WO2023035489A1 - 一种信号传输方法和信号传输装置 - Google Patents

一种信号传输方法和信号传输装置 Download PDF

Info

Publication number
WO2023035489A1
WO2023035489A1 PCT/CN2021/140189 CN2021140189W WO2023035489A1 WO 2023035489 A1 WO2023035489 A1 WO 2023035489A1 CN 2021140189 W CN2021140189 W CN 2021140189W WO 2023035489 A1 WO2023035489 A1 WO 2023035489A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
frequency transceiver
signal
sub6
electrically connected
Prior art date
Application number
PCT/CN2021/140189
Other languages
English (en)
French (fr)
Inventor
何文卿
Original Assignee
上海闻泰电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海闻泰电子科技有限公司 filed Critical 上海闻泰电子科技有限公司
Publication of WO2023035489A1 publication Critical patent/WO2023035489A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3833Hand-held transceivers
    • H04B1/3838Arrangements for reducing RF exposure to the user, e.g. by changing the shape of the transceiver while in use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode

Definitions

  • the present disclosure relates to a signal transmission method and a signal transmission device.
  • the millimeter-wave antenna is a carrier installed on the mobile terminal for radio frequency transmission.
  • the mobile terminal and the receiving device perform signal transmission and reception, and the millimeter-wave antenna can be used for signal transmission.
  • the millimeter-wave antenna transmits signals
  • the radio frequency signal emitted by the millimeter-wave antenna passes through the human body
  • an induced electromagnetic field will be generated in the human body under the action of an external electromagnetic field, which will cause certain radiation damage to the human body.
  • SAR Specific Absorption Ratio
  • Reducing the transmission power of the radio frequency signal of the millimeter wave antenna will cause a high degree of attenuation of the radio frequency signal, thereby causing communication interruption between the mobile terminal and the receiving device.
  • a signal transmission method and a signal transmission device are provided.
  • An embodiment of the present disclosure provides a signal transmission method, including:
  • the millimeter wave antenna transmits the millimeter wave signal, acquire the scanning state of the camera set on the mobile terminal, the scanning state is used to indicate the occlusion information of the camera;
  • the determining the target radio frequency transceiver for transmitting radio frequency signals according to the scanning state of the camera includes: controlling the detection module to output a detection signal according to the scanning state of the camera signal, wherein the scanning status includes shielding or no shielding; and a target radio frequency transceiver for transmitting radio frequency signals is determined according to the detection signal.
  • the determining the target radio frequency transceiver for transmitting radio frequency signals according to the scanning state of the camera includes: when the scanning state of the camera is unobstructed, controlling the detection The module outputs a first detection signal; according to the first detection signal, it is determined that the target radio frequency transceiver used to transmit the radio frequency signal is a millimeter wave radio frequency transceiver; the controlling the target radio frequency transceiver to transmit the radio frequency signal through the radio frequency transmission path includes : controlling the millimeter wave radio frequency transceiver to transmit radio frequency signals through the first radio frequency transmission path.
  • the determining the target radio frequency transceiver for transmitting radio frequency signals according to the scanning state of the camera includes: when the scanning state of the camera is blocked, controlling the detection module Outputting a second detection signal; determining the target radio frequency transceiver for transmitting radio frequency signals according to the second detection signal is a SUB6 radio frequency transceiver; controlling the target radio frequency transceiver to transmit radio frequency signals through a radio frequency transmission path, including: controlling The SUB6 radio frequency transceiver transmits radio frequency signals through the second radio frequency transmission path.
  • the method further includes: acquiring a power value of the radio frequency signal transmitted by the SUB6 radio frequency transceiver through the second radio frequency transmission channel; according to the power value and the preset power value The relationship controls the strength of the radio frequency signal transmitted by the SUB6 radio frequency transceiver through the second radio frequency transmission path.
  • the controlling the intensity of the radio frequency signal transmitted by the SUB6 radio frequency transceiver through the second radio frequency transmission channel according to the relationship between the power value and the preset power value includes: Judging whether the power value is greater than the preset power value; under the condition that the power value is determined to be greater than the preset power value, reduce the intensity of the radio frequency signal transmitted by the SUB6 radio frequency transceiver through the second radio frequency transmission path.
  • the radio frequency signal is normally transmitted through the second radio frequency transmission path.
  • the frequency band of the radio frequency signal transmitted by the SUB6 radio frequency transceiver is smaller than the frequency band of the radio frequency signal transmitted by the millimeter wave radio frequency transceiver.
  • a signal transmission device using the method described in any one of the above embodiments, including: a millimeter wave radio frequency transceiver, a first radio frequency transmission path, a millimeter wave antenna, a SUB6 radio frequency transceiver, a second radio frequency transmission path, and a SUB6 antenna and control modules;
  • the millimeter wave transmission port of the millimeter wave radio frequency transceiver is electrically connected to the first end of the first radio frequency transmission path, and the second end of the first radio frequency transmission path is electrically connected to the millimeter wave antenna;
  • the transmitting port of the SUB6 radio frequency transceiver is electrically connected to the first end of the second radio frequency transmission path, and the second end of the second radio frequency transmission path is electrically connected to the SUB6 antenna;
  • the first end of the control module is electrically connected to the control end of the millimeter-wave radio frequency transceiver, and the second end of the control module is electrically connected to the control end of the SUB6 radio frequency transceiver.
  • a first control signal is output to the millimeter wave radio frequency transceiver, or a second control signal is output to the SUB6 radio frequency transceiver.
  • it further includes: a detection module, the first end of the detection module is electrically connected to the SUB6 antenna, and the second end of the detection module is connected to the second end of the control module. Three-terminal electrical connection.
  • the second radio frequency transmission path includes a coupler, a first end of the coupler is electrically connected to the transmission port, and a second end of the coupler is connected to the The SUB6 antenna is electrically connected, and the third end of the coupler is electrically connected to the power detection port of the SUB6 radio frequency transceiver.
  • the millimeter-wave antenna includes a first millimeter-wave antenna, a second millimeter-wave antenna, a third millimeter-wave antenna, and a fourth millimeter-wave antenna;
  • the first radio frequency transmission path including a first amplifier, a circulator and a phase shifter;
  • the first end of the first amplifier is electrically connected to the millimeter wave transmitting port of the millimeter wave radio frequency transceiver, the second end of the first amplifier is electrically connected to the first end of the circulator, and the circulator
  • the second end of the phase shifter is electrically connected to the first end of the phase shifter, the second end of the phase shifter is electrically connected to the first millimeter-wave antenna, and the third end of the phase shifter is electrically connected to the first millimeter wave antenna.
  • the two millimeter wave antennas are electrically connected, the fourth end of the phase shifter is electrically connected to the third millimeter wave antenna, and the fifth end of the phase shifter is electrically connected to the fourth millimeter wave antenna.
  • the second radio frequency transmission path further includes a second amplifier, a first switch unit, a duplexer, a filter, and a second switch unit;
  • the first end of the second amplifier is electrically connected to the transmitting port of the SUB6 radio frequency transceiver, the second end of the second amplifier is electrically connected to the static contact of the first switch unit, and the first switch
  • the first moving contact of the unit is electrically connected to the first end of the duplexer, the second moving contact of the first switch unit is electrically connected to the first end of the filter, and the duplexer
  • the second terminal is electrically connected to the first movable contact of the second switch unit, the second terminal of the filter is electrically connected to the second movable contact of the second switch unit, and the second terminal of the second switch unit is electrically connected to the second movable contact of the second switch unit.
  • the static contact is electrically connected with the first end of the coupler.
  • a signal transmission device comprising:
  • the scanning state acquisition module is configured to obtain the scanning state of the camera set on the mobile terminal when the millimeter wave antenna transmits the millimeter wave signal, and the scanning state is used to indicate the occlusion information of the camera;
  • a target radio frequency transceiver determining module configured to determine a target radio frequency transceiver for transmitting radio frequency signals according to the scanning state of the camera;
  • a control module configured to control the target radio frequency transceiver to transmit a radio frequency signal through a radio frequency transmission path.
  • the target radio frequency transceiver determination module is specifically configured to: control the detection module to output a detection signal according to the scanning state of the camera, wherein the scanning state includes blocking or No occlusion; determining a target radio frequency transceiver for transmitting radio frequency signals according to the detection signal.
  • the target radio frequency transceiver determination module is specifically configured to control the detection module to output a first detection signal when the scanning state of the camera is unobstructed; according to the first The detection signal determines that the target radio frequency transceiver for transmitting radio frequency signals is a millimeter wave radio frequency transceiver; the control module is specifically configured to control the millimeter wave radio frequency transceiver to transmit radio frequency signals through the first radio frequency transmission path.
  • the target radio frequency transceiver determination module is further configured to control the detection module to output a second detection signal when the scanning state of the camera is blocked; according to the second The detection signal determines that the target radio frequency transceiver for transmitting radio frequency signals is the SUB6 radio frequency transceiver; the control module is also configured to control the SUB6 radio frequency transceiver to transmit radio frequency signals through the second radio frequency transmission path.
  • the power value acquisition module is configured to acquire the power value of the radio frequency signal transmitted by the SUB6 radio frequency transceiver through the second radio frequency transmission channel;
  • the radio frequency signal intensity control module is configured to be based on The relationship between the power value and the preset power value controls the intensity of the radio frequency signal transmitted by the SUB6 radio frequency transceiver through the second radio frequency transmission path.
  • a computer device comprising: a memory and one or more processors, the memory having computer-readable instructions stored therein; when executed by the one or more processors, the computer-readable instructions cause the one or more A plurality of processors execute the steps of the signal transmission method provided in any one embodiment of the present disclosure.
  • One or more non-transitory computer-readable storage media storing computer-readable instructions that, when executed by one or more processors, cause the one or more processors to perform any In one embodiment, steps of a signal transmission method are provided.
  • Fig. 1 is a schematic flowchart of a signal transmission method provided by one or more embodiments of the present disclosure
  • Fig. 2 is a schematic flowchart of another signal transmission method provided by one or more embodiments of the present disclosure
  • Fig. 3 is a schematic flowchart of another signal transmission method provided by one or more embodiments of the present disclosure.
  • Fig. 4 is a schematic flowchart of another signal transmission method provided by one or more embodiments of the present disclosure.
  • Fig. 5 is a schematic flowchart of another signal transmission method provided by one or more embodiments of the present disclosure.
  • Fig. 6 is a schematic structural diagram of a signal transmission device provided by one or more embodiments of the present disclosure.
  • Fig. 7 is a schematic structural diagram of another signal transmission device provided by one or more embodiments of the present disclosure.
  • Fig. 8 is a schematic structural diagram of another signal transmission device provided by one or more embodiments of the present disclosure.
  • Fig. 9 is a schematic structural diagram of another signal transmission device provided by one or more embodiments of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present disclosure shall not be construed as being preferred or advantageous over other embodiments or designs. To be precise, the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner. In addition, in the description of the embodiments of the present disclosure, unless otherwise specified, the meaning of "plurality” refers to two one or more.
  • the technical solutions of the present disclosure can be applied to electronic equipment, where the electronic equipment can be a computer, a tablet, a mobile phone, or other intelligent terminal equipment.
  • the electronic device has a display screen, wherein the display screen can be a touch screen or a non-touch screen.
  • the user can interact with the electronic device through gestures, fingers or touch tools (for example, a stylus) operate.
  • the interactive operation with the electronic devices can be realized through external devices (for example, a mouse, a keyboard, or a camera, etc.) or voice recognition or facial expression recognition.
  • the present disclosure does not limit the type of the operating system of the electronic device.
  • Android system Linux system
  • Windows system iOS system
  • Fig. 1 is a schematic flowchart of a signal transmission method provided by an embodiment of the present disclosure, and this embodiment is applicable to the case of transmitting signals in electronic devices.
  • the method in this embodiment can be executed by a controller in the electronic device.
  • the controller can be implemented in hardware/or software, and can be configured in the electronic device to implement the signal transmission method described in any embodiment of the present application.
  • the method specifically includes the following:
  • the scanning state is used to indicate the occlusion information of the camera.
  • the mobile terminal is a type of electronic device with a millimeter wave antenna, such as a smart phone, a tablet computer, a wearable device, and the like.
  • a camera is installed on the mobile terminal, and the camera is used to scan the external environment of the mobile terminal, so as to determine the relative position of the mobile terminal and the user or the people in contact with.
  • the camera may be a front camera of the mobile terminal or a rear camera of the mobile terminal, and this embodiment does not limit the installation position of the camera on the mobile terminal.
  • the camera set on the mobile terminal is obtained.
  • the scanning state is to determine whether there is a human body approaching the terminal device according to the acquired scanning state of the camera set on the mobile terminal.
  • the camera when the user uses the mobile terminal to communicate with the receiving device, the camera may be blocked.
  • the millimeter-wave antenna is used to transmit the millimeter-wave signal to communicate with the receiving device, the millimeter-wave signal emitted by the millimeter-wave antenna will affect the human body. cause electromagnetic radiation. Therefore, when the scanning state of the acquired camera is the blocking state, determine that the target RF transceiver for transmitting the RF signal is the SUB6 RF transceiver, and when the scanning state of the acquired camera is the non-blocking state, determine that the target RF transceiver for transmitting the RF signal is millimeter wave radio frequency transceiver.
  • the target RF transceiver for transmitting RF signals is the SUB6 RF transceiver, and the RF signal emitted by the SUB6 RF transceiver Compared with the frequency band of the radio frequency signal emitted by the millimeter wave radio frequency transceiver, the frequency band is lower, thereby reducing the damage caused to the user by the radio frequency signal transmitted when the terminal device communicates with the transceiver device.
  • the target RF transceiver for transmitting RF signals is a millimeter wave RF transceiver, millimeter wave RF transceiver
  • the frequency band of the transmitted radio frequency signal is higher than that of the radio frequency signal transmitted by the SUB6 radio frequency transceiver, so as to ensure the transmission speed of the signal.
  • the receiving device may be an electronic device for information exchange between mobile terminals, such as a millimeter wave base station, millimeter wave test equipment, and the like.
  • the target radio frequency transceiver for transmitting radio frequency signals is determined according to the scanning state of the camera, the target radio frequency transceiver is controlled to transmit radio frequency signals through the radio frequency transmission path, and the target radio frequency transceiver is used to transmit and/or receive signals with the receiving device, thereby , so that the mobile terminal can realize signal communication with the receiving device through the target radio frequency transceiver.
  • the scanning state of the camera set on the mobile terminal is obtained, and the scanning state is used to indicate the occlusion information of the camera; according to the scanning state of the camera, determine The target radio frequency transceiver used to transmit radio frequency signals; control the target radio frequency transceiver to transmit radio frequency signals through the radio frequency transmission channel, so that when the millimeter wave antenna transmits the millimeter wave signal, in order to avoid the interference of the transmitted millimeter wave signal caused by the user's proximity to the mobile terminal
  • the user generates radiation, and according to the scanning state of the acquired camera, the target RF transceiver for transmitting RF signals is determined, so that the mobile terminal can realize signal communication with the receiving device through the target RF transceiver, reducing the radiation of RF signals to the human body.
  • Fig. 2 is a schematic flow chart of another signal transmission method provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure is based on the above embodiments.
  • a possible implementation of step S20 includes:
  • the control detection module After obtaining the scanning state of the camera, according to the scanning state of the camera, the control detection module outputs a detection signal. Specifically, when the scanning state of the camera is unoccluded, the control detection module outputs the first detection signal. When the scanning state of the camera is blocked , controlling the detection module to output the second detection signal.
  • the target radio frequency transceiver for transmitting the radio frequency signal may be determined according to the acquired detection signal output by the detection module. Specifically, when the detection module outputs the first detection signal, that is, it can be determined that the camera scanning state is unobstructed at this time, that is, no user is close to the mobile terminal, at this time, it is determined according to the first detection signal that the target radio frequency transceiver for transmitting the radio frequency signal is The millimeter-wave radio frequency transceiver, that is, when no user is close to the mobile terminal, transmitting millimeter-wave radio frequency signals through the millimeter-wave radio frequency transceiver can ensure the transmission speed of the signal between the terminal device and the receiving device.
  • the detection module When the detection module outputs the second detection signal, that is, it can be determined that the scanning state of the camera is blocked at this time, that is, the user is close to the mobile terminal, and at this time, according to the second detection signal, it is determined that the target radio frequency transceiver for transmitting the radio frequency signal is the SUB6 radio frequency transceiver, That is, when a user is close to the mobile terminal, transmitting radio frequency signals through the SUB6 radio frequency transceiver can reduce the damage caused to the user during signal transmission between the terminal device and the receiving device.
  • the detection module is controlled to output a detection signal, and the target radio frequency transceiver used to transmit the radio frequency signal is determined according to the detection signal, so that the mobile terminal can realize and receive the radio frequency signal through the target radio frequency transceiver. Signal communication between devices.
  • Fig. 3 is a schematic flow chart of another signal transmission method provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure is based on the embodiment corresponding to Fig. 2.
  • an implementable manner of step S21 includes:
  • step S21 the implementation of step S22 is as follows:
  • step S30 is as follows:
  • the detection module is controlled to output the first detection signal, and at this time, the scanning state of the camera is determined according to the first detection signal output by the detection module.
  • the state is an unobstructed state, that is, no user is close to the mobile terminal at this time.
  • the target radio frequency transceiver for transmitting radio frequency signals is a millimeter wave radio frequency transceiver
  • the device by controlling the millimeter wave radio frequency transceiver to transmit radio frequency signals through the first radio frequency transmission channel, while ensuring the speed of signal transmission between the mobile terminal and the receiving device, the radiation of the millimeter wave signal to the human body can be effectively avoided.
  • Fig. 4 is a schematic flowchart of another signal transmission method provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure is based on the embodiment corresponding to Fig. 2 , as shown in Fig. 4 , another implementable manner of step S21 includes :
  • step S212 the implementation of step S22 is as follows:
  • step S30 is:
  • the detection module is controlled to output the second detection signal, and at this time, the scanning state of the camera is determined according to the second detection signal output by the detection module In the blocking state, that is, the user is close to the mobile terminal at this time.
  • the target RF transceiver for transmitting the RF signal is the SUB6 RF transceiver according to the second detection signal
  • Fig. 5 is a schematic flowchart of another signal transmission method provided by an embodiment of the present disclosure.
  • the embodiment of the present disclosure is based on the embodiment corresponding to Fig. 4, as shown in Fig. 5, the method further includes:
  • the SUB6 radio frequency transceiver transmits the radio frequency signal to the human body through the second radio frequency transmission path
  • the SUB6 radio frequency transceiver after obtaining the power value of the radio frequency signal transmitted by the SUB6 radio frequency transceiver through the second radio frequency transmission path, it can be determined according to the obtained power value whether the radio frequency signal transmitted by the SUB6 radio frequency transceiver has an impact on the human body.
  • the power value is greater than the preset
  • the SUB6 RF transceiver By reducing the intensity of the RF signal transmitted by the SUB6 RF transceiver through the second RF transmission path, the SUB6 RF transceiver can be reduced.
  • the power value of the radio frequency signal transmitted by the channel thereby reducing the radiation of the radio frequency signal to the human body.
  • the radio frequency signal emitted by the SUB6 radio frequency transceiver has no effect on the human body.
  • the second radio frequency transmission path normally transmits radio frequency signals.
  • the target radio frequency transceiver for transmitting radio frequency signals is determined to be the SUB6 radio frequency transceiver according to the scanning state of the camera, when the SUB6 radio frequency transceiver transmits the radio frequency signal through the second radio frequency transmission path.
  • the power value of the radio frequency signal transmitted by the SUB6 radio frequency transceiver through the second radio frequency transmission path is controlled according to the relationship between the power value and the preset power value, and the strength of the SUB6 radio frequency transceiver is transmitted through the second radio frequency transmission path.
  • the radiation of the radio frequency signal emitted by the SUB6 radio frequency transceiver to the human body.
  • steps in the flow charts of FIGS. 1-5 are shown sequentially as indicated by the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in Figures 1-5 may include a plurality of sub-steps or stages, these sub-steps or stages are not necessarily performed at the same time, but may be performed at different times, these sub-steps or stages The order of execution is not necessarily performed sequentially, but may be performed alternately or alternately with at least a part of other steps or sub-steps or stages of other steps.
  • the embodiment of the present disclosure also provides a signal transmission device.
  • the embodiment of the device corresponds to the embodiment of the method described above.
  • the embodiment of the device does not implement the method above.
  • the details in the examples are described one by one, but it should be clear that the device in this embodiment can correspondingly implement all the content in the foregoing method embodiments.
  • FIG. 6 is a schematic structural diagram of a signal transmission device provided by an embodiment of the present disclosure.
  • Transceiver 20, second radio frequency transmission path 21, SUB6 antenna 22 and control module 30 The millimeter wave transmission port of millimeter wave radio frequency transceiver 10 is electrically connected with the first end of the first radio frequency transmission path 11, the first radio frequency transmission path 11 The second end of the second end is electrically connected to the millimeter wave antenna 12; the transmitting port of the SUB6 radio frequency transceiver 20 is electrically connected to the first end of the second radio frequency transmission path 21, and the second end of the second radio frequency transmission path 21 is electrically connected to the SUB6 antenna 22
  • the first end of the control module 30 is electrically connected with the control end of the millimeter wave radio frequency transceiver 10, and the second end of the control module 30 is electrically connected with the control end of the SUB6 radio frequency transceiver 20, and the control module 20 is set according to the mobile terminal obtained In the scanning state of the camera, output the first control signal to the millimeter
  • the millimeter wave radio frequency transceiver 10 transmits radio frequency signals through the millimeter wave transmission port, the first radio frequency transmission path 11, and the millimeter wave antenna 12, wherein the radio frequency signal transmitted by the millimeter wave radio frequency transceiver 10 is For electromagnetic waves with a frequency of 30-300 GHz, the SUB6 radio frequency transceiver 20 transmits radio frequency signals through the transmitting port, the second radio frequency transmission path 21 and the SUB6 antenna 22.
  • the radio frequency signals transmitted by the SUB6 radio frequency transceiver 20 are electromagnetic waves with a frequency lower than 6 GHz.
  • the control module 30 Since the frequency of the radio frequency signal transmitted by the millimeter wave radio frequency transceiver 10 is relatively high, when the human body is close to the mobile terminal, it will generate greater radiation to the human body. radiation, the control module 30 outputs the first control signal to the millimeter wave radio frequency transceiver 10 according to the acquired scanning state of the camera set on the mobile terminal, or outputs the second control signal to the SUB6 radio frequency transceiver 20, specifically, when the control The scanning state of the camera set on the mobile terminal acquired by the module 30 is unobstructed, and the control module 30 outputs the first control signal to the millimeter wave radio frequency transceiver 10 to control the millimeter wave radio frequency transceiver 10 to transmit a radio frequency signal.
  • the control module 30 When the control module 30 acquires The scanning state of the camera set on the mobile terminal is blocking, and the control module 30 outputs a second control signal to the SUB6 radio frequency transceiver 20 to control the SUB6 radio frequency transceiver 20 to transmit radio frequency signals.
  • the specific process of the millimeter wave radio frequency transceiver 10 transmitting the radio frequency signal is that the millimeter wave radio frequency transceiver 10 transmits the radio frequency signal through the millimeter wave transmission port, the first radio frequency transmission path 11, and the millimeter wave antenna 12, and the SUB6 radio frequency transceiver 20 transmits the radio frequency signal.
  • the process is that the SUB6 radio frequency transceiver 20 transmits radio frequency signals through the transmission port, the second radio frequency transmission channel 21 and the SUB6 antenna 22 .
  • the control module outputs the first control signal to the millimeter-wave radio frequency transceiver, or outputs the second control signal to the SUB6 radio frequency transceiver according to the acquired scanning state of the camera set on the mobile terminal, namely When the scanning state of the camera set on the mobile terminal obtained by the control module is unobstructed, the control module outputs the first control signal to the millimeter-wave radio frequency transceiver to control the millimeter-wave radio frequency transceiver to transmit radio frequency signals.
  • the control module When the mobile terminal obtained by the control module The scanning state of the camera set is to block, and the control module outputs the second control signal to the SUB6 radio frequency transceiver to control the SUB6 radio frequency transceiver to transmit radio frequency signals, so as to determine the radio frequency transceiver for transmitting radio frequency signals according to the scanning state of the acquired camera, so that The mobile terminal can realize the signal communication with the receiving device through the radio frequency transceiver, which reduces the radiation of the radio frequency signal to the human body.
  • FIG. 7 is a schematic structural diagram of another signal transmission device provided by an embodiment of the present disclosure.
  • the signal detection device further includes a detection module 40, the first end of the detection module 40 is electrically connected to the SUB6 antenna 22, and the detection module The second end of 40 is electrically connected to the third end of the control module 30 .
  • the detection module 40 By setting the detection module 40 in the signal detection device, when the detection device 40 transmits a radio frequency signal through the millimeter wave antenna 12, when the human body approaches the antenna, the detection module 40 set on the SUB6 antenna 22 close to the millimeter wave antenna 12 will detect Capacitance parameter changes, then at this time, the detection module 40 outputs the second detection signal to the control module 30 according to the change of the detected capacitance parameter, and when no human body is close to the antenna, the SUB6 antenna 22 that is close to the millimeter wave antenna 12 is set The detection module 40 will not detect the change of the capacitance parameter, and at this time, the detection module outputs a first detection signal to the control module 30 according to the detected change of the capacitance parameter.
  • FIG. 8 is a schematic structural diagram of another signal transmission device provided by an embodiment of the present disclosure.
  • the second radio frequency transmission path includes a coupler 50, the first end of the coupler 50 is electrically connected to the transmission port, and the coupler The second end of the coupler 50 is electrically connected to the SUB6 antenna 22 , and the third end of the coupler 50 is electrically connected to the power detection port of the SUB6 radio frequency transceiver 20 .
  • the control module 30 when the scanning state of the camera set on the mobile terminal acquired by the control module 30 is blocked, the control module 30 outputs the second control signal to the SUB6 radio frequency transceiver 20, and controls the SUB6 radio frequency transceiver 20 to transmit a radio frequency signal.
  • the coupler 50 in the radio frequency transmission path 21 obtains the power value of the radio frequency signal transmitted by the second radio frequency transmission path 21 and sends it to the SUB6 radio frequency transceiver 20 through the power detection port, and the control module 30 obtains the coupled signal received by the SUB6 radio frequency transceiver 20.
  • the SUB6 radio frequency transceiver 20 can be determined at this time
  • the transmitted radio frequency signal has no influence on the human body, and at this time, the radio frequency signal is normally transmitted through the second radio frequency transmission channel 21 .
  • FIG. 9 is a schematic structural diagram of another signal transmission device provided by an embodiment of the present disclosure.
  • the millimeter-wave antenna 12 includes a first millimeter-wave antenna 121 , a second millimeter-wave antenna 122 , and a third millimeter-wave antenna 123 and the fourth millimeter wave antenna 124;
  • the first radio frequency transmission path 11 includes a first amplifier 110, a circulator 111 and a phase shifter 112; the first end of the first amplifier 110 is electrically connected to the millimeter wave transmission port of the millimeter wave radio frequency transceiver 10 connection, the second end of the first amplifier 110 is electrically connected to the first end of the circulator 111, the second end of the circulator 11 is electrically connected to the first end of the phase shifter 112, and the second end of the phase shifter 112 is electrically connected to the first end of the phase shifter 112.
  • a millimeter wave antenna 121 is electrically connected, the third end of the phase shifter 112 is electrically connected to the second millimeter wave antenna 122, the fourth end of the phase shifter 112 is electrically connected to the third millimeter wave antenna 123, and the third end of the phase shifter 112 is electrically connected to the third millimeter wave antenna 123.
  • the five terminals are electrically connected to the fourth millimeter wave antenna 124 .
  • the first radio frequency transmission path 11 includes a first amplifier 110, a circulator 111 and a phase shifter 112, wherein the first amplifier 110 is connected to the millimeter wave transmission port of the millimeter wave radio frequency transceiver 10 for The radio frequency signal transmitted by the millimeter wave radio frequency transceiver 10 is amplified, the circulator 111 is connected to the phase shifter 112, and is used to isolate the signals transmitted and received by the millimeter wave radio frequency transceiver 10, so as to avoid the transmission and reception of the radio frequency signal transmitted by the millimeter wave radio frequency transceiver 10.
  • the radio frequency signals crosstalk each other, and can also realize simultaneous transmission and reception.
  • the phase shifter 112 is connected to the millimeter wave antenna 12, and is used to control the beamforming shape of the millimeter wave antenna 12.
  • the millimeter wave radio frequency transceiver 10 passes through the first An amplifier 110 , a circulator 111 and a phase shifter 112 transmit radio frequency signals to the millimeter wave antenna 12 .
  • the signal transmission device also includes a first radio frequency receiving path
  • the first radio frequency receiving path includes a third amplifier 113, a circulator 111 and a phase shifter 112
  • the millimeter wave radio frequency transceiver 10 includes a millimeter wave receiving port , the millimeter wave radio frequency transceiver 10 receives the radio frequency signal received by the millimeter wave antenna 12 through the millimeter wave antenna 12 , the phase shifter 112 , the circulator 111 , the third amplifier 113 and the millimeter wave receiving port.
  • the second radio frequency transmission path includes a second amplifier 210, a first switch unit 211, a duplexer 212, a filter 213, and a second switch unit 214; the first end of the second amplifier 210 is connected to the The transmitting port of the SUB6 radio frequency transceiver 20 is electrically connected, the second end of the second amplifier 210 is electrically connected to the static contact of the first switch unit 211, and the first movable contact of the first switch unit 211 is connected to the second end of the duplexer 212.
  • the second movable contact of the first switch unit 211 is electrically connected to the first end of the filter 213
  • the second end of the duplexer 212 is electrically connected to the first movable contact of the second switch unit 214
  • the second terminal of the filter 213 is electrically connected to the second movable contact of the second switch unit 214
  • the static contact of the second switch unit 214 is electrically connected to the first terminal of the coupler 50 .
  • the second radio frequency transmission path 21 includes a second amplifier 210, a first switch unit 211, a duplexer 212, a filter 213 and a second switch unit 214, wherein the second amplifier 210 is connected to the SUB6 radio frequency transceiver
  • the transmitting port of the device 20 is used to amplify the radio frequency signal transmitted by the SUB6 radio frequency transceiver 20, and the first switch unit 211 selects and switches the second end of the second amplifier 210 and the duplexer according to the frequency band of the radio frequency signal amplified by the second amplifier 210 212 is electrically connected, or the second end of the switchable second amplifier 210 is electrically connected to the filter 213 .
  • the second switch unit 214 controls the connection mode of the static contact and the movable contact of the second switch unit 214 according to the conduction state of the first switch unit 211. For example, when the first switch unit 211 amplifies the radio frequency The frequency band of the signal selects the second end of the second amplifier 210 to be electrically connected to the duplexer 212. At this time, the second switch unit 214 controls the static contact of the second switch unit to be electrically connected to the first movable contact. When the first switch unit 211 Select the second end of the second amplifier 210 to be electrically connected to the filter 213 according to the frequency band of the radio frequency signal amplified by the second amplifier 210.
  • the second switch unit 214 controls the static contact and the second movable contact of the second switch unit. electrical connection.
  • the SUB6 radio frequency transceiver 20 transmits a radio frequency signal to the SUB6 antenna 22 through the second amplifier 210, the first switch unit 211, the duplexer 212 and the second switch unit 214, or the SUB6 radio frequency transceiver 20 passes through the second amplifier 210, the first switch The unit 211 , the filter 213 and the second switch unit 214 transmit radio frequency signals to the SUB6 antenna 22 .
  • the signal transmission device also includes a second radio frequency receiving path
  • the second radio frequency receiving path includes a duplexer 212, a first filter 215 and a second switch unit 214
  • the SUB6 radio frequency transceiver 20 includes a receiving port 1 and receiving port 2
  • the third end of the duplexer is electrically connected to the receiving port 1 of the SUB6 radio frequency transceiver 20
  • the first end of the first filter 215 is electrically connected to the receiving port 2 of the SUB6 radio frequency transceiver 20
  • the first The second end of the filter 215 is electrically connected to the third movable contact of the second switch unit 214
  • the second switch unit 214 selects and switches the movable contact of the second switch unit 214 according to the frequency band of the radio frequency signal received by the SUB6 antenna 22.
  • the duplexer 212 is electrically connected, or the movable contact of the second switch unit 214 is selected to be electrically connected to the first filter 215, and the SUB6 radio frequency transceiver 20 receives the SUB6 through the second switch unit 214, the duplexer 212 and the receiving port 1.
  • the radio frequency signal received by the antenna 22 , or the SUB6 radio frequency transceiver 20 receives the radio frequency signal received by the SUB6 antenna 22 through the second switch unit 215 , the first filter 215 and the receiving port 2 .
  • the signal transmission device provided in this embodiment can execute the signal transmission method provided in the foregoing method embodiments.
  • Each module in the above-mentioned signal transmission device can be fully or partially realized by software, hardware and a combination thereof.
  • the above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, and can also be stored in the memory of the computer device in the form of software, so that the processor can invoke and execute the corresponding operations of the above-mentioned modules.
  • a computer device in one embodiment, is provided, and the computer device may be a terminal device.
  • the computer device includes a processor, a memory, a communication interface, a database, a display screen and an input device connected through a system bus.
  • the processor of the computer device is configured as a module providing calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and computer readable instructions.
  • the internal memory provides an environment for the execution of the operating system and computer readable instructions in the non-volatile storage medium.
  • the communication interface of the computer device is configured as a wired or wireless communication module with an external terminal, and the wireless mode can be realized through WIFI, operator network, near field communication (NFC) or other technologies.
  • the method for displaying the preview image provided in the foregoing embodiments can be implemented.
  • the display screen of the computer device may be a liquid crystal display screen or an electronic ink display screen
  • the input device of the computer device may be a touch layer covered on the display screen, or a button, a trackball or a touch pad provided on the casing of the computer device , and can also be an external keyboard, touchpad, or mouse.
  • a computer device comprising a memory and one or more processors, the memory configured to store computer-readable instructions; the computer-readable instructions, when executed by the processor, cause the one or more processors to perform The steps of the signal transmission method provided in any embodiment of the present disclosure.
  • One or more non-volatile storage media storing computer-readable instructions.
  • the computer-readable instructions are executed by one or more processors, one or more processors execute the signal provided in any one embodiment of the present disclosure. The steps of the transfer method.
  • the scanning state of the camera set on the mobile terminal is obtained, and the scanning state is used to indicate the occlusion information of the camera; according to the scanning state of the camera, it is determined for The target radio frequency transceiver that transmits radio frequency signals; control the target radio frequency transceiver to transmit radio frequency signals through the radio frequency transmission channel, so that when the millimeter wave antenna transmits the millimeter wave signal, in order to avoid the user being close to the mobile terminal and causing the transmitted millimeter wave signal to cause damage to the user Radiation, according to the scanning state of the acquired camera, determine the target radio frequency transceiver that emits radio frequency signals, so that the mobile terminal can realize signal communication with the receiving device through the target radio frequency transceiver, reducing the radiation of radio frequency signals to the human body. Strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)

Abstract

本公开实施例提供了一种信号传输方法和信号传输装置,包括:在毫米波天线发射毫米波信号时,获取移动终端上设置的摄像头的扫描状态,扫描状态用于指示摄像头的遮挡信息;根据摄像头的扫描状态,确定用于发射射频信号的目标射频收发器;控制目标射频收发器通过射频发射通路发射射频信号,根据获取的摄像头的扫描状态,确定发射射频信号的目标射频收发器,使得移动终端能够通过目标射频收发器实现与接收设备之间的信号通信,减少了射频信号对人体的辐射。

Description

一种信号传输方法和信号传输装置
本公开要求于2021年9月09日提交中国专利局、申请号为202111057786.7、发明名称为“一种信号传输方法和信号传输装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及一种信号传输方法和信号传输装置。
背景技术
毫米波天线为安装在移动终端上用于进行射频传输的载体,如移动终端与接收设备进行信号发送与接收,可采用毫米波天线进行信号的传输实现。
但是,毫米波天线在进行信号传输时,若是毫米波天线发射的射频信号通过人体时,在外电磁场的作用下,人体内将产生感应电磁场,会对人体造成一定的辐射损害。为避免毫米波天线发射的射频信号对人体产生辐射损耗,则需要在毫米波天线上增加检测芯片检测毫米波天线产生的感应电磁场在人体中的电磁波吸收比值(SAR,Specific Absorption Ratio),由于毫米波天线的频段较高,毫米波天线上增加检测芯片会存在较大的损耗。
然而,降低毫米波天线的射频信号的发射功率,会使得射频信号的衰减度较高,从而,导致移动终端与接收设备的通信中断。
发明内容
(一)要解决的技术问题
降低毫米波天线的射频信号的发射功率,会使得射频信号的衰减度较高,从而,导致移动终端与接收设备的通信中断。
(二)技术方案
根据本公开公开的各种实施例,提供一种信号传输方法和信号传输装置。
本公开实施例提供了一种信号传输方法,包括:
在毫米波天线发射毫米波信号时,获取移动终端上设置的摄像头的扫描状态,所述扫描状态用于指示所述摄像头的遮挡信息;
根据所述摄像头的扫描状态,确定用于发射射频信号的目标射频收发器;
控制所述目标射频收发器通过射频发射通路发射射频信号。
作为本公开实施例一种可选的实施方式,所述根据所述摄像头的扫描状态,确定用于发射射频信号的目标射频收发器,包括:根据所述摄像头的扫描状态,控制检测模块输出检测信号,其中,所述扫描状态包括遮挡或无遮挡;根据所述检测信号确定用于发射射频信号的目标射频收发器。
作为本公开实施例一种可选的实施方式,所述根据所述摄像头的扫描状态,确定用于发射射频信号的目标射频收发器,包括:当所述摄像头的扫描状态为无遮挡,控制检测模块输出第一检测信号;根据所述第一检测信号确定用于发射射频信号的目标射频收发器为毫米波射频收发器;所述控制所述目标射频收发器通过射频发射通路发射射频信号,包括:控制所述毫米波射频收发器通过第一射频发射通路发射射频信号。
作为本公开实施例一种可选的实施方式,所述根据所述摄像头的扫描状态,确定用于发射射频信号的目标射频收发器,包括:当所述摄像头的扫描状态为遮挡,控制检测模块输出第二检测信号;根据所述第二检测信号确定用于发射射频信号的目标射频收发器为SUB6射频收发器;所述控制所述目标射频收发器通过射频发射通路发射射频信号,包括:控制所述SUB6射频收发器通过第二射频发射通路发射射频信号。
作为本公开实施例一种可选的实施方式,所述方法还包括:获取所述SUB6射频收发器通过第二射频发射通路发射射频信号的功率值;根据所述功率值与预设功率值的关系控制所述SUB6射频收发器通过所述第二射频发射通路发射射频信号的强度。
作为本公开实施例一种可选的实施方式,所述根据所述功率值与预设功率值的关系控制所述SUB6射频收发器通过所述第二射频发射通路发射射频信号的强度,包括:判断所述功率值是否大于所述预设功率值;在确定所述功率值大于所述预设功率值的条件下,减少所述SUB6射频收发器通过第二射频发射通路发射射频信号的强度。
作为本公开实施例一种可选的实施方式,在确定所述功率值小于或等于所述预设功率值的条件下,通过所述第二射频发射通路正常发 射射频信号。
作为本公开实施例一种可选的实施方式,所述SUB6射频收发器发射的射频信号的频段小于所述毫米波射频收发器发射的射频信号的频段。
一种信号传输装置,采用上述实施例中任一项所述的方法,包括:毫米波射频收发器、第一射频发射通路、毫米波天线、SUB6射频收发器、第二射频发射通路、SUB6天线和控制模块;
所述毫米波射频收发器的毫米波发射端口与所述第一射频发射通路的第一端电连接,所述第一射频发射通路的第二端与所述毫米波天线电连接;
所述SUB6射频收发器的发射端口与所述第二射频发射通路的第一端电连接,所述第二射频发射通路的第二端与所述SUB6天线电连接;
所述控制模块的第一端与所述毫米波射频收发器的控制端电连接,所述控制模块的第二端与所述SUB6射频收发器的控制端电连接,所述控制模块根据获取的移动终端上设置的摄像头的扫描状态,输出第一控制信号至所述毫米波射频收发器,或输出第二控制信号至所述SUB6射频收发器。
作为本公开实施例一种可选的实施方式,还包括:检测模块,所述检测模块的第一端与所述SUB6天线电连接,所述检测模块的第二端与所述控制模块的第三端电连接。
作为本公开实施例一种可选的实施方式,所述第二射频发射通路包括耦合器,所述耦合器的第一端与所述发射端口电连接,所述耦合器的第二端与所述SUB6天线电连接,所述耦合器的第三端与所述SUB6射频收发器的功率检测端口电连接。
作为本公开实施例一种可选的实施方式,所述毫米波天线包括第一毫米波天线、第二毫米波天线、第三毫米波天线和第四毫米波天线;所述第一射频发射通路包括第一放大器、环形器和移项器;
所述第一放大器的第一端与所述毫米波射频收发器的毫米波发射端口电连接,所述第一放大器的第二端与所述环形器的第一端电连接,所述环形器的第二端与所述移项器的第一端电连接,所述移项器的第二端与所述第一毫米波天线电连接,所述移项器的第三端与所述第二毫米波天线电连接,所述移项器的第四端与所述第三毫米波天线电连接,所述移项器的第五端与所述第四毫米波天线电连接。
作为本公开实施例一种可选的实施方式,所述第二射频发射通路 还包括第二放大器、第一开关单元、双工器、滤波器和第二开关单元;
所述第二放大器的第一端与所述SUB6射频收发器的发射端口电连接,所述第二放大器的第二端与所述第一开关单元的静触点电连接,所述第一开关单元的第一动触点与所述双工器的第一端电连接,所述第一开关单元的第二动触点与所述滤波器的第一端电连接,所述双工器的第二端与所述第二开关单元的第一动触点电连接,所述滤波器的第二端与所述第二开关单元的第二动触点电连接,所述第二开关单元的静触点与所述耦合器的第一端电连接。
一种信号传输装置,包括:
扫描状态获取模块,配置成在毫米波天线发射毫米波信号时,获取移动终端上设置的摄像头的扫描状态,所述扫描状态用于指示所述摄像头的遮挡信息;
目标射频收发器确定模块,配置成根据所述摄像头的扫描状态,确定用于发射射频信号的目标射频收发器;
控制模块,配置成控制所述目标射频收发器通过射频发射通路发射射频信号。
作为本公开实施例一种可选的实施方式,所述目标射频收发器确定模块,具体配置成:根据所述摄像头的扫描状态,控制检测模块输出检测信号,其中,所述扫描状态包括遮挡或无遮挡;根据所述检测信号确定用于发射射频信号的目标射频收发器。
作为本公开实施例一种可选的实施方式,所述目标射频收发器确定模块,具体配置成当所述摄像头的扫描状态为无遮挡,控制检测模块输出第一检测信号;根据所述第一检测信号确定用于发射射频信号的目标射频收发器为毫米波射频收发器;所述控制模块,具体配置成控制所述毫米波射频收发器通过第一射频发射通路发射射频信号。
作为本公开实施例一种可选的实施方式,所述目标射频收发器确定模块,具体还配置成当所述摄像头的扫描状态为遮挡,控制检测模块输出第二检测信号;根据所述第二检测信号确定用于发射射频信号的目标射频收发器为SUB6射频收发器;所述控制模块,具体还配置控制所述SUB6射频收发器通过第二射频发射通路发射射频信号。
作为本公开实施例一种可选的实施方式,功率值获取模块,配置成获取所述SUB6射频收发器通过第二射频发射通路发射射频信号的功率值;射频信号的强度控制模块,配置成根据所述功率值与预设功率值的关系控制所述SUB6射频收发器通过所述第二射频发射通路发射射频信号的强度。
一种计算机设备,包括:存储器和一个或多个处理器,所述存储器中存储有计算机可读指令;所述计算机可读指令被所述一个或多个处理器执行时,使得所述一个或多个处理器执行本公开任意一个实施例中提供信号传输方法的步骤。
一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行本公开任意一个实施例中提供信号传输方法的步骤。
本公开的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得,本公开的一个或多个实施例的细节在下面的附图和描述中提出。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举可选实施例,并配合所附附图,作详细说明如下。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一个或多个实施例提供的一种信号传输方法的流程示意图;
图2是本公开一个或多个实施例提供的另一种信号传输方法的流程示意图;
图3是本公开一个或多个实施例提供的又一种信号传输方法的流程示意图;
图4是本公开一个或多个实施例提供的又一种信号传输方法的流程示意图;
图5是本公开一个或多个实施例提供的又一种信号传输方法的流程示意图;
图6是本公开一个或多个实施例提供的一种信号传输装置的结构 示意图;
图7是本公开一个或多个实施例提供的另一种信号传输装置的结构示意图;
图8是本公开一个或多个实施例提供的又一种信号传输装置的结构示意图;
图9是本公开一个或多个实施例提供的又一种信号传输装置的结构示意图。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
在本公开实施例中,“示例性的”或者“例如”等词来表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,此外,在本公开实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。
本公开的技术方案可以应用于电子设备,其中,电子设备可以是电脑、平板、手机或者其他智能终端设备等。该电子设备具有显示屏,其中,显示屏可以是触摸屏,也可以是非触摸屏,对于具有触摸屏的电子设备,用户可以通过手势、手指或者触控工具(例如,触控笔)实现与电子设备的交互操作。对于非触摸屏的电子设备,可以通过外部设备(例如,鼠标、键盘或者摄像头等)或者语音识别或者表情识别等实现与电子设备的交互操作。
其中,本公开对电子设备的操作系统的类型不做限定。例如,Android系统、Linux系统、Windows系统、iOS系统等。
图1是本公开实施例提供的一种信号传输方法的流程示意图,本实施例可适用于对电子设备中信号进行传输的情况。本实施例方法可由电子设备中的控制器来执行,该控制器可采用硬件/或软件的方式来实现,并可配置于电子设备中,可实现本申请任意实施例所述的信号传输方法。
如图1所示,该方法具体包括如下:
S10、在毫米波天线发射毫米波信号时,获取移动终端上设置的摄像头的扫描状态。
其中,扫描状态用于指示摄像头的遮挡信息。
其中,移动终端为具有毫米波天线的一类电子设备,如,智能手机、平板电脑、可穿戴设备等。
移动终端上安装有摄像头,摄像头用于对移动终端的外部环境进行扫描,以此判断出移动终端与用户或者是接触人群的相对位置。
需要说明的是,摄像头可以为移动终端的前置摄像头也可以为移动终端的后置摄像头,本实施例对摄像头在移动终端上的安装位置不做限定。
当电子设备中的毫米波天线发射毫米波信号时,为避免电子设备中毫米波天线发射的毫米波信号对人体产生辐射,在毫米波天线发射毫米波信号时,获取移动终端上设置的摄像头的扫描状态,根据获取的移动终端上设置的摄像头的扫描状态,确定是否有人体靠近终端设备。
S20、根据摄像头的扫描状态,确定用于发射射频信号的目标射频收发器。
其中,在用户使用移动终端与接收设备进行通信时,可能会导致摄像头被遮挡,此时,如果采用毫米波天线发射毫米波信号与接收设备进行通信,毫米波天线发射的毫米波信号会对人体造成电磁辐射。因此,当获取的摄像头的扫描状态为遮挡状态,确定发射射频信号的目标射频收发器为SUB6射频收发器,当获取的摄像头的扫描状态为无遮挡状态,确定发射射频信号的目标射频收发器为毫米波射频收发器。在摄像头的扫描状态为遮挡状态时,即用户使用终端设备与接收设备进行通信,且用户靠近终端设备,确定发射射频信号的目标射频收发器为SUB6射频收发器,SUB6射频收发器发射的射频信号的频段相比较毫米波射频收发器发射的射频信号的频段低,进而减少终端设备与收发设备进行通信时发射的射频信号对用户造成的损伤。在摄像头的扫描状态为无遮挡状态时,即用户未使用终端设备与接收设备进行通信,且用户远离终端设备,确定发射射频信号的目标射频收发器为毫米波射频收发器,毫米波射频收发器发射的射频信号的频段相比较SUB6射频收发器发射的射频信号的频段高,保证信号的传输速度。
需要说明的是,接收设备可为移动终端进行信息交互的电子设备,如毫米波基站、毫米波测试设备等。
S30、控制目标射频收发器通过射频发射通路发射射频信号。
当根据摄像头的扫描状态确定用于发射射频信号的目标射频收发器后,控制目标射频收发器通过射频发射通路发射射频信号,采用目标射频收发器与接收设备进行信号的发送和/或接收,从而,使得移动终端能够通过目标射频收发器实现与接收设备之间的信号通信。
本公开实施例提供的信号传输方法,在毫米波天线发射毫米波信号时,获取移动终端上设置的摄像头的扫描状态,扫描状态用于指示所述摄像头的遮挡信息;根据摄像头的扫描状态,确定用于发射射频信号的目标射频收发器;控制目标射频收发器通过射频发射通路发射射频信号,实现在毫米波天线发射毫米波信号时,为避免因为用户靠近移动终端进而造成发射的毫米波信号对用户产生辐射,根据获取的摄像头的扫描状态,确定发射射频信号的目标射频收发器,使得移动终端能够通过目标射频收发器实现与接收设备之间的信号通信,减少了射频信号对人体的辐射。
图2是本公开实施例提供的另一种信号传输方法的流程示意图,本公开实施例是在上述实施例的基础上,如图2所示,步骤S20的一种可实现方式包括:
S21、根据摄像头的扫描状态,控制检测模块输出检测信号。
在获取到摄像头的扫描状态后,根据摄像头的扫描状态,控制检测模块输出检测信号,具体的,当摄像头扫描状态为无遮挡时,控制检测模块输出第一检测信号,当摄像头扫描状态为遮挡时,控制检测模块输出第二检测信号。
S22、根据检测信号确定用于发射射频信号的目标射频收发器。
此时,根据获取的检测模块输出的检测信号可以确定用于发射射频信号的目标射频收发器。具体的,当检测模块输出第一检测信号,即此时可以确定摄像头扫描状态为无遮挡,即没有用户靠近移动终端,此时根据第一检测信号确定用于发射射频信号的目标射频收发器为毫米波射频收发器,即在没有用户靠近移动终端时,通过毫米波射频收发器发射毫米波射频信号可以保证终端设备与接收设备之间信号的传输速度。当检测模块输出第二检测信号,即此时可以确定摄像头扫描状态为遮挡,即用户靠近移动终端,此时根据第二检测信号确定用于发射射频信号的目标射频收发器为SUB6射频收发器,即在有用户靠近移动终端时,通过SUB6射频收发器发射射频信号可以减少终端设备与接收设备进行信号传输时对用户造成的损伤。
本公开实施例提供的信号传输方法,根据摄像头的扫描状态,控 制检测模块输出检测信号,根据检测信号确定用于发射射频信号的目标射频收发器,使得移动终端能够通过目标射频收发器实现与接收设备之间的信号通信。
图3是本公开实施例提供的又一种信号传输方法的流程示意图,本公开实施例是在图2对应的实施例的基础上,如图3所示,步骤S21一种可实现方式包括:
S211、当摄像头的扫描状态是否为无遮挡,控制检测模块输出第一检测信号。
对应步骤S211,步骤S22的实现方式为:
S221、根据第一检测信号确定用于发射射频信号的目标射频收发器为毫米波射频收发器。
对应步骤S211和S221,步骤S30的实现方式为:
S311、控制毫米波射频收发器通过第一射频发射通路发射射频信号。
具体的,在毫米波天线发射毫米波信号时,若获取的摄像头的扫描状态为无遮挡状态,则控制检测模块输出第一检测信号,此时根据检测模块输出的第一检测信号确定摄像头的扫描状态为无遮挡状态,即此时无用户靠近移动终端,为保证移动终端与接收设备之间信号传输的速度,根据第一检测信号确定用于发射射频信号的目标射频收发器为毫米波射频收发器后,通过控制毫米波射频收发器通过第一射频发射通路发射射频信号,在保证移动终端与接收设备之间信号传输的速度同时,可以有效避免毫米波信号对人体的辐射。
图4是本公开实施例提供的又一种信号传输方法的流程示意图,本公开实施例是在图2对应的实施例的基础上,如图4所示,步骤S21另一种可实现方式包括:
S212、当摄像头的扫描状态是否为遮挡,控制检测模块输出第二检测信号。
对应步骤S212,步骤S22的实现方式为:
S222、根据第二检测信号确定用于发射射频信号的目标射频收发器为SUB6射频收发器。
对应步骤S212和S222,步骤S30的实现方式为:
S312、控制SUB6射频收发器通过第二射频发射通路发射射频信号。
具体的,在毫米波天线发射毫米波信号时,若获取的摄像头的扫描状态为遮挡状态,则控制检测模块输出第二检测信号,此时根据检 测模块输出的第二检测信号确定摄像头的扫描状态为遮挡状态,即此时用户靠近移动终端,为避免移动终端发射的毫米波信号对人体的辐射,根据第二检测信号确定用于发射射频信号的目标射频收发器为SUB6射频收发器后,通过控制SUB6射频收发器通过第二射频发射通路发射射频信号,在避免毫米波信号对人体的辐射的同时,保证移动终端与接收设备之间信号传输的正常进行。
图5是本公开实施例提供的又一种信号传输方法的流程示意图,本公开实施例是在图4对应的实施例的基础上,如图5所示,所述方法还包括:
S40、获取SUB6射频收发器通过第二射频发射通路发射射频信号的功率值。
进一步的,为减小SUB6射频收发器通过第二射频发射通路发射射频信号对人体的辐射,在控制SUB6射频收发器通过第二射频发射通路发射射频信号之后,获取SUB6射频收发器通过第二射频发射通路发射射频信号的功率值。
S50、根据功率值与预设功率值的关系控制SUB6射频收发器通过第二射频发射通路发射射频信号的强度。
具体的,在获取SUB6射频收发器通过第二射频发射通路发射射频信号的功率值后,根据获取的功率值可以确定SUB6射频收发器发射的射频信号对人体是否存在影响,当功率值大于预设功率值时,此时可以确定SUB6射频收发器发射的射频信号对人体存在影响,通过减少SUB6射频收发器通过第二射频发射通路发射射频信号的强度,进而减少SUB6射频收发器通过第二射频发射通路发射射频信号的功率值,进而降低射频信号对人体的辐射,当功率值小于或等于预设功率值时,此时可以确定SUB6射频收发器发射的射频信号对人体不存在影响,此时通过第二射频发射通路正常发射射频信号。
本公开实施例提供的信号传输方法,当根据摄像头的扫描状态,确定用于发射射频信号的目标射频收发器为SUB6射频收发器时,在SUB6射频收发器通过第二射频发射通路发射射频信号的时候,通过SUB6射频收发器通过第二射频发射通路发射射频信号的功率值,根据功率值与预设功率值的关系控制SUB6射频收发器通过第二射频发射通路发射射频信号的强度,进一步减少通过SUB6射频收发器发射的射频信号对人体的辐射。
应该理解的是,虽然图1-5的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。 除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-5中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
基于同一发明构思,作为对上述方法的实现,本公开实施例还提供了一种信号传输装置,该装置实施例与前述方法实施例对应,为便于阅读,本装置实施例不再对前述方法实施例中的细节内容进行逐一赘述,但应当明确,本实施例中的装置能够对应实现前述方法实施例中的全部内容。
图6是本公开实施例提供的一种信号传输装置的结构示意图,如图6所示,信号传输装置包括:毫米波射频收发器10、第一射频发射通路11、毫米波天线12、SUB6射频收发器20、第二射频发射通路21、SUB6天线22和控制模块30;毫米波射频收发器10的毫米波发射端口与第一射频发射通路11的第一端电连接,第一射频发射通路11的第二端与毫米波天线12电连接;SUB6射频收发器20的发射端口与第二射频发射通路21的第一端电连接,第二射频发射通路21的第二端与SUB6天线22电连接;控制模块30的第一端与毫米波射频收发器10的控制端电连接,控制模块30的第二端与SUB6射频收发器20的控制端电连接,控制模块20根据获取的移动终端上设置的摄像头的扫描状态,输出第一控制信号至毫米波射频收发器10,或输出第二控制信号至SUB6射频收发器20。
示例性的,如图6所示,毫米波射频收发器10通过毫米波发射端口、第一射频发射通路11、毫米波天线12发射射频信号,其中,毫米波射频收发器10发射的射频信号为频率为30-300GHz的电磁波,SUB6射频收发器20通过发射端口、第二射频发射通路21和SUB6天线22发射射频信号,SUB6射频收发器20发射的射频信号为频率低于6GHz的电磁波。
由于毫米波射频收发器10发射的射频信号的频率较高,因此当人体靠近移动终端时,会对人体产生较大的辐射,为避免移动终端通过毫米波天线发射的射频信号对人体造成较大的辐射,控制模块30根据获取的移动终端上设置的摄像头的扫描状态,输出第一控制信号至毫米波射频收发器10,或输出第二控制信号至SUB6射频收发器20,具体的,当控制模块30获取的移动终端上设置的摄像头的扫描状态为无 遮挡,控制模块30输出第一控制信号至毫米波射频收发器10,控制毫米波射频收发器10发射射频信号,当控制模块30获取的移动终端上设置的摄像头的扫描状态为遮挡,控制模块30输出第二控制信号至SUB6射频收发器20,控制SUB6射频收发器20发射射频信号。毫米波射频收发器10发射射频信号的具体过程为毫米波射频收发器10通过毫米波发射端口、第一射频发射通路11、毫米波天线12发射射频信号,SUB6射频收发器20发射射频信号的具体过程为SUB6射频收发器20通过发射端口、第二射频发射通路21、SUB6天线22发射射频信号。
本公开实施例提供的信号传输装置,控制模块根据获取的移动终端上设置的摄像头的扫描状态,输出第一控制信号至毫米波射频收发器,或输出第二控制信号至SUB6射频收发器,即当控制模块获取的移动终端上设置的摄像头的扫描状态为无遮挡,控制模块输出第一控制信号至毫米波射频收发器,控制毫米波射频收发器发射射频信号,当控制模块获取的移动终端上设置的摄像头的扫描状态为遮挡,控制模块输出第二控制信号至SUB6射频收发器,控制SUB6射频收发器发射射频信号,实现根据获取的摄像头的扫描状态,确定发射射频信号的射频收发器,使得移动终端能够通过射频收发器实现与接收设备之间的信号通信,减少了射频信号对人体的辐射。
图7是本公开实施例提供的另一种信号传输装置的结构示意图,如图7所示,信号检测装置还包括检测模块40,检测模块40的第一端与SUB6天线22电连接,检测模块40的第二端与控制模块30的第三端电连接。
通过在信号检测装置中设置检测模块40,当检测装置40通过毫米波天线12发射射频信号,当人体靠近天线时,与毫米波天线12靠近的SUB6天线22上设置的检测模块40就会检测到电容参数的变化,则此时,检测模块40根据检测的电容参数的变化输出第二检测信号至控制模块30,而当无人体靠近天线时,与毫米波天线12靠近的SUB6天线22上设置的检测模块40不会检测到电容参数的变化,则此时,检测模块根据检测的电容参数的变化输出第一检测信号至控制模块30。
图8是本公开实施例提供的又一种信号传输装置的结构示意图,如图8所示,第二射频发射通路包括耦合器50,耦合器50的第一端与发射端口电连接,耦合器50的第二端与SUB6天线22电连接,耦合器50的第三端与SUB6射频收发器20的功率检测端口电连接。
具体的,当控制模块30获取的移动终端上设置的摄像头的扫描状态为遮挡,控制模块30输出第二控制信号至SUB6射频收发器20,控制SUB6射频收发器20发射射频信号,此时第二射频发射通路21中的耦合器50获取通过第二射频发射通路21发射的射频信号的功率值并通过功率检测端口发送给SUB6射频收发器20,控制模块30获取SUB6射频收发器20接收到的耦合器50检测的第二射频通路21中的射频信号的功率值,并根据获取的第二射频通路21中的射频信号的功率值判断SUB6射频收发器20发射的射频信号对人体是否存在影响,当功率值大于预设功率值时,此时可以确定SUB6射频收发器20发射的射频信号对人体存在影响,通过减少SUB6射频收发器20通过第二射频发射通路21发射的射频信号的强度,进而减少SUB6射频收发器20通过第二射频发射通路21发射的射频信号的功率值,进而降低射频信号对人体的辐射,当功率值小于或等于预设功率值时,此时可以确定SUB6射频收发器20发射的射频信号对人体不存在影响,此时通过第二射频发射通路21正常发射射频信号。
图9是本公开实施例提供的又一种信号传输装置的结构示意图,如图9所示,毫米波天线12包括第一毫米波天线121、第二毫米波天线122、第三毫米波天线123和第四毫米波天线124;第一射频发射通路11包括第一放大器110、环形器111和移项器112;第一放大器110的第一端与毫米波射频收发器10的毫米波发射端口电连接,第一放大器110的第二端与环形器111的第一端电连接,环形器11的第二端与移项器112的第一端电连接,移项器112的第二端与第一毫米波天线121电连接,移项器112的第三端与第二毫米波天线122电连接,移项器112的第四端与第三毫米波天线123电连接,移项器112的第五端与第四毫米波天线124电连接。
如图9所示,第一射频发射通路11包括第一放大器110、环形器111和移项器112,其中,第一放大器110连接着毫米波射频收发器10的毫米波发射端口,用于将毫米波射频收发器10发射的射频信号放大,环形器111,连接移相器112,用于隔离毫米波射频收发器10发射和接收的信号,避免毫米波射频收发器10发射的射频信号和接收的射频信号相互串扰,而且还能够实现发射和接收的同时进行,移相器112,连接毫米波天线12,用于控制毫米波天线12的波束赋形的形状,毫米波射频收发器10通过第一放大器110、环形器111和移项器112发射射频信号至毫米波天线12。
此外,继续参见图9,信号传输装置中还包括第一射频接收通路, 第一射频接收通路包括第三放大器113、环形器111和移项器112,毫米波射频收发器10包括毫米波接收端口,毫米波射频收发器10通过毫米波天线12、移项器112、环形器111、第三放大器113以及毫米波接收端口接收毫米波天线12接收到的射频信号。
可选的,继续参见图9,第二射频发射通路包括第二放大器210、第一开关单元211、双工器212、滤波器213和第二开关单元214;第二放大器210的第一端与SUB6射频收发器20的发射端口电连接,第二放大器210的第二端与第一开关单元211的静触点电连接,第一开关单元211的第一动触点与双工器212的第一端电连接,第一开关单元211的第二动触点与滤波器213的第一端电连接,双工器212的第二端与第二开关单元214的第一动触点电连接,滤波器213的第二端与第二开关单元214的第二动触点电连接,第二开关单元214的静触点与耦合器50的第一端电连接。
如图9所示,第二射频发射通路21包括第二放大器210、第一开关单元211、双工器212、滤波器213和第二开关单元214,其中,第二放大器210连接着SUB6射频收发器20的发射端口,用于将SUB6射频收发器20发射的射频信号放大,第一开关单元211根据第二放大器210放大的射频信号的频段选择切换第二放大器210的第二端与双工器212电连接,或者选择切换第二放大器210的第二端与滤波器213电连接。第二开关单元214根据第一开关单元211导通状态控制第二开关单元214的静触点与动触点的连接方式,示例性的,当第一开关单元211根据第二放大器210放大的射频信号的频段选择第二放大器210的第二端与双工器212电连接,此时第二开关单元214控制第二开关单元的静触点与第一动触点电连接,当第一开关单元211根据第二放大器210放大的射频信号的频段选择第二放大器210的第二端与滤波器213电连接,此时第二开关单元214控制第二开关单元的静触点与第二动触点电连接。SUB6射频收发器20通过第二放大器210、第一开关单元211、双工器212和第二开关单元214发射射频信号至SUB6天线22,或者SUB6射频收发器20通过第二放大器210、第一开关单元211、滤波器213和第二开关单元214发射射频信号至SUB6天线22。
此外,继续参见图9,信号传输装置中还包括第二射频接收通路,第二射频接收通路包括双工器212、第一滤波器215和第二开关单元214,SUB6射频收发器20包括接收端口1和接收端口2,双工器的第三端与SUB6射频收发器20的接收端口1电连接,第一滤波器215的 第一端与SUB6射频收发器20的接收端口2电连接,第一滤波器215的第二端与第二开关单元214的第三动触点电连接,第二开关单元214根据SUB6天线22接收的的射频信号的频段选择切换第二开关单元214的动触点与双工器212电连接,或者选择切换第二开关单元214的动触点与第一滤波器215电连接,SUB6射频收发器20通过第二开关单元214、双工器212和接收端口1接收SUB6天线22接收的射频信号,或者SUB6射频收发器20通过第二开关单元215、第一滤波器215和接收端口2接收SUB6天线22接收的射频信号。
本实施例提供的信号传输装置可以执行上述方法实施例提供的信号传输方法。上述信号传输装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行上述各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端设备。该计算机设备包括通过系统总线连接的处理器、存储器、通信接口、数据库、显示屏和输入装置。其中,该计算机设备的处理器配置成提供计算和控制能力的模块。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机可读指令。该内存储器为非易失性存储介质中的操作系统和计算机可读指令的运行提供环境。该计算机设备的通信接口配置成与外部的终端进行有线或无线方式的通信模块,无线方式可通过WIFI、运营商网络、近场通信(NFC)或其他技术实现。该计算机可读指令被处理器执行时以实现上述实施例提供的预览图像的显示方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
在一个实施例中,提供了一种计算机设备,包括存储器和一个或多个处理器,存储器配置成存储计算机可读指令;计算机可读指令被处理器执行时,使得一个或多个处理器执行本公开任意一个实施例中提供的信号传输方法的步骤。
一个或多个存储有计算机可读指令的非易失性存储介质,计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行本公开任意一个实施例中提供的信号传输方法的步骤。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关 系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
工业实用性
本公开提供的信号传输方法,在毫米波天线发射毫米波信号时,获取移动终端上设置的摄像头的扫描状态,扫描状态用于指示所述摄像头的遮挡信息;根据摄像头的扫描状态,确定用于发射射频信号的目标射频收发器;控制目标射频收发器通过射频发射通路发射射频信号,实现在毫米波天线发射毫米波信号时,为避免因为用户靠近移动终端进而造成发射的毫米波信号对用户产生辐射,根据获取的摄像头的扫描状态,确定发射射频信号的目标射频收发器,使得移动终端能够通过目标射频收发器实现与接收设备之间的信号通信,减少了射频信号对人体的辐射,具有很强的工业实用性。

Claims (20)

  1. 一种信号传输方法,其特征在于,包括:
    在毫米波天线发射毫米波信号时,获取移动终端上设置的摄像头的扫描状态,所述扫描状态用于指示所述摄像头的遮挡信息;
    根据所述摄像头的扫描状态,确定用于发射射频信号的目标射频收发器;
    控制所述目标射频收发器通过射频发射通路发射射频信号。
  2. 根据权利要求1所述的方法,其中,所述根据所述摄像头的扫描状态,确定用于发射射频信号的目标射频收发器,包括:
    根据所述摄像头的扫描状态,控制检测模块输出检测信号,其中,所述扫描状态包括遮挡或无遮挡;
    根据所述检测信号确定用于发射射频信号的目标射频收发器。
  3. 根据权利要求2所述的方法,其中,所述根据所述摄像头的扫描状态,确定用于发射射频信号的目标射频收发器,包括:
    当所述摄像头的扫描状态为无遮挡,控制检测模块输出第一检测信号;
    根据所述第一检测信号确定用于发射射频信号的目标射频收发器为毫米波射频收发器;
    所述控制所述目标射频收发器通过射频发射通路发射射频信号,包括:
    控制所述毫米波射频收发器通过第一射频发射通路发射射频信号。
  4. 根据权利要求2所述的方法,其中,
    所述根据所述摄像头的扫描状态,确定用于发射射频信号的目标射频收发器,包括:
    当所述摄像头的扫描状态为遮挡,控制检测模块输出第二检测信号;
    根据所述第二检测信号确定用于发射射频信号的目标射频收发器为SUB6射频收发器;
    所述控制所述目标射频收发器通过射频发射通路发射射频信号,包括:
    控制所述SUB6射频收发器通过第二射频发射通路发射射频信号。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    获取所述SUB6射频收发器通过第二射频发射通路发射射频信号的功率值;
    根据所述功率值与预设功率值的关系控制所述SUB6射频收发器通过所述第二射频发射通路发射射频信号的强度。
  6. 根据权利要求5所述的方法,其中,所述根据所述功率值与预设功率值的关系控制所述SUB6射频收发器通过所述第二射频发射通路发射射频信号的强度,包括:
    判断所述功率值是否大于所述预设功率值;
    在确定所述功率值大于所述预设功率值的条件下,减少所述SUB6射频收发器通过第二射频发射通路发射射频信号的强度。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    在确定所述功率值小于或等于所述预设功率值的条件下,通过所述第二射频发射通路正常发射射频信号。
  8. 根据权利要求3-4任一项所述的方法,其中,所述SUB6射频收发器发射的射频信号的频段小于所述毫米波射频收发器发射的射频信号的频段。
  9. 一种信号传输装置,采用权利要求1-9任一项所述的方法,其特征在于,包括:毫米波射频收发器、第一射频发射通路、毫米波天线、SUB6射频收发器、第二射频发射通路、SUB6天线和控制模块;
    所述毫米波射频收发器的毫米波发射端口与所述第一射频发射通路的第一端电连接,所述第一射频发射通路的第二端与所述毫米波天线电连接;
    所述SUB6射频收发器的发射端口与所述第二射频发射通路的第一端电连接,所述第二射频发射通路的第二端与所述SUB6天线电连接;
    所述控制模块的第一端与所述毫米波射频收发器的控制端电连接,所述控制模块的第二端与所述SUB6射频收发器的控制端电连接,所述控制模块根据获取的移动终端上设置的摄像头的扫描状态,输出第一控制信号至所述毫米波射频收发器,或输出第二控制信号至所述SUB6射频收发器。
  10. 根据权利要求9所述的装置,其中,还包括:检测模块,所述检测模块的第一端与所述SUB6天线电连接,所述检测模块的第二端与所述控制模块的第三端电连接。
  11. 根据权利要求9所述的装置,其中,所述第二射频发射通路包括耦合器,所述耦合器的第一端与所述发射端口电连接,所述耦合 器的第二端与所述SUB6天线电连接,所述耦合器的第三端与所述SUB6射频收发器的功率检测端口电连接。
  12. 根据权利要求9所述的装置,其中,所述毫米波天线包括第一毫米波天线、第二毫米波天线、第三毫米波天线和第四毫米波天线;所述第一射频发射通路包括第一放大器、环形器和移项器;
    所述第一放大器的第一端与所述毫米波射频收发器的毫米波发射端口电连接,所述第一放大器的第二端与所述环形器的第一端电连接,所述环形器的第二端与所述移项器的第一端电连接,所述移项器的第二端与所述第一毫米波天线电连接,所述移项器的第三端与所述第二毫米波天线电连接,所述移项器的第四端与所述第三毫米波天线电连接,所述移项器的第五端与所述第四毫米波天线电连接。
  13. 根据权利要求11所述的装置,其中,所述第二射频发射通路还包括第二放大器、第一开关单元、双工器、滤波器和第二开关单元;
    所述第二放大器的第一端与所述SUB6射频收发器的发射端口电连接,所述第二放大器的第二端与所述第一开关单元的静触点电连接,所述第一开关单元的第一动触点与所述双工器的第一端电连接,所述第一开关单元的第二动触点与所述滤波器的第一端电连接,所述双工器的第二端与所述第二开关单元的第一动触点电连接,所述滤波器的第二端与所述第二开关单元的第二动触点电连接,所述第二开关单元的静触点与所述耦合器的第一端电连接。
  14. 一种信号传输装置,其特征在于,包括:
    扫描状态获取模块,配置成在毫米波天线发射毫米波信号时,获取移动终端上设置的摄像头的扫描状态,所述扫描状态用于指示所述摄像头的遮挡信息;
    目标射频收发器确定模块,配置成根据所述摄像头的扫描状态,确定用于发射射频信号的目标射频收发器;
    控制模块,配置成控制所述目标射频收发器通过射频发射通路发射射频信号。
  15. 根据权利要求14所述的装置,其中,所述目标射频收发器确定模块,具体配置成
    根据所述摄像头的扫描状态,控制检测模块输出检测信号,其中,所述扫描状态包括遮挡或无遮挡;
    根据所述检测信号确定用于发射射频信号的目标射频收发器。
  16. 根据权利要求15所述的装置,其中,所述目标射频收发器确定模块,具体配置成当所述摄像头的扫描状态为无遮挡,控制检测模 块输出第一检测信号;
    根据所述第一检测信号确定用于发射射频信号的目标射频收发器为毫米波射频收发器;
    所述控制模块,具体配置成控制所述毫米波射频收发器通过第一射频发射通路发射射频信号。
  17. 根据权利要求15所述的装置,其中,
    所述目标射频收发器确定模块,具体还配置成当所述摄像头的扫描状态为遮挡,控制检测模块输出第二检测信号;
    根据所述第二检测信号确定用于发射射频信号的目标射频收发器为SUB6射频收发器;
    所述控制模块,具体还配置控制所述SUB6射频收发器通过第二射频发射通路发射射频信号。
  18. 根据权利要求17所述的装置,其中,所述装置还包括:
    功率值获取模块,配置成获取所述SUB6射频收发器通过第二射频发射通路发射射频信号的功率值;
    射频信号的强度控制模块,配置成根据所述功率值与预设功率值的关系控制所述SUB6射频收发器通过所述第二射频发射通路发射射频信号的强度。
  19. 一种计算机设备,包括:存储器和一个或多个处理器,所述存储器中存储有计算机可读指令;所述计算机可读指令被所述一个或多个处理器执行时,使得所述一个或多个处理器执行权利要求1-8任一项所述的信号传输方法的步骤。
  20. 一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行权利要求1-8任一项所述的信号传输方法的步骤。
PCT/CN2021/140189 2021-09-09 2021-12-21 一种信号传输方法和信号传输装置 WO2023035489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111057786.7A CN113630142A (zh) 2021-09-09 2021-09-09 一种信号传输方法和信号传输装置
CN202111057786.7 2021-09-09

Publications (1)

Publication Number Publication Date
WO2023035489A1 true WO2023035489A1 (zh) 2023-03-16

Family

ID=78389557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140189 WO2023035489A1 (zh) 2021-09-09 2021-12-21 一种信号传输方法和信号传输装置

Country Status (2)

Country Link
CN (1) CN113630142A (zh)
WO (1) WO2023035489A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630142A (zh) * 2021-09-09 2021-11-09 上海闻泰电子科技有限公司 一种信号传输方法和信号传输装置
CN116315667B (zh) * 2022-01-25 2023-11-17 荣耀终端有限公司 数据传输方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452490A (zh) * 2016-10-11 2017-02-22 深圳市万普拉斯科技有限公司 调整辐射的方法及装置
CN107395897A (zh) * 2017-08-24 2017-11-24 惠州Tcl移动通信有限公司 移动终端灭屏的控制方法、储存装置及移动终端
CN109699066A (zh) * 2018-12-25 2019-04-30 深圳市万普拉斯科技有限公司 天线频段切换方法、装置及移动终端
US20200300996A1 (en) * 2019-03-22 2020-09-24 Apple Inc. Systems and methods for object detection by radio frequency systems
CN113014288A (zh) * 2021-02-20 2021-06-22 维沃移动通信有限公司 降低天线电磁波吸收比值的方法、装置及电子设备
CN113630142A (zh) * 2021-09-09 2021-11-09 上海闻泰电子科技有限公司 一种信号传输方法和信号传输装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11063625B2 (en) * 2008-08-14 2021-07-13 Theodore S. Rappaport Steerable antenna device
US8781420B2 (en) * 2010-04-13 2014-07-15 Apple Inc. Adjustable wireless circuitry with antenna-based proximity detector
US10404308B1 (en) * 2018-08-24 2019-09-03 Motorola Mobility Llc Millimeter wave antenna management
US11320517B2 (en) * 2019-08-22 2022-05-03 Qualcomm Incorporated Wireless communication with enhanced maximum permissible exposure (MPE) compliance
KR20210101091A (ko) * 2020-02-07 2021-08-18 삼성전자주식회사 mmWave 안테나 모듈을 포함하는 전자 장치
CN113099036B (zh) * 2021-03-30 2022-08-23 维沃移动通信有限公司 毫米波天线模组的控制方法、装置和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452490A (zh) * 2016-10-11 2017-02-22 深圳市万普拉斯科技有限公司 调整辐射的方法及装置
CN107395897A (zh) * 2017-08-24 2017-11-24 惠州Tcl移动通信有限公司 移动终端灭屏的控制方法、储存装置及移动终端
CN109699066A (zh) * 2018-12-25 2019-04-30 深圳市万普拉斯科技有限公司 天线频段切换方法、装置及移动终端
US20200300996A1 (en) * 2019-03-22 2020-09-24 Apple Inc. Systems and methods for object detection by radio frequency systems
CN113014288A (zh) * 2021-02-20 2021-06-22 维沃移动通信有限公司 降低天线电磁波吸收比值的方法、装置及电子设备
CN113630142A (zh) * 2021-09-09 2021-11-09 上海闻泰电子科技有限公司 一种信号传输方法和信号传输装置

Also Published As

Publication number Publication date
CN113630142A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2023035489A1 (zh) 一种信号传输方法和信号传输装置
WO2020253521A1 (zh) 多输入多输出天线系统、天线控制方法和电子设备
KR102140753B1 (ko) 무선 기기에서 빔 설정 방법 및 장치
EP3142185B1 (en) Sensitive screen, control circuit thereof, control method therefor, and sensitive screen apparatus
CN109039397B (zh) 一种移动终端的天线电路、控制方法及装置
CN109391308B (zh) 一种天线波束切换感测系统、方法及移动终端
US9509418B2 (en) Wireless docking link budget optimization system
CN108693520B (zh) 电子设备及接近检测方法
US9059759B2 (en) Switchable antenna elements for a wireless communications device
CN107544689B (zh) 防止触摸面板的误动作的电子设备以及误动作的防止方法
WO2014134996A1 (zh) 发射功率控制方法及装置
KR102130603B1 (ko) 주파수 분할 듀플렉스 무선 통신 장치 및 방법
WO2011044740A1 (zh) 移动支付的实现方法及移动支付系统
CN113852387B (zh) 天线功率的调整方法、装置及电子设备
WO2019024795A1 (zh) 天线波束侦测系统、方法及移动终端
CN113783582A (zh) 基于毫米波天线的信号传输方法、装置、电子设备和介质
CN101908936B (zh) 无线电波控制设备、控制系统以及控制方法
TWI508371B (zh) 多天線運用系統及方法
US9978340B2 (en) Touch communications device for performing touch communications
US11870131B2 (en) Electronic device
WO2022100115A1 (zh) 屏下天线的管理方法及装置
CN114204961B (zh) 近场通信电路、方法、电子设备及存储介质
CN111010470B (zh) 一种天线调谐方法、装置及存储介质
CN112104398A (zh) 天线控制方法、装置及电子设备
US9939947B2 (en) Touch communications device with multiple partial firmwares and related method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE