WO2023035163A1 - 动力电池充电的方法和电池管理系统 - Google Patents

动力电池充电的方法和电池管理系统 Download PDF

Info

Publication number
WO2023035163A1
WO2023035163A1 PCT/CN2021/117314 CN2021117314W WO2023035163A1 WO 2023035163 A1 WO2023035163 A1 WO 2023035163A1 CN 2021117314 W CN2021117314 W CN 2021117314W WO 2023035163 A1 WO2023035163 A1 WO 2023035163A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power battery
parameter
charging
bms
Prior art date
Application number
PCT/CN2021/117314
Other languages
English (en)
French (fr)
Inventor
黄珊
李世超
李海力
赵微
林真
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020237018851A priority Critical patent/KR102625180B1/ko
Priority to EP21956351.7A priority patent/EP4236007A4/en
Priority to JP2023535043A priority patent/JP7432064B2/ja
Priority to PCT/CN2021/117314 priority patent/WO2023035163A1/zh
Priority to CN202180006382.7A priority patent/CN116097494B/zh
Publication of WO2023035163A1 publication Critical patent/WO2023035163A1/zh
Priority to US18/327,702 priority patent/US11870289B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles

Definitions

  • the present application relates to the field of power batteries, in particular to a method for charging a power battery and a battery management system.
  • Embodiments of the present application provide a method and device for charging a power battery, which can effectively ensure the safety performance of the power battery.
  • a method for charging a power battery which is applied to a battery management system BMS of a power battery, the method comprising: acquiring battery parameters of the power battery, the battery parameters including a state of charge SOC and/or Open circuit voltage OCV; during the charging process of the power battery, when the battery parameters of the power battery change the parameter interval value, control the discharge of the power battery or stop charging, wherein, when the battery parameters of the power battery are at the first In a parameter interval, the parameter interval value is the first preset parameter interval value; when the battery parameter of the power battery is in the second parameter interval, the parameter interval value is the second preset parameter interval value, and the The first preset parameter interval value is greater than the second preset parameter interval value, and the battery parameters in the first parameter interval are smaller than the battery parameters in the second parameter interval.
  • the above technical solution discharges the power battery or temporarily stops charging the power battery during the process of charging the power battery, which can avoid problems such as heat generation and lithium ion accumulation caused by continuous charging of the power battery, and then avoid problems caused by heat generation and lithium ion accumulation.
  • the safety issues of the power battery such as battery combustion or explosion, etc., ensure the safety performance of the power battery.
  • the battery parameters (such as SOC) of the power battery are larger, it means that the negative electrode potential of the power battery at the current moment is lower, and lithium deposition is more likely to occur.
  • the frequency or the frequency of stopping charging, that is, the parameter interval value is small, so that the safety performance of the power battery can be further guaranteed.
  • the battery parameters (such as SOC) of the power battery are small, it means that the negative electrode potential of the power battery at the current moment is relatively high.
  • the frequency of stopping charging, that is, the parameter interval value is relatively large, which can reduce the impact on the charging time of the power battery and at the same time achieve the effect of inhibiting lithium precipitation.
  • the parameter interval ranges from 3% to 95%.
  • the controlling the discharge of the power battery when the battery parameter of the power battery changes a parameter interval value includes: determining whether the battery parameter of the power battery is equal to a target battery parameter, the target The battery parameter is a battery parameter determined based on the parameter interval value; if the battery parameter of the power battery is equal to the target battery parameter, control the power battery to discharge or stop charging.
  • the BMS controls the power battery to discharge or stop charging. In this way, the charging and discharging of the power battery can be better balanced, and the safety performance of the power battery can be guaranteed. Charging the power battery.
  • the controlling the discharge of the power battery includes: sending charging request information to a charging pile, where the charging request current carried in the charging request information is 0; Requesting information on the actual charging current for charging the power battery; when the actual charging current is less than a current threshold, controlling the power battery to discharge.
  • the BMS sends charging request information carrying a charging request current of 0 and the actual charging current of the power battery is small, for example, less than the battery threshold, the BMS then controls the power battery to discharge, which can ensure the life and performance of the power battery and improve The safety of the power battery charging and discharging process.
  • the method further includes: when the duration of sending the charging request information to the charging pile is greater than or equal to a first time threshold, controlling the power battery to stop discharging.
  • the BMS keeps controlling the discharge of the traction battery, it may affect the normal charging process of the traction battery.
  • the BMS controls the power battery to stop discharging, thus avoiding the problem of fully discharging the power in the power battery, thereby ensuring Normal charging of the power battery.
  • the method further includes: when the discharge duration of the power battery is greater than or equal to a second time threshold, controlling the power battery to stop discharging.
  • the BMS keeps controlling the discharge of the traction battery, it may affect the normal charging process of the traction battery.
  • the BMS controls the power battery to stop discharging, thus avoiding the problem that the power battery is completely discharged due to the long discharge time of the power battery. The normal charging of the power battery is guaranteed.
  • a battery management system BMS for a power battery which is characterized in that it includes: an acquisition unit configured to acquire battery parameters of the power battery, the battery parameters including state of charge SOC and/or open circuit voltage OCV; a control unit, used to control the power battery to discharge or stop charging when the battery parameters of the power battery change the parameter interval value during the charging process of the power battery, wherein, when the battery of the power battery When the parameter is in the first parameter interval, the parameter interval value is the first preset parameter interval value; when the battery parameter of the power battery is in the second parameter interval, the parameter interval value is the second preset parameter interval value , the first preset parameter interval value is greater than the second preset parameter interval value, and the battery parameters in the first parameter interval are smaller than the battery parameters in the second parameter interval.
  • the parameter interval ranges from 3% to 95%.
  • control unit is specifically configured to: determine whether the battery parameter of the power battery is equal to a target battery parameter, and the target battery parameter is a battery parameter determined based on the parameter interval value; if the The battery parameter of the power battery is equal to the target battery parameter, and the power battery is controlled to discharge or stop charging.
  • it further includes: a communication unit, configured to send charging request information to the charging pile, and the charging request current carried in the charging request information is 0; the obtaining unit is also used to obtain the charging pile An actual charging current for charging the power battery based on the charging request information; the control unit is specifically configured to, when the actual charging current is less than a current threshold, control the power battery to discharge.
  • control unit is further configured to: when the duration of sending the charging request information to the charging pile is greater than or equal to a first time threshold, control the power battery to stop discharging.
  • control unit is further configured to: when the discharge duration of the power battery is greater than or equal to a second time threshold, control the power battery to stop discharging.
  • a battery management system BMS for a power battery including: a memory for storing programs; a processor for executing the programs stored in the memory, and when the programs stored in the memory are executed, the The processor is configured to execute the method in the first aspect or various implementations thereof.
  • FIG. 1 is a structural diagram of a charging system applicable to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a method for charging a power battery according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of another method for charging a power battery according to an embodiment of the present application.
  • Fig. 4 is a schematic flowchart of a method for charging a power battery according to an embodiment of the present application.
  • Fig. 5 is a schematic block diagram of a BMS according to an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a BMS according to an embodiment of the present application.
  • power batteries can be used as the main power source of electric devices (such as vehicles, ships or spacecraft, etc.).
  • most of the power batteries on the market are rechargeable storage batteries, the most common being lithium batteries, such as lithium ion batteries or lithium ion polymer batteries or the like.
  • the power battery is generally charged by continuous charging, and continuous charging of the power battery will cause the phenomenon of lithium deposition and heat generation of the power battery.
  • the performance of the battery is degraded, the cycle life is greatly shortened, and the fast charging capacity of the power battery is also limited, which may cause catastrophic consequences such as combustion and explosion, causing serious safety problems.
  • the present application proposes a new method and system for charging the power battery.
  • Fig. 1 shows a structure diagram of a charging system applicable to an embodiment of the present application.
  • the charging system 100 may include: a charging device 110 and a battery system 120.
  • the battery system 120 may be an electric vehicle (including a pure electric vehicle and a plug-in hybrid electric vehicle). Battery system or battery system in other application scenarios.
  • the power battery 121 can be any type of battery, including but not limited to: lithium ion battery, lithium metal battery, lithium sulfur battery, lead acid battery, nickel battery, nickel metal hydride battery, or lithium air battery and so on.
  • the power battery 121 in the embodiment of the present application can be a battery cell/battery monomer (cell), or a battery module or battery pack.
  • a battery module or battery pack can be composed of multiple battery strings. Formed in parallel, in the embodiment of the present application, the specific type and scale of the power battery 121 are not specifically limited.
  • the battery system 120 is generally equipped with a battery management system (battery management system, BMS) 122, It is used to implement functions such as charge and discharge management, high voltage control, battery protection, battery data collection, and battery status evaluation.
  • BMS battery management system
  • the BMS 122 can be integrated with the power battery 121 and set in the same device or device, or the BMS 122 can also be set outside the power battery 121 as an independent device or device.
  • the charging device 110 can output charging power according to the charging demand of the BMS 122, so as to charge the power battery 121.
  • the charging device 110 may output voltage and current according to the required voltage and required current sent by the BMS 122.
  • the charging device 110 in the embodiment of the present application may be a charging pile, also called a charging machine.
  • the charging pile here may be, for example, a common charging pile, a super charging pile, a charging pile supporting a vehicle to grid (V2G) mode, and the like.
  • the charging device 110 can be connected to the power battery 121 through the electric wire 130, and connected to the BMS 122 through the communication line 140, wherein the communication line 140 is used to realize the information exchange between the charging device 110 and the BMS.
  • the communication line 140 includes, but is not limited to, a controller area network (control area network, CAN) communication bus or a daisy chain (daisy chain) communication bus.
  • the charging device 110 can also communicate with the BMS 122 through a wireless network.
  • the embodiment of the present application does not specifically limit the wired communication type or the wireless communication type between the charging device 110 and the BMS 122.
  • Fig. 2 shows a schematic diagram of a method 200 for charging a power battery according to an embodiment of the present application.
  • the method 200 can be executed by a BMS, and the BMS can be, for example, the BMS 122 in FIG. 1 .
  • Method 200 may include at least some of the following.
  • step 210 battery parameters of the power battery are acquired, and the battery parameters may include state of charge (state of charge, SOC) and/or open circuit voltage (open circuit voltage, OCV).
  • state of charge state of charge
  • OCV open circuit voltage
  • step 220 during the charging process of the power battery, when the battery parameter of the power battery changes the parameter interval value, the power battery is controlled to discharge or stop charging.
  • the parameter interval value when the battery parameter of the power battery is in the first parameter interval, the parameter interval value is the first preset parameter interval value; when the battery parameter of the power battery is in the second parameter interval, the parameter interval value is the second preset parameter interval value, the first preset parameter interval value is greater than the second preset parameter interval value, and the battery parameters in the first parameter interval are smaller than the battery parameters in the second parameter interval.
  • the power battery is discharged or temporarily stopped charging during the process of charging the power battery, which can avoid problems such as heat generation and lithium ion accumulation caused by continuous charging of the power battery, and then avoid problems caused by heat generation and lithium ion accumulation.
  • problems such as heat generation and lithium ion accumulation caused by continuous charging of the power battery, and then avoid problems caused by heat generation and lithium ion accumulation.
  • safety problems of the power battery such as power battery combustion or explosion, etc., to ensure the safety performance of the power battery.
  • the battery parameters (such as SOC) of the power battery are larger, it means that the negative electrode potential of the power battery at the current moment is lower, and lithium deposition is more likely to occur.
  • the frequency or the frequency of stopping charging, that is, the parameter interval value is small, so that the safety performance of the power battery can be further guaranteed.
  • the battery parameters (such as SOC) of the power battery are small, it means that the negative electrode potential of the power battery at the current moment is relatively high.
  • the risk of lithium precipitation is lower, thereby reducing its discharge frequency Or the frequency of stopping charging, that is, the parameter interval value is relatively large, which can achieve the effect of inhibiting lithium precipitation while reducing the impact on the charging time of the power battery.
  • OCV refers to the potential difference between the positive and negative electrodes of the power battery when no current passes through it.
  • the OCV value of the power battery can be obtained after the power battery is left to stand for a period of time after charging and discharging of the power battery is completed.
  • the BMS can determine the SOC according to the OCV of the power battery. Specifically, the data of OCV under different SOCs can be tested through the time delay first, and the relationship curve between the two can be fitted, so that the BMS can estimate the SOC of the power battery according to the measured OCV and the curve.
  • the BMS can use the back propagation (Back Propagation, BP) neural network to obtain the SOC of the power battery.
  • BP Back Propagation
  • the input of the BP neural network can be parameters such as current, voltage and temperature of the power battery, and the output is the SOC of the power battery.
  • the BMS can also obtain the SOC of the power battery by using methods such as the ampere-hour integration method and the Kalman filter method, which will not be described in detail in the embodiments of this application.
  • the parameter interval value may be preset on the BMS.
  • the parameter interval value can be obtained through a large number of experiments, and then the parameter interval value is preset on the BMS when the BMS leaves the factory.
  • the parameter interval value may be determined by the BMS itself.
  • the BMS can determine the parameter interval value according to parameters such as the temperature of the power battery, the state of health (SOH), and the current charging environment.
  • SOH can be used to indicate the aging state of the power battery, and can also be understood as the remaining life of the power battery.
  • the performance of the power battery will continue to decline after long-term operation, so the remaining life will be shorter, that is, the SOH value will be smaller.
  • the smaller the SOH the higher the risk of lithium precipitation in the power battery, and the smaller the parameter interval value.
  • parameter interval value may range from 3% to 95%.
  • parameter interval value can be 5% or 10%
  • the above parameter interval may include two intervals. Exemplarily, assuming that the battery parameter is SOC, the [0,50%) SOC interval is the first parameter interval, and the SOC interval value can be 10%, and the [50%, 100%] SOC interval is the second parameter interval, and the SOC interval value Can be 5%.
  • this embodiment of the present application may further include a third parameter interval, a fourth parameter interval, and other parameter intervals.
  • SOC interval is the first parameter interval
  • SOC interval is the second parameter interval
  • SOC interval is the third parameter interval
  • SOC interval value > [40,80%) SOC interval value of SOC interval > [80,100%] SOC interval value of SOC interval.
  • the BMS controls the discharge of the power battery. Specifically, it may be: the BMS controls the discharge of the power battery based on a discharge parameter.
  • the discharge parameters may include, but are not limited to, discharge duration, discharge current, and discharge voltage.
  • the discharge time can be, for example, 1s-60s, and the current can be, for example, 1A-5C.
  • the BMS may determine the discharge parameter according to at least one of the following parameters: temperature of the power battery, SOH of the power battery, SOC of the power battery, external environment where the power battery is currently located, and the like.
  • the BMS can obtain the temperature and/or SOH of the power battery before charging, and can also obtain the temperature and/or SOH of the power battery during the charging process.
  • the discharge time can be relatively short, such as 10s; if the temperature of the power battery is normal, such as 20°C, the discharge time can be relatively long, such as 40s.
  • the discharge duration can be longer and the discharge current can be larger.
  • the BMS comprehensively determines the discharge parameters of the power battery according to various parameters. In this way, the determined discharge parameters are more accurate, so that the power battery can be better discharged.
  • step 220 may specifically be: the BMS controls the power battery to discharge or stop charging when the battery parameter of the power battery changes every parameter interval value.
  • the BMS can control the power battery to discharge once every time the battery parameter of the power battery changes the parameter interval value.
  • OCV interval is the first parameter interval
  • OCV interval value is 10%
  • OCV interval is the second parameter interval
  • OCV interval value is 5%
  • the BMS controls the power battery to discharge once
  • the OCV of the power battery is 20% OCV
  • the BMS controls the power battery to discharge once again
  • the OCV of the power battery is 30% OCV
  • BMS can respectively control the power battery to discharge once.
  • the BMS may control the power battery to discharge multiple times when the battery parameter of the power battery changes the parameter interval value.
  • the battery parameter is OCV
  • [0,50%) OCV interval is the first parameter interval
  • OCV interval value is 10%
  • OCV interval is the second parameter interval
  • OCV interval value is 5 %.
  • the BMS controls the power battery to discharge twice, wherein the time interval between the two discharges may be less than a certain time threshold.
  • the discharge parameters of each discharge of the power battery may be the same.
  • the discharge time of each discharge of the power battery is 20s, and the discharge current is 10A.
  • the discharge parameters of each discharge of the power battery may be different. For example, when the SOC of the power battery is 10% SOC, the power battery is discharged for 50s with a discharge current of 3A; when the SOC of the power battery is 55% SOC, the power battery is discharged for 30s with a discharge current of 1A.
  • step 220 may specifically include: determining whether the battery parameter of the power battery is equal to the target battery parameter, and if the battery parameter of the power battery is equal to the target battery parameter, the BMS controls the power battery to discharge or stop charging.
  • the target battery parameter is a battery parameter determined based on the parameter interval value. For example, if the parameter interval value is 5%, then the target battery parameters are 5%, 10%, 15%, 20%. . . .
  • the target battery parameters may be preset on the BMS.
  • the target battery parameters can be preset on the BMS in the form of a table.
  • the BMS controls the power battery to discharge or stop charging. In this way, the charging and discharging of the power battery can be better balanced, and the safety performance of the power battery can be guaranteed. Charging the power battery.
  • the method 200 may also include: the BMS sends charging request information to the charging pile, and the charging request current carried in the charging request information is 0. That is to say, the charging request information is used to instruct the charging pile to stop charging the power battery.
  • FIG. 3 is a schematic flowchart of a possible implementation manner of step 220 in FIG. 2 .
  • the method of FIG. 3 may include steps 310-330.
  • step 310 when the battery parameter of the power battery changes the parameter interval value, the BMS sends charging request information to the charging pile, and the charging request current carried in the charging request information is 0.
  • step 320 the BMS acquires the actual charging current of the power battery charged by the charging pile based on the charging request information.
  • step 330 when the actual charging current is less than the current threshold, the power battery is controlled to discharge.
  • the BMS Under normal circumstances, after the charging pile receives the charging request information sent by the BMS and carries a charging request current of 0, the actual charging current transmitted from the charging pile to the power battery will slowly decrease, and will not drop to 0 immediately. When the actual charging current drops below the current threshold, the BMS will control the discharge of the power battery.
  • the embodiment of the present application does not specifically limit the current threshold.
  • the current threshold may be 50A.
  • the BMS sends charging request information carrying a charging request current of 0 and the actual charging current of the power battery is small, for example, less than the battery threshold, the BMS then controls the power battery to discharge, which can ensure the life and performance of the power battery and improve The safety of the power battery charging and discharging process.
  • the method 200 may further include: the BMS controls the power battery to stop discharging.
  • the BMS may control the power battery to stop discharging.
  • the duration of the BMS sending the charging request information to the charging pile can be understood as: the total duration of the BMS sending multiple charging request information to the charging pile. For example, the BMS sends charging request information to the charging pile every 5s. If the BMS sends charging request information 6 times in total, the duration for the MNS to send the charging request information to the charging pile is 30s.
  • the BMS may start a first timer, where the timing duration of the first timer is the first time threshold. After the first timer expires, the BMS can control the power battery to stop discharging.
  • the first time threshold may be but not limited to 60s.
  • the BMS may control the power battery to stop discharging.
  • the second time threshold may be but not limited to 20s.
  • the BMS may start a second timer, wherein the timing duration of the second timer is a second time threshold. After the second timer expires, the BMS can control the power battery to stop discharging.
  • the BMS may control the power battery to stop discharging.
  • the BMS keeps controlling the discharge of the traction battery, it may affect the normal charging process of the traction battery.
  • the BMS controls the power battery to stop discharging, so, The problem of fully discharging the power in the power battery is avoided, thereby ensuring normal charging of the power battery.
  • the BMS can send a charging demand parameter to the charging pile, which can be used to instruct the charging pile to output a charging current, which is used to charge the power battery.
  • the charging pile After receiving the charging demand parameter, the charging pile outputs a charging current to the power battery based on the charging demand parameter.
  • the BMS can determine the charging demand parameter according to at least one of the following parameters of the power battery: the temperature of the power battery, the voltage of the power battery, the capacity of the power battery, and the SOC of the power battery.
  • the BMS sends charging demand parameters to the charging pile, so that the charging pile continues to charge the power battery, so that the purpose of charging the power battery can be realized.
  • the method 200 may further include: the BMS determines the state of the power battery, and controls the power battery to discharge when the power battery is in a fully charged state or a gun state.
  • the BMS can determine the state of the power battery by acquiring the parameters of the power battery and according to the parameters of the power battery.
  • the parameters of the power battery may include SOC, and when the SOC of the power battery reaches 100%, the BMS may determine that the power battery is fully charged.
  • the BMS can send confirmation information to the charging pile, and if the BMS does not receive the response information sent by the charging pile for the confirmation information, the BMS can determine that the power battery is in a state of pulling out the gun.
  • the discharge parameters used by the BMS to control the discharge of the power battery can be the same as those when the power battery is in a charged state.
  • the discharge current of the power battery can be 10A
  • the discharge time can be 20s.
  • the discharge parameters used by the BMS to control the discharge of the power battery may be different from those when the power battery is in a charged state.
  • the discharge time may be shorter than the discharge time when the power battery is in the charging state, and the discharge current may be smaller than the discharge current when the power battery is in the charging state.
  • the BMS controls the discharge of the power battery, which can prevent the power battery from directly charging the power battery after the charging pile is connected to the power battery during the subsequent charging process.
  • the problem of lithium analysis risk of power battery so as to further improve the safety performance of power battery.
  • the discharge object of the power battery may be a charging pile. After the charging pile receives the electricity discharged from the power battery, it can use the received electricity to charge other vehicles.
  • the discharge object of the power battery may be the vehicle where the power battery is located, for example, it may be an air conditioner on the vehicle.
  • the discharge object of the power battery can be other external devices, such as power banks.
  • the discharge target of the power battery does not include the charging pile.
  • the battery parameter is SOC
  • the current threshold is 50A
  • the first time threshold is 60s
  • the second time threshold is 20s.
  • step 401 the BMS judges whether the power battery is in a charging state.
  • step 402 If the power battery is in the charging state, then execute step 402; if the power battery is not in the charging state, then execute step 411;
  • step 402 the BMS acquires the SOC of the power battery.
  • step 403 the BMS determines whether the SOC of the power battery is equal to the target SOC
  • step 404 if the SOC of the power battery is equal to the target SOC, the BMS sends a charging request message to the charging pile and starts timing.
  • the charging request current carried in the charging request information is 0.
  • step 405 the BMS collects the actual charging current that the charging pile charges the power battery.
  • step 406 the BMS determines whether the actual charging current is less than 50A.
  • step 407 If the actual charging current is less than 50A, go to step 407 .
  • step 407 the BMS controls the power battery to discharge.
  • the BMS can control the power battery to discharge at a current of 10A and the discharge time is 20s.
  • step 408 the BMS judges whether the duration of the power battery sending the charging request information to the charging pile is greater than or equal to 60s, or judges whether the discharge duration of the power battery is greater than or equal to 20s.
  • step 409 If the time period for the power battery to send the charging request information to the charging pile is greater than or equal to 60s, or the time period for the power battery to discharge is greater than or equal to 20s, go to step 409 .
  • step 409 the BMS controls the power battery to stop discharging.
  • step 410 the BMS sends charging demand parameters to the charging pile.
  • the charging demand parameter is used to instruct the charging pile to output a charging current, and the charging current is used to charge the power battery.
  • step 411 the BMS judges whether the power battery is fully charged or drawn.
  • step 412 if the power battery is fully charged or the gun is drawn, the BMS controls the power battery to discharge.
  • the BMS can control the power battery to discharge at 10A for 20s.
  • FIG. 5 shows a schematic block diagram of a BMS 500 according to an embodiment of the present application.
  • the BMS 500 can execute the power battery charging method 200 of the above-mentioned embodiment of the present application.
  • the BMS 500 may include:
  • the acquiring unit 510 is configured to acquire battery parameters of the power battery, where the battery parameters include a state of charge SOC and/or an open circuit voltage OCV.
  • the control unit 520 is configured to control the power battery to discharge or stop charging when the battery parameter of the power battery changes a parameter interval value during the charging process of the power battery.
  • the parameter interval value when the battery parameter of the power battery is in the first parameter interval, the parameter interval value is the first preset parameter interval value; when the battery parameter of the power battery is in the second parameter interval, the parameter interval is The value is the second preset parameter interval value, the first preset parameter interval value is greater than the second preset parameter interval value, and the battery parameter in the first parameter interval is smaller than the battery parameter in the second parameter interval parameter.
  • the parameter interval ranges from 3% to 95%.
  • control unit 520 is specifically configured to: determine whether the battery parameter of the power battery is equal to a target battery parameter, and the target battery parameter is a battery determined based on the parameter interval value. parameter; if the battery parameter of the power battery is equal to the target battery parameter, control the power battery to discharge or stop charging.
  • it further includes: a communication unit, configured to send charging request information to the charging pile, where the charging request current carried in the charging request information is 0; the acquiring unit 510 is also configured to, Obtain the actual charging current of the power battery charged by the charging pile based on the charging request information; the control unit 520 is specifically configured to control the power battery to discharge when the actual charging current is less than a current threshold.
  • control unit 520 is further configured to: control the power battery to stop charging when the duration of sending the charging request information to the charging pile is greater than or equal to a first time threshold discharge.
  • control unit 520 is further configured to: when the discharge duration of the power battery is greater than or equal to a second time threshold, control the power battery to stop discharging.
  • the BMS 500 can implement the corresponding operations of the BMS in the method 200, and for the sake of brevity, details are not repeated here.
  • FIG. 6 is a schematic diagram of a hardware structure of a BMS according to an embodiment of the present application.
  • BMS 600 includes memory 601, processor 602, communication interface 603 and bus 604. Wherein, the memory 601 , the processor 602 , and the communication interface 603 are connected to each other through a bus 604 .
  • the memory 601 may be a read-only memory (read-only memory, ROM), a static storage device and a random access memory (random access memory, RAM).
  • the memory 601 may store a program. When the program stored in the memory 601 is executed by the processor 602, the processor 602 and the communication interface 603 are used to execute various steps of the method for charging a power battery according to the embodiment of the present application.
  • the processor 602 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application specific integrated circuit (application specific integrated circuit, ASIC), a graphics processing unit (graphics processing unit, GPU) or one or more
  • the integrated circuit is used to execute related programs to realize the functions required by the units in the device of the embodiment of the present application, or to execute the method for charging the power battery of the embodiment of the present application.
  • the processor 602 may also be an integrated circuit chip, which has a signal processing capability. During implementation, each step of the method for charging a power battery in the embodiment of the present application may be completed by an integrated logic circuit of hardware in the processor 602 or instructions in the form of software.
  • processor 602 can also be general-purpose processor, digital signal processor (digital signal processing, DSP), ASIC, off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic device, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC off-the-shelf programmable gate array
  • FPGA field programmable gate array
  • Various methods, steps, and logic block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory 601, and the processor 602 reads the information in the memory 601, and combines its hardware to complete the functions required by the units included in the BMS of the embodiment of the application, or execute the power battery charging method of the embodiment of the application .
  • the communication interface 603 uses a transceiver device such as but not limited to a transceiver to realize communication between the BMS 600 and other devices or communication networks.
  • a transceiver device such as but not limited to a transceiver to realize communication between the BMS 600 and other devices or communication networks.
  • the BMS 600 can send charging request information to the charging pile through the communication interface 603.
  • the bus 604 may include pathways for transferring information between various components of the device 600 (eg, memory 601 , processor 602 , communication interface 603 ).
  • BMS 600 only shows a memory, a processor, and a communication interface
  • the BMS 600 may also include other devices necessary for normal operation.
  • the BMS 600 may also include hardware devices for implementing other additional functions.
  • the BMS 600 may only include the devices necessary to realize the embodiment of the present application, and does not necessarily include all the devices shown in FIG. 6 .
  • the embodiment of the present application also provides a computer-readable storage medium, which stores program codes for device execution, and the program codes include instructions for executing the steps in the above method for charging a power battery.
  • the embodiment of the present application also provides a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by the computer, the The computer executes the above-mentioned method for charging a power battery.
  • the above-mentioned computer-readable storage medium may be a transitory computer-readable storage medium, or a non-transitory computer-readable storage medium.
  • serial numbers of the processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, rather than by the implementation order of the embodiments of the present application.
  • the implementation process constitutes no limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请实施例提供了一种动力电池充电的方法和电池管理系统,能够有效保证电池的安全性能。该方法包括:获取所述动力电池的电池参数,所述电池参数包括荷电状态SOC和/或开路电压OCV;在所述动力电池的充电过程中,在所述动力电池的电池参数变化参数间隔值时,控制所述动力电池放电或停止充电,其中,当所述动力电池的电池参数处于第一参数区间时,所述参数间隔值为第一预设参数间隔值,当所述动力电池的电池参数处于第二参数区间时,所述参数间隔值为第二预设参数间隔值,所述第一预设参数间隔值大于所述第二预设参数间隔值,所述第一参数区间中的电池参数小于所述第二参数区间中的电池参数。

Description

动力电池充电的方法和电池管理系统 技术领域
本申请涉及动力电池领域,特别是涉及一种动力电池充电的方法和电池管理系统。
背景技术
随着时代的发展,电动汽车由于其高环保性、低噪音、使用成本低等优点,具有巨大的市场前景且能够有效促进节能减排,有利社会的发展和进步。
对于电动汽车及其相关领域而言,电池技术是关乎其发展的一项重要因素,尤其是电池的安全性能,影响电池相关产品的发展和应用,且影响大众对电动汽车的接受度。因此,如何保证电池的安全性能,是一个待解决的技术问题。
发明内容
本申请实施例提供一种动力电池充电的方法和装置,能够有效保证动力电池的安全性能。
第一方面,提供了一种动力电池充电的方法,应用于动力电池的电池管理系统BMS,所述方法包括:获取所述动力电池的电池参数,所述电池参数包括荷电状态SOC和/或开路电压OCV;在所述动力电池的充电过程中,在所述动力电池的电池参数变化参数间隔值时,控制所述动力电池放电或停止充电,其中,当所述动力电池的电池参数处于第一参数区间时,所述参数间隔值为第一预设参数间隔值,当所述动力电池的电池参数处于第二参数区间时,所述参数间隔值为第二预设参数间隔值,所述第一预设参数间隔值大于所述第二预设参数间隔值,所述第一参数区间中的电池参数小于所述第二参数区间中的电池参数。
上述技术方案,在对动力电池充电的过程中对动力电池进行放电或暂时停止充电,能够避免动力电池因持续充电造成的发热、锂离子聚集等问题,继而避免由于发热、锂离子聚集等问题引发动力电池的安全问题,例如电池燃烧或爆炸等,保证动力电池的安全性能。
进一步地,若动力电池的电池参数(如SOC)越大,则说明动力电池当前时刻的负极电位较低,较容易发生析锂现象,因此,在动力电池的电池参数较大时,提高其放电频率或停止充电的频率,即参数间隔值较小,从而可以进一步保证动力电池的安全性能。对应地,若动力电池的电池参数(如SOC)较小,则说明动力电池当前时刻的负极电位较高,相比于负极电位较低的情况,其析锂风险较低,降低其放电频率或停止充电的频率,即参数间隔值较大,这样可以在减少对动力电池充电时长的影响的同时,达到抑制析锂的效果。
在一些可能的实现方式中,所述参数间隔值的范围为3%-95%。
在一些可能的实现方式中,所述在所述动力电池的电池参数变化参数间隔值时,控制所述动力电池放电,包括:确定所述动力电池的电池参数是否等于目标电池参数,所述目标电池参数是基于所述参数间隔值确定的电池参数;若所述动力电池的电池参数等于所述目标电池参数,控制所述动力电池放电或停止充电。
上述技术方案,在动力电池的电池参数等于目标电池参数时,BMS控制动力电池放电或停止充电,如此,可以更好地平衡动力电池的充电和放电,在保证动力电池的安全性能的基础上完成对动力电池的充电。
在一些可能的实现方式中,所述控制所述动力电池放电,包括:向充电桩发送充电请求信息,所述充电请求信息携带的充电请求电流为0;获取所述充电桩基于所述充电请求信息向所述动力电池充电的实际充电电流;在所述实际充电电流小于电流阈值时,控制所述动力电池放电。
若在对动力电池充电的过程中,直接控制动力电池放电,不仅会对动力电池造成损伤,影响动力电池的寿命,还会带来安全隐患,影响动力电池的安全性。上述技术方案,在BMS发送携带充电请求电流为0的充电请求信息且动力电池的实际充电电流较小,例如小于电池阈值后,BMS再控制动力电池放电,可保证动力电池的寿命和性能,提升动力电池充放电过程的安全性。
在一些可能的实现方式中,所述方法还包括:当向所述充电桩发送所述充电请求信息的时长大于或等于第一时间阈值时,控制所述动力电池停止放电。
若BMS一直控制动力电池放电,可能会影响动力电池的正常充电过程。上述技术方案,在BMS向充电桩发送充电请求信息的时长大于或等于第一时间阈值时,BMS控制动力电池停止放电,如此,避免了将动力电池中的电量全部放完的问题,从而能够保证动力电池的正常充电。
在一些可能的实现方式中,所述方法还包括:当所述动力电池的放电时长大于或等于第二时间阈值时,控制所述动力电池停止放电。
若BMS一直控制动力电池放电,可能会影响动力电池的正常充电过程。上述技术方案,在动力电池的放电时长大于或等于第二时间阈值时,BMS控制动力电池停止放电,如此,避免了动力电池的放电时长过长从而将动力电池中的电量全部放完的问题,保证了动力电池的正常充电。
第二方面,提供了一种动力电池的电池管理系统BMS,其特征在于,包括:获取单元,用于获取所述动力电池的电池参数,所述电池参数包括荷电状态SOC和/或开路电压OCV;控制单元,用于在所述动力电池的充电过程中,在所述动力电池的电池参数变化参数间隔值时,控制所述动力电池放电或停止充电,其中,当所述动力电池的电池参数处于第一参数区间时,所述参数间隔值为第一预设参数间隔值,当所述动力电池的电池参数处于第二参数区间时,所述参数间隔值为第二预设参数间隔值,所述第一预设参数间隔值大于所述第二预设参数间隔值,所述第一参数区间中的电池参数小于所述第二参数区间中的电池参数。
在一些可能的实现方式中,所述参数间隔值的范围为3%-95%。
在一些可能的实现方式中,所述控制单元具体用于:确定所述动力电池的电池 参数是否等于目标电池参数,所述目标电池参数是基于所述参数间隔值确定的电池参数;若所述动力电池的电池参数等于所述目标电池参数,控制所述动力电池放电或停止充电。
在一些可能的实现方式中,还包括:通信单元,用于向充电桩发送充电请求信息,所述充电请求信息携带的充电请求电流为0;所述获取单元还用于,获取所述充电桩基于所述充电请求信息向所述动力电池充电的实际充电电流;所述控制单元具体用于,在所述实际充电电流小于电流阈值时,控制所述动力电池放电。
在一些可能的实现方式中,所述控制单元还用于:当向所述充电桩发送所述充电请求信息的时长大于或等于第一时间阈值时,控制所述动力电池停止放电。
在一些可能的实现方式中,所述控制单元还用于:当所述动力电池的放电时长大于或等于第二时间阈值时,控制所述动力电池停止放电。
第三方面,提供了一种动力电池的电池管理系统BMS,包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的程序,当所述存储器存储的程序被执行时,所述处理器用于执行上述第一方面或其各实现方式中的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例适用的一种充电系统给的架构图。
图2是本申请实施例的动力电池充电的方法的示意性图。
图3是本申请实施例的另一种动力电池充电的方法的示意性图。
图4是本申请实施例的一种动力电池充电的方法的示意性流程图。
图5是本申请实施例的BMS的示意性框图。
图6是本申请实施例的BMS的示意性框图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在新能源领域中,动力电池可作为用电装置(例如车辆、船舶或航天器等)的主要动力源。目前,市面上的动力电池多为可充电的蓄电池,最常见的是锂电池,例 如锂离子电池或锂离子聚合物电池等等。在充电过程中,一般采用持续充电的方式对动力电池进行充电,而对动力电池进行持续充电会造成动力电池的析锂、发热等现象的发生,其中,析锂、发热等现象不仅会使动力电池的性能下降,循环寿命大幅缩短,还限制了动力电池的快充容量,并有可能引起燃烧、爆炸等灾难性后果,造成严重的安全问题。
为了保证动力电池的安全性能,本申请提出一种新的动力电池充电的方法和充电系统。
图1示出了本申请实施例适用的一种充电系统的架构图。
如图1所示,该充电系统100可包括:充电装置110和电池系统120,可选地,该电池系统120可为电动汽车(包含纯电动汽车和可插电的混合动力电动汽车)中的电池系统或者其它应用场景下的电池系统。
可选地,电池系统120中可设置有至少一个电池包(battery pack),该至少一个电池包的整体可统称为动力电池121。从电池的种类而言,该动力电池121可以是任意类型的电池,包括但不限于:锂离子电池、锂金属电池、锂硫电池、铅酸电池、镍隔电池、镍氢电池、或者锂空气电池等等。从电池的规模而言,本申请实施例中的动力电池121可以是电芯/电池单体(cell),也可以是电池模组或电池包,电池模组或电池包均可由多个电池串并联形成,在本申请实施例中,动力电池121的具体类型和规模均不做具体限定。
此外,为了智能化管理及维护该动力电池121,防止动力电池121出现过充电和过放电,延长电池的使用寿命,电池系统120中一般还设置有电池管理系统(battery management system,BMS)122,用于实施充放电管理、高压控制、保护电池、采集电池数据、评估电池状态等功能。可选地,该BMS 122可以与动力电池121集成设置于同一设备或装置中,或者,该BMS 122也可作为独立的设备或装置设置于动力电池121之外。
充电装置110可以按照BMS 122的充电需求输出充电功率,以给动力电池121充电。例如,充电装置110可以按照BMS 122发送的需求电压和需求电流输出电压和电流。可选地,本申请实施例中的充电装置110可以为充电桩,也称为充电机。这里的充电桩例如可以是普通充电桩、超级充电桩、支持汽车对电网(vehicle to grid,V2G)模式的充电桩等。
如图1所示,充电装置110可通过电线130连接于动力电池121,且通过通信线140连接于BMS 122,其中,通信线140用于实现充电装置110以及BMS之间的信息交互。作为示例,该通信线140包括但不限于是控制器局域网(control area network,CAN)通信总线或者菊花链(daisy chain)通信总线。
充电装置110除了可通过通信线140与BMS 122进行通信以外,还可以通过无线网络与BMS 122进行通信。本申请实施例对充电装置110与BMS 122的有线通信类型或无线通信类型均不做具体限定。
图2示出了本申请实施例的一种动力电池的充电方法200的示意性图。方法200可以由BMS执行,BMS例如可以为图1中的BMS 122。方法200可以包括以下内容中 的至少部分内容。
在步骤210中,获取动力电池的电池参数,电池参数可以包括荷电状态(state of charge,SOC)和/或开路电压(open circuit voltage,OCV)。
在步骤220中,在动力电池的充电过程中,在动力电池的电池参数变化参数间隔值时,控制动力电池放电或停止充电。
其中,当动力电池的电池参数处于第一参数区间时,参数间隔值为第一预设参数间隔值;当动力电池的电池参数处于第二参数区间时,参数间隔值为第二预设参数间隔值,第一预设参数间隔值大于第二预设参数间隔值,第一参数区间中的电池参数小于第二参数区间中的电池参数。
本申请实施例,在对动力电池充电的过程中对动力电池进行放电或暂时停止充电,能够避免动力电池因持续充电造成的发热、锂离子聚集等问题,继而避免由于发热、锂离子聚集等问题引发动力电池的安全问题,例如动力电池燃烧或爆炸等,保证动力电池的安全性能。
进一步地,若动力电池的电池参数(如SOC)越大,则说明动力电池当前时刻的负极电位较低,较容易发生析锂现象,因此,在动力电池的电池参数较大时,提高其放电频率或停止充电的频率,即参数间隔值较小,从而可以进一步保证动力电池的安全性能。对应地,若动力电池的电池参数(如SOC)较小,则说明动力电池当前时刻的负极电位较高,相比于负极电位较低的情况,其析锂风险较低,从而降低其放电频率或停止充电的频率,即参数间隔值较大,这样可以在减少对动力电池充电时长影响的同时,达到抑制析锂的效果。
SOC可用于表示动力电池的剩余容量,其数值上定义为动力电池当前的剩余容量与总的可用容量的比值,常用百分比表示。具体地,SOC=100%时,表示动力电池完全充满;反之,SOC=0%时,表示动力电池完全放电。
OCV指动力电池无电流通过时正负极之间的电位差。通常,在动力电池充放电结束之后将动力电池静置一段时间后可以得到动力电池的OCV的值。
OCV和SOC之间存在对应关系,因此,在一种实现方式中,BMS可以根据动力电池的OCV确定SOC。具体而言,可以先通过时延测试出不同SOC下OCV的数据,拟合出两者的关系曲线图,这样BMS就可以根据测量的OCV和曲线图估计出动力电池的SOC。
在另一种实现方式中,BMS可以利用反向传播(Back Propagation,BP)神经网络获取到动力电池的SOC。其中,BP神经网络的输入可以是动力电池的电流、电压和温度等参数,输出是动力电池的SOC。
除了上述两种方法之外,BMS还可以采用安时积分法、卡尔曼滤波法等方法获取到动力电池的SOC,本申请实施例不再详细叙述。
可选地,在本申请实施例中,参数间隔值可以是预设在BMS上的。比如,参数间隔值可以是通过大量的实验得到的,之后,在BMS出厂时将参数间隔值预设在BMS上。
可选地,参数间隔值可以是BMS自行确定的。例如,BMS可以根据动力电池 的温度、健康状态(state of health,SOH)、当前时刻的充电环境等参数确定参数间隔值。
其中,SOH可用于表示动力电池的老化状态,也可理解为动力电池的剩余寿命。动力电池经过长期运行后性能将会不断衰减,因此,剩余寿命也就越短,即SOH数值也就越小。SOH越小,表明动力电池的析锂风险越高,则参数间隔值也就越小。
可选地,参数间隔值的范围可以为3%-95%。例如,参数间隔值可以为5%或10%
上文中的参数区间可以包括两个区间。示例性地,假定电池参数为SOC,[0,50%)SOC区间为第一参数区间,SOC间隔值可以为10%,[50%,100%]SOC区间为第二参数区间,SOC间隔值可以为5%。
除了第一参数区间和第二参数区间外,本申请实施例还可以包括第三参数区间、第四参数区间等参数区间。例如,[0,40%)SOC区间为第一参数区间,[40,80%)SOC区间为第二参数区间,[80,100%]SOC区间为第三参数区间,[0,40%)SOC区间的SOC间隔值>[40,80%)SOC区间的SOC间隔值>[80,100%]SOC区间的SOC间隔值。
将参数区间划分的越多,抑制析锂的效果越好,即动力电池的安全性越好。同时,还可以进一步减小对充电时长的影响,从而提升用户体验。
可选地,在本申请实施例中,BMS控制动力电池放电,具体可以为:BMS基于放电参数,控制动力电池放电。
放电参数可以包括但不限于放电时长、放电电流和放电电压等。放电时长例如可以为1s-60s,电流大小例如可以为1A-5C。
在一种可能的实现方式中,BMS可以根据以下至少一种参数确定放电参数:动力电池的温度、动力电池的SOH、动力电池的SOC、动力电池当前时刻所处的外部环境等。
其中,BMS可以在充电前获取动力电池的温度和/或SOH,也可以在充电过程中获取动力电池的温度和/或SOH。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
作为示例,若动力电池的温度较低,如-10℃,则放电时长可以相对较短,如10s;若动力电池的温度正常,如20℃,则放电时长可以相对较长,如40s。
作为示例,若动力电池的SOH越大,则放电时长可以越长,放电电流可以越大。
上述技术方案,BMS根据多种参数综合确定动力电池放电时的放电参数,这样,确定的放电参数更加准确,从而可以更好的实现动力电池的放电
可选地,在本申请实施例中,步骤220具体可以为:BMS在动力电池的电池参数每变化参数间隔值时,控制动力电池放电或停止充电。
作为一种示例,BMS可以在动力电池的电池参数每变化参数间隔值时,控制动力电池放电一次。
例如,假定电池参数为OCV,[0,50%)OCV区间为第一参数区间,OCV间隔值 为10%,[50%,100%]OCV区间为第二参数区间,OCV间隔值为5%。在动力的电池的OCV为10%OCV时,BMS控制动力电池放电一次,之后,在动力电池的OCV为20%OCV时,BMS再次控制动力电池放电一次,之后,在动力电池的OCV为30%OCV、40%OCV、50%OCV、55%OCV、60%OCV、65%OCV、70%OCV、75%OCV、80%OCV、85%OCV、90%OCV、95%OCV、100%OCV时,BMS分别可以控制动力电池放电一次。
作为另一种示例,BMS可以在动力电池的电池参数每变化参数间隔值时,控制动力电池放电多次。
例如,仍然假定电池参数为OCV,[0,50%)OCV区间为第一参数区间,OCV间隔值为10%,[50%,100%]OCV区间为第二参数区间,OCV间隔值为5%。在动力的电池的OCV为10%OCV时,BMS控制动力电池放电两次,其中,两次放电之间的时间间隔可以小于一定的时间阈值。
可选地,动力电池每次放电的放电参数可以相同。比如,动力电池每次放电的放电时长均为20s,放电电流均为10A。
或者,动力电池每次放电的放电参数可以不同。比如,在动力电池的SOC为10%SOC时,动力电池放电50s,放电电流为3A;在动力电池的SOC为55%SOC时,动力电池放电30s,放电电流为1A。
可选地,在本申请实施例中,步骤220具体可以包括:确定动力电池的电池参数是否等于目标电池参数,若动力电池的电池参数等于目标电池参数,则BMS控制动力电池放电或停止充电。
其中,目标电池参数是基于参数间隔值确定的电池参数。例如,若参数间隔值为5%,则目标电池参数为5%、10%、15%、20%……。
目标电池参数可以是预设在BMS上的。示例性地,如表1和表2所示,目标电池参数可以以表格的形式预设在BMS上。
表1
Figure PCTCN2021117314-appb-000001
表2
Figure PCTCN2021117314-appb-000002
应理解,本文中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
上述技术方案,在动力电池的电池参数等于目标电池参数时,BMS控制动力电池放电或停止充电,如此,可以更好地平衡动力电池的充电和放电,在保证动力电池的安全性能的基础上完成对动力电池的充电。
在动力电池的电池参数变化参数间隔值时,方法200还可以包括:BMS向充电 桩发送充电请求信息,该充电请求信息携带的充电请求电流为0。也就是说,充电请求信息用于指示充电桩停止向动力电池充电。
图3是图2中的步骤220的一种可能的实现方式的示意性流程图。图3的方法可以包括步骤310-330。
在步骤310中,在动力电池的电池参数变化参数间隔值时,BMS向充电桩发送充电请求信息,该充电请求信息携带的充电请求电流为0。
在步骤320中,BMS获取充电桩基于充电请求信息向动力电池充电的实际充电电流。
在步骤330中,在实际充电电流小于电流阈值时,控制动力电池放电。
通常情况下,在充电桩接收到BMS发送的携带充电请求电流为0的充电请求信息后,充电桩向动力电池传输的实际充电电流会慢慢下降,并不会立即下降为0。在实际充电电流下降到电流阈值以下时,BMS才会控制动力电池放电。
本申请实施例对电流阈值不作具体限定,作为示例,电流阈值可以为50A。
若在对动力电池充电的过程中,直接控制动力电池放电,不仅会对动力电池造成损伤,影响动力电池的寿命,还会带来安全隐患,影响动力电池的安全性。上述技术方案,在BMS发送携带充电请求电流为0的充电请求信息且动力电池的实际充电电流较小,例如小于电池阈值后,BMS再控制动力电池放电,可保证动力电池的寿命和性能,提升动力电池充放电过程的安全性。
为了保证动力电池的正常充电,进一步地,方法200还可以包括:BMS控制动力电池停止放电。
作为一种示例,当BMS向充电桩发送充电请求信息的时长大于或等于第一时间阈值时,BMS可以控制动力电池停止放电。
其中,BMS向充电桩发送充电请求信息的时长可以理解为:BMS向充电桩发送多次充电请求信息的总时长。比如,BMS每隔5s向充电桩发送充电请求信息,若BMS共发送了6次充电请求信息,则MNS向充电桩发送充电请求信息的时长为30s。
可选地,在BMS第一次向充电桩发送充电请求信息时,BMS可以启动第一定时器,其中,第一定时器的定时时长为第一时间阈值。在第一定时器超时后,BMS可以控制动力电池停止放电。
可选地,第一时间阈值可以为但不限于60s。
作为另一种示例,当动力电池的放电时长大于或等于第二时间阈值时,BMS可以控制动力电池停止放电。
可选地,第二时间阈值可以为但不限于20s。
可选地,当动力电池开始放电时,BMS可以启动第二定时器,其中,第二定时器的定时时长为第二时间阈值。在第二定时器超时后,BMS可以控制动力电池停止放电。
作为再一种示例,当动力电池的放电量达到特定值时,BMS可以控制动力电池停止放电。
若BMS一直控制动力电池放电,可能会影响动力电池的正常充电过程。上述 技术方案,在BMS向充电桩发送充电请求信息的时长大于或等于第一时间阈值时,或者,在动力电池的放电时长大于或等于第二时间阈值时,BMS控制动力电池停止放电,如此,避免了将动力电池中的电量全部放完的问题,从而能够保证动力电池的正常充电。
在BMS控制动力电池停止放电后,BMS可以向充电桩发送充电需求参数,该充电需求参数可以用于指示充电桩输出充电电流,该充电电流用于给动力电池充电。充电桩接收到该充电需求参数后,基于该充电需求参数向动力电池输出充电电流。
其中,BMS可以根据动力电池的以下至少一个参数确定充电需求参数:动力电池的温度、动力电池的电压、动力电池的容量以及动力电池的SOC。
上述技术方案,在动力电池停止放电后,BMS向充电桩发送充电需求参数,以使充电桩继续对动力电池进行充电,从而能够实现对动力电池充电的目的。
可选地,在本申请实施例中,方法200还可以包括:BMS确定动力电池的状态,在动力电池处于满充状态或拔枪状态时,控制动力电池放电。
示例性地,BMS可以通过获取动力电池的参数,根据动力电池的参数,确定动力电池的状态。比如,动力电池的参数可以包括SOC,在动力电池的SOC达到100%时,BMS可以确定动力电池处于满充状态。
再示例性地,BMS可以向充电桩发送确认信息,若BMS没有接收到充电桩针对该确认信息发送的响应信息,则BMS可以确定动力电池处于拔枪状态。
在动力电池处于满充状态或拔枪状态时,BMS控制动力电池放电的放电参数可以与动力电池处于充电状态时的放电参数相同。比如,不论是充电状态还是满充装填又或是拔枪状态,动力电池放电时的放电电流可以均为10A,放电时长均为20s。
或者,在动力电池处于满充状态或拔枪状态时,BMS控制动力电池放电的放电参数可以与动力电池处于充电状态时的放电参数不同。比如,放电时长可以小于动力电池处于充电状态时的放电时长,放电电流可以小于动力电池处于充电状态时的放电电流。
上述技术方案,在动力电池处于满充状态或拔枪状态时,BMS控制动力电池放电,这样可以避免动力电池在后续充电过程中,充电桩与动力电池建立连接后,直接对动力电池进行充电造成动力电池的析锂风险的问题,从而进一步提升动力电池的安全性能。
在动力电池放电时,动力电池的放电对象可以为充电桩。充电桩接收到动力电池放的电后,可以利用接收到的电量对其他车辆进行充电。
或者,动力电池的放电对象可以动力电池所在的车辆,具体例如可以为车辆上的空调等。
再或者,动力电池的放电对象可以为其他外部设备,如充电宝等。
如此,可以实现对电量的循环利用,达到节能的目的。
需要说明的是,在车辆拔枪之后,动力电池的放电对象不包括充电桩。
为了更加清楚地理解本申请实施例的动力电池充电的方法200,以下结合图4描述本申请一种可能的实施例的动力电池充电的方法。其中,在图4中,电池参数为 SOC,电流阈值为50A,第一时间阈值为60s,第二时间阈值为20s。
在步骤401中,BMS判断动力电池是否处于充电状态。
若动力电池处于充电状态,则执行步骤402;若动力电池未处于充电状态,则执行步骤411;
在步骤402中,BMS获取动力电池的SOC。
在步骤403中,BMS确定动力电池的SOC是否等于目标SOC;
在步骤404中,若动力电池的SOC等于目标SOC,则BMS向充电桩发送充电请求信息且开始计时。
其中,该充电请求信息携带的充电请求电流为0。
在步骤405中,BMS采集充电桩向动力电池充电的实际充电电流。
在步骤406中,BMS判断实际充电电流是否小于50A。
若实际充电电流小于50A,执行步骤407。
在步骤407中,BMS控制动力电池放电。
例如,BMS可以控制动力电池以10A电流放电且放电时长为20s。
在步骤408中,BMS判断动力电池向充电桩发送充电请求信息的时长是否大于或等于60s,或者,判断动力电池放电的放电时长是否大于或等于20s。
若动力电池向充电桩发送充电请求信息的时长大于或等于60s,或者,动力电池放电的放电时长大于或等于20s,执行步骤409。
在步骤409中,BMS控制动力电池停止放电。
在步骤410中,BMS向充电桩发送充电需求参数。
该充电需求参数用于指示充电桩输出充电电流,该充电电流用于给动力电池充电。
在步骤411中,BMS判断动力电池是否处于满充状态或拔枪状态。
在步骤412中,若动力电池处于满充状态或拔枪状态,则BMS控制动力电池放电。
比如,BMS可以控制动力电池以10A电流放电20s。
上文详细描述了本申请实施例的方法实施例,下面描述本申请实施例的装置实施例,装置实施例与方法实施例相互对应,因此未详细描述的部分可参见前面各方法实施例,装置可以实现上述方法中任意可能实现的方式。
图5示出了本申请一个实施例的BMS 500的示意性框图。该BMS 500可以执行上述本申请实施例的动力电池充电的方法200。如图5所示,该BMS 500可以包括:
获取单元510,用于获取所述动力电池的电池参数,所述电池参数包括荷电状态SOC和/或开路电压OCV。
控制单元520,用于在所述动力电池的充电过程中,在所述动力电池的电池参数变化参数间隔值时,控制所述动力电池放电或停止充电。
其中,当所述动力电池的电池参数处于第一参数区间时,所述参数间隔值为第一预设参数间隔值,当所述动力电池的电池参数处于第二参数区间时,所述参数间隔值为第二预设参数间隔值,所述第一预设参数间隔值大于所述第二预设参数间隔值, 所述第一参数区间中的电池参数小于所述第二参数区间中的电池参数。
可选地,在本申请一个实施例中,所述参数间隔值的范围为3%-95%。
可选地,在本申请一个实施例中,所述控制单元520具体用于:确定所述动力电池的电池参数是否等于目标电池参数,所述目标电池参数是基于所述参数间隔值确定的电池参数;若所述动力电池的电池参数等于所述目标电池参数,控制所述动力电池放电或停止充电。
可选地,在本申请一个实施例中,还包括:通信单元,用于向充电桩发送充电请求信息,所述充电请求信息携带的充电请求电流为0;所述获取单元510还用于,获取所述充电桩基于所述充电请求信息向所述动力电池充电的实际充电电流;所述控制单元520具体用于,在所述实际充电电流小于电流阈值时,控制所述动力电池放电。
可选地,在本申请一个实施例中,所述控制单元520还用于:当向所述充电桩发送所述充电请求信息的时长大于或等于第一时间阈值时,控制所述动力电池停止放电。
可选地,在本申请一个实施例中,所述控制单元520还用于:当所述动力电池的放电时长大于或等于第二时间阈值时,控制所述动力电池停止放电。
应理解,该BMS 500可以实现方法200中BMS的相应操作,为了简洁,在此不再赘述。
图6是本申请实施例的BMS的硬件结构示意图。BMS 600包括存储器601、处理器602、通信接口603以及总线604。其中,存储器601、处理器602、通信接口603通过总线604实现彼此之间的通信连接。
存储器601可以是只读存储器(read-only memory,ROM),静态存储设备和随机存取存储器(random access memory,RAM)。存储器601可以存储程序,当存储器601中存储的程序被处理器602执行时,处理器602和通信接口603用于执行本申请实施例的动力电池充电的方法的各个步骤。
处理器602可以采用通用的中央处理器(central processing unit,CPU),微处理器,应用专用集成电路(application specific integrated circuit,ASIC),图形处理器(graphics processing unit,GPU)或者一个或多个集成电路,用于执行相关程序,以实现本申请实施例的装置中的单元所需执行的功能,或者执行本申请实施例的动力电池充电的方法。
处理器602还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请实施例的动力电池充电的方法的各个步骤可以通过处理器602中的硬件的集成逻辑电路或者软件形式的指令完成。
上述处理器602还可以是通用处理器、数字信号处理器(digital signal processing,DSP)、ASIC、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行 完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器601,处理器602读取存储器601中的信息,结合其硬件完成本申请实施例的BMS中包括的单元所需执行的功能,或者执行本申请实施例的动力电池充电的方法。
通信接口603使用例如但不限于收发器一类的收发装置,来实现BMS 600与其他设备或通信网络之间的通信。例如,BMS 600可以通过通信接口603向充电桩发送充电请求信息。
总线604可包括在装置600各个部件(例如,存储器601、处理器602、通信接口603)之间传送信息的通路。
应注意,尽管上述BMS 600仅仅示出了存储器、处理器、通信接口,但是在具体实现过程中,本领域的技术人员应当理解,BMS 600还可以包括实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当理解,BMS 600还可包括实现其他附加功能的硬件器件。此外,本领域的技术人员应当理解,装BMS 600也可仅仅包括实现本申请实施例所必须的器件,而不必包括图6中所示的全部器件。
本申请实施例还提供了一种计算机可读存储介质,存储用于设备执行的程序代码,所述程序代码包括用于执行上述动力电池充电的方法中的步骤的指令。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述动力电池充电的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本说明书中描述的各种实施方式,既可以单独实施,也可以组合实施,本申请实施例对此并不限定。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (13)

  1. 一种动力电池充电的方法,其特征在于,应用于所述动力电池的电池管理系统BMS,所述方法包括:
    获取所述动力电池的电池参数,所述电池参数包括荷电状态SOC和/或开路电压OCV;
    在所述动力电池的充电过程中,在所述动力电池的电池参数变化参数间隔值时,控制所述动力电池放电或停止充电,
    其中,当所述动力电池的电池参数处于第一参数区间时,所述参数间隔值为第一预设参数间隔值,当所述动力电池的电池参数处于第二参数区间时,所述参数间隔值为第二预设参数间隔值,所述第一预设参数间隔值大于所述第二预设参数间隔值,所述第一参数区间中的电池参数小于所述第二参数区间中的电池参数。
  2. 根据权利要求1所述的方法,其特征在于,所述参数间隔值的范围为3%-95%。
  3. 根据权利要求1或2所述的方法,其特征在于,所述在所述动力电池的电池参数变化参数间隔值时,控制所述动力电池放电或停止充电,包括:
    确定所述动力电池的电池参数是否等于目标电池参数,所述目标电池参数是基于所述参数间隔值确定的电池参数;
    若所述动力电池的电池参数等于所述目标电池参数,控制所述动力电池放电或停止充电。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述控制所述动力电池放电,包括:
    向充电桩发送充电请求信息,所述充电请求信息携带的充电请求电流为0;
    获取所述充电桩基于所述充电请求信息向所述动力电池充电的实际充电电流;
    在所述实际充电电流小于电流阈值时,控制所述动力电池放电。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    当向所述充电桩发送所述充电请求信息的时长大于或等于第一时间阈值时,控制所述动力电池停止放电。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    当所述动力电池的放电时长大于或等于第二时间阈值时,控制所述动力电池停止放电。
  7. 一种动力电池的电池管理系统BMS,其特征在于,包括:
    获取单元,用于获取所述动力电池的电池参数,所述电池参数包括荷电状态SOC和/或开路电压OCV;
    控制单元,用于在所述动力电池的充电过程中,在所述动力电池的电池参数变化参数间隔值时,控制所述动力电池放电或停止充电,
    其中,当所述动力电池的电池参数处于第一参数区间时,所述参数间隔值为第一预设参数间隔值,当所述动力电池的电池参数处于第二参数区间时,所述参数间隔值为第二预设参数间隔值,所述第一预设参数间隔值大于所述第二预设参数间隔值,所 述第一参数区间中的电池参数小于所述第二参数区间中的电池参数。
  8. 根据权利要求7所述的BMS,其特征在于,所述参数间隔值的范围为3%-95%。
  9. 根据权利要求7或8所述的BMS,其特征在于,所述控制单元具体用于:
    确定所述动力电池的电池参数是否等于目标电池参数,所述目标电池参数是基于所述参数间隔值确定的电池参数;
    若所述动力电池的电池参数等于所述目标电池参数,控制所述动力电池放电或停止充电。
  10. 根据权利要求7至9中任一项所述的BMS,其特征在于,还包括:
    通信单元,用于向充电桩发送充电请求信息,所述充电请求信息携带的充电请求电流为0;
    所述获取单元还用于,获取所述充电桩基于所述充电请求信息向所述动力电池充电的实际充电电流;
    所述控制单元具体用于,在所述实际充电电流小于电流阈值时,控制所述动力电池放电。
  11. 根据权利要求10所述的BMS,其特征在于,所述控制单元还用于:
    当向所述充电桩发送所述充电请求信息的时长大于或等于第一时间阈值时,控制所述动力电池停止放电。
  12. 根据权利要求7至10中任一项所述的BMS,其特征在于,所述控制单元还用于:
    当所述动力电池的放电时长大于或等于第二时间阈值时,控制所述动力电池停止放电。
  13. 一种动力电池的电池管理系统BMS,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,执行如权利要求1至6中任一项所述的动力电池充电的方法。
PCT/CN2021/117314 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统 WO2023035163A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237018851A KR102625180B1 (ko) 2021-09-08 2021-09-08 파워 배터리 충전 방법 및 배터리 관리 시스템
EP21956351.7A EP4236007A4 (en) 2021-09-08 2021-09-08 METHOD FOR CHARGING A POWER BATTERY, AND BATTERY MANAGEMENT SYSTEM
JP2023535043A JP7432064B2 (ja) 2021-09-08 2021-09-08 動力電池を充電する方法及び電池管理システム
PCT/CN2021/117314 WO2023035163A1 (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统
CN202180006382.7A CN116097494B (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统
US18/327,702 US11870289B2 (en) 2021-09-08 2023-06-01 Method for charging traction battery and battery management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/117314 WO2023035163A1 (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/327,702 Continuation US11870289B2 (en) 2021-09-08 2023-06-01 Method for charging traction battery and battery management system

Publications (1)

Publication Number Publication Date
WO2023035163A1 true WO2023035163A1 (zh) 2023-03-16

Family

ID=85507120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117314 WO2023035163A1 (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统

Country Status (6)

Country Link
US (1) US11870289B2 (zh)
EP (1) EP4236007A4 (zh)
JP (1) JP7432064B2 (zh)
KR (1) KR102625180B1 (zh)
CN (1) CN116097494B (zh)
WO (1) WO2023035163A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116134694B (zh) * 2021-09-08 2024-01-26 宁德时代新能源科技股份有限公司 动力电池充电的方法和电池管理系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166025A (ja) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd 組電池ならびにそれを用いる電池モジュールおよびハイブリッド自動車
CN103023082A (zh) * 2011-09-27 2013-04-03 深圳富泰宏精密工业有限公司 电池充放电控制系统及方法
CN110828924A (zh) * 2019-11-18 2020-02-21 深圳新恒业电池科技有限公司 电池的快速充电方法、装置、终端及存储介质
CN111532174A (zh) * 2019-08-27 2020-08-14 长城汽车股份有限公司 高压电池的充放电控制方法及其装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074648B2 (ja) 2000-05-23 2012-11-14 キヤノン株式会社 二次電池の内部状態検知方法、検知装置、該検知装置を備えた機器、内部状態検知プログラム、および該プログラムを収めた媒体
KR100755971B1 (ko) 2006-05-30 2007-09-06 삼성전자주식회사 듀얼 인터페이스 방식으로 동작하는 단일 포트 유에스비장치
JP5730501B2 (ja) 2010-05-20 2015-06-10 トヨタ自動車株式会社 電動車両およびその制御方法
JP6148882B2 (ja) 2013-03-13 2017-06-14 株式会社マキタ バッテリパック及び充電器
US20160276843A1 (en) * 2015-03-20 2016-09-22 Ford Global Technologies, Llc Battery Charge Strategy Using Discharge Cycle
JP2017103077A (ja) 2015-12-01 2017-06-08 日立化成株式会社 蓄電システム及びその制御方法並びにリチウムイオン二次電池の熱暴走予兆診断装置及びリチウムイオン二次電池の熱暴走予兆診断方法
CN110324394A (zh) * 2018-03-30 2019-10-11 比亚迪股份有限公司 云服务器、电动汽车及其提示系统、方法
CN111251928B (zh) * 2018-11-30 2021-11-23 宁德时代新能源科技股份有限公司 充电方法、装置、设备、介质、电池管理系统和充电桩
CN110962631B (zh) 2018-12-29 2020-11-17 宁德时代新能源科技股份有限公司 电池加热系统及其控制方法
CN112485677B (zh) * 2019-09-12 2024-09-17 东莞新能德科技有限公司 电池容量更新方法及装置、电子装置以及存储介质
CN112366375B (zh) * 2020-09-03 2022-03-18 万向一二三股份公司 一种锂离子动力电池快速充电方法
CN112572233B (zh) * 2020-12-30 2022-08-19 广州橙行智动汽车科技有限公司 一种电池管理方法、装置及车辆
CN112838631B (zh) * 2020-12-31 2023-12-29 上海玫克生储能科技有限公司 动力电池的充电动态管控装置和动力电池的充电诊断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166025A (ja) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd 組電池ならびにそれを用いる電池モジュールおよびハイブリッド自動車
CN103023082A (zh) * 2011-09-27 2013-04-03 深圳富泰宏精密工业有限公司 电池充放电控制系统及方法
CN111532174A (zh) * 2019-08-27 2020-08-14 长城汽车股份有限公司 高压电池的充放电控制方法及其装置
CN110828924A (zh) * 2019-11-18 2020-02-21 深圳新恒业电池科技有限公司 电池的快速充电方法、装置、终端及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4236007A4 *

Also Published As

Publication number Publication date
JP2023551736A (ja) 2023-12-12
US20230307934A1 (en) 2023-09-28
JP7432064B2 (ja) 2024-02-15
KR102625180B1 (ko) 2024-01-16
EP4236007A4 (en) 2024-03-27
EP4236007A1 (en) 2023-08-30
US11870289B2 (en) 2024-01-09
CN116097494A (zh) 2023-05-09
KR20230086807A (ko) 2023-06-15
CN116097494B (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
WO2023004716A1 (zh) 充放电装置、电池充电和放电的方法、以及充放电系统
WO2023004712A1 (zh) 充放电装置、电池充电的方法和充放电系统
US20230307934A1 (en) Method for charging traction battery and battery management system
US12051934B2 (en) Method for charging battery, charging and discharging device
WO2023123767A1 (zh) 电池充电剩余时间的确定方法和系统
WO2023035164A1 (zh) 动力电池充电的方法和电池管理系统
WO2023004711A1 (zh) 充放电装置、电池充电的方法和充放电系统
WO2023035160A1 (zh) 动力电池充电的方法和电池管理系统
WO2023092413A1 (zh) 动力电池充电的方法和电池管理系统
WO2023004673A1 (zh) 电池充电的方法、电池管理系统和充放电装置
WO2023092416A1 (zh) 动力电池充电的方法和电池管理系统
WO2023092414A1 (zh) 动力电池充电的方法和电池管理系统
US20230204672A1 (en) Method and system for determining remaining charging time of battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237018851

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021956351

Country of ref document: EP

Effective date: 20230522

WWE Wipo information: entry into national phase

Ref document number: 2023535043

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE