WO2023036205A1 - 一种通信方法、装置及系统 - Google Patents

一种通信方法、装置及系统 Download PDF

Info

Publication number
WO2023036205A1
WO2023036205A1 PCT/CN2022/117651 CN2022117651W WO2023036205A1 WO 2023036205 A1 WO2023036205 A1 WO 2023036205A1 CN 2022117651 W CN2022117651 W CN 2022117651W WO 2023036205 A1 WO2023036205 A1 WO 2023036205A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
layer
transmission channel
service
channel
Prior art date
Application number
PCT/CN2022/117651
Other languages
English (en)
French (fr)
Inventor
何青春
程型清
李明超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023036205A1 publication Critical patent/WO2023036205A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method, device, and system.
  • the short-distance communication system defines a three-layer communication protocol architecture based on the application layer, service layer, and access layer.
  • the control plane and user plane are defined in the service layer.
  • the service layer can be used for service discovery and multi-domain integration in the control plane.
  • Functions such as 5G integration and 5G integration allocate default control plane transmission channels to provide basic transmission services. These default control plane transmission channels are static channels, which will be activated by default after the bearer of the access layer (that is, the link channel) is established, so that corresponding services can be quickly provided.
  • these default control plane transmission channels cannot meet the transmission requirements in complex business scenarios.
  • Embodiments of the present application provide a communication method, device, and system. By dynamically establishing a first transmission channel between a first node and a second node according to the target transmission requirements of the first node, it is helpful to flexibly serve the first node. Nodes schedule communication resources.
  • the embodiment of the present application provides a communication method, which can be applied to a first node, where the first node can be a terminal node, and can communicate with a second node by using a first communication technology.
  • the method may include: determining a target transmission requirement of the first node; determining whether to establish a first transmission channel according to the target transmission requirement, and the first transmission channel is used for communicating with a second node; sending a message to the second node A first request message, where the first request message is used to request establishment of the first transmission channel; receiving a first response message from the second node, where the first response message is used to confirm establishment of the first transmission channel channel.
  • the first node can dynamically establish the first transmission channel with the second node according to its own target transmission requirements.
  • the first transmission channel will not be limited to the default configuration, nor will it Static transmission channels cannot meet the transmission requirements, and will not cause unreasonable occupancy and waste of transmission resources due to the default configuration of more static transmission channels, which helps to improve the utilization efficiency of transmission resources and can also meet various requirements transmission requirements to adapt to richer transmission scenarios.
  • the target transmission requirement includes one or more of the following information: quality of service QoS parameters, transmission channel parameters, user level information, control plane load information, user plane load information, Control offload information, service type of the first service, or service feature information of the first service.
  • the target transmission requirement of the first node may include one or more of the above items, so as to adapt to richer transmission scenarios.
  • the first service may be a service supported by the first node (or any protocol layer of the first node), such as a service realized by short-distance communication, including but not limited to audio service, video service, control function service, etc.; Services realized in communication scenarios include but are not limited to short-range communication services and 5G services in scenarios where short-range communication technologies and 5G communication technologies are integrated.
  • the target transmission requirement in the embodiment of the present application is only an illustration of the transmission requirement of the first node without any limitation.
  • the target transmission requirement can also be determined according to other parameters or services. The embodiment of the application does not limit this.
  • the first request message includes at least one of the following configuration information: address information of the first transmission channel, a source channel identifier of the first transmission channel, and the The source channel identifier and the QoS parameter identifier of the first bearer associated with the first transport channel.
  • the first node can carry the relevant configuration information of the first transmission channel in the first request message, and negotiate with the second node to establish the first transmission channel, so as to adapt to richer transmission scenarios.
  • the first request message may also include other configuration information, or information other than the configuration information, which will not be repeated here.
  • source channel identifier indicates the transmission direction of the message carrying the channel identifier, that is, it is sent from the requester to the responder, and is not limited to The first node is the source node, and the second node is the target node.
  • the channel identifier carried in the first request message sent by the second node to the first node may be referred to as a "source channel identifier".
  • the first response message includes at least one of the following confirmation information: address information of the first transmission channel, a target channel identifier of the first transmission channel, and the The target channel identifier of the first bearer associated with the first transport channel.
  • the second node can carry relevant confirmation information for the first request message in the first response message and feed it back to the first node, so that the first node can confirm the establishment of the first transmission channel.
  • the first response message may also include rejection information for the first request message instead of confirmation information, and the rejection information may include the second node re-established for the first node.
  • a target channel identifier of the third transmission channel which can replace the first transmission channel and be used for communication between the first node and the second node.
  • target channel identifier indicates the transmission direction of the message carrying the channel identifier, that is, it is fed back from the responder to the receiver, and is not limited to The first node is the source node, and the second node is the target node. Similarly, in some embodiments, if the roles of the first node and the second node are reversed, that is, the first node is the responder, and the second node is the requester. party, the channel identifier carried in the first response message sent by the first node to the second node may be referred to as a "target channel identifier".
  • the first node and the second node negotiate based on the first request message and the first response message to establish the first transmission channel, the first node in the first request
  • the confirmation information carried in the first response message fed back by the second node to the first node may be the same configuration information, for example, the first The source channel ID of a transport channel is the same as the target channel ID.
  • the confirmation information carried in the first response message fed back by the second node to the first node may include relevant configuration information reconfigured by the second node, for example, the first response message contained in the first response message.
  • the target channel identifier of a transmission channel is different from the source channel identifier of the first transmission channel included in the first request message.
  • the first response message may further include a source channel identifier of the first transport channel and/or a source channel identifier of the first bearer.
  • the first transmission channel (or the third transmission channel) established between the first node and the second node may have a channel identifier (that is, no transmission direction is distinguished), which is used for unique Identifying the first transmission channel (or the third transmission channel), the configuration information carried in the first request message or the confirmation information carried in the first response message may include the channel identifier, respectively used to request to establish the The first transport channel, confirming that the first transport channel is established.
  • the first transmission channel may have a transmission direction
  • the requester such as the first node
  • the responder such as the second node
  • the requester is an uplink transmission direction
  • the responder to the requester is the downlink transmission direction, and has an uplink channel identifier, which is used to indicate the transmission direction of the downlink information of the first transmission channel.
  • the source channel identifier carried in a request message may include the source uplink channel identifier and the source downlink channel identifier configured by the first node for the first transmission channel
  • the target channel identifier that may be carried in the first response message may include the The second node confirms the established target uplink channel identifier and target downlink channel identifier of the first transmission channel.
  • the embodiment of the present application does not limit the specific implementation of the channel identifier of the first transmission channel (or the third transmission channel).
  • the communication protocol architecture of the first node includes an application layer, a service layer, and an access layer.
  • the determining to establish the first transmission channel according to the target transmission requirement includes: the service layer determining to establish the first transmission channel according to the target transmission requirement; or, the The service layer determines to establish the first transmission channel according to the second request message from the application layer, where the second request message is used to indicate the target transmission requirement.
  • the service layer of the first node can be used as a decision-making body to decide whether to trigger the dynamic channel establishment process, so as to adapt to more abundant transmission scenarios.
  • the method further includes: the service layer sending a third request message to the access layer, where the third request message is used to request configuration with the first The first bearer associated with the transmission channel; the service layer receives a third response message from the access layer, where the third response message is used to confirm configuration of the first bearer.
  • the service layer of the first node can first request the access layer of the first node to configure the first bearer, so as to establish the first transmission channel associated with the first bearer, so that the first node can communicate between different protocol layers of the first node. Establish corresponding transport bearers between them.
  • the method further includes: the access layer receiving the third request message from the service layer;
  • the first bearer is determined from the bearers of the first node and the second node.
  • the access layer of the first node can determine the first bearer that meets the target transmission requirements among the existing access layer bearers between the first node and the second node, so that the first node can directly multiplex the existing Having a bearer as the first bearer can reduce the occupation of access layer channel resources.
  • the communication protocol architecture of the second node includes an access layer
  • the method further includes: the access layer of the first node receives the The third request message of the service layer; the access layer of the first node sends a fourth request message to the access layer of the second node according to the third request message, and the fourth request message is used for Requesting configuration of the first bearer; the access layer of the first node receives a fourth response message from the access layer of the second node, where the fourth response message is used to confirm configuration of the first bearer; The access layer of the first node sends the third response message to the service layer of the first node according to the fourth response message.
  • the access layer of the first node can request the access layer of the second node to configure the first bearer that meets the target transmission requirements, and the access layer of the second node can feed back a response message to the access layer of the first node (or called a reconfiguration message) to confirm the configuration of the first bearer, so that the access layer of the second node can configure the first bearer for the access layer of the first node that better meets the target transmission requirements of the first node .
  • the communication protocol architecture of the second node includes an access layer
  • the method further includes: the access layer of the first node receives the The third request message of the service layer; the access layer of the first node receives a reconfiguration message from the access layer of the second node, and the reconfiguration message is used to indicate configuration of the first bearer; The access layer of the first node sends the third response message to the service layer of the first node according to the reconfiguration message.
  • the access layer of the second node can actively send a reconfiguration message to the access layer of the first node according to some basic parameters reported by the first node during registration, such as node type, service type, QoS parameters, etc.
  • the first bearer is configured for the access layer scheduling of the first node, and the first bearer can meet the general transmission requirements of the first node, so that the first node does not need to request configuration, and the information between the first node and the second node can be reduced. Command interaction, reducing signaling overhead.
  • the communication protocol architecture of the second node includes a service layer
  • the sending the first request message to the second node includes: the service layer of the first node sends the request message to the The service layer of the second node sends the first request message
  • the receiving the first response message from the second node includes: the service layer of the first node receives the first request message from the second node Respond to the message.
  • the service layer of the first node can act as a decision-making subject to trigger a dynamic channel establishment process with the second node.
  • the method further includes: the service layer of the first node establishes at least one of the following mapping relationships: a mapping relationship between the first transport channel and a service type, A mapping relationship between the first transport channel and a QoS parameter, a mapping relationship between the first transport channel and an associated first bearer, and a mapping relationship between the first transport channel and a node type.
  • the method further includes: synchronizing the at least one mapping relationship between the service layer of the first node and the access layer and/or application layer of the first node.
  • the service layer of the first node can establish a mapping relationship between the first transmission channel and other information, and synchronize to other protocol layers, so that each protocol layer can subsequently provide corresponding information for the first node based on the mapping relationship. transmission service.
  • the service layer of the first node supports at least two protocol stacks, and the data packets based on the at least two protocol stacks multiplex the first transmission channel, and the The data packets of at least two protocol stacks contain indication information, and the indication information is used to indicate the association relationship between the data packets and the protocol stacks; or, the first bearer is associated with a second transmission channel configured by default, based on the The data packets of at least two protocol stacks are respectively transmitted to the second node through the first transmission channel or the second transmission channel.
  • the at least two protocol stacks supported by the service layer of the first node can multiplex the same transmission channel, or, the indication information contained in the data packet indicates the association between the data packet and the protocol stack, which helps Reduce the problem of packet transmission errors from different protocol stacks, and at the same time reduce the occupancy of transmission resources.
  • the at least two protocol stacks may be transmitted through different transmission channels, so as to reduce the occupation of transmission resources.
  • the indication information is added to the data packets based on the at least two protocol stacks through the data transmission and adaptation layer of the first node, and the data transmission and The adaptation layer is located at the lower layer of the at least two protocol stacks in the service layer of the first node; or, the indication information is added to the protocol stack based on the at least two protocols through the first logical entity in the first node.
  • the first logical entity is located in the lower layer of the at least two protocol stacks in the service layer of the first node, and in the upper layer of the data transmission and adaptation layer.
  • the data transmission and adaptation layer located in the service layer of the first node can identify which protocol stack the data packet delivered by the upper layer comes from, and add a link between the data packet and the protocol stack to the data packet The indication information of the association relationship, so that the peer node can identify the association relationship between the data packet and the protocol stack, and submit the data packet to the corresponding protocol stack of the upper layer.
  • the lower layer of the at least two protocol stacks and the upper layer of the data transmission and adaptation layer in the service layer of the first node can be newly Add the first logical entity, the first logical entity can identify which protocol stack the data packet comes from, and add corresponding indication information in the data packet, the method of adding the indication information and the corresponding data packet frame in the embodiment of the present application
  • the structure is not limited.
  • the peer node adopts the same method, for example, through the data transmission and adaptation layer or the newly added second logical entity (corresponding to the first logical entity, which can be used to parse data from the first logical entity), to The data packet is parsed, so as to know which upper layer protocol stack the data packet needs to be submitted to through the indication information obtained through parsing, which will not be repeated here.
  • the first node supports a first communication technology
  • the second node supports a first communication technology and a second communication technology
  • the first communication technology and the second communication technology The communication technologies are different
  • the method further includes: the first node sends an authentication request to the network of the second communication technology through the second node; the first node receives the authentication request from the second node through the second node
  • the authentication success indication information of the network of the second communication technology, wherein the target transmission requirement may include the authentication success indication information.
  • the target transmission requirement of the first node may also include authentication success indication information from the network of the second communication technology, so that The first transmission channel established between the first node and the second node can meet transmission requirements in a converged communication scenario.
  • the method further includes: determining to release or deactivate the first transmission channel; sending a fifth request message to the second node, where the fifth request message uses Instructing to release or deactivate the first transport channel.
  • the first node can also dynamically release or deactivate the first transmission channel, so as to reduce the occupation of transmission resources.
  • the embodiment of the present application provides a communication method, which is applied to a second node, and the method includes: receiving a first request message from the first node, and the first request message is used to request establishment of a first transmission channel, the first transmission channel is used to communicate with the second node, and the first transmission channel is associated with the target transmission requirements of the first node; sending a first response message to the first node, the second A response message is used to confirm the establishment of the first transmission channel.
  • the target transmission requirement includes one or more of the following information: quality of service QoS parameters, transmission channel parameters, user level information, control plane load information, user plane load information, Control offload information, service type of the first service, or service feature information of the first service.
  • the first request message includes at least one of the following configuration information: address information of the first transmission channel, a source channel identifier of the first transmission channel, and the The source channel identifier and the QoS parameter identifier of the first bearer associated with the first transport channel.
  • the first response message includes at least one of the following confirmation information: address information of the first transmission channel, a target channel identifier of the first transmission channel, and the The target channel identifier of the first bearer associated with the first transport channel.
  • the communication protocol architecture of the first node includes an access layer
  • the communication protocol architecture of the second node includes an access layer
  • the method further includes: the first node The access layer of the second node receives a fourth request message from the access layer of the first node, where the fourth request message is used to request configuration of a first bearer associated with the first transport channel; the second The access layer of the node sends a fourth response message to the access layer of the first node, where the fourth response message is used to confirm configuration of the first bearer.
  • the communication protocol architecture of the first node includes an access layer
  • the communication protocol architecture of the second node includes an access layer
  • the method further includes: the first node
  • the access layer of the second node sends a reconfiguration message to the access layer of the first node, where the reconfiguration message is used to indicate configuration of the first bearer associated with the first transport channel.
  • the communication protocol architecture of the first node includes a service layer
  • the communication protocol architecture of the second node includes a service layer
  • the receiving the first request from the first node The message includes: the service layer of the second node receives a first request message from the service layer of the first node
  • the sending the first response message to the first node includes: the second node's The service layer sends the first response message to the service layer of the first node.
  • the first node supports a first communication technology
  • the second node supports a first communication technology and a second communication technology
  • the first communication technology and the first communication technology The two communication technologies are different
  • the method further includes: sending the authentication request from the first node to the network of the second communication technology; sending the authentication request from the network of the second communication technology to the first node
  • the authentication success indication information wherein the target transmission requirement includes the authentication success indication information.
  • the method further includes: receiving a fifth request message from the first node, where the fifth request message is used to indicate release or deactivation of the first transmission channel.
  • the embodiment of the present application provides a communication device, including: a processing unit, which determines the target transmission requirement of the first node; determines whether to establish a first transmission channel according to the target transmission requirement, and the first transmission The channel is used for communicating with the second node; the communication unit is used for sending a first request message to the second node, and the first request message is used for requesting establishment of the first transmission channel; receiving the first transmission channel from the second node A response message, where the first response message is used to confirm establishment of the first transmission channel.
  • the target transmission requirement includes one or more of the following information: quality of service QoS parameters, transmission channel parameters, user level information, control plane load information, user plane load information, Control offload information, service type of the first service, or service feature information of the first service.
  • the first request message includes at least one of the following configuration information: address information of the first transmission channel, a source channel identifier of the first transmission channel, and the The source channel identifier and the QoS parameter identifier of the first bearer associated with the first transport channel.
  • the first response message includes at least one of the following confirmation information: address information of the first transmission channel, a target channel identifier of the first transmission channel, and the The target channel identifier of the first bearer associated with the first transport channel.
  • the communication protocol architecture of the first node includes an application layer, a service layer, and an access layer.
  • the processing unit is configured to: through the service layer, determine to establish the first transmission channel according to the target transmission requirement; or, through the service layer, according to the The second request message of the application layer determines to establish the first transmission channel, and the second request message is used to indicate the target transmission requirement.
  • the communication unit is further configured to: send a third request message to the access layer through the service layer, where the third request message is used to request configuration and the The first bearer associated with the first transmission channel; receiving a third response message from the access layer through the service layer, where the third response message is used to confirm configuration of the first bearer.
  • the communication unit is further configured to: receive the third request message from the service layer through the access layer; the processing unit is further configured to: through The access layer determines the first bearer among preconfigured or predefined bearers of the first node and the second node.
  • the communication protocol framework of the second node includes an access layer
  • the communication unit is further configured to: through the access layer of the first node, receive the The third request message of the service layer of the first node; through the access layer of the first node, send a fourth request message to the access layer of the second node according to the third request message, the The fourth request message is used to request configuration of the first bearer; through the access layer of the first node, a fourth response message from the access layer of the second node is received, and the fourth response message is used for Confirming the configuration of the first bearer; sending the third response message to the service layer of the first node through the access layer of the first node according to the fourth response message.
  • the communication protocol framework of the second node includes an access layer
  • the communication unit is further configured to: through the access layer of the first node, receive the The third request message of the service layer of the first node; through the access layer of the first node, a reconfiguration message from the access layer of the second node is received, and the reconfiguration message is used to indicate configuration
  • the first bearer sending the third response message to the service layer of the first node through the access layer of the first node according to the reconfiguration message.
  • the communication protocol architecture of the second node includes a service layer, and the communication unit is configured to provide services to the second node through the service layer of the first node
  • the layer sends the first request message; and receives the first response message from the second node through the service layer of the first node.
  • the processing unit is further configured to: establish at least one of the following mapping relationships through the service layer of the first node: between the first transmission channel and the service type The mapping relationship between the first transport channel and the QoS parameter, the mapping relationship between the first transport channel and the associated first bearer, the mapping between the first transport channel and the node type relation.
  • the processing unit is further configured to: synchronize the at least one mapping relationship between the service layer of the first node and the access layer and/or application layer of the first node.
  • the service layer of the first node supports at least two protocol stacks, and data packets based on the at least two protocol stacks multiplex the first transmission channel, wherein, The data packets of the at least two protocol stacks include indication information, and the indication information is used to indicate the association relationship between the data packets and the protocol stacks; or, the first bearer is associated with a second transmission channel configured by default, based on The data packets of the at least two protocol stacks are respectively transmitted to the second node through the first transmission channel and the second transmission channel.
  • the indication information is added to the data packets based on the at least two protocol stacks through the data transmission and adaptation layer of the first node, and the data transmission and The adaptation layer is located at the lower layer of the at least two protocol stacks in the service layer of the first node; or, the indication information is added to the protocol stack based on the at least two protocols through the first logical entity in the first node.
  • the first logic entity is located in the lower layer of the at least two protocol stacks and the upper layer of the data transmission and adaptation layer in the service layer of the first node.
  • the first node supports a first communication technology
  • the second node supports a first communication technology and a second communication technology
  • the first communication technology and the second communication technology The communication technology is different
  • the communication unit is further configured to: send an authentication request to the network of the second communication technology through the second node; receive an authentication request from the network of the second communication technology through the second node Authorization success indication information, wherein the target transmission requirement includes the authentication success indication information.
  • the processing unit is further configured to: determine to release or deactivate the first transmission channel; the communication unit is further configured to: send the fifth A request message, where the fifth request message is used to indicate release or deactivation of the first transmission channel.
  • the embodiment of the present application provides a communication device, including: a communication unit, configured to receive a first request message from a first node, where the first request message is used to request establishment of a first transmission channel, and the A first transmission channel is used to communicate with the second node, the first transmission channel is associated with a target transmission requirement of the first node; and, sending a first response message to the first node, the first response The message is used to confirm establishment of the first transmission channel.
  • the target transmission requirement includes one or more of the following information: quality of service QoS parameters, transmission channel parameters, user level information, control plane load information, user plane load information, Control offload information, service type of the first service, or service feature information of the first service.
  • the first request message includes at least one of the following configuration information: address information of the first transmission channel, a source channel identifier of the first transmission channel, and the The source channel identifier and the QoS parameter identifier of the first bearer associated with the first transport channel.
  • the first response message includes at least one of the following confirmation information: address information of the first transmission channel, a target channel identifier of the first transmission channel, and the The target channel identifier of the first bearer associated with the first transport channel.
  • the communication protocol architecture of the first node includes an access layer
  • the communication protocol architecture of the second node includes an access layer
  • the communication unit is further configured to: The access layer of the second node receives a fourth request message from the access layer of the first node, where the fourth request message is used to request configuration of a first bearer associated with the first transport channel; by The access layer of the second node sends a fourth response message to the access layer of the first node, where the fourth response message is used to confirm configuration of the first bearer.
  • the communication protocol architecture of the first node includes an access layer
  • the communication protocol architecture of the second node includes an access layer
  • the communication unit is further configured to: The access layer of the second node sends a reconfiguration message to the access layer of the first node, where the reconfiguration message is used to indicate configuration of the first bearer associated with the first transport channel.
  • the communication protocol architecture of the first node includes a service layer
  • the communication protocol architecture of the second node includes a service layer
  • the communication unit is configured to: The service layer of the second node receives the first request message from the service layer of the first node; and sends the first response message to the service layer of the first node through the service layer of the second node.
  • the first node supports a first communication technology
  • the second node supports a first communication technology and a second communication technology
  • the first communication technology and the first communication technology The two communication technologies are different
  • the communication unit is further configured to: send the authentication request from the first node to the network of the second communication technology; send the authentication request from the second communication technology to the first node
  • the authentication success indication information of the network wherein the target transmission requirement includes the authentication success indication information.
  • the communication unit is further configured to: receive a fifth request message from the first node, where the fifth request message is used to indicate release or deactivation of the first node. a transmission channel.
  • the embodiment of the present application provides a communication device, including at least one processor and an interface circuit, the interface circuit is used to provide data or code instructions for the at least one processor, and the at least one processor is used for
  • a communication device including at least one processor and an interface circuit
  • the interface circuit is used to provide data or code instructions for the at least one processor
  • the at least one processor is used for The method as described in the above first aspect and any possible design of the first aspect is implemented by logic circuits or executing code instructions, or the method as described in the above second aspect and any possible design of the second aspect is realized.
  • the embodiment of the present application provides a communication system, including a communication device for realizing the above-mentioned first aspect and any possible design method of the first aspect, and realizing any of the above-mentioned second aspect and the second aspect It is possible to design the communication means of the method.
  • the embodiment of the present application provides a computer-readable storage medium, where program code is stored in the computer-readable storage medium, and when the program code is run on a computer, the computer is made to perform the above-mentioned first aspect and The method described in the possible design of the first aspect, or, when the program code is run on the computer, causes the computer to execute the above-mentioned second aspect and the method described in the possible design of the second aspect.
  • the embodiment of the present application provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method described in the above-mentioned first aspect and the possible design of the first aspect, or Execute the method described in the above second aspect and possible designs of the second aspect.
  • an embodiment of the present application provides a chip system, the chip system includes a processor, configured to call a computer program or a computer instruction stored in a memory, so that the processor performs the above-mentioned first aspect and the possibility of the first aspect The method described in the design, or implement the method described in the second aspect and the possible design of the second aspect.
  • the processor may be coupled to the memory through an interface.
  • the chip system may further include a memory, where computer programs or computer instructions are stored in the memory.
  • the embodiment of the present application provides a processor, the processor is used to call the computer program or computer instruction stored in the memory, so that the processor executes the above-mentioned first aspect and the possible design of the first aspect. method, or execute the method described in the above-mentioned second aspect and possible designs of the second aspect.
  • FIG. 1 shows a schematic diagram of a communication protocol architecture of an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a communication system applicable to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of another communication system to which the embodiment of the present application is applicable
  • FIG. 4 shows a schematic flowchart of a communication method in an embodiment of the present application
  • 5a-5b show a schematic diagram of a communication method according to an embodiment of the present application.
  • 6a-6b show a schematic diagram of a communication method according to an embodiment of the present application.
  • FIG. 7a-FIG. 7b show schematic diagrams of converged communication scenarios applicable to embodiments of the present application
  • Figures 8a-8c show schematic diagrams of converged communication scenarios applicable to embodiments of the present application.
  • FIG. 9 shows a schematic diagram of a communication device according to an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of a communication device according to an embodiment of the present application.
  • a communication device (or called a communication node) is a device that provides data connectivity to a user, and may also be called a communication device.
  • the communication device may be a terminal device, including a device that provides voice and/or data connectivity to the user, specifically, the terminal device may include a device that provides voice to the user, or a device that provides data connectivity to the user , or include devices that provide voice and data connectivity to users.
  • the terminal device may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device may, for example, communicate with the core network via a radio access network (radio access network, RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include vehicles, user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (V2X) Terminal equipment, machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit, subscription station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point (access point, AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal) ), user terminal (user terminal), user agent (user agent), or user equipment (user device), etc.
  • IoT Internet of things
  • it can include mobile phones (or “cellular” phones), computers with mobile terminal equipment, dedicated terminal equipment in narrowband Internet of Things (NB-IoT), portable, pocket, handheld , computer built-in or vehicle-mounted mobile devices, etc.
  • personal communication service personal communication service, PCS
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA Personal Digital Assistant
  • constrained devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, etc.
  • it includes barcodes, radio frequency identification (radio frequency identification, RFID), sensors, global positioning system (global positioning system, GPS), laser scanners and other information sensing devices.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc., which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as vehicle-mounted terminal devices. ).
  • the terminal device may also include a relay (relay).
  • a relay relay
  • all devices capable of performing data communication with the base station can be regarded as terminal devices.
  • the communication device may include, but not limited to, smart terminals such as smart phones, notebooks, and tablet computers with short-distance communication functions, mice, keyboards, earphones, stereos, or car playback equipment.
  • the at least two communication devices may also be referred to as the first communication device, the second communication device, etc., correspondingly, they may also be simply referred to as the first device or The first node, the second device or the second node, etc.
  • the communication connection between the first node and the second node may be realized through a first communication technology, such as a short-distance communication technology.
  • a short-distance communication technology may include, but is not limited to, Bluetooth (bluetooth) technology, wireless fidelity (Wireless Fidelity, Wi-Fi) technology, near field communication (near field communication, NFC) technology, Wi-Fi Aware technology, universal Short-range communication technology, etc.
  • Short-distance communication has a large number of applications in file transfer, remote control, screen projection, and perception of surrounding devices.
  • Bluetooth A radio technology that enables devices to communicate over short distances, enabling the wireless exchange of information between a wide range of devices including mobile phones, wireless headsets, laptops, and related peripherals.
  • the use of "Bluetooth” technology can effectively simplify the communication between mobile communication terminal equipment, and can also successfully simplify the communication between equipment and the Internet, so that data transmission becomes faster and more efficient, and broadens the road for wireless communication.
  • Wireless fidelity technology wireless fidelity, Wi-Fi: also known as wireless local area networks (wireless local area networks, WLAN) direct connection or Wi-Fi Direct, is one of the Wi-Fi protocol clusters, enabling easy communication between devices Wireless access points that connect to each other without intermediaries. Its uses range from web browsing to file transfers and communicating with multiple devices simultaneously, taking full advantage of the speed of Wi-Fi. Devices conforming to this standard can be easily interconnected even if they come from different manufacturers.
  • Wi-Fi Aware technology responsible for the perception and discovery part of Wi-Fi technology, it can help Wi-Fi devices perceive surrounding services, such as surrounding devices, and then realize point-to-point between two devices in close range through Wi-Fi Aware (Peer to Peer, P2P) message exchange. Because WIFI-Aware can perceive the surrounding devices, it can realize various functions, such as sensing nearby people and establishing a connection, and then adding friends, playing the same game, etc.; or discovering surrounding devices to realize photo sharing or Location sharing and more; or, securely sending files to a printer without access to a network such as cellular or wireless, and more.
  • the at least two communication devices can also be divided into two types of nodes logically and functionally, that is, a master node (or called an authorization node) and a slave node.
  • the master node can manage the slave nodes, has resource allocation or resource scheduling capabilities, and can allocate resources for the slave nodes or configure related functions of the slave nodes.
  • the slave nodes can obey the allocation or scheduling of the master node, and communicate based on the resources allocated by the master node. It should be noted that the attribute characteristics of master nodes and slave nodes may change.
  • a G node may be used to represent an authorization node
  • a T node may be used to represent a slave node
  • the communication device may also be a network device, such as including an access network (access network, AN) device, such as a base station (for example, an access point), which may refer to an access network through an air interface or
  • AN access network
  • AN access network
  • base station for example, an access point
  • a device for communication between multiple cells and a wireless terminal device, or for example, a network device in a vehicle-to-everything (V2X) technology is a road side unit (RSU).
  • the base station can be used to convert received over-the-air frames to and from IP packets, acting as a router between the terminal device and the rest of the access network, which can include an IP network.
  • the RSU can be a fixed infrastructure entity supporting V2X applications, and can exchange messages with other entities supporting V2X applications.
  • the network device can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in the LTE system or long term evolution-advanced (LTE-A), or may also include the fifth generation mobile
  • the next generation node B (next generation node B, gNB) in the communication technology (the 5th generation, 5G) NR system (also referred to as NR system) may also include the cloud radio access network (cloud radio access network, Cloud RAN) system
  • the centralized unit (centralized unit, CU) and distributed unit (distributed unit, DU) in the present application are not limited.
  • the network equipment may also include core network equipment.
  • the core network equipment includes, for example, access and mobility management function (access and mobility management function, AMF), session management function (session management function, SMF) or user plane function (user plane) in the 5G system. function, UPF), etc., or include a mobility management entity (mobility management entity, MME) in the 4G system, etc.
  • the communication protocol architecture of short-distance communication technology may include application layer, service layer and access layer, and each layer may called the protocol layer.
  • the layers here are just a framed structural division, and are generally divided into three major layers: the upper layer, the middle layer, and the bottom layer.
  • Different communication systems may have their own layer division methods, or may have more specific and lower-level layer division methods, which are not specifically limited here.
  • the function of each layer can be realized by one or more protocols.
  • the protocol of the service layer may include IPv4, etc.
  • the protocol of the access layer may include a logical link control and adaptation (logical link control & adaptation protocol, L2CAP) layer and/or link (link, LL) layer, etc.
  • the application layer is located above the service layer, and several application programs (applications)/business instances can be deployed, which can be used to provide services for applications (also known as applications or users), such as general communication services, general audio and video services, and active noise reduction services , file services, etc.
  • applications also known as applications or users
  • the application layer can also be used to provide session support and/or information support for users.
  • the service layer is located above the access layer, and is used to establish a connection between a source node (such as a first node) and a destination node (such as a second node) and provide end-to-end information transmission services.
  • the service layer may correspond to the network layer (network layer), data transmission and adaptation layer, and the network layer may be responsible for transmission control and routing selection for different functions (such as device discovery, service discovery, connection management, QoS management, security management, multi-domain management, measurement management, 5G integration, etc.) to determine the transmission bearer (or called the transmission channel).
  • the network layer can also perform flow control.
  • the data transmission and adaptation layer can be used to encode or decode the data (including transparent transmission data and non-transparent transmission data) transmitted by the upper layer, so as to convert the data into a format that is compatible or suitable for transmission.
  • the access layer can provide communication interfaces/means for communication between nodes.
  • the access layer may include a variety of different access technologies, and different access technologies may correspond to different communication interfaces, such as cellular interfaces and WIFI interfaces.
  • the access layer corresponds to the data link layer and the physical layer.
  • Data link layer guarantees the reliable transmission of data on the physical link. Data or instructions are encapsulated into specific frames that can be transmitted by the physical layer; optionally, the data link layer also includes functions such as access control, resource management, data segmentation, concatenation, and error correction.
  • the data link layer may include a logical link control and adaptation protocol (logical link control and adaptation protocol, L2CAP) layer and a logical (logical layer, LL) layer.
  • L2CAP is responsible for data encapsulation, segmentation, logical channel management and other functions
  • LL layer is responsible for resource management and allocation.
  • the data link layer may include one or more access layer bearers (or called link channels, logical channels) for transmitting data or instructions from upper layers (eg, service layer).
  • Physical layer use the transmission medium to provide a physical connection for the data link layer, and realize the transparent transmission of the bit stream. Generally, the physical layer performs channel coding or decoding to ensure the reliability of data transmission.
  • the data link layer can also be used to provide transmission adaptation functions with different networks and/or transmission protocols. For example, receiving a data packet from the bottom layer (protocol layer below the data link layer), distinguishing the protocol type of the upper layer (protocol layer above the data link layer) to which the data packet belongs, and submitting the data packet (or called Pass) to the corresponding upper layer protocol for processing.
  • the data link layer is a logic function layer, and in terms of implementation, it may also be included in the service layer, which is not limited in this application.
  • the upper layer of the protocol layer in this application refers to any protocol layer above the protocol layer, for example, the upper layer of the L2CAP layer, which may be a service layer or an application layer.
  • the process of transmitting data packets from the upper layer to the lower layer may be referred to as transfer.
  • the process in which the lower layer transmits data packets to the upper layer can be called delivery.
  • the LL layer of the sending node is in To add a LL layer header to the data packet, the LL header needs to be parsed at the LL layer of the receiving end node.
  • the data packet for the data packet delivered by the upper layer, before the header is not added, the data packet can be called a service data unit (service data unit, SDU), and after the header is added, it is called a protocol data unit (protocol data unit, PDU).
  • service data unit service data unit
  • PDU protocol data unit
  • the data packet delivered by the L2CAP layer received by the LL layer can be called an LL SDU (also called an L2CAP PDU); after the LL adds a header to the data packet, the data packet after adding the header is called an LL PDU.
  • LL can remove the header of the received LL PDU (also called PHY SDU), obtain LL SDU, and submit the LL SDU to the upper layer.
  • transparent transmission means that the protocol layer does not process the packet header of the SDU of the upper layer (also called the upper layer PDU) from the upper layer, and directly transfers the SDU of the current layer as the PDU of the lower layer to the lower layer.
  • Transparent transmission can also be called transparent transmission or pass-through. It can be understood that transparent transmission refers to not changing the content of business data during communication, such as not segmenting, concatenating, splicing, reordering, and adding headers to the data. The original content is transferred from the source address to the destination address.
  • transparent transmission means that the protocol layer does not decapsulate the lower-layer SDU (also called the local-layer PDU) submitted by the lower layer, and directly submits the local-layer PDU as the local-layer SDU to the upper layer.
  • the protocol layer does not decapsulate the lower-layer SDU (also called the local-layer PDU) submitted by the lower layer, and directly submits the local-layer PDU as the local-layer SDU to the upper layer.
  • the protocol layer (such as the LL layer) at the sending end can encrypt the transmitted data
  • the protocol layer (such as the LL layer) at the receiving end can decrypt the data.
  • the algorithms and parameters used for encryption and decryption may be pre-agreed by both the sending end node and the receiving end node or defined in the agreement.
  • the protocol layer at the sending end can add a cyclic redundancy check (CRC) check code to the transmitted data, which is used for the corresponding protocol layer at the receiving end to check the data. check.
  • CRC cyclic redundancy check
  • the algorithm and parameters used in the CRC check operation may be pre-agreed by the G node and the T node or defined in the agreement.
  • the CRC check code can be added at the end of the transmitted data.
  • each protocol layer may support one or more protocols, and one protocol of each protocol layer corresponds to one protocol stack.
  • the protocol is different from the protocol stack.
  • the protocol is a set of agreements that the executive body needs to follow.
  • the protocol stack is a unit or module that processes data through the protocol.
  • the data generated by the protocol stack is processed by the lower layer (such as the access layer) and then sent.
  • the protocol stack can also be simply understood as a unit or module in the G node or T node that can use the protocol to process data.
  • the first protocol stack supports the first protocol, that is, the first protocol stack is a unit or module in the T node that uses the first protocol to process data.
  • the second protocol stack supports the second protocol, that is, the second protocol stack may be a unit or module in the T node that uses the second protocol to process data.
  • the first protocol stack and the second protocol stack may be the same unit or different units, which is not limited in this embodiment of the present application.
  • protocol layers such as the application layer, service layer, and access layer can be further subdivided into different protocol layers, and the corresponding protocol layers used to implement the same or similar functions can also have different names. This application does not limit this.
  • the protocol in the embodiment of the present application is not limited to the protocol used for communication.
  • Qos Quality of Service
  • different logical channels can be established for different services, so as to guarantee the differentiated Qos requirements of different services.
  • Qos Quality of Service
  • different logical channels are established for audio services and video services.
  • logical channel 1 corresponds to service 1
  • logical channel 2 corresponds to service 2.
  • the data of service 1 cannot be multiplexed in logical channel 2
  • the data of service 2 cannot be multiplexed in logical channel 1.
  • different logical channels correspond to different transmission resources, for example, logical channel 1 corresponds to transmission resource 1, logical channel 2 corresponds to transmission resource 2, and transmission resource 1 and transmission resource 2 are different.
  • the time-domain resources of transmission resource 1 and transmission resource 2 are different (for example, the short-distance communication system is a time-division system, then transmission resource 1 and transmission resource 2 are time-division).
  • the same logical channel can also be established for one or more services with similar Qos requirements, thereby reducing the number of logical channels and facilitating management.
  • the broader logical channel concept is: multiple virtual channels divided according to the different transmission content of the physical channel, that is, the physical channel actually completes the transmission work, and the logical channel is used to define the transmission content.
  • logical channels can be divided into two types: control channels and traffic channels.
  • the control channels are used to transmit control plane information
  • the traffic channels are used to transmit user plane information (such as service data).
  • the bearer of the access layer may be a logical channel with a logical channel identifier (Logical Channel Identifier, LCID).
  • LCID Logical Channel Identifier
  • At least one means one, or more than one (including multiple means two or more), that is, includes one, two, three and more.
  • Carrying may mean that a message is used to carry information or data, or it may mean what information the message consists of, or what information is included in the message.
  • Fig. 2 shows a schematic diagram of a communication system to which the embodiment of the present application is applicable.
  • the communication system may include a first node 210 and a second node 220 .
  • the first node 210 may be a terminal node
  • the second node 220 may be an authorized node of the first node 210
  • both the first node 210 and the second node 220 can support the first communication technology
  • the two nodes 220 may form a first communication system, and the two parties may communicate using the first communication technology.
  • the communication system may further include a third node 230 .
  • Both the second node 220 and the third node 230 can support the second communication technology, the second node 220 and the third node 230 can form a second communication system, and the two parties can use the second communication technology to communicate, and the first communication technology and The second communication technology is different.
  • a communication connection can be established between the first communication system and the second communication system to form a heterogeneous communication system.
  • the first node 210 and the second communication system The second node 220 and the third node 230 may perform corresponding communication services and/or transmit communication service data in the heterogeneous communication system.
  • the third node 230 may include but not limited to access network equipment: for example, a trusted non-third 3rd Generation Partnership Project (3GPP) Gateway Function (Trusted Non-3GPP Gateway Function, TNGF), and core network equipment: such as SMF, AMF, UPF and data network (Data Network, DN) and other functional entities at least one.
  • 3GPP trusted non-third 3rd Generation Partnership Project
  • TNGF Trusted Non-3GPP Gateway Function
  • core network equipment such as SMF, AMF, UPF and data network (Data Network, DN) and other functional entities at least one.
  • Each node or functional entity can be connected through an interface.
  • the serial number of the interface or the name of the interface is not limited in the embodiment of this application. It can follow the interface defined in the 3GPP related standard protocol of the 5G system, or use the interface in the future communication system. interface.
  • the second node 220 can communicate with the first node 210 through the Yt interface, the first node 210 can communicate with the TNGF through the Ta interface, and the second node 220 can communicate with the TNGF through the NWt interface.
  • the second node 220 and the first node 210 can communicate with the AMF through the next generation network (next generation, N) 1 interface (N1 for short), the network equipment (such as TNGF) communicates with the AMF through the N2 interface (N2 for short), and the TNGF communicates with the AMF through the N3
  • the interface (N3 for short) communicates with the local UPF, and the UPF communicates with the DN through the N6 interface (N6 for short).
  • the AMF communicates with the SMF through the N11 interface (N11 for short), and the SMF communicates with the UPF through the N4 interface (N4 for short).
  • the 5G network can perceive key information such as the device status, network status, and business status of the second node 220 through the first node 210, so as to achieve remote reachability, perception, and awareness of the industry's on-site network and services. tube etc.
  • the heterogeneous communication system may include the first node 210, the second node 220, and the third node 230, as well as the communication modes between each node and its functional modules, and does not Limit the number of individual nodes and the serial number or name of the interface.
  • the number of the first node 210, the second node 220, and the third node 230 may not be limited to one.
  • the second node 220 and the third node 230 may perform a radio resource control (radio resource control, RRC) establishment process, when the second node 220 and the third node 230 establish the RRC After the connection, the RRC state of the second node 220 is the RRC connected state. Subsequently, the RRC state of the second node 220 may transition among the following states: RRC idle (RRC_IDLE) state, RRC connected (RRC_CONNECTED) state and RRC inactive (RRC_INACTIVE) state. In the converged communication scenario of the embodiment of the present application, the second node 220 may be in any of the above-mentioned idle state, connected state, and inactive state, which is not limited in the embodiment of the present application.
  • RRC radio resource control
  • FIG. 2 and FIG. 3 can be used to implement the communication method of the embodiment of the present application, and the communication method of the embodiment of the present application will be introduced below with reference to the drawings and embodiments.
  • Fig. 4 shows a schematic flowchart of a communication method according to an embodiment of the present application.
  • the communication method may include the following steps:
  • the first node determines the target transmission requirement of the first node.
  • the target transmission requirement of the first node is the requirement of the first node to realize the transmission service (including the control plane transmission service and/or the user plane transmission service), and the target transmission requirement may be based on the application layer of the first node Or the determination of relevant parameters of the service layer or the access layer may also be determined according to the first service of the first node, which is not limited in this embodiment of the present application.
  • the target transmission requirement may include one or more of the following information: application layer quality of service (Quality of Service, QoS) parameters, including but not limited to adoption rate, adopted bit width, audio and video coding, etc.; transmission channel parameters, Including but not limited to priority, packet delay, packet error rate, delay jitter, throughput rate, etc.; user level information; control plane load information; user plane load information; control distribution information (such as distribution to different communication nodes); The service type of the first service; or the service feature information of the first service.
  • QoS Quality of Service
  • the first node determines whether to establish a first transmission channel according to the target transmission requirement, and the first transmission channel is used for communicating with the second node.
  • the first node may determine whether the first transmission channel needs to be established according to whether the target transmission requirement satisfies the dynamic channel establishment condition, and the dynamic channel establishment condition may include but not limited to the establishment of the first
  • the bandwidth conditions, guaranteed rate conditions, and delay conditions that the transmission channel should meet are not limited in this embodiment of the present application.
  • the first node may directly reuse a transmission channel that exists between the first node and the second node and satisfies the target transmission requirement as the first transmission channel, There is no need to dynamically establish the first transmission channel; if the first transmission channel needs to be established, the first node may trigger the process of dynamically establishing the first transmission channel, based on the established first transmission channel and The second node communicates.
  • the process of establishing a dynamic transmission channel will be described in detail below, and will not be repeated here.
  • the first node may send a first request message to the second node, where the first request message is used to request establishment of the first transmission channel.
  • the first request message may include at least one of the following configuration information: address information of the first transmission channel, source channel identifier of the first transmission channel, first The source channel identifier of the bearer and the QoS parameter identifier of the first transport channel.
  • the address information of the first transmission channel can be used for routing, for example, which functional module the first transmission channel is established for, and the address information can be the module identification of the corresponding functional module, so that when based on the first transmission channel, the When the peer node transmits information, it can know which functional module the information comes from, or which functional module the information from the peer node needs to be sent to.
  • the source channel identifier of the first transmission channel refers to the transmission channel identifier carried in the request message sent by the requester to the responder, and "source” indicates the transmission direction of the message bearing the channel identifier, that is, the requester (ie, source node) to the responder (that is, the target node), where the first node is not limited to be the source node and the second node is the target node.
  • the channel identifier carried in the first request message sent by the second node to the first node may be called a "source channel identifier".
  • the source channel identifier of the first bearer also refers to the channel identifier of the access layer bearer carried in the request message sent by the requester to the responder, and "source” indicates the transmission direction of the message bearing the channel identifier, that is, is sent from the requester to the responder, where the first node is not limited to be the source node and the second node is the target node.
  • the channel identifier carried in the first request message sent by the second node to the first node may be referred to as a "source channel identifier".
  • the "target” indicates the transmission direction of the message carrying the channel identifier, that is, it is sent from the responder to the requester, and details will not be described here.
  • the QoS parameter of the first transmission channel indicates the QoS parameter of the first transmission channel that needs to be established for the first node, and the identifier of the QoS parameter can be used to indicate the QoS parameter.
  • the identifier of the QoS parameter can be An XQI value corresponding to a group of QoS parameters (for example, X can take a value of 5, indicating 5G).
  • the above at least one piece of configuration information is only an illustration of the relevant information that the first node may configure for the first transmission channel to be established, and does not limit the configuration capability of the first node.
  • the first request message may also include other information configured by the first node for the first transmission channel, which will not be repeated here.
  • the first node receives a first response message from the second node, where the first response message is used to confirm establishment of the first transmission channel.
  • the first response message is a response made by the second node to the first request message.
  • the first response message may include at least one of the following confirmation information: address information of the first transport channel, target channel identifier of the first transport channel, first bearer associated with the first transport channel The target channel ID for .
  • the address information of the first transmission channel is the same as the address information of the first transmission channel carried in the first request message, indicating that the second node agrees to the first transmission Channel address information.
  • the target channel identifier of the first transmission channel may be the same as the source channel identifier of the first transmission channel carried in the first request message, indicating that the second node agrees that the first node A transmission channel identifier configured for the first transmission channel; or, the target channel identifier of the first transmission channel may be different from the source channel identifier of the first transmission channel carried in the first request message, indicating that the first transmission channel
  • the two nodes disagree with the transmission channel identifier configured by the first node for the first transmission channel, and reconfigure the third transmission channel instead of the first transmission channel for communication between the first node and the second node.
  • the target channel identifier That is, the channel identifier of the third transmission channel.
  • the first response message may also carry the source channel identifier (obtained from the first request message) of the first transmission channel, so as to simultaneously inform the first node that the request The configured first transport channel is replaced by the third transport channel.
  • the target channel identifier of the first bearer associated with the first transmission channel may also be the same as or different from the source channel identifier of the first bearer carried in the first request message.
  • the The first response message may also carry the source channel identifier of the first bearer.
  • the first node can dynamically negotiate and establish the first transmission channel with the second node according to its own target transmission requirements, without statically occupying transmission resources, which helps to improve the utilization efficiency of transmission resources , and at the same time, it can meet various transmission requirements and adapt to richer transmission scenarios.
  • Scenario 1 There is a first bearer meeting the target transmission requirement between the access layer of the first node and the access layer of the second node.
  • the communication protocol architecture of the first node may include an application layer, a service layer and an access layer
  • the communication protocol architecture of a second node may include an application layer, a service layer and an access layer
  • the service layer of the first node may include an application layer, a service layer and an access layer.
  • a decision can be made as to whether the first transmission channel needs to be established, and when it is determined that the first transmission channel needs to be established, the service layer of the first node can send an access layer channel establishment request message to the access layer of the first node, and the access layer
  • the channel establishment request message may be used to request configuration of the first bearer meeting the target transmission requirement.
  • the access layer of the first node may first determine whether there is a first bearer that meets the target transmission requirement. If it exists, the access layer of the first node may determine the first bearer among the existing bearers, and feed back the access layer channel response message to the service layer of the first node, so as to provide the service layer of the first node with The layer informs about the available first bearers that meet the target transmission requirements. Further, the service layer of the first node may send a dynamic channel establishment request message to the service layer of the second node based on the first bearer, and receive a dynamic channel establishment response message from the service layer of the second node, so as to communicate with the second node Negotiate and dynamically establish the first transmission channel.
  • the first bearer may also be associated with a second transmission channel configured by default, and both the second transmission channel and the dynamically established first transmission channel may be mapped to the first bearer.
  • the dotted arrows in Figure 5a only indicate that information exchange can be performed between corresponding protocol layers, and do not limit the exchanged information.
  • the communication method may include the following steps:
  • the communication method may be triggered by the application layer of the first node.
  • S501 (optional): The application layer of the first node may determine the target transmission requirement of the first node, and determine whether the first transmission channel needs to be established. If it is determined that the first transmission channel needs to be established, the first The application layer of the node may send a second request message to the service layer of the first node. Correspondingly, the service layer of the first node may receive the second request message from the application layer of the first node. Wherein, the second request message may be used to indicate the target transmission requirement, for example, the second request message may include application layer QoS parameters.
  • S502 The service layer of the first node may determine whether to establish the first transmission channel according to the second request message from the service layer of the first node.
  • the communication method may be triggered by the service layer of the first node.
  • the service layer of the first node may determine a target transmission requirement of the first node, and determine whether to establish the first transmission channel according to the target transmission requirement.
  • the judgment result of S502 if the judgment result is yes, that is, it is determined to establish the first transmission channel, go to S503. If it is determined not to establish the first transmission channel, the existing transmission channel between the first node and the second node may be directly multiplexed according to the target transmission requirement of the first node.
  • S503 The service layer of the first node sends a third request message to the access layer of the first node, where the third request message is used to request configuration of the first bearer meeting the target transmission requirement.
  • the access layer of the first node receives the third request message from the service layer of the first node.
  • S504 The access layer of the first node determines whether the first bearer needs to be established according to the third request message.
  • the access layer of the first node may determine whether there is a first bearer meeting the target transmission requirement among the preconfigured or predefined bearers of the first node and the second node.
  • the access layer of the first node may determine the first bearer among the preconfigured or predefined bearers of the first node and the second node, and then enter S505.
  • the access layer of the first node sends a third response message to the service layer of the first node, where the third response message is used to confirm configuration of the first bearer.
  • the service layer of the first node receives the third response message from the access layer of the first node.
  • the third response message includes the identifier of the first bearer.
  • S506 The service layer of the first node sends a first request message to the service layer of the second node. Correspondingly, the service layer of the second node receives the first request message.
  • the first request message includes at least one of the following configuration information: address information of the first transport channel, source channel identifier of the first transport channel, ID of the first bearer associated with the first transport channel Source channel ID, QoS parameter ID.
  • the source channel identifier only indicates the direction of data information transmission, for example, the source channel identifier of the first transmission channel indicates the identification of the direction of data information transmission from the first node to the second node, and the source channel of the first bearer
  • the identifier represents the identifier of data information transmission from the first node to the second node, and does not limit the first node to be the source node or the second node to be the target node.
  • the first transmission channel may have only one channel identifier, without distinguishing between the source channel identifier and the target channel identifier.
  • the source channel identifier in the first request message is the channel identifier of the corresponding channel, hereinafter No longer distinguish one by one.
  • S507 Confirm the QoS parameter and the mapping relationship between the first transport channel and the first bearer between the service layer and the access layer of the second node.
  • S508 The service layer of the second node sends a first response message to the service layer of the first node. Correspondingly, the service layer of the first node receives the first response message.
  • the first response message includes at least one of the following confirmation information: address information of the first transport channel, target channel identifier of the first transport channel, ID of the first bearer associated with the first transport channel Target channel ID.
  • the first response message may further include the source channel identifier of the first transport channel and the source channel identifier of the first bearer associated with the first transport channel.
  • the target channel identifier mentioned here only indicates the direction of data information transmission, for example, the target channel identifier of the first transmission channel indicates the identifier of data information transmission from the second node to the first node, and the target channel identifier of the first bearer indicates The identification of the data information transmission from the second node to the first node does not limit the first node to be the source node or the second node to be the target node.
  • the service layer of the first node may establish (or maintain) at least one of the following mapping relationships: the mapping relationship between the first transport channel and the service type, the mapping relationship between the first transport channel and the QoS parameter A mapping relationship, a mapping relationship between the first transport channel and an associated first bearer, and a mapping relationship between the first transport channel and a node type.
  • S510 (optional): Synchronize the at least one mapping relationship between the service layer of the first node and the access layer of the first node.
  • the service layer of the first node may send indication information to the access layer of the first node, where the indication information may be used to indicate the at least one mapping relationship.
  • S511 (optional): Synchronize the at least one mapping relationship between the service layer of the first node and the application layer of the first node.
  • the service layer of the first node may send indication information to the application layer of the first node, where the indication information may be used to indicate the at least one mapping relationship.
  • the service layer of the first node may respectively synchronize at least one mapping relationship maintained to the access layer and the application layer of the first node.
  • the service layer of the first node may record the complete mapping relationship information by itself, and according to the needs of the access layer or the application layer, send a message indicating the established first transmission channel and the application layer to the access layer or the application layer.
  • the mapping relationship between other information For example, the first transport channel is bound to the first bearer, and the access layer of the first node needs to know the mapping relationship between the first transport channel and the first bearer, so as to use the first transport channel and the first bearer
  • the data of the first bearer is sent through the corresponding air interface.
  • the service layer of the first node may need to inform the access layer of the first node of the mapping relationship between the first transmission channel and the first bearer.
  • the service layer of the first node may send corresponding indication information to the access layer of the first node after establishing the at least one mapping relationship.
  • the service layer of the first node may need to send a request to the first transmission channel according to the target transmission requirements provided by the application layer.
  • the application layer of the node notifies the mapping relationship between the first transmission channel and the corresponding target transmission demand, for example, the mapping relationship between the first transmission channel and the service type, the mapping relationship between the first transmission channel and the QoS parameter etc., so that the application layer can know which transmission channel to transmit information to the lower layer when implementing services.
  • the service layer of the first node may determine whether to execute S511 according to whether the second request message from the service layer of the first node is received.
  • S512 The service layer of the first node determines to release or deactivate the first transmission channel, and sends a fifth request message to the second node, where the fifth request message is used to indicate release or deactivation of the first transmission channel channel.
  • the service layer of the second node receives the fifth request message.
  • the service layer of the first node may determine to release or deactivate (that is, suspend dynamic channel configuration) the first transmission channel when the first transmission channel satisfies a corresponding release condition or deactivation condition.
  • the release condition or deactivation condition may include, for example: the first transmission channel has no data transmission within the first time period T. It should be understood that, for the first transmission channel that has been released or deactivated, when the target transmission demand of the first node is to establish the first transmission channel again, the first transmission channel may also be activated or restored, and details will not be repeated here. .
  • the communication protocol architecture of the first node may include an application layer, a service layer and an access layer
  • the communication protocol architecture of a second node may include an application layer, a service layer and an access layer
  • the service layer of the first node A decision can be made as to whether the first transmission channel needs to be established, and when it is determined that the first transmission channel needs to be established, the service layer of the first node can send an access layer channel establishment request message to the access layer of the first node, and the access layer
  • the channel establishment request message may be used to request configuration of the first bearer meeting the target transmission requirement.
  • the access layer of the first node may first determine whether there is a first bearer that meets the target transmission requirement. If it does not exist, the access layer of the first node may report auxiliary information to the access layer of the second node, and receive a reconfiguration message from the access layer of the second node, so as to configure the first Bearer; or, the access layer of the first node may receive a reconfiguration message from the access layer of the second node, where the reconfiguration message is used to configure the first bearer.
  • the access layer of the first node may feed back an access layer channel response message to the service layer of the first node, so as to inform the service layer of the first node of available The first bearer for transmission requirements. Furthermore, the service layer of the first node may send a dynamic channel establishment request message to the service layer of the second node based on the configured first bearer, and receive a dynamic channel establishment response message from the service layer of the second node, so as to communicate with the service layer of the second node.
  • the two nodes negotiate and dynamically establish the first transmission channel.
  • the first bearer may be associated with a second transmission channel configured by default.
  • the second transmission channel may be automatically activated and used for communication between the first node and the second node.
  • the dotted arrows in FIG. 6a only indicate that information exchange can be performed between corresponding protocol layers, and the exchanged information is not limited.
  • the communication method may include the following steps:
  • the communication method may be triggered by the application layer of the first node.
  • S601 (optional): The application layer of the first node may determine the target transmission requirement of the first node, and judge whether the first transmission channel needs to be established. If it is determined that the first transmission channel needs to be established, the first The application layer of the node may send a second request message to the service layer of the first node. Correspondingly, the service layer of the first node may receive the second request message from the application layer of the first node. Wherein, the second request message may be used to indicate the target transmission requirement, for example, the second request message may include application layer QoS parameters.
  • S602 The service layer of the first node may determine whether to establish the first transmission channel according to the second request message from the service layer of the first node.
  • the communication method may be triggered by the service layer of the first node.
  • the service layer of the first node may determine a target transmission requirement of the first node, and determine whether to establish the first transmission channel according to the target transmission requirement.
  • the existing transmission channel between the first node and the second node may be directly multiplexed according to the target transmission requirement of the first node.
  • S603 The service layer of the first node sends a third request message to the access layer of the first node, where the third request message is used to request configuration of the first bearer meeting the target transmission requirement.
  • the access layer of the first node receives the third request message from the service layer of the first node.
  • S604 The access layer of the first node determines whether the first bearer needs to be established according to the third request message.
  • the access layer of the first node may determine whether there is a first bearer that meets the target transmission requirement among the preconfigured or predefined bearers of the first node and the second node.
  • the access layer of the first node negotiates with the second node to configure the first bearer.
  • the negotiation process may be triggered by the request of the first node, or may be actively configured by the second node for the first node, including The following steps:
  • Example 1 the first node requests configuration of the first bearer from the second node according to the target transmission requirement.
  • the access layer of the first node sends a fourth request message to the access layer of the second node, where the fourth request message is used to request configuration of the first bearer.
  • the access layer of the second node receives the fourth request message.
  • the fourth request message may contain one or more of the following auxiliary information: the service type of the first service, including but not limited to device discovery, service discovery, connection management, QoS management, security management, 5G integration , multi-domain coordination, measurement management, etc.; identification of QoS parameters (for example, XQI value, each XQI value can correspond to a group of QoS parameters, as shown in Table 1 below); service characteristics of the first service, including but not limited to sampling rate , encoding, etc.
  • the service type of the first service including but not limited to device discovery, service discovery, connection management, QoS management, security management, 5G integration , multi-domain coordination, measurement management, etc.
  • identification of QoS parameters for example, XQI value, each XQI value can correspond to a group of QoS parameters, as shown in Table 1 below
  • service characteristics of the first service including but not limited to sampling rate , encoding, etc.
  • XQI value in each row is an identifier
  • "default priority” indicates the relative importance of resource allocation between QoS flows
  • the packet delay budget indicates the upper limit of the time that data packets may be delayed
  • the packet error rate indicates the upper limit of the rate of data packets.
  • a set of QoS parameters corresponding to the XQI value may also include delay jitter, throughput rate, etc., which will not be described in detail here.
  • S606 Between the access layer, the service layer and the application layer of the second node, perform QoS policy confirmation according to the auxiliary information carried in the fourth request message, so as to configure the first bearer for the first node.
  • the access layer of the second node sends a fourth response message to the access layer of the first node, where the fourth response message is used to confirm configuration of the first bearer.
  • Example 2 The second node actively sends a reconfiguration message to the first node to configure the first bearer.
  • the access layer of the second node sends a reconfiguration message to the access layer of the first node.
  • the access layer of the first node receives the reconfiguration message from the access layer of the second node.
  • the reconfiguration message is used to indicate configuration of the first bearer.
  • the first node may report some basic parameters of itself when registering or authorizing to the second node side, such as node type, service type, QoS parameters, user level information , control shunt information, etc.
  • the second node can actively configure the first bearer for the first node according to the relevant parameters previously reported by the first node, and deliver the first bearer to the first node. Reconfiguring a message, so that the first node can bind the first bearer with the first transmission channel to be established, so as to dynamically establish the first transmission channel.
  • the access layer of the first node sends a third response message to the service layer of the first node, where the third response message is used to confirm configuration of the first bearer.
  • the service layer of the first node receives the third response message from the access layer of the first node.
  • the third response message includes the identifier of the first bearer.
  • S610 The service layer of the first node sends a first request message to the service layer of the second node.
  • the service layer of the second node receives the first request message.
  • S611 Confirm the QoS parameter and the mapping relationship between the first transport channel and the first bearer between the service layer and the access layer of the second node. For detailed implementation, refer to the relevant description of S507 above, and details are not repeated here.
  • S612 The service layer of the second node sends a first response message to the service layer of the first node.
  • the service layer of the first node receives the first response message.
  • the service layer of the first node establishes at least one of the following mapping relationships: the mapping relationship between the first transport channel and the service type, the mapping relationship between the first transport channel and the QoS parameter, the first A mapping relationship between a transport channel and an associated first bearer, and a mapping relationship between the first transport channel and a node type.
  • S614 (optional): Synchronize the at least one mapping relationship between the service layer of the first node and the access layer of the first node. For detailed implementation, reference may be made to the relevant description of S510 above, which will not be repeated here.
  • S615 (optional): Synchronize the at least one mapping relationship between the service layer of the first node and the application layer of the first node. For detailed implementation, refer to the relevant description of S511 above, and details are not repeated here.
  • S616 The service layer of the first node determines to release or deactivate the first transmission channel, and sends a fifth request message to the second node, where the fifth request message is used to indicate release or deactivation of the first transmission channel channel.
  • the service layer of the second node receives the fifth request message.
  • the service layer of the first node can negotiate with the second node according to its own target transmission requirements to dynamically establish the first transmission channel without It will statically occupy transmission resources, which helps to improve the utilization efficiency of transmission resources, and can also meet various transmission requirements and adapt to richer transmission scenarios.
  • the service layer of the first node can also allocate default The second transmission channel (not shown in the figure) is used to provide basic transmission services.
  • These second transmission channels are static channels, which will be activated by default after the access layer bearer (such as the first bearer) is established, so that corresponding services can be quickly provided, that is, in the embodiment of the present application, the first bearer can be associated with the first The second transmission channel and/or the dynamically established first transmission channel to adapt to richer transmission scenarios.
  • Scenario 3 In a converged communication scenario based on the first communication technology and the second communication technology, the service layer of the first node supports at least two protocol stacks, and at least two transmission channels (including dynamic The established first transmission channel and the default configured second transmission channel) are respectively used to transmit data packets based on the at least two protocol stacks.
  • the first node can communicate with the network of the second communication technology (such as 5G network) through the second node ) to establish a communication connection
  • the operator can centrally manage the short-distance nodes (including the first node and/or the second node) through the 5G core network, including two parts of control plane management and user plane management.
  • the content of interaction between short-distance nodes and the 5G core network may include registration, session establishment, and QoS policies related to session management.
  • the registration and QoS policy configuration process Relevant messages in can be carried on at least two protocol stacks, such as the protocol stack of Extensible Authentication Protocol (EAP)-5G protocol, user datagram Protocol (User Datagram Protocol, UDP)/Internet Interconnection Protocol (Internet Protocol, IP) protocol stack, User Plane Part of GPRS Turning Protocol (GTP-U)/Stream Control Transmission Protocol (Stream Control Transmission)
  • EAP Extensible Authentication Protocol
  • UDP User Datagram Protocol
  • IP Internet Interconnection Protocol
  • GTP-U User Plane Part of GPRS Turning Protocol
  • the protocol stack of the SCTP) protocol is finally sent through the air interface through the corresponding control plane transmission channel and the access layer bearer (that is, the link channel).
  • the same access layer bearer (such as the first bearer) can be used.
  • the associated at least two transmission channels (for example, a dynamically established first transmission channel and a default configured second transmission channel) are respectively used to transmit data packets based on the at least two protocol stacks.
  • the service layer of the first node can use the EAP-5G protocol stack to encapsulate the NAS message in a data packet of the EAP-5G protocol, and After dynamically establishing the first transport channel associated with the first bearer, the service layer of the first node can use the UDP/IP protocol stack to encapsulate the NAS message in the UDP/IP protocol In the data packet, and transmit to the peer node on the first transmission channel.
  • the service layer of the peer node parses the data packet after receiving the data packet from the first transmission channel or the second transmission channel, and submits the parsed data packet to the UDP/IP protocol stack or the EAP-5G protocol stack for further analysis .
  • the communication method may include the following steps:
  • the first node acts as the sending end, and the service layer of the first node can use the EAP-5G protocol stack to encapsulate the NAS message in the data packet of the EAP-5G protocol, and transmit it to the second node on the second transmission channel.
  • the service layer of the second node performs analysis after receiving the data packet from the second transmission channel, and submits the analyzed data packet to the EAP-5G protocol stack for further analysis.
  • the first node sends an authentication request to the network of the second communication technology through the second node.
  • the network of the second communication technology authenticates the first node.
  • the network of the second communication technology may send authentication success indication information to the first node through the second node, and the target transmission requirement of the first node may include the authentication success indication information.
  • the first node may establish a first transmission channel with the second node according to the authentication success indication information.
  • the authentication success indication information refers to the method steps shown in FIG. 5b and FIG. 6b above, which will not be repeated here.
  • the first node acts as the sender, and the service layer of the first node can use the UDP/IP protocol stack to encapsulate the NAS message in a UDP/IP protocol data packet, and transmit it to the second node on the first transmission channel.
  • the service layer of the second node parses after receiving the data packet from the first transmission channel, and submits the parsed data packet to the UDP/IP protocol stack for further parsing.
  • the first node can determine whether to trigger the process of dynamically establishing the first transmission channel according to whether the network authentication of the second communication technology is successful, so as to dynamically establish the first transmission channel between the first node and the second node.
  • Scenario 4 In a converged communication scenario based on the first communication technology and the second communication technology, the service layer of the first node supports at least two protocol stacks, and data packets based on the at least two protocol stacks can be multiplexed into the same
  • the data packets of the at least two protocol stacks include indication information, and the indication information is used to indicate the association relationship between the data packets and the protocol stacks.
  • the NAS messages in the process of registration and QoS policy configuration can be carried on at least two protocol stacks, such as the EAP-5G protocol stack , UDP/IP protocol stack, GTP-U/SCTP protocol stack, and finally send through the air interface through the corresponding control plane transmission channel and access layer bearer (ie link channel).
  • protocol stacks such as the EAP-5G protocol stack , UDP/IP protocol stack, GTP-U/SCTP protocol stack
  • the protocol stack based on the at least two protocol stacks can be The data packets are multiplexed on the same transmission channel (such as the first transmission channel or the second transmission channel), wherein the corresponding functional units of the service layer (such as the data transmission and adaptation layer) can receive the data packets from the upper layer protocol stack, and then , bit information (that is, indication information) can be added to the data packet, and the indication information can be used to indicate the association relationship between the data packet and the protocol stack.
  • bit information that is, indication information
  • the PDU can be used as this Layer load (payload), and add a header (header) before the load to obtain the data packet to be transmitted in this layer, and submit it to the corresponding transmission channel for transmission.
  • the packet header may contain a transmission channel identifier (Transmission Channel Identifier, TCID) and indication information, the TCID is used to indicate the transmission channel corresponding to the data packet, and the indication information is used to indicate the association between the data packet and the protocol stack.
  • TCID Transmission Channel Identifier
  • the service layer can analyze the received data packet to obtain the indication information in the packet header, thereby determining the subsequent routing direction, that is, to submit the load obtained by parsing the data packet to the EAP-5G protocol stack or UDP/IP protocol stack.
  • the at least two protocol stacks in the service layer, the at least two protocol stacks
  • the lower layer of the lower layer and the upper layer of the data transmission and adaptation layer add a first logical entity
  • the first logical entity can receive a data packet from the upper layer protocol stack, and add indication information in the data packet, and the indication information is used for Indicates the association relationship between the data packet and the protocol stack, and the corresponding frame structure may be the part that does not include the transmission channel identifier in Figure 8c.
  • the embodiment of the present application does not limit the way of adding the indication information and the corresponding data packet frame structure .
  • the peer node (for example, the second node) adopts the same method, for example, through the data transmission and adaptation layer or the newly added second logical entity (corresponding to the first logical entity), for the data packet submitted by the lower layer Parsing is performed to know which protocol stack the data packet needs to be delivered to the upper layer through the indication information obtained through the parsing, which will not be repeated here. Therefore, in the above embodiment, in the case where the first node supports at least two protocol stacks, the first node can add indication information in the header of the data packet so that the at least two protocol stacks can Multiplexing the same transmission channel to reduce the occupation of transmission resources. At the same time, the association relationship between the data packet and the protocol stack is indicated by the indication information, so that the peer node can accurately identify the protocol stack corresponding to the data packet when receiving and parsing the data packet.
  • the embodiment of the present application also provides a communication device, which is used to implement the communication method performed by the first node or the second node in the above-mentioned embodiments.
  • a communication device which is used to implement the communication method performed by the first node or the second node in the above-mentioned embodiments.
  • the apparatus 900 can be used to execute the communication method executed by the first node, for example: a processing unit 901 is configured to determine the target transmission requirement of the first node; and determine whether to Establish a first transmission channel, where the first transmission channel is used to communicate with the second node; a communication unit 902, configured to send a first request message to the second node, where the first request message is used to request establishment of the first a transport channel; and receiving a first response message from the second node, the first response message being used to confirm establishment of the first transport channel.
  • a processing unit 901 is configured to determine the target transmission requirement of the first node; and determine whether to Establish a first transmission channel, where the first transmission channel is used to communicate with the second node
  • a communication unit 902 configured to send a first request message to the second node, where the first request message is used to request establishment of the first a transport channel; and receiving a first response message from the second node, the first response message being used to confirm establishment of the first transport channel.
  • the apparatus 900 may be used to execute the communication method performed by the second node, for example, the communication unit 902 is used to receive a first request message from the first node, and the first request message is used for requesting establishment of a first transmission channel for communicating with the second node, the first transmission channel being associated with a target transmission requirement of the first node; and, sending the first transmission channel to the first node A response message, where the first response message is used to confirm establishment of the first transmission channel.
  • the communication unit 902 is used to receive a first request message from the first node, and the first request message is used for requesting establishment of a first transmission channel for communicating with the second node, the first transmission channel being associated with a target transmission requirement of the first node; and, sending the first transmission channel to the first node A response message, where the first response message is used to confirm establishment of the first transmission channel.
  • each functional unit in the embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the essence of the technical solution of this application or the part that contributes to some solutions or all or part of the technical solution can be embodied in the form of software products, and the computer software products are stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • a processor processor
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the apparatus 1000 shown in FIG. 10 includes at least one processor 1010 , a memory 1020 , and optionally, a communication interface 1030 .
  • connection medium between the processor 1010 and the memory 1020 is not limited in this embodiment of the present application.
  • the processor 1010 when the processor 1010 communicates with other devices, it can perform data transmission through the communication interface 1030 .
  • the processor 1010 in FIG. 10 can call the computer stored in the memory 1020 to execute instructions, so that the device 1000 can execute the method performed by the communication device in any of the above method embodiments.
  • the embodiment of the present application also relates to a system-on-a-chip, which includes a processor, configured to call a computer program or a computer instruction stored in the memory, so that the processor executes the method in any one of the above-mentioned method embodiments.
  • the processor is coupled to the memory through an interface.
  • the chip system further includes a memory, where computer programs or computer instructions are stored.
  • the embodiment of the present application also relates to a computer-readable storage medium, where program code is stored in the computer-readable storage medium, and when the program code is run on the computer, the computer is made to perform the method described in any one of the above-mentioned method embodiments. method.
  • the embodiments of the present application also relate to a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any one of the above method embodiments.
  • the embodiments of the present application also relate to a processor, where the processor is configured to call a computer program or computer instruction stored in a memory, so that the processor executes the method in any one of the above method embodiments.
  • the processor mentioned in any of the above-mentioned places can be a general-purpose central processing unit, a microprocessor, a specific application-specific integrated circuit (application-specific integrated circuit, ASIC), or one or more for controlling any of the above-mentioned methods An integrated circuit for executing the program of the method in the embodiment.
  • the memory mentioned in any of the above can be read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法、装置及系统。该方法包括:确定第一节点的目标传输需求(S410);根据目标传输需求确定是否建立第一传输信道(S420),第一传输信道用于与第二节点通信;向第二节点发送第一请求消息(S430),第一请求消息用于请求建立第一传输信道;接收来自第二节点的第一响应消息(S440),第一响应消息用于确认建立第一传输信道。该方法通过根据第一节点的目标传输需求,动态地在第一节点与第二节点之间建立第一传输信道,有助于灵活地为第一节点进行传输资源调度。该方法可以应用于车联网,如车辆外联V2X、车间通信长期演进技术LTE-V、车辆-车辆V2V等。

Description

一种通信方法、装置及系统
相关申请的交叉引用
本申请要求在2021年09月11日提交中华人民共和国知识产权局、申请号为202111064955.X、申请名称为“一种通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,特别涉及一种通信方法、装置及系统。
背景技术
目前,短距通信系统中定义基于应用层、服务层和接入层的三层通信协议架构,在服务层中定义控制面和用户面,服务层可为控制面中的服务发现、多域融合和5G融合等功能各分配默认的控制面传输信道,用于提供基础传输服务。这些默认的控制面传输信道为静态信道,会在接入层的承载(即链路信道)建立后默认激活,从而能够快速提供相应的服务。然而,随着业务场景的日益复杂,这些默认的控制面传输信道已无法满足复杂业务场景下的传输需求。
发明内容
本申请实施例提供一种通信方法、装置及系统,通过根据第一节点的目标传输需求,动态地在第一节点和第二节点之间建立第一传输信道,有助于灵活地为第一节点进行通信资源调度。
第一方面,本申请实施例提供了一种通信方法,该方法可应用于第一节点,该第一节点可以为终端节点,可以采用第一通信技术与第二节点进行通信。
所述方法可以包括:确定所述第一节点的目标传输需求;根据所述目标传输需求确定是否建立第一传输信道,所述第一传输信道用于与第二节点通信;向第二节点发送第一请求消息,所述第一请求消息用于请求建立所述第一传输信道;接收来自所述第二节点的第一响应消息,所述第一响应消息用于确认建立所述第一传输信道。
通过上述方法,第一节点可以根据自身的目标传输需求,与第二节点之间动态地建立第一传输信道,该第一传输信道不会局限于默认配置,既不会因为默认配置较少条静态传输信道而不能满足传输需求,也不会因默认配置较多条静态传输信道而带来传输资源的不合理占用和浪费,有助于提高传输资源的利用效率,同时还可以满足各种不同的传输需求,适应更丰富的传输场景。
结合第一方面,在一种可能的设计中,所述目标传输需求包括以下一项或多项信息:服务质量QoS参数、传输信道参数、用户等级信息、控制面负荷信息、用户面负荷信息、控制分流信息、第一业务的业务类型、或者第一业务的业务特征信息。
通过上述方法,第一节点的目标传输需求可以包括上述一项或多项,以适应更丰富的传输场景。其中,第一业务可以是第一节点(或第一节点的任意协议层)支持的业务,例 如通过短距通信方式实现的业务,包括但不限于音频业务、视频业务、控制功能业务等;融合通信场景下实现的业务,包括但不限于短距通信技术和5G通信技术融合场景下的短距通信业务、5G业务等。
需要说明的是,本申请实施例中的目标传输需求仅是对第一节点的传输需求的示例说明而非任何限定,在其它实施例中该目标传输需求还可以根据其它参数或业务确定,本申请实施例对此不做限定。
结合第一方面,在一种可能的设计中,所述第一请求消息包括以下至少一项配置信息:所述第一传输信道的地址信息、所述第一传输信道的源信道标识、与所述第一传输信道关联的第一承载的源信道标识、QoS参数的标识。
通过上述方法,第一节点可以在第一请求消息中携带第一传输信道的相关配置信息,来与第二节点协商建立所述第一传输信道,以适应更丰富的传输场景。应理解,第一请求消息中还可以包括其它配置信息,或配置信息以外的其它信息,在此不再赘述。需要说明的是,在所述第一请求消息中携带的“源信道标识”中,“源”表示承载该信道标识的消息的传输方向,即是由请求方发送至响应方的,并不限定该第一节点为源节点、第二节点为目标节点,在一些实施例中,若第一节点和第二节点的角色互换,即第二节点作为请求方、第一节点作为响应方,则第二节点向第一节点发送的第一请求消息中携带的信道标识可称为“源信道标识”。
结合第一方面,在一种可能的设计中,所述第一响应消息包括以下至少一项确认信息:所述第一传输信道的地址信息、所述第一传输信道的目标信道标识、与所述第一传输信道关联的第一承载的目标信道标识。
通过上述方法,第二节点可以在第一响应消息中携带对第一请求消息的相关确认信息并反馈给第一节点,以便第一节点确认建立所述第一传输信道。需要说明的是,本申请实施例中,在第一响应消息中也可以是包括对第一请求消息的拒绝信息而非确认信息,该拒绝信息中可以包含第二节点重新为第一节点建立的第三传输信道的目标信道标识,该第三传输信道可以代替第一传输信道,用于第一节点与第二节点之间的通信。需要说明的是,在所述第一响应消息中携带的“目标信道标识”中,“目标”表示承载该信道标识的消息的传输方向,即是由响应方反馈至接收方的,并不限定该第一节点为源节点、第二节点为目标节点,同样地,在一些实施例中,若第一节点和第二节点的角色互换,即第一节点作为响应方、第二节点作为请求方,则第一节点向第二节点发送的第一响应消息中携带的信道标识可称为“目标信道标识”。
应理解,本申请实施例中,由于第一节点与第二节点之间基于第一请求消息、第一响应消息进行协商以建立所述第一传输信道,针对第一节点在所述第一请求消息中对所述第一传输信道的相关配置,若第二节点同意该配置,则该第二节点向第一节点反馈的第一响应消息中携带的确认信息可以为同样的配置信息,例如第一传输信道的源信道标识与目标信道标识相同。若第二节点不同意该配置,则该第二节点向第一节点反馈的第一响应消息中携带的确认信息可以包括第二节点重新配置的相关配置信息,例如第一响应消息中包含的第一传输信道的目标信道标识,与第一请求消息中包含的第一传输信道的源信道标识不同。在一种可选的设计中,所述第一响应消息中还可以包含所述第一传输信道的源信道标识和/或所述第一承载的源信道标识。
需要说明的是,本申请实施例中,第一节点和第二节点之间所建立的第一传输信道(或 第三传输信道)可以具有一个信道标识(即不区分传输方向),用于唯一标识所述第一传输信道(或第三传输信道),在第一请求消息中携带的配置信息或第一响应消息中携带的确认信息中均可以包含该信道标识,分别用于请求建立所述第一传输信道、确认建立所述第一传输信道。或者,该第一传输信道(或第三传输信道)可以具有传输方向,例如将请求方(例如第一节点)至响应方(例如第二节点)为上行传输方向,具有上行信道标识,用于表示所述第一传输信道的上行信息的传输方向;响应方至请求方为下行传输方向,具有上行信道标识,用于表示所述第一传输信道的下行信息的传输方向,相应地,在第一请求消息中携带的源信道标识可以包括第一节点为所述第一传输信道配置的源上行信道标识、源下行信道标识,所述第一响应消息中可以携带的目标信道标识可以包括所述第二节点确认建立的所述第一传输信道的目标上行信道标识、目标下行信道标识,本申请实施例对第一传输信道(或第三传输信道)的信道标识的具体实现方式不做限定。
结合第一方面,在一种可能的设计中,所述第一节点的通信协议架构包括应用层、服务层和接入层。
结合第一方面,在一种可能的设计中,所述根据所述目标传输需求确定建立第一传输信道,包括:所述服务层根据所述目标传输需求确定建立第一传输信道;或者,所述服务层根据来自所述应用层的第二请求消息确定建立第一传输信道,所述第二请求消息用于指示所述目标传输需求。
通过上述方法,第一节点的服务层可作为决策主体,判决是否触发动态信道建立流程,以适应更丰富的传输场景。
结合第一方面,在一种可能的设计中,所述方法还包括:所述服务层向所述接入层发送第三请求消息,所述第三请求消息用于请求配置与所述第一传输信道关联的第一承载;所述服务层接收来自所述接入层的第三响应消息,所述第三响应消息用于确认配置所述第一承载。
通过上述方法,第一节点的服务层可以先向第一节点的接入层请求配置第一承载,以便与该第一承载关联地建立第一传输信道,从而在第一节点的不同协议层之间建立相应的传输承载。
结合第一方面,在一种可能的设计中,所述方法还包括:所述接入层接收来自所述服务层的所述第三请求消息;所述接入层在预先配置的或者预定义的第一节点与第二节点的承载中确定所述第一承载。
通过上述方法,第一节点的接入层可以在第一节点与第二节点之前的已有接入层承载中确定满足目标传输需求的第一承载,由此,第一节点可以直接复用已有承载作为第一承载,可以降低对接入层信道资源的占用。
结合第一方面,在一种可能的设计中,所述第二节点的通信协议架构包括接入层,所述方法还包括:所述第一节点的接入层接收来自所述第一节点的服务层的所述第三请求消息;所述第一节点的接入层根据所述第三请求消息向所述第二节点的接入层发送第四请求消息,所述第四请求消息用于请求配置所述第一承载;所述第一节点的接入层接收来自所述第二节点的接入层的第四响应消息,所述第四响应消息用于确认配置所述第一承载;所述第一节点的接入层根据所述第四响应消息,向所述第一节点的服务层发送所述第三响应消息。
通过上述方法,第一节点的接入层可以向第二节点的接入层请求配置满足目标传输需 求的第一承载,第二节点的接入层可以向第一节点的接入层反馈响应消息(或称为重配消息)来确认配置所述第一承载,由此,第二节点的接入层可以为第一节点的接入层配置更加满足第一节点的目标传输需求的第一承载。
结合第一方面,在一种可能的设计中,所述第二节点的通信协议架构包括接入层,所述方法还包括:所述第一节点的接入层接收来自所述第一节点的服务层的所述第三请求消息;所述第一节点的接入层接收来自所述第二节点的接入层的重配消息,所述重配消息用于指示配置所述第一承载;所述第一节点的接入层根据所述重配消息向所述第一节点的服务层发送所述第三响应消息。
通过上述方法,第二节点的接入层可以根据第一节点注册时上报的一些基本参数,例如节点类型、业务类型、QoS参数等,主动向第一节点的接入层下发重配消息,以为第一节点的接入层调度配置第一承载,该第一承载可以满足第一节点的一般传输需求,由此无需第一节点请求配置,可以减少第一节点与第二节点之间的信令交互,降低信令开销。
结合第一方面,在一种可能的设计中,所述第二节点的通信协议架构包括服务层,所述向第二节点发送第一请求消息,包括:所述第一节点的服务层向所述第二节点的服务层发送所述第一请求消息;所述接收来自所述第二节点的第一响应消息,包括:所述第一节点的服务层接收来自所述第二节点的第一响应消息。
通过上述方法,第一节点的服务层可以作为决策主体,触发与第二节点之间的动态信道建立流程。
结合第一方面,在一种可能的设计中,所述方法还包括:所述第一节点的服务层建立以下至少一项映射关系:所述第一传输信道与业务类型之间的映射关系、所述第一传输信道与QoS参数之间的映射关系、所述第一传输信道与关联的第一承载之间的映射关系,所述第一传输信道与节点类型之间的映射关系。可选地,所述方法还包括:所述第一节点的服务层与所述第一节点的接入层和/或应用层之间同步所述至少一项映射关系。
通过上述方法,第一节点的服务层可以建立第一传输信道与其它信息之间的映射关系,并同步至其它协议层,以便各个协议层后续基于所述映射关系为所述第一节点提供相应的传输服务。
结合第一方面,在一种可能的设计中,所述第一节点的服务层支持至少两种协议栈,基于所述至少两种协议栈的数据包复用所述第一传输信道,所述至少两种协议栈的数据包中包含指示信息,所述指示信息用于指示数据包与协议栈之间的关联关系;或者,所述第一承载关联默认配置的第二传输信道,基于所述至少两种协议栈的数据包分别经过所述第一传输信道或所述第二传输信道传输至所述第二节点。
通过上述方法,第一节点的服务层所支持的至少两种协议栈可以复用同一传输信道,或者,通过数据包中包含的指示信息指示数据包和协议栈之间的关联关系,有助于减少来自不同协议栈的数据包传递错误问题,同时可以减少对传输资源的占用。或者,所述至少两种协议栈可以分别通过不同的传输信道传输,以减少对传输资源的占用。
结合第一方面,在一种可能的设计中,所述指示信息通过所述第一节点的数据传输与适配层添加至基于所述至少两种协议栈的数据包中,所述数据传输与适配层位于所述第一节点的服务层中所述至少两种协议栈的下层;或者,所述指示信息通过所述第一节点中的第一逻辑实体添加至基于所述至少两种协议栈的数据包中,所述第一逻辑实体位于所述第一节点的服务层中所述至少两种协议栈的下层,所述数据传输与适配层的上层。
通过上述方法,位于第一节点的服务层的数据传输与适配层,可以识别上层传递的数据包是来自哪种协议栈,并在数据包中增加用于指示数据包与协议栈之间的关联关系的指示信息,以便对端节点能够识别数据包与协议栈之间的关联关系,并将数据包递交至上层的相应协议栈。或者,为尽可能地减少对现有协议的改动,本申请实施例中,可以在第一节点的服务层中所述至少两种协议栈的下层、所述数据传输与适配层的上层新增第一逻辑实体,该第一逻辑实体可以识别数据包的来自哪种协议栈,并在数据包中增加相应的指示信息,本申请实施例对该指示信息的添加方式以及相应的数据包帧结构不做限定。需要说明的是,对端节点采用同样的方式,例如通过数据传输与适配层或者新增的第二逻辑实体(与第一逻辑实体对应,可用于解析来自第一逻辑实体的数据),对数据包进行解析,以通过解析得到的指示信息,获知数据包需要递交至哪一上层协议栈,在此不再赘述。
结合第一方面,在一种可能的设计中,所述第一节点支持第一通信技术,所述第二节点支持第一通信技术第二通信技术,所述第一通信技术和所述第二通信技术不同,所述方法还包括:所述第一节点通过所述第二节点向所述第二通信技术的网络发送鉴权请求;所述第一节点通过所述第二节点接收来自所述第二通信技术的网络的鉴权成功指示信息,其中,所述目标传输需求可以包括所述鉴权成功指示信息。
通过上述方法,在第一节点通过第二节点与第二通信技术的网络融合通信的场景中,第一节点的目标传输需求还可以包括来自第二通信技术的网络的鉴权成功指示信息,以便第一节点与第二节点之间建立的第一传输通道可以满足融合通信场景下的传输需求。
结合第一方面,在一种可能的设计中,所述方法还包括:确定释放或者去激活所述第一传输信道;向所述第二节点发送第五请求消息,所述第五请求消息用于指示释放或者去激活所述第一传输信道。
通过上述方法,第一节点还可以动态地释放或者去激活所述第一传输信道,以减少对传输资源的占用。
第二方面,本申请实施例提供了一种通信方法,应用于第二节点,所述方法包括:接收来自第一节点的第一请求消息,所述第一请求消息用于请求建立第一传输信道,所述第一传输信道用于与所述第二节点通信,所述第一传输信道关联所述第一节点的目标传输需求;向所述第一节点发送第一响应消息,所述第一响应消息用于确认建立所述第一传输信道。
结合第二方面,在一种可能的设计中,所述目标传输需求包括以下一项或多项信息:服务质量QoS参数、传输信道参数、用户等级信息、控制面负荷信息、用户面负荷信息、控制分流信息、第一业务的业务类型、或者第一业务的业务特征信息。
结合第二方面,在一种可能的设计中,所述第一请求消息包括以下至少一项配置信息:所述第一传输信道的地址信息、所述第一传输信道的源信道标识、与所述第一传输信道关联的第一承载的源信道标识、QoS参数的标识。
结合第二方面,在一种可能的设计中,所述第一响应消息包括以下至少一项确认信息:所述第一传输信道的地址信息、所述第一传输信道的目标信道标识、与所述第一传输信道关联的第一承载的目标信道标识。
结合第二方面,在一种可能的设计中,所述第一节点的通信协议架构包括接入层,所述第二节点的通信协议架构包括接入层,所述方法还包括:所述第二节点的接入层接收来自所述第一节点的接入层的第四请求消息,所述第四请求消息用于请求配置与所述第一传 输信道关联的第一承载;所述第二节点的接入层向所述第一节点的接入层发送第四响应消息,所述第四响应消息用于确认配置所述第一承载。
结合第二方面,在一种可能的设计中,所述第一节点的通信协议架构包括接入层,所述第二节点的通信协议架构包括接入层,所述方法还包括:所述第二节点的接入层向所述第一节点的接入层发送重配消息,所述重配消息用于指示配置与所述第一传输信道关联的第一承载。
结合第二方面,在一种可能的设计中,所述第一节点的通信协议架构包括服务层,所述第二节点的通信协议架构包括服务层;所述接收来自第一节点的第一请求消息,包括:所述第二节点的服务层接收来自所述第一节点的服务层的第一请求消息;所述向所述第一节点发送第一响应消息,包括:所述第二节点的服务层向所述第一节点的服务层发送所述第一响应消息。
结合第二方面,在一种可能的设计中,所述第一节点支持第一通信技术,所述第二节点支持第一通信技术和第二通信技术,所述第一通信技术与所述第二通信技术不同,所述方法还包括:向所述第二通信技术的网络发送来自所述第一节点的所述鉴权请求;向所述第一节点发送来自所述第二通信技术的网络的鉴权成功指示信息,其中,所述目标传输需求包括所述鉴权成功指示信息。
结合第二方面,在一种可能的设计中,所述方法还包括:接收来自所述第一节点的第五请求消息,所述第五请求消息用于指示释放或者去激活所述第一传输信道。
第三方面,本申请实施例提供了一种通信装置,包括:处理单元,确定所述第一节点的目标传输需求;根据所述目标传输需求确定是否建立第一传输信道,所述第一传输信道用于与第二节点通信;通信单元,用于向第二节点发送第一请求消息,所述第一请求消息用于请求建立所述第一传输信道;接收来自所述第二节点的第一响应消息,所述第一响应消息用于确认建立所述第一传输信道。
结合第三方面,在一种可能的设计中,所述目标传输需求包括以下一项或多项信息:服务质量QoS参数、传输信道参数、用户等级信息、控制面负荷信息、用户面负荷信息、控制分流信息、第一业务的业务类型、或者第一业务的业务特征信息。
结合第三方面,在一种可能的设计中,所述第一请求消息包括以下至少一项配置信息:所述第一传输信道的地址信息、所述第一传输信道的源信道标识、与所述第一传输信道关联的第一承载的源信道标识、QoS参数的标识。
结合第三方面,在一种可能的设计中,所述第一响应消息包括以下至少一项确认信息:所述第一传输信道的地址信息、所述第一传输信道的目标信道标识、与所述第一传输信道关联的第一承载的目标信道标识。
结合第三方面,在一种可能的设计中,所述第一节点的通信协议架构包括应用层、服务层和接入层。
结合第三方面,在一种可能的设计中,所述处理单元用于:通过所述服务层,根据所述目标传输需求确定建立第一传输信道;或者,通过所述服务层,根据来自所述应用层的第二请求消息确定建立第一传输信道,所述第二请求消息用于指示所述目标传输需求。
结合第三方面,在一种可能的设计中,所述通信单元还用于:通过所述服务层向所述接入层发送第三请求消息,所述第三请求消息用于请求配置与所述第一传输信道关联的第一承载;通过所述服务层接收来自所述接入层的第三响应消息,所述第三响应消息用于确 认配置所述第一承载。
结合第三方面,在一种可能的设计中,所述通信单元还用于:通过所述接入层接收来自所述服务层的所述第三请求消息;所述处理单元还用于:通过所述接入层在预先配置的或者预定义的第一节点与第二节点的承载中确定所述第一承载。
结合第三方面,在一种可能的设计中,所述第二节点的通信协议架构包括接入层,所述通信单元还用于:通过所述第一节点的接入层,接收来自所述第一节点的服务层的所述第三请求消息;通过所述第一节点的接入层,根据所述第三请求消息向所述第二节点的接入层发送第四请求消息,所述第四请求消息用于请求配置所述第一承载;通过所述第一节点的接入层,接收来自所述第二节点的接入层的第四响应消息,所述第四响应消息用于确认配置所述第一承载;通过所述第一节点的接入层,根据所述第四响应消息,向所述第一节点的服务层发送所述第三响应消息。
结合第三方面,在一种可能的设计中,所述第二节点的通信协议架构包括接入层,所述通信单元还用于:通过所述第一节点的接入层,接收来自所述第一节点的服务层的所述第三请求消息;通过所述第一节点的接入层,接收来自所述第二节点的接入层的重配消息,所述重配消息用于指示配置所述第一承载;通过所述第一节点的接入层根据所述重配消息向所述第一节点的服务层发送所述第三响应消息。
结合第三方面,在一种可能的设计中,所述第二节点的通信协议架构包括服务层,所述通信单元用于:通过所述第一节点的服务层向所述第二节点的服务层发送所述第一请求消息;通过所述第一节点的服务层接收来自所述第二节点的第一响应消息。
结合第三方面,在一种可能的设计中,所述处理单元还用于:通过所述第一节点的服务层,建立以下至少一项映射关系:所述第一传输信道与业务类型之间的映射关系、所述第一传输信道与QoS参数之间的映射关系、所述第一传输信道与关联的第一承载之间的映射关系,所述第一传输信道与节点类型之间的映射关系。可选地,所述处理单元还用于:通过所述第一节点的服务层与所述第一节点的接入层和/或应用层之间同步所述至少一项映射关系。
结合第三方面,在一种可能的设计中,所述第一节点的服务层支持至少两种协议栈,基于所述至少两种协议栈的数据包复用所述第一传输信道,其中,所述至少两种协议栈的数据包中包含指示信息,所述指示信息用于指示数据包与协议栈之间的关联关系;或者,所述第一承载关联默认配置的第二传输信道,基于所述至少两种协议栈的数据包分别经过所述第一传输信道和所述第二传输信道传输至所述第二节点。
结合第三方面,在一种可能的设计中,所述指示信息通过所述第一节点的数据传输与适配层添加至基于所述至少两种协议栈的数据包中,所述数据传输与适配层位于所述第一节点的服务层中所述至少两种协议栈的下层;或者,所述指示信息通过所述第一节点中的第一逻辑实体添加至基于所述至少两种协议栈的数据包中,所述第一逻辑实体位于所述第一节点的服务层中所述至少两种协议栈的下层、所述数据传输与适配层的上层。
结合第三方面,在一种可能的设计中,所述第一节点支持第一通信技术,所述第二节点支持第一通信技术第二通信技术,所述第一通信技术和所述第二通信技术不同,所述通信单元还用于:通过所述第二节点向所述第二通信技术的网络发送鉴权请求;通过所述第二节点接收来自所述第二通信技术的网络的鉴权成功指示信息,其中,所述目标传输需求包括所述鉴权成功指示信息。
结合第三方面,在一种可能的设计中,所述处理单元还用于:确定释放或者去激活所述第一传输信道;所述通信单元还用于:向所述第二节点发送第五请求消息,所述第五请求消息用于指示释放或者去激活所述第一传输信道。
第四方面,本申请实施例提供了一种通信装置,包括:通信单元,用于接收来自第一节点的第一请求消息,所述第一请求消息用于请求建立第一传输信道,所述第一传输信道用于与所述第二节点通信,所述第一传输信道关联所述第一节点的目标传输需求;以及,向所述第一节点发送第一响应消息,所述第一响应消息用于确认建立所述第一传输信道。
结合第四方面,在一种可能的设计中,所述目标传输需求包括以下一项或多项信息:服务质量QoS参数、传输信道参数、用户等级信息、控制面负荷信息、用户面负荷信息、控制分流信息、第一业务的业务类型、或者第一业务的业务特征信息。
结合第四方面,在一种可能的设计中,所述第一请求消息包括以下至少一项配置信息:所述第一传输信道的地址信息、所述第一传输信道的源信道标识、与所述第一传输信道关联的第一承载的源信道标识、QoS参数的标识。
结合第四方面,在一种可能的设计中,所述第一响应消息包括以下至少一项确认信息:所述第一传输信道的地址信息、所述第一传输信道的目标信道标识、与所述第一传输信道关联的第一承载的目标信道标识。
结合第四方面,在一种可能的设计中,所述第一节点的通信协议架构包括接入层,所述第二节点的通信协议架构包括接入层,所述通信单元还用于:通过所述第二节点的接入层接收来自所述第一节点的接入层的第四请求消息,所述第四请求消息用于请求配置与所述第一传输信道关联的第一承载;通过所述第二节点的接入层向所述第一节点的接入层发送第四响应消息,所述第四响应消息用于确认配置所述第一承载。
结合第四方面,在一种可能的设计中,所述第一节点的通信协议架构包括接入层,所述第二节点的通信协议架构包括接入层,所述通信单元还用于:通过所述第二节点的接入层向所述第一节点的接入层发送重配消息,所述重配消息用于指示配置与所述第一传输信道关联的第一承载。
结合第四方面,在一种可能的设计中,所述第一节点的通信协议架构包括服务层,所述第二节点的通信协议架构包括服务层;所述通信单元用于:通过所述第二节点的服务层接收来自所述第一节点的服务层的第一请求消息;通过所述第二节点的服务层向所述第一节点的服务层发送所述第一响应消息。
结合第四方面,在一种可能的设计中,所述第一节点支持第一通信技术,所述第二节点支持第一通信技术和第二通信技术,所述第一通信技术与所述第二通信技术不同,所述通信单元还用于:向所述第二通信技术的网络发送来自所述第一节点的所述鉴权请求;向所述第一节点发送来自所述第二通信技术的网络的鉴权成功指示信息,其中,所述目标传输需求包括所述鉴权成功指示信息。
结合第四方面,在一种可能的设计中,所述通信单元还用于:接收来自所述第一节点的第五请求消息,所述第五请求消息用于指示释放或者去激活所述第一传输信道。
第五方面,本申请实施例提供了一种通信装置,包括至少一个处理器和接口电路,所述接口电路用于为所述至少一个处理器提供数据或者代码指令,所述至少一个处理器用于通过逻辑电路或执行代码指令实现如上述第一方面以及第一方面任一可能设计所述的方法,或者,实现如上述第二方面以及第二方面任一可能设计所述的方法。
第六方面,本申请实施例提供了一种通信系统,包括用于实现上述第一方面以及第一方面任一可能设计所述方法的通信装置,以及实现上述第二方面以及第二方面任一可能设计所述方法的通信装置。
第七方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有程序代码,当所述程序代码在计算机上运行时,使得计算机执行上述第一方面以及第一方面可能的设计所述的方法,或者,当所述程序代码在计算机上运行时,使得计算机执行上述第二方面以及第二方面可能的设计所述的方法。
第八方面,本申请实施例提供了一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行上述第一方面以及第一方面可能的设计所述的方法,或执行上述第二方面以及第二方面可能的设计所述的方法。
第九方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述第一方面以及第一方面可能的设计所述的方法,或执行上述第二方面以及第二方面可能的设计所述的方法。
结合第九方面,在一种可能的实现方式中,该处理器可以通过接口与存储器耦合。
结合第九方面,在一种可能的实现方式中,该芯片系统还可以包括存储器,该存储器中存储有计算机程序或计算机指令。
第十方面,本申请实施例提供了一种处理器,该处理器用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述第一方面以及第一方面可能的设计所述的方法,或执行上述第二方面以及第二方面可能的设计所述的方法。
本申请实施例在上述各方面提供的实现的基础上,还可以进行进一步组合以提供更多实现。
上述第二方面至第十方面中任一方面中的任一可能设计可以达到的技术效果,可以相应参照上述第一方面中任一方面中的任一可能设计可以达到的技术效果描述,重复之处不予论述。
附图说明
图1示出了本申请实施例的通信协议架构的示意图;
图2示出了本申请实施例适用的通信系统的示意图;
图3示出了本申请实施例适用的另一通信系统的示意图;
图4示出了本申请实施例的通信方法的流程示意图;
图5a-图5b示出了本申请实施例的通信方法的示意图;
图6a-图6b示出了本申请实施例的通信方法的示意图;
图7a-图7b示出了本申请实施例适用的融合通信场景的示意图;
图8a-图8c示出了本申请实施例适用的融合通信场景的示意图;
图9示出了本申请实施例的通信装置的示意图;
图10示出了本申请实施例的通信装置的示意图。
具体实施方式
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)通信装置
通信装置(或称为通信节点),是指向用户提供数据连通性的装置,也可以称为通信设备。
示例地,该通信装置可以为终端设备,包括向用户提供语音和/或数据连通性的设备,具体地,该终端设备可以包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。又例如,该终端设备可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备例如可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括车辆、用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、签约单元(subscriber unit)、签约站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,窄带物联网(narrow band internet of things,NB-IoT)中的专用终端设备,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
可选地,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
可选的,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
在本申请实施例中,通信装置可以包括但不限于具备短距通信功能的智能手机、笔记本、平板电脑等智能终端、鼠标、键盘、耳机、音响或者车载播放设备等。在存在至少两个通信装置的情况下,为便于区分,也可以将所述至少两个通信装置分别称为第一通信装置、第二通信装置等,相应地,也可以简称为第一装置或第一节点、第二装置或第二节点等。
第一节点和第二节点之间可以通过第一通信技术,例如某种短距离通信技术,实现通信连接。其中,短距离通信技术可以包括但是不限于是蓝牙(bluetooth)技术、无线保真(wireless fidelity,Wi-Fi)技术、近场通讯(near field communication,NFC)技术、Wi-Fi Aware技术、通用短距通信技术等。短距离通信在文件传输、远程控制、投屏、周围设备的感知等各方面有大量应用。下面列举几种短距离通信技术的示例。
蓝牙:一种支持设备短距离通信的无线电技术,能在包括移动电话、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。利用“蓝牙”技术,能够有效地简化移动通信终端设备之间的通信,也能够成功地简化设备与因特网之间的通信,从而使得数据传输变得更加迅速高效,为无线通信拓宽道路。
无线保真技术(wireless fidelity,Wi-Fi):又称为无线局域网(wireless local area networks,WLAN)直连或Wi-Fi Direct,是Wi-Fi协议簇中的一个,使设备之间能够轻松连接彼此而不再需要中介性质的无线接入点。其使用范围从网页浏览到文件传输,以及同时与多个设备进行通信,能够充分发挥Wi-Fi的速度优势。符合此标准的设备即使来自不同的生产厂商,亦可实现轻松互联。
Wi-Fi Aware技术:在Wi-Fi技术中负责感知和发现部分,能够帮助Wi-Fi设备感知周边的服务,比如,周边的设备,进而通过Wi-Fi Aware实现近距离的两个设备的点对点(Peer to Peer,P2P)消息交互。由于WIFI-Aware可以感知周围的设备,所以可实现多种功能,比如,感知的附近的人并建立连接,进而加好友、玩同一款游戏等等;或者,发现周围的设备,实现照片分享或地点分享等等;或者,无需接入网络(比如蜂窝或无线),就可以向打印机安全地发送文件,等等。
需要说明的是,除了上面列举的三种短距离通信技术之外,现有的其它短距通信技术,或者,随着通信技术的演进,未来可能出现的其他的短距离通信技术,也可以适用于本方案。
可以理解的是,本申请中,也可以在逻辑功能上将所述至少两个通信装置区分为两类节点,即主节点(或者称为授权节点)和从节点。其中,主节点可以管理从节点,具有资源分配能力或资源调度能力,可以为从节点分配资源或配置从节点的相关功能。从节点能够听从主节点的分配或调度,并基于主节点分配的资源进行通信。需要注意的是,主节点和从节点的属性特征可能改变。例如,当智能终端与鼠标进行通信时,智能终端为主节点,鼠标为从节点;但当智能终端接入更高优先级的其它设备并听从其它设备调度时,此时智能终端的角色属性变更为从节点。本申请实施例中,可采用G节点表示授权节点,采用T节点表示从节点。
应理解,本申请中,通信装置也可以为网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation, 5G)NR系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
网络设备还可以包括核心网设备,核心网设备例如包括5G系统中的访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)或用户面功能(user plane function,UPF)等,或者包括4G系统中的移动管理实体(mobility management entity,MME)等。
(2)通信协议架构
以短距通信技术为例,如图1所示,短距通信技术的通信协议架构可包括应用层(application layer)、服务层(service layer)和接入层(access layer),每个层可称为协议层。
应理解,这里的层只是一种框架性的结构划分,整体上分为上层、中层和底层三个大层。不同的通信系统可以有各自的层划分方式,也可以有更具体和下位的层次划分,这里不做具体限定。例如,现有技术还存在七层、五层和三层等多种可能的网络模型。其中,每个层的功能可以通过一种或者多种协议实现。例如服务层的协议可以包含IPv4等,接入层的协议可以包含逻辑链路控制与适配(logical link control&adaption protocol,L2CAP)层和/或链路(link,LL)层等。
应用层位于服务层之上,可以部署若干应用程序(application)/业务实例,可用于为应用程序(也称为应用或用户)提供服务,例如通用通信服务、通用音视频服务、主动降噪服务、文件服务等。可选地,应用层还可用于为用户提供会话支持和/或信息支持。
服务层位于接入层之上,用于在源节点(例如第一节点)和目的节点(例如第二节点)之间建立连接,并提供端到端的信息传输服务。可选地,服务层可对应网络层(network layer)、数据传输与适配层,该网络层可以负责进行传输控制和路由选择,以为不同的功能(例如设备发现、服务发现、连接管理、QoS管理、安全管理、多域管理、测量管理、5G融合等)确定传输承载(或者称为传输信道)。可选地,网络层还可以进行流量控制。数据传输与适配层,可用于对上层传递的数据(包括透传数据和非透传数据)进行编码或解码,从而将数据转换为兼容或适合传输的格式。
接入层可以为节点之间的通信提供通信接口/手段,接入层可能包含多种不同的接入技术,不同的接入技术可能对应不同的通信接口,例如蜂窝接口,WIFI接口等。可选地,接入层对应数据链路层和物理层。
数据链路层:保障在物理链路上进行数据的可靠传递。数据或指令被封装成特定的可被物理层传输的帧;可选地,数据链路层还包括访问控制、资源管理、数据分段、级联、纠错等功能。比如,以蓝牙协议为例,数据链路层可以包括逻辑链路控制和适配协议(logical link control and adaptation protocol,L2CAP)层和逻辑(logical layer,LL)层。其中,L2CAP负责进行数据封装、分段、逻辑信道管理等功能;LL层负责进行资源管理和分配。其中,数据链路层可包括一个或多个接入层承载(或称为链路信道、逻辑信道),用于传输来自上层(例如服务层)的数据或指令。
物理层:利用传输介质为数据链路层提供物理连接,实现比特流的透明传输。一般地,物理层进行信道编码或解码,保障数据传输的可靠性。
由于服务层可能存在不同的网络和/或传输协议,因此,数据链路层还可用于提供与不 同的网络和/或传输协议之间的传输适配功能。比如,接收来自底层(数据链路层之下的协议层)的数据包,区分该数据包所属的上层(数据链路层之上的协议层)协议类型,并将该数据包递交(或称传递)给对应的上层协议处理。需要说明的是,数据链路层是一个逻辑功能层,在实现上,其也可以包含在服务层中,本申请不对此进行限制。
应理解,本申请中协议层的上层是指,该协议层的之上的任意一个协议层,比如,L2CAP层的上层,可以是服务层或应用层。其中,上层向下层传输数据包的过程,可称为传递。下层向上层传输数据包的过程可称为递交。
在每一协议层,需要对上层传递的数据包打上相应的数据包包头(或称为帧头),从而便于对端节点的对等层对其进行解析,比如,发送端节点的LL层在数据包上添加LL层包头,需要在接收端节点的LL层对该LL包头进行解析。
本申请实施例中,对于上层传递下来的数据包,在未加包头之前,可将该数据包称为服务数据单元(service data unit,SDU),加包头之后称之为协议数据单元(protocol data unit,PDU)。比如,LL层接收到的L2CAP层传递的数据包可称为LL SDU(也称为L2CAP PDU);在LL对该数据包添加包头后,添加包头后的数据包称为LL PDU。相反,在接收端,LL可对接收到的LL PDU(也称为PHY SDU)进行去除包头,获得LL SDU,并将LL SDU递交给上层。
可以理解的,在发送端,如果该任一协议层对数据进行透传,则该协议层生成的PDU仅包含SDU。其中,对于数据的发送端,透传是指该协议层不对来自于上层的本层SDU(也称为上层PDU)进行封装包头的处理,直接将本层SDU作为本层PDU传递到下层。透传又可称为透明传输或pass-through,可以理解透传是指在通信中不对业务数据内容做改变,例如不对数据进行分段、级联、拼接、重排序、加包头等动作,将原始内容由源地址传输到目的地址。在数据的接收端,透传是指,该协议层不对下层递交的下层SDU(也称为本层PDU)则进行解封装处理,直接将本层PDU作为本层SDU递交到上层。
在一种可选的设计中,在透传时,发送端协议层(如LL层)可以对传输数据进行加密,接收端协议层(如LL层)可对数据进行解密。其中加密和解密所使用的算法、参数等可以是发送端节点与接收端节点双方预先约定的或协议中定义的。
在一种可选的设计中,在透传时,发送端协议层可以对传输数据添加循环冗余校验(cyclic redundancy check,CRC)校验码,用于接收端对应的协议层对数据进行校验。其中,CRC校验运算使用的算法、参数可以是G节点与T节点双方预先约定的或协议中定义的。CRC校验码可添加在传输数据的尾部。
(3)协议和协议栈
本申请实施例中,每个协议层可支持一种或多种协议,每个协议层的一种协议对应于一个协议栈。
其中,协议与协议栈不同。协议是执行主体需要遵从的一组约定,协议栈是通过协议对数据进行处理的单元或者模块,协议栈产生的数据经过下层(例如接入层)处理后发送。本申请实施例中,协议栈也可以简单理解为G节点或T节点中能使用协议对数据进行处理的单元或模块。
以T节点为例,假设第一协议栈支持第一协议,即第一协议栈是T节点中使用第一协议对数据进行处理的单元或模块。同理,假设第二协议栈支持第二协议,即第二协议栈可以是T节点中的使用第二协议对数据进行处理的单元或模块。其中,第一协议栈和第二协 议栈可以是同一个单元或不同单元,本申请实施例不作限定。
应理解,在不同的协议栈中,应用层、服务层、接入层等协议层可进一步细分为不同的协议层,用于实现相同或相似功能的相应协议层也可以具有不同的名称,本申请对此不做限定。本申请实施例中的协议不仅仅限定为用于通信的协议。
(4)逻辑信道
一般地,不同的业务往往具有不同的服务质量(Quality of Service,Qos)需求,因此可以为不同的业务建立不同的逻辑信道,从而保障不同业务的差异化Qos需求。例如,为音频业务、视频业务分别建立不同的逻辑信道。
以单个逻辑信道只对应一种业务为例。比如,逻辑信道1对应业务①,逻辑信道2对应业务②。业务①的数据不能复用逻辑信道2,同样,业务②的数据不能复用逻辑信道1。一般,不同逻辑信道对应不同传输资源,比如,逻辑信道1对应传输资源1,逻辑信道2对应传输资源2,传输资源1和传输资源2不同。比如,传输资源1和传输资源2的时域资源不同(如,短距离通信系统是时分系统,那么传输资源1和传输资源2是时分的)。
当然,可以理解的,也可以为Qos需求相近的一个或者多个业务建立相同的逻辑信道,从而减少逻辑信道数量,便于管理。
更广义的逻辑信道概念为:根据物理信道传输内容的不同划分的多个虚拟信道,即物理信道是真正完成传输工作的,逻辑信道是来界定传输内容的。例如,逻辑信道可以分为两类:控制信道和业务信道,控制信道用于传输控制平面信息,而业务信道用于传输用户面信息(例如业务数据)。
本申请实施例中,接入层承载可以为逻辑信道,具有逻辑信道标识(Logical Channel Identifier,LCID)。
(5)至少一个,是指一个,或一个以上(包括多个,指两个或两个以上),即包括一个、两个、三个及以上。
(6)携带,可以是指一个消息用于承载信息或数据,也可以是指该消息由哪些信息构成,或者消息中包含哪些信息。
(7)“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面介绍本申请实施例适用的通信系统。
图2示出了本申请实施例适用的通信系统的示意图。参阅图2所示,该通信系统中可以包括第一节点210和第二节点220。其中,第一节点210可以为终端节点,第二节点220可以为所述第一节点210的授权节点,第一节点210和第二节点220均可支持第一通信技术,第一节点210和第二节点220可以组成第一通信系统,双方之间可以采用第一通信技术进行通信。
在一种可选的设计中,该通信系统中还可以包括第三节点230。第二节点220和第三节点230均可支持第二通信技术,第二节点220和第三节点230可以组成第二通信系统,双方之间可以采用第二通信技术进行通信,第一通信技术和第二通信技术不同。在该第一 通信技术和第二通信技术的融合通信场景中,第一通信系统与第二通信系统之间可以建立通信连接,组成异构式通信系统,所述第一节点210、所述第二节点220和所述第三节点230可以在该异构式通信系统中执行相应的通信业务和/或传输通信业务数据。
参阅图3所示,以第一通信技术为短距通信技术、第二通信技术为5G通信技术为例,该第三节点230可以包括但不限于接入网设备:例如可信的非第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)网关功能(Trusted Non-3GPP Gateway Function,TNGF)、以及核心网设备:例如SMF、AMF、UPF以及数据网络(Data Network,DN)等功能实体中的至少一项。
各个节点或功能实体之间可以通过接口连接,接口的序列号或接口的名称本申请实施例中不作限定,可以按照5G系统的3GPP相关标准协议中定义的接口,也可以使用未来通信系统中的接口。例如,第二节点220可以通过Yt接口与第一节点210通信,第一节点210可以通过Ta接口与TNGF通信,第二节点220可以通过NWt接口与TNGF通信。第二节点220、第一节点210可以通过下一代网络(next generation,N)1接口(简称N1)与AMF通信,网络设备(例如TNGF)通过N2接口(简称N2)与AMF通信,TNGF通过N3接口(简称N3)与本地UPF通信,UPF通过N6接口(简称N6)与DN通信。AMF通过N11接口(简称N11)与SMF通信,SMF通过N4接口(简称N4)与UPF通信。由此,使得5G网络能够透过该第一节点210来感知该第二节点220的设备状态、网络状态、业务状态等关键信息,达到远程对行业现场网络和业务的可达、可感、可管等。
需要说明的是,上述仅是示意性表示该异构式通信系统中可以包括第一节点210、第二节点220和第三节点230,以及各个节点及其功能模块之间的通信方式,并不限定各个节点的数量以及接口的序列号或名称。在具体实施时,第一节点210、第二节点220、第三节点230的数量可以不限于1个。
另外,需要说明的是,本申请实施例中,第二节点220可以和第三节点230进行无线资源控制(radio resource control,RRC)建立过程,当第二节点220和第三节点230建立了RRC连接后,该第二节点220的RRC状态即为RRC连接态。随后,第二节点220的RRC状态可以在以下状态中进行转换:RRC空闲(RRC_IDLE)态、RRC连接(RRC_CONNECTED)态和RRC非激活(RRC_INACTIVE)态。在本申请实施例的融合通信场景中,该第二节点220可以是处于上述的空闲态、连接态、非激活态中的任一状态,本申请实施例对此不做限定。
上述图2和图3所示的通信系统可用于实现本申请实施例的通信方法,下面结合附图及实施例介绍本申请实施例的通信方法。
图4示出了本申请实施例的通信方法的流程示意图。参阅图4所示,该通信方法可以包括以下步骤:
S410:第一节点确定所述第一节点的目标传输需求。
本申请实施例中,第一节点的目标传输需求为第一节点实现传输服务(包括控制面传输服务和/或用户面传输服务)的需求,该目标传输需求可以根据该第一节点的应用层或服务层或接入层的相关参数确定,也可以根据该第一节点的第一业务确定,本申请实施例对此不做限定。
示例地,该目标传输需求可以包括以下一项或多项信息:应用层服务质量(Quality of  Service,QoS)参数,包括但不限于采用率、采用位宽、音视频编码等;传输信道参数,包括但不限于优先级、包延时、包错误率、时延抖动、吞吐率等;用户等级信息;控制面负荷信息;用户面负荷信息;控制分流信息(例如向不同的通信节点分流);第一业务的业务类型;或者第一业务的业务特征信息。
S420:第一节点根据所述目标传输需求确定是否建立第一传输信道,所述第一传输信道用于与第二节点通信。
在具体实施过程中,该第一节点可以根据所述目标传输需求是否满足动态信道建立条件,确定是否需要建立所述第一传输信道,该动态信道建立条件可以包括但不限于建立所述第一传输信道应满足的带宽条件、保障速率条件、时延条件等,本申请实施例对此不做限定。若不需要建立所述第一传输信道,则该第一节点可以直接复用第一节点与第二节点之间已存在、且满足所述目标传输需求的传输信道作为所述第一传输信道,而无需动态建立所述第一传输信道;若需要建立所述第一传输信道,则该第一节点可以触发动态地建立所述第一传输信道的流程,以基于所建立的第一传输信道与所述第二节点通信。该建立动态传输信道的过程将在下文中详述,在此暂不赘述。
进一步地,S430:第一节点可以向第二节点发送第一请求消息,所述第一请求消息用于请求建立所述第一传输信道。
示例地,该第一请求消息中可以包括以下至少一项配置信息:所述第一传输信道的地址信息、所述第一传输信道的源信道标识、与所述第一传输信道关联的第一承载的源信道标识、所述第一传输信道的QoS参数的标识。
其中,所述第一传输信道的地址信息可用于路由,例如该第一传输信道是为哪个功能模块建立的,该地址信息可以为相应功能模块的模块标识,以便在基于该第一传输信道于对端节点进行信息传输时,可以知悉信息来源于哪个功能模块、或者来自对端节点的信息需要发送给哪个功能模块。
所述第一传输信道的源信道标识是指承载在请求方发送给响应方的请求消息中的传输信道标识,“源”表示承载该信道标识的消息的传输方向,即是由请求方(即源节点)发送至响应方(即目标节点)的,其中,并不限定该第一节点为源节点、第二节点为目标节点,在一些实施例中,若第一节点和第二节点的角色互换,即第二节点作为请求方、第一节点作为响应方,则第二节点向第一节点发送的第一请求消息中携带的信道标识可称为“源信道标识”。相似地,所述第一承载的源信道标识也是指承载在请求方发送给响应方的请求消息中的接入层承载的信道标识,“源”表示承载该信道标识的消息的传输方向,即是由请求方发送至响应方的,其中,也不限定该第一节点为源节点、第二节点为目标节点,在一些实施例中,若第一节点和第二节点的角色互换,即第二节点作为请求方、第一节点作为响应方,则第二节点向第一节点发送的第一请求消息中携带的信道标识可称为“源信道标识”。同样地,“目标”表示承载该信道标识的消息的传输方向,即是由响应方发送至请求方的,在此不再赘述。
所述第一传输信道的QoS参数,即表示需要为该第一节点建立的第一传输信道的QoS参数,所述QoS参数的标识可用于指示该QoS参数,例如,该QoS参数的标识可以是对应于一组QoS参数的XQI值(X例如可以取值为5,表示5G)。
应理解,本申请实施例中,上述至少一项配置信息仅是对第一节点可能为待建立的第一传输信道配置的相关信息的示例说明,并不限定第一节点的配置能力,在其它实施例中, 该第一请求消息中还可以包含第一节点为该第一传输信道配置的其它信息,在此不再赘述。
S440:第一节点接收来自所述第二节点的第一响应消息,所述第一响应消息用于确认建立所述第一传输信道。
本申请实施例中,所述第一响应消息是所述第二节点针对所述第一请求消息做出的应答。示例地,该第一响应消息可以包括以下至少一项确认信息:所述第一传输信道的地址信息、所述第一传输信道的目标信道标识、与所述第一传输信道关联的第一承载的目标信道标识。
其中,在该第一响应消息中,所述第一传输信道的地址信息与所述第一请求消息中携带的所述第一传输信道的地址信息相同,表示该第二节点同意该第一传输信道的地址信息。在该第一响应消息中,所述第一传输信道的目标信道标识可以与所述第一请求消息中携带的所述第一传输信道的源信道标识相同,表示该第二节点同意第一节点为该第一传输信道配置的传输信道标识;或者,所述第一传输信道的目标信道标识可以与所述第一请求消息中携带的所述第一传输信道的源信道标识不同,表示该第二节点不同意第一节点为该第一传输信道配置的传输信道标识,而重新配置第三传输信道代替第一传输信道,用于第一节点与第二节点之间的通信,该目标信道标识即为该第三传输信道的信道标识。在一种可选的设计中,该第一响应消息中还可以携带所述第一传输信道的源信道标识(从所述第一请求消息中获得),以便同时向第一节点告知需要将请求配置的第一传输信道替换为所述第三传输信道。相似地,与所述第一传输信道关联的第一承载的目标信道标识,也可以与所述第一请求消息中携带的所述第一承载的源信道标识相同或不同,可选地,该第一响应消息中也可以携带所述第一承载的源信道标识。
由此,通过上述方法,第一节点可以按照自身的目标传输需求,动态地与第二节点之间协商、建立第一传输信道,不会静态占用传输资源,有助于提高传输资源的利用效率,同时还可以满足各种不同的传输需求,适应更丰富的传输场景。
在具体实现过程中,本申请实施例的通信方法的具体实现步骤有所不同,为了便于理解,下面结合不同的情形进行详细介绍。
情形1:第一节点的接入层和第二节点的接入层之间存在满足目标传输需求的第一承载。
参阅图5a所示,第一节点的通信协议架构可以包括应用层、服务层和接入层,第二节点的通信协议架构可以包括应用层、服务层和接入层,第一节点的服务层可以决策是否需要建立第一传输信道,在确定需要建立第一传输信道的情况下,第一节点的服务层可以向第一节点的接入层发送接入层信道建立请求消息,该接入层信道建立请求消息可用于请求配置满足目标传输需求的第一承载。
第一节点的接入层响应于该接入层信道建立请求消息,可以首先确定是否存在满足所述目标传输需求的第一承载。在存在的情况下,第一节点的接入层可以在已经存在的承载中确定所述第一承载,并向第一节点的服务层反馈接入层信道响应消息,以向第一节点的服务层告知可用的、满足所述目标传输需求的第一承载。进而,第一节点的服务层可以基于该第一承载,向第二节点的服务层发送动态信道建立请求消息、以及接收来自第二节点的服务层的动态信道建立响应消息,以与第二节点之间协商、动态地建立第一传输信道。可选地,该第一承载还可以关联默认配置的第二传输信道,该第二传输信道与该动态建立的第一传输信道均可以映射到所述第一承载。应理解,图5a中虚线箭头仅表示相应协议层 之间可以进行信息交互,并不限定交互的信息。
参阅图5b所示,该通信方法可以包括以下步骤:
在一种可选的设计中,该通信方法可由第一节点的应用层触发。S501(可选):第一节点的应用层可以确定所述第一节点的目标传输需求,并判决是否需要建立第一传输信道,在确定需要建立所述第一传输信道的情况下,第一节点的应用层可向第一节点的服务层发送第二请求消息。相应地,第一节点的服务层可以接收来自第一节点的应用层的第二请求消息。其中,该第二请求消息可用于指示所述目标传输需求,例如,该第二请求消息中可以包含应用层QoS参数。S502:第一节点的服务层可根据来自所述第一节点的服务层的第二请求消息确定是否建立所述第一传输信道。
在另一种可选的设计中,该通信方法可由第一节点的服务层触发。S502:第一节点的服务层可以确定第一节点的目标传输需求,并根据所述目标传输需求确定是否建立所述第一传输信道。
根据S502的判决结果,在判决结果为是,即确定建立所述第一传输信道的情况下,进入S503。在确定不建立所述第一传输信道的情况下,则可以根据所述第一节点的目标传输需求直接复用第一节点和第二节点之间已存在的传输信道。
S503:第一节点的服务层向第一节点的接入层发送第三请求消息,所述第三请求消息用于请求配置满足目标传输需求的第一承载。相应地,第一节点的接入层接收来自所述第一节点的服务层的第三请求消息。
S504:第一节点的接入层根据所述第三请求消息,确定是否需要建立所述第一承载。
例如,第一节点的接入层可以在预先配置的或者预定义的第一节点与第二节点的承载中确定是否存在满足目标传输需求的第一承载。
如果存在,则不需要建立所述第一承载,第一节点的接入层可以在预先配置的或者预定义的第一节点与第二节点的承载中确定所述第一承载,之后进入S505。
S505:第一节点的接入层向第一节点的服务层发送第三响应消息,所述第三响应消息用于确认配置所述第一承载。相应地,第一节点的服务层接收来自第一节点的接入层的第三响应消息。示例地,该第三响应消息中包含所述第一承载的标识。
S506:第一节点的服务层向第二节点的服务层发送第一请求消息。相应地,第二节点的服务层接收所述第一请求消息。
示例地,该第一请求消息包括以下至少一项配置信息:所述第一传输信道的地址信息、所述第一传输信道的源信道标识、与所述第一传输信道关联的第一承载的源信道标识、QoS参数的标识。应理解,本申请实施例中,源信道标识仅表示数据信息传输方向,例如第一传输信道的源信道标识表示数据信息传输由第一节点到第二节点方向的标识,第一承载的源信道标识表示数据信息传输由第一节点到第二节点的标识,并不限定第一节点为源节点或第二节点为目标节点。在一些设计中,第一传输信道可以只有一个信道标识,而不区分源信道标识或目标信道标识,在该情形下,第一请求消息中的源信道标识即为相应信道的信道标识,下文中不再逐一区分。
S507:第二节点的服务层与接入层之间确认QoS参数、以及第一传输信道和第一承载之间的映射关系。
S508:第二节点的服务层向第一节点的服务层发送第一响应消息。相应地,第一节点的服务层接收所述第一响应消息。
示例地,该第一响应消息包括以下至少一项确认信息:所述第一传输信道的地址信息、所述第一传输信道的目标信道标识、与所述第一传输信道关联的第一承载的目标信道标识。可选地,该第一响应消息中还可以包括所述第一传输信道的源信道标识、与所述第一传输信道关联的第一承载的源信道标识。
应理解,此处述及的目标信道标识仅表示数据信息传输方向,例如第一传输信道的目标信道标识表示数据信息传输由第二节点到第一节点的标识,第一承载的目标信道标识表示数据信息传输由第二节点到第一节点的标识,并不限定第一节点为源节点或第二节点为目标节点。
S509:第一节点的服务层可以建立(或者称为维护)以下至少一项映射关系:所述第一传输信道与业务类型之间的映射关系、所述第一传输信道与QoS参数之间的映射关系、所述第一传输信道与关联的第一承载之间的映射关系,所述第一传输信道与节点类型之间的映射关系。
S510(可选):第一节点的服务层与第一节点的接入层之间同步所述至少一项映射关系。示例地,在实施S510时,第一节点的服务层可以向所述第一节点的接入层发送指示信息,该指示信息可用于指示所述至少一项映射关系。
S511(可选):第一节点的服务层与第一节点的应用层之间同步所述至少一项映射关系。在实施S511时,第一节点的服务层可以向所述第一节点的应用层发送指示信息,该指示信息可用于指示所述至少一项映射关系。
需要说明的是,本申请实施例中,第一节点的服务层可以将维护的至少一项映射关系分别同步给第一节点的接入层和应用层。或者,第一节点的服务层可以本身记录完整的各个映射关系信息,并根据接入层或应用层的需要,分别向该接入层或应用层发送用于指示所建立的第一传输信道与其他信息之间的映射关系。比如,该第一传输信道是与第一承载绑定的,第一节点的接入层需要知悉第一传输信道与第一承载之间的映射关系,以便将经过所述第一传输信道和所述第一承载的数据通过相应的空口发送,故而,第一节点的服务层可能需要向第一节点的接入层告知所述第一传输信道与所述第一承载之间的映射关系。一般地,第一节点的服务层可以在建立所述至少一项映射关系后,即向第一节点的接入层发送相应的指示信息。又比如,若本申请实施例的动态建立第一传输信道的流程是由第一节点的应用层触发的,则该第一节点的服务层可能需要根据应用层提供的目标传输需求,向第一节点的应用层告知该第一传输信道与相应目标传输需求之间映射关系,例如所述第一传输信道与业务类型之间的映射关系、所述第一传输信道与QoS参数之间的映射关系等,以便应用层在实现业务时能够知悉经由哪个传输信道向下层传递信息。一般地,第一节点的服务层可以根据是否接收到来自第一节点的服务层的第二请求消息确定是否执行S511。
S512:第一节点的服务层确定释放或者去激活所述第一传输信道,向所述第二节点发送第五请求消息,所述第五请求消息用于指示释放或者去激活所述第一传输信道。相应地,所述第二节点的服务层接收所述第五请求消息。
本申请实施例中,第一节点的服务层可以在该第一传输信道满足相应的释放条件或去激活条件时,确定释放或者去激活(即挂起动态信道配置)所述第一传输信道。示例地,该释放条件或去激活条件例如可以包括:所述第一传输信道在第一时间段T内没有数据传输。应理解,对于已经释放或者去激活的第一传输信道,在第一节点的目标传输需求再次为需要建立第一传输信道时,还可以激活或恢复所述第一传输信道,在此不再赘述。
情形2:第一节点的接入层和第二节点的接入层之间不存在与所述第一传输信道关联的第一承载。
如图6a所示,第一节点的通信协议架构可以包括应用层、服务层和接入层,第二节点的通信协议架构可以包括应用层、服务层和接入层,第一节点的服务层可以决策是否需要建立第一传输信道,在确定需要建立第一传输信道的情况下,第一节点的服务层可以向第一节点的接入层发送接入层信道建立请求消息,该接入层信道建立请求消息可用于请求配置满足目标传输需求的第一承载。
第一节点的接入层响应于该接入层信道建立请求消息,可以首先确定是否存在满足所述目标传输需求的第一承载。在不存在的情况下,第一节点的接入层可以向第二节点的接入层上报辅助信息、以及接收来自所述第二节点的接入层的重配消息,以配置所述第一承载;或者,所述第一节点的接入层可以接收来自所述第二节点的接入层的重配消息,该重配消息用于配置所述第一承载。
在该第一承载配置完成后,第一节点的接入层可以向所述第一节点的服务层反馈接入层信道响应消息,以向第一节点的服务层告知可用的、满足所述目标传输需求的第一承载。进而,第一节点的服务层可以基于所配置的第一承载,向第二节点的服务层发送动态信道建立请求消息、以及接收来自第二节点的服务层的动态信道建立响应消息,以与第二节点之间协商、动态地建立第一传输信道。可选地,该第一承载可以关联默认配置的第二传输信道,在该第一承载建立后,该第二传输信道可以自动激活,并用于第一节点与第二节点之间的通信。应理解,图6a中虚线箭头仅表示相应协议层之间可以进行信息交互,并不限定交互的信息。
参阅图6b所示,该通信方法可以包括以下步骤:
在一种可选的设计中,该通信方法可由第一节点的应用层触发。S601(可选):第一节点的应用层可以确定所述第一节点的目标传输需求,并判决是否需要建立第一传输信道,在确定需要建立所述第一传输信道的情况下,第一节点的应用层可向第一节点的服务层发送第二请求消息。相应地,第一节点的服务层可以接收来自第一节点的应用层的第二请求消息。其中,该第二请求消息可用于指示所述目标传输需求,例如,该第二请求消息中可以包含应用层QoS参数。S602:第一节点的服务层可根据来自所述第一节点的服务层的第二请求消息确定是否建立所述第一传输信道。
在另一种可选的设计中,该通信方法可由第一节点的服务层触发。S602:第一节点的服务层可以确定第一节点的目标传输需求,并根据所述目标传输需求确定是否建立所述第一传输信道。
根据S602的判决结果,在确定建立所述第一传输信道的情况下,进入S603。在确定不建立所述第一传输信道的情况下,则可以根据所述第一节点的目标传输需求直接复用第一节点和第二节点之间已存在的传输信道。
S603:第一节点的服务层向第一节点的接入层发送第三请求消息,所述第三请求消息用于请求配置满足目标传输需求的第一承载。相应地,第一节点的接入层接收来自所述第一节点的服务层的第三请求消息。
S604:第一节点的接入层根据所述第三请求消息,确定是否需要建立所述第一承载。
例如,第一节点的接入层可以在预先配置的或者预定义的第一节点与第二节点的承载 中确定是否存在满足目标传输需求的第一承载。
如果不存在,则需要建立所述第一承载,此情形下,进入S605,第一节点的接入层与第二节点协商、以配置所述第一承载。
其中,在第一节点与第二节点之间协商配置所述第一承载的情况下,该协商流程可以是第一节点请求触发的,也可以是第二节点主动为第一节点配置的,包括以下步骤:
示例1,第一节点根据所述目标传输需求向第二节点请求配置所述第一承载。
S605:第一节点的接入层向第二节点的接入层发送第四请求消息,该第四请求消息用于请求配置所述第一承载。相应地,第二节点的接入层接收所述第四请求消息。
示例地,该第四请求消息中可以包含以下辅助信息中的一项或多项:第一业务的业务类型,包括但不限于设备发现、服务发现、连接管理、QoS管理、安全管理、5G融合、多域协调、测量管理等;QoS参数的标识(例如XQI值,每一个XQI值可对应一组QoS参数,如下表1所示);第一业务的业务特征,包括但不限于如采样率、编码等。
表1
Figure PCTCN2022117651-appb-000001
其中,表1中,每一行中“XQI值”为一个标识,“默认优先级”、“包延时预算”、“包错误率”,为该XQI值对应的一组QoS参数,“典型业务”表示传输需求需要与该组QoS参数对应的一些业务的示例。其中,“默认优先级”表示QoS流之间的资源分配的相对重要性,包延迟预算表示数据包可能被延迟的时间的上限,包错误率表示数据包的速率的上限。需要说明的是,本申请实施例中,XQI值对应的一组QoS参数还可以包括时延抖动、吞吐率等,在此不再赘述。
S606:第二节点的接入层、服务层与应用层之间,根据第四请求消息中携带的辅助信息进行QoS策略确认,以为第一节点配置所述第一承载。
S607:第二节点的接入层向第一节点的接入层发送第四响应消息,该第四响应消息用于确认配置所述第一承载。
示例2:第二节点主动向第一节点下发重配消息来配置所述第一承载。
S608:第二节点的接入层向第一节点的接入层发送重配消息。相应地,第一节点的接入层接收来自所述第二节点的接入层的重配消息。所述重配消息用于指示配置所述第一承 载。
需要说明的是,本申请实施例中,所述第一节点可以在向所述第二节点侧注册或者授权时,上报自身的一些基本参数,例如节点类型、业务类型、QoS参数、用户等级信息、控制分流信息等。在第二节点主动触发动态信道建立流程的情况下,该第二节点可以根据第一节点之前上报的相关参数,主动为所述第一节点配置第一承载,并向所述第一节点下发重配消息,以便所述第一节点可以将所述第一承载与待建立的第一传输信道绑定,从而动态地建立所述第一传输信道。
进一步地,S609:第一节点的接入层向第一节点的服务层发送第三响应消息,所述第三响应消息用于确认配置所述第一承载。相应地,第一节点的服务层接收来自第一节点的接入层的第三响应消息。示例地,该第三响应消息中包含所述第一承载的标识。
S610:第一节点的服务层向第二节点的服务层发送第一请求消息。相应地,第二节点的服务层接收所述第一请求消息。详细实现可参见上文中S506的相关描述,在此不再赘述。
S611:第二节点的服务层和接入层之间确认QoS参数、以及第一传输信道和第一承载之间的映射关系。详细实现可参见上文中S507的相关描述,在此不再赘述。
S612:第二节点的服务层向第一节点的服务层发送第一响应消息。相应地,第一节点的服务层接收所述第一响应消息。详细实现可参见上文中S508的相关描述,在此不再赘述。
S613:第一节点的服务层建立以下至少一项映射关系:所述第一传输信道与业务类型之间的映射关系、所述第一传输信道与QoS参数之间的映射关系、所述第一传输信道与关联的第一承载之间的映射关系,所述第一传输信道与节点类型之间的映射关系。
S614(可选):第一节点的服务层与第一节点的接入层之间同步所述至少一项映射关系。详细实现可参见上文中S510的相关描述,在此不再赘述。
S615(可选):第一节点的服务层与第一节点的应用层之间同步所述至少一项映射关系。详细实现可参见上文中S511的相关描述,在此不再赘述。
S616:第一节点的服务层确定释放或者去激活所述第一传输信道,向所述第二节点发送第五请求消息,所述第五请求消息用于指示释放或者去激活所述第一传输信道。相应地,所述第二节点的服务层接收所述第五请求消息。具体实现可参见上文中S512的相关介绍,在此不再赘述。
由此,通过图5b、图6b所示的方法流程图,第一节点的服务层可以根据自身的目标传输需求,与第二节点的之间进行协商,以动态地建立第一传输信道,不会静态占用传输资源,有助于提高传输资源的利用效率,同时还可以满足各种不同的传输需求,适应更丰富的传输场景。
另外,需要说明的是,本申请上述图5b、图6b所示的实施例中,第一节点的服务层还可为控制面中的服务发现、多域融合和5G融合等功能各分配默认的第二传输信道(图中未示出),用于提供基础传输服务。这些第二传输信道为静态信道,会在接入层承载(例如第一承载)建立后默认激活,从而能够快速提供相应的服务,即本申请实施例中,第一承载可关联默认配置的第二传输信道和/或动态建立的第一传输信道,以适应更丰富的传输场景。
情形3:在基于第一通信技术和第二通信技术的融合通信场景下,所述第一节点的服务层支持至少两种协议栈,所述第一承载关联的至少两个传输信道(包括动态建立的所述第一传输信道、默认配置的第二传输信道)分别用于传输基于所述至少两种协议栈的数据包。
以图3所示的通信系统为例,针对智能制造、工业现场网场景等面向企业客户(To Business,TOB)业务,第一节点可通过第二节点与第二通信技术的网络(例如5G网络)建立通信连接,运营商可以通过5G核心网集中管理短距节点(包括第一节点和/或第二节点),包括控制面管理和用户面管理两部分。
其中,在控制面管理中,短距节点与5G核心网交互的内容可以包括注册、会话建立、以及会话管理相关的QoS策略等,在该5G蜂窝网融合通信场景下,注册和QoS策略配置过程中的相关消息(例如网络连接存储(Network-attached storage,NAS)消息)可以承载在至少两种协议栈上,例如可扩展认证(Extensible Authentication Protocol,EAP)-5G协议的协议栈、用户数据报协议(User Datagram Protocol,UDP)/网际互连协议(Internet Protocol,IP)的协议栈、用户面隧道传输协议(User Plane Part of GPRS Turning Protocol,GTP-U)/流控制传输协议(Stream Control Transmission Protocol,SCTP)协议的协议栈,最后经过相应的控制面传输信道和接入层承载(即链路信道)通过空口发送。
以NAS消息为例,如图7a所示,为便于接收端接收到数据包后能够识别出NAS消息对应的协议栈,本申请实施例中,可以使同一接入层承载(例如第一承载)关联的至少两个传输信道(例如动态建立的第一传输信道、默认配置的第二传输信道)分别用于传输基于所述至少两种协议栈的数据包。例如,在动态建立第一承载关联的第一传输信道之前,第一节点的服务层可使用EAP-5G协议栈将NAS消息可以封装在EAP-5G协议的数据包中,并在第一承载关联的第二传输信道上传输至对端节点;在动态建立第一承载关联的第一传输信道之后,第一节点的服务层可使用UDP/IP协议栈将NAS消息可以封装在UDP/IP协议的数据包中,并在所述第一传输信道上传输至对端节点。相应地,对端节点的服务层接收来自第一传输信道或第二传输信道的数据包后进行解析,并将解析后的数据包递交至UDP/IP协议栈或EAP-5G协议栈进行进一步解析。
如图7b所示,该通信方法可以包括以下步骤:
S701:第一节点作为发送端,第一节点的服务层可使用EAP-5G协议栈可以将NAS消息封装在EAP-5G协议的数据包中,并在第二传输信道上传输至第二节点。相应地,第二节点的服务层接收到来自第二传输信道上的数据包后进行解析,并将解析后的数据包递交至EAP-5G协议栈进行进一步解析。
S702:第一节点通过第二节点向第二通信技术的网络发送鉴权请求。相应地,第二通信技术的网络对第一节点进行鉴权。在鉴权成功的情况下,第二通信技术的网络可通过第二节点向第一节点发送鉴权成功指示信息,第一节点的目标传输需求可以包括所述鉴权成功指示信息。
S703:第一节点可以根据所述鉴权成功指示信息,与第二节点建立第一传输信道。详细实现步骤可参见上文中图5b、图6b所示的方法步骤,在此不再赘述。
S704:第一节点作为发送端,第一节点的服务层可使用UDP/IP协议栈可以将NAS消息封装在UDP/IP协议的数据包中,并在第一传输信道上传输至第二节点。相应地,第二节点的服务层接收到来自第一传输信道上的数据包后进行解析,并将解析后的数据包递 交至UDP/IP协议栈进行进一步解析。
由此,在融合通信场景下,第一节点可以根据是否在第二通信技术的网络鉴权成功,确定是否触发动态建立第一传输信道的流程,以便在第一节点与第二节点之间动态建立能够满足融合通信场景下的传输需求的传输信道,同时配置不同协议栈数据分别通过不同的传输信道传输,既不会静态占用传输资源,有助于提高传输资源的利用效率、适应更丰富的传输场景,还可以方便对端节点准确地识别不同传输信道传输的数据包对应的协议栈。
情形4:在基于第一通信技术和第二通信技术的融合通信场景下,所述第一节点的服务层支持至少两种协议栈,基于所述至少两种协议栈的数据包可以复用同一传输信道,所述至少两种协议栈的数据包中包含指示信息,所述指示信息用于指示数据包与协议栈之间的关联关系。
仍以图3所示的通信系统和NAS消息为例,在5G蜂窝网融合通信场景下,注册和QoS策略配置过程中的NAS消息可以承载在至少两种协议栈上,例如EAP-5G协议栈、UDP/IP协议栈、GTP-U/SCTP协议栈,最后经过相应的控制面传输信道和接入层承载(即链路信道)通过空口发送。
在一种可能的设计中,如图8a所示,为便于接收端接收到数据包后能够识别出NAS消息对应的协议栈,本申请实施例中,可以使基于所述至少两种协议栈的数据包复用同一传输信道(例如第一传输信道或第二传输信道),其中,服务层的相应功能单元(例如数据传输与适配层)可以在接收到来自上层协议栈的数据包,后,可以在该数据包中添加比特信息(即指示信息),该指示信息可用于指示数据包与协议栈之间的关联关系,相应的帧结构如图8c所示。
其中,在发送端(例如第一节点),服务层的数据传输与适配层接收到来自上层协议栈(例如EAP-5G协议栈或UDP/IP协议栈)的PDU后,可以该PDU作为本层负载(payload),并在该负载之前增加包头(header)获得本层待传输的数据包,并递交至相应的传输信道传输。该包头中可以包含传输信道标识(Transmission Channel Identifier,TCID)和指示信息,该TCID用于指示数据包对应的传输信道,指示信息用于指示数据包和协议栈之间的关联关系。在接收端(例如第二节点),服务层可以对接收到的数据包进行解析,获得包头中的指示信息,从而确定后续路由方向,即将解析数据包获得的负载递交给EAP-5G协议栈还是UDP/IP协议栈。
在另一种可能的设计中,如图8b所示,为尽可能地减少对服务层以及现有协议的改动,本申请实施例中,可以在服务层中,在所述至少两种协议栈的下层、所述数据传输与适配层的上层新增第一逻辑实体,该第一逻辑实体可以接收来自上层协议栈的数据包,并在该数据包中增加指示信息,该指示信息用于指示数据包与协议栈之间的关联关系,相应的帧结构可以为图8c中未包含传输信道标识的部分,本申请实施例对该指示信息的添加方式以及相应的数据包帧结构不做限定。
需要说明的是,对端节点(例如第二节点)采用同样的方式,例如通过数据传输与适配层或者新增的第二逻辑实体(与第一逻辑实体对应),对下层递交的数据包进行解析,以通过解析得到的指示信息,获知数据包需要递交至上层的哪一个协议栈,在此不再赘述。由此,上述实施例中,在融合通信场景中,第一节点支持至少两种协议栈的情况下,第一节点可以通过在数据包包头中增加指示信息,使得所述至少两种协议栈可以复用同一传输信道,以减少对传输资源的占用。同时,通过所述指示信息来指示数据包与协议栈的关联 关系,使得对端节点在对接收到所述数据包并进行解析时,能够准确地识别出数据包对应的协议栈。
本申请实施例还提供了一种通信装置,用于执行上述实施例中第一节点或第二节点所执行的通信方法,相关特征可参见上述方法实施例,在此不再赘述。
如图9所示,该装置900可以用于执行第一节点所执行的通信方法,例如:处理单元901,用于确定所述第一节点的目标传输需求;以及根据所述目标传输需求确定是否建立第一传输信道,所述第一传输信道用于与第二节点通信;通信单元902,用于向第二节点发送第一请求消息,所述第一请求消息用于请求建立所述第一传输信道;以及接收来自所述第二节点的第一响应消息,所述第一响应消息用于确认建立所述第一传输信道。具体实现方式,请参考图1至图8c所示实施例中的详细描述,这里不再赘述。
在一种可选的设计中,装置900可以用于执行第二节点所执行的通信方法,例如通信单元902,用于接收来自第一节点的第一请求消息,所述第一请求消息用于请求建立第一传输信道,所述第一传输信道用于与所述第二节点通信,所述第一传输信道关联所述第一节点的目标传输需求;以及,向所述第一节点发送第一响应消息,所述第一响应消息用于确认建立所述第一传输信道。具体实现方式,请参考图1至图8c所示实施例中的详细描述,这里不再赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对一些方案做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在一个简单的实施例中,本领域的技术人员可以想到上述实施例中的通信装置均可采用图10所示的形式。
如图10所示的装置1000,包括至少一个处理器1010、存储器1020,可选的,还可以包括通信接口1030。
本申请实施例中不限定上述处理器1010以及存储器1020之间的具体连接介质。
在如图10的装置中,处理器1010在与其他设备进行通信时,可以通过通信接口1030进行数据传输。
当通信装置采用图10所示的形式时,图10中的处理器1010可以通过调用存储器1020中存储的计算机执行指令,使得设备1000可以执行上述任一方法实施例中通信装置执行的方法。
本申请实施例还涉及一种芯片系统,该芯片系统包括处理器,用于调用存储器中存储 的计算机程序或计算机指令,以使得该处理器执行如上述任一方法实施例中的方法。
在一种可能的实现方式中,该处理器通过接口与存储器耦合。
在一种可能的实现方式中,该芯片系统还包括存储器,该存储器中存储有计算机程序或计算机指令。
本申请实施例还涉及一种计算机可读存储介质,所述计算机可读存储介质中存储有程序代码,当所述程序代码在计算机上运行时,使得计算机执行如上述任一方法实施例中的方法。
本申请实施例还涉及一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如上述任一方法实施例中的方法。
本申请实施例还涉及一种处理器,该处理器用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行如上述任一方法实施例中的方法。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述任一方法实施例中的方法的程序执行的集成电路。上述任一处提到的存储器可以为只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (56)

  1. 一种通信方法,其特征在于,应用于第一节点,所述方法包括:
    确定所述第一节点的目标传输需求;
    根据所述目标传输需求确定是否建立第一传输信道,所述第一传输信道用于与第二节点通信;
    向第二节点发送第一请求消息,所述第一请求消息用于请求建立所述第一传输信道;
    接收来自所述第二节点的第一响应消息,所述第一响应消息用于确认建立所述第一传输信道。
  2. 根据权利要求1所述的方法,其特征在于,所述目标传输需求包括以下一项或多项信息:服务质量QoS参数、传输信道参数、用户等级信息、控制面负荷信息、用户面负荷信息、控制分流信息、第一业务的业务类型、或者第一业务的业务特征信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一请求消息包括以下至少一项配置信息:所述第一传输信道的地址信息、所述第一传输信道的源信道标识、与所述第一传输信道关联的第一承载的源信道标识、QoS参数的标识。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一响应消息包括以下至少一项确认信息:所述第一传输信道的地址信息、所述第一传输信道的目标信道标识、与所述第一传输信道关联的第一承载的目标信道标识。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述第一节点的通信协议架构包括应用层、服务层和接入层。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述目标传输需求确定建立第一传输信道,包括:
    所述服务层根据所述目标传输需求确定建立第一传输信道;或者,
    所述服务层根据来自所述应用层的第二请求消息确定建立第一传输信道,所述第二请求消息用于指示所述目标传输需求。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    所述服务层向所述接入层发送第三请求消息,所述第三请求消息用于请求配置与所述第一传输信道关联的第一承载;
    所述服务层接收来自所述接入层的第三响应消息,所述第三响应消息用于确认配置所述第一承载。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述接入层接收来自所述服务层的所述第三请求消息;
    所述接入层在预先配置的或者预定义的第一节点与第二节点的承载中确定所述第一承载。
  9. 根据权利要求7所述的方法,其特征在于,所述第二节点的通信协议架构包括接入层,所述方法还包括:
    所述第一节点的接入层接收来自所述第一节点的服务层的所述第三请求消息;
    所述第一节点的接入层根据所述第三请求消息向所述第二节点的接入层发送第四请求消息,所述第四请求消息用于请求配置所述第一承载;
    所述第一节点的接入层接收来自所述第二节点的接入层的第四响应消息,所述第四响 应消息用于确认配置所述第一承载;
    所述第一节点的接入层根据所述第四响应消息,向所述第一节点的服务层发送所述第三响应消息。
  10. 根据权利要求7所述的方法,其特征在于,所述第二节点的通信协议架构包括接入层,所述方法还包括:
    所述第一节点的接入层接收来自所述第一节点的服务层的所述第三请求消息;
    所述第一节点的接入层接收来自所述第二节点的接入层的重配消息,所述重配消息用于指示配置所述第一承载;
    所述第一节点的接入层根据所述重配消息向所述第一节点的服务层发送所述第三响应消息。
  11. 根据权利要求5-10中任一项所述的方法,其特征在于,所述第二节点的通信协议架构包括服务层,所述向第二节点发送第一请求消息,包括:
    所述第一节点的服务层向所述第二节点的服务层发送所述第一请求消息;
    所述接收来自所述第二节点的第一响应消息,包括:
    所述第一节点的服务层接收来自所述第二节点的第一响应消息。
  12. 根据权利要求5-11中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点的服务层建立以下至少一项映射关系:所述第一传输信道与业务类型之间的映射关系、所述第一传输信道与QoS参数之间的映射关系、所述第一传输信道与关联的第一承载之间的映射关系,所述第一传输信道与节点类型之间的映射关系。
  13. 根据权利要求12所述方法,其特征在于,所述方法还包括:
    所述第一节点的服务层与所述第一节点的接入层和/或应用层之间同步所述至少一项映射关系。
  14. 根据权利要求5-13中任一项所述的方法,其特征在于,所述第一节点的服务层支持至少两种协议栈,基于所述至少两种协议栈的数据包复用所述第一传输信道,其中,所述至少两种协议栈的数据包中包含指示信息,所述指示信息用于指示数据包与协议栈之间的关联关系;或者,
    所述第一承载关联默认配置的第二传输信道,基于所述至少两种协议栈的数据包分别经过所述第一传输信道和所述第二传输信道传输至所述第二节点。
  15. 根据权利要求14所述的方法,其特征在于,所述指示信息通过所述第一节点的数据传输与适配层添加至基于所述至少两种协议栈的数据包中,所述数据传输与适配层位于所述第一节点的服务层中所述至少两种协议栈的下层;或者,
    所述指示信息通过所述第一节点中的第一逻辑实体添加至基于所述至少两种协议栈的数据包中,所述第一逻辑实体位于所述第一节点的服务层中所述至少两种协议栈的下层、所述数据传输与适配层的上层。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述第一节点支持第一通信技术,所述第二节点支持第一通信技术第二通信技术,所述第一通信技术和所述第二通信技术不同,所述方法还包括:
    所述第一节点通过所述第二节点向所述第二通信技术的网络发送鉴权请求;
    所述第一节点通过所述第二节点接收来自所述第二通信技术的网络的鉴权成功指示信息,其中,所述目标传输需求包括所述鉴权成功指示信息。
  17. 根据权利要求1-16中任一项所述的方法,其特征在于,所述方法还包括:
    确定释放或者去激活所述第一传输信道;
    向所述第二节点发送第五请求消息,所述第五请求消息用于指示释放或者去激活所述第一传输信道。
  18. 一种通信方法,其特征在于,应用于第二节点,所述方法包括:
    接收来自第一节点的第一请求消息,所述第一请求消息用于请求建立第一传输信道,所述第一传输信道用于与所述第二节点通信,所述第一传输信道关联所述第一节点的目标传输需求;
    向所述第一节点发送第一响应消息,所述第一响应消息用于确认建立所述第一传输信道。
  19. 根据权利要求18所述的方法,其特征在于,所述目标传输需求包括以下一项或多项信息:服务质量QoS参数、传输信道参数、用户等级信息、控制面负荷信息、用户面负荷信息、控制分流信息、第一业务的业务类型、或者第一业务的业务特征信息。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一请求消息包括以下至少一项配置信息:所述第一传输信道的地址信息、所述第一传输信道的源信道标识、与所述第一传输信道关联的第一承载的源信道标识、QoS参数的标识。
  21. 根据权利要求18-20中任一项所述的方法,其特征在于,所述第一响应消息包括以下至少一项确认信息:所述第一传输信道的地址信息、所述第一传输信道的目标信道标识、与所述第一传输信道关联的第一承载的目标信道标识。
  22. 根据权利要求18-21中任一项所述的方法,其特征在于,所述第一节点的通信协议架构包括接入层,所述第二节点的通信协议架构包括接入层,所述方法还包括:
    所述第二节点的接入层接收来自所述第一节点的接入层的第四请求消息,所述第四请求消息用于请求配置与所述第一传输信道关联的第一承载;
    所述第二节点的接入层向所述第一节点的接入层发送第四响应消息,所述第四响应消息用于确认配置所述第一承载。
  23. 根据权利要求18-22中任一项所述的方法,其特征在于,所述第一节点的通信协议架构包括接入层,所述第二节点的通信协议架构包括接入层,所述方法还包括:
    所述第二节点的接入层向所述第一节点的接入层发送重配消息,所述重配消息用于指示配置与所述第一传输信道关联的第一承载。
  24. 根据权利要求18-23中任一项所述的方法,其特征在于,所述第一节点的通信协议架构包括服务层,所述第二节点的通信协议架构包括服务层;
    所述接收来自第一节点的第一请求消息,包括:
    所述第二节点的服务层接收来自所述第一节点的服务层的第一请求消息;
    所述向所述第一节点发送第一响应消息,包括:
    所述第二节点的服务层向所述第一节点的服务层发送所述第一响应消息。
  25. 根据权利要求18-24中任一项所述的方法,其特征在于,所述第一节点支持第一通信技术,所述第二节点支持第一通信技术和第二通信技术,所述第一通信技术与所述第二通信技术不同,所述方法还包括:
    向所述第二通信技术的网络发送来自所述第一节点的所述鉴权请求;
    向所述第一节点发送来自所述第二通信技术的网络的鉴权成功指示信息,其中,所述 目标传输需求包括所述鉴权成功指示信息。
  26. 根据权利要求18-25中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一节点的第五请求消息,所述第五请求消息用于指示释放或者去激活所述第一传输信道。
  27. 一种通信装置,其特征在于,包括:
    处理单元,确定所述第一节点的目标传输需求;根据所述目标传输需求确定是否建立第一传输信道,所述第一传输信道用于与第二节点通信;
    通信单元,用于向第二节点发送第一请求消息,所述第一请求消息用于请求建立所述第一传输信道;接收来自所述第二节点的第一响应消息,所述第一响应消息用于确认建立所述第一传输信道。
  28. 根据权利要求27所述的装置,其特征在于,所述目标传输需求包括以下一项或多项信息:服务质量QoS参数、传输信道参数、用户等级信息、控制面负荷信息、用户面负荷信息、控制分流信息、第一业务的业务类型、或者第一业务的业务特征信息。
  29. 根据权利要求27或28所述的装置,其特征在于,所述第一请求消息包括以下至少一项配置信息:所述第一传输信道的地址信息、所述第一传输信道的源信道标识、与所述第一传输信道关联的第一承载的源信道标识、QoS参数的标识。
  30. 根据权利要求27-29中任一项所述的装置,其特征在于,所述第一响应消息包括以下至少一项确认信息:所述第一传输信道的地址信息、所述第一传输信道的目标信道标识、与所述第一传输信道关联的第一承载的目标信道标识。
  31. 根据权利要求27-30中任一项所述的装置,其特征在于,所述第一节点的通信协议架构包括应用层、服务层和接入层。
  32. 根据权利要求31所述的装置,其特征在于,所述处理单元用于:通过所述服务层,根据所述目标传输需求确定建立第一传输信道;或者,通过所述服务层,根据来自所述应用层的第二请求消息确定建立第一传输信道,所述第二请求消息用于指示所述目标传输需求。
  33. 根据权利要求31或32所述的装置,其特征在于,所述通信单元还用于:通过所述服务层向所述接入层发送第三请求消息,所述第三请求消息用于请求配置与所述第一传输信道关联的第一承载;通过所述服务层接收来自所述接入层的第三响应消息,所述第三响应消息用于确认配置所述第一承载。
  34. 根据权利要求33所述的装置,其特征在于,所述通信单元还用于:通过所述接入层接收来自所述服务层的所述第三请求消息;所述处理单元还用于:通过所述接入层在预先配置的或者预定义的第一节点与第二节点的承载中确定所述第一承载。
  35. 根据权利要求33所述的装置,其特征在于,所述第二节点的通信协议架构包括接入层,所述通信单元还用于:通过所述第一节点的接入层,接收来自所述第一节点的服务层的所述第三请求消息;通过所述第一节点的接入层,根据所述第三请求消息向所述第二节点的接入层发送第四请求消息,所述第四请求消息用于请求配置所述第一承载;通过所述第一节点的接入层,接收来自所述第二节点的接入层的第四响应消息,所述第四响应消息用于确认配置所述第一承载;通过所述第一节点的接入层,根据所述第四响应消息,向所述第一节点的服务层发送所述第三响应消息。
  36. 根据权利要求33所述的装置,其特征在于,所述第二节点的通信协议架构包括接 入层,所述通信单元还用于:通过所述第一节点的接入层,接收来自所述第一节点的服务层的所述第三请求消息;通过所述第一节点的接入层,接收来自所述第二节点的接入层的重配消息,所述重配消息用于指示配置所述第一承载;通过所述第一节点的接入层根据所述重配消息向所述第一节点的服务层发送所述第三响应消息。
  37. 根据权利要求31-36中任一项所述的装置,其特征在于,所述第二节点的通信协议架构包括服务层,所述通信单元用于:通过所述第一节点的服务层向所述第二节点的服务层发送所述第一请求消息;通过所述第一节点的服务层接收来自所述第二节点的第一响应消息。
  38. 根据权利要求31-37中任一项所述的装置,其特征在于,所述处理单元还用于:通过所述第一节点的服务层,建立以下至少一项映射关系:所述第一传输信道与业务类型之间的映射关系、所述第一传输信道与QoS参数之间的映射关系、所述第一传输信道与关联的第一承载之间的映射关系,所述第一传输信道与节点类型之间的映射关系。
  39. 根据权利要求38所述的装置,其特征在于,所述处理单元还用于:通过所述第一节点的服务层与所述第一节点的接入层和/或应用层之间同步所述至少一项映射关系。
  40. 根据权利要求31-39中任一项所述的装置,其特征在于,所述第一节点的服务层支持至少两种协议栈,基于所述至少两种协议栈的数据包复用所述第一传输信道;其中,所述至少两种协议栈的数据包中包含指示信息,所述指示信息用于指示数据包与协议栈之间的关联关系;或者,所述第一承载关联默认配置的第二传输信道,基于所述至少两种协议栈的数据包分别经过所述第一传输信道和所述第二传输信道传输至所述第二节点。
  41. 根据权利要求40所述的装置,其特征在于,所述指示信息通过所述第一节点的数据传输与适配层添加至基于所述至少两种协议栈的数据包中,所述数据传输与适配层位于所述第一节点的服务层中所述至少两种协议栈的下层;或者,
    所述指示信息通过所述第一节点中的第一逻辑实体添加至基于所述至少两种协议栈的数据包中,所述第一逻辑实体位于所述第一节点的服务层中所述至少两种协议栈的下层、所述数据传输与适配层的上层。
  42. 根据权利要求27-41中任一项所述的装置,其特征在于,所述第一节点支持第一通信技术,所述第二节点支持第一通信技术第二通信技术,所述第一通信技术和所述第二通信技术不同,所述通信单元还用于:通过所述第二节点向所述第二通信技术的网络发送鉴权请求;通过所述第二节点接收来自所述第二通信技术的网络的鉴权成功指示信息,其中,所述目标传输需求包括所述鉴权成功指示信息。
  43. 根据权利要求27-42中任一项所述的装置,其特征在于,所述处理单元还用于:确定释放或者去激活所述第一传输信道;所述通信单元还用于:向所述第二节点发送第五请求消息,所述第五请求消息用于指示释放或者去激活所述第一传输信道。
  44. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自第一节点的第一请求消息,所述第一请求消息用于请求建立第一传输信道,所述第一传输信道用于与所述第二节点通信,所述第一传输信道关联所述第一节点的目标传输需求;以及,向所述第一节点发送第一响应消息,所述第一响应消息用于确认建立所述第一传输信道。
  45. 根据权利要求44所述的装置,其特征在于,所述目标传输需求包括以下一项或多项信息:服务质量QoS参数、传输信道参数、用户等级信息、控制面负荷信息、用户面负 荷信息、控制分流信息、第一业务的业务类型、或者第一业务的业务特征信息。
  46. 根据权利要求44或45所述的装置,其特征在于,所述第一请求消息包括以下至少一项配置信息:所述第一传输信道的地址信息、所述第一传输信道的源信道标识、与所述第一传输信道关联的第一承载的源信道标识、QoS参数的标识。
  47. 根据权利要求44-46中任一项所述的装置,其特征在于,所述第一响应消息包括以下至少一项确认信息:所述第一传输信道的地址信息、所述第一传输信道的目标信道标识、与所述第一传输信道关联的第一承载的目标信道标识。
  48. 根据权利要求44-47中任一项所述的装置,其特征在于,所述第一节点的通信协议架构包括接入层,所述第二节点的通信协议架构包括接入层,所述通信单元还用于:通过所述第二节点的接入层接收来自所述第一节点的接入层的第四请求消息,所述第四请求消息用于请求配置与所述第一传输信道关联的第一承载;通过所述第二节点的接入层向所述第一节点的接入层发送第四响应消息,所述第四响应消息用于确认配置所述第一承载。
  49. 根据权利要求44-48中任一项所述的装置,其特征在于,所述第一节点的通信协议架构包括接入层,所述第二节点的通信协议架构包括接入层,所述通信单元还用于:通过所述第二节点的接入层向所述第一节点的接入层发送重配消息,所述重配消息用于指示配置与所述第一传输信道关联的第一承载。
  50. 根据权利要求44-49中任一项所述的装置,其特征在于,所述第一节点的通信协议架构包括服务层,所述第二节点的通信协议架构包括服务层;所述通信单元用于:通过所述第二节点的服务层接收来自所述第一节点的服务层的第一请求消息;通过所述第二节点的服务层向所述第一节点的服务层发送所述第一响应消息。
  51. 根据权利要求44-50中任一项所述的装置,其特征在于,所述第一节点支持第一通信技术,所述第二节点支持第一通信技术和第二通信技术,所述第一通信技术与所述第二通信技术不同,所述通信单元还用于:向所述第二通信技术的网络发送来自所述第一节点的所述鉴权请求;向所述第一节点发送来自所述第二通信技术的网络的鉴权成功指示信息,其中,所述目标传输需求包括所述鉴权成功指示信息。
  52. 根据权利要求44-51中任一项所述的装置,其特征在于,所述通信单元还用于:接收来自所述第一节点的第五请求消息,所述第五请求消息用于指示释放或者去激活所述第一传输信道。
  53. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,所述接口电路用于为所述至少一个处理器提供数据或者代码指令,所述至少一个处理器用于通过逻辑电路或执行代码指令实现如权利要求1-17中任一项所述的方法,或者,实现如权利要求18-26中任一项所述的方法。
  54. 一种通信系统,其特征在于,包括用于实现如权利要求1-17中任一项所述方法的通信装置,以及实现如权利要求18-26中任一项所述方法的通信装置。
  55. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-17中任一项所述的方法,或者,执行如权利要求18-26中任一项所述的方法。
  56. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-17中任一项所述的方法,或者,执行如权利要求18-26中任一项所述的方法。
PCT/CN2022/117651 2021-09-11 2022-09-07 一种通信方法、装置及系统 WO2023036205A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111064955.X 2021-09-11
CN202111064955.XA CN115942464A (zh) 2021-09-11 2021-09-11 一种通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023036205A1 true WO2023036205A1 (zh) 2023-03-16

Family

ID=85506115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117651 WO2023036205A1 (zh) 2021-09-11 2022-09-07 一种通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN115942464A (zh)
WO (1) WO2023036205A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116599774A (zh) * 2023-07-17 2023-08-15 交通运输部公路科学研究所 一种用于车联网信息安全与数据防护的加密芯片
CN117215958A (zh) * 2023-10-11 2023-12-12 深圳市浩科智联科技有限公司 一种车载应用分离设计软件及其测试方法
CN117215958B (zh) * 2023-10-11 2024-05-31 深圳市浩科智联科技有限公司 一种车载应用分离设计软件及其测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104244445A (zh) * 2013-06-13 2014-12-24 华为技术有限公司 数据包传输方法、接入点及无线通信系统
CN107005987A (zh) * 2015-05-22 2017-08-01 华为技术有限公司 无线承载建立方法和设备
US20180084565A1 (en) * 2015-05-29 2018-03-22 Huawei Technologies Co., Ltd. Bearer setup method and apparatus
CN110838899A (zh) * 2018-08-16 2020-02-25 电信科学技术研究院有限公司 一种直接通信链路资源分配方法及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104244445A (zh) * 2013-06-13 2014-12-24 华为技术有限公司 数据包传输方法、接入点及无线通信系统
CN107005987A (zh) * 2015-05-22 2017-08-01 华为技术有限公司 无线承载建立方法和设备
US20180084565A1 (en) * 2015-05-29 2018-03-22 Huawei Technologies Co., Ltd. Bearer setup method and apparatus
CN110838899A (zh) * 2018-08-16 2020-02-25 电信科学技术研究院有限公司 一种直接通信链路资源分配方法及终端

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116599774A (zh) * 2023-07-17 2023-08-15 交通运输部公路科学研究所 一种用于车联网信息安全与数据防护的加密芯片
CN116599774B (zh) * 2023-07-17 2023-09-15 交通运输部公路科学研究所 一种用于车联网信息安全与数据防护的加密芯片
CN117215958A (zh) * 2023-10-11 2023-12-12 深圳市浩科智联科技有限公司 一种车载应用分离设计软件及其测试方法
CN117215958B (zh) * 2023-10-11 2024-05-31 深圳市浩科智联科技有限公司 一种车载应用分离设计软件及其测试方法

Also Published As

Publication number Publication date
CN115942464A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
US11659432B2 (en) Method and apparatus for managing data communication in wireless communication network
US11722947B2 (en) Apparatus and method for routing data packet to user equipment in LTE-WLAN aggregation system
WO2020030165A1 (zh) 数据传输方法及装置,业务切换方法及装置
WO2019029643A1 (zh) 通信方法、基站、终端设备和系统
US11553546B2 (en) Methods and systems for radio access network aggregation and uniform control of multi-RAT networks
CN113873478B (zh) 通信方法及装置
WO2021004191A1 (zh) 一种支持时间敏感网络的方法及装置
WO2022205234A1 (zh) 一种通信方法及装置
CN109845389B (zh) 一种通信方法及装置
JP7389243B2 (ja) QoSマッピング
WO2023036205A1 (zh) 一种通信方法、装置及系统
CN115699816A (zh) 用于在双连接下进行侧行链路中继通信的方法
WO2022012361A1 (zh) 一种通信方法及装置
WO2022047803A1 (zh) 通信方法及装置
US20230247418A1 (en) Network edge computing method and communication apparatus
WO2023202106A1 (zh) 一种通信方法、装置及系统
JP7478749B2 (ja) 無線ベアラ確立方法及び装置
WO2024027615A1 (zh) 一种通信方法,通信装置及通信系统
CN113841441B (zh) 一种通信方法与装置
WO2024094160A1 (zh) 链路配置方法、通信装置及存储介质
WO2024093729A1 (zh) 通信方法及装置
WO2024051313A1 (zh) 通信资源管理方法、装置、系统及存储介质
WO2024007875A1 (zh) 数据量指示方法、数据递交方法及装置
WO2024040406A1 (zh) 一种通信方法、装置和系统
WO2023246746A1 (zh) 一种通信方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866668

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022866668

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022866668

Country of ref document: EP

Effective date: 20240319

NENP Non-entry into the national phase

Ref country code: DE