WO2023035554A1 - 一种单极永磁体可单独移动的可调速磁力耦合器 - Google Patents

一种单极永磁体可单独移动的可调速磁力耦合器 Download PDF

Info

Publication number
WO2023035554A1
WO2023035554A1 PCT/CN2022/077958 CN2022077958W WO2023035554A1 WO 2023035554 A1 WO2023035554 A1 WO 2023035554A1 CN 2022077958 W CN2022077958 W CN 2022077958W WO 2023035554 A1 WO2023035554 A1 WO 2023035554A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
conductor
rotor
speed
fixed
Prior art date
Application number
PCT/CN2022/077958
Other languages
English (en)
French (fr)
Inventor
杨超君
高洋
马帅
王凯
尹旭东
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2023035554A1 publication Critical patent/WO2023035554A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/108Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with an axial air gap

Definitions

  • the invention relates to the field of mechanical transmission, and is a device that realizes non-contact transmission of torque through the interaction between a magnetic field and an induced current. Specifically, it is a speed-adjustable magnetic coupler with a single-pole permanent magnet that can move independently. Adjusting the position of the unipolar permanent magnet in the permanent magnet rotor realizes the adjustment of the air gap thickness of the unipolar permanent magnet, and also realizes the adjustment of the overall air gap thickness by adjusting the position of the conductor in the conductor rotor.
  • the coupler is an important part of mechanical transmission.
  • the traditional mechanical coupler is prone to greater wear and noise due to the mutual contact between mechanical parts during the process of torque transmission.
  • the use of mechanical couplings will cause the leakage of certain pollutants.
  • the magnetic coupling can realize non-contact torque transmission through the interaction between the magnetic field and the induced current, so that it can be applied to occasions that require airtight transmission of torque.
  • it also has many advantages such as soft start, overload protection, and no noise. Magnetic couplings have been widely used in chemical industry, metallurgy, textile, mining, and transportation industries.
  • the present invention proposes a speed-adjustable magnetic coupler in which the unipolar permanent magnet can move independently, which can realize the adjustment of the air gap thickness of the unipolar permanent magnet by adjusting the position of the unipolar permanent magnet in the permanent magnet rotor. Adjust the position of the conductor in the conductor rotor to realize the adjustment of the overall air gap thickness. At the same time, the two adjustment methods can also be used in combination to achieve a better speed regulation effect.
  • a speed-adjustable magnetic coupler in which a single-pole permanent magnet can move independently is composed of a permanent magnet rotor and a conductor rotor.
  • the permanent magnet disk of the permanent magnet rotor is composed of a fixed permanent magnet rotor and a movable permanent magnet rotor.
  • the axial position of the fixed permanent magnet rotor is fixed, and the axial position of the movable permanent magnet rotor can be changed;
  • the S pole permanent magnet is used as a fixed permanent magnet
  • the N-pole permanent magnet is used as a movable permanent magnet, or the N-pole permanent magnet is used as a fixed permanent magnet, and the S-pole permanent magnet is used as a movable permanent magnet;
  • the fixed permanent magnet and the movable permanent magnet are arranged alternately with N and S poles.
  • the conductor disk of the conductor rotor is composed of a yoke iron disk and a conductor ring, and the conductor ring and the yoke iron disk are closely connected by welding.
  • the permanent magnet rotor can be used as the active end to drive the conductor rotor to rotate, and vice versa, the conductor rotor can also be used as the active end to drive the permanent magnet rotor to rotate.
  • the first one is to change the thickness of the air gap between the unipolar permanent magnet in the permanent magnet rotor and the conductor ring in the conductor rotor, so that the magnetic induction in the conductor ring under the area facing the unipolar permanent magnet
  • the strength changes, so as to adjust the speed.
  • the air gap is smaller, the magnetic induction intensity of the conductor ring under the area facing the unipolar permanent magnet is greater, and the torque that can be transmitted is greater;
  • the second is to change the conductor in the conductor rotor.
  • the axial position of the conductor rotor changes the thickness of the air gap between the conductor ring in the conductor rotor and all the permanent magnets in the permanent magnet rotor, so that the overall magnetic induction in the conductor ring changes to adjust the speed.
  • the air gap is smaller, The greater the magnetic induction in the conductor ring, the greater the transferable torque; the third type changes the air gap between the unipolar permanent magnet and the conductor ring on the basis of changing the thickness of the air gap between all permanent magnets and the conductor ring thickness.
  • the mechanism that can change the axial position of the unipolar permanent magnet is as follows: the fixed permanent magnet rotor is connected to the drive shaft through a key, and the position of the fixed permanent magnet rotor on the drive shaft is fixed through the combination of the drive shaft shoulder and the screw and washer .
  • the movable permanent magnet rotor cooperates with the fixed permanent magnet rotor to form a distribution form in which N and S pole permanent magnets are arranged alternately.
  • the movable permanent magnet rotor is connected with the threaded sleeve on the driving shaft through threads, and the threaded sleeve can be placed on the driving shaft.
  • the axial position of the threaded sleeve is limited by the shoulder of the drive shaft and the drive shaft sleeve fixed on the drive shaft by screws, so that the axial position of the threaded sleeve is fixed.
  • Rotating the threaded sleeve converts the rotation of the threaded sleeve into the axial movement of the movable permanent magnet rotor under the action of the threaded link, thereby changing the thickness of the air gap between the unipolar permanent magnet and the conductor rotor.
  • the maximum axial displacement of the movable permanent magnet rotor is limited by the shaft shoulder of the drive shaft and the boss of the threaded sleeve.
  • the mechanism that can change the axial position of the conductor is as follows: There is a connecting piece between the yoke plate of the conductor rotor and the driven shaft, and the bosses on the left and right sides of the hub of the yoke plate cooperate with the grooves of the connecting piece Torque is transmitted and the maximum axial displacement is limited. There are balls between the yoke plate and the connecting piece to reduce the friction force when the relative displacement of the two occurs.
  • the connecting piece is connected with the driven shaft through a key, and the position of the connecting piece on the driven shaft is fixed through the combination of the shaft shoulder of the driven shaft and the screw and the baffle plate.
  • the yoke plate is connected to the threaded rod through threads, and the threaded rod is connected to the driven shaft sleeve fixed on the driven shaft by screws.
  • the threaded rod and the driven shaft sleeve are connected through bearings. The interaction of the shoulder and the circlip prevents axial play of the threaded rod. Turning the threaded rod, under the action of the threaded connection, will cause the conductor disk to move axially, thereby changing the thickness of the air gap between the conductor and all permanent magnets.
  • the boss on the right side inside the hub of the yoke iron plate is obtained by welding a small iron block to the yoke iron plate after matching with the connecting piece, and the boss on the left side inside the hub of the yoke iron plate
  • the table is always integrated with the yoke plate.
  • the present invention can adjust the air gap thickness of the unipolar permanent magnet, increases the mode of speed adjustment, and improves the accuracy of the speed adjustment by adjusting the air gap thickness of the unipolar permanent magnet.
  • Balls are arranged between the yoke plate and the connecting piece, which effectively reduces the friction force during the process of adjusting the axial position of the conductor plate, and reduces energy loss.
  • Fig. 1(a) is a structural cross-sectional view of an adjustable-speed magnetic coupler in which a single-pole permanent magnet can move independently in an embodiment.
  • Fig. 1(b) is a partial enlarged view of the cross-sectional view of the structure of the embodiment.
  • Fig. 2(a) is a three-dimensional exploded view of the permanent magnet rotor of the embodiment.
  • Fig. 2(b) is a three-dimensional exploded view of the conductor rotor of the embodiment.
  • Fig. 3(a) is a three-dimensional view of the embodiment of the unipolar permanent magnet before axial movement.
  • Figure 3 (b) is a three-dimensional view after the axial movement of the monopole permanent magnet of the embodiment
  • Fig. 4(a) is a three-dimensional view of the embodiment of the conductor rotor before axial movement.
  • Fig. 4 (b) is the three-dimensional view after the axial movement of the conductor rotor of the embodiment
  • Fig. 5(a) is a three-dimensional view of the fixed permanent magnet rotor of the embodiment.
  • Fig. 5(b) is a three-dimensional view of the movable permanent magnet rotor of the embodiment.
  • Fig. 5(c) is a schematic diagram of cooperation between the fixed permanent magnet rotor and the movable permanent magnet rotor of the embodiment.
  • Fig. 6 is a schematic diagram of cooperation of the movable permanent magnet rotor, the threaded sleeve, the drive shaft sleeve and the drive shaft of the embodiment.
  • Fig. 7 is a three-dimensional view of the yoke plate before the yoke plate is assembled with the connecting piece.
  • Fig. 8 is a 1/4 sectional view after the yoke plate and the connecting piece are assembled.
  • the permanent magnet rotor includes S pole permanent magnet 1, N pole permanent magnet 2, fixed permanent magnet frame 3, movable permanent magnet frame 4, threaded sleeve 5, conical pin 6, M3 screw 7, Drive shaft sleeve 8, drive shaft 9, key 10, washer one 11, washer two 12, M8 screw 13.
  • the S pole permanent magnet 1 is embedded in the fixed permanent magnet frame 3 to form a fixed permanent magnet rotor
  • the N pole permanent magnet 2 is embedded in the movable permanent magnet frame 4 to form a movable permanent magnet rotor
  • the fixed permanent magnet rotor and the movable permanent magnet rotor cooperate to form a permanent magnet disk.
  • the movable permanent magnet rotor is threadedly connected with the threaded sleeve 5 on the driving shaft.
  • the threaded sleeve 5 can rotate on the driving shaft 9.
  • the axial position of the threaded sleeve 5 is determined by the shoulder of the driving shaft 9 and the M3 screw. 7.
  • the drive shaft sleeve 8 fixed on the drive shaft 9 is restricted so that the axial position of the threaded sleeve 5 is fixed; when working, the conical pin 6 is inserted into the threaded sleeve 5 on the same center line and the tapered hole of the drive shaft 9 Inside, the tapered pin 6 forms an interference fit with the tapered hole of the threaded sleeve 5 and the tapered hole of the driving shaft 9 , and the threaded sleeve 8 can rotate synchronously with the driving shaft 9 through the restriction of the tapered pin 6 .
  • the axial position of the fixed permanent magnet rotor is limited by the shoulder of the driving shaft 9 and the combination of the M8 screw 13 and the first washer 11 and the second washer 12 .
  • the shaft shoulder of the driving shaft 9 restricts the movement of the fixed permanent magnet rotor to the right, because the diameter of the washer 11 is larger than that of the driving shaft 9, and the washer 11 and the washer 2 12 are fastened on the left side of the driving shaft 9 by the M8 screw 13
  • the shaft end will limit the leftward displacement of the fixed permanent magnet rotor.
  • Conductor rotor includes key 10, M8 screw 13, yoke plate 14, conductor ring 15, baffle plate 16, connector 17, ball 18, circlip 19, M3 nut 20, M3 washer 21, driven shaft sleeve 22, bearing 23.
  • the conductor ring 15 is welded into the yoke disk 14 to form a conductor disk, and a connecting piece 17 is provided between the yoke disk 14 and the driven shaft 24 of the conductor rotor.
  • the grooves cooperate with each other to transmit torque and limit the maximum axial displacement of the yoke plate 14.
  • a ball 18 is provided between the yoke plate 14 and the connecting piece 17 to reduce the friction force when the two are displaced relative to each other.
  • the connecting piece 17 is connected with the driven shaft 24 through the key 10, and the position of the connecting piece 17 on the driven shaft 24 is fixed by the combination of the shoulder of the driven shaft 24 and the M8 screw 13 and the baffle plate 16.
  • the shaft shoulder limits the movement of the connecting piece to the left, and the baffle plate 16 is firmly nailed to the right end of the driven shaft 24 by the M8 screw 13, and since the length of the baffle plate 16 is greater than the diameter of the driven shaft 24, the rightward movement of the connecting piece 17 will be made. Movement is restricted.
  • the conductor disk is connected to the threaded rod 25 through threads, and the threaded rod 25 is connected to the driven shaft sleeve 22 fixed on the driven shaft 24 by the M3 screw 7, and the threaded rod 25 and the driven shaft sleeve 22 are connected by a bearing 23 for connection, the axial movement of the threaded rod 25 is prevented through the interaction between the shoulder of the threaded rod 25 and the circlip 19, and the circlip 19 is located on the right side of the right bearing end cover 27 and is close to the right bearing end cover 27.
  • the jumper 19 is located in the groove on the threaded rod 25, so that the threaded rod cannot move to the right.
  • the present invention has three speed regulation methods, the first speed regulation method is shown in Figure 3, Figure 3 (a) is the situation when the movable permanent magnet rotor is located on the far right, by rotating the threaded sleeve 5, under the action of the thread The axial position of the movable permanent magnet rotor will be moved to the left until it moves to the leftmost situation of the movable permanent magnet rotor as shown in Figure 3 (b), by changing the distance between the unipolar permanent magnet and the conductor ring 15 The thickness of the air gap to complete the speed regulation; the second speed regulation method is shown in Figure 4, Figure 4 (a) is the situation when the conductor plate is located on the leftmost side, by turning the threaded rod 25, under the action of the threaded connection, The conductor disk will be axially moved to the right until it moves to the situation where the conductor disk is on the far right as shown in Figure 4 (b), by changing the thickness of the air gap between the conductor ring 15 and all permanent magnets, the rotational speed Adjustment; the third
  • the S-pole permanent magnet is embedded in the fixed permanent magnet frame to form a fixed permanent magnet rotor; as shown in Figure 5(b), the N-pole permanent magnet is embedded in the movable permanent magnet frame to form a movable permanent magnet rotor; vice versa.
  • the fixed permanent magnet rotor and the movable permanent magnet rotor cooperate to form a distribution form in which S-pole permanent magnets and N-pole permanent magnets are arranged in rows.
  • the movable permanent magnet rotor is connected to the threaded sleeve 5, and the position of the threaded sleeve 5 is limited by the shoulder of the driving shaft 9 and the driving shaft sleeve 8, so that the axial position of the threaded sleeve 5 is fixed.
  • the maximum axial displacement of the movable permanent magnet rotor will be limited jointly by the shaft shoulder of the drive shaft 9 and the boss of the threaded sleeve 5 .
  • the 2n bosses of the yoke plate are 8 in this embodiment, and there is no boss at the right end of the yoke plate 14 before it is assembled with the connecting piece 17 , which are 4 independent small iron blocks.
  • the connecting piece 17 which are 4 independent small iron blocks.
  • four small iron blocks are welded to the right end of the yoke plate 14 to form a right end boss, which cooperates with the left end boss to transmit the torque of the yoke iron plate to It is above the connecting piece and restricts the axial movement distance of the yoke plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

本发明涉及永磁传动领域,具体是一种单极永磁体可单独移动的可调速磁力耦合器。本发明所提出的耦合器可通过单独改变某一极永磁体与导体盘之间的轴向距离,或者同时改变所有永磁体与导体盘之间的轴向距离进行转速调节。在导体盘轴向位置不变的情况下,通过转动永磁转子的螺纹套筒,可以改变单极永磁体与导体之间的轴向距离,来对耦合器进行速度调节。在永磁体轴向位置不变的情况下,可以通过旋转导体转子中的螺纹杆,来对导体的轴向位置进行调节,从而同时改变所有永磁体与导体之间的轴向距离,实现耦合器的调速。通过这两种调速方式的组合,本发明可以实现三种形式的调速方式。

Description

一种单极永磁体可单独移动的可调速磁力耦合器 技术领域
本发明涉及机械传动领域,是一种通过磁场与感应电流之间的相互作用从而实现非接触传递扭矩的装置,具体是一种单极永磁体可单独移动的可调速磁力耦合器,可以通过调节永磁转子中的单极永磁体的位置实现单极永磁体气隙厚度的调节,也可以通过调节导体转子中导体的位置实现整体气隙厚度的调节。
背景技术
耦合器是机械传动的重要组成部分,传统的机械耦合器在传递扭矩的过程中由于机械件之间的相互接触容易产生较大的磨损,并发出较大的噪声。此外,对于一些需要在密闭场合下进行扭矩传递的情况,机械耦合器的使用将会造成一定污染物的泄露。而磁力耦合器通过磁场与感应电流之间的相互作用,能够实现非接触式的扭矩传递,使得其能够应用到需要密闭传递扭矩的场合。此外其还具有柔性启动,过载保护,无噪声等诸多优点。磁力耦合器已被广泛的应用到了化工、冶金、轻纺、矿工、以及交通运输等行业之中。
在中国专利201210434324.7中,公开了一种可自动变速的磁力调速器,该磁力调速器由电机控制齿轮转动,再经由齿轮传动带动与锥齿轮相连的单头螺纹丝杠转动,在螺纹连接的作用下带动导体做轴向移动。虽然该专利可以通过调节导体的轴向位置进行转速调节,但是其转速调节方式过于单一,在进行微小转速调节时精度较低,难以控制。
发明内容
本发明提出了一种单极永磁体可单独移动的可调速磁力耦合器,它可以通过调节永磁转子中的单极永磁体的位置实现单极永磁体气隙厚度的调节,也可以通过调节导体转子中导体的位置实现整体气隙厚度的调节,同时也可以两种调节方式结合使用,达到更好的调速效果。
一种单极永磁体可单独移动的可调速磁力耦合器,由永磁转子和导体转子组成。永磁转子的永磁体盘由固定永磁转子和活动永磁转子组成,固定永磁转子的轴向位置固定,活动永磁转子的轴向位置能够发生改变;S极永磁体作为固定永磁体,N极永磁体作为活动永磁体,或者N极永磁体作为固定永磁体,S极永磁体作为活动永磁体;固定永磁体与活动永磁体之间为N、S极交替排布的形式。 通过单独改变活动永磁转子的轴向位置,实现对单极永磁体与导体转子之间气隙厚度的调节。导体转子的导体盘由一个轭铁盘和一个导体环组成,导体环与轭铁盘之间通过焊接的形式实现紧密连接。根据电磁感应原理,永磁转子可作为主动端带动导体转子旋转,反之,导体转子亦可作为主动端带动永磁转子旋转。
它有三种调速方式,第一种是改变永磁转子中单极永磁体与导体转子中的导体环之间的气隙厚度,使得该单极永磁体正对面积下的导体环中的磁感应强度发生改变,从而进行调速,当气隙越小时,该单极永磁体所正对面积下的导体环的磁感应强度越大,可传递的扭矩越大;第二种是改变导体转子中导体的轴向位置,从而改变导体转子中的导体环与永磁转子中的所有永磁体之间的气隙厚度,使得导体环中的整体磁感应强度发生改变来进行调速,当气隙越小时,导体环中的磁感应强度越大,可传递的扭矩就越大;第三种在改变所有永磁体与导体环之间气隙厚度的基础上再改变单极永磁体与导体环之间的气隙厚度。
能够使单极永磁体轴向位置发生改变的机构如下:固定永磁转子通过键与主动轴相连,通过主动轴轴肩以及螺钉与垫圈的组合对固定永磁转子在主动轴上的位置进行固定。活动永磁转子与固定永磁转子相互配合,形成N、S极永磁体交替排布的分布形式,活动永磁转子与位于主动轴上的螺纹套筒通过螺纹相连,螺纹套筒能够在主动轴上进行转动,螺纹套筒的轴向位置由主动轴轴肩以及被螺钉固定在主动轴上的主动轴套筒限制,使得螺纹套筒的轴向位置固定。转动螺纹套筒,在螺纹链接的作用下将螺纹套筒的转动,转化为活动永磁转子的轴向移动,从而改变单极永磁体与导体转子之间的气隙厚度。通过主动轴的轴肩以及螺纹套筒的凸台对活动永磁转子的最大轴向位移进行限制。
能够使导体轴向位置发生改变的机构如下:导体转子的轭铁盘与从动轴之间设有连接件,通过轭铁盘轮毂内部左右两侧的凸台与连接件的凹槽相互配合来传递扭矩,并对轴向最大位移进行限制,轭铁盘与连接件之间设有滚珠,降低两者发生相对位移时的摩擦力。连接件通过键与从动轴相连,通过从动轴的轴肩以及螺钉与挡板的组合对连接件在从动轴上的位置进行固定。轭铁盘通过螺纹与螺纹杆相连,螺纹杆与被螺钉固定在从动轴上的从动轴套筒相连,螺纹杆与从动轴套筒两者之间通过轴承进行连接,通过螺纹杆的轴肩与卡簧的相互作用防止螺纹杆发生轴向窜动。转动螺纹杆,在螺纹连接的作用下,将使得导体盘发生轴向移动,从而改变导体与所有永磁体之间的气隙厚度。
为保证导体盘与连接件之间的顺利安装,轭铁盘轮毂内部右侧的凸台为与连接件配合后将小铁块焊接到轭铁盘上所得,轭铁盘轮毂内部左侧的凸台始终与轭铁盘为一个整体。
本发明的优点:本发明可以对单极永磁体的气隙厚度进行调节,增加了转速调节的方式,通过对单极永磁体气隙厚度的调节,使得转速调节的精度获得提升。在轭铁盘与连接件之间设有滚珠,有效降低了调节导体盘轴向位置过程中的摩擦力,减少了能源损耗。
附图说明
以下结合附图及实施例对发明作进一步说明
图1(a)为实施例的一种单极永磁体可单独移动的可调速磁力耦合器结构剖视图。
图1(b)为实施例结构剖视图的局部放大图。
图2(a)为实施例的永磁转子的三维爆炸图。
图2(b)为实施例的导体转子的三维爆炸图。
图3(a)为实施例的单极永磁体轴向移动前三维图。
图3(b)为实施例的单极永磁体轴向移动后三维图
图4(a)为实施例的导体转子轴向移动前三维图。
图4(b)为实施例的导体转子轴向移动后三维图
图5(a)为实施例的固定永磁转子三维图。
图5(b)为实施例的活动永磁转子三维图。
图5(c)为实施例的固定永磁转子与活动永磁转子配合示意图。
图6为实施例的活动永磁转子、螺纹套筒、主动轴套筒与主动轴的配合示意图。
图7为轭铁盘未与连接件装配前的轭铁盘三维图。
图8为轭铁盘与连接件装配后的1/4剖视图。
1-S极永磁体 2-N极永磁体 3-固定永磁体框架 4-活动永磁体框架 5-螺纹套筒 6-圆锥销 7-M3螺钉 8-主动轴套筒 9-主动轴 10-键 11-垫圈一 12-垫圈二 13-M8螺钉 14-轭铁盘 15-导体环 16-挡板 17-连接件 18-滚珠 19-卡簧 20-M3螺母 21-M3垫圈 22-从动轴套筒 23-轴承 24-从动轴 25-螺纹杆 26-M3螺栓 27-轴承端盖
具体实施方式
如图1、图2所示,永磁转子包括S极永磁体1、N极永磁体2、固定永磁 体框架3、活动永磁体框架4、螺纹套筒5、圆锥销6、M3螺钉7、主动轴套筒8、主动轴9、键10、垫圈一11、垫圈二12、M8螺钉13。S极永磁体1嵌入固定永磁体框架3形成固定永磁转子,N极永磁体2嵌入活动永磁体框架4形成活动永磁转子,固定永磁转子与活动永磁转子相互配合形成永磁体盘。活动永磁转子与位于主动轴上的螺纹套筒5通过螺纹相连,螺纹套筒5能够在主动轴9上进行转动,螺纹套筒5的轴向位置由主动轴9的轴肩以及被M3螺钉7固定在主动轴9上的主动轴套筒8限制,使得螺纹套筒5的轴向位置固定;工作时,圆锥销6插入位于同一中心线上的螺纹套筒5以及主动轴9的圆锥孔内,圆锥销6与螺纹套筒5的圆锥孔以及主动轴9的圆锥孔之间形成过盈配合,通过圆锥销6的限制使得螺纹套筒8能够跟随主动轴9进行同步转动。固定永磁转子的轴向位置由主动轴9的轴肩以及M8螺钉13与垫圈一11、垫圈二12之间的组合共同限制。主动轴9的轴肩限制固定永磁转子向右的移动,由于垫圈一11的直径大于主动轴9的直径,且垫圈一11以及垫圈二12被M8螺钉13紧钉在主动轴9左侧的轴端,将会对固定永磁转子的向左位移产生限制。导体转子包括键10、M8螺钉13、轭铁盘14、导体环15、挡板16、连接件17、滚珠18、卡簧19、M3螺母20、M3垫圈21、从动轴套筒22、轴承23、从动轴24、螺纹杆25、M3螺栓26、轴承端盖27。将导体环15焊接到轭铁盘14中形成导体盘,导体转子的轭铁盘14与从动轴24之间设有连接件17,通过轭铁盘14轮毂内部的凸台与连接件17的凹槽相互配合来传递扭矩,并对轭铁盘14的轴向最大位移进行限制,轭铁盘14与连接件17之间设有滚珠18,降低两者发生相对位移时的摩擦力。连接件17通过键10与从动轴24相连,通过从动轴24的轴肩以及M8螺钉13与挡板16的组合对连接件17在从动轴24上的位置进行固定,从动轴的轴肩限制连接件向左的移动,挡板16被M8螺钉13紧钉在从动轴24的右端,而由于挡板16的长度大于从动轴24的直径,将对连接件17向右的移动进行限制。导体盘通过螺纹与螺纹杆25相连,螺纹杆25与被M3螺钉7固定在从动轴24上的从动轴套筒22相连,螺纹杆25与从动轴套筒22两者之间通过轴承23进行连接,通过螺纹杆25的轴肩与卡簧19的相互作用防止螺纹杆25发生轴向窜动,卡簧19位于右侧轴承端盖27的右侧,并紧贴右侧轴承端盖27,卡簧19位于螺纹杆25杆上的凹槽之中,使得螺纹杆无法进行向右的移动。轴承23两侧均存在轴承端盖27,轴承端盖27通过M3螺栓26,M3垫圈21以及M3螺母20进行固定。
本发明有三种调速方式,第一种调速方式如图3所示,图3(a)为活动永磁转子位于最右侧时的情况,通过转动螺纹套筒5,在螺纹的作用下将会使得活动永磁转子的轴向位置向左移动,直至移动到如图3(b)所示的活动永磁转子处于最左侧的情况,通过改变单极永磁体与导体环15之间的气隙厚度,完成转速调节;第二种调速方式如图4所示,图4(a)为导体盘位于最左侧时的情况,通过转动螺纹杆25,在螺纹连接的作用下,将使得导体盘向右发生轴向移动,直至移动到如图4(b)所示的导体盘处于最右侧的情况,通过改变导体环15与所有永磁体之间的气隙厚度,完成转速调节;第三种是在改变导体环15与所有永磁体之间整体气隙的基础上,再改变单极永磁体与导体环15之间的气隙厚度进行调速。
如图5(a)所示,S极永磁体嵌入固定永磁体框架中,形成固定永磁转子;如图5(b)所示,N极永磁体嵌入活动永磁体框架中,形成活动永磁转子;反之亦可。如图5(c)所示,固定永磁转子与活动永磁转子相互配合形成S极永磁体、N极永磁体间列排布的分布形式。
如图6所示,活动永磁转子与螺纹套筒5相连,螺纹套筒5的位置由主动轴9的轴肩以及主动轴套筒8共同限制,使得螺纹套筒5的轴向位置固定。活动永磁转子的最大轴向位移将由主动轴9的轴肩和螺纹套筒5的凸台共同进行限制。
如图7所示,轭铁盘的2n个凸台在本实施例中为8,轭铁盘14未与连接件17装配前右端不存在凸台,其为4个独立的小铁块。如图8所示,轭铁盘与连接件17装配后,4个小铁块焊接到轭铁盘14的右端形成右端凸台,其与左端凸台共同作用,将轭铁盘的扭矩传递到连接件之上并对轭铁盘的轴向移动距离进行限制。

Claims (6)

  1. 一种单极永磁体可单独移动的可调速磁力耦合器,其特征在于,所述可调速磁力耦合器由永磁转子和导体转子组成,永磁转子中的永磁体盘由固定永磁转子和活动永磁转子组成,在耦合器工作过程中固定永磁转子的轴向位置始终保持不变,活动永磁转子能够发生轴向位移,从而改变单极永磁体与导体转子之间的轴向距离;导体转子的导体盘由一个轭铁盘和一个导体环组成,导体环与轭铁盘之间通过焊接的形式实现紧密连接,在工作过程中导体盘能够进行轴向位移,从而改变导体盘与永磁转子之间的轴向距离;永磁转子作为主动端带动导体转子旋转,或导体转子作为主动端带动永磁转子旋转。
  2. 如权利要求1所述的一种单极永磁体可单独移动的可调速磁力耦合器,其特征在于,永磁体盘的固定永磁转子和活动永磁转子是两个相互独立的部分,固定永磁转子由固定永磁体框架和固定永磁体组成,活动永磁转子由活动永磁体框架和活动永磁体组成;S极永磁体作为固定永磁体,N极永磁体作为活动永磁体,或者N极永磁体作为固定永磁体,S极永磁体作为活动永磁体;固定永磁转子与活动永磁转子之间相互配合,形成S极永磁体与N极永磁体交替排布的分布形式。
  3. 如权利要求1所述的一种单极永磁体可单独移动的可调速磁力耦合器,其特征在于,可调速磁力耦合器有三种调速方式,第一种是改变永磁转子中单极永磁体与导体转子中的导体环之间的气隙厚度,使得该单极永磁体正对面积下的导体环中的磁感应强度发生改变,从而进行调速,当气隙越小时,该单极永磁体所正对面积下的导体环的磁感应强度越大,可传递的扭矩越大;第二种是改变导体转子中导体的轴向位置,从而改变导体转子中的导体环与永磁转子中的所有永磁体之间的气隙厚度,使得导体环中的整体磁感应强度发生改变来进行调速,当气隙越小时,导体环中的磁感应强度越大,可传递的扭矩就越大;第三种在改变所有永磁体与导体环之间气隙厚度的基础上再改变单极永磁体与导体环之间的气隙厚度。
  4. 如权利要求1所述的一种单极永磁体可单独移动的可调速磁力耦合器,其特征在于,能够使单极永磁体轴向位置发生改变的机构如下:固定永磁转子通过键与主动轴相连,通过主动轴轴肩以及螺钉与垫圈的组合对固定永磁转子在主动轴上的位置进行固定;活动永磁转子与固定永磁转子相互配合,形成N、S极永磁体交替排布的分布形式,活动永磁转子与位于主动轴上的螺纹套筒通过螺纹相 连,螺纹套筒能够在主动轴上进行转动,螺纹套筒的轴向位置由主动轴轴肩以及被螺钉固定在主动轴上的主动轴套筒限制,使得螺纹套筒的轴向位置固定;转动螺纹套筒,在螺纹链接的作用下将螺纹套筒的转动,转化为活动永磁转子的轴向移动,从而改变单极永磁体与导体转子之间的气隙厚度,通过主动轴的轴肩以及螺纹套筒的凸台对活动永磁转子的最大轴向位移进行限制。
  5. 如权利要求1所述的一种单极永磁体可单独移动的可调速磁力耦合器,其特征在于,能够使导体轴向位置发生改变的机构如下:导体转子的轭铁盘与从动轴之间设有连接件,通过轭铁盘轮毂内部左右两侧的凸台与连接件的凹槽相互配合来传递扭矩,并对轴向最大位移进行限制,轭铁盘与连接件之间设有滚珠,降低两者发生相对位移时的摩擦力;连接件通过键与从动轴相连,通过从动轴的轴肩以及螺钉与挡板的组合对连接件在从动轴上的位置进行固定;轭铁盘通过螺纹与螺纹杆相连,螺纹杆与被螺钉固定在从动轴上的从动轴套筒相连,螺纹杆与从动轴套筒两者之间通过轴承进行连接,通过螺纹杆的轴肩与卡簧的相互作用防止螺纹杆发生轴向窜动;转动螺纹杆,在螺纹连接的作用下,将使得导体盘发生轴向移动,从而改变导体与所有永磁体之间的气隙厚度。
  6. 如权利要求1所述的一种单极永磁体可单独移动的可调速磁力耦合器,其特征在于,为保证导体盘与连接件之间的顺利安装,轭铁盘轮毂内部右侧的凸台为与连接件配合后将小铁块焊接到轭铁盘上所得,轭铁盘轮毂内部左侧的凸台始终与轭铁盘为一个整体。
PCT/CN2022/077958 2021-09-13 2022-02-25 一种单极永磁体可单独移动的可调速磁力耦合器 WO2023035554A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111068600.8 2021-09-13
CN202111068600.8A CN113972810A (zh) 2021-09-13 2021-09-13 一种单极永磁体可单独移动的可调速磁力耦合器

Publications (1)

Publication Number Publication Date
WO2023035554A1 true WO2023035554A1 (zh) 2023-03-16

Family

ID=79586924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077958 WO2023035554A1 (zh) 2021-09-13 2022-02-25 一种单极永磁体可单独移动的可调速磁力耦合器

Country Status (2)

Country Link
CN (1) CN113972810A (zh)
WO (1) WO2023035554A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117138644A (zh) * 2023-10-25 2023-12-01 一恒生命科学仪器(昆山)有限公司 一种电动搅拌器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972810A (zh) * 2021-09-13 2022-01-25 江苏大学 一种单极永磁体可单独移动的可调速磁力耦合器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682430B2 (en) * 2001-03-15 2004-01-27 Magnadrive Corporation Adjustable magnetic coupler
CN102611279A (zh) * 2012-04-05 2012-07-25 鞍山钦元节能设备制造有限公司 一种永磁传动机构永磁体的布置方式
CN103915972A (zh) * 2014-03-28 2014-07-09 西安巨舟电子设备有限公司 一种自馈式永磁电涡流调速器
CN104467359A (zh) * 2013-09-13 2015-03-25 天津永磁节能科技有限公司 一种永磁调速节能联轴器
CN110504816A (zh) * 2019-07-15 2019-11-26 江苏大学 一种单极磁体旋转式可调速笼型磁力耦合器
CN113972810A (zh) * 2021-09-13 2022-01-25 江苏大学 一种单极永磁体可单独移动的可调速磁力耦合器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682430B2 (en) * 2001-03-15 2004-01-27 Magnadrive Corporation Adjustable magnetic coupler
CN102611279A (zh) * 2012-04-05 2012-07-25 鞍山钦元节能设备制造有限公司 一种永磁传动机构永磁体的布置方式
CN104467359A (zh) * 2013-09-13 2015-03-25 天津永磁节能科技有限公司 一种永磁调速节能联轴器
CN103915972A (zh) * 2014-03-28 2014-07-09 西安巨舟电子设备有限公司 一种自馈式永磁电涡流调速器
CN110504816A (zh) * 2019-07-15 2019-11-26 江苏大学 一种单极磁体旋转式可调速笼型磁力耦合器
CN113972810A (zh) * 2021-09-13 2022-01-25 江苏大学 一种单极永磁体可单独移动的可调速磁力耦合器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOHAMMADI S.; MIRSALIM M.; VAEZ-ZADEH S.; TALEBI H. A.: "Design analysis of a new axial-flux interior permanent-magnet coupler", THE 5TH ANNUAL INTERNATIONAL POWER ELECTRONICS, DRIVE SYSTEMS AND TECHNOLOGIES CONFERENCE (PEDSTC 2014), IEEE, 5 February 2014 (2014-02-05), pages 562 - 567, XP032587103, DOI: 10.1109/PEDSTC.2014.6799437 *
YAN, XIAOXIA: "Experiment on Performance Comparison of Two Magnetic Couplings", JOURNAL OF SHANGHAI DIANJI UNIVERSITY, vol. 12, no. 4, 1 December 2009 (2009-12-01), XP093045955 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117138644A (zh) * 2023-10-25 2023-12-01 一恒生命科学仪器(昆山)有限公司 一种电动搅拌器
CN117138644B (zh) * 2023-10-25 2024-01-26 一恒生命科学仪器(昆山)有限公司 一种电动搅拌器

Also Published As

Publication number Publication date
CN113972810A (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
WO2023035554A1 (zh) 一种单极永磁体可单独移动的可调速磁力耦合器
WO2021008193A1 (zh) 一种单极磁体旋转式可调速笼型磁力耦合器
CN107516970B (zh) 一种可调速的永磁磁力耦合器
CN102969867B (zh) 一种可自动变速的磁力调速器及其调速方法
CN107725631B (zh) 电磁扭矩离合器
CN103532341B (zh) 一种快速调磁的永磁涡流调速器
KR20190060836A (ko) 토크 증폭 장치
CN104141759A (zh) 一种预紧力可控的丝杠螺母副轴向预紧装置
CN108023450B (zh) 一种具有对称间距调节机构的联轴器
CN201623614U (zh) 一种用于飞机驾驶杆操纵系统的涡电流阻尼器
CN105720790B (zh) 一种永磁变矩器
KR102391599B1 (ko) 자기 결합 어셈블리
CN107222082A (zh) 一种基于滑块摇杆机构的锥面智能可调速磁力耦合器
CN103248197A (zh) 磁流变液动力耦合器
CN102927179B (zh) 一种具有离合或制动功能的装置
CN208835979U (zh) 一种皮带轮型涡流式联轴器
CN205792179U (zh) 可调速伞式磁力耦合器
CN110578759B (zh) 一种磁化式永磁磁力耦合器
US863966A (en) Electromagnetically-operated mechanism for reversing the motion of machine-tools.
CN106505913A (zh) 双磁轮无反向间隙永磁非接触前进驱动装置
CN203537213U (zh) 一种快速调磁的永磁涡流调速器
KR20220164342A (ko) 후륜 조향 시스템
CN205423587U (zh) 一种扭矩限制器
US831685A (en) Variable-speed device.
JPH05291030A (ja) リニアソレノイド装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE