WO2023035367A1 - 全液压式自动控制系统及其压力设定方法、绳锯机 - Google Patents

全液压式自动控制系统及其压力设定方法、绳锯机 Download PDF

Info

Publication number
WO2023035367A1
WO2023035367A1 PCT/CN2021/125210 CN2021125210W WO2023035367A1 WO 2023035367 A1 WO2023035367 A1 WO 2023035367A1 CN 2021125210 W CN2021125210 W CN 2021125210W WO 2023035367 A1 WO2023035367 A1 WO 2023035367A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydraulic
valve
port
hydraulic oil
Prior art date
Application number
PCT/CN2021/125210
Other languages
English (en)
French (fr)
Inventor
徐丽宁
张海波
卓旺旺
王体躲
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Publication of WO2023035367A1 publication Critical patent/WO2023035367A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/78Control of multiple output members

Definitions

  • Embodiments of the present disclosure relate to a fully hydraulic automatic control system, a pressure setting method thereof, and a wire saw machine.
  • the wire saw machine is a kind of equipment that strings high-hardness particles (such as diamond) into a wire saw, and the wire saw moves at high speed to cut the object to be cut.
  • Using a wire saw machine for flexible mechanical cutting is an efficient and precise cutting method that can cut different materials such as rocks, concrete and steel in the same cutting process, and the operation is less affected by environmental factors. It has unique advantages in crushing and cutting, stone mining, block processing, demolition of reinforced concrete structures, and maintenance of marine structures.
  • the wire saw machine has the advantages of simple operation, low environmental requirements, high cutting efficiency and good incision quality, which greatly reduces the transformation cost of the enterprise.
  • Embodiments of the present disclosure provide a fully hydraulic automatic control system for a wire saw machine, a pressure setting method thereof, and a wire saw machine.
  • the full hydraulic automatic control system includes a feed control part, which includes: hydraulic oil inlet and hydraulic oil outlet, normally open sequence valve, normally closed sequence valve, first reversing valve, and first hydraulic motor , the first hydraulic motor is configured to drive the feed device of the wire saw machine to move.
  • the first reversing valve includes a first passage and a second passage, the normally open sequence valve controls the opening and closing of the first passage, and the normally closed sequence valve controls the opening and closing of the second passage.
  • the flow directions of the hydraulic oil in the first passage and the second passage are opposite.
  • the fully hydraulic automatic control system and the wire saw machine can be applied to cutting operations in various environments including marine environments, and the feeding device can automatically choose to advance, stop or retreat according to the cutting pressure during actual operations, realizing automatic Cutting improves the cutting efficiency, reduces the operation complexity of the equipment and improves the safety.
  • An embodiment of the present disclosure provides a fully hydraulic automatic control system for a wire saw machine, including a feed control part, the feed control part includes: a hydraulic oil inlet and a hydraulic oil outlet; a normally open sequence valve, including a first The input port and the first output port; the normally closed sequence valve, including the second input port and the second output port; the first reversing valve, including the first reversing interface, the second reversing interface, the first oil inlet, A first oil return port, a first working port and a second working port; and a first hydraulic motor including a first port and a second port, the first hydraulic motor is configured to drive the feed device of the wire saw machine sports.
  • the first input port is connected to the hydraulic oil inlet, the first output port is connected to the first reversing interface and is configured to open or close the first passage of the first reversing valve;
  • the second input port is connected to the hydraulic oil inlet, the second output port is connected to the second reversing interface and is configured to open or close the second passage of the first reversing valve;
  • the first The oil inlet is connected to the hydraulic oil inlet, the first oil return port is connected to the hydraulic oil outlet, the first working interface is connected to the first interface of the first hydraulic motor, and the second working interface The second interface of the first hydraulic motor is connected.
  • the hydraulic oil flows through the first oil inlet, the first working port, the first port, the second port, the second working port, The first oil return port; in the second passage, the hydraulic oil flows through the first oil inlet, the second working port, the second port, and the first port in sequence , the first working interface, and the first oil return port.
  • the normally open sequence valve further includes a first control port configured to open or close the normally open sequence valve according to pressure; the normally closed sequence valve further includes a second control port configured to The normally closed sequence valve is configured to open or close according to pressure.
  • the first control port is connected to the hydraulic oil inlet and is configured to open or close the normally open sequence valve according to the pressure of the hydraulic oil inlet; the second control port is connected to the hydraulic oil inlet.
  • a hydraulic oil inlet connection configured to open or close the normally closed sequence valve according to the pressure of the hydraulic oil inlet.
  • the normally open sequence valve may be configured to have a first threshold pressure, the normally open sequence valve opens when the pressure is less than or equal to the first threshold pressure, the normally open sequence valve The valve closes when the pressure is greater than the first threshold pressure;
  • the normally closed sequence valve can be configured to have a second threshold pressure, and the normally closed sequence valve is closed when the pressure is less than or equal to the second threshold pressure The normally closed sequence valve is closed when the pressure is greater than the second threshold pressure, and the second threshold pressure is greater than the first threshold pressure.
  • the normally open sequence valve when the pressure of the hydraulic oil inlet is less than or equal to the first threshold pressure, the normally open sequence valve is opened, the normally closed sequence valve is closed, and the first output port controls the first threshold pressure.
  • a reversing interface opens the first passage to control the first hydraulic motor to rotate in the first direction; when the pressure of the hydraulic oil inlet is greater than or equal to the second threshold pressure, the normally closed sequence valve is opened , the normally open sequence valve is closed, the second output port controls the second reversing interface to open the second passage, so as to control the rotation of the first hydraulic motor in the second direction; and in the hydraulic When the pressure of the oil inlet is greater than the first threshold pressure and less than the second threshold pressure, the normally open sequence valve, the normally closed sequence valve and the first reversing valve are all closed, and the first The hydraulic motor stops turning.
  • the feed control part further includes a one-way speed regulating valve communicated between the hydraulic oil inlet and the first oil inlet, and the one-way speed regulating valve is configured to regulate the The flow rate of the hydraulic oil of the first hydraulic motor is adjusted to adjust the rotational speed of the first hydraulic motor.
  • the feed control part further includes a first one-way valve and a first throttle valve connected in series, and the first one-way valve and the first throttle valve communicate with the first reversing valve.
  • the first check valve is configured to allow the hydraulic oil in the first reversing interface to flow to the hydraulic oil outlet when the normally open sequence valve is closed;
  • the first throttle valve is configured to control the flow of hydraulic oil flowing from the first reversing interface to the hydraulic oil outlet, so as to prevent interference with the control of the first reversing valve.
  • the feed control part further includes a second one-way valve and a second throttle valve connected in series, and the second one-way valve and the second throttle valve communicate with the second reversing valve.
  • the interface and the hydraulic oil outlet, the second check valve is configured to allow the hydraulic oil in the second reversing interface to flow to the hydraulic oil outlet when the normally closed sequence valve is closed;
  • the second throttle valve is configured to control the flow rate of hydraulic oil flowing from the second reversing interface to the hydraulic oil outlet, so as to prevent interference with the control of the first reversing valve.
  • the feed control part further includes a switch valve, connected to the hydraulic oil inlet and an external hydraulic oil circuit, configured to open or close the feed control part.
  • the full hydraulic automatic control system further includes an oil supply system, the oil supply system includes a hydraulic pump and a hydraulic oil tank, the inlet of the hydraulic pump is connected to the hydraulic oil tank, and the outlet of the hydraulic pump connected to the hydraulic oil inlet, and the hydraulic oil outlet is connected to the hydraulic oil tank.
  • the oil supply system includes a hydraulic pump and a hydraulic oil tank, the inlet of the hydraulic pump is connected to the hydraulic oil tank, and the outlet of the hydraulic pump connected to the hydraulic oil inlet, and the hydraulic oil outlet is connected to the hydraulic oil tank.
  • the oil supply system further includes a filter, an overflow valve and a first pressure gauge, the filter is connected between the hydraulic pump and the hydraulic oil tank, and the first pressure gauge of the overflow valve The end is connected between the outlet of the hydraulic pump and the hydraulic oil inlet, the second end of the relief valve is connected to the hydraulic oil tank, and the first pressure gauge is connected to the first end of the relief valve. end and the outlet of the hydraulic pump.
  • the full hydraulic automatic control system further includes a cutting control part
  • the cutting control part includes: a second reversing valve, including a second oil inlet, a second oil return port, a third working interface and The fourth working interface; the second hydraulic motor, including a third interface and a fourth interface, the second oil inlet is connected to the outlet of the hydraulic pump, and the second oil return port is connected to the hydraulic oil tank, so
  • the third working interface is connected to the third interface
  • the fourth working interface is connected to the fourth interface
  • the second hydraulic motor is configured to drive the cutting device of the wire saw machine to move; and in series
  • the second pressure gauge and the third throttle valve are connected between the third working interface and the third interface, the second pressure gauge is configured to read the pressure of the third interface, the The third throttle valve is configured to regulate the pressure of the third port.
  • the second reversing valve includes a third passage and a fourth passage, and in the third passage, the flow direction of hydraulic oil is sequentially passing through the second oil inlet, the third working interface, the third interface, the fourth interface, the fourth working interface, and the second oil return port; in the fourth passage, the hydraulic oil flows through the second inlet in sequence oil port, the fourth working port, the fourth port, the third port, the third working port, and the second oil return port.
  • the hydraulic oil inlet of the feed control part is connected between the third working port and the third port, and the hydraulic oil outlet of the feed control part is connected to the Between the fourth working interface and the fourth interface.
  • the cutting control part further includes a two-way relief valve, the first end of the two-way relief valve is connected between the third working port and the third port, and the two-way relief valve The second end of the second end is connected between the fourth working interface and the fourth interface.
  • An embodiment of the present disclosure provides a wire saw machine, including a cutting device, a feeding device, and the above-mentioned full hydraulic automatic control system, the cutting device includes a wire saw, and the wire saw is configured to cut an object to be cut.
  • the feeding device is configured to adjust the position of the wire saw, the first hydraulic motor of the feeding control part is connected to the feeding device; the second hydraulic motor of the cutting control part is connected to the Cutting device connection.
  • An embodiment of the present disclosure provides a pressure setting method of the above-mentioned full hydraulic automatic control system, wherein the normally open sequence valve includes a first pressure adjustment unit configured to adjust the closing pressure of the normally open sequence valve; The normally closed sequence valve includes a second pressure adjustment unit configured to adjust the opening pressure of the normally closed sequence valve, and the pressure setting method includes: adjusting the first pressure adjustment unit to make the normally closed sequence valve The closing pressure of the open sequence valve is the first threshold pressure; the second pressure regulating unit is adjusted so that the opening pressure of the normally closed sequence valve is the second threshold pressure.
  • the pressure setting method further includes: adjusting the minimum cutting pressure of the second hydraulic motor; adjusting the first pressure adjusting unit so that the first threshold pressure is approximately equal to the minimum cutting pressure; adjusting the maximum cutting pressure of the second hydraulic motor; adjusting the second pressure regulating unit so that the second threshold pressure is approximately equal to the maximum cutting pressure.
  • adjusting the minimum cutting pressure of the second hydraulic motor includes: S10, adjusting the second hydraulic motor to a free rotation state, at this time, the pressure at the input side of the second hydraulic motor 17 is a reference pressure; S20 1. Increase the pressure on the input side of the second hydraulic motor until the pressure is higher than the reference pressure and reaches a first preset value, at this time the pressure on the input side of the second hydraulic motor is equal to the pressure of the second hydraulic motor Minimum cutting pressure.
  • Adjusting the maximum cutting pressure of the second hydraulic motor includes: S30, on the basis of S20, continue to increase the pressure on the input side of the second hydraulic motor until the pressure is higher than the reference pressure and reaches a second preset value , at this moment, the pressure at the input side of the second hydraulic motor is the maximum cutting pressure of the second hydraulic motor, and the second preset value is greater than the first preset value.
  • FIG. 1 is a schematic plan view of a wire saw machine according to an embodiment of the present disclosure
  • Fig. 2 is a three-dimensional structural schematic diagram of a wire saw machine according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of the principle of a fully hydraulic automatic control system according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of the principle of another fully hydraulic automatic control system according to an embodiment of the present disclosure.
  • Fig. 5 is another schematic plan view of the wire saw machine according to an embodiment of the present disclosure, showing a pressure setting panel of the wire saw machine.
  • Embodiments of the present disclosure provide a fully hydraulic automatic control system for a wire saw machine, a pressure setting method thereof, and a wire saw machine.
  • the full hydraulic automatic control system includes a feed control part, which includes: hydraulic oil inlet and hydraulic oil outlet, normally open sequence valve, normally closed sequence valve, first reversing valve, and first hydraulic motor , the first hydraulic motor is configured to drive the feed device of the wire saw machine to move.
  • the first reversing valve includes a first passage and a second passage, the normally open sequence valve controls the opening or closing of the first passage, and the normally closed sequence valve controls the opening or closing of the second passage.
  • the flow directions of the hydraulic oil in the first passage and the second passage are opposite.
  • the fully hydraulic automatic control system and the wire saw machine can be applied to cutting operations in various environments including marine environments, and the feeding device can automatically choose to advance, stop or retreat according to the cutting pressure during actual operations, realizing automatic Cutting improves the cutting efficiency, reduces the operation complexity of the equipment and improves the safety.
  • FIG. 1 is a schematic plan view of the wire saw machine
  • FIG. 2 is a three-dimensional schematic view of the wire saw machine.
  • the wire saw machine includes a cutting device CD, a feeding device FD, and a fully hydraulic automatic control system for controlling the cutting device CD and the feeding device FD.
  • the cutting device CD includes a wire saw CD1 configured to cut the object to be cut, and the wire saw CD1 may be a diamond wire saw; the feeding device FD is configured to adjust the relative position between the wire saw CD1 and the object to be cut.
  • the full hydraulic automatic control system includes a feed control part and a cutting control part.
  • the feed control part includes a feed motor, which is connected to the feed device FD to drive the feed device FD to move, thereby adjusting the cutting position of the wire saw CD1;
  • the cutting control part includes a cutting motor, which is connected to the cutting device CD , to drive the cutting device CD to move, thereby driving the wire saw CD1 to cut.
  • both the feed motor and the cutting motor are hydraulic motors.
  • the wire saw machine may be a diamond wire saw machine.
  • each component of the full-hydraulic automatic control system is a hydraulic component and does not contain electrical components; in addition, the feed control part of the full-hydraulic automatic control system can The load pressure automatically selects forward, stop or reverse, so as to realize automatic cutting.
  • the principle and structure of the full hydraulic automatic control system will be further described later.
  • control components of the full hydraulic automatic control system do not contain electrical components, it is more suitable for underwater long-term operations, such as underwater pipeline cutting operations; in addition, because the feed control part of the full hydraulic automatic control system can realize automatic cutting , so the cutting efficiency is improved, the operation complexity of the equipment is reduced, and the safety is improved.
  • the cutting device CD of the wire saw machine can include a driving wheel CD2 and a plurality of driven wheels CD3, the wire saw CD1 is wound on the driving wheel CD2 and the driven wheel CD3, and the driving wheel CD2 and the cutting motor connected (the cutting motor is not shown in Fig. 1 and Fig. 2, which may be located under the driving wheel CD2 in Fig. Turn clockwise.
  • the wire saw CD1 rotates clockwise in Figure 1; in some special cases, such as when the wire saw is stuck during cutting, the wire saw CD1 can rotate along Turn it counterclockwise to release it from being stuck.
  • the position of the dotted frame F is the installation position of the feed motor, and the feed motor is connected to the gear transmission mechanism to drive the wire saw forward or backward.
  • the wire saw machine further includes a bracket S, and a clamping device (not shown in the figure) is arranged on the bracket S for clamping the object to be cut.
  • the wire saw machine also includes a cutting angle adjusting device AD, which adjusts the cutting angle by adjusting the included angle between the bracket S and the cutting device CD.
  • the cutting angle adjustment device AD can, for example, realize the adjustment of the cutting angle through the expansion and contraction of the hydraulic cylinder.
  • FIG. 3 is a schematic diagram of the principle of the full hydraulic automatic control system.
  • the full hydraulic automatic control system includes a feed control part FS (as shown by the dotted line box at the top of the figure), and the feed control part FS includes: hydraulic oil inlet A and hydraulic oil outlet B; normally open Type sequence valve 6, including the first input port 61 and the first output port 62; normally closed sequence valve 11, including the second input port 111 and the second output port 112; the first reversing valve 9, including the first reversing Interface 91, second reversing interface 92, first oil inlet 93, first oil return port 94, first working interface 95 and second working interface 96; and the first hydraulic motor 10, including the first interface 101 and the second Two interfaces 102 .
  • the first hydraulic motor 10 is the above-mentioned feed motor, configured to drive the feed device FD of the wire saw machine to move.
  • the first input port 61 of the normally open sequence valve 6 is connected to the hydraulic oil inlet A, and the first output port 62 of the normally open sequence valve 6 is connected to the first reversing valve 9
  • the first reversing interface 91 is configured to open or close the first passage of the first reversing valve 9 .
  • the second input port 111 of the normally closed sequence valve 11 is connected to the hydraulic oil inlet A, and the second output port 112 of the normally closed sequence valve 11 is connected to the second reversing interface 92 of the first reversing valve 9 and is configured as Open or close the second passage of the first reversing valve 9 .
  • the first oil inlet 93 of the first reversing valve 9 is connected to the hydraulic oil inlet A, the first oil return port 94 of the first reversing valve 9 is connected to the hydraulic oil outlet B, and the first working interface 95 of the first reversing valve 9 It is connected to the first interface 101 of the first hydraulic motor 10 , and the second working interface 96 of the first reversing valve 9 is connected to the second interface 102 of the first hydraulic motor 10 .
  • the above-mentioned components of the feed control part FS are all connected by hydraulic pipelines.
  • each component of the feed control part FS such as the first hydraulic motor 10, the normally open sequence valve 6, the normally closed sequence valve 11, and the first reversing valve 9. All hydraulic components do not contain electrical components, so the fully hydraulic automatic control system is more suitable for long-term underwater operations, such as underwater pipeline cutting operations.
  • the hydraulic oil flows through the first oil inlet 93 , the first working port 95 , the first port 101 , the second port 102 , the second working port 96 , and the first oil return port 94 in sequence.
  • the hydraulic oil flows through the first oil inlet 93, the second working port 96, the second port 102, the first port 101, the first working port 95, and the first oil return port 94 in sequence.
  • the rotation directions of the first hydraulic motor 10 are opposite to each other when the first passage is opened and when the second passage is opened.
  • the first hydraulic motor 10 rotates clockwise in the figure to drive the wire saw close to the object to be cut; Turn it counterclockwise in order to drive the wire saw away from the object to be cut.
  • the first hydraulic motor 10 rotates counterclockwise in the figure to drive the wire saw close to the object to be cut; when the second passage is opened, the first hydraulic motor 10 The motor 10 rotates clockwise in the figure to drive the wire saw away from the object to be cut. In this way, the wire saw can be moved forward or backward.
  • the first reversing valve 9 may be a hydraulic reversing valve, which also includes an open position.
  • the first reversing valve 9 can be switched between the first passage, the second passage or an off position.
  • the first reversing valve 9 may also include more passages, which is not limited in this embodiment of the present disclosure.
  • the normally open sequence valve 6 further includes a first control port 63 configured to open or close the normally open sequence valve 6 according to the pressure, so as to realize the control of the first reversing interface 91 control to open or close the first channel.
  • the normally closed sequence valve 11 also includes a second control port 113 configured to open or close the normally closed sequence valve 11 according to the pressure, so as to control the second reversing interface 92 to open or close the second passage.
  • the first control port 63 is connected to the hydraulic oil inlet A and is configured to open or close the normally open sequence valve 6 according to the pressure of the hydraulic oil inlet A; the second control port 113 is connected to the hydraulic oil inlet A.
  • the oil inlet A is connected and is configured to open or close the normally closed sequence valve 11 according to the pressure of the hydraulic oil inlet A. That is, both the first control port 63 and the second control port 113 respectively control the normally open sequence valve 6 and the normally closed sequence valve 11 according to the pressure of the hydraulic oil inlet A.
  • the normally open sequence valve 6 can be configured to have a first threshold pressure.
  • the pressure of the first control port 63 that is, the pressure of the hydraulic oil inlet A
  • the normally open sequence valve 6 is closed when the pressure of the first control port 63 is greater than the first threshold pressure.
  • the normally closed sequence valve 11 can be configured to have a second threshold pressure, and the normally closed sequence valve 11 is under the condition that the pressure of the second control port 113 (ie, the pressure of the hydraulic oil inlet A) is less than or equal to the second threshold pressure Closed, the normally closed sequence valve 11 opens when the pressure of the second control port 113 is greater than the second threshold pressure.
  • the second threshold pressure is greater than the first threshold pressure.
  • the normally open sequence valve 6 when the pressure of the hydraulic oil inlet A is less than or equal to the first threshold pressure, the normally open sequence valve 6 is opened, the normally closed sequence valve 11 is closed, and the first output port 62 of the normally open sequence valve 6 controls the first switch.
  • the first channel is opened to the first reversing interface 91 of the valve 9 to control the rotation of the first hydraulic motor 10 in the first direction.
  • the first direction is, for example, the clockwise direction in FIG. 3 .
  • the normally closed sequence valve 11 when the pressure of the hydraulic oil inlet A is greater than or equal to the second threshold pressure, the normally closed sequence valve 11 is opened, the normally open sequence valve 6 is closed, and the second output port 112 of the normally closed sequence valve 11 controls the first switch. Open the second passage to the second reversing interface 92 of the valve 9 to control the rotation of the first hydraulic motor 10 in the second direction.
  • the second direction is, for example, the counterclockwise direction in FIG. 3 .
  • the normally open sequence valve 6, the normally closed sequence valve 11 and the first reversing valve 9 are all closed, and the first hydraulic motor 10 stop turning.
  • the feed control part FS can automatically select forward, stop or reverse according to the load pressure of the wire saw during operation (that is, the pressure of the hydraulic oil inlet A) , so as to realize automatic cutting. Since the feed control part can realize automatic cutting, the cutting efficiency is improved, the operation complexity of the equipment is reduced, and the safety is improved.
  • the feed control part FS further includes a one-way speed regulating valve 5 , and the one-way speed regulating valve 5 communicates between the hydraulic oil inlet A and the first oil inlet of the first reversing valve 9 Between 93.
  • the one-way speed regulating valve 5 is configured to adjust the flow of hydraulic oil entering the first hydraulic motor 10 to adjust the rotational speed of the first hydraulic motor 10 .
  • the one-way speed regulating valve 5 also has the function of one-way circulation, which can ensure that the flow direction of the hydraulic oil is from the hydraulic oil inlet A to the first oil inlet 93 of the first reversing valve 9, so as to prevent the reverse flow of hydraulic oil from damaging the equipment .
  • the one-way speed regulating valve 5 may be formed by connecting a one-way valve and a throttle valve in parallel.
  • the feed control part FS further includes a first one-way valve 7 and a first throttle valve 8 connected in series.
  • the first one-way valve 7 and the first throttle valve 8 communicate with the first reversing port 91 of the first reversing valve 9 and the outlet B of hydraulic oil.
  • the first one-way valve 7 is configured to make the hydraulic oil in the first reversing interface 91 of the first reversing valve 9 flow to the hydraulic oil outlet B when the normally open sequence valve 6 is closed;
  • the first throttle valve 8 is configured to control the flow of hydraulic oil flowing from the first reversing interface 91 of the first reversing valve 9 to the hydraulic oil outlet B, so as to prevent interference with the control of the first reversing valve 9 .
  • the feed control part FS further includes a second check valve 12 and a second throttle valve 13 connected in series.
  • the second check valve 12 and the second throttle valve 13 communicate with the second reversing interface 92 of the first reversing valve 9 and the outlet B of hydraulic oil.
  • the second check valve 12 is configured to make the hydraulic oil in the second reversing interface 92 of the first reversing valve 9 flow to the hydraulic oil outlet B when the normally closed sequence valve 11 is closed;
  • the second throttle valve 13 is configured to control the flow of hydraulic oil flowing from the second reversing interface 92 of the first reversing valve 9 to the hydraulic oil outlet B, so as to prevent interference with the control of the first reversing valve 9 .
  • the feed control part FS further includes an on-off valve 14 .
  • the switch valve 14 connects the hydraulic oil inlet A and the external hydraulic oil circuit, and is configured to open or close the feed control part FS.
  • the switch valve 14 can be a manual reversing valve, a manual ball valve, or an automatically controlled valve.
  • the embodiment of the present disclosure does not limit the specific type of the on-off valve 14 as long as it can realize the purpose of opening or closing the oil passage of the feed control part.
  • the full-hydraulic automatic control system further includes an oil supply system OS (shown as a dotted box on the lower left side of the figure).
  • the oil supply system OS includes a hydraulic pump 2 and a hydraulic oil tank 20 , the inlet of the hydraulic pump 2 is connected to the hydraulic oil tank 20 , the outlet of the hydraulic pump 2 is connected to the hydraulic oil inlet A, and the hydraulic oil outlet B is connected to the hydraulic oil tank 20 .
  • the hydraulic pump 2 may be driven by an engine, a motor, a reduction box, a transfer case or other transmission mechanisms, and the output flow is controlled by adjusting the rotational speed.
  • the hydraulic oil inlet A and the hydraulic oil outlet B can be directly or indirectly connected to the hydraulic pump 2 and the hydraulic oil tank 20 .
  • the hydraulic oil inlet A and the hydraulic oil outlet B are indirectly connected to the hydraulic pump 2 and the hydraulic oil tank 20 respectively through the cutting control part CS, which will be further described later.
  • Fig. 4 is a schematic diagram of the principle of another fully hydraulic automatic control system provided by an embodiment of the present disclosure.
  • the hydraulic oil inlet A and the hydraulic oil outlet B may be connected to the hydraulic pump 2 and the hydraulic oil tank 20 without passing through the cutting control unit CS.
  • other elements such as overflow valve, pressure gauge, radiator, etc., may also be arranged between the hydraulic oil inlet A and the hydraulic pump 2 , and between the hydraulic oil outlet B and the hydraulic oil tank 20 .
  • the oil supply system OS further includes a filter 1 , an overflow valve 3 and a first pressure gauge 4 .
  • the filter 1 is connected between the hydraulic pump 2 and the hydraulic oil tank 20, and the filter 1 is used to filter impurities in the hydraulic oil before the hydraulic oil enters the hydraulic pump 2.
  • the first end 31 of the relief valve 3 is connected between the outlet of the hydraulic pump 2 and the hydraulic oil inlet A, and the second end 32 of the relief valve 3 is connected to the hydraulic oil tank 20 .
  • the overflow valve 3 is configured to discharge the hydraulic oil to the hydraulic oil tank when the output pressure or the flow rate of the hydraulic pump 2 is too high, so as to provide overpressure protection.
  • the relief valve 3 has a pressure threshold, and the relief valve opens when the pressure at both ends is greater than the pressure threshold, thereby reducing the pressure at both ends; when the pressure is less than or equal to the pressure threshold, the relief valve closes, and the pressure
  • the critical value can be set according to actual needs.
  • the first pressure gauge 4 is connected between the first end 31 of the relief valve 3 and the outlet of the hydraulic pump 2 for measuring the pressure at the outlet of the hydraulic pump 2 .
  • the full-hydraulic automatic control system further includes a cutting control unit CS (shown by a dotted box on the lower right side of the figure).
  • the cutting control part CS includes a second reversing valve 19 , a second hydraulic motor 17 , and a second pressure gauge 15 and a third throttle valve 16 connected in series.
  • the second reversing valve 19 includes a second oil inlet port 191 , a second oil return port 192 , a third working port 193 and a fourth working port 194 .
  • the second hydraulic motor 17 includes a third interface 171 and a fourth interface 172 .
  • the second oil inlet 191 of the second reversing valve 19 is connected to the outlet of the hydraulic pump 2, the second oil return port 192 of the second reversing valve 19 is connected to the hydraulic oil tank 20, and the third work of the second reversing valve 19
  • the port 193 is connected to the third port 171 of the second hydraulic motor 17
  • the fourth working port 194 of the second reversing valve 19 is connected to the fourth port 172 of the second hydraulic motor 17 .
  • the second pressure gauge 15 and the third throttle valve 16 are connected between the third working port 193 of the second reversing valve 19 and the third port 171 of the second hydraulic motor 17 .
  • the second pressure gauge 15 is configured to read the pressure of the third port 171 of the second hydraulic motor 17
  • the third throttle valve 16 is configured to adjust the pressure of the third port 171 of the second hydraulic motor 17 .
  • the second hydraulic motor 17 is the aforementioned cutting motor, configured to drive the wire saw to rotate.
  • the second reversing valve 19 includes a third passage and a fourth passage.
  • the hydraulic oil flows through the second oil inlet 191, the third working port 193, the third port 171, the fourth port 172, the fourth working port 194, and the second oil return port 192;
  • the hydraulic oil flows through the second oil inlet 191 , the fourth working port 194 , the fourth port 172 , the third port 171 , the third working port 193 , and the second oil return port 192 in sequence.
  • the second reversing valve 19 may be a manual reversing valve, which also includes a disconnection position. The operator can push the handle to change direction, so that the second reversing valve 19 can be switched between the third passage, the fourth passage or the off position.
  • the second reversing valve 19 may also include more passages, which is not limited in this embodiment of the present disclosure.
  • the rotational directions of the second hydraulic motor 17 are opposite to each other.
  • the second hydraulic motor 17 rotates clockwise in the figure to drive the wire saw to rotate clockwise; Turn counterclockwise to drive the wire saw counterclockwise.
  • the third channel is connected, and the wire saw rotates clockwise; under special circumstances such as excessive resistance, the fourth channel is connected, and the wire saw rotates counterclockwise. In this way, the wire saw can be cut normally or reversed when encountering an obstacle.
  • the above-mentioned elements of the cutting control section CS are all connected by hydraulic pipelines.
  • the feed control FS is connected to the cutting control CS.
  • the hydraulic oil inlet A of the feed control part FS is connected between the third working port 193 of the second reversing valve 19 and the third port 171 of the second hydraulic motor 17, and the hydraulic oil outlet B of the feed control part FS is connected to Between the fourth working port 194 of the second reversing valve 19 and the fourth port 172 of the second hydraulic motor 17 .
  • the oil inlet port of the feed control unit FS is connected to the cutting control unit CS through the on-off valve 14 .
  • One end of the switching valve 14 is connected to the hydraulic oil inlet A of the feed control part FS, and the other end is connected between the third working port 193 of the second reversing valve 19 and the third port 171 of the second hydraulic motor 17 .
  • the third passage is connected, and the pressure on the side of the third interface 171 is greater than the pressure on the side of the fourth interface 172, that is, the pressure of the hydraulic oil inlet A is greater than that of the hydraulic oil outlet B.
  • the switch valve 14 can be in an open state, so that the feed control part FS is connected and the feed work is performed.
  • the fourth passage needs to be connected.
  • the pressure on the side of the third port 171 will be less than the pressure on the side of the fourth port 172, that is, the pressure of the hydraulic oil
  • the pressure at the inlet A will be lower than the pressure at the outlet B of the hydraulic oil, which may cause a malfunction of the feed control part FS. Therefore, before the second reversing valve 19 is operated to connect the fourth passage to reverse the wire saw, the on-off valve 14 needs to be closed first to prevent the feed control part FS from malfunctioning.
  • the cutting control section CS further includes a two-way relief valve 18 .
  • the first end 181 of the two-way relief valve 18 is connected between the third working port 193 of the second reversing valve 19 and the third port 171 of the second hydraulic motor 17, and the second end 182 of the two-way relief valve 18 is connected to Between the fourth working port 194 of the second reversing valve 19 and the fourth port 172 of the second hydraulic motor 17 .
  • the two-way overflow valve 18 is used to release the high-pressure sudden change in the pipeline to the low-pressure pipeline side, so as to prevent the impact damage of the second hydraulic motor 17 by the sudden change of pressure.
  • the two-way overflow valve 18 needs to play a two-way overpressure protection role .
  • the two-way overflow valve 18 may include two one-way overflow valves arranged in parallel and connected in opposite directions, one of which is used to release pressure from the third port 171 to the fourth port 172, and the other one-way overflow valve The overflow valve is used for releasing pressure from the fourth port 172 to the third port 171 .
  • the pressure thresholds on both sides of the two-way overflow valve 18 can also be set according to actual needs, and can be the same or different.
  • each component of the cutting control part CS such as the second hydraulic motor 17, the second pressure gauge 15, the second reversing valve 19, and the two-way relief valve 18, are all It is a hydraulic component and does not contain electrical components, so the fully hydraulic automatic control system is more suitable for long-term underwater operations, such as underwater pipeline cutting operations.
  • the cutting control part CS is connected with the feed control part FS, so that the feed control part FS can be based on the real-time pressure of the second hydraulic motor during operation (i.e. Load pressure, corresponding to the pressure of the hydraulic oil inlet A) automatically selects forward, stop or reverse, so as to realize automatic cutting, thereby improving the cutting efficiency, reducing the operation complexity of the equipment, and improving safety.
  • Load pressure corresponding to the pressure of the hydraulic oil inlet A
  • An embodiment of the present disclosure provides a pressure setting method of the above-mentioned full hydraulic automatic control system, which is used to set the first threshold pressure of the normally open sequence valve 6 and the second threshold pressure of the normally closed sequence valve 11 .
  • the normally open sequence valve 6 includes a first pressure regulating unit 64 configured to regulate the closing pressure of the normally open sequence valve 6 ; the normally closed sequence valve 11 includes a second pressure regulating unit 64 .
  • the unit 114 is configured to adjust the opening pressure of the normally closed sequence valve 11 .
  • the pressure setting method provided in this embodiment includes: adjusting the first pressure regulating unit 64 so that the closing pressure of the normally open sequence valve 6 is the first threshold pressure; and adjusting the second pressure regulating unit 114 so that the normally closed sequence valve 6 The opening pressure of the valve 11 is the second threshold pressure.
  • the pressure setting method provided in this embodiment further includes: adjusting the minimum cutting pressure of the second hydraulic motor 17; adjusting the first pressure adjusting unit 64 so that the first threshold pressure is roughly equal to the minimum cutting pressure of the second hydraulic motor 17; Adjusting the maximum cutting pressure of the second hydraulic motor 17 ; and adjusting the second pressure regulating unit 114 so that the second threshold pressure is approximately equal to the maximum cutting pressure of the second hydraulic motor 17 .
  • the first threshold pressure is set according to the minimum cutting pressure of the second hydraulic motor 17, and the second threshold pressure is set according to the maximum cutting pressure of the second hydraulic motor 17, so that the feed control part can be adjusted according to the situation of the cutting control part.
  • it is beneficial to improve cutting efficiency and improve the protection of the wire saw machine.
  • adjusting the minimum cutting pressure of the second hydraulic motor 17 includes:
  • the first preset value can be determined according to parameters such as material and size of the object to be cut.
  • Adjusting the maximum cutting pressure of the second hydraulic motor 17 includes:
  • S30 On the basis of S20, continue to increase the pressure on the input side of the second hydraulic motor 17 until the pressure is higher than the reference pressure and reaches the second preset value. At this time, the pressure on the input side of the second hydraulic motor 17 is the second hydraulic pressure.
  • the second preset value can be determined according to parameters such as material and size of the object to be cut, and the second preset value is greater than the first preset value.
  • the pressure setting method provided in this embodiment further includes other steps such as a preparation stage.
  • Fig. 5 is another schematic plan view of the wire saw machine according to an embodiment of the present disclosure, showing a pressure setting panel of the wire saw machine.
  • the pressure setting method provided by this embodiment will be described in detail below with reference to FIG. 5 .
  • the dotted line box indicated by the arrow in the figure is the pressure setting panel of the wire saw machine, on which the display panel of the second pressure gauge 15, the handle of the switch valve 14, the one-way The adjusting knob of the speed regulating valve 5, the adjusting knob of the first pressure adjusting unit of the normally open sequence valve 6, the adjusting knob of the first pressure adjusting unit 114 of the normally closed sequence valve 11, the adjusting knob of the third throttle valve 16 .
  • the pressure setting method provided in this embodiment includes:
  • Preparation stage including:
  • the embodiments of the present disclosure include but are not limited thereto, and the adjustment direction of the first pressure adjustment unit 64 can also be reversely set.
  • a certain range such as 1-3 turns
  • the third throttle valve 16 simulates the change of the load pressure by adjusting the opening degree of the throttle hole. For example, when adjusted clockwise, the orifice decreases and differential pressure increases, and when adjusted counterclockwise, the orifice increases and differential pressure decreases.
  • Pressure setting stage including:
  • the first preset value can be determined according to parameters such as material and size of the object to be cut.
  • Adjust the first pressure regulating unit 64 (for example, adjust clockwise) to increase the closing pressure of the normally open sequence valve 6.
  • the normally open The closing pressure of the sequence valve 6 is the first threshold pressure, and the first threshold pressure is roughly equal to the minimum cutting pressure.
  • the second preset value can be determined according to the material, size and other parameters of the object to be cut, and greater than the first preset value.
  • the pressure setting method of the fully hydraulic automatic control system provided by the embodiment of the present disclosure can enable the feed control part to automatically feed, retreat or stop according to the real-time pressure of the cutting control part, which improves the cutting efficiency and reduces the operation of the equipment. complexity and increased security.
  • the third throttle valve 16 is adjusted counterclockwise to the maximum opening, and the throttle valve no longer plays the role of simulating the load pressure.
  • the wire saw can be automatically fed.
  • the load pressure is lower than the first threshold pressure
  • the wire saw keeps moving forward
  • the load pressure is greater than the second threshold pressure
  • the wire saw retreats away from the object to be cut, so as to avoid excessive load exceeding the maximum tension of the diamond wire and break;
  • the wire saw stops moving forward and backward.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

一种用于绳锯机的全液压式自动控制系统及其压力设定方法、以及一种绳锯机被公开。该全液压式自动控制系统包括进给控制部(FS),进给控制部包括:液压油入口(A)和液压油出口(B)、常开式顺序阀(6)、常闭式顺序阀(11)、第一换向阀(9)以及第一液压马达(10)。第一换向阀(9)包括第一通路和第二通路,常开式顺序阀(6)控制第一通路的开或闭,常闭式顺序阀控制第二通路的开或闭。第一通路和第二通路中液压油的流动方向相反。该全液压式自动控制系统可以应用于海洋环境的切割作业,并且可以实现自动进给,提高了切割效率,降低了设备的操作复杂度,提高了安全性。

Description

全液压式自动控制系统及其压力设定方法、绳锯机
相关申请的交叉引用
出于所有目的,本申请要求于2021年09月13日递交的中国专利申请第202111068507.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种全液压式自动控制系统及其压力设定方法、绳锯机。
背景技术
绳锯机是一种将高硬度的颗粒物(例如金刚石)串成绳锯,绳锯做高速运动以切割待切割物的设备。采用绳锯机进行柔性机械切割是一种高效且精密的切割方法,可以在同一次切削过程中实现切削不同材料,如岩石、混凝土以及钢材等,且作业受环境因素影响较小,在建筑物的破碎切割,石材开采、荒料加工,钢筋混凝土结构物拆除,海洋结构物维修等工程中显现出独特的优势。绳锯机具有操作简单、对环境要求低、切割效率高以及切口质量好等优点,大大降低了企业的改造成本。
绳锯机在切割尺寸较大的金属材料制成的物体时,通常需要耗费几个小时的时间,现有绳锯机的液压控制系统需要操作人员检测压力变化,并手动推动手柄实施切割作业。这就需要操作人员在较长时间的施工过程中始终观测压力值并多次手动推动手柄,以确保持续切割。整个作业过程,对于操作人员的操作水平和体力精力要求较高。
为了实现绳锯机的自动切割,现有技术多使用电气控制,这种控制方式需要安装压力传感器、速度传感器等,并且需要匹配相应的接线口及控制程序。如果应用于海洋环境,各类电气元件无法承受高压及水环境,作业条件受到了极大的限制。
发明内容
本公开的实施例提供一种用于绳锯机的全液压式自动控制系统及其压力设定方法、以及一种绳锯机。该全液压式自动控制系统包括进给控制部,进给控制部包括:液压油入口和液压油出口、常开式顺序阀、常闭式顺序阀、第一换向阀、以及第一液压马达,第一液压马达被配置为驱动绳锯机的进给装置运动。第一换向阀包括第一通路和第二通路,常开式顺序阀控制第一通路的开闭,常闭式顺序阀控制第二通路的开闭。第一通路和第二通路中液压油的流动方向相反。该全液压式自动控制系统以及该绳锯机可以应用于包括海洋环境等多种环境的切割作业,并且进给装置可以根据实际作业时的切割压力自动地选择前进、停止或后退,实现了自动切割,提高了切割效率,降低了设备的操作复杂度,提高了安全性。
本公开一实施例提供一种绳锯机的全液压式自动控制系统,包括进给控制部,所述进给控制部包括:液压油入口和液压油出口;常开式顺序阀,包括第一输入口和第一输出口;常闭式顺序阀,包括第二输入口和第二输出口;第一换向阀,包括第一换向接口、第二换向接口、第一进油口、第一回油口、第一工作接口和第二工作接口;以及第一液压马达,包括第一接口和第二接口,所述第一液压马达被配置为驱动所述绳锯机的进给装置运动。所述第一输入口连接到所述液压油入口,所述第一输出口连接到所述第一换向接口并被配置为打开或关闭所述第一换向阀的第一通路;所述第二输入口连接到所述液压油入口,所述第二输出口连接到所述第二换向接口并被配置为打开或关闭所述第一换向阀的第二通路;所述第一进油口连接所述液压油入口,所述第一回油口连接所述液压油出口,所述第一工作接口连接所述第一液压马达的所述第一接口,所述第二工作接口连接所述第一液压马达的所述第二接口。在所述第一通路中,液压油的流动方向为依次经过所述第一进油口、所述第一工作接口、所述第一接口、所述第二接口、所述第二工作接口、所述第一回油口;在所述第二通路中,液压油的流动方向为依次经过所述第一进油口、所述第二工作接口、所述第二接口、所述第一接口、所述第一工作接口、所述第一回油口。
在一些示例中,在所述第一通路打开的情况下和在所述第二通路打开的情况下,所述第一液压马达的转动方向彼此相反。
在一些示例中,所述常开式顺序阀还包括第一控制口,被配置为根据压力打开或关闭所述常开式顺序阀;所述常闭式顺序阀还包括第二控制口,被配置 为根据压力打开或关闭所述常闭式顺序阀。
在一些示例中,所述第一控制口与所述液压油入口连接,被配置为根据所述液压油入口的压力打开或关闭所述常开式顺序阀;所述第二控制口与所述液压油入口连接,被配置为根据所述液压油入口的压力打开或关闭所述常闭式顺序阀。
在一些示例中,所述常开式顺序阀可被配置为具有第一阈值压力,所述常开式顺序阀在压力小于等于所述第一阈值压力的情况下打开,所述常开式顺序阀在压力大于所述第一阈值压力的情况下关闭;所述常闭式顺序阀可被配置为具有第二阈值压力,所述常闭式顺序阀在压力小于等于所述第二阈值压力的情况下关闭,所述常闭式顺序阀在压力大于所述第二阈值压力的情况下打开,所述第二阈值压力大于所述第一阈值压力。
在一些示例中,在所述液压油入口的压力小于等于第一阈值压力的状态,所述常开式顺序阀打开,所述常闭式顺序阀关闭,所述第一输出口控制所述第一换向接口打开所述第一通路,以控制所述第一液压马达沿第一方向转动;在所述液压油入口的压力大于等于第二阈值压力的状态,所述常闭式顺序阀打开,所述常开式顺序阀关闭,所述第二输出口控制所述第二换向接口打开所述第二通路,以控制所述第一液压马达沿第二方向转动;以及在所述液压油入口的压力大于所述第一阈值压力且小于第二阈值压力的状态,所述常开式顺序阀、所述常闭式顺序阀和所述第一换向阀均关闭,所述第一液压马达停止转动。
在一些示例中,所述进给控制部还包括单向调速阀,连通在所述液压油入口和所述第一进油口之间,所述单向调速阀被配置为调节进入所述第一液压马达的液压油的流量,以调节所述第一液压马达的转速。
在一些示例中,所述进给控制部还包括串连的第一单向阀和第一节流阀,所述第一单向阀和所述第一节流阀连通所述第一换向接口和所述液压油出口,所述第一单向阀被配置为,在所述常开式顺序阀关闭的状态,使所述第一换向接口内的液压油流向所述液压油出口;所述第一节流阀被配置为控制从所述第一换向接口向所述液压油出口流动的液压油的流量,以防止对所述第一换向阀的控制产生干扰。
在一些示例中,所述进给控制部还包括串连的第二单向阀和第二节流阀,所述第二单向阀和所述第二节流阀连通所述第二换向接口和所述液压油出口, 所述第二单向阀被配置为,在所述常闭式顺序阀关闭的状态,使所述第二换向接口内的液压油流向所述液压油出口;所述第二节流阀被配置为控制从所述第二换向接口向所述液压油出口流动的液压油的流量,以防止对所述第一换向阀的控制产生干扰。
在一些示例中,所述进给控制部还包括开关阀,连接所述液压油入口和外部液压油路,被配置为打开或关闭所述进给控制部。
在一些示例中,所述全液压式自动控制系统还包括供油系统,所述供油系统包括液压泵和液压油箱,所述液压泵的入口连接到所述液压油箱,所述液压泵的出口连接到所述液压油入口,所述液压油出口连接到所述液压油箱。
在一些示例中,所述供油系统还包括过滤器、溢流阀和第一压力表,所述过滤器连接在所述液压泵和所述液压油箱之间,所述溢流阀的第一端连接在所述液压泵的出口和所述液压油入口之间,所述溢流阀的第二端连接到所述液压油箱,所述第一压力表连接在所述溢流阀的第一端和所述液压泵的出口之间。
在一些示例中,所述全液压式自动控制系统还包括切割控制部,所述切割控制部包括:第二换向阀,包括第二进油口、第二回油口、第三工作接口和第四工作接口;第二液压马达,包括第三接口和第四接口,所述第二进油口连接到所述液压泵的出口,所述第二回油口连接到所述液压油箱,所述第三工作接口连接到所述第三接口,所述第四工作接口连接到所述第四接口,所述第二液压马达被配置为驱动所述绳锯机的切割装置运动;以及串连的第二压力表和第三节流阀,连接在所述第三工作接口和所述第三接口之间,所述第二压力表被配置为读取所述第三接口的压力,所述第三节流阀被配置为调节所述第三接口的压力。
在一些示例中,所述第二换向阀包括第三通路和第四通路,在所述第三通路中,液压油的流动方向为依次经过所述第二进油口、所述第三工作接口、所述第三接口、所述第四接口、所述第四工作接口、所述第二回油口;在所述第四通路中,液压油的流动方向为依次经过所述第二进油口、所述第四工作接口、所述第四接口、所述第三接口、所述第三工作接口、所述第二回油口。
在一些示例中,所述进给控制部的所述液压油入口连接到所述第三工作接口和所述第三接口之间,所述进给控制部的所述液压油出口连接到所述第四工作接口和所述第四接口之间。
在一些示例中,所述切割控制部还包括双向溢流阀,所述双向溢流阀的第一端连接到所述第三工作接口和所述第三接口之间,所述双向溢流阀的第二端连接到所述第四工作接口和所述第四接口之间。
本公开一实施例提供一种绳锯机,包括切割装置、进给装置以及上述全液压式自动控制系统,所述切割装置包括绳锯,所述绳锯被配置为切割待切割物,所述进给装置被配置为调节所述绳锯的位置,所述进给控制部的所述第一液压马达与所述进给装置连接;所述切割控制部的所述第二液压马达与所述切割装置连接。
本公开一实施例提供一种上述全液压式自动控制系统的压力设定方法,所述常开式顺序阀包括第一压力调节单元,被配置为调节所述常开式顺序阀的关闭压力;所述常闭式顺序阀包括第二压力调节单元,被配置为调节所述常闭式顺序阀的打开压力,所述压力设定方法包括:调节所述第一压力调节单元,使所述常开式顺序阀的关闭压力为所述第一阈值压力;调节所述第二压力调节单元,使所述常闭式顺序阀的打开压力为所述第二阈值压力。
在一些示例中,所述压力设定方法还包括:调节所述第二液压马达的最小切割压力;调节所述第一压力调节单元,使所述第一阈值压力大致等于所述最小切割压力;调节所述第二液压马达的最大切割压力;调节所述第二压力调节单元,使所述第二阈值压力大致等于所述最大切割压力。
在一些示例中,调节所述第二液压马达的最小切割压力包括:S10、调节所述第二液压马达至自由旋转状态,此时所述第二液压马达17输入侧的压力为基准压力;S20、增大所述第二液压马达输入侧的压力,直到该压力高于所述基准压力达到第一预设值,此时所述第二液压马达输入侧的压力为所述第二液压马达的最小切割压力。调节所述第二液压马达的最大切割压力包括:S30、在S20的基础上,继续增大所述第二液压马达输入侧的压力,直到该压力高于所述基准压力达到第二预设值,此时所述第二液压马达输入侧的压力为所述第二液压马达的最大切割压力,所述第二预设值大于所述第一预设值。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开一实施例的绳锯机的平面结构示意图;
图2为根据本公开一实施例的绳锯机的三维结构示意图;
图3为根据本公开一实施例的全液压式自动控制系统的原理示意图;
图4为根据本公开一实施例的又一种全液压式自动控制系统的原理示意图;以及
图5为根据本公开一实施例的绳锯机的又一平面结构示意图,示出了绳锯机的压力设定面板。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
本公开的实施例提供一种用于绳锯机的全液压式自动控制系统及其压力设定方法、以及一种绳锯机。该全液压式自动控制系统包括进给控制部,进给控制部包括:液压油入口和液压油出口、常开式顺序阀、常闭式顺序阀、第一换向阀、以及第一液压马达,第一液压马达被配置为驱动绳锯机的进给装置运动。第一换向阀包括第一通路和第二通路,常开式顺序阀控制第一通路的开或闭,常闭式顺序阀控制第二通路的开或闭。第一通路和第二通路中液压油的流动方向相反。该全液压式自动控制系统以及该绳锯机可以应用于包括海洋环境等多种环境的切割作业,并且进给装置可以根据实际作业时的切割压力自动地选择前进、停止或后退,实现了自动切割,提高了切割效率,降低了设备的操作复杂度,提高了安全性。
下面结合附图对本公开实施例提供的用于绳锯机的全液压式自动控制系统及其压力设定方法、以及绳锯机进行详细描述。
本公开一实施例提供一种绳锯机,图1为该绳锯机的平面结构示意图,图2为该绳锯机的三维结构示意图。如图1和图2所示,绳锯机包括切割装置CD、进给装置FD以及用于控制切割装置CD和进给装置FD的全液压式自动控制系统。切割装置CD包括绳锯CD1,绳锯CD1被配置为切割待切割物,绳锯CD1可以为金刚石绳锯;进给装置FD被配置为调节绳锯CD1与待切割物之间的相对位置。全液压式自动控制系统包括进给控制部和切割控制部。进给控制部包括进给马达,进给马达与进给装置FD连接,以驱动进给装置FD运动,从而调节绳锯CD1的切割位置;切割控制部包括切割马达,切割马达与切割装置CD连接,以驱动切割装置CD运动,从而驱动绳锯CD1进行切割。例如,进给马达和切割马达均为液压马达。例如,该绳锯机可以为金刚石绳锯机。
在本公开实施例提供的绳锯机中,全液压式自动控制系统的各个元件均为液压元件,不包含电气元件;另外,全液压式自动控制系统的进给控制部可以根据作业时绳锯的负载压力自动地选择前进、停止或后退,从而实现自动切割。后文将进一步描述全液压式自动控制系统的原理和结构。
由于全液压式自动控制系统的控制元件不包含电气元件,因此更加适用于水下长时间作业,例如海下管道切割作业;另外,由于全液压式自动控制系统的进给控制部可以实现自动切割,因此提高了切割效率,降低了设备的操作复杂度,提高了安全性。
在一些示例中,如图1所示,绳锯机的切割装置CD可以包括驱动轮CD2和多个从动轮CD3,绳锯CD1缠绕在驱动轮CD2和从动轮CD3上,驱动轮CD2与切割马达连接(图1和图2未示出切割马达,其可以位于图1中驱动轮CD2的下方),在切割马达的驱动下转动,从而带动绳锯CD1沿图1中的顺时针方向转动或逆时针方向转动。例如,在绳锯机的正常切割工作中,绳锯CD1沿图1中的顺时针方向转动;在一些特殊情况,例如当绳锯在切割过程中被卡住时,绳锯CD1可以沿图1中的逆时针方向转动以从被卡住的状态脱开。
在一些示例中,如图2所示,虚线框F的位置为进给马达的安装位置,进给马达连接齿轮传动机构,以带动绳锯前进或后退。
在一些示例中,如图2所示,绳锯机还包括支架S,支架S上设置有夹紧装置(图中未示出),用于夹紧待切割物。绳锯机还包括切割角度调节装置AD,通过调节支架S与切割装置CD的夹角,从而调节切割角度。切割角度调节装置AD例如可以通过液压缸的伸缩来实现切割角度调节。
本公开一实施例提供一种用于上述绳锯机的全液压式自动控制系统,图3为该全液压式自动控制系统的原理示意图。如图3所示,该全液压式自动控制系统包括进给控制部FS(如图中上方的虚线框所示),进给控制部FS包括:液压油入口A和液压油出口B;常开式顺序阀6,包括第一输入口61和第一输出口62;常闭式顺序阀11,包括第二输入口111和第二输出口112;第一换向阀9,包括第一换向接口91、第二换向接口92、第一进油口93、第一回油口94、第一工作接口95和第二工作接口96;以及第一液压马达10,包括第一接口101和第二接口102。
例如,第一液压马达10即为上述的进给马达,被配置为驱动绳锯机的进给装置FD运动。
在一些示例中,如图3所示,常开式顺序阀6的第一输入口61连接到液压油入口A,常开式顺序阀6的第一输出口62连接到第一换向阀9的第一换向接口91并被配置为打开或关闭第一换向阀9的第一通路。常闭式顺序阀11的第二输入口111连接到液压油入口A,常闭式顺序阀11的第二输出口112连接到第一换向阀9的第二换向接口92并被配置为打开或关闭第一换向阀9的第二通路。第一换向阀9的第一进油口93连接液压油入口A,第一换向阀9的第一回油口94连接液压油出口B,第一换向阀9的第一工作接口95连接第一液压马达10的第一接口101,第一换向阀9的第二工作接口96连接第一液压马达10的第二接口102。
例如,进给控制部FS的上述各元件之间均通过液压管线连接。
在本公开实施例提供的全液压式自动控制系统中,进给控制部FS的各个元件,例如第一液压马达10、常开式顺序阀6、常闭式顺序阀11、第一换向阀9,均为液压元件,不包含电气元件,因此该全液压式自动控制系统更加适用于水下长时间作业,例如海下管道切割作业。
在第一通路中,液压油的流动方向为依次经过第一进油口93、第一工作接口95、第一接口101、第二接口102、第二工作接口96、第一回油口94。在第二通路中,液压油的流动方向为依次经过第一进油口93、第二工作接口 96、第二接口102、第一接口101、第一工作接口95、第一回油口94。
例如,在第一通路打开的情况下和在第二通路打开的情况下,第一液压马达10的转动方向彼此相反。例如,在第一通路打开的情况下,第一液压马达10沿图中的顺时针方向转动,以驱动绳锯靠近待切割物;在第二通路打开的情况下,第一液压马达10沿图中的逆时针方向转动,以驱动绳锯远离待切割物。当然,也可以为,在第一通路打开的情况下,第一液压马达10沿图中的逆时针方向转动,以驱动绳锯靠近待切割物;在第二通路打开的情况下,第一液压马达10沿图中的顺时针方向转动,以驱动绳锯远离待切割物。如此,可以实现绳锯的前进或后退。
例如,第一换向阀9可以为液压换向阀,其还包括断开位。第一换向阀9可以在第一通路、第二通路或断开位之间切换。当然,第一换向阀9还可以包括更多的通路,本公开实施例对此不做限定。
在一些示例中,如图3所示,常开式顺序阀6还包括第一控制口63,被配置为根据压力打开或关闭常开式顺序阀6,从而实现对第一换向接口91的控制,以打开或关闭第一通路。常闭式顺序阀11还包括第二控制口113,被配置为根据压力打开或关闭常闭式顺序阀11,从而实现对第二换向接口92的控制,以打开或关闭第二通路。
在一些示例中,如图3所示,第一控制口63与液压油入口A连接,被配置为根据液压油入口A的压力打开或关闭常开式顺序阀6;第二控制口113与液压油入口A连接,被配置为根据液压油入口A的压力打开或关闭常闭式顺序阀11。即,第一控制口63和第二控制口113均根据液压油入口A的压力来分别控制常开式顺序阀6和常闭式顺序阀11。
例如,常开式顺序阀6可被配置为具有第一阈值压力,常开式顺序阀6在第一控制口63的压力(即液压油入口A的压力)小于等于第一阈值压力的情况下打开,常开式顺序阀6在第一控制口63的压力大于第一阈值压力的情况下关闭。
例如,常闭式顺序阀11可被配置为具有第二阈值压力,常闭式顺序阀11在第二控制口113的压力(即液压油入口A的压力)小于等于第二阈值压力的情况下关闭,常闭式顺序阀11在第二控制口113的压力大于第二阈值压力的情况下打开。
例如,第二阈值压力大于第一阈值压力。
例如,在液压油入口A的压力小于等于第一阈值压力的状态,常开式顺序阀6打开,常闭式顺序阀11关闭,常开式顺序阀6的第一输出口62控制第一换向阀9的第一换向接口91打开第一通路,以控制第一液压马达10沿第一方向转动。第一方向例如为图3中的顺时针方向。
例如,在液压油入口A的压力大于等于第二阈值压力的状态,常闭式顺序阀11打开,常开式顺序阀6关闭,常闭式顺序阀11的第二输出口112控制第一换向阀9的第二换向接口92打开第二通路,以控制第一液压马达10沿第二方向转动。第二方向例如为图3中的逆时针方向。
例如,在液压油入口A的压力大于第一阈值压力且小于第二阈值压力的状态,常开式顺序阀6、常闭式顺序阀11和第一换向阀9均关闭,第一液压马达10停止转动。
如上所述,在本公开实施例提供的全液压式自动控制系统中,进给控制部FS可以根据作业时绳锯的负载压力(即液压油入口A的压力)自动地选择前进、停止或后退,从而实现自动切割。由于进给控制部可以实现自动切割,因此提高了切割效率,降低了设备的操作复杂度,提高了安全性。
在一些示例中,如图3所示,进给控制部FS还包括单向调速阀5,单向调速阀5连通在液压油入口A和第一换向阀9的第一进油口93之间。单向调速阀5被配置为调节进入第一液压马达10的液压油的流量,以调节第一液压马达10的转速。单向调速阀5还具有单向流通的作用,可以保证液压油的流动方向为从液压油入口A向第一换向阀9的第一进油口93,防止液压油反向流动损坏设备。例如,单向调速阀5可以由单向阀和节流阀并联形成。
在一些示例中,如图3所示,进给控制部FS还包括串连的第一单向阀7和第一节流阀8。第一单向阀7和第一节流阀8连通第一换向阀9的第一换向接口91和液压油出口B。第一单向阀7被配置为,在常开式顺序阀6关闭的状态,使第一换向阀9的第一换向接口91内的液压油流向液压油出口B;第一节流阀8被配置为控制从第一换向阀9的第一换向接口91向液压油出口B流动的液压油的流量,以防止对第一换向阀9的控制产生干扰。第一换向阀9的第一换向接口91处的液压油可能存在泄漏,设置第一单向阀7和第一节流阀8可以将第一换向阀9的第一换向接口91泄漏的液压油排出到液压油出口,并且在排出的过程中可以控制液压油的流量,避免干扰对第一换向阀9的控制。
在一些示例中,如图3所示,进给控制部FS还包括串连的第二单向阀12和第二节流阀13。第二单向阀12和第二节流阀13连通第一换向阀9的第二换向接口92和液压油出口B。第二单向阀12被配置为,在常闭式顺序阀11关闭的状态,使第一换向阀9的第二换向接口92内的液压油流向液压油出口B;第二节流阀13被配置为控制从第一换向阀9的第二换向接口92向液压油出口B流动的液压油的流量,以防止对第一换向阀9的控制产生干扰。第一换向阀9的第二换向接口92处的液压油可能存在泄漏,设置第二单向阀12和第二节流阀13可以将第一换向阀9的第二换向接口92泄漏的液压油排出到液压油出口,并且在排出的过程中可以控制液压油的流量,避免干扰对第一换向阀9的控制。
在一些示例中,如图3所示,进给控制部FS还包括开关阀14。开关阀14连接液压油入口A和外部液压油路,并且被配置为打开或关闭进给控制部FS。例如,开关阀14可以为手动换向阀,也可以是手动球阀,也可以为自动控制的阀门。本公开的实施例不限定开关阀14的具体类型,只要其能够实现打开或关闭进给控制部的油路的目的即可。
在一些示例中,如图3所示,全液压式自动控制系统还包括供油系统OS(如图中下方左侧的虚线框所示)。供油系统OS包括液压泵2和液压油箱20,液压泵2的入口连接到液压油箱20,液压泵2的出口连接到液压油入口A,液压油出口B连接到液压油箱20。例如,液压泵2可以由发动机、电机、减速箱、分动箱或其他传动机构驱动,通过调整转速来控制输出流量。
需要说明的是,液压油入口A和液压油出口B可以直接或间接连接到液压泵2和液压油箱20。例如,在图3中,液压油入口A和液压油出口B分别经过切割控制部CS间接连接到液压泵2和液压油箱20,后文将进一步描述切割控制部CS。
图4为本公开一实施例提供的又一种全液压式自动控制系统的原理示意图。如图4所示,液压油入口A和液压油出口B也可以不经过切割控制部CS而连接到液压泵2和液压油箱20。当然,液压油入口A与液压泵2之间、以及液压油出口B与液压油箱20之间还可以设置有其他元件,例如溢流阀、压力表、散热器等。
在一些示例中,如图3所示,供油系统OS还包括过滤器1、溢流阀3和第一压力表4。过滤器1连接在液压泵2和液压油箱20之间,过滤器1用于 在液压油进入液压泵2之前,过滤掉液压油中的杂质。溢流阀3的第一端31连接在液压泵2的出口和液压油入口A之间,溢流阀3的第二端32连接到液压油箱20。溢流阀3被配置为,当液压泵2输出压力或流量过高时,将液压油泄放到液压油箱,从而提供超压保护。例如,溢流阀3具有一压力临界值,在两端压力大于该压力临界值时溢流阀打开,从而减小两端压力;当压力小于等于该压力临界值时溢流阀关闭,该压力临界值可以根据实际需要进行设定。第一压力表4连接在溢流阀3的第一端31和液压泵2的出口之间,用于测量液压泵2出口的压力。
在一些示例中,如图3所示,全液压式自动控制系统还包括切割控制部CS(如图中下方右侧的虚线框所示)。切割控制部CS包括第二换向阀19、第二液压马达17、以及串连的第二压力表15和第三节流阀16。第二换向阀19包括第二进油口191、第二回油口192、第三工作接口193和第四工作接口194。第二液压马达17包括第三接口171和第四接口172。第二换向阀19的第二进油口191连接到液压泵2的出口,第二换向阀19的第二回油口192连接到液压油箱20,第二换向阀19的第三工作接口193连接到第二液压马达17的第三接口171,第二换向阀19的第四工作接口194连接到第二液压马达17的第四接口172。第二压力表15和第三节流阀16连接在第二换向阀19的第三工作接口193和第二液压马达17的第三接口171之间。第二压力表15被配置为读取第二液压马达17的第三接口171的压力,第三节流阀16被配置为调节第二液压马达17的第三接口171的压力。
例如,第二液压马达17即为上述的切割马达,被配置为驱动绳锯转动。
在一些示例中,如图3所示,第二换向阀19包括第三通路和第四通路。在第三通路中,液压油的流动方向为依次经过第二进油口191、第三工作接口193、第三接口171、第四接口172、第四工作接口194、第二回油口192;在第四通路中,液压油的流动方向为依次经过第二进油口191、第四工作接口194、第四接口172、第三接口171、第三工作接口193、第二回油口192。
例如,第二换向阀19可以为手动换向阀,其还包括断开位。操作人员可以推动手柄进行换向,使第二换向阀19在第三通路、第四通路或断开位之间切换。当然,第二换向阀19还可以包括更多的通路,本公开实施例对此不做限定。
例如,在第三通路打开的情况下和在第四通路打开的情况下,第二液压马 达17的转动方向彼此相反。例如,在第三通路打开的情况下,第二液压马达17沿图中的顺时针方向转动,以驱动绳锯顺时针旋转;在第四通路打开的情况下,第二液压马达17沿图中的逆时针方向转动,以驱动绳锯逆时针旋转。例如,在正常的切割作业过程中,第三通路接通,绳锯顺时针旋转;在遇到过大的阻力等特殊情况下,第四通路接通,绳锯逆时针旋转。如此,可以实现绳锯正常切割或遇到障碍时反转。
例如,切割控制部CS的上述各元件之间均通过液压管线连接。
在一些示例中,如图3所示,进给控制部FS与切割控制部CS连接。进给控制部FS的液压油入口A连接到第二换向阀19的第三工作接口193和第二液压马达17的第三接口171之间,进给控制部FS的液压油出口B连接到第二换向阀19的第四工作接口194和第二液压马达17的第四接口172之间。
例如,进给控制部FS的进油端通过开关阀14与切割控制部CS连接。开关阀14的一端连接进给控制部FS的液压油入口A,另一端连接到第二换向阀19的第三工作接口193和第二液压马达17的第三接口171之间。
例如,在切割控制部CS正常切割作业过程中,第三通路接通,第三接口171一侧的压力大于第四接口172一侧的压力,即液压油入口A的压力大于液压油出口B的压力,此时,开关阀14可以处于打开状态,使进给控制部FS接通并进行进给工作。而在绳锯遇到过大的阻力等特殊情况需要反转时,需要接通第四通路,接通后第三接口171一侧的压力将小于第四接口172一侧的压力,即液压油入口A的压力将小于液压油出口B的压力,可能会引起进给控制部FS出现故障。因此在操作第二换向阀19以接通第四通路使绳锯反转前,需要先关闭开关阀14,以防止进给控制部FS出现故障。
在一些示例中,如图3所示,切割控制部CS还包括双向溢流阀18。双向溢流阀18的第一端181连接到第二换向阀19的第三工作接口193和第二液压马达17的第三接口171之间,双向溢流阀18的第二端182连接到第二换向阀19的第四工作接口194和第二液压马达17的第四接口172之间。双向溢流阀18用于将管路中的高压突变压力泄放到低压管路侧,防止突变压力对第二液压马达17的冲击破坏。由于切割控制部CS的第二液压马达17具有正转或反转的不同工作模式,即,其高压侧和低压侧可以互换,因此,双向溢流阀18需要起到双向的超压保护作用。例如,双向溢流阀18可以包括两个并联设置且连接方向相反的单向溢流阀,其中一个单向溢流阀用于从第三接 口171向第四接口172泄压,另一个单向溢流阀用于从第四接口172向第三接口171泄压。双向溢流阀18两侧的压力临界值也可以根据实际需要设定,可以相同也可以不同。
在本公开实施例提供的全液压式自动控制系统中,切割控制部CS的各个元件,例如第二液压马达17、第二压力表15、第二换向阀19、双向溢流阀18,均为液压元件,不包含电气元件,因此该全液压式自动控制系统更加适用于水下长时间作业,例如海下管道切割作业。
如上所述,在本公开实施例提供的全液压式自动控制系统中,切割控制部CS与进给控制部FS连接,使进给控制部FS可以根据作业时第二液压马达的实时压力(即负载压力,对应液压油入口A的压力)自动地选择前进、停止或后退,从而实现自动切割,从而提高了切割效率,降低了设备的操作复杂度,提高了安全性。
本公开一实施例提供一种上述全液压式自动控制系统的压力设定方法,用于设定常开式顺序阀6的第一阈值压力和常闭式顺序阀11的第二阈值压力。
在一些示例中,如图3所示,常开式顺序阀6包括第一压力调节单元64,被配置为调节常开式顺序阀6的关闭压力;常闭式顺序阀11包括第二压力调节单元114,被配置为调节常闭式顺序阀11的打开压力。
本实施例提供的压力设定方法包括:调节第一压力调节单元64,使常开式顺序阀6的关闭压力为第一阈值压力;以及,调节第二压力调节单元114,使常闭式顺序阀11的打开压力为第二阈值压力。
例如,本实施例提供的压力设定方法还包括:调节第二液压马达17的最小切割压力;调节第一压力调节单元64,使第一阈值压力大致等于第二液压马达17的最小切割压力;调节第二液压马达17的最大切割压力;以及,调节第二压力调节单元114,使第二阈值压力大致等于第二液压马达17的最大切割压力。
如此,根据第二液压马达17的最小切割压力设定第一阈值压力,并根据第二液压马达17的最大切割压力设定第二阈值压力,可以使进给控制部可以根据切割控制部的情况来判定进给或后退,有利于提高切割效率以及提高对绳锯机的保护。
例如,在本实施例提供的压力设定方法中,调节第二液压马达17的最小 切割压力包括:
S10、调节第二液压马达17至自由旋转状态,此时第二液压马达17输入侧的压力为基准压力。
S20、增大第二液压马达17输入侧的压力,直到该压力高于基准压力达到第一预设值,此时第二液压马达17输入侧的压力为第二液压马达的最小切割压力。第一预设值可以根据待切割物的材料、尺寸等参数确定。
调节第二液压马达17的最大切割压力包括:
S30、在S20的基础上,继续增大第二液压马达17输入侧的压力,直到该压力高于基准压力达到第二预设值,此时第二液压马达17输入侧的压力为第二液压马达17的最大切割压力。第二预设值可以根据待切割物的材料、尺寸等参数确定,且第二预设值大于第一预设值。
例如,在进行上述压力设定步骤之前,本实施例提供的压力设定方法还包括准备阶段等其他步骤。
图5为根据本公开一实施例的绳锯机的又一平面结构示意图,示出了绳锯机的压力设定面板。下面结合图5,对本实施例提供的压力设定方法进行详细描述。
在一些示例中,如图5所示,图中箭头所指的虚线框为绳锯机的压力设定面板,其上设置有第二压力表15的显示面板、开关阀14的手柄、单向调速阀5的调节旋钮、常开式顺序阀6的第一压力调节单元的调节旋钮、常闭式顺序阀11的第一压力调节单元114的调节旋钮、第三节流阀16的调节旋钮。
如图1-5所示,本实施例提供的压力设定方法包括:
S1、设备启动阶段:
S11、检查液压管路连接情况,确保连接正确,且管路无漏油及接头连接处无松动的情况;
S12、设备启动前将开关阀14和第二换向阀19关闭,使进给控制部和切割控制部的液压油路均处于断开状态;
S13、启动液压泵2,调整转速,一直到流量满足作业需求,这个过程中液压泵2通过过滤器1从液压油箱20吸油。
本实施例提供的压力设定方法还包括:
S2、准备阶段,包括:
S21、逆时针调节第一压力调节单元64至最大位置,以使常开式顺序阀6的关闭压力为最小。例如,顺时针调节第一压力调节单元64会使关闭压力变大,逆时针调节第一压力调节单元64会使关闭压力变小。当然,本公开的实施例包括但不限于此,第一压力调节单元64的调节方向也可以相反设置。
S22、顺时针调节第二压力调节单元114至最大位置,以使常闭式顺序阀11的打开压力为最大。例如,顺时针调节会使打开压力变大,逆时针调节会使打开压力变小。当然,本公开的实施例包括但不限于此,第二压力调节单元114的调节方向也可以相反设置。
S23、将单向调速阀5的调节旋钮顺时针调节至最大后,再逆时针松开一定范围,例如1-3圈,可以根据进给速度快慢确定,后续也可以再调整。例如,顺时针调节时进给速度变慢,逆时针调节时进给速度变快。
S24、调节第三节流阀16的开度至最大。第三节流阀16通过调整节流孔的开度来模仿负载压力的变化。例如,顺时针调节时,节流孔减小且压差增加,逆时针调节时,节流孔增大且压差减小。
本实施例提供的压力设定方法还包括:
S3、压力设定阶段,包括:
S31、打开开关阀14,打开第二换向阀19的第三通路,第二液压马达17开始旋转,第二液压马达17自由旋转时第二压力表15的读数为基准压力;
S32、减小第三节流阀16的开度(例如顺时针调节第三节流阀16的调节旋钮),观察第二压力表15的读数,直到读数高于基准压力达到第一预设值时,停止调节第三节流阀16,此时第二压力表15的读数为第二液压马达的最小切割压力。第一预设值可以根据待切割物的材料、尺寸等参数确定。
S33、调节第一压力调节单元64(例如顺时针调节)以使常开式顺序阀6的关闭压力增大,当第一液压马达10带动切割装置向前进给时,停止调节,此时常开式顺序阀6的关闭压力为第一阈值压力,第一阈值压力大致等于最小切割压力。
S34、继续减小第三节流阀16的开度(例如顺时针调节第三节流阀16的调节旋钮),观察第二压力表15的读数,直到读数高于基准压力达到第二预设值时,停止调节第三节流阀16,此时第二压力表15的读数为第二液压马达的最大切割压力,第二预设值可以根据待切割物的材料、尺寸等参数确定,且大于第一预设值。
S35、调节第二压力调节单元(例如逆时针调节)以使常闭式顺序阀11的打开压力减小,当第一液压马达10带动切割装置后退时,停止调节,此时常闭式顺序阀11的打开压力为第二阈值压力,第二阈值压力大致等于最大切割压力。
至此,绳锯机的压力设定步骤完成。本公开实施例提供的全液压式自动控制系统的压力设定方法,可以使进给控制部根据切割控制部的实时压力实现自动进给、后退或停止,提高了切割效率,降低了设备的操作复杂度,提高了安全性。
如上压力设定完成后,将第三节流阀16逆时针调节至最大开度,此时节流阀不再起到模拟负载压力的作用。在自动切割的后续过程中,只需要启动液压泵2,打开开关阀14,打开第二换向阀19的第三通路,则绳锯即可自动进给。当负载压力低于第一阈值压力时绳锯不断向前进给;当负载压力大于第二阈值压力时绳锯后撤远离待切割物,避免负载过大超过金刚石绳的最大张力而断裂;当负载压力大于第一阈值压力且小于第一阈值压力时,绳锯停止前进和后退。当待切割物被切割完成后,推动第二换向阀19至断开位,绳锯停止转动和进给。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种绳锯机的全液压式自动控制系统,包括进给控制部,其中,所述进给控制部包括:
    液压油入口和液压油出口;
    常开式顺序阀,包括第一输入口和第一输出口;
    常闭式顺序阀,包括第二输入口和第二输出口;
    第一换向阀,包括第一换向接口、第二换向接口、第一进油口、第一回油口、第一工作接口和第二工作接口;以及
    第一液压马达,包括第一接口和第二接口,所述第一液压马达被配置为驱动所述绳锯机的进给装置运动,
    其中,所述第一输入口连接到所述液压油入口,所述第一输出口连接到所述第一换向接口并被配置为打开或关闭所述第一换向阀的第一通路;所述第二输入口连接到所述液压油入口,所述第二输出口连接到所述第二换向接口并被配置为打开或关闭所述第一换向阀的第二通路;所述第一换向阀的第一进油口连接所述液压油入口,所述第一换向阀的第一回油口连接所述液压油出口,所述第一工作接口连接所述第一液压马达的所述第一接口,所述第二工作接口连接所述第一液压马达的所述第二接口,
    在所述第一通路中,液压油的流动方向为依次经过所述第一进油口、所述第一工作接口、所述第一接口、所述第二接口、所述第二工作接口、所述第一回油口;在所述第二通路中,液压油的流动方向为依次经过所述第一进油口、所述第二工作接口、所述第二接口、所述第一接口、所述第一工作接口、所述第一回油口。
  2. 根据权利要求1所述的全液压式自动控制系统,其中,在所述第一通路打开的情况下和在所述第二通路打开的情况下,所述第一液压马达的转动方向彼此相反。
  3. 根据权利要求2所述的全液压式自动控制系统,其中,所述常开式顺序阀还包括第一控制口,被配置为根据压力打开或关闭所述常开式顺序阀;所述常闭式顺序阀还包括第二控制口,被配置为根据压力打开或关闭所述常闭式顺序阀。
  4. 根据权利要求3所述的全液压式自动控制系统,其中,所述第一控制 口与所述液压油入口连接,被配置为根据所述液压油入口的压力打开或关闭所述常开式顺序阀;所述第二控制口与所述液压油入口连接,被配置为根据所述液压油入口的压力打开或关闭所述常闭式顺序阀。
  5. 根据权利要求4所述的全液压式自动控制系统,
    其中,所述常开式顺序阀可被配置为具有第一阈值压力,所述常开式顺序阀在压力小于等于所述第一阈值压力的情况下打开,所述常开式顺序阀在压力大于所述第一阈值压力的情况下关闭;
    所述常闭式顺序阀可被配置为具有第二阈值压力,所述常闭式顺序阀在压力小于等于所述第二阈值压力的情况下关闭,所述常闭式顺序阀在压力大于所述第二阈值压力的情况下打开,
    所述第二阈值压力大于所述第一阈值压力。
  6. 根据权利要求5所述的全液压式自动控制系统,其中,在所述液压油入口的压力小于等于第一阈值压力的状态,所述常开式顺序阀打开,所述常闭式顺序阀关闭,所述第一输出口控制所述第一换向接口打开所述第一通路,以控制所述第一液压马达沿第一方向转动;
    在所述液压油入口的压力大于等于第二阈值压力的状态,所述常闭式顺序阀打开,所述常开式顺序阀关闭,所述第二输出口控制所述第二换向接口打开所述第二通路,以控制所述第一液压马达沿第二方向转动;以及
    在所述液压油入口的压力大于所述第一阈值压力且小于第二阈值压力的状态,所述常开式顺序阀、所述常闭式顺序阀和所述第一换向阀均关闭,所述第一液压马达停止转动。
  7. 根据权利要求1-6中的任一项所述的全液压式自动控制系统,其中,所述进给控制部还包括单向调速阀,连通在所述液压油入口和所述第一进油口之间,所述单向调速阀被配置为调节进入所述第一液压马达的液压油的流量,以调节所述第一液压马达的转速。
  8. 根据权利要求1-7中的任一项所述的全液压式自动控制系统,其中,所述进给控制部还包括串连的第一单向阀和第一节流阀,所述第一单向阀和所述第一节流阀连通所述第一换向接口和所述液压油出口,所述第一单向阀被配置为,在所述常开式顺序阀关闭的状态,使所述第一换向接口内的液压油流向所述液压油出口;所述第一节流阀被配置为控制从所述第一换向接口向所述液压油出口流动的液压油的流量,以防止对所述第一换向阀的控制产生 干扰。
  9. 根据权利要求1-8中的任一项所述的全液压式自动控制系统,其中,所述进给控制部还包括串连的第二单向阀和第二节流阀,所述第二单向阀和所述第二节流阀连通所述第二换向接口和所述液压油出口,所述第二单向阀被配置为,在所述常闭式顺序阀关闭的状态,使所述第二换向接口内的液压油流向所述液压油出口;所述第二节流阀被配置为控制从所述第二换向接口向所述液压油出口流动的液压油的流量,以防止对所述第一换向阀的控制产生干扰。
  10. 根据权利要求1-9中的任一项所述的全液压式自动控制系统,其中,所述进给控制部还包括开关阀,连接所述液压油入口和外部液压油路,被配置为打开或关闭所述进给控制部。
  11. 根据权利要求1-10中的任一项所述的全液压式自动控制系统,还包括供油系统,其中,所述供油系统包括液压泵和液压油箱,所述液压泵的入口连接到所述液压油箱,所述液压泵的出口连接到所述液压油入口,所述液压油出口连接到所述液压油箱。
  12. 根据权利要求11所述的全液压式自动控制系统,其中,所述供油系统还包括过滤器、溢流阀和第一压力表,所述过滤器连接在所述液压泵和所述液压油箱之间,所述溢流阀的第一端连接在所述液压泵的出口和所述液压油入口之间,所述溢流阀的第二端连接到所述液压油箱,所述第一压力表连接在所述溢流阀的第一端和所述液压泵的出口之间。
  13. 根据权利要求11或12所述的全液压式自动控制系统,还包括切割控制部,其中,所述切割控制部包括:
    第二换向阀,包括第二进油口、第二回油口、第三工作接口和第四工作接口;
    第二液压马达,包括第三接口和第四接口,所述第二进油口连接到所述液压泵的出口,所述第二回油口连接到所述液压油箱,所述第三工作接口连接到所述第三接口,所述第四工作接口连接到所述第四接口,所述第二液压马达被配置为驱动所述绳锯机的切割装置运动;以及
    串连的第二压力表和第三节流阀,连接在所述第三工作接口和所述第三接口之间,所述第二压力表被配置为读取所述第三接口的压力,所述第三节流阀被配置为调节所述第三接口的压力。
  14. 根据权利要求13所述的全液压式自动控制系统,其中,所述第二换向阀包括第三通路和第四通路,在所述第三通路中,液压油的流动方向为依次经过所述第二进油口、所述第三工作接口、所述第三接口、所述第四接口、所述第四工作接口、所述第二回油口;在所述第四通路中,液压油的流动方向为依次经过所述第二进油口、所述第四工作接口、所述第四接口、所述第三接口、所述第三工作接口、所述第二回油口。
  15. 根据权利要求14所述的全液压式自动控制系统,其中,所述进给控制部的所述液压油入口连接到所述第三工作接口和所述第三接口之间,所述进给控制部的所述液压油出口连接到所述第四工作接口和所述第四接口之间。
  16. 根据权利要求13-15中的任一项所述的全液压式自动控制系统,其中,所述切割控制部还包括双向溢流阀,所述双向溢流阀的第一端连接到所述第三工作接口和所述第三接口之间,所述双向溢流阀的第二端连接到所述第四工作接口和所述第四接口之间。
  17. 一种绳锯机,包括切割装置、进给装置以及根据权利要求13-16中的任一项所述的全液压式自动控制系统,其中,所述切割装置包括绳锯,所述绳锯被配置为切割待切割物,所述进给装置被配置为调节所述绳锯的位置,所述进给控制部的所述第一液压马达与所述进给装置连接;所述切割控制部的所述第二液压马达与所述切割装置连接。
  18. 一种根据权利要求1-16中的任一项所述的全液压式自动控制系统的压力设定方法,其中,所述常开式顺序阀包括第一压力调节单元,被配置为调节所述常开式顺序阀的关闭压力;所述常闭式顺序阀包括第二压力调节单元,被配置为调节所述常闭式顺序阀的打开压力,
    所述压力设定方法包括:
    调节所述第一压力调节单元,使所述常开式顺序阀的关闭压力为所述第一阈值压力;
    调节所述第二压力调节单元,使所述常闭式顺序阀的打开压力为所述第二阈值压力。
  19. 根据权利要求18所述的压力设定方法,还包括:
    调节所述第二液压马达的最小切割压力;
    调节所述第一压力调节单元,使所述第一阈值压力大致等于所述最小切割压力;
    调节所述第二液压马达的最大切割压力;
    调节所述第二压力调节单元,使所述第二阈值压力大致等于所述最大切割压力。
  20. 根据权利要求19所述的压力设定方法,其中,
    调节所述第二液压马达的最小切割压力包括:
    S10、调节所述第二液压马达至自由旋转状态,此时所述第二液压马达17输入侧的压力为基准压力;
    S20、增大所述第二液压马达输入侧的压力,直到该压力高于所述基准压力达到第一预设值,此时所述第二液压马达输入侧的压力为所述第二液压马达的最小切割压力;
    调节所述第二液压马达的最大切割压力包括:
    S30、在S20的基础上,继续增大所述第二液压马达输入侧的压力,直到该压力高于所述基准压力达到第二预设值,此时所述第二液压马达输入侧的压力为所述第二液压马达的最大切割压力,
    所述第二预设值大于所述第一预设值。
PCT/CN2021/125210 2021-09-13 2021-10-21 全液压式自动控制系统及其压力设定方法、绳锯机 WO2023035367A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111068507.7A CN113719484A (zh) 2021-09-13 2021-09-13 全液压式自动控制系统及其压力设定方法、绳锯机
CN202111068507.7 2021-09-13

Publications (1)

Publication Number Publication Date
WO2023035367A1 true WO2023035367A1 (zh) 2023-03-16

Family

ID=78683421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125210 WO2023035367A1 (zh) 2021-09-13 2021-10-21 全液压式自动控制系统及其压力设定方法、绳锯机

Country Status (2)

Country Link
CN (1) CN113719484A (zh)
WO (1) WO2023035367A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114311321A (zh) * 2021-12-31 2022-04-12 烟台杰瑞石油装备技术有限公司 桩柱切割工艺
CN117905738B (zh) * 2023-07-06 2024-08-23 新疆新研牧神科技有限公司 顺序启动液压系统及收获机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181390A (ja) * 1997-09-02 1999-03-26 Ishikawajima Constr Mach Co 作業機の油圧回路
CN101444921A (zh) * 2008-12-30 2009-06-03 哈尔滨工程大学 一种水下绳锯切割机
CN104847721A (zh) * 2014-12-19 2015-08-19 北汽福田汽车股份有限公司 一种保压控制装置及具有其的工程机械
CN106122134A (zh) * 2016-08-30 2016-11-16 浙江海宏液压科技股份有限公司 一种收割机的液压系统
CN112065788A (zh) * 2020-09-11 2020-12-11 江苏省机械研究设计院有限责任公司 一种解决闭式液压系统低负载工况更油阀阀芯误动作的方法
CN212202669U (zh) * 2020-04-14 2020-12-22 徐州工业职业技术学院 工程机械行走机构及履带张紧装置一体化液压控制系统
US20210156250A1 (en) * 2017-06-26 2021-05-27 Suhua Liu Advance and Retreat Automatic Control Method Based on Hydraulic Sensing Conversion and Advance and Retreat Automatic Control System Based on Hydraulic Sensing Conversion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181390A (ja) * 1997-09-02 1999-03-26 Ishikawajima Constr Mach Co 作業機の油圧回路
CN101444921A (zh) * 2008-12-30 2009-06-03 哈尔滨工程大学 一种水下绳锯切割机
CN104847721A (zh) * 2014-12-19 2015-08-19 北汽福田汽车股份有限公司 一种保压控制装置及具有其的工程机械
CN106122134A (zh) * 2016-08-30 2016-11-16 浙江海宏液压科技股份有限公司 一种收割机的液压系统
US20210156250A1 (en) * 2017-06-26 2021-05-27 Suhua Liu Advance and Retreat Automatic Control Method Based on Hydraulic Sensing Conversion and Advance and Retreat Automatic Control System Based on Hydraulic Sensing Conversion
CN212202669U (zh) * 2020-04-14 2020-12-22 徐州工业职业技术学院 工程机械行走机构及履带张紧装置一体化液压控制系统
CN112065788A (zh) * 2020-09-11 2020-12-11 江苏省机械研究设计院有限责任公司 一种解决闭式液压系统低负载工况更油阀阀芯误动作的方法

Also Published As

Publication number Publication date
CN113719484A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2023035367A1 (zh) 全液压式自动控制系统及其压力设定方法、绳锯机
CN100373014C (zh) 液压控制装置和建筑机械
US8024926B2 (en) Hydraulic circuit for heavy equipment
CA1084900A (en) Controls for hydraulic percussion drill
US4440236A (en) Hydraulic control system for a rock drill
CN103758803B (zh) 液压钻车接卸钎回转推进自适应液压回路及其控制方法
KR101861856B1 (ko) 건설기계의 스윙 모터 유압제어장치
JP4838555B2 (ja) 油圧回路及び電気制御回路並びに油圧モータ切断装置
JP3768989B2 (ja) 重装備オプション装置用油圧回路
CN203717495U (zh) 液压钻车接卸钎回转推进自适应液压回路
CN215830828U (zh) 全液压式自动控制系统、绳锯机
JPH07158607A (ja) 再生回路用弁装置
JPH0657787A (ja) 破砕機の流量制御装置
KR102198263B1 (ko) 펌핑 시스템
JP4302017B2 (ja) 建設機械の油圧回路
WO2023035365A1 (zh) 绳锯机的液压系统和绳锯机
CN219327689U (zh) 液压控制阀、调速系统、驱动装置和作业机械
WO2018051670A1 (ja) 作業機械の挟み処理装置及びこれを備えた作業機械
CN215830827U (zh) 绳锯机的液压系统和绳锯机
JP3447108B2 (ja) さく孔機の回転制御装置
CN110593812B (zh) 一种井口安全阀液压控制系统
CN114396096B (zh) 散热液压系统及挖掘机
CN106870477A (zh) 一种组合锚绞机恒张力液压控制系统
CN112412365A (zh) 一种钻杆旋转自动拆卸用液压调节系统
JP2500248Y2 (ja) 油圧ショベルに於ける油圧回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21956540

Country of ref document: EP

Kind code of ref document: A1