WO2023035914A1 - 具有散热器的氢气产生装置 - Google Patents

具有散热器的氢气产生装置 Download PDF

Info

Publication number
WO2023035914A1
WO2023035914A1 PCT/CN2022/113819 CN2022113819W WO2023035914A1 WO 2023035914 A1 WO2023035914 A1 WO 2023035914A1 CN 2022113819 W CN2022113819 W CN 2022113819W WO 2023035914 A1 WO2023035914 A1 WO 2023035914A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
radiator
water tank
hydrogen
generating device
Prior art date
Application number
PCT/CN2022/113819
Other languages
English (en)
French (fr)
Inventor
林信涌
Original Assignee
林信涌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林信涌 filed Critical 林信涌
Publication of WO2023035914A1 publication Critical patent/WO2023035914A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/67Heating or cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen generating device, and more particularly to a hydrogen generating device having a radiator.
  • Hydrogen generating equipment currently on the market usually generates hydrogen by electrolyzing water.
  • the hydrogen generator When the hydrogen generator generates hydrogen, a large amount of excess heat energy will be generated due to electrolysis. If the excess heat energy cannot be dissipated quickly, it will accumulate in the equipment and increase the internal ambient temperature of the equipment. Furthermore, when the equipment is operated at high temperature for a long time, not only will the operating efficiency of the electronic components be deteriorated, but it may also cause thermal damage to the equipment and shorten the service life of the equipment.
  • the object of the present invention is to provide a hydrogen generating device with a radiator, which has a simple structure, is easy to operate, can overcome the defects of the prior art, and has a better heat dissipation effect.
  • the invention discloses a hydrogen generating device with a radiator, which is characterized in that
  • a water tank has an accommodating space for accommodating electrolyzed water
  • an electrolyzer arranged in the accommodating space of the water tank, for receiving and electrolyzing the electrolyzed water from the water tank to generate a hydrogen-containing gas
  • An integrated flow channel device arranged above the electrolytic cell, the integrated flow channel device includes an inlet flow channel and an outlet flow channel, wherein the inlet flow channel is used to receive the hydrogen-containing gas, and the outlet flow channel is used to exporting the hydrogen-containing gas;
  • condensation filter device coupled to the integrated channel device, the condensation filter device is used to filter the hydrogen-containing gas received by the inlet flow channel;
  • a water inlet pipe connected to the upper half of the side wall of the water tank and used to receive the electrolyzed water from the water tank;
  • a water outlet pipe connected to the lower half of the side wall of the water tank and used to output the electrolyzed water to the water tank;
  • At least one column structure communicates with the water inlet pipe and the water outlet pipe for the electrolyzed water to pass through.
  • the electrolytic cell includes a casing, and a partition plate is extended from the casing to form an upper cavity and a lower cavity from the accommodating space, the water inlet pipe is connected to the upper chamber and the water outlet pipe is connected to the Lower cavity.
  • the side wall of the water tank includes a first opening that communicates with the upper chamber and the water inlet pipe, and includes a second opening that communicates with the lower chamber and the water outlet pipe.
  • the water surface of the electrolyzed water in the water tank is higher than the bottom of the water inlet pipe.
  • the radiator further includes at least one helical structure, and the helical structure is arranged in the at least one pipe column structure, so that the electrolyzed water passes through the pipe column structure along the helix structure.
  • the at least one column structure has a hysteresis structure respectively, so that the electrolyzed water passes through the column structure along the hysteresis structure.
  • the radiator includes a plurality of cooling fins for passing through the at least one column structure and dissipating heat from the at least one column structure.
  • it further includes a heat dissipation air passage, which is located at the side of the water tank, and the radiator is arranged in the heat dissipation air passage.
  • a fan is further included, adjacent to the radiator, and the fan is used to introduce air from an external environment to the cooling air duct.
  • it further includes a first fan and a second fan, respectively arranged at both ends of the heat dissipation air duct, the first fan is used to introduce air from an external environment into the heat dissipation air duct, and the second fan is used to The air in the cooling air duct is exported to the external environment.
  • a filter disinfection tank is further included to filter the hydrogen-containing gas, one end of the filter disinfection tank is connected to a gas outlet of the hydrogen generating device, and the other end of the filter disinfection tank is coupled to a breathing tube worn by the user .
  • an ultraviolet light source is further included, and the ultraviolet light source is adjacent to the outlet air channel for emitting an ultraviolet light to sterilize the outlet air channel.
  • the humidification cup is coupled to the integrated flow channel device, and is used to accommodate a supplementary water and receive the hydrogen-containing gas from the integrated flow channel device to humidify the Hydrogen-containing gas
  • the ultraviolet light source is arranged in the integrated flow channel device or the humidification cup, and is used to emit an ultraviolet light to sterilize the integrated flow channel device or the humidification cup.
  • the water inlet pipe, the water outlet pipe and the at least one column structure are integrally formed, and the shape of the at least one column structure is wavy.
  • the radiator includes a first radiator and a second radiator, the first radiator and the second radiator respectively include the water inlet pipe, the water outlet pipe and the at least one column structure, and the first radiator The radiator is arranged on the side wall of the water tank, and the second radiator is arranged on the other side wall opposite to the side wall of the water tank.
  • the water tank includes a bottom and the side wall has a length of a side wall, the water inlet pipe is coupled to a position from the bottom to 80% to 100% of the length of the side wall, and the water outlet pipe is coupled to a position from the bottom to the position of 0% to 20% of the length of the side wall.
  • a water pump is further included, coupled to the water outlet pipe of the radiator, and the water pump is used for introducing the electrolyzed water after cooling in the radiator into the water tank.
  • a casing for accommodating the water tank, the electrolytic cell, the integrated flow channel, the condensation filter device and the radiator;
  • a water bucket is arranged outside the housing and coupled to the condensation filter device, the water bucket is used to provide supplementary water so that the supplementary water flows through the condensation filtration device into the water tank.
  • a bucket bracket which is arranged on the shell and used to support the bucket.
  • a hydrogen generating device with a radiator characterized in that it comprises:
  • a water tank has an accommodating space for accommodating electrolyzed water
  • an electrolyzer arranged in the accommodating space of the water tank, for receiving and electrolyzing the electrolyzed water from the water tank to generate a hydrogen-containing gas
  • a water inlet pipe connected to a side wall of the water tank and used for receiving the electrolyzed water from the water tank;
  • a water outlet pipe connected to the side wall of the water tank and used to output the electrolyzed water to the water tank;
  • At least one pipe column structure is connected with the water inlet pipe and the water outlet pipe for the passage of the electrolyzed water
  • the water surface of the electrolyzed water in the water tank is higher than the bottom of the water inlet pipe, and the shape of the at least one column structure is wave-like.
  • a hydrogen generating device with a radiator characterized in that it comprises:
  • a water tank has an accommodating space for accommodating electrolyzed water
  • an electrolyzer arranged in the accommodating space of the water tank, for receiving and electrolyzing the electrolyzed water from the water tank to generate a hydrogen-containing gas
  • An integrated flow channel device arranged above the electrolytic cell, the integrated flow channel device includes an inlet flow channel and an outlet flow channel, wherein the inlet flow channel is used to receive the hydrogen-containing gas, and the outlet flow channel is used to exporting the hydrogen-containing gas;
  • a water inlet pipe for receiving the electrolyzed water from the water tank
  • a water outlet pipe for outputting the electrolyzed water to the water tank
  • At least one column structure communicating with the water inlet pipe and the water outlet pipe, for the passage of the electrolyzed water
  • An ultraviolet light source is arranged in the hydrogen gas generating device, and the ultraviolet light source is used to emit an ultraviolet light to sterilize the hydrogen gas generating device.
  • a filter disinfection tank coupled with a gas outlet of the hydrogen generating device, for filtering the hydrogen-containing gas.
  • an atomizer is further included, coupled to the outlet flow channel to receive the hydrogen-containing gas and includes a gas outlet, the atomizer can selectively generate an atomized gas to mix with the hydrogen-containing gas to form a Health care gas, the ultraviolet light source is adjacent to the atomizer and used to emit the ultraviolet light to sterilize the atomizer.
  • a humidification cup is further included, coupled with the integrated flow channel device, for accommodating a supplementary water and receiving the hydrogen-containing gas from the integrated flow channel device and humidifying the hydrogen-containing gas, and the ultraviolet light source is adjacent In the integrated flow channel device or the humidification cup, it is used to emit an ultraviolet light to sterilize the integrated flow channel device or the humidification cup.
  • the hydrogen generating device with radiator of the present invention can separate the electrolyzed water containing thermal energy from the upper chamber of the water tank through the partition plate, and effectively dissipate heat through the radiator connecting the upper and lower chambers. Moreover, the hydrogen generating device with the radiator of the present invention can reduce the thermal energy of the radiator through the radiator and the fan arranged in the cooling air duct, thereby improving the heat dissipation efficiency. Furthermore, the hydrogen generating device with a radiator of the present invention can also use a water pump to actively guide the electrolyzed water in the water tank into the radiator for heat dissipation, so as to improve heat dissipation efficiency. In addition, the hydrogen generating device with a radiator can have a structure with an extended path length in the column structure of the radiator to improve heat dissipation efficiency.
  • Fig. 1 shows a combined schematic diagram of a water tank, an electrolytic cell and a radiator of a hydrogen generating device with a radiator according to a specific embodiment of the present invention.
  • Figure 2 shows an exploded view of the water tank, electrolyzer and radiator of Figure 1.
  • FIG. 3 shows an exploded view of the electrolytic cell of FIG. 2 .
  • FIG. 4 shows an exploded view of the heat sink of FIG. 2 .
  • Fig. 5 shows a cross-sectional view of the water tank, electrolyzer, radiator and bottom case of Fig. 1 .
  • FIG. 6 shows a structural diagram of a water tank, a radiator and a fan of a hydrogen generating device with a radiator in another perspective according to a specific embodiment of the present invention.
  • Fig. 7 shows a structural diagram of a water tank, a radiator and a fan of a hydrogen generating device with a radiator according to another specific embodiment of the present invention from another perspective.
  • Fig. 8 shows a schematic cross-sectional structure diagram of a water tank, a radiator and a water pump of a hydrogen generating device with a radiator according to a specific embodiment of the present invention.
  • FIG. 9A shows an internal schematic diagram of a column structure of a hydrogen generating device with a radiator according to a specific embodiment of the present invention.
  • FIG. 9B shows an internal schematic diagram of a column structure of a hydrogen generating device with a radiator according to another embodiment of the present invention.
  • FIG. 10A shows a combined schematic view of a water tank, an electrolytic cell and a radiator of a hydrogen generating device with a radiator according to a specific embodiment of the present invention.
  • Fig. 10B is a cross-sectional view of the water tank, electrolytic cell and radiator of Fig. 10A.
  • FIG. 10C shows a cross-sectional view of a water tank, an electrolytic cell and a radiator of a hydrogen generating device with a radiator according to another embodiment of the present invention.
  • FIG. 11 shows a structural schematic diagram of the water tank, radiator and fan of the hydrogen generating device with a radiator in another viewing angle of the embodiment shown in FIG. 10A .
  • Fig. 12 shows an exploded schematic diagram of a hydrogen generating device with a radiator according to a specific embodiment of the present invention.
  • FIG. 13 shows a schematic diagram of the hydrogen generating device with a radiator in FIG. 12 from another perspective.
  • FIG. 14A shows an exploded schematic view of a hydrogen generating device with a heat sink according to an embodiment of the present invention.
  • Fig. 14B shows a schematic view of the appearance of the hydrogen generating device with a radiator according to Fig. 14A.
  • FIG. 1 shows a combined schematic diagram of a water tank 11, an electrolytic cell 12 and a radiator 13 of a hydrogen generating device 1 with a radiator according to a specific embodiment of the present invention.
  • FIG. 2 shows an exploded view of the water tank 11 , the electrolytic cell 12 and the radiator 13 in FIG. 1 .
  • FIG. 3 shows an exploded view of the electrolytic cell 12 of FIG. 2 .
  • a hydrogen generating device 1 with a radiator includes a water tank 11 , an electrolytic cell 12 and a radiator 13 .
  • the water tank 11 has an accommodating space 111, and the accommodating space 111 is used for accommodating electrolyzed water.
  • the electrolyzer 12 is disposed in the accommodating space 111 of the water tank 11 and can be immersed in the electrolyzed water, and is used for receiving and electrolyzing the electrolyzed water from the water tank 11 to generate hydrogen-containing gas.
  • the radiator 13 is coupled to the water tank 11 and used to dissipate heat from the electrolyzed water in the water tank 11 .
  • the electrolytic cell 12 includes a casing 121 and an electrode plate assembly 122 .
  • the electrode plate assembly 122 can be accommodated in the casing 121 .
  • the electrode plate assembly 122 includes a plurality of electrode plates 1221 and a backing plate 1222 connecting each electrode plate 1221 .
  • the backing plate 1222 is arranged on the upper surface of each electrode plate 1221, so that the plurality of electrode plates 1221 are respectively arranged at intervals, so that when the electrode plate assembly 122 is accommodated in the casing 121, a plurality of electrode plates 1221 can be formed. Multiple electrode channels.
  • the bottom of the casing 121 may have a plurality of water flow holes (not shown), so that the electrolyzed water in the water tank 11 can flow into each electrode channel through the water flow holes, so that each electrode plate 1221 can be electrolyzed to generate hydrogen-containing gas.
  • the backing plate 1222 may also have a plurality of air flow holes 1223 to allow the hydrogen-containing gas generated by electrolysis to flow into the water tank 11 through the air flow holes 1223 .
  • the electrode plate 1221 can be formed by pressing an iron wire or a metal mesh structure. Therefore, the electrode plate 1221 has a plurality of small holes (not shown).
  • each electrode flow channel can communicate with each other through these small holes, so that the hydrogen-containing gas in a single electrode flow channel can not only move upward, but also flow to other electrode flow channels, so the hydrogen-containing gas in each electrode flow channel The flow will not be blocked and affect the electrolysis efficiency.
  • the electrolytic tank 12 further includes a partition plate 123 .
  • the partition plate 123 extends outward from the outer side of the casing 121 .
  • the shape of the partition plate 123 can correspond to the cross-sectional shape of the water tank 11 , and can make the electrolytic cell 12 stably arranged in the water tank 11 , and further divide the accommodating space 111 of the water tank 11 into upper and lower chambers.
  • the electrolyzed water in the lower chamber can flow into each electrode flow channel through the water flow hole under the casing 121 of the electrolytic cell 12, and the hydrogen-containing gas generated by the electrolysis of the electrolytic cell 12 passes through the gas flow hole 1223 through the electrode flow channel into the upper cavity.
  • FIG. 4 shows an exploded view of the heat sink 13 of FIG. 2 .
  • FIG. 5 shows a cross-sectional view of the water tank 11 , the electrolytic cell 12 , the radiator 13 and the bottom case 10 in FIG. 1 .
  • the water tank 11 is arranged on the bottom shell 10 of the hydrogen generating device 1
  • the radiator 13 is arranged on the side wall 113 of the water tank 11 and connected to the water tank 11 .
  • the radiator 13 includes a water inlet pipe 131 , a water outlet pipe 132 , a plurality of column structures 133 and a plurality of cooling fins 134 .
  • the sidewall 113 of the water tank 11 further includes a first opening 114 and a second opening 115 .
  • the first opening 114 communicates with the upper cavity 1111 of the water tank 11
  • the second opening 115 communicates with the lower cavity 1112 of the water tank 11
  • the first opening 114 and the second opening 115 are located on the same side wall 113 of the water tank 11 .
  • the water inlet pipe 131 of the radiator 13 is connected to the first opening 114 and communicates with the upper chamber 1111
  • the water outlet pipe 132 of the radiator 13 is connected to the second opening 115 and communicates with the lower chamber 1112 .
  • the water level of the electrolyzed water in the water tank 11 is higher than the bottom of the water inlet pipe 131 , therefore, the electrolyzed water can flow from the water tank 11 to the water inlet pipe 131 of the radiator 13 through the first opening 114 located in the upper cavity 1111 .
  • the electrolyzed water flows through the column structure 133 of the radiator 13 and the outlet pipe 132 , and then flows back to the water tank 11 through the second opening 115 located in the lower cavity 1112 .
  • the water inlet pipe 131 is connected to the water tank 11 for receiving electrolyzed water from the water tank 11 .
  • the water outlet pipe 132 is connected to the water tank 11 and used for outputting the electrolyzed water to the water tank 11 .
  • a plurality of column structures 133 are respectively connected to the water inlet pipe 131 and the water outlet pipe 132 to pass through the electrolyzed water.
  • the cooling fins 134 are used for passing through the column structure 133 and dissipating heat to the column structure 133 .
  • the water inlet pipe 131 and the water outlet pipe 132 may include a plurality of corresponding openings 135, and the corresponding openings 135 of the water inlet pipe 131 and the water outlet pipe 132 may be connected to the column structure 133, so that the water inlet pipe 131 ,
  • the water outlet pipe 132 forms a flow channel with each column structure 133 .
  • the water inlet pipe 131 , the water outlet pipe 132 and the pipe column structure 133 can be integrally formed, and the water inlet pipe 131 and the water outlet pipe 132 can be connected to two ends of the pipe column structure 133 by welding or welding. Further, the water inlet pipe 131 and the water outlet pipe 132 of the radiator 13 can also be fixed on the water tank 11 by locking, welding or welding.
  • the water tank 11 further includes a bottom 112 and a side wall 113 has a side wall length.
  • the water inlet pipe 131 and the water outlet pipe 132 of the radiator 13 can be arranged at different positions on the side wall 113 of the water tank 11 .
  • the water inlet pipe can be located at 80% to 100% of the length from the bottom to the side wall, and the water outlet pipe can be located at 0% to 20% of the length from the bottom to the side wall. That is to say, when the water inlet pipe is located at 100% of the length of the side wall, the outer edge of the water inlet pipe is on the same plane as the top of the water tank.
  • the water outlet pipe 131 can communicate with the upper chamber 1111 of the water tank 11
  • the water outlet pipe 132 can communicate with the lower chamber 1112 of the water tank 11 .
  • the position of the water inlet pipe can be located at 90% to 100% of the length from the bottom to the side wall
  • the position of the water outlet pipe can be located at a position of 0% to 10% of the length from the bottom to the side wall.
  • the positions of the water inlet pipe and the water outlet pipe can also be determined according to the water level of the water tank when the hydrogen generating device is in operation.
  • the water tank may have a single first opening and a second opening
  • the water inlet pipe and the water outlet pipe may be manifolds, wherein one side of the manifold is a single channel connecting the first opening or the second opening of the water tank , and the other side of the manifold has multiple openings respectively connected to multiple string structures.
  • the water tank has a plurality of first openings and second openings
  • the water inlet pipe and the water outlet pipe can be manifolds, wherein one side of the manifold has multiple openings respectively connected to the plurality of first openings and second openings , and the other side of the manifold is a single channel connection string structure.
  • the heat sink 134 can be a combination structure of two pieces, or a three-dimensional corrugated structure, so as to increase the heat dissipation surface area per unit volume.
  • the plurality of holes of the heat sink 134 can also be arranged according to the shape of the column structure 133 .
  • the cooling fins 134 do not have holes, but dissipate heat in a manner surrounding the pipe column structure 133 .
  • a plurality of cooling fins 134 may be arranged at a fixed interval.
  • FIG. 6 shows a structural diagram of the water tank 11 , the radiator 13 and the fan 15 of the hydrogen generating device 1 with a radiator according to a specific embodiment of the present invention from another perspective.
  • the hydrogen generating device 1 with a radiator further includes a cooling air duct 14 .
  • the cooling air duct 14 is parallel to the water tank 11 and located on one side adjacent to the first opening 114 and the second opening 115 .
  • the space between the shell of the water tank 11 and the bottom shell of the hydrogen generator 1 forms a cooling air duct 14 .
  • the radiator 13 is also located in the cooling air duct 14 at the same time.
  • the hydrogen generating device 1 with a radiator further includes a fan 15 disposed in the cooling air duct 14 for introducing air from the external environment to the cooling air duct 14 .
  • the radiator 13 dissipates heat
  • the heat energy generated by the electrolyzed water after electrolysis is all conducted to the column structure 133 and the cooling fins 134 of the radiator 13 .
  • the fan 15 can introduce outside air from one end of the cooling air duct 14 into the cooling air duct 14 to reduce heat energy and temperature of the column structure 133 and the cooling fins 134 . Therefore, the hydrogen generating device with the radiator of the present invention can reduce the thermal energy of the radiator through the fan, so as to improve the heat dissipation efficiency.
  • the electrolyzed water located in the lower chamber 1111 of the water tank 11 flows to the electrolyzer 12 through the water flow holes of the electrolyzer 12 for electrolysis.
  • the hydrogen-containing gas produced by electrolysis in the electrolytic cell 12 is located in the upper chamber 1111 , and the heat energy generated during electrolysis simultaneously heats the water in the electrode channel, and the heated electrolyzed water also enters the upper chamber 1111 .
  • the electrolyzed water containing thermal energy can flow through the first opening 114 of the water tank 11 to the water inlet pipe 131 of the radiator 13 , and then flow through the column structure 133 .
  • the thermal energy of the electrolyzed water can be conducted to the column structure 133 , and the heat energy can be conducted to the plurality of cooling fins 134 disposed on the periphery of the column structure 133 . Then, the heat energy on the pipe column structure 133 and the cooling fins 134 is exhausted by the fan 15 to the outside of the hydrogen generating device for heat dissipation. Finally, the dissipated electrolyzed water flows to the outlet pipe 132 of the radiator 13 and flows back to the water tank 11 through the second opening 115 of the water tank 11 . Therefore, the hydrogen generating device with the radiator of the present invention can effectively dissipate heat through the partition plate and the radiator connecting the upper and lower chambers.
  • the location of the radiators of the hydrogen generating device of the present invention is not limited to the right side of the water tank in FIG. 2 , and the number is not limited to one group.
  • the radiator can also be arranged on the left side of the water tank.
  • the hydrogen generating device may include two sets of radiators, which are respectively arranged on the left and right sides of the water tank. Even in another specific embodiment, the hydrogen generating device can also be provided with radiators at other positions around the water tank.
  • the installation position of the fan of the hydrogen generating device of the present invention is not limited to the right side of the water tank in FIG. 2 . In a specific embodiment, the fan can also be arranged on the left side of the water tank.
  • the hydrogen generating device may simultaneously include two sets of fans, which are respectively arranged on the left and right sides of the water tank.
  • the detailed structures of the above-mentioned radiators and fans located in other positions and the interconnection relationship with the water tank are roughly the same as those of the radiator located on the right side of the water tank in the above-mentioned specific embodiments, so they will not be repeated here.
  • FIG. 7 shows a structural schematic diagram of a water tank 21 , a radiator 23 and a fan of a hydrogen generating device 2 with a radiator according to another specific embodiment of the present invention from another perspective.
  • the fans include a first fan 251 and a second fan 252 .
  • the first fan 251 and the second fan 252 are respectively disposed at two ends of the cooling air duct 24
  • the radiator 23 is located between the first fan 251 and the second fan 252 .
  • the first fan 251 is used to introduce air from the external environment to the cooling air passage 24
  • the second fan 252 is used to guide the air in the cooling air passage 24 to the external environment.
  • the first fan 251 can introduce the air from the external environment into the cooling air duct 24 to reduce the heat energy and temperature of the column structure and the cooling fins of the radiator 23 .
  • the second fan 252 can export the hot air generated by the column structure and cooling fins of the radiator 23 in the cooling air duct 24 to the external environment, which not only reduces the temperature of the entire hydrogen generating device, but also improves the cooling efficiency.
  • FIG. 8 shows a schematic cross-sectional structure diagram of a water tank 31 , a radiator 33 and a water pump 36 of a hydrogen generating device 3 with a radiator according to a specific embodiment of the present invention.
  • the hydrogen generating device 3 with a radiator further includes a water pump 36 disposed on the bottom case 30 of the hydrogen generating device 3 .
  • the water pump 36 can be connected to the water tank 31 and the water outlet pipe 332 of the radiator 33 , and is used to introduce the electrolyzed water cooled in the radiator 33 into the water tank 31 .
  • the water pump 36 may include a water inlet 361 and a water outlet 362 respectively connected to the water outlet pipe 332 of the radiator 33 and the second opening 315 of the water tank 31 . Further, the water pump may include an actuator 363 and a fan blade 364 , and the fan blade 364 can accelerate the electrolyzed water of the radiator 33 into the lower chamber of the water tank 31 in a rotating manner. Since the water tank 31 and the radiator 33 communicate with each other, when the water pump 36 guides the electrolyzed water in the radiator 33 into the lower chamber of the water tank 31, the electrolyzed water located in the upper chamber will also be accelerated by the suction of the water pump 36. The ground is introduced into the radiator 33 to dissipate heat.
  • the water pump 36 can actively guide the dissipated electrolyzed water into the water tank at an accelerated rate and guide the electrolyzed water containing thermal energy into the radiator.
  • the installation position of the water pump is not limited thereto.
  • the water pump can also be arranged between the first opening of the water tank and the water inlet pipe of the radiator, so that the electrolyzed water containing thermal energy in the upper cavity of the water tank into the radiator. Therefore, in the hydrogen generating device with radiator of the present invention, the water pump can actively guide the electrolyzed water in the water tank into the radiator for heat dissipation, so as to improve heat dissipation efficiency.
  • the water pump of the present invention can also be arranged on the water tank to input the electrolyzed water heated by electrolysis into the water inlet pipe, and the detailed structure will be described later.
  • FIG. 9A shows a schematic view of the interior of a string structure 433 according to an embodiment of the present invention.
  • FIG. 9B shows an internal schematic diagram of a string structure 433' according to another embodiment of the present invention.
  • the heat sink further includes a plurality of helical structures 435 respectively disposed in the column structures 433 .
  • the helical structure 435 may be an I-shaped helical column disposed in the tubular structure 433 to extend the length of the inner path of the tubular structure 433 .
  • the inner wall of the column structure 433 ′ has a hysteresis structure 4331 ′.
  • the inner surface of the pipe string structure 433' may have a plurality of protrusions to form the hysteresis structure 4331', so as to increase the path length of the pipe string structure 433'.
  • the protrusion can also be formed as an internal thread structure on the inner surface of the column structure 433 ′.
  • the hysteresis structure 4331' is not limited to bumps on the surface, but also includes other structures that can retard the flow rate of the liquid, such as a mesh structure.
  • FIG. 10A shows a combined schematic diagram of a water tank 51 , an electrolytic cell 52 and a radiator 53 of a hydrogen generating device 5 with a radiator according to a specific embodiment of the present invention.
  • FIG. 10B is a cross-sectional view of the water tank 51 , the electrolytic cell 52 and the radiator 53 in FIG. 10 .
  • the water inlet pipe 531, the water outlet pipe 532 and the column structure 533 of the radiator 53 are all flat pipe structures, and the first opening 514 and the second opening of the water tank 51
  • the shape of 515 corresponds to the shape of the water inlet pipe 531 and the water outlet pipe 532 respectively.
  • the width of the water inlet pipe 531, the water outlet pipe 532 and the column structure 533 can be equal to the length of the side of the water tank 51, that is, the first opening 514 and the second opening 515 of the water tank 51 have a relatively Large area and coverage. Therefore, when the hydrogen generating device is in operation, the electrolyzed water containing thermal energy can pass through the first opening 514 of the water tank 51 to flow to the radiator 53 in a large amount and quickly, and the electrolyzed water after cooling can also pass through the second opening of the water tank 51 515 quickly flows back to the water tank 51, thereby increasing the heat dissipation rate.
  • the widths of the water inlet pipe 531 , the water outlet pipe 532 and the pipe column structure 533 of the radiator 53 are not limited thereto, and the width can also be any length or determined according to requirements. Further, the shape of the column structure 533 can also be waved, so as to prolong the time for the electrolyzed water containing thermal energy to stay in the column structure 533 , thereby improving the heat dissipation efficiency.
  • the shape and arrangement of the column structure are not limited thereto, and may also be the shape and arrangement of the aforementioned specific embodiments.
  • FIG. 10C shows a cross-sectional view of a water tank 51 , an electrolytic cell 52 and a radiator 53 of a hydrogen generating device 5 with a radiator according to another embodiment of the present invention.
  • the hydrogen generating device 5 can also include two groups of radiators (the first radiator 53A and the second radiator 53B) respectively arranged on the left and right side walls of the water tank 51, and the first radiator 53A and the second radiator 53B respectively include the aforementioned water inlet pipe, water outlet pipe and at least one column structure.
  • the functions of the water tank 51 , the electrolytic tank 52 , the first radiator 53A, and the second radiator 53B in this embodiment are substantially the same as those of the corresponding components in the foregoing embodiments, and will not be repeated here.
  • the hydrogen generating device may further include a plurality of cooling fins disposed on the outside of the column structure to increase the heat dissipation rate.
  • FIG. 11 shows a structural diagram of the water tank 51 , the radiator 53 and the fan 55 of the hydrogen generating device 5 with a radiator in another viewing angle of the embodiment shown in FIG. 10A .
  • the radiator 53 when the radiator 53 is connected to the water tank 51, the water inlet pipe 531, the water outlet pipe 532, the column structure 533 and the side wall of the water tank 51 of the radiator 53 form a cooling air duct 54.
  • the hydrogen generating device 5 of the radiator may further include a fan 55 corresponding to the cooling air duct 54 to introduce air from the external environment to the cooling air duct 54 .
  • the fan 55 can introduce outside air into the cooling air duct 54 to reduce heat energy and temperature of the column structure 533 .
  • the number and location of the fans of the hydrogen generating device of the present invention are not limited thereto.
  • the fans may include a first fan and a second fan respectively disposed at two ends of the cooling air duct. The first fan can lead the air of the external environment into the heat dissipation air passage, and the second fan can lead the air in the heat dissipation air passage out of the external environment.
  • the hydrogen generating device when the hydrogen generating device includes two groups of radiators respectively arranged on the left and right sides of the water tank, the hydrogen generating device may also include two groups of fans respectively arranged on the left and right sides of the water tank and corresponding to the radiators. Formed cooling air duct.
  • Fig. 12 shows an exploded schematic diagram of a hydrogen generating device 6 with a radiator according to a specific embodiment of the present invention.
  • FIG. 13 shows a schematic view of the hydrogen generating device 6 with a radiator in FIG. 12 from another perspective.
  • the hydrogen generating device 6 of this specific embodiment includes an electrolyzer (not shown), a water tank 602, a humidification cup 603, an integrated flow channel device 604, a condensation filter device 605, and a hydrogen water cup 606 and atomizer 607.
  • the humidification cup 603 is vertically stacked on the water tank 602, the integrated flow channel device 604 is vertically stacked on the humidification cup 603, and the condensation filter device 605 is placed in the accommodation space in the integrated flow channel device 604.
  • the hydrogen generating device 6 may further include a casing (not shown) for accommodating the above-mentioned components.
  • the condensation filter device 605 may be used to filter hydrogen and may have a condensation flow channel 6051 .
  • the condensation filter device 605 can be embedded in the integrated flow channel device 604, and can be pulled out from the side of the integrated flow channel device 604 for easy replacement without disassembling the entire hydrogen generating device 6 with a radiator Make a replacement.
  • the condensation filter device 605 may also be fixedly disposed in the integrated channel device 604 .
  • the humidification cup 603 includes a humidification chamber (not shown) and a communication chamber 6031 .
  • the humidification chamber accommodates supplementary water, which can be used to humidify the hydrogen-containing gas.
  • the communication chamber 6031 can be used to communicate with the water tank 602 and the integrated flow channel device 604, so that the hydrogen-containing gas generated by the electrolytic cell installed in the water tank 602 passes through the communication chamber 6031 and the integrated flow channel device 604 to enter the condensation of the condensation filter device 605 Runner 6051.
  • the hydrogen-containing gas filtered by the condensation filter device 605 can then flow to the humidification chamber of the humidification cup 603 .
  • the hydrogen water cup 606 can be used to hold drinking water, and the hydrogen water cup 606 can be used to inject hydrogen gas into the drinking water to form hydrogen-containing water.
  • the integrated channel device 604 includes an inlet channel 6041 , an outlet channel 6042 and a gas communication channel 6043 .
  • the inlet air channel 6041 and the outlet air channel 6042 can be selectively coupled to the hydrogen water cup 606
  • the gas communication channel 6043 can be selectively coupled to the air channel 6041 and the outlet air channel 6042
  • the atomizer 607 can be coupled to the outlet flow channel 6042 of the integrated flow channel device 604 to receive the hydrogen-containing gas, and also generate atomized gas to mix with the hydrogen gas to form a health care gas.
  • the humidification cup 603 , the condensation filter device 605 , the atomizer 607 and the hydrogen water cup 606 can also be embedded or directly coupled to the integrated channel device 604 .
  • hydrogen gas may selectively flow through the hydrogen water cup 606 .
  • the atomizer 607 can generate an atomized gas mixed with a hydrogen-containing gas to form a health care gas, wherein the atomized gas can be selected from one or more of the group consisting of water vapor, atomized liquid medicine, and volatile essential oil. its combination.
  • the atomizer 607 includes an oscillator, and the oscillator atomizes the water, atomized liquid medicine or volatile essential oil added to the atomizer 607 by oscillation to generate atomized gas, and then the mixed gas Mix with nebulizing gas to form healthcare gas.
  • the nebulizer 607 can be selectively turned on or off according to the needs of the user, so as to provide the health care gas of the mixed atomized gas for the user to inhale, or only provide the mixed gas (that is, the hydrogen gas diluted with the second oxygen) for the user inhale.
  • the hydrogen generating device may further include a filter disinfection tank (not shown) installed at the gas outlet of the hydrogen generating device to filter microorganisms in the hydrogen-containing gas, or to kill the microorganisms in the hydrogen-containing gas bacteria.
  • the components in the filter disinfection tank can include at least one of activated carbon, nano-silver sputtering, polyethylene terephthalate (polyethylene terephthalate, PET) and polypropylene (polypropylene, PP) fiber cloth.
  • the antibacterial type may include Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and drug-resistant Staphylococcus aureus, but is not limited thereto.
  • the gas outlet can be the outlet of the atomizer. After the hydrogen-containing gas is mixed with the atomized gas to form a health-care gas, the filter and disinfection tank can first filter the germs in the health-care gas before being inhaled by the user.
  • the gas outlet can be a gas outlet pipe that directly provides hydrogen-containing gas or mixed gas.
  • One end of the filter sterilizer can be connected to an air outlet tube, and the other end of the filter sterilizer can be connected to a breathing tube worn by a user.
  • the filter disinfection tank can first filter out the hydrogen-containing gas or the germs in the mixed gas in the trachea, and then output the hydrogen-containing gas or the mixed gas to the breathing tube for inhalation by the user. It should be understood that those skilled in the art can add multiple filter sterilizers and adjust their setting positions according to their needs, and the filter sterilizer can also be replaced as a disposable part.
  • the hydrogen generating device may further include an ultraviolet light source (not shown) installed in the hydrogen generating device to emit ultraviolet light to eliminate microorganisms in the hydrogen-containing gas, or to kill the hydrogen-containing gas bacteria in.
  • the ultraviolet light source can emit short-wave ultraviolet light (UV-C) with a wavelength of 100nm-280nm to sterilize the gas, but is not limited thereto.
  • UV-C short-wave ultraviolet light
  • the light wave of the disinfection ultraviolet light emitted by the ultraviolet light source is 200nm-300nm.
  • the ultraviolet light source can be installed in the atomizer to emit ultraviolet light to sterilize the health care gas of the atomizer; and the ultraviolet light source can also be adjacent to the outlet flow channel and emit ultraviolet light to sterilize the outlet air channel Sterilize. But it is not limited to this in practice, and the ultraviolet light source can also be installed in the water tank, the integrated flow channel device, the humidification cup, or any pipeline through which the hydrogen-containing gas flows, so as to emit ultraviolet light to sterilize these components.
  • the aforementioned water pump can also be in other configurations besides the arrangement in the aforementioned specific embodiments.
  • the water pump 608 may be disposed at the bottom of the water tank 602 and connected to the lower cavity of the water tank 602 .
  • the water pump 608 can lead the electrolyzed water located in the lower chamber of the water tank 608 into the electrolyzer through the blade part, so as to improve the electrolyze efficiency.
  • the electrolyzed water in the upper chamber also accelerates to flow into the radiator through the first opening to dissipate heat, thereby improving heat dissipation efficiency.
  • FIG. 14A shows an exploded schematic diagram of a hydrogen generating device 7 with a heat sink according to a specific embodiment of the present invention.
  • FIG. 14B shows a schematic view of the appearance of the hydrogen generating device 7 with a radiator according to FIG. 14A .
  • the difference between this specific embodiment and the previous specific embodiments is that the hydrogen generating device 7 with a radiator in this specific embodiment only includes a water tank 702, an integrated flow channel device 704, and a condensation filter device. 705 and atomizer 707.
  • the integrated flow channel device 704 is vertically stacked on the water tank 702 , the condensation filter device 705 is disposed in the integrated flow channel device 704 , and the atomizer 707 is connected to the integrated flow channel device 704 .
  • the hydrogen produced by the electrolyzer of the water tank 702 leaves the water surface of the water tank 702, it enters the communication chamber 7021 very quickly.
  • the hydrogen gas flows sequentially through the communication chamber 7021 , the condensate channel of the condensation filter device 705 , the inlet channel of the integrated channel device 704 , the outlet channel and the atomizer 707 .
  • the hydrogen generating device 7 with a radiator of the present invention further includes a water supply port 708 disposed on the integrated flow channel device 704 and connected to the condensation flow channel of the condensation filter device 705 .
  • the water volume in the water tank 702 will gradually decrease after the hydrogen generator 7 reacts for a long time. Therefore, the user can add water through the water filling port 708 to supplement the water volume in the water tank 702 .
  • the water replenishment port 708 When the user replenishes water from the water replenishment port 708 , the water will flow through the condensation channel of the condensation filter device 705 , the communication chamber 7021 and flow to the water tank 702 .
  • the condensation filter device 705 when the condensation filter device 705 is activated, the condensation filter device 705 will filter the electrolyte in the electrolyzed water so that the electrolyte remains in the condensation channel. Therefore, when the user replenishes water from the water filling port 708 and the water flows through the condensation flow path, the electrolyte remaining in the condensation flow path can also be flushed back into the water tank 702 along with the water. It should be noted that the setting position of the water supply port 708 is not limited thereto.
  • the integrated flow channel device further includes a replenishing water flow channel, and the replenishing water flow channel communicates with the water replenishing port and the condensation flow channel of the condensation filter device.
  • the water supply port 708 of the hydrogen generating device 7 with a radiator can also be directly connected to a bucket 8 , and the hydrogen generating device 7 can directly supplement the water in the water tank 702 through the replenishing water in the bucket 8 .
  • the hydrogen generating device 7 further includes a casing 701 for accommodating a water tank 702 , an integrated channel device 704 , a condensation filter device 705 and an atomizer 707 .
  • the water bucket 8 is disposed outside the casing 701 and communicates with the water supply port 708 of the condensation filter device 705 .
  • the water bucket 8 is used to provide supplementary water so that the supplementary water flows into the water tank 702 through the condensation channel of the condensation filter device 705 .
  • the hydrogen generating device 7 may further include a controller and a control valve (not shown), and the controller is coupled to the control valve.
  • the control valve can be set at the water replenishment port 708 , and the controller can be used to control the opening and closing of the control valve, so as to control the water in the bucket 8 to flow to the water replenishment port 708 of the condensation filter device 705 .
  • the hydrogen generating device 7 may further include a water bucket support 81 disposed on the shell 701 of the hydrogen generating device 7 and used to support the water bucket 8, thereby increasing stability and safety.
  • the hydrogen generating device with radiator of the present invention can separate the electrolyzed water containing thermal energy from the upper chamber of the water tank through the partition plate, and effectively dissipate heat through the radiator connecting the upper and lower chambers. Moreover, the hydrogen generating device with the radiator of the present invention can reduce the thermal energy of the radiator through the radiator and the fan arranged in the cooling air duct, thereby improving the heat dissipation efficiency. Furthermore, the hydrogen generating device with a radiator of the present invention can also use a water pump to actively guide the electrolyzed water in the water tank into the radiator for heat dissipation, so as to improve heat dissipation efficiency. In addition, the hydrogen generating device with a radiator can have a structure with an extended path length in the column structure of the radiator to improve heat dissipation efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种具有散热器的氢气产生装置,包含有水箱、电解槽及散热器。水箱具有容置空间以容置电解水。电解槽设置于水箱的容置空间中,用以自水箱接收及电解该电解水以产生含氢气体。散热器耦接水箱,并且包含入水管、出水管以及至少一管柱结构。入水管连接水箱的一侧壁并用以自水箱接收电解水。出水管连接水箱的侧壁并用以输出电解水至水箱。该管柱结构连通入水管及出水管,以供电解水通过,本发明可透过设置于散热风道的散热器及风扇以降低散热器的热能,进而提高散热效率,也可由水泵主动将水箱中的电解水导入散热器以进行散热,以提高散热效率,此外,还可由散热器的管柱结构中具有延长路径长度的结构以提高散热效率。

Description

具有散热器的氢气产生装置 技术领域
本发明系关于一种氢气产生装置,更明确地说,是关于一种具有散热器的氢气产生装置。
背景技术
一直以来,人类对于生命是十分地重视,许多医疗的技术的开发,都是用来对抗疾病,以延续人类的生命。过去的医疗方式大部分都是属于被动,也就是当疾病发生时,再对症进行医疗,比如手术、给药、甚至癌症的化学治疗、放射性治疗、或者慢性病的调养、复健、矫正等。但是近年来,许多医学专家逐渐朝向预防性的医学方法进行研究,比如保健食品的研究,遗传性疾病筛检与提早预防等,更是主动的针对未来性可能的发病进行预防。另外,为了延长人类寿命,许多抗老化、抗氧化的技术逐渐被开发,且广泛地被大众采用,包含涂抹的保养品及抗氧化食物/药物等。
经研究发现:人体因各种原因,(比如疾病,饮食,所处环境或生活习惯)引生的不安定氧(O+),亦称自由基(有害自由基),可以与吸入的氢混合成部份的水,而排出体外。间接减少人体自由基的数量,达到酸性体质还原至健康的碱性体质,可以抗氧化、抗老化,进而也达到消除慢性疾病和美容保健效果。而在增加吸食氢气量的方式中,增加吸入氢气的时间(例如:利用睡眠时间吸食氢气)也可有效地提升吸入氢气的功效。
目前市面上的氢气产生设备通常以电解水来产生氢气。当氢气产生器产生氢气时会因电解作用产生大量多余的热能,若多余的热能不能快速散去将会聚积于设备中,而使设备的内部环境温度升高。进一步地,当设备仪器长期处于高温状态下运作,不但将使电子元件的运作效率变差,更有可能会使设备仪器发生热损坏而减短使用寿命的问题。
因此,有必要研发一种具有良好的散热机制的产氢设备,以解决先前技术的问题。
发明内容
有鉴于此,本发明的目的在于提供一种具有散热器的氢气产生装置,其结构简单,操作方便,能克服现有技术的缺陷,具有更佳的散热效果。
为实现上述目的,本发明公开了一种具有散热器的氢气产生装置,其特征在
于包含:
一水箱,具有一容置空间以容置一电解水;
一电解槽,设置于该水箱的该容置空间中,用以自该水箱接收及电解该电解水以产生一含氢气体;
一整合式流道装置,设置于该电解槽上方,该整合式流道装置包含有一入气流道及一出气流道,其中该入气流道用以接收该含氢气体,该出气流道用以输出该含氢气体;
一冷凝过滤装置,耦接该整合式流道装置,该冷凝过滤装置用以过滤该入气流道所接收的该含氢气体;以及
一散热器,耦接该水箱,该散热器进一步包含:
一入水管,连接该水箱的一侧壁的上半部并用以自该水箱接收该电解水;
一出水管,连接该水箱的该侧壁的下半部并用以输出该电解水至该水箱;以及
至少一管柱结构,连通该入水管及该出水管,以供该电解水通过。
其中,该电解槽包含一壳体,该壳体延伸出一分隔板以将该容置空间分隔形成一上腔体及一下腔体,该入水管连接该上腔体并且该出水管连接该下腔体。
其中,该水箱的侧壁上包含一第一开口,该第一开口连通该上腔体及该入水管,并且包含一第二开口,该第二开口连通该下腔体及该出水管。
其中,该水箱中电解水的水面高于入水管的底部。
其中,该散热器进一步包含至少一螺旋结构,该螺旋结构设置于该至少一管柱结构内,以使该电解水沿着该螺旋结构通过该管柱结构。
其中,该至少一管柱结构分别具有一延滞结构,以使该电解水沿着该延滞结构通过该管柱结构。
其中,该散热器包含多个散热片,用以供该至少一管柱结构穿过并对该至少一管柱结构散热。
其中,进一步包含一散热风道,位于该水箱的侧边,并且该散热器设置于该散热风道中。
其中,进一步包含一风扇,邻近于该散热器,该风扇用以自一外界环境导入空气至该散热风道。
其中,进一步包含一第一风扇及一第二风扇,分别设置于该散热风道的两端,该第一风扇用以自一外界环境导入空气至该散热风道,并且该第二风扇用以将散热风道的空气导出至该外界环境。
其中,更包含一过滤消毒罐,用以过滤该含氢气体,该过滤消毒罐的一端连接该氢气产生装置的一气体出口,该过滤消毒罐的另一端耦接供使用者配戴的呼 吸管。
其中,更包含一紫外光源,该紫外光源邻近于该出气流道用以发出一紫外光以对该出气流道进行杀菌。
其中,更包含一湿化杯以及一紫外光源,该湿化杯耦接该整合式流道装置,用以容置一补充水并从该整合式流道装置接收该含氢气体并湿化该含氢气体,该紫外光源设置于该整合式流道装置或该湿化杯中,用以发出一紫外光以对该整合式流道装置或该湿化杯进行杀菌。
其中,该入水管、该出水管以及该至少一管柱结构为一体成形,并且该至少一管柱结构的形状呈波浪状。
其中,该散热器包含一第一散热器以及一第二散热器,该第一散热器及该第二散热器分别包含该入水管、该出水管以及该至少一管柱结构,该第一散热器设置于该水箱的该侧壁,并且该第二散热器设置于相对于该水箱的该侧壁的另一侧壁。
其中,该水箱包含一底部并且该侧壁具有一侧壁长度,该入水管耦接于自该底部至该侧壁长度的80%~100%的位置,并且该出水管耦接于自该底部至该侧壁长度的0%~20%的位置。
其中,进一步包含一水泵,耦接该散热器的该出水管,该水泵用以将该散热器中散热过后的该电解水导入该水箱中。
其中,进一步包含:
一外壳,用以容置该水箱、该电解槽、该整合式流道、该冷凝过滤装置以及该散热器;以及
一水桶,设置于该外壳的外部并且耦接该冷凝过滤装置,该水桶用以提供一补充水以使该补充水流经该冷凝过滤装置至该水箱中。
其中,进一步包含一水桶支架,设置该外壳上并用以支撑该水桶。
还公开了一种具有散热器的氢气产生装置,其特征在于包含:
一水箱,具有一容置空间以容置一电解水;
一电解槽,设置于该水箱的该容置空间中,用以自该水箱接收及电解该电解水以产生一含氢气体;以及
一散热器,耦接该水箱,该散热器进一步包含:
一入水管,连接该水箱的一侧壁并用以自该水箱接收该电解水;
一出水管,连接该水箱的该侧壁并用以输出该电解水至该水箱;以及
至少一管柱结构,连通该入水管及该出水管,以供该电解水通过;
其中该水箱中该电解水的水面高于该入水管的底部,该至少一管柱结构的形状呈波浪状。
还公开了一种具有散热器的氢气产生装置,其特征在于包含:
一水箱,具有一容置空间以容置一电解水;
一电解槽,设置于该水箱的该容置空间中,用以自该水箱接收及电解该电解水以产生一含氢气体;
一整合式流道装置,设置于该电解槽上方,该整合式流道装置包含有一入气流道及一出气流道,其中该入气流道用以接收该含氢气体,该出气流道用以输出该含氢气体;
一散热器,耦接该水箱,该散热器进一步包含:
一入水管,用以自该水箱接收该电解水;
一出水管,用以输出该电解水至该水箱;以及
至少一管柱结构,连通该入水管及该出水管,以供该电解水通过;以及
一紫外光源,设置于该氢气产生装置中,该紫外光源用以发出一紫外光以对该氢气产生装置进行杀菌。
其中,更包含一过滤消毒罐,耦接该氢气产生装置的一气体出口,用以过滤该含氢气体。
其中,更包含一雾化器,耦接该出气流道以接收该含氢气体并且包含一气体出口,该雾化器能选择性地产生一雾化气体以与该含氢气体混合而形成一保健气体,该紫外光源邻近于该雾化器并且用以发出该紫外光以对该雾化器进行杀菌。
其中,更包含一湿化杯,耦接该整合式流道装置,用以容置一补充水并从该整合式流道装置接收该含氢气体并湿化该含氢气体,该紫外光源邻近于该整合式流道装置或该湿化杯中,用以发出一紫外光以对该整合式流道装置或该湿化杯进行杀菌。
综上所述,本发明的具有散热器的氢气产生装置可透过分隔板将含有热能的电解水隔开至水箱的上腔体,并且由连接上下腔体的散热器以有效地进行散热。并且,本发明的具有散热器的氢气产生装置可透过设置于散热风道的散热器及风扇以降低散热器的热能,进而提高散热效率。再者,本发明的具有散热器的氢气产生装置也可由水泵主动将水箱中的电解水导入散热器以进行散热,以提高散热效率。此外,具有散热器的氢气产生装置可由散热器的管柱结构中具有延长路径长度的结构以提高散热效率。
附图说明
图1显示了根据本发明一具体实施例的具有散热器的氢气产生装置的水箱、电解槽及散热器的组合示意图。
图2显示了图1的水箱、电解槽及散热器的分解图。
图3显示了图2的电解槽的分解图。
图4显示了图2的散热器的分解图。
图5显示了图1的水箱、电解槽、散热器及底壳的剖面图。
图6显示了根据本发明的一具体实施例的具有散热器的氢气产生装置的水箱、散热器及风扇于另一视角的结构示意图。
图7显示了根据本发明的另一具体实施例的具有散热器的氢气产生装置的水箱、散热器及风扇于另一视角的结构示意图。
图8显示了根据本发明的一具体实施例的具有散热器的氢气产生装置的水箱、散热器及水泵的剖面结构示意图。
图9A显示了根据本发明的一具体实施例的具有散热器的氢气产生装置的管柱结构的内部示意图。
图9B显示了根据本发明的另一具体实施例的具有散热器的氢气产生装置的管柱结构的内部示意图。
图10A显示了根据本发明一具体实施例的具有散热器的氢气产生装置的水箱、电解槽及散热器的组合示意图。
图10B为图10A的水箱、电解槽及散热器的剖面图。
图10C显示了根据本发明另一具体实施例的具有散热器的氢气产生装置的水箱、电解槽及散热器的剖面图。
图11显示了图10A的具体实施例的具有散热器的氢气产生装置的水箱、散热器及风扇于另一视角的结构示意图。
图12显示了根据本发明的一具体实施例的具有散热器的氢气产生装置的分解示意图。
图13显示了图12的具有散热器的氢气产生装置于另一视角的示意图。
图14A显示了根据本发明的一具体实施例的具有散热器的氢气产生装置的分解示意图。
图14B显示了根据图14A的具有散热器的氢气产生装置的外观示意图。
关于本发明的优点,精神与特征,将以实施例并参照所附图式,进行详细说明与讨论。
具体实施方式
为了让本发明的优点,精神与特征可以更容易且明确地了解,后续将以实施例并参照所附图式进行详述与讨论。值得注意的是,这些实施例仅为本发明代表性的实施例,其中所举例的特定方法、装置、条件、材质等并非用以限定本发明或对应的实施例。
在本发明公开的各种实施例中使用的术语仅用于描述特定实施例的目的,并非在限制本发明所公开的各种实施例。说明书中所使用单数形式系也包括多形式,除非上下文有清楚地另外指示。除非另有限定,否则在本说明书中使用的所有术语(包含技术术语和科学术语)具有本发明公开的各种实施例所属领域的普通技术人员通常能理解的涵义相同的涵义。上述术语(诸如在一般使用的辞典中限定的术语)将被解释为具有与在相同技术领域中的语境涵义相同的涵义,并且将不被解释为具有理想化的涵义或过于正式的涵义,除非此术语在本发明公开的各种实施例中被清楚地限定。
在本说明书的描述中,参考术语“一实施例”、“一具体实施例”等的描述意指结合该实施例中所描述地具体特征、结构、材料或者特点包含于本发明的至少一个实施例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例。而且,描述的具体特征、结构、材料或者特点可以在任何一个或多个实施例中以合适的方式结合。
在本发明的描述中,除非另有规定或限定,需要说明的是术语“耦接”、“连接”、“设置”应做广义理解,例如,可以是机械连接或电连接,亦可以是两个元件内部的连通,可以是直接相连,亦可以通过中间媒介间接相连,对于本领域通常知识者而言,可以根据具体情况理解上述术语的具体涵义。
请参考图1至图3。图1显示了根据本发明一具体实施例的具有散热器的氢气产生装置1的水箱11、电解槽12及散热器13的组合示意图。图2显示了图1的水箱11、电解槽12及散热器13的分解图。图3显示了图2的电解槽12的分解图。如图1及图2所示,在本具体实施例中,具有散热器的氢气产生装置1包含水箱11、电解槽12以及散热器13。水箱11具有容置空间111,并且容置空间111用以容置电解水。电解槽12设置于水箱11的容置空间111中而可浸于电解水中,并用以自水箱11接收及电解该电解水以产生含氢气体。散热器13耦接于水箱11并且用以对水箱中11的电解水进行散热。
如图3所示,电解槽12包含有壳体121以及电极板组件122。电极板组件122可容置于壳体121中。电极板组件122包含有多个电极板1221,以及连接每一个电极板1221的垫板1222。垫板1222设置于每一个电极板1221的上表面,用以使多个电极板1221分别间隔设置,以当电极板组件122容置于壳体121中时,多个电极板1221之间能形成多个电极流道。壳体121底部可具有多个水流通孔(图未示),以让水箱11中的电解水可自水流通孔流入各个电极流道中,使每个电极板1221都能进行电解以生成含氢气体。此外,垫板1222上亦可具有多个气流通孔1223,以让电解生成的含氢气体自气流通孔1223流至水箱11中。于实务中,电极板1221可由铁丝或金属网状结构压制而形成。因此,电极板1221具有多个小孔(图未示)。由于电极 板1221具有多个小孔,因此,当电解槽12电解该电解水时,各电极板1221与电解水之间的接触面积增加而增加电解效率。此外,各电极流道间透过这些小孔可以互相连通,使单一电极流道内的含氢气体不仅仅只能向上移动,也可流至其他电极流道,故各电极流道中的含氢气体的流动不会阻塞而影响电解效率。
在本具体实施例中,电解槽12进一步包含分隔板123。分隔板123自壳体121的外侧朝外延伸。分隔板123的形状可对应水箱11的截面形状,并且可用以使电解槽12稳固地设置于水箱11中,并进一步将水箱11的容置空间111分成上、下腔体。位于下腔体中的电解水可透过电解槽12的壳体121下方的水流通孔流入各个电极流道中,并且电解槽12电解所产生的含氢气体由电极流道透过气流通孔1223进入上腔体。
请进一步参考图2、图4以及图5。图4显示了图2的散热器13的分解图。图5显示了图1的水箱11、电解槽12、散热器13及底壳10的剖面图。如图2、图4以及图5所示,在本具体实施例中,水箱11设置于氢气产生装置1的底壳10上,并且散热器13设置于水箱11的一侧壁113并且连接水箱11。散热器13包含入水管131、出水管132、多个管柱结构133以及多个散热片134。水箱11的侧壁113进一步包含第一开口114以及第二开口115。第一开口114连通水箱11的上腔体1111,第二开口115连通水箱11的下腔体1112,并且第一开口114及第二开口115位于水箱11相同一侧的侧壁113。进一步地,散热器13的入水管131连接第一开口114并连通上腔体1111,并且散热器13的出水管132连接第二开口115并连通下腔体1112。于实务中,水箱11中电解水的水面高于入水管131的底部,因此,电解水可自位于上腔体1111的第一开口114自水箱11流至散热器13的入水管131。接着,电解水流经散热器13的管柱结构133及出水管132后,再透过位于下腔体1112的第二开口115流回至水箱11。入水管131连接水箱11并用以自水箱11接收电解水。出水管132连接水箱11并用以输出电解水至水箱11。多个管柱结构133分别连通入水管131及出水管132,以供电解水通过。散热片134用以供管柱结构133穿过并对管柱结构133散热。于本具体实施例,入水管131及出水管132可包含多个相对应的开孔135,并且入水管131及出水管132相对应的开孔135可连接管柱结构133,以使入水管131、出水管132与各管柱结构133形成流道。于实务中,入水管131、出水管132以及管柱结构133可为一体成形,并且入水管131及出水管132可以焊接或熔接的方式分别连接管柱结构133的两端。进一步地,散热器13的入水管131及出水管132也可以锁附、焊接或熔接等方式固定于水箱11上。
此外,水箱11进一步包含底部112并且侧壁113具有一侧壁长度。而散热器13的入水管131及出水管132可设置于水箱11的侧壁113上的不同位置。于实务中,入水管的位置可位于自底部至侧壁长度的80%至100%的位置,并且出水管的位置可位 于自底部至侧壁长度的0%至20%的位置。也就是说,当入水管位于侧壁长度的100%的位置时,入水管的外缘与水箱的顶部位于同一平面上。相同地,当出水管位于侧壁长度的0%的位置时,出水管的外缘与水箱的底部位于同一平面上。因此,当散热器13设置于水箱11上时,入水管131能够连通水箱11的上腔体1111,并且出水管132能够连通水箱11的下腔体1112。在一具体实施例中,入水管的位置可位于自底部至侧壁长度的90%至100%的位置,并且出水管的位置可位于自底部至侧壁长度的0%至10%的位置。但实务中不限于此,入水管及出水管的位置也可根据氢气产生装置于运转时水箱的水位高度而决定。
请注意,第一开口114、第二开口115、入水管131、出水管132及管柱结构133的数量及形状不限于上述的图式,而可根据需求而设计。在一具体实施例中,水箱可具有单一的第一开口及第二开口,且入水管及出水管可为歧管,其中歧管的一侧为单一通道连接水箱的第一开口或第二开口,并且歧管的另一侧具有多开口分别连接多个管柱结构。再一具体实施例中,水箱具有多个第一开口及第二开口,并且入水管及出水管可为歧管,其中歧管的一侧具有多开口分别连接多个第一开口及第二开口,并且歧管的另一侧为单一通道连接管柱结构。
如图4所示中散热片134的放大图所示,散热片134具有多个孔洞,且对应入水管131及出水管132的多个开孔135的位置,以供多个管柱结构133可分别穿设于孔洞中。于实务中,散热片134可为两片式的组合结构,也可为立体波浪状结构,以此增加单位体积内的散热表面积。而散热片134的多个孔洞也可依照管柱结构133的形状而设置。或者,散热片134不具有孔洞,而是以围绕在管柱结构133周围的方式散热。进一步地,多个散热片134可以固定间距的方式设置。
请参考图6。图6显示了根据本发明的一具体实施例的具有散热器的氢气产生装置1的水箱11、散热器13及风扇15于另一视角的结构示意图。在本具体实施例中,具有散热器的氢气产生装置1进一步包含散热风道14。散热风道14平行于水箱11,并且位于相邻第一开口114及第二开口115的一侧。于实务中,由于水箱11设置于氢气产生装置1的底壳上,因此水箱11的壳体以及氢气产生装置1的底壳之间的空间形成散热风道14。而当散热器13设置于水箱11时,散热器13同时也位于散热风道14中。
进一步地,具有散热器的氢气产生装置1进一步包含风扇15设置于散热风道14中,用以自外界环境导入空气至散热风道14。于实务中,当散热器13进行散热时,电解后的电解水所产生的热能皆传导至散热器13的管柱结构133及散热片134上。此时,风扇15可自散热风道14的一端导入外界空气至散热风道14中,以降低管柱结构133及散热片134的热能及温度。因此,本发明的具有散热器的氢气产生装置可再透过风扇降低散热器的热能,以提高散热效率。
于实务中,当氢气产生装置运作时,位于水箱11的下腔体1111的电解水透过电解槽12的水流通孔流至电解槽12以进行电解。经电解槽12电解后所产生的含氢气体位于上腔体1111中,而电解时所产生的热能同时加热电极流道中的水,且被加热后的电解水也一同进入上腔体1111。此时,含有热能的电解水可透过水箱11的第一开口114流至散热器13的入水管131,接着再流经管柱结构133。当含有热能的电解水流经管柱结构133时,电解水的热能可传导至管柱结构133,并且热能可再传导至设置于管柱结构133外围的多个散热片134。接着,管柱结构133及散热片134上的热能由风扇15排出氢气产生装置之外以进行散热。最后,散热后的电解水再流至散热器13的出水管132并透过水箱11的第二开口115流回至水箱11。因此,本发明的具有散热器的氢气产生装置可透过分隔板及连接上下腔体的散热器有效地进行散热。
请注意,本发明的氢气产生装置的散热器设置位置不限于图2中位于水箱的右侧,且数量也不限于一组。在一具体实施例中,散热器也可设置于水箱的左侧。在另一具体实施例中,氢气产生装置可同时包含两组散热器,分别设置于水箱的左右两侧。甚至于另一具体实施例中,氢气产生装置还可在水箱周围的其他位置设置散热器。相同地,本发明的氢气产生装置的风扇设置位置不限于图2中位于水箱的右侧。在一具体实施例中,风扇也可设置于水箱的左侧。在另一具体实施例中,氢气产生装置可同时包含两组风扇,分别设置于水箱的左右两侧。上述位于其他位置的散热器及风扇的详细结构以及与水箱间的相互连接关,系与前述具体实施例中位于水箱右侧的散热器大致相同,故于此不再赘述。
前述的风扇除了可为前述的具体实施例的设置方式以外,也可为其他样态。请参考图7。图7显示了根据本发明的另一具体实施例的具有散热器的氢气产生装置2的水箱21、散热器23及风扇于另一视角的结构示意图。本具体实施例与前述的具体实施例的不同之处,系在于风扇包含第一风扇251及第二风扇252。如图7所示,第一风扇251及第二风扇252分别设置于散热风道24的两端,并且散热器23位于第一风扇251及第二风扇252之间。第一风扇251用以自外界环境导入空气至散热风道24,并且第二风扇252用以将散热风道24中的空气导出至外界环境。于实务中,当散热器23进行散热时,第一风扇251可将外界环境的空气导入散热风道24以降低散热器23的管柱结构及散热片的热能及温度。并且,第二风扇252可再将散热风道24中散热器23的管柱结构及散热片所产生的热空气导出至外界环境,不仅降低整个氢气产生装置的温度,并且提高散热效率。
而水箱的散热机制除了可为前述具体实施例的样态以外,也可为其他样态。请参考图8。图8显示了根据本发明的一具体实施例的具有散热器的氢气产生装置3的水箱31、散热器33及水泵36的剖面结构示意图。在本具体实施例中,具有散热 器的氢气产生装置3进一步包含水泵36设置于氢气产生装置3的底壳30上。水泵36可连接水箱31以及散热器33的出水管332,并且用以将散热器33中散热过后的电解水导入水箱31中。水泵36可包含入水口361及出水口362分别连接散热器33的出水管332以及水箱31的第二开口315。进一步地,水泵可包含致动机363及扇叶部364,扇叶部364可以旋转的方式加速地将散热器33的电解水导入水箱31中的下腔体。由于水箱31及散热器33互相连通,因此,当水泵36将散热器33中的电解水导入水箱31中的下腔体的同时,位于上腔体的电解水也会因水泵36的吸力被加速地导入散热器33中进行散热。因此,水泵36可主动地将散热过后的电解水加速地导入水箱中并且将含有热能的电解水导入散热器中。而水泵的设置位置不限于此,在另一具体实施例中,水泵也可设置于水箱的第一开口及散热器的入水管之间,以将位于水箱的上腔体中含有热能的电解水导入散热器中。因此,本发明的具有散热器的氢气产生装置可由水泵主动将水箱中的电解水导入散热器以进行散热,以提高散热效率。除了入水管及出水管,本发明的水泵也可设置在水箱上以将因电解而被加热后的电解水输入到入水管中,详细结构如后所述。
此外,前述的散热器的管柱结构也可包含其他结构以提高散热效率。请参考图9A及图9B。图9A显示了根据本发明的一具体实施例的管柱结构433的内部示意图。图9B显示了根据本发明的另一具体实施例的管柱结构433'的内部示意图。如图9A所示,在一具体实施例中,散热器进一步包含多个螺旋结构435分别设置于管柱结构433内。于实务中,螺旋结构435可为I形螺旋柱设置于管柱结构433中,以延长管柱结构433内路径长度。当含有热能的电解水通过散热器的管柱结构433时,电解水沿着螺旋结构435通过管柱结构433,并且延长了停留于管柱结构433内的时间,进而提高散热效率。如图9B所示,在一具体实施例中,管柱结构433'的内壁具有延滞结构4331'。于实务中,管柱结构433'的内表面可具有多个凸块以形成延滞结构4331',以增加管柱结构433'的路径长度。而凸块也可形成为内螺纹结构于管柱结构433'的内表面上。于另一具体实施例中,延滞结构4331'不限于表面上凸块,亦包含其他可以延滞液体流速的结构,例如:网状结构。
请参考图10A、图10B。图10A显示了根据本发明一具体实施例的具有散热器的氢气产生装置5的水箱51、电解槽52及散热器53的组合示意图。图10B系图10的水箱51、电解槽52及散热器53的剖面图。如图10A及图10B所示,在本具体实施例中,散热器53的入水管531、出水管532以及管柱结构533皆为扁管结构,并且水箱51的第一开口514及第二开口515的形状分别对应入水管531及出水管532的形状。于实务中,如图10A所示,入水管531、出水管532以及管柱结构533的宽度可等于水箱51侧面的长度,也就是说,水箱51的第一开口514及第二开口515具有较大的面积及涵盖范围。因此,当氢气产生装置运作时,含有热能的电解水可透过水箱51的 第一开口514大量且快速地流至散热器53,并且散热后的电解水也可透过水箱51的第二开口515快速地流回至水箱51,进而提高散热速率。而散热器53的入水管531、出水管532以及管柱结构533的宽度不限于此,其宽度也可为任意长度或根据需求而决定。进一步地,管柱结构533的形状也可呈波浪状,以延长含有热能的电解水停留于管柱结构533内的时间,进而提高散热效率。而管柱结构的形状及设置方式不限于此,也可为前述具体实施例的形状及设置方式。
本发明的氢气产生装置的散热器的除了可位于水箱的右侧(如图10A所示)之外,也可位于水箱的左侧。进一步地,本发明的氢气产生装置的散热器的数量及设置位置亦不限于此。请参考图10C。图10C显示了根据本发明另一具体实施例的具有散热器的氢气产生装置5的水箱51、电解槽52及散热器53的剖面图。在本具体实施例中,氢气产生装置5也可同时包含两组散热器(第一散热器53A及第二散热器53B)分别设置于水箱51相对的左右两侧壁,并且第一散热器53A及第二散热器53B分别包含前述的入水管、出水管以及至少一管柱结构。而本具体实施例的水箱51、电解槽52、第一散热器53A及第二散热器53B的功能与前述具体实施例所对应的元件的功能大致相同,于此不再赘述。此外,氢气产生装置也可进一步包含多散热片设置于管柱结构的外侧,以提高散热速率。
请参考图10A、图10B及图11。图11显示了图10A的具体实施例的具有散热器的氢气产生装置5的水箱51、散热器53及风扇55于另一视角的结构示意图。如图10A、图10B及图11所示,当散热器53连接水箱51后,散热器53的入水管531、出水管532、管柱结构533以及水箱51的侧壁形成散热风道54。而散热器的氢气产生装置5可进一步包含风扇55对应散热风道54中,以将外界环境导入空气至散热风道54。于实务中,当散热器53进行散热时,电解后的电解水所产生的热能皆传导至散热器53的管柱结构533上。此时,风扇55可导入外界空气至散热风道54中,以降低管柱结构533的热能及温度。值得注意的是,本发明的氢气产生装置的风扇的数量及设置位置不限于此。在一具体实施例中,风扇可包含第一风扇及第二风扇分别设置于散热风道的两端。第一风扇可将外界环境的空气导入散热风道中,并且第二风扇可将散热风道中的空气导出外界环境。在另一具体实施例中,当氢气产生装置同时包含两组散热器分别设置于水箱的左右两侧时,氢气产生装置也可包含两组风扇分别设置于水箱的左右两侧并对应散热器所形成的散热风道。
请参考图12及图13。图12显示了根据本发明的一具体实施例的具有散热器的氢气产生装置6的分解示意图。图13显示了图12的具有散热器的氢气产生装置6于另一视角的示意图。如图12及图13所示,本具体实施例的氢气产生装置6包含电解槽(图未示)、水箱602、湿化杯603、整合式流道装置604、冷凝过滤装置605、氢水杯606以及雾化器607。湿化杯603垂直堆叠于水箱602上,整合式流道装置604垂 直堆叠于湿化杯603上,并且冷凝过滤装置605再置于整合式流道装置604内的容纳空间中。于实务中,氢气产生装置6进一步可包含外壳(图未示)容置上述元件。
冷凝过滤装置605可用以过滤氢气并且可具有冷凝流道6051。于实际应用中,冷凝过滤装置605可嵌入整合式流道装置604内,并可自整合式流道装置604侧边抽拔以方便更换,而不须拆开整个具有散热器的氢气产生装置6进行更换。但不限于此,冷凝过滤装置605也可为固定式的方式设置于整合式流道装置604中。湿化杯603包含湿化室(图未示)以及连通室6031。湿化室容置有补充水,可用以湿化含氢气体。连通室6031可用以连通水箱602与整合式流道装置604,以使设置于水箱602的电解槽所产生的含氢气体通过连通室6031及整合式流道装置604以进入冷凝过滤装置605的冷凝流道6051。而经由冷凝过滤装置605过滤后的含氢气体可再流至湿化杯603的湿化室。氢水杯606可用以容置饮用水,且氢水杯606用以注入氢气至饮用水中以形成含氢水。整合式流道装置604包含入气流道6041、出气流道6042以及气体连通流道6043。其中,入气流道6041与出气流道6042可选择性地耦接氢水杯606,而气体连通流道6043可选择性地耦接入气流道6041及出气流道6042。雾化器607可耦接整合式流道装置604的出气流道6042以接收含氢气体,并且另产生雾化气体以与氢气混合,而形成保健气体。此外,湿化杯603、冷凝过滤装置605、雾化器607及氢水杯606也可嵌合或直接耦接于整合式流道装置604。
因此,电解槽所产生的氢气一旦离开水箱602水面,很快进入湿化杯603的连通室6031。接着,氢气依序流经湿化杯603的连通室6031、冷凝过滤装置605的冷凝流道6051、湿化杯603的湿化室、整合式流道装置604的入气流道6041、出气流道6042以及雾化器607。其中,氢气可选择性地流经氢水杯606。然而,需要了解的是,上述的含氢气体的流向为本发明的具有散热器的氢气产生装置的其中的一实施例,本领域通常知识者可以自行根据所需调整各元件的顺序,并不以此为限。
而雾化器607可产生一雾化气体与含氢气体混合,进而形成一保健气体,其中雾化气体可选自于由水蒸汽、雾化药水以及挥发精油所组成的族群中的一种或其组合。在一具体实施例中,雾化器607包含一震荡器,震荡器由震荡将添加至雾化器607的水、雾化药水或挥发精油进行雾化,以产生雾化气体,再将混合气体与雾化气体混合,以形成保健气体。而雾化器607可以依照使用者需求选择性地开启或关闭,以提供混合雾化气体的保健气体给使用者吸入,或者仅提供混合气体(即经过第二氧气稀释后的氢气)供使用者吸入。
在一具体实施例中,氢气产生装置进一步可包含一过滤消毒罐(图未示)设置于氢气产生装置的气体出口,用以过滤含氢气体中的微生物,亦或是杀除含氢气体中的细菌。过滤消毒罐中的成分可包含有活性碳、奈米银溅镀、聚对苯二甲酸乙二酯(polyethylene terephthalate,PET)和聚丙烯(polypropylene,PP)纤维 布中至少一者。而抗菌类型可包含有金黄色葡萄球菌、大肠杆菌、绿脓杆菌和耐药性金黄色葡萄球菌等,但不限于此。于实务中,气体出口可为雾化器的出口处。当含氢气体与雾化气体混合形成保健气体后,过滤消毒罐可先过滤保健气体中的病菌再供使用者吸入。在另一具体实施例中,气体出口可为直接提供含氢气体或混合气体的出气管。过滤消毒罐的一端可连接出气管,并且过滤消毒罐的另一端可连接供使用者配戴的呼吸管。因此,过滤消毒罐可先过滤出气管中的含氢气体或混合气体中的病菌,接着再输出含氢气体或混合气体至呼吸管以供使用者吸入。需要了解的是,本领域通常知识者可以自行根据所需增加多个过滤消毒罐以及调整其设置的位置,并且过滤消毒罐也可当成一种可抛弃式的零件更换。
在一具体实施例中,氢气产生装置进一步可包含一紫外光源(图未示)设置于氢气产生装置中,用以发出紫外光以消除含氢气体中的微生物,亦或是杀除含氢气体中的细菌。紫外光源可发出波长介于100nm~280nm的短波紫外光(UV-C),以对气体进行杀菌,但不限于此。在一具体实施例中,紫外光源所发出的消毒紫外光的光波为200nm~300nm。于实务中,紫外光源可设置于雾化器中,以发出紫外光以对雾化器的保健气体进行杀菌;并且,紫外光源也可邻近于出气流道并发出紫外光,以对出气流道进行杀菌。但于实务中不限于此,紫外光源也可设置于水箱、整合式流道装置、湿化杯、或含氢气体流经的任一管路中,以发出紫外光对此些元件进行杀菌。
而前述的水泵除了可为前述的具体实施例的设置方式以外,也可为其他样态。如图12所示,在一具体实施例中,水泵608可设置于水箱602的底部并且连接水箱602的下腔体。于实务中,水泵608可由扇叶部将水箱608中位于下腔体的电解水导入电解槽中,以提高电解效率。此外,由于水泵608加速了位于下腔体的电解水流至上腔体中,因此,位于上腔体的电解水也由第一开口加速流至散热器中以进行散热,进而提高散热效率。
此外,本发明的具有散热器的氢气产生装置除了可为前述的配置方式之外,也可为其他样态。请参考图14A及图14B。图14A显示了根据本发明的一具体实施例的具有散热器的氢气产生装置7的分解示意图。图14B显示了根据图14A的具有散热器的氢气产生装置7的外观示意图。如图14A所示,本具体实施例与前述具体实施例的不同之处,是在于本具体实施例的具有散热器的氢气产生装置7仅包含水箱702、整合式流道装置704、冷凝过滤装置705以及雾化器707。整合式流道装置704垂直堆叠于水箱702上,冷凝过滤装置705设置于整合式流道装置704中,并且雾化器707连接整合式流道装置704。当水箱702的电解槽所产生的氢气一旦离开水箱702水面,很快进入连通室7021。接着,氢气依序流经连通室7021、冷凝过滤装置705的冷凝流道、整合式流道装置704的入气流道、出气流道以及雾化器707。
此外,本发明的具有散热器的氢气产生装置7进一步包含补水口708设置于整合式流道装置704上并且连通冷凝过滤装置705的冷凝流道。于实务中,由于氢气产生装置7经过长时间的反应后,水箱702的水量会逐渐减少,因此,使用者可透过补水口708加入水,以补充水箱702中的水量。当使用者自补水口708补水时,水将流经冷凝过滤装置705的冷凝流道、连通室7021并流至水箱702。进一步地,由于冷凝过滤装置705作动时,冷凝过滤装置705会过滤电解水中的电解质以使电解质残留在冷凝流道中。因此,当使用者自补水口708补水并且水流经冷凝流道时,残留在冷凝流道中的电解质也可随着水回冲至水箱702中。值得注意的是,补水口708的设置位置不限于此。在一具体实施例中,整合式流道装置进一步包含补水流道,并且补水流道连通补水口以及冷凝过滤装置的冷凝流道。
如图14A及14B所示,具有散热器的氢气产生装置7的补水口708也可直接连通一水桶8,并且氢气产生装置7可透过水桶8中的补充水直接补充水箱702中的水。在本具体实施例中,氢气产生装置7进一步包含外壳701用以容置水箱702、整合式流道装置704、冷凝过滤装置705以及雾化器707。水桶8设置于外壳701的外部并且连通冷凝过滤装置705的补水口708。水桶8用以提供补充水以使补充水流经冷凝过滤装置705的冷凝流道至水箱702中。于实务中,氢气产生装置7进一步可包含控制器以及控制阀(图未示),并且控制器耦接控制阀。控制阀可设置于补水口708处,而控制器可用以控制控制阀的启闭,以控制水桶8中的水流至冷凝过滤装置705补水口708。此外,氢气产生装置7进一步可包含水桶支架81设置于氢气产生装置7的外壳701上并用以支撑水桶8,进而增加稳固性及安全性。
综上所述,本发明的具有散热器的氢气产生装置可透过分隔板将含有热能的电解水隔开至水箱的上腔体,并且由连接上下腔体的散热器以有效地进行散热。并且,本发明的具有散热器的氢气产生装置可透过设置于散热风道的散热器及风扇以降低散热器的热能,进而提高散热效率。再者,本发明的具有散热器的氢气产生装置也可由水泵主动将水箱中的电解水导入散热器以进行散热,以提高散热效率。此外,具有散热器的氢气产生装置可由散热器的管柱结构中具有延长路径长度的结构以提高散热效率。
由以上较佳具体实施例的详述,系希望能更加清楚描述本发明的特征与精神,而并非以上述所揭露的较佳具体实施例来对本发明的范畴加以限制。相反地,其目的是希望能涵盖各种改变及具相等性的安排于本发明所欲申请的专利范围的范畴内。虽然本发明已以实施方式揭露如上,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视后附的申请专利范围所界定者为准。

Claims (24)

  1. 一种具有散热器的氢气产生装置,其特征在于包含:
    一水箱,具有一容置空间以容置一电解水;
    一电解槽,设置于该水箱的该容置空间中,用以自该水箱接收及电解该电解水以产生一含氢气体;
    一整合式流道装置,设置于该电解槽上方,该整合式流道装置包含有一入气流道及一出气流道,其中该入气流道用以接收该含氢气体,该出气流道用以输出该含氢气体;
    一冷凝过滤装置,耦接该整合式流道装置,该冷凝过滤装置用以过滤该入气流道所接收的该含氢气体;以及
    一散热器,耦接该水箱,该散热器进一步包含:
    一入水管,连接该水箱的一侧壁的上半部并用以自该水箱接收该电解水;
    一出水管,连接该水箱的该侧壁的下半部并用以输出该电解水至该水箱;以及
    至少一管柱结构,连通该入水管及该出水管,以供该电解水通过。
  2. 如权利要求1所述的具有散热器的氢气产生装置,其特征在于,该电解槽包含一壳体,该壳体延伸出一分隔板以将该容置空间分隔形成一上腔体及一下腔体,该入水管连接该上腔体并且该出水管连接该下腔体。
  3. 如权利要求2所述的具有散热器的氢气产生装置,其特征在于,该水箱的侧壁上包含一第一开口,该第一开口连通该上腔体及该入水管,并且包含一第二开口,该第二开口连通该下腔体及该出水管。
  4. 如权利要求1所述的具有散热器的氢气产生装置,其特征在于,该水箱中电解水的水面高于入水管的底部。
  5. 如权利要求1所述的具有散热器的氢气产生装置,其特征在于,该散热器进一步包含至少一螺旋结构,该螺旋结构设置于该至少一管柱结构内,以使该电解水沿着该螺旋结构通过该管柱结构。
  6. 如权利要求1所述的具有散热器的氢气产生装置,其特征在于,该至少一管柱结构分别具有一延滞结构,以使该电解水沿着该延滞结构通过该管柱结构。
  7. 如权利要求1所述的具有散热器的氢气产生装置,其特征在于,该散热器包含多个散热片,用以供该至少一管柱结构穿过并对该至少一管柱结构散热。
  8. 如权利要求1所述的具有散热器的氢气产生装置,其特征在于,进一步包含一散热风道,位于该水箱的侧边,并且该散热器设置于该散热风道中。
  9. 如权利要求8所述的具有散热器的氢气产生装置,其特征在于,进一步包含 一风扇,邻近于该散热器,该风扇用以自一外界环境导入空气至该散热风道。
  10. 如权利要求8所述的具有散热器的氢气产生装置,其特征在于,进一步包含一第一风扇及一第二风扇,分别设置于该散热风道的两端,该第一风扇用以自一外界环境导入空气至该散热风道,并且该第二风扇用以将散热风道的空气导出至该外界环境。
  11. 如权利要求1所述的具有散热器的氢气产生装置,其特征在于,更包含一过滤消毒罐,用以过滤该含氢气体,该过滤消毒罐的一端连接该氢气产生装置的一气体出口,该过滤消毒罐的另一端耦接供使用者配戴的呼吸管。
  12. 如权利要求1所述的具有散热器的氢气产生装置,其特征在于,更包含一紫外光源,该紫外光源邻近于该出气流道用以发出一紫外光以对该出气流道进行杀菌。
  13. 如权利要求1所述的具有散热器的氢气产生装置,其特征在于,更包含一湿化杯以及一紫外光源,该湿化杯耦接该整合式流道装置,用以容置一补充水并从该整合式流道装置接收该含氢气体并湿化该含氢气体,该紫外光源设置于该整合式流道装置或该湿化杯中,用以发出一紫外光以对该整合式流道装置或该湿化杯进行杀菌。
  14. 如权利要求1项所述的具有散热器的氢气产生装置,其特征在于,该入水管、该出水管以及该至少一管柱结构为一体成形,并且该至少一管柱结构的形状呈波浪状。
  15. 如权利要求14所述的具有散热器的氢气产生装置,其特征在于,该散热器包含一第一散热器以及一第二散热器,该第一散热器及该第二散热器分别包含该入水管、该出水管以及该至少一管柱结构,该第一散热器设置于该水箱的该侧壁,并且该第二散热器设置于相对于该水箱的该侧壁的另一侧壁。
  16. 如权利要求1所述的具有散热器的氢气产生装置,其特征在于,该水箱包含一底部并且该侧壁具有一侧壁长度,该入水管耦接于自该底部至该侧壁长度的80%~100%的位置,并且该出水管耦接于自该底部至该侧壁长度的0%~20%的位置。
  17. 如权利要求1所述的具有散热器的氢气产生装置,其特征在于,进一步包含一水泵,耦接该散热器的该出水管,该水泵用以将该散热器中散热过后的该电解水导入该水箱中。
  18. 如权利要求1所述的具有散热器的氢气产生装置,其特征在于,进一步包含:
    一外壳,用以容置该水箱、该电解槽、该整合式流道、该冷凝过滤装置以及该散热器;以及
    一水桶,设置于该外壳的外部并且耦接该冷凝过滤装置,该水桶用以提供一 补充水以使该补充水流经该冷凝过滤装置至该水箱中。
  19. 如权利要求18所述的具有散热器的氢气产生装置,其特征在于,进一步包含一水桶支架,设置该外壳上并用以支撑该水桶。
  20. 一种具有散热器的氢气产生装置,其特征在于包含:
    一水箱,具有一容置空间以容置一电解水;
    一电解槽,设置于该水箱的该容置空间中,用以自该水箱接收及电解该电解水以产生一含氢气体;以及
    一散热器,耦接该水箱,该散热器进一步包含:
    一入水管,连接该水箱的一侧壁并用以自该水箱接收该电解水;
    一出水管,连接该水箱的该侧壁并用以输出该电解水至该水箱;以及
    至少一管柱结构,连通该入水管及该出水管,以供该电解水通过;
    其中该水箱中该电解水的水面高于该入水管的底部,该至少一管柱结构的形状呈波浪状。
  21. 一种具有散热器的氢气产生装置,其特征在于包含:
    一水箱,具有一容置空间以容置一电解水;
    一电解槽,设置于该水箱的该容置空间中,用以自该水箱接收及电解该电解水以产生一含氢气体;
    一整合式流道装置,设置于该电解槽上方,该整合式流道装置包含有一入气流道及一出气流道,其中该入气流道用以接收该含氢气体,该出气流道用以输出该含氢气体;
    一散热器,耦接该水箱,该散热器进一步包含:
    一入水管,用以自该水箱接收该电解水;
    一出水管,用以输出该电解水至该水箱;以及
    至少一管柱结构,连通该入水管及该出水管,以供该电解水通过;以及
    一紫外光源,设置于该氢气产生装置中,该紫外光源用以发出一紫外光以对该氢气产生装置进行杀菌。
  22. 如权利要求21所述的具有散热器的氢气产生装置,其特征在于,更包含一过滤消毒罐,耦接该氢气产生装置的一气体出口,用以过滤该含氢气体。
  23. 如权利要求21所述的具有散热器的氢气产生装置,其特征在于,更包含一雾化器,耦接该出气流道以接收该含氢气体并且包含一气体出口,该雾化器能选择性地产生一雾化气体以与该含氢气体混合而形成一保健气体,该紫外光源邻近于该雾化器并且用以发出该紫外光以对该雾化器进行杀菌。
  24. 如权利要求21所述的具有散热器的氢气产生装置,其特征在于,更包含一湿化杯,耦接该整合式流道装置,用以容置一补充水并从该整合式流道装置接收 该含氢气体并湿化该含氢气体,该紫外光源邻近于该整合式流道装置或该湿化杯中,用以发出一紫外光以对该整合式流道装置或该湿化杯进行杀菌。
PCT/CN2022/113819 2021-09-08 2022-08-22 具有散热器的氢气产生装置 WO2023035914A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111047651.2A CN115772676B (zh) 2021-09-08 2021-09-08 具有散热器的氢气产生装置
CN202111047651.2 2021-09-08

Publications (1)

Publication Number Publication Date
WO2023035914A1 true WO2023035914A1 (zh) 2023-03-16

Family

ID=85387888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113819 WO2023035914A1 (zh) 2021-09-08 2022-08-22 具有散热器的氢气产生装置

Country Status (3)

Country Link
CN (1) CN115772676B (zh)
TW (1) TW202315977A (zh)
WO (1) WO2023035914A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050269254A1 (en) * 2004-05-24 2005-12-08 Roitman Lipa L [Air and Water Purifying System And Filter Media]
CN108624903A (zh) * 2017-08-25 2018-10-09 林信涌 电解水装置
CN111910199A (zh) * 2019-05-07 2020-11-10 上海潓美医疗科技有限公司 具有氢水杯的整合式氢气产生器
CN112013705A (zh) * 2019-05-28 2020-12-01 上海潓美医疗科技有限公司 散热器及具有散热功能的氢气产生器
WO2022017035A1 (zh) * 2020-07-23 2022-01-27 林信涌 具有氢气泄漏自检功能的氢气产生器
CN216738554U (zh) * 2021-09-08 2022-06-14 林信涌 具有警示功能的氢水产生装置及其产氢系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2758831B3 (fr) * 1997-01-24 1999-01-15 Wen Chang Lin Appareil de production d'hydrogene et d'oxygene destine a une installation de soudage
CN106435633B (zh) * 2015-08-11 2018-11-16 林信涌 气体产生器
TWI668332B (zh) * 2018-12-04 2019-08-11 林信湧 堆疊式產氫裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050269254A1 (en) * 2004-05-24 2005-12-08 Roitman Lipa L [Air and Water Purifying System And Filter Media]
CN108624903A (zh) * 2017-08-25 2018-10-09 林信涌 电解水装置
CN111910199A (zh) * 2019-05-07 2020-11-10 上海潓美医疗科技有限公司 具有氢水杯的整合式氢气产生器
CN112013705A (zh) * 2019-05-28 2020-12-01 上海潓美医疗科技有限公司 散热器及具有散热功能的氢气产生器
WO2022017035A1 (zh) * 2020-07-23 2022-01-27 林信涌 具有氢气泄漏自检功能的氢气产生器
CN216738554U (zh) * 2021-09-08 2022-06-14 林信涌 具有警示功能的氢水产生装置及其产氢系统

Also Published As

Publication number Publication date
CN115772676B (zh) 2024-01-26
CN115772676A (zh) 2023-03-10
TW202315977A (zh) 2023-04-16

Similar Documents

Publication Publication Date Title
JP6924223B2 (ja) ガス発生装置
JP6802224B2 (ja) 水電解装置
TWI658867B (zh) 氣體產生器
TWI658866B (zh) 氣體產生器
KR102330047B1 (ko) 물 전해 장치
TWI557276B (zh) 氣體產生器
TWI570275B (zh) 氣體產生器
TWI706057B (zh) 離子膜電解裝置
JP6972085B2 (ja) 積み重ね型水素生成装置
WO2023036068A1 (zh) 具有警示功能的氢水产生装置及其产氢系统
US10995411B2 (en) Gas generator
JP6937095B2 (ja) 殺菌方法
WO2023035914A1 (zh) 具有散热器的氢气产生装置
TWI792393B (zh) 具有氫氣洩漏自覺功能之氫氣產生器
TWI699483B (zh) 氣體產生器
TWI681789B (zh) 氣體產生器
CN111494774A (zh) 等离子体活性气体湿化器
WO2014122337A1 (es) Unidad de esterilización destinada a interponerse en un conducto de aire
KR102172868B1 (ko) 플라즈마 방출 다이오드 소자
WO2023109380A1 (zh) 具有泄压功能的氢气产生装置
TWM537908U (zh) 紫外線殺菌裝置
CN210399288U (zh) 空气调湿消毒及改良一体机
CN205372890U (zh) 一种多功能加湿器
US20230233870A1 (en) Device for applying medical and cosmetic radiation to a human body or to parts of a human body
WO2023082899A1 (zh) 具有自我消毒功能的氢气产生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866387

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022866387

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022866387

Country of ref document: EP

Effective date: 20240408