WO2023035494A1 - 一种立体化输电走廊山火监测与防控方法及系统 - Google Patents

一种立体化输电走廊山火监测与防控方法及系统 Download PDF

Info

Publication number
WO2023035494A1
WO2023035494A1 PCT/CN2021/140623 CN2021140623W WO2023035494A1 WO 2023035494 A1 WO2023035494 A1 WO 2023035494A1 CN 2021140623 W CN2021140623 W CN 2021140623W WO 2023035494 A1 WO2023035494 A1 WO 2023035494A1
Authority
WO
WIPO (PCT)
Prior art keywords
risk
mountain fire
monitoring
wildfire
power transmission
Prior art date
Application number
PCT/CN2021/140623
Other languages
English (en)
French (fr)
Inventor
樊灵孟
周恩泽
郑晓光
饶章权
王磊
黄勇
田翔
赵兵
魏瑞增
刘淑琴
成国雄
朱凌
孙晓敏
刘琦
龚博
Original Assignee
广东电网有限责任公司电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东电网有限责任公司电力科学研究院 filed Critical 广东电网有限责任公司电力科学研究院
Publication of WO2023035494A1 publication Critical patent/WO2023035494A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/005Fire alarms; Alarms responsive to explosion for forest fires, e.g. detecting fires spread over a large or outdoors area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present application relates to the technical field of mountain fire monitoring, in particular to a system and method for monitoring and preventing mountain fires in three-dimensional power transmission corridors.
  • the transmission line is the lifeblood of the power grid operation, and it is easy to cause the power grid to be out of service or even disconnected under the damage of external force.
  • Most of the overhead transmission lines span wild mountain forests, and wild wildfires are prone to spread to transmission line corridors and induce power system tripping accidents.
  • satellite remote sensing technology is mainly used to monitor large-scale mountain fire hotspots, and an alarm is issued according to the shortest distance from the hotspot location to the transmission line.
  • polar-orbiting satellites only pass through the target area within a specific period of time, while geostationary meteorological satellites can achieve 24-hour uninterrupted observation of the target area due to their characteristics of synchronous operation with the earth's rotation. It effectively improves the comprehensiveness of mountain fire disaster monitoring on transmission lines.
  • the forest fire online monitoring device has also been put into use in some transmission line sections, forming a parallel monitoring channel with satellite remote sensing.
  • geostationary meteorological satellites have a lower monitoring spatial resolution.
  • the latitude and longitude of the fire point monitored by a single geostationary satellite and the actual value Only relying on the indicator of the distance between the fire point and the transmission line will affect the accuracy of the fire alarm in the transmission corridor.
  • This application provides a three-dimensional power transmission corridor mountain fire monitoring and prevention system and method to solve the problems of low early warning accuracy and unreasonable distribution of monitoring devices in the prior art.
  • this application proposes a three-dimensional transmission corridor mountain fire monitoring and prevention system, including: a mountain fire trip risk assessment module, which is used to evaluate the mountain fire trip risk in real time when a mountain fire is detected in the transmission line corridor and then Determine whether to issue a mountain fire warning; the layout planning module of the mountain fire online monitoring device is used to generate the distribution plan of the mountain fire online monitoring device of the transmission line according to the risk of mountain fire tripping, the blind area of satellite monitoring and the importance level of the transmission line; the three-dimensional transmission corridor
  • the mountain fire monitoring and alarm module adopts multi-source satellites and UAVs, and is used for on-line mountain fire monitoring devices installed according to layout planning, multi-source satellite monitoring and UAV inspections to realize three-dimensional mountain fire monitoring of power transmission corridors; among them,
  • the online mountain fire monitoring device is installed in the monitoring blind area of multi-source satellite remote sensing, and the drone can inspect the power transmission corridor during the preset period.
  • the mountain fire tripping risk assessment module is also used to: build a risk assessment model for transmission line tripping under mountain fire conditions based on the flame combustion model, evaluate the risk of mountain fire tripping in real time according to the risk assessment model, and output the evaluation results, wherein , and the evaluation results are used to guide the operation and maintenance personnel to inspect the transmission line.
  • the layout planning module of the online mountain fire monitoring device is also used to: Based on the Bayesian theoretical model, evaluate the risk distribution of mountain fires in the target area according to the mountain fire impact factors; where the mountain fire impact factors include meteorological factors, surface factors and Man-made factors: Scan the power transmission corridor channel with UAV and the distribution of meteorological stations in the target area to obtain the influencing factors of mountain fire trip risk assessment, statically evaluate the distribution of power transmission corridor trip risk under mountain fire conditions, and superimpose the mountain fire risk Get the risk distribution map of wildfire tripping.
  • the mountain fire impact factors include meteorological factors, surface factors and Man-made factors: Scan the power transmission corridor channel with UAV and the distribution of meteorological stations in the target area to obtain the influencing factors of mountain fire trip risk assessment, statically evaluate the distribution of power transmission corridor trip risk under mountain fire conditions, and superimpose the mountain fire risk Get the risk distribution map of wildfire tripping.
  • the layout planning module of the wildfire online monitoring device is also used to: use a UAV equipped with a lidar to scan the transmission line corridor, and obtain the line and surface information in all transmission line channels in the target area, wherein, the line and surface
  • the information includes the latitude and longitude information of the tower, the distance between the wire and the ground, the distance between the phases, the distance to the ground, the height of the tree, the slope and aspect, and meteorological data; according to the evaluation results generated by the mountain fire trip risk assessment module, the trip risk of transmission lines under mountain fire conditions is formed.
  • Bayesian theoretical model is introduced, based on naive Bayesian, weighted Bayesian and Bayesian network, respectively, to solve the probability of wildfire occurrence under the combined effects of various wildfire influencing factors, and according to the calculation efficiency, select the optimal
  • the Bayesian wildfire probability model solves the wildfire risk P; divides the wildfire risk level according to the wildfire risk P, and the risk level includes low risk, medium risk, medium high risk and high risk; based on the optimal Bayesian Yesi’s mountain fire occurrence probability model, which calculates the mountain fire occurrence probability with preset resolution in the target area and processes them in stages to form a mountain fire risk distribution map; according to the distribution trend map of transmission line tripping risk and the mountain fire risk The distribution map is rounded up on average to obtain the final risk distribution map of mountain fire tripping of transmission lines.
  • the three-dimensional power transmission corridor mountain fire monitoring and warning module is also used to: obtain remote sensing data from multi-source satellites, wherein the multi-source satellites include at least 1 polar-orbiting satellite and 1 geostationary satellite data;
  • the image and video data of the online monitoring device in the area and the image and video data of the UAV line inspection task during the preset period are used to construct the mountain fire monitoring database of the transmission corridor; according to the data of the mountain fire monitoring database of the transmission corridor, satellite remote sensing, online monitoring devices and wireless monitoring are realized.
  • Human-machine three-dimensional parallel mountain fire monitoring and warning channel is also used to: obtain remote sensing data from multi-source satellites, wherein the multi-source satellites include at least 1 polar-orbiting satellite and 1 geostationary satellite data;
  • the image and video data of the online monitoring device in the area and the image and video data of the UAV line inspection task during the preset period are used to construct the mountain fire monitoring database of the transmission corridor; according to the data of the mountain fire monitoring database of the transmission corridor
  • this application proposes a three-dimensional transmission corridor mountain fire monitoring and prevention method, including: when a mountain fire is detected in the transmission line corridor, evaluate the risk of mountain fire tripping in real time and then determine whether to issue a mountain fire alarm; Fire trip risk, satellite monitoring blind area and importance level of transmission line generate distribution plan of mountain fire online monitoring device for transmission line; according to the distribution plan, the installation of mountain fire online monitoring device, multi-source satellite monitoring and drone inspection realize three-dimensional The mountain fire monitoring of the power transmission corridor; among them, the mountain fire online monitoring device is installed in the monitoring blind area of the multi-source satellite remote sensing, and the drone can inspect the power transmission corridor during the preset period.
  • this application proposes an electronic device, including a memory and a processor, the memory is connected to the processor, and the memory stores a computer program.
  • the computer program is executed by the processor, the above-mentioned three-dimensional power transmission corridor mountain fire monitoring and prevention is realized. method.
  • the present application proposes a computer-readable storage medium, which stores a computer program.
  • the computer program When executed, the above-mentioned three-dimensional power transmission corridor mountain fire monitoring and prevention method is realized.
  • This application proposes a three-dimensional transmission corridor mountain fire monitoring and prevention system and method, which can evaluate the mountain fire trip risk in real time and determine whether to issue a mountain fire alarm when a mountain fire is detected in the transmission line corridor; and, according to the mountain fire trip risk, satellite Monitoring the dead zone and the importance level of the transmission line to generate the distribution plan of the mountain fire online monitoring device of the transmission line, thereby solving the problems of redundant monitoring devices and low efficiency; introducing multi-source satellites to realize satellite remote sensing, online monitoring devices and drones
  • the three-dimensional parallel mountain fire monitoring and warning channel can improve the warning accuracy of the mountain fire in the transmission corridor.
  • Fig. 1 is the structural representation of an embodiment of the three-dimensional power transmission corridor mountain fire monitoring and prevention system of the present application
  • Fig. 2 is a schematic diagram of another embodiment of the three-dimensional power transmission corridor mountain fire monitoring and prevention system of the present application;
  • Fig. 3 is a schematic flow chart of an embodiment of the three-dimensional power transmission corridor mountain fire monitoring and prevention method of the present application
  • FIG. 4 is a schematic structural diagram of an embodiment of the electronic device of the present application.
  • Fig. 5 is a schematic structural diagram of an embodiment of a computer-readable storage medium of the present application.
  • Figure 1 is a structural schematic diagram of an embodiment of the application's three-dimensional power transmission corridor mountain fire monitoring and prevention system.
  • the monitoring and prevention system for wildfires in the transmission corridors can include:
  • the mountain fire trip risk assessment module 110 when a mountain fire is detected in the transmission line corridor, evaluates the mountain fire trip risk in real time to determine whether to issue a mountain fire warning.
  • the wildfire trip risk assessment module is also used to: build a risk assessment model for transmission line tripping under wildfire conditions based on the flame combustion model.
  • the risk assessment model the risk of wildfire tripping can be assessed in real time, and the assessment results can be output. The assessment results are used to guide the operation and maintenance personnel to inspect the transmission line.
  • the trip risk distribution under the condition of wild fire in the transmission line corridor in the target area can be statically evaluated to guide the distribution of online monitoring devices.
  • the location planning module 120 of the online mountain fire monitoring device generates a location plan for the online mountain fire monitoring device of the transmission line according to the risk of mountain fire tripping, the blind area of satellite monitoring, and the importance level of the transmission line.
  • the layout planning module of the online mountain fire monitoring device is also used to: Based on the Bayesian theoretical model, evaluate the risk distribution of mountain fires in the target area according to the mountain fire impact factors; where the mountain fire impact factors include meteorological factors, surface factors and human factor.
  • the influence factors of mountain fire trip risk assessment are obtained by scanning the transmission corridor channel with UAV equipped with lidar and the distribution of meteorological stations in the target area, and statically evaluate the trip risk distribution of transmission corridor under mountain fire conditions, and superimpose the mountain fire risk to get the mountain fire Trip risk distribution map.
  • the distribution plan of online mountain fire monitoring devices for transmission lines is generated.
  • the three-dimensional power transmission corridor mountain fire monitoring and alarm module 130 adopts multi-source satellites and unmanned aerial vehicles, and is used to realize the three-dimensional power transmission corridor mountain fire monitoring device installed according to the distribution plan, multi-source satellite monitoring and UAV inspection. Fire monitoring; Among them, the online mountain fire monitoring device is installed in the monitoring blind area of multi-source satellite remote sensing, and the drone can inspect the power transmission corridor during the preset period.
  • the machine conducts special inspections on the transmission corridors, and jointly realizes the three-dimensional monitoring of mountain fires in the transmission corridors. After monitoring the fire point, determine whether to issue an alarm according to the shortest distance from the fire point to the transmission line and the real-time fire trip risk.
  • This embodiment proposes a three-dimensional power transmission corridor mountain fire monitoring and prevention system, which can evaluate the mountain fire trip risk in real time and determine whether to issue a mountain fire alarm when a mountain fire is detected in the transmission line corridor; and, according to the mountain fire trip risk, Satellite monitoring blind spots and the importance level of transmission lines generate the layout planning of the mountain fire online monitoring devices of transmission lines, thus solving the problems of redundant monitoring devices and low efficiency; introducing multi-source satellites to realize satellite remote sensing, online monitoring devices and unmanned monitoring
  • the three-dimensional parallel mountain fire monitoring and alarm channel of the machine can improve the alarm accuracy of the mountain fire in the transmission corridor.
  • FIG. 2 is a schematic diagram of another embodiment of the three-dimensional power transmission corridor mountain fire monitoring and prevention system of the present application.
  • the three-dimensional transmission corridor mountain fire monitoring and prevention system is mainly divided into three modules: the mountain fire trip risk assessment module, the mountain fire online monitoring device layout planning module, and the three-dimensional transmission corridor mountain fire monitoring and alarm module.
  • Step 1 Assess the risk of transmission line tripping under wildfire conditions.
  • I is the fire line intensity.
  • q is the combustion calorific value of combustibles
  • W is the load of combustibles on the underlying surface
  • R is the speed of fire spread
  • Kc is the correction coefficient of combustibles type, which is determined by the type of combustibles on the underlying surface.
  • K c 1
  • K v represent the slope correction coefficient and wind speed correction coefficient
  • R 0 is the initial fire spread speed.
  • H l is the height of the wire to the ground after considering the sag; H t is the maximum tree canopy height under the transmission corridor; d lt is the length of the air gap between the wire and the tree crown; d p is the phase distance of the wire; E f is the average withstand field strength of the flame. According to the long gap breakdown test of the wood fire, the average withstand field strength of the flame is 35kV/m.
  • H f is the maximum flame burning height calculated by the flame combustion model
  • E s is the average withstand field strength of smoke under wildfire conditions. The calculation is as follows:
  • E a is under standard atmospheric conditions (temperature is 20°C, humidity is 11g /m 3 , the atmospheric pressure is 101.3kPa) the withstand field strength of the pure air gap;
  • is the relative density of air in the flue gas;
  • T a is the ambient temperature;
  • ⁇ T is the flame Air temperature rise during combustion; I is the intensity of the fire line;
  • H s is the height from the middle point of the smoke gap to the vegetation on the underlying surface.
  • k the humidity correction base, which is related to the absolute humidity n and the air density ⁇ in the flue gas;
  • d s is the gap distance.
  • the risk of mountain fire tripping R is evaluated.
  • the trip risk classification is shown in Table 1 below.
  • U is the operating voltage of the line.
  • R risk level R ⁇ 0.5 low risk 0.5 ⁇ R ⁇ 0.8 medium risk 0.8 ⁇ R ⁇ 1 medium to high risk 1 ⁇ R high risk
  • Step 1 Use the UAV equipped with lidar to scan the transmission line corridor, and obtain the line and surface information of all transmission line channels in the target area, including the longitude and latitude information of the tower, the distance between the conductor and the ground, the distance between phases, and the distance to the ground line, etc.
  • Parameters, surface parameters such as tree height, slope and aspect; meteorological data are obtained from meteorological stations around the area where the corridor is located. All meteorological data are averaged within the evaluation period, which is determined by the timeliness requirements for evaluating the trip risk distribution (usually years).
  • Step 2 based on the mountain fire trip risk assessment module, based on the risk assessment model of transmission line tripping under mountain fire conditions, calculate the flame height between each two base towers, and evaluate the trip risk according to the flame envelope conductor of the transmission line; and based on Geographical information software is used to visualize the risk distribution of transmission line tripping under wildfire conditions.
  • Step 3 Collect the wildfire impact factor data at a resolution of 1km ⁇ 1km in the target area. Among them, human factors, surface factors and meteorological factors are included. As shown in table 2.
  • Step 4 Introduce the Bayesian theoretical model, based on naive Bayesian, weighted Bayesian and Bayesian network, respectively, to solve the probability of wildfire occurrence under the combined effects of various wildfire influencing factors, and select the optimal Bayesian model according to the calculation efficiency.
  • the probability model of wildfire occurrence in Yesi is used to solve the risk P of wildfire occurrence.
  • the risk classification of wildfire occurrence is shown in Table 3 below.
  • Step 4 Based on the optimal Bayesian wildfire occurrence probability model, calculate the 1km ⁇ 1km resolution wildfire occurrence probability in the target area and classify it. Visualize in geographic information software to form a risk distribution map of wildfire occurrence.
  • Step 5 According to the distribution trend map of transmission line tripping risk and the distribution map of mountain fire occurrence risk under mountain fire conditions evaluated in step 2 and step 4 respectively, the risk is rounded up on average to obtain the final distribution map of transmission line mountain fire tripping risk.
  • the grading principles are shown in the table below:
  • Step 6 Construct the mountain fire risk hidden danger index of the transmission line, and guide the installation of the mountain fire online monitoring device.
  • x 1 Record the blind area distribution of mountain fire monitoring in China Southern Power Grid as x 1 , and make a comprehensive score for its importance. If the transmission line is in the blind area of monitoring, 4 points will be awarded, otherwise 1 point will be awarded. The comprehensive score for the importance of the voltage level of the transmission line in the China Southern Power Grid is recorded as x 2 . Among them, 500kV and above lines are worth 4 points, 220kV lines are worth 2 points, and 110kV lines are worth 1 point. For transmission lines or key crossing lines that are extremely important to the stability of the power grid, 1 point will be added based on the scoring method of the original voltage level.
  • the obtained mountain fire trip risk level of the China Southern Power Grid transmission corridor is recorded as x 3 , with 4 points for high-risk lines, 3 points for medium-high risk lines, 2 points for medium-risk lines, and 1 point for low-risk lines.
  • the scoring of each hidden danger index is shown in Table 1.
  • the obtained bookstore corridor forest fire risk hidden danger index Y is as follows:
  • Wildfire Risk Hidden Indicators 1 point 2 minutes 3 points 4 points Satellite monitoring blind area x 1 no — — yes Line importance level x 2 35kV 110kV 220kV 500kV and above Transmission corridor wildfire trip risk level x 3 low risk medium risk medium to high risk high risk
  • Step 1 Obtain remote sensing data from multi-source satellites, including data from 7 polar-orbiting satellites and 2 geostationary satellites.
  • the monitoring characteristics of each satellite are shown in Table 2; the image video data of the online monitoring device in the high mountain fire risk hidden area of the transmission line and the image video data of the UAV special line inspection mission during the high mountain fire period are obtained.
  • the three-dimensional monitoring system includes the following aspects:
  • drones are used to conduct special inspection tasks on a time-by-period basis for high-trip risk lines to strictly prevent and control the negative impact of wildfires on the power system. .
  • Step 2 according to the source of monitoring data, realize the three-dimensional parallel mountain fire monitoring and warning channel of satellite remote sensing, online monitoring device and UAV:
  • Polar-orbiting meteorological satellites are limited by their transit time and cannot achieve 24-hour monitoring. However, the distance from the ground is short, and the spatial sensitivity of fire point monitoring is high. If the fire point falls within its transit time, priority should be given to selecting polar-orbiting satellite data to assess whether an alarm is required;
  • the computer and manual judge whether a wildfire has occurred Based on the image and video information sent back by the online monitoring device, the computer and manual judge whether a wildfire has occurred.
  • a wildfire occurs in the transmission corridor, an alarm will be issued in a timely manner; and according to the size of the fire and the condition of the underlying surface, the drone will be connected to efficiently inspect the spread of the wildfire in the transmission corridor, and formulate operation and maintenance measures.
  • the mountain fire trip risk assessment module 110, the mountain fire online monitoring device distribution planning module 120 and the three-dimensional transmission corridor mountain fire monitoring and alarm module 130 included in the three-dimensional power transmission corridor mountain fire monitoring and prevention system It can be one or more processors, controllers or chips with communication interfaces capable of implementing communication protocols, and if necessary, it can also include memory and related interfaces, system transmission buses, etc.; the processors, controllers or chips execute Program-related codes implement corresponding functions.
  • an alternative solution is that the wildfire trip risk assessment module 110, the wildfire online monitoring device layout planning module 120 and the three-dimensional power transmission corridor wildfire monitoring and alarm module 130 share an integrated chip or share a processor, controller, memory, etc. equipment.
  • the shared processor, controller or chip executes program-related codes to implement corresponding functions.
  • the wildfire online monitoring device includes components such as sensors and cameras, and has one or more processors, controllers or chips, and may also include memory and related interfaces, system transmission buses, etc. if necessary.
  • this embodiment discloses a method for assessing the risk of tripping of transmission lines under mountain fire conditions based on the flame combustion model, a method for evaluating the risk of mountain fire occurrence based on the Bayesian theoretical model, and a method for evaluating the risk of tripping for mountain fires based on the combination of the two; And comprehensively consider the transmission line mountain fire trip risk, satellite monitoring blind area and line importance level to construct the transmission line mountain fire risk hidden danger index to guide the installation of online monitoring devices; finally, it also includes comprehensive satellite remote sensing, online monitoring devices and drones Transmission line mountain fire monitoring and warning system.
  • the application proposes a three-dimensional power transmission corridor mountain fire monitoring and prevention method, please refer to Fig. 3, Fig. 3 is the three-dimensional power transmission corridor mountain fire monitoring and prevention and control method of the present application
  • the three-dimensional power transmission corridor mountain fire monitoring and prevention method may include the following steps:
  • S120 Generate a distribution plan for a mountain fire online monitoring device for a transmission line according to the mountain fire tripping risk, the satellite monitoring blind area, and the importance level of the transmission line.
  • S130 The online mountain fire monitoring device installed according to the distribution plan, multi-source satellite monitoring and UAV inspection realize three-dimensional mountain fire monitoring in transmission corridors; among them, the mountain fire online monitoring device is installed in the monitoring blind area of multi-source satellite remote sensing , the UAV can inspect the power transmission corridor during the preset period.
  • FIG. 4 is a schematic structural diagram of an embodiment of the electronic device of the present application.
  • the electronic device 400 may include a memory 41 and a processor 42.
  • the memory 41 is connected to the processor 42.
  • a computer program is stored in the memory 41.
  • the computer program is executed by the processor 42, the method in any of the above embodiments is implemented. Its steps and principles have been introduced in detail in the above method, and will not be repeated here.
  • the processor 42 may also be referred to as a CPU (central processing unit, central processing unit).
  • the processor 42 may be an integrated circuit chip and has signal processing capabilities.
  • the processor 42 can also be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • FIG. 5 is a schematic structural diagram of an embodiment of a computer-readable storage medium of the present application.
  • a computer program 51 is stored on the computer-readable storage medium 500, and when the computer program 51 is executed by a processor, the method of any one of the above-mentioned embodiments is implemented. Its steps and principles have been introduced in detail in the above method, and will not be repeated here.
  • the computer-readable storage medium 500 can also be a U disk, a mobile hard disk, a read-only memory (read-only memory, ROM), a random access memory (random access memory, RAM), a tape or an optical disk, etc., which can store program codes. medium.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Emergency Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Computational Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Algebra (AREA)
  • Data Mining & Analysis (AREA)
  • Public Health (AREA)
  • Operations Research (AREA)
  • Remote Sensing (AREA)
  • Water Supply & Treatment (AREA)
  • Game Theory and Decision Science (AREA)
  • Alarm Systems (AREA)

Abstract

一种立体化输电走廊山火监测和防治系统及方法,其中系统包括:山火跳闸风险评估模块(110),用于当输电线路走廊监测到山火时,实时评估山火跳闸风险进而确定是否发布山火告警;山火在线监测装置布点规划模块(120),用于根据山火跳闸风险、卫星监测盲区和输电线路的重要等级生成输电线路的山火在线监测装置的布点规划;立体化输电走廊山火监测告警模块(130),采用多源卫星和无人机,用于根据布点规划装设的山火在线监测装置、多源卫星监测以及无人机巡查实现立体化的输电走廊山火监测。通过上述系统,可以提高输电走廊山火的告警准确性;并且在布置监测装置时解决了装置多余、使用效率低等问题。

Description

一种立体化输电走廊山火监测与防控方法及系统 技术领域
本申请涉及山火监测技术领域,尤其涉及立体化输电走廊山火监测和防治系统及方法。
背景技术
输电线路是电网运行的命脉,在外力的破坏下易造成电网的停运甚至解列。而架空输电线路大多跨越野外的山区林地,野外山火高发易蔓延至输电线路走廊诱发电力系统跳闸事故。目前,主要采用卫星遥感技术进行大范围的山火热点监测,并根据热点位置至输电线路的最短距离进行告警。其中,极轨卫星只在特定时间段内过境目标区域,而静止气象卫星由于其与地球自转同步运行的特性,可以实现对目标区域24h无间断的观测。有效提升了输电线路山火灾害监测的全面性。此外,山火在线监测装置在部分输电线路区段也已投入使用,与卫星遥感形成了并行的监测通道。
目前,静止气象卫星相较于极轨卫星,其监测空间分辨率较低。在监测火点时,单一的静止卫星监测火点经纬度与实际值存在一定偏差,仅依靠火点距离输电线路远近这一指标将影响输电走廊山火的告警准确性。
并且,卫星遥感监测山火受到云层、地形等遮挡的影响,存在一定视觉盲区。需装置山火在线监测装置弥补卫星监测失灵,而山火在线监测装置的安装布局没有系统的规划方案和准则,主要依靠人为主观评定是否需要装设。在布置时,存在装置多余、使用效率低等问题。
发明内容
本申请提供立体化输电走廊山火监测和防治系统及方法,以解决现有技术中预警准确性低、监测装置分布不合理的问题。
为解决上述技术问题,本申请提出一种立体化输电走廊山火监测和防治系统,包括:山火跳闸风险评估模块,用于当输电线路走廊监测到山火时,实时评估山火跳闸风险进而确定是否发布山火告警;山火在线监测装置布点规划模块,用于根据山火跳闸风险、卫星监测盲区和输电线路的重要等级生成输电线路的山火在线监测装置的布点规划;立体化输电走廊山火监测告警模块,采用多源卫星和无人机,并用于根据布点规划装设的山火在线监测装置、多源卫星监测以及无人机巡查实现立体化的输电走廊山火监测;其中,山火在线监测装置装设在多源卫星遥感的监测盲区,无人机在预设期间能够对输电走廊进行巡 查。
可选地,山火跳闸风险评估模块还用于:基于火焰燃烧模型,构建山火条件下输电线路跳闸的风险评估模型,根据风险评估模型,实时评估山火跳闸风险,并输出评估结果,其中,评估结果用于指导运维人员巡查输电线路。
可选地,山火跳闸风险评估模块还用于:根据山火条件下导线对地放电电压U g和相间放电电压U p,评估山火跳闸风险R;其中,R=max(R g,R p);
Figure PCTCN2021140623-appb-000001
Figure PCTCN2021140623-appb-000002
U为当前输电线路的运行电压;R g为与对地放电电压U g相关的山火风险;R p为与相间放电电压U p相关的山火风险;根据山火跳闸风险R划分输电线路的重要等级,其中重要等级包括低风险、中等风险、中高风险和高风险。
可选地,山火在线监测装置布点规划模块还用于:基于贝叶斯理论模型,根据山火影响因子评估目标区域内山火发生风险分布;其中,山火影响因子包括气象因子、地表因子和人为因子;通过无人机搭载激光雷达扫描输电走廊通道以及通过目标区域内气象站点分布,获取山火跳闸风险评估的影响因子,静态评估山火条件下输电走廊跳闸风险分布,并叠加山火风险得到山火跳闸风险分布图。
可选地,山火在线监测装置布点规划模块还用于:使用搭载激光雷达的无人机对输电线路走廊进行扫描,获取目标区域所有输电线路通道内的线路和地表信息,其中,线路和地表信息包括杆塔经纬度信息,导线对地距离、相间距离、对地线距离、树高、坡度和坡向和气象数据;根据山火跳闸风险评估模块生成的评估结果形成山火条件下输电线路跳闸风险分布走向图;引入贝叶斯理论模型,分别基于朴素贝叶斯、加权贝叶斯和贝叶斯网络,求解在各山火影响因子综合作用下山火发生概率,并根据计算效率,选择最优贝叶斯山火发生概率模型,求解山火发生风险P;根据山火发生风险P划分山火发生的风险等级,其中风险等级包括低风险、中等风险、中高风险和高风险;基于最优贝叶斯山火发生概率模型,计算目标区域内预设分辨率的山火发生概率并分级处理,形成山火发生风险分布图;根据山火条件下输电线路跳闸风险分布走向图和山火发生风险分布图,对风险进行平均向上取整,得到最终输电线路山火跳闸风险分布图。
可选地,立体化输电走廊山火监测告警模块还用于:获取多源卫星的遥感数据,其中,多源卫星至少包括1颗极轨卫星和1颗静止卫星数据;获取输电线路的高风险区域的在线监测装置图像视频数据和预设期间内无人机巡线任务图像视频数据,构建输电走廊山火监测数据库;根据输电走廊山火监测数据库的数据,实现卫星遥感、在线监测装置和无人机的立体化并行山火监测告警通 道。
为解决上述技术问题,本申请提出一种立体化输电走廊山火监测和防治方法,包括:当输电线路走廊监测到山火时,实时评估山火跳闸风险进而确定是否发布山火告警;根据山火跳闸风险、卫星监测盲区和输电线路的重要等级生成输电线路的山火在线监测装置的布点规划;根据布点规划装设的山火在线监测装置、多源卫星监测以及无人机巡查实现立体化的输电走廊山火监测;其中,山火在线监测装置装设在多源卫星遥感的监测盲区,无人机在预设期间能够对输电走廊进行巡查。
可选地,根据山火跳闸风险、卫星监测盲区和输电线路的重要等级生成输电线路的山火在线监测装置的布点规划之前,包括:根据山火条件下导线对地放电电压U g和相间放电电压U p,评估山火跳闸风险R;其中,R=max(R g,R p);
Figure PCTCN2021140623-appb-000003
U为当前输电线路的运行电压;R g为与对地放电电压U g相关的山火风险;R p为与相间放电电压U p相关的山火风险;根据山火跳闸风险R划分输电线路的重要等级,其中重要等级包括低风险、中等风险、中高风险和高风险。
为解决上述技术问题,本申请提出一种电子设备,包括存储器和处理器,存储器连接处理器,存储器存储有计算机程序,计算机程序被处理器执行时实现上述的立体化输电走廊山火监测和防治方法。
为解决上述技术问题,本申请提出一种计算机可读存储介质,存储有计算机程序,计算机程序被执行时实现上述的立体化输电走廊山火监测和防治方法。
本申请提出立体化输电走廊山火监测和防治系统及方法,可以在输电线路走廊监测到山火时,实时评估山火跳闸风险进而确定是否发布山火告警;并且,根据山火跳闸风险、卫星监测盲区和输电线路的重要等级生成输电线路的山火在线监测装置的布点规划,从而解决了监测装置多余、使用效率低等问题;引入多源卫星,实现卫星遥感、在线监测装置和无人机的立体化并行山火监测告警通道,从而提高输电走廊山火的告警准确性。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请立体化输电走廊山火监测和防治系统一实施例的结构示意图;
图2是本申请立体化输电走廊山火监测和防治系统另一实施例的示意图;
图3是本申请立体化输电走廊山火监测和防治方法一实施例的流程示意图;
图4是本申请电子设备一实施例的结构示意图;
图5是本申请计算机可读存储介质一实施例的结构示意图。
具体实施方式
为使本领域的技术人员更好地理解本申请的技术方案,下面结合附图和具体实施方式对本申请所提供立体化输电走廊山火监测和防治系统及方法进一步详细描述。
本申请提出一种立体化输电走廊山火监测和防治系统,请参阅图1,图1是本申请立体化输电走廊山火监测和防治系统一实施例的结构示意图,在本实施例中,立体化输电走廊山火监测和防治系统可以包括:
山火跳闸风险评估模块110,当输电线路走廊监测到山火时,实时评估山火跳闸风险进而确定是否发布山火告警。
可选地,山火跳闸风险评估模块还用于:基于火焰燃烧模型,构建山火条件下输电线路跳闸的风险评估模型。第一,根据风险评估模型可以实时评估山火跳闸风险,并输出评估结果,其中,评估结果用于指导运维人员巡查输电线路。第二,根据风险评估模型可以静态评估目标区域内输电线路走廊山火条件下跳闸风险分布,指导在线监测装置的布点。
山火在线监测装置布点规划模块120,根据山火跳闸风险、卫星监测盲区和输电线路的重要等级生成输电线路的山火在线监测装置的布点规划。
可选地,山火在线监测装置布点规划模块还用于:基于贝叶斯理论模型,根据山火影响因子评估目标区域内山火发生风险分布;其中,山火影响因子包括气象因子、地表因子和人为因子。通过无人机搭载激光雷达扫描输电走廊通道以及通过目标区域内气象站点分布,获取山火跳闸风险评估的影响因子,静态评估山火条件下输电走廊跳闸风险分布,并叠加山火风险得到山火跳闸风险分布图。最后,综合考虑山火跳闸风险、卫星监测盲区分布和输电线路重要等级生成输电线路山火在线监测装置布点规划。
立体化输电走廊山火监测告警模块130,采用多源卫星和无人机,并用于根据布点规划装设的山火在线监测装置、多源卫星监测以及无人机巡查实现立体化的输电走廊山火监测;其中,山火在线监测装置装设在多源卫星遥感的监测盲区,无人机在预设期间能够对输电走廊进行巡查。
引入多源卫星提高遥感监测的时空分辨率,根据布点规划装设的山火在线监测装置弥补卫星遥感存在的监测盲区问题,并在预设期间(一般是山火高发期),接入无人机对输电走廊进行特殊巡查,共同实现立体化的输电走廊山火监测。监测火点后,根据火点距离输电线路的最短距离以及实时山火跳闸风险, 确定是否发布告警。
本实施例提出一种立体化输电走廊山火监测和防治系统,可以在输电线路走廊监测到山火时,实时评估山火跳闸风险进而确定是否发布山火告警;并且,根据山火跳闸风险、卫星监测盲区和输电线路的重要等级生成输电线路的山火在线监测装置的布点规划,从而解决了监测装置多余、使用效率低等问题;引入多源卫星,实现卫星遥感、在线监测装置和无人机的立体化并行山火监测告警通道,从而提高输电走廊山火的告警准确性。
可选地,山火跳闸风险评估模块还用于:根据山火条件下导线对地放电电压U g和相间放电电压U p,评估山火跳闸风险R;其中,R=max(R g,R p);
Figure PCTCN2021140623-appb-000004
Figure PCTCN2021140623-appb-000005
U为当前输电线路的运行电压;R g为与对地放电电压U g相关的山火风险;R p为与相间放电电压U p相关的山火风险;根据山火跳闸风险R划分输电线路的重要等级,其中重要等级包括低风险、中等风险、中高风险和高风险。
请参阅图2,图2是本申请立体化输电走廊山火监测和防治系统另一实施例的示意图。立体化输电走廊山火监测和防治系统主要划分三大模块:山火跳闸风险评估模块、山火在线监测装置布点规划模块以及立体化输电走廊山火监测告警模块。
A)山火跳闸风险评估模块
具体可实现以下步骤:
步骤1,评估山火条件下输电线路跳闸风险。
(1)计算火焰燃烧高度H f
Figure PCTCN2021140623-appb-000006
式中,I为火线强度。计算如下式:
I=qWR……(2)
Figure PCTCN2021140623-appb-000007
K v=e 0.178v……(4)
Figure PCTCN2021140623-appb-000008
R 0=0.03T+0.05F+0.01H+0.7……(6)
式中,q为可燃物燃烧热值;W为下垫面可燃物载量;R为火蔓延速度;K c为可燃物类型修正系数,由下垫面可燃物的类型决定。由于主要考虑林木燃烧时的树冠火,取K c=1;
Figure PCTCN2021140623-appb-000009
和K v分别代表坡度修正系数和风速修正系数;R 0为初始火蔓延速度。v为时段内的风速;
Figure PCTCN2021140623-appb-000010
为坡度;T为温度;F为风的级数;H为相对湿度。
(2)对比火焰与输电线路的空间位置关系。
1)若火焰包络导线,则按照下式计算导线对地放电电压U g和相间放电电压U p
U g=(H l-H t)×E f=d l-t×E f……(7)
U p=d p×E f……(8)
式中:H l为导线考虑了弧垂后的对地高度,H t为输电走廊下方的最大树冠高度;d l-t为导线与树冠之间空气间隙长度;d p为导线的相间距离;E f为火焰平均耐受场强,根据木材火燃烧时长间隙击穿试验,火焰的平均耐受场强取35kV/m。
2)若火焰不包络导线,则按照下式计算导线对地放电电压U g和相间放电电压U p
U g=H f×E f+(H l-H t-H f)×E s……(9)
U p=d p×E s……(10)
式中,H f为由火焰燃烧模型计算得到的最大火焰燃烧高度;E s为山火条件下烟气平均耐受场强。计算如下式:
E s=K pK σK hE a……(11)
K σ=σ m……(12)
Figure PCTCN2021140623-appb-000011
Figure PCTCN2021140623-appb-000012
K h=k w……(15)
k=1+0.012(h/σ-11)……(16)
Figure PCTCN2021140623-appb-000013
式中,K p、K σ和K h分别为颗粒修正系数、空气密度修正系数和空气湿度修正系数,取K p=0.4;E a为标准的大气条件下(温度为20℃,湿度为11g/m 3,大气压力为101.3kPa)纯空气间隙的耐受场强;σ为烟气中的空气相对密度;m为空气密度修正指数,取m=1;T a为环境温度;ΔT为火焰燃烧时的空气温升;I为火线强度;H s为烟气间隙中点距离下垫面植被的高度,计算相间和线对地间隙的烟气平均耐受场强时,分别取H s=d l-t和H s=H f+(d l-t-H f)/2;w为湿度修正指数,取w=1;k为湿度修正底数,与绝对湿度n和烟气中的空气密度σ有关;d s为间隙距离。
(3)计算评估线路山火条件下的跳闸风险。
根据山火条件下导线对地放电电压U g和相间放电电压U p,评估山火跳闸风 险R。跳闸风险分级如下表1所示。
R=max(R g,R p)……(18)
Figure PCTCN2021140623-appb-000014
Figure PCTCN2021140623-appb-000015
式中,U为该线路的运行电压。
表1跳闸风险分级表
R 风险等级
R≤0.5 低风险
0.5<R≤0.8 中等风险
0.8<R≤1 中高风险
1<R 高风险
B)山火在线监测装置布点规划模块
具体可实现以下步骤:
步骤1,使用搭载激光雷达的无人机对输电线路走廊进行扫描,获取目标区域所有输电线路通道内线路和地表信息,包括杆塔经纬度信息,导线对地距离、相间距离、对地线距离等线路参数,树高、坡度和坡向等地表参数;气象数据从走廊所在区域周边气象站点获取。所有的气象数据取评估时段内平均值,由评估跳闸风险分布的时效要求决定(通常取年)。
步骤2,基于山火跳闸风险评估模块,基于山火条件下输电线路跳闸的风险评估模型,对每两基杆塔之间计算火焰高度,并根据输电线路火焰包络导线情况评估跳闸风险;并基于地理信息软件进行可视化,形成山火条件下输电线路跳闸风险分布走向图。
步骤3,收集目标区域内1km×1km分辨率下山火影响因子数据。其中,包括人为因子、地表因子和气象因子。如表2所示。
表2山火影响因子
人为因子 地表因子 气象因子
火点密度 海拔 年均温度
距离居民点远近 坡度 年降水量
距离道路远近 坡向
GDP 植被类型
人口密度 土地利用类型
植被指数NDVI
步骤4,引入贝叶斯理论模型,分别基于朴素贝叶斯、加权贝叶斯和贝叶斯 网络,求解在各山火影响因子综合作用下山火发生概率,并根据计算效率,选择最优贝叶斯山火发生概率模型,求解山火发生风险P。山火发生风险分级如下表3所示。
表3山火发生风险分级表
P 风险等级
P≤0.25 低风险
0.25<R≤0.5 中等风险
0.5<R≤0.75 中高风险
0.75<R 高风险
步骤4,基于最优贝叶斯山火发生概率模型,计算目标区域内1km×1km分辨率的山火发生概率并分级处理。在地理信息软件进行可视化,形成山火发生风险分布图。
步骤5,根据步骤2和步骤4分别评估的山火条件下输电线路跳闸风险分布走向图和山火发生风险分布图,对风险进行平均向上取整,得到最终输电线路山火跳闸风险分布图。分级原则见下表:
表4输电线路山火跳闸风险分级原则
Figure PCTCN2021140623-appb-000016
步骤6,构建输电线路山火风险隐患指数,指导安装山火在线监测装置。
将南方电网的山火监测盲区分布记为x 1,对其进行重要性综合评分。若输电线路处于监测盲区内,则计4分,否则计1分。对南方电网境内的输电线路电压等级进行重要性综合评分记为x 2。其中500kV及以上线路计4分,220kV线路计2分,110kV线路计1分,若对于电网稳定性极为重要的输电线路或重点交叉线路在原电压等级的记分方式基础上加1分。将获得的南方电网输电走廊山火跳闸风险等级记为x 3,高风险线路计4分,中高风险线路计3分,中风险线路计2分,低风险线路计1分。各隐患指标的计分如表1所示。得到的书店走廊山火风险隐患指数Y如下式:
Y=αx 1+βx 2+γx 3……(21)
式中,α、β和γ为分别为山火防灾减灾领域内专家经分析后,利用层次分析法确定的权重值。α=0.4,β=0.2,γ=0.4。
表5输电线路山火风险隐患指数评分准则
山火风险隐患指标 1分 2分 3分 4分
卫星监测盲区x 1
线路重要等级x 2 35kV 110kV 220kV 500kV及以上
输电走廊山火跳闸风险等级x 3 低风险 中风险 中高风险 高风险
C)立体化输电走廊山火监测告警模块
具体可实现以下步骤:
步骤1,获取多源卫星的遥感数据,包括7颗极轨卫星和2颗静止卫星数据。各卫星监测特性如表2所示;获取输电线路高山火风险隐患区在线监测装置图像视频数据和山火高发期无人机特殊巡线任务图像视频数据。构建输电走廊山火监测数据库。立体化监测系统包括以下方面:
1)基于多源卫星遥感,实现目标区域24小时不间断的高频次、广地域的火点监测;
2)由于静止卫星与地球自转同步,且视域仰角导致存在的山体与地形遮挡和极端天气下的云层遮挡问题,不可避免地存在一定的监测盲区。因此,综合考虑了卫星监测盲区、山火跳闸风险等级和线路重要等级三个指标,构建输电线路山火风险隐患指数。在高山火风险隐患的局部重点输走廊区段装设在线监测装置,弥补卫星遥感在监测方面的失灵。
3)在山火高发期,多处山火往往同时或者相继发生。为提高运维单位巡线效率,基于输电线路山火跳闸风险分布图,采用无人机对高跳闸风险线路进行逐时段的特殊巡查任务,严防严控山火发生发展对电力系统造成的负面影响。
表6各类卫星监测特征
Figure PCTCN2021140623-appb-000017
Figure PCTCN2021140623-appb-000018
步骤2,根据监测数据来源,实现卫星遥感、在线监测装置和无人机的立体化并行山火监测告警通道:
(1)多源卫星配合策略
1)错开GK-2A与Himiwari-8两个静止卫星数据接入时间(时间分辨率10min/次),将监测时间分辨率提升至5min/次。当存在两颗卫星均监测到山火的情况,则根据日常运行经验,选择监测火点空间位置偏差较小的卫星数据评估是否需要告警;
2)极轨气象卫星受其过境时间限制,无法实现24小时监测。但距地距离 近,火点监测空间灵敏度高。落在其过境时间内的火点,则优先考虑选择极轨卫星数据评估是否需要进行告警;
3)确定火点后,计算火点距离输电线路的最短距离,根据山火条件下跳闸风险评估模型实时收集数据评估跳闸风险:
①距离大于3km,若跳闸风险低,则暂不发布告警;若跳闸风险高,则继续观察山火蔓延方向;
②距离在1.5km-3km,若跳闸风险较低,则暂不发布告警;若跳闸风险高,则发布告警;
③距离小于1.5km,则直接发布告警。
(2)在线监测装置监测策略
基于在线监测装置传回来的图像视频信息综合计算机和人工判识是否发生山火。当山火发生在输电走廊通道内,则及时发布告警;并根据火势大小、下垫面情况接入无人机,高效巡查输电走廊山火蔓延情况,制定运维措施。
(3)无人机特巡
在山火高发期,提前规划输电线路的特殊巡查任务。基于山火跳闸风险分布图,对中高风险以上输电走廊区段,接入无人机进行全局的扫视,预先部署预先决策。
在本申请的实施例中,立体化输电走廊山火监测和防治系统中包括的山火跳闸风险评估模块110、山火在线监测装置布点规划模块120和立体化输电走廊山火监测告警模块130,分别可以是具有通信接口能够实现通信协议的一个或多个处理器、控制器或者芯片,如有需要还可以包括存储器及相关的接口、系统传输总线等;所述处理器、控制器或者芯片执行程序相关的代码实现相应的功能。或者,可替换的方案为,山火跳闸风险评估模块110、山火在线监测装置布点规划模块120和立体化输电走廊山火监测告警模块130共享一个集成芯片或者共享处理器、控制器、存储器等设备。所述共享的处理器、控制器或者芯片执行程序相关的代码实现相应的功能。山火在线监测装置包括传感器和摄像头等部件,具有一个或多个处理器、控制器或者芯片,如有需要还可以包括存储器及相关的接口、系统传输总线等。
综上,本实施例中公开了基于火焰燃烧模型的输电线路山火条件下跳闸风险评估方法,基于贝叶斯理论模型的山火发生风险评估方法以及综合二者的山火跳闸风险评估方法;并且综合考虑输电线路山火跳闸风险、卫星监测盲区和线路重要等级构建的输电线路山火风险隐患指数,指导在线监测装置的安装;最后,还包括了综合卫星遥感、在线监测装置和无人机的输电线路山火监测告警系统。
基于上述的立体化输电走廊山火监测和防治系统,本申请害提出一种立体 化输电走廊山火监测和防治方法,请参阅图3,图3是本申请立体化输电走廊山火监测和防治方法一实施例的流程示意图。在本实施例中,立体化输电走廊山火监测和防治方法可以包括以下步骤:
S110:当输电线路走廊监测到山火时,实时评估山火跳闸风险进而确定是否发布山火告警。
S120:根据山火跳闸风险、卫星监测盲区和输电线路的重要等级生成输电线路的山火在线监测装置的布点规划。
S130:根据布点规划装设的山火在线监测装置、多源卫星监测以及无人机巡查实现立体化的输电走廊山火监测;其中,山火在线监测装置装设在多源卫星遥感的监测盲区,无人机在预设期间能够对输电走廊进行巡查。
可选地,根据山火跳闸风险、卫星监测盲区和输电线路的重要等级生成输电线路的山火在线监测装置的布点规划之前,包括:根据山火条件下导线对地放电电压U g和相间放电电压U p,评估山火跳闸风险R;其中,R=max(R g,R p);
Figure PCTCN2021140623-appb-000019
U为当前输电线路的运行电压;R g为与对地放电电压U g相关的山火风险;R p为与相间放电电压U p相关的山火风险;根据山火跳闸风险R划分输电线路的重要等级,其中重要等级包括低风险、中等风险、中高风险和高风险。
基于上述的立体化输电走廊山火监测和防治方法,本申请还提出一种电子设备,如图4所示,图4是本申请电子设备一实施例的结构示意图。电子设备400可以包括存储器41和处理器42,存储器41连接处理器42,存储器41中存储有计算机程序,计算机程序被处理器42执行时实现上述任一实施例的方法。其步骤和原理在上述方法已详细介绍,在此不再赘述。
在本实施例中,处理器42还可以称为CPU(centralprocessingunit,中央处理单元)。处理器42可以是一种集成电路芯片,具有信号的处理能力。处理器42还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
基于上述的立体化输电走廊山火监测和防治方法,本申请还提出一种计算机可读存储介质。请参阅图5,图5是本申请计算机可读存储介质一实施例的结构示意图。计算机可读存储介质500上存储有计算机程序51,计算机程序51被处理器执行时实现上述任一实施例的方法。其步骤和原理在上述方法已详细介绍,在此不再赘述。
进一步的,计算机可读存储介质500还可以是U盘、移动硬盘、只读存储 器(read-onlymemory,ROM)、随机存储器(random access memory,RAM)、磁带或者光盘等各种可以存储程序代码的介质。
可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。另外为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。文中所使用的步骤编号也仅是为了方便描述,不对作为对步骤执行先后顺序的限定。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种立体化输电走廊山火监测和防治系统,其特征在于,包括:
    山火跳闸风险评估模块,用于当输电线路走廊监测到山火时,实时评估山火跳闸风险进而确定是否发布山火告警;
    山火在线监测装置布点规划模块,用于根据山火跳闸风险、卫星监测盲区和输电线路的重要等级生成所述输电线路的山火在线监测装置的布点规划;
    立体化输电走廊山火监测告警模块,采用多源卫星和无人机,用于根据所述布点规划装设的所述山火在线监测装置、多源卫星监测以及无人机巡查实现立体化的输电走廊山火监测;其中,所述山火在线监测装置装设在所述多源卫星遥感的监测盲区,所述无人机在预设期间能够对输电走廊进行巡查。
  2. 根据权利要求1所述的立体化输电走廊山火监测和防治系统,其特征在于,所述山火跳闸风险评估模块还用于:
    基于火焰燃烧模型,构建山火条件下输电线路跳闸的风险评估模型,根据所述风险评估模型,实时评估山火跳闸风险,并输出评估结果,其中,所述评估结果用于指导运维人员巡查所述输电线路。
  3. 根据权利要求2所述的立体化输电走廊山火监测和防治系统,其特征在于,所述山火跳闸风险评估模块还用于:
    根据山火条件下导线对地放电电压U g和相间放电电压U p,评估山火跳闸风险R;其中,R=max(R g,R p);
    Figure PCTCN2021140623-appb-100001
    U为当前输电线路的运行电压;R g为与对地放电电压U g相关的山火风险;R p为与相间放电电压U p相关的山火风险;
    根据所述山火跳闸风险R划分输电线路的重要等级,其中所述重要等级包括低风险、中等风险、中高风险和高风险。
  4. 根据权利要求1所述的立体化输电走廊山火监测和防治系统,其特征在于,所述山火在线监测装置布点规划模块还用于:
    基于贝叶斯理论模型,根据山火影响因子评估目标区域内山火发生风险分布;其中,所述山火影响因子包括气象因子、地表因子和人为因子;通过所述无人机搭载激光雷达扫描输电走廊通道以及通过所述目标区域内气象站点分布,获取山火跳闸风险评估的影响因子,静态评估山火条件下输电走廊跳闸风险分布,并叠加山火风险得到山火跳闸风险分布图。
  5. 根据权利要求4所述的立体化输电走廊山火监测和防治系统,其特征在于,所述山火在线监测装置布点规划模块还用于:
    使用搭载激光雷达的无人机对输电线路走廊进行扫描,获取目标区域所有输电线路通道内的线路和地表信息,其中,所述线路和地表信息包括杆塔经纬度信息,导线对地距离、相间距离、对地线距离、树高、坡度和坡向和气象数据;
    根据所述山火跳闸风险评估模块生成的评估结果形成山火条件下输电线路跳闸风险分布走向图;
    根据贝叶斯理论模型,分别基于朴素贝叶斯、加权贝叶斯和贝叶斯网络,求解在各山火影响因子综合作用下山火发生概率,并根据计算效率,选择最优贝叶斯山火发生概率模型,求解山火发生风险P;
    根据所述山火发生风险P划分山火发生的风险等级,其中所述风险等级包括低风险、中等风险、中高风险和高风险;
    基于最优贝叶斯山火发生概率模型,计算目标区域内预设分辨率的山火发生概率并分级处理,形成山火发生风险分布图;
    根据所述山火条件下输电线路跳闸风险分布走向图和所述山火发生风险分布图,对风险进行平均向上取整,得到最终输电线路山火跳闸风险分布图。
  6. 根据权利要求5所述的立体化输电走廊山火监测和防治系统,其特征在于,所述立体化输电走廊山火监测告警模块还用于:
    获取多源卫星的遥感数据,其中,所述多源卫星至少包括1颗极轨卫星和1颗静止卫星数据;获取输电线路的高风险区域的在线监测装置图像视频数据和所述预设期间内无人机巡线任务图像视频数据,构建输电走廊山火监测数据库;
    根据所述输电走廊山火监测数据库的数据,实现卫星遥感、在线监测装置和无人机的立体化并行山火监测告警通道。
  7. 一种立体化输电走廊山火监测和防治方法,其特征在于,包括:
    当输电线路走廊监测到山火时,实时评估山火跳闸风险进而确定是否发布山火告警;
    根据山火跳闸风险、卫星监测盲区和输电线路的重要等级生成所述输电线路的山火在线监测装置的布点规划;
    根据所述布点规划装设的所述山火在线监测装置、多源卫星监测以及无人机巡查实现立体化的输电走廊山火监测;其中,所述山火在线监测装置装设在所述多源卫星遥感的监测盲区,所述无人机在预设期间能够对输电走廊进行巡查。
  8. 根据权利要求7所述的立体化输电走廊山火监测和防治方法,其特征在于,所述根据山火跳闸风险、卫星监测盲区和输电线路的重要等级生成所述输电线路的山火在线监测装置的布点规划之前,包括:
    根据山火条件下导线对地放电电压U g和相间放电电压U p,评估山火跳闸风险R;其中,R=max(R g,R p);
    Figure PCTCN2021140623-appb-100002
    U为当前输电线路的运行电压;R g为与对地放电电压U g相关的山火风险;R p为与相间放电电压U p相关的山火风险;
    根据所述山火跳闸风险R划分输电线路的重要等级,其中所述重要等级包括低风险、中等风险、中高风险和高风险。
  9. 一种电子设备,其特征在于,包括存储器和处理器,所述存储器连接所述处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时实现权利要求7-8中任一项所述的立体化输电走廊山火监测和防治方法。
  10. 一种计算机可读存储介质,其特征在于,存储有计算机程序,所述计算机程序被执行时实现权利要求7-8任一项所述的立体化输电走廊山火监测和防治方法。
PCT/CN2021/140623 2021-09-10 2021-12-22 一种立体化输电走廊山火监测与防控方法及系统 WO2023035494A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111065829.6A CN113793021B (zh) 2021-09-10 2021-09-10 立体化输电走廊山火监测装置及方法
CN202111065829.6 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023035494A1 true WO2023035494A1 (zh) 2023-03-16

Family

ID=79182949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140623 WO2023035494A1 (zh) 2021-09-10 2021-12-22 一种立体化输电走廊山火监测与防控方法及系统

Country Status (2)

Country Link
CN (1) CN113793021B (zh)
WO (1) WO2023035494A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116362631A (zh) * 2023-06-02 2023-06-30 国网安徽省电力有限公司经济技术研究院 一种基于大数据的直流配电网运行安全性评价系统
CN117764991A (zh) * 2024-02-22 2024-03-26 国网江苏省电力有限公司 一种变压器增容运行风险控制方法及装置
CN117993696A (zh) * 2024-04-07 2024-05-07 国网安徽省电力有限公司巢湖市供电公司 基于无人机电力巡检的风险管理系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113793021B (zh) * 2021-09-10 2024-05-14 广东电网有限责任公司 立体化输电走廊山火监测装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105243459A (zh) * 2015-11-12 2016-01-13 华北电力大学 综合气象及人工防火措施的输电线路山火跳闸风险控制方法
US20160313120A1 (en) * 2013-12-16 2016-10-27 Obshestvo S Ogranichennoj Otvetstvennostyu "Disikon" Method for determination of optimal forest video monitoring system configuration
CN108958081A (zh) * 2018-08-28 2018-12-07 国网湖南省电力有限公司 输电线路山火的同步卫星-地面联动的监测方法及系统
CN109100958A (zh) * 2018-08-28 2018-12-28 国网湖南省电力有限公司 输电线路山火的极轨卫星-地面联动的监测方法及系统
CN110955744A (zh) * 2019-12-06 2020-04-03 国网湖南省电力有限公司 一种基于多源数据的输电线路山火监测预警方法及系统
CN113793021A (zh) * 2021-09-10 2021-12-14 广东电网有限责任公司 立体化输电走廊山火监测装置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104376510B (zh) * 2014-12-05 2017-04-26 国家电网公司 一种输电线路因山火跳闸的风险等级预测评估方法
CN106021666B (zh) * 2016-05-10 2019-03-12 四川大学 一种架空输电线路的山火灾害预警方法
CN106157178A (zh) * 2016-07-29 2016-11-23 国网电力科学研究院武汉南瑞有限责任公司 一种输电线路走廊周边山火发展趋势预测方法
CN109378818B (zh) * 2018-10-25 2020-02-04 国网湖南省电力有限公司 电网山火灾害并发连锁故障的风险分析方法及系统
CN110570615A (zh) * 2019-09-04 2019-12-13 云南电网有限责任公司带电作业分公司 天空地联合的输电线路通道山火趋势预警方法、装置、系统及存储介质
CN112465926B (zh) * 2020-11-26 2022-01-11 广东电网有限责任公司电力科学研究院 一种输电线路山火跳闸风险分布图绘制方法和系统
CN113159639A (zh) * 2021-05-17 2021-07-23 广东电网有限责任公司 一种输电线路山火跳闸风险评估方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160313120A1 (en) * 2013-12-16 2016-10-27 Obshestvo S Ogranichennoj Otvetstvennostyu "Disikon" Method for determination of optimal forest video monitoring system configuration
CN105243459A (zh) * 2015-11-12 2016-01-13 华北电力大学 综合气象及人工防火措施的输电线路山火跳闸风险控制方法
CN108958081A (zh) * 2018-08-28 2018-12-07 国网湖南省电力有限公司 输电线路山火的同步卫星-地面联动的监测方法及系统
CN109100958A (zh) * 2018-08-28 2018-12-28 国网湖南省电力有限公司 输电线路山火的极轨卫星-地面联动的监测方法及系统
CN110955744A (zh) * 2019-12-06 2020-04-03 国网湖南省电力有限公司 一种基于多源数据的输电线路山火监测预警方法及系统
CN113793021A (zh) * 2021-09-10 2021-12-14 广东电网有限责任公司 立体化输电走廊山火监测装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANG YU; ZHOU LAWU; CHEN JIE; HUANG YONG; WEI RUIZENG; ZHOU ENZE: "Monitoring and Risk Assessment of Wildfires in the Corridors of High-Voltage Transmission Lines", IEEE ACCESS, IEEE, USA, vol. 8, 9 September 2020 (2020-09-09), USA , pages 170057 - 170069, XP011810387, DOI: 10.1109/ACCESS.2020.3023024 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116362631A (zh) * 2023-06-02 2023-06-30 国网安徽省电力有限公司经济技术研究院 一种基于大数据的直流配电网运行安全性评价系统
CN116362631B (zh) * 2023-06-02 2023-08-11 国网安徽省电力有限公司经济技术研究院 一种基于大数据的直流配电网运行安全性评价系统
CN117764991A (zh) * 2024-02-22 2024-03-26 国网江苏省电力有限公司 一种变压器增容运行风险控制方法及装置
CN117764991B (zh) * 2024-02-22 2024-04-26 国网江苏省电力有限公司 一种变压器增容运行风险控制方法及装置
CN117993696A (zh) * 2024-04-07 2024-05-07 国网安徽省电力有限公司巢湖市供电公司 基于无人机电力巡检的风险管理系统及方法

Also Published As

Publication number Publication date
CN113793021B (zh) 2024-05-14
CN113793021A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2023035494A1 (zh) 一种立体化输电走廊山火监测与防控方法及系统
CN110570615A (zh) 天空地联合的输电线路通道山火趋势预警方法、装置、系统及存储介质
Yair Lightning hazards to human societies in a changing climate
Sreenath et al. Solar photovoltaics in airport: Risk assessment and mitigation strategies
CN106886841B (zh) 无需实时采集现场信息的线路山火灾害评估方法及系统
CN110009031B (zh) 一种基于多源遥感数据的卫星山火火点二次筛选方法
KR20200046660A (ko) 재난안전 통합관리 시스템 및 그 방법
CN109448292A (zh) 一种电网山火监测预警方法
CN104951585A (zh) 一种基于电网设备的台风预警方法及装置
CN114067545B (zh) 一种基于遥感大数据的森林火灾监测方法及系统
CN111612315A (zh) 一种新型电网灾害性大风预警方法
CN110766685A (zh) 一种基于遥感数据云检测的输电线路山火监测方法及系统
KR20150066052A (ko) 대형산불위험 예보방법 및 이를 위한 시스템
CN110807891A (zh) 一种电网山火监测预警系统及方法
Liang et al. Monitoring and risk assessment of wildfires in the corridors of high-voltage transmission lines
CN213716108U (zh) 一种森林防火预警检测系统
CN113298295A (zh) 一种面向电力生产的气象预报系统
CN113204736A (zh) 森林火险实时监控和预测预报的方法、系统、介质及设备
CN116428992A (zh) 基于激光点云输电线覆冰厚度检测与融冰防灾方法及系统
CN110969798A (zh) 一种输电线路山火预警方法及系统
CN113344735B (zh) 电网设备的防灾减灾监测预警系统
CN107424078A (zh) 基于卫星遥感的火点数据导致输电线路闪络的计算方法
CN106909918B (zh) 基于输电线路沿线卫星图像的山火危险性辨识方法
CN115619609B (zh) 一种基于三维可视化数据的消防警示方法及系统
US20240216731A1 (en) Three-dimensional wildfire monitoring and control method and system for power transmission corridor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17800571

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE