的状态。另一方面,在旋转门6A关闭的状态下,第二密封部件28的突起部28A插入第一密封部件18的开口部并推挤密封座18A,从而在密封座18A与第一密封部件18的内侧壁部之间形成间隙。这样,供液侧流路14的出口14A就变为打开的状态。
在连接区域处的变型示例中,在旋转门6A关闭的状态下,第二密封部件28的突起部28A插入第一密封部件18的开口部使供液侧流路14的出口14A变为打开的状态。由此,在任何时刻都可以将液体容器P内的液体供给至制冰盘22。另一方面,在旋转门6A打开的状态下,供液侧流路14的出口14A变为总是关闭的状态,因此能够防止液体从供液侧流路14向外部流出。
<包括重量传感器的分配器接收部>
图10是示出包括重量传感器40的分配器接收部12的图,重量传感器40用于测量液体容器P的重量。在该分配器接收部12处,在下侧安装有重量传感器40。通过重量传感器40能够在颈部插入液体出口朝下的状态下测量液体容器P的重量。
当被配设成液体出口朝下的液体容器P内的液体在重力作用下从液体出口流出时,随着液体从液体容器P流出,液体容器内的液体水位下降,并且流出的液体的流速降低。然而,在本实施例中,开/关阀32打开的时间被控制根据用于测量液体容器P的重量的传感器40的测定值来确定。这样,总是有一定量的液体能够可靠地供给至制冰盘22。
<能折叠的分配器接收部>
图11是示出能折叠的分配器接收部12的变型示例的立体图。如图11的(a)中的箭头所示,该分配器接收部12能够折叠上侧和下侧的部件。在如夏 季这样的需要制冰的时期,以如图11的(a)中那样的展开状态承接液体容器P,可以将液体容器P内的液体供给至制冰盘22。另一方面,在如冬季这样的不需要制冰的时期,以如图11的(b)中那样的折叠状态,能够增加旋转门6A的收纳区域。通过折叠分配器接收部12,可以将塑料瓶之类的饮料容器以液体出口朝上的通常放置方式收纳在旋转门6A的收纳凹部处。
<供液侧流路和制冰侧流路的连接机构的第二示例>
图12A是示出供液侧流路14和制冰侧流路24的连接机构的第二示例的立体图。图12B、图12C是示出图12A所示的连接功能的平面图,图12B是示出软管被拉入的状态的图,图12C是示出软管被拉出的状态的图。
在该连接机构的第二示例中,制冰侧流路24的入口侧区域由软管62构成,软管62安装到伸缩式连接部60。伸缩式连接部60安装在冰箱2的主体4侧,并且软管62的固定侧的端部与制冰盘22侧的出液口24B连通。软管62的移动侧的端部形成与供液侧流路14相连的入口24A。与上述第一示例的不同之处在于,在第二示例中,供液侧流路14和制冰侧流路24总是处于连通的状态。
伸缩式连接部60是可旋转的,其架设在连接到伸缩式连接部60主体的两个滚轮64A、64B上。滚轮64B通过弹簧66而压向使软管62的移动侧的端部区域拉入伸缩式连接部60内里的方向。
这样,当关闭的旋转门6A被打开时,软管62被从伸缩式连接部60向外侧拉出,并且旋转门6A可以变为打开状态而供液侧流路14和制冰侧流路24仍然相连。另一方面,在打开的旋转门6A被关闭时,软管62因弹簧66的压力而被拉入伸缩式连接部60内里,因此软管62与旋转门6A不会发生干涉,并且旋转门6A可以变为关闭状态。利用如上所述的构造,能够以供液侧流路14和制冰侧流路24就那样保持连通状态的方式顺畅地开闭旋转门6A。
<供液侧流路和制冰侧流路的连接机构的第三示例>
图13A、图13B是示出供液侧流路14和制冰侧流路24的连接机构的第三示例的立体图,图13A是示出旋转门6A打开的状态的图,图6B是示出旋转门6A关闭的状态的图。在每幅图中,(a)示出了冰箱整体,并且(b)是放大示出(a)的图中用圆圈围住的区域的图。
在该连接机构的第三示例中,供液侧流路14和制冰侧流路24用配设在旋转门6A的旋转轴位置处的旋转接头70来连接。旋转接头70安装到冰箱2的主体4上。在该第三示例中,供液侧流路14和制冰侧流路24也是总是保持连通的状态。利用这样的旋转接头70,能够以供液侧流路14和制冰侧流路24就那样保持连通状态的方式顺畅地开闭旋转门6A。
尽管说明了本发明的实施例和实施方式,但是公开内容在构成的细节方面有所变化也是可以的,也可以实现实施例、实施方式中的要素的组合或顺序的变化等,而不脱离所请求的本发明的范围和思想。

Claims (15)

  1. 一种冰箱,其特征在于,其是具有主体和以能开闭的状态安装在所述主体上的旋转门的冰箱,
    所述冰箱包括:
    供液部,其配设在所述旋转门上,具有分配器接收部和供液侧流路,所述分配器接收部供被配设成液体出口朝下的液体容器的颈部插入,并且所述供液侧流路安装到所述分配器接收部,与所述液体容器的液体出口连通;以及
    制冰部,其配设在所述主体上,具有制冰盘和具有位于所述制冰盘上方的出液口的制冰侧流路;
    所述供液侧流路与所述制冰侧流路至少在所述旋转门关闭的状态下连通,所述液体容器内的液体在重力作用下流经所述供液侧流路和所述制冰侧流路而供给至所述制冰盘。
  2. 根据权利要求1所述的冰箱,其特征在于,所述供液侧流路和所述制冰侧流路由配管构成,其中一个流路的端部区域插入另一流路的端部区域内,并且在插入的状态下,在所述其中一个流路的端部区域的外表面与所述另一流路的端部区域的内表面之间形成液密状态;
    在所述旋转门关闭的状态下,所述其中一个流路的端部区域插入所述另一流路的端部区域,并且所述供液侧流路与所述制冰侧流路连通;
    在所述旋转门打开的状态下,所述其中一个流路的端部区域没有插入所述另一流路的端部区域,并且所述供液侧流路与所述制冰侧流路不连通。
  3. 根据权利要求2所述的冰箱,其特征在于,所述其中一个流路的端部区域和所述另一流路的端部区域中的至少一个由弹性部件以可移动的状态支撑。
  4. 根据权利要求2或3所述的冰箱,其特征在于,所述分配器接收部处包括通过致动装置而开关的开/关阀;
    在所述开/关阀打开的状态下,所述液体容器的液体出口与所述供液侧流路连通,在所述开/关阀关闭的状态下,所述液体容器的液体出口与所述供液侧流路之间截断;
    所述致动装置配设在所述主体处,在所述旋转门关闭的状态下,所述致动装置的驱动面与所述开/关阀的被驱动面处于彼此相对的位置,能开关所述开/关阀,并且在所述旋转门打开的状态下,所述致动装置的驱动面与所述开/关阀的被驱动面不处于彼此相对的位置,并且所述开/关阀保持关闭的状态。
  5. 根据权利要求4所述的冰箱,其特征在于,在相对于所述旋转门关闭的位置打开第一角度以上的情况下,所述致动装置的驱动面与所述开/关阀的被驱动面不处于彼此相对的位置,且所述开/关阀保持关闭的状态,并且在相对于所述旋转门关闭的位置打开第二角度以上的情况下,所述第二角度是大于所述第一角度的角度,所述供液侧流路与制冰侧流路不连通。
  6. 根据权利要求4或5所述的冰箱,其特征在于,在所述分配器接收部处包括用于测量所述颈部被插入的所述液体容器的重量的传感器,根据所述传感器的测定值来制定所述开/关阀打开的时间。
  7. 根据权利要求1所述的冰箱,其特征在于,所述供液侧流路的出口侧的端部区域设有连接凸部,并且连接凸部的端部开口形成供液侧流路的液体出口,所述制冰侧流路的入口侧的端部区域设有连接凹部,并且连接凹部的端部开口形成制冰侧流路的液体入口。
  8. 根据权利要求7所述的冰箱,其特征在于,所述分配器接收部包括通过致动装置进行开关的开/关阀,开/关阀包括管口部和安装到管口部的手柄部,所述管口部配设在液体容器的液体出口与供液侧流路之间,并且能够使二者在连通状态与断开状态之间切换。
  9. 根据权利要求8所述的冰箱,其特征在于,在手柄部位于下侧位置的情况下,管口部成为关闭的状态,所述液体容器内的液体不向外流出,在手柄部位于上侧位置的情况下,管口部成为打开的状态,所述液体容器内的液体向外流出。
  10. 根据权利要求7所述的冰箱,其特征在于,所述供液侧流路的出口侧的端部区域设有第一密封部件,第一密封部件的端部开口形成供液侧流路的液体出口,制冰侧流路的入口侧的端部区域设有第二密封部件,第二密封部件的端部开口形成制冰侧流路的液体入口。
  11. 根据权利要求10所述的冰箱,其特征在于,所述第一密封部件包括用弹簧压住的密封座,所述第二密封部件处包括向前端突出的突起部。
  12. 根据权利要求1所述的冰箱,其特征在于,所述分配器接收部包括能够折叠上侧和下侧的部件。
  13. 根据权利要求1所述的冰箱,其特征在于,所述制冰侧流路的入口侧区域由软管构成,所述软管安装到伸缩式连接部,所述伸缩式连接部安装在冰箱的主体侧,并且软管的固定侧的端部与制冰盘侧的出液口连通,所述软管的移动侧的端部形成与供液侧流路相连的入口,,所述供液侧流路和制冰侧流路保持连通的状态。
  14. 根据权利要求13所述的冰箱,其特征在于,所述伸缩式连接部是可旋转的,其架设在连接到伸缩式连接部主体的两个滚轮上,其中一个滚轮通过弹簧而压向使软管的移动侧的端部区域拉入伸缩式连接部内里的方向。
  15. 根据权利要求1所述的冰箱,其特征在于,所述供液侧流路和制冰侧流路用配设在旋转门的旋转轴位置处的旋转接头来连接,所述旋转接头安装到冰箱的主体上,所述供液侧流路和制冰侧流路保持连通的状态。
PCT/CN2022/117826 2021-09-13 2022-09-08 冰箱 WO2023036244A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280062104.8A CN117980672A (zh) 2021-09-13 2022-09-08 冰箱

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021148593A JP2023041301A (ja) 2021-09-13 2021-09-13 冷蔵庫
JP2021-148593 2021-09-13

Publications (1)

Publication Number Publication Date
WO2023036244A1 true WO2023036244A1 (zh) 2023-03-16

Family

ID=85507190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117826 WO2023036244A1 (zh) 2021-09-13 2022-09-08 冰箱

Country Status (3)

Country Link
JP (1) JP2023041301A (zh)
CN (1) CN117980672A (zh)
WO (1) WO2023036244A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280772A (ja) * 2000-03-30 2001-10-10 Sanyo Electric Co Ltd 自動製氷機付き冷蔵庫
CN101520265A (zh) * 2008-02-27 2009-09-02 Lg电子株式会社 冰箱的制冰组件及其控制方法
CN201715808U (zh) * 2010-04-02 2011-01-19 合肥美的荣事达电冰箱有限公司 一种冰箱
CN102243001A (zh) * 2011-07-26 2011-11-16 合肥美的荣事达电冰箱有限公司 一种冰箱
CN102322717A (zh) * 2011-09-02 2012-01-18 合肥美的荣事达电冰箱有限公司 制冰机和冰箱
CN210625092U (zh) * 2019-06-25 2020-05-26 青岛海尔电冰箱有限公司 门体及冰箱
CN210832652U (zh) * 2019-08-29 2020-06-23 青岛海尔电冰箱有限公司 制冰系统的分配器与具有该分配器的冰箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280772A (ja) * 2000-03-30 2001-10-10 Sanyo Electric Co Ltd 自動製氷機付き冷蔵庫
CN101520265A (zh) * 2008-02-27 2009-09-02 Lg电子株式会社 冰箱的制冰组件及其控制方法
CN201715808U (zh) * 2010-04-02 2011-01-19 合肥美的荣事达电冰箱有限公司 一种冰箱
CN102243001A (zh) * 2011-07-26 2011-11-16 合肥美的荣事达电冰箱有限公司 一种冰箱
CN102322717A (zh) * 2011-09-02 2012-01-18 合肥美的荣事达电冰箱有限公司 制冰机和冰箱
CN210625092U (zh) * 2019-06-25 2020-05-26 青岛海尔电冰箱有限公司 门体及冰箱
CN210832652U (zh) * 2019-08-29 2020-06-23 青岛海尔电冰箱有限公司 制冰系统的分配器与具有该分配器的冰箱

Also Published As

Publication number Publication date
JP2023041301A (ja) 2023-03-24
CN117980672A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
US7455085B2 (en) Water dispenser for refrigerator freezers
US20040011800A1 (en) Self regulating spout
US20100083686A1 (en) Apparatus for dispensing beverages through a refrigerator door
WO2023036244A1 (zh) 冰箱
CN101512258B (zh) 具有用于冰盘的水供应装置的冰箱
KR101258437B1 (ko) 제빙유닛 및 이를 구비하는 냉장고
RU2401797C1 (ru) Соединительный механизм между контейнером для напитка и раздаточным устройством для напитка и раздаточное устройство для напитка, использующее этот механизм
EP3730878B1 (en) Water storage device and refrigerator having same
US9267732B2 (en) Refrigerator
CN101506601B (zh) 冰盘组件及具有这种冰盘组件的冰箱
JPH11304323A (ja) 自動製氷機の給水装置
CN211999638U (zh) 调酒机
EP3730879B1 (en) Water storage device and refrigerator having same
CN111839219B (zh) 水箱及饮水设备
KR0181656B1 (ko) 냉각음료 공급장치
JP2561505Y2 (ja) 液体注出装置における液体容器の接続構造
WO2023116898A1 (zh) 冰箱
JP3639032B2 (ja) 冷却飲料供給装置
ES2243388T3 (es) Aparato refrigerador con unidad dispensadora de bebidas.
KR100217048B1 (ko) 냉장고용 급수 장치
KR20080112702A (ko) 냉장고용 생수 공급장치
JP3639031B2 (ja) 冷却飲料供給装置を備える冷蔵庫
KR200153681Y1 (ko) 냉장고의 급수펌프장치
JPH0733898U (ja) 飲料注出装置の注出構造
KR20090007326U (ko) 냉장고

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE