WO2023035150A1 - 一种传动装置、传动装置调节方法、转向系统及车辆 - Google Patents

一种传动装置、传动装置调节方法、转向系统及车辆 Download PDF

Info

Publication number
WO2023035150A1
WO2023035150A1 PCT/CN2021/117231 CN2021117231W WO2023035150A1 WO 2023035150 A1 WO2023035150 A1 WO 2023035150A1 CN 2021117231 W CN2021117231 W CN 2021117231W WO 2023035150 A1 WO2023035150 A1 WO 2023035150A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
wheel
chamber
housing
transmission belt
Prior art date
Application number
PCT/CN2021/117231
Other languages
English (en)
French (fr)
Inventor
李声辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/117231 priority Critical patent/WO2023035150A1/zh
Priority to EP21956338.4A priority patent/EP4382395A1/en
Priority to CN202180009800.8A priority patent/CN116997501A/zh
Publication of WO2023035150A1 publication Critical patent/WO2023035150A1/zh
Priority to US18/597,802 priority patent/US20240208564A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/02Gearings for conveying rotary motion by endless flexible members with belts; with V-belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/10Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/10Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley
    • F16H7/12Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/10Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley
    • F16H7/12Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley
    • F16H7/1254Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley without vibration damping means
    • F16H7/1281Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley without vibration damping means where the axis of the pulley moves along a substantially circular path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/10Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley
    • F16H7/14Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of a driving or driven pulley
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0421Electric motor acting on or near steering gear
    • B62D5/0424Electric motor acting on or near steering gear the axes of motor and final driven element of steering gear, e.g. rack, being parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0442Conversion of rotational into longitudinal movement
    • B62D5/0445Screw drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0863Finally actuated members, e.g. constructional details thereof
    • F16H2007/0865Pulleys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0876Control or adjustment of actuators
    • F16H2007/088Manual adjustment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0889Path of movement of the finally actuated member
    • F16H2007/0893Circular path

Definitions

  • the present application relates to the field of vehicle technology, in particular to a transmission device, a method for adjusting the transmission device, a steering system and a vehicle.
  • the power steering system is a system that assists the driver in adjusting the direction of the vehicle, and can reduce the force required for the driver to operate the steering wheel.
  • power assist systems There are many kinds of power assist systems. Among them, REPS (Rack parallel electronic power steering system, rack-assisted electric power steering system) has been widely used in mid-to-high-end models in recent years due to its large power assist range and good noise characteristics.
  • the working principle of REPS is: when the driver operates the steering wheel to turn, the steering wheel drives the steering shaft to rotate.
  • the steering shaft and the steering rod are connected through intermeshing gears and racks.
  • the rotation of the steering shaft drives the steering rod to move left or right laterally, and then drives the wheels to turn left or right.
  • the torque angle sensor can collect the steering information transmitted from the steering wheel and transmit it to the controller.
  • the steering response request information is sent by the automatic driving center and passed to the controller.
  • the controller After receiving the information, the controller performs calculation and processing, and then sends the motor current control information to make the motor output the corresponding torque and speed/rotation angle.
  • the motor uses a transmission belt to connect the driving wheel on the output shaft of the motor and the driven wheel on the steering rod.
  • the driven wheel and the steering rod form a screw transmission structure. Through the transmission belt, the torque is increased by deceleration, and the driven wheel converts the rotational torque into the axial force of the steering rod. Implement car steering.
  • belt transmission has the advantages of stable transmission, low noise, and large transmission ratio.
  • the transmission belt is made of rubber and additives, it has a certain degree of elasticity. If the assembly is too tight, the friction force will be too large and the wear will be serious. If the assembly is too loose, it is easy to generate noise and slip, so it is necessary to adjust the tension of the transmission belt during assembly to keep it in a suitable range.
  • the application provides a transmission device, which can adjust the tension of the transmission belt, so as to prevent the transmission belt from being worn due to too much tension; or to avoid noise and slippage caused by too small tension.
  • the first aspect of the present application provides a transmission device, including: a driving wheel, a driven wheel and a transmission belt, wherein the driving wheel is connected to the driven wheel through the transmission belt, and the axis of the driving wheel is configured to be able to rotate around the first Axis rotation.
  • the distance between the driving wheel and the driven wheel can be adjusted, thereby adjusting the tension of the transmission belt between the driving wheel and the driven wheel. So as to avoid too much tension, causing wear to the transmission belt; or avoid too small tension, resulting in noise and slipping.
  • the first aspect also includes: an adjustment pin, the axis of the adjustment pin coincides with the first axis; a tension wheel, the tension wheel is arranged on the adjustment pin, and the outer peripheral surface of the tension wheel abut against the drive belt.
  • an adjustment pin the axis of the adjustment pin coincides with the first axis
  • a tension wheel the tension wheel is arranged on the adjustment pin, and the outer peripheral surface of the tension wheel abut against the drive belt.
  • the outer peripheral surface of the tensioning wheel abuts against the outer peripheral surface of the transmission belt.
  • the path through which the transmission belt connects the driving wheel and the driven wheel can be changed through the tensioning wheel, so that the distance between the transmission belts on both sides of the part between the driving wheel and the driven wheel is closer, so that the transmission belt and the driving wheel and the driven wheel
  • the radian of contact and the corresponding wrap angle are larger to increase the contact area between the transmission belt, the driving wheel and the driven wheel, thereby increasing the maximum static friction between the transmission belt, the driving wheel and the driven wheel, and reducing the friction between the transmission belt and the driving wheel and the
  • the possibility of slippage between driven wheels reduces wear on the drive belt.
  • the motor rotates relative to the housing, and the driving wheel is adjusted to move away from/close to the driven wheel, so that when the transmission belt is lengthened/shortened, the tensioning wheel will be correspondingly close to/away from the connecting line between the driving wheel and the center of the driven wheel, so that the tension The pulley can tighten/loosen the drive belt. Therefore, the adjustment range of the tension force of the transmission belt can be improved, the angle required for the motor to rotate when adjusting the tension force of the transmission belt is reduced, and the space required for adjusting the position of the motor and the driving wheel is reduced.
  • the axis of the driving wheel, the axis of the driven wheel, and the axis of the adjusting pin are parallel, and the relative positions of the axis of the driven wheel and the axis of the adjusting pin remain unchanged.
  • the first aspect further includes a first motor and a housing, the first motor is used to drive the driving wheel, and the first motor is installed on the housing through an adjustment pin.
  • the first motor and the housing are installed on the housing through the adjustment pins.
  • the positioning of the first motor can be realized through the adjustment pins, so as to realize the positioning between the first motor and the housing. fixed.
  • the adjusting pin can also improve the connection strength between the first motor and the casing.
  • the adjusting pin can also keep the first motor fixed, preventing the first motor from rotating around the remaining bolt.
  • the first motor further includes a first chamber
  • the adjusting pin further includes a through hole
  • the first end of the through hole is located in the first chamber
  • the second end of the through hole is located in the second chamber.
  • the first chamber communicates with the outside of the first motor through the through hole.
  • the first chamber communicates with the outside of the first motor through the through hole, and the air heated by the first motor in the first chamber can be exchanged with the air outside the first motor through the through hole, which improves the performance of the first motor cooling efficiency.
  • the casing encloses and forms a second chamber, and the driving wheel, driven wheel, and adjusting pin are accommodated in the second chamber; the first chamber communicates with the outside of the first motor through a through hole.
  • the communication specifically includes: the first chamber communicates with the second chamber through a through hole. In this way, the first chamber and the second chamber can be communicated through the through hole, so that the first chamber and the second chamber can be tested for air tightness at the same time.
  • the production steps can be simplified, the production speed can be accelerated, and the production efficiency can be improved.
  • the axis of the through hole coincides with the axis of the adjusting pin.
  • the processing of the through hole can be simplified, thereby improving the production efficiency.
  • the adjusting pin can be processed directly by using the pipe material, so that no punching operation is required during production, which simplifies the production process and improves the production efficiency.
  • the adjusting pin further includes a positioning end surface, and the positioning end surface is used to abut against the housing. In this way, the positioning of the adjusting pin can be achieved when the adjusting pin is installed on the housing by abutting the positioning end face against the housing, so as to facilitate the installation of the adjusting pin.
  • the adjusting pin is fixedly connected to the housing. Therefore, the casing does not need to increase the thickness to realize the stability of the cooperation between the adjusting pin and the casing, so that the thickness of the casing can be reduced, material can be saved, and the weight of the casing can be reduced.
  • the drive shaft needs to pass through the casing to install the drive wheel. Reducing the thickness of the casing can reduce the length of the drive shaft accordingly, so that the drive shaft can be driven by the first motor. The exposed length is shorter, thereby improving the rigidity and durability of the drive shaft, and making the transmission of the drive shaft more stable.
  • the first motor further includes a first fixing part, and the first motor is fixedly connected to the housing through the first fixing part.
  • the first motor can be conveniently fixed on the housing through the first fixing portion.
  • the first motor further includes a first fixing part, specifically including: the motor includes at least one bolt hole; the first motor is connected to the casing by bolts remain relatively fixed. Therefore, the first fixed connection can be realized by bolts, which is convenient for installation and disassembly.
  • a second motor is further included, and the second motor and the first motor jointly drive the driving wheel. Therefore, the driving force can be increased, and at the same time, the first motor and the second motor can also be redundant, thereby improving the stability of the transmission device.
  • the second aspect of the present application provides an adjusting pin.
  • the adjusting pin is used to hinge the motor and the housing, and the adjusting pin is staggered from the drive shaft of the motor; the driving shaft is provided with a driving wheel, and the housing is provided with a passive
  • the driving wheel and the driven wheel are connected through a transmission belt; after the motor rotates relative to the casing to adjust the tension of the transmission belt, the motor is fixedly connected to the casing.
  • the motor and the housing are hinged through the adjusting pin, so that the motor can rotate relative to the housing. Since the adjusting pin is staggered from the driving shaft of the motor, when the motor rotates relative to the housing, the driving shaft can rotate around the adjusting pin, so that the driving wheel can rotate around the adjusting pin.
  • the driven wheel is arranged on the casing, when the motor rotates relative to the casing, the distance between the driving wheel and the driven wheel can be adjusted, thereby adjusting the tension of the transmission belt between the driving wheel and the driven wheel.
  • the motor and the casing are hinged through the adjusting pin, when the motor is installed on the casing, the positioning of the motor can be realized through the adjusting pin, so as to realize the fixing between the motor and the casing.
  • the adjusting pin can also improve the connection strength between the motor and the housing.
  • the adjustment pin When the motor and the housing are fixed by bolts, if most of the bolts break or fall off due to vibration and other reasons, even if only one bolt is left to connect the motor and the housing On the top, the adjustment pin also keeps the motor fixed, preventing the motor from turning around the only remaining bolt.
  • it further includes: a tensioning wheel, the tensioning wheel is arranged on the adjusting pin, and the tensioning wheel is used to abut against the transmission belt.
  • a tensioning wheel the tensioning wheel is arranged on the adjusting pin, and the tensioning wheel is used to abut against the transmission belt.
  • the motor has a first chamber inside, and the housing has a second chamber, and the driving wheel, driven wheel and transmission belt are arranged in the second chamber;
  • the adjustment pin also includes: a through hole , the through hole is provided in the adjustment pin for communicating the first chamber and the second chamber.
  • the first chamber and the second chamber can be communicated through the through hole, so that the airtightness detection of the first chamber of the motor and the second chamber of the housing can be performed simultaneously.
  • the first chamber communicates with the second chamber through the through hole, the space is larger than that of a separate second chamber, which can reduce the pressure fluctuation caused in the second chamber when the motor rotates, thereby reducing the pressure of the motor. Noise when spinning.
  • the first chamber communicates with the second chamber through the through hole, and the air heated by the motor in the second chamber can be exchanged with the air in the first chamber through the through hole, which improves the heat dissipation efficiency of the motor.
  • the method further includes: a positioning end surface, where the positioning end surface is used to abut against the housing.
  • the positioning end surface is used to abut against the housing.
  • the third aspect of the present application provides a transmission device adjustment method.
  • the transmission device is any one of the fifth to thirteenth possible implementations of the transmission device in the first aspect.
  • the method includes: adjusting the rotation of the driving wheel around the adjustment pin Angle; when the tension of the transmission belt is greater than the first tension threshold, the first motor is fixedly connected to the casing.
  • the driving wheel can be controlled to rotate around the adjusting pin to adjust the distance between the driving wheel and the driven wheel, thereby adjusting the tension of the transmission belt between the driving wheel and the driven wheel.
  • the method before adjusting the rotation angle of the driving wheel around the adjusting pin, the method further includes: releasing the fixed connection between the first motor and the housing.
  • the fourth aspect of the present application provides an airtightness detection method, which is applied to the seventh possible implementation of the transmission device in the first aspect, including: inputting gas into the second chamber of the casing, so that the air pressure in the second chamber greater than or equal to the first air pressure threshold; the air pressure of the second chamber is detected after maintaining the first time period, and when the air pressure of the second chamber is greater than or equal to the second air pressure threshold, the airtightness is qualified. Since the first chamber communicates with the second chamber through the through hole, the air pressure in the second chamber can be greater than or equal to the first air pressure threshold by inputting gas into the second chamber, and the air pressure in the first chamber can be made The air pressure is greater than or equal to the first air pressure threshold.
  • a fifth aspect of the present application provides a steering system, including: any possible implementation of the transmission device in the first aspect.
  • a sixth aspect of the present application provides a vehicle, including any possible implementation of the transmission device in the first aspect.
  • Fig. 1 is the structural representation of a kind of transmission device in scheme one;
  • Fig. 2 is the structural representation of another kind of transmission device in scheme one;
  • Fig. 3 is the structural representation of a kind of transmission device in scheme two;
  • Fig. 4 is the structural representation of transmission device in the embodiment of the present application.
  • FIG. 5 is a schematic diagram of an application scenario of REPS in the embodiment of the present application.
  • Fig. 6 is a schematic diagram of the transmission relationship of the front wheel steering in Fig. 5;
  • Fig. 7 is a schematic diagram of the transmission relationship of rear wheel steering in Fig. 5;
  • Fig. 8 is a schematic structural diagram of REPS in Fig. 5;
  • Fig. 9 is a schematic diagram of the structural decomposition of the REPS in Fig. 5;
  • Fig. 10 is a schematic structural diagram of an adjusting pin in an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of another adjusting pin in the embodiment of the present application.
  • Fig. 12 is an axial schematic diagram of a motor in the embodiment of the present application.
  • Fig. 13 is an axial schematic diagram of another motor in the embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another REPS in the embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of another adjustment pin in the embodiment of the present application.
  • Fig. 16 is a schematic diagram of the positional relationship between the tensioning wheel, the driving wheel and the driven wheel;
  • Fig. 17 is a schematic diagram of the relationship between the length of the transmission belt and the position of the driving wheel
  • Figure 18 is a schematic diagram of adjusting the tension of the transmission belt
  • Fig. 19 is a schematic flow chart of the method for adjusting the tension of the transmission belt in the embodiment of the present application.
  • Fig. 20 is a schematic flowchart of the air tightness detection method in the embodiment of the present application.
  • the first option is to adjust the center distance between the driving wheel and the driven wheel to realize the adjustment of the tension of the transmission belt.
  • FIG. 1 is a schematic structural diagram of a transmission device in Scheme 1.
  • the housing 101 is provided with three oblong holes 102 , and bolts can pass through the oblong holes 102 to fix the motor 103 on the housing 101 .
  • the bolt can move in the oblong hole 102 along the oblong hole 102 , so that the position of the motor 103 on the housing 101 can be adjusted.
  • the distance between the driving wheel 105 arranged on the drive shaft 104 of the motor 103 and the driven wheel 106 arranged on the housing 101 can be adjusted, and then the transmission belt 107 for connecting the driving wheel 105 and the driven wheel 106 can be adjusted tension.
  • Fig. 2 is a schematic structural diagram of another transmission device in the first solution.
  • a cylindrical boss 108 is provided on the casing of the motor 103 eccentrically to the driving shaft 104 , and the driving shaft 104 protrudes from the boss 108 .
  • the housing 101 is provided with a circular hole 109 matching the boss 108 , and the boss 108 rotates in the circular hole 109 , so that the position of the drive shaft 104 of the motor 103 on the housing 101 can be adjusted.
  • the distance between the driving wheel 105 arranged on the drive shaft 104 of the motor 103 and the driven wheel 106 arranged on the housing 101 can be adjusted, and then the transmission belt 107 for connecting the driving wheel 105 and the driven wheel 106 can be adjusted tension.
  • the first defect requires a large adjustment distance or angle when adjusting the tension of the transmission belt 107, thereby requiring a larger volume of the housing 101, and a larger housing 101 requires more Materials and layout space are inconvenient for vehicle layout.
  • the second defect is that the boss 108 is assembled into the round hole 109. In order to obtain sufficient stability, the thickness of the boss 108 is relatively thick, usually 8 mm to 10 mm. Therefore, the casing 101 needs to have the same thickness correspondingly, so that the assembly of the boss 108 and the round hole 109 is more stable.
  • the second option is to change the path of the transmission belt by adding a tension wheel, so as to realize the adjustment of the tension of the transmission belt.
  • FIG. 3 is a structural schematic diagram of a transmission device in the second scheme.
  • a tensioning pulley 110 is also arranged between the driving wheel 105 and the driven pulley 106, and the outer peripheral surface of the transmission belt 107 abuts against the outer peripheral surface of the tensioning pulley 110, that is, there is a gap between the transmission belt 107 and the tensioning pulley 110.
  • a certain force changes the path of the transmission belt 107 through the tension pulley 110 .
  • the tensioning wheel 110 is installed eccentrically so that the position of the tensioning wheel 110 can be adjusted.
  • the length of the path of the transmission belt 107 can be adjusted by changing the position of the tensioning wheel 110.
  • Solution 2 has at least the following defects.
  • the tensioning pulley 110 installed in an eccentric manner is prone to loosening after long-term use, which will cause the tension of the transmission belt 107 to decrease and cause the transmission belt 107 to generate noise during operation. Therefore, the tensioning wheel 110 needs a high relaxation requirement during use.
  • the present application provides a transmission device capable of adjusting the tension of the transmission belt.
  • Fig. 4 is the structural representation of transmission device in the embodiment of the present application, as shown in Fig. 4, the transmission device of the present application comprises: driving wheel 272, driven wheel 273 and driving belt 275, wherein, driving wheel 272 connects with driven wheel 273 through driving belt 275
  • the drive wheel axis L1 is configured to be rotatable about the first axis L2.
  • the first axis L2 provided in the embodiment of the specification of the present application is a geometric description, and the first axis L2 may be a virtual rotation axis.
  • the distance between the driving wheel 272 and the driven wheel 273 can be adjusted, thereby adjusting the tension of the transmission belt 275 between the driving wheel 272 and the driven wheel 273 .
  • the tension force is too large, causing abrasion to the transmission belt 275; or the tension force is too small, resulting in noise and slipping.
  • the position of the rotation center of the driving wheel 272 can be changed.
  • the rotation center of the driving wheel 272 can rotate around the first axis L2.
  • the driving wheel 272 is connected to the output shaft of the motor, and the motor drives the driving wheel 272 to rotate through the output shaft.
  • the motor can be rotated about the first axis L2.
  • the transmission device provided in the embodiment of the present application further includes an adjustment pin, the axis of which coincides with the first axis L2, and the motor can be installed on the housing through the adjustment pin.
  • the motor can be rotated around the adjusting pin axis.
  • a tensioning wheel 2764 is further provided on the adjusting pin, and the outer peripheral surface of the tensioning wheel 2764 abuts against the transmission belt 275 .
  • the driving wheel 272 rotates and adjusts around the adjusting pin as the center, the position between the tensioning wheel 2764 and the driving wheel 272 can be changed, thereby changing the path that the transmission belt 275 passes when connecting the driving wheel 272 and the driven wheel 273, thereby changing the transmission belt
  • the length of 275 regulates the tension force of transmission belt 275.
  • the motor can also be connected to the housing through a rotating shaft, the axis of the rotating shaft coincides with the first axis L2, and the motor can rotate around the rotating shaft.
  • the motor can also be connected to the casing in other ways, so that the motor and the casing can rotate relative to each other, such as shaft connection, pin connection, rotary pair connection and the like.
  • the transmission device provided in the embodiment of the present application may be used in a REPS, and may also be used in a system that requires a transmission belt such as an electric tool, and there is no limitation here.
  • a transmission belt such as an electric tool
  • FIG. 5 is a schematic diagram of an application scenario of REPS27 in the embodiment of the present application.
  • a steering system 20 is provided in the vehicle 2, and the steering system 20 may include a front wheel steering 20a and a rear wheel steering 20b.
  • the REPS 27 in the embodiment of the present application can be set in the front wheel steering 20a to assist the front wheel steering, or directly drive the front wheel steering; it can also be set in the rear wheel steering 20b to be able to drive the rear wheel steering. Do limit.
  • the vehicle 2 in the embodiment of the present application is illustrated by taking an automobile as an example, which should not be regarded as a limitation to the embodiment of the present application.
  • the vehicle 2 may be a traditional fuel vehicle, or a new energy vehicle such as a pure electric vehicle or a hybrid vehicle.
  • the vehicle 2 may be any one of different types of automobiles such as a car, a truck, a passenger car, and an SUV (sport utility vehicle, sports utility vehicle).
  • FIG. 6 is a schematic diagram of the transmission relationship of the front wheel steering 20a in FIG. 5 .
  • the front wheel steering 20 a includes: a steering wheel 21 , a first steering shaft 22 , a second steering shaft 23 , a third steering shaft 24 , a housing 25 , a steering rod 26 and REPS 27 .
  • the housing 25 is fixedly arranged in the vehicle 2
  • the steering rod 26 is arranged in the housing 25.
  • the two ends of the second steering shaft 23 are respectively connected with one end of the first steering shaft 22 and the third steering shaft 24 through a universal joint, so that the first steering shaft 22, the second steering shaft 23 and the third steering shaft 24 can be avoided.
  • the other end of the first steering shaft 22 is connected to the center of the steering wheel 21, and the driver can control the steering wheel 21 to rotate.
  • the other end of the third steering shaft 24 protrudes into the casing 25 , and a gear 241 is provided at a corresponding position of the steering rod 26 .
  • a rack 261 is provided on the steering rod 26 corresponding to the position of the gear 241 along the extending direction of the steering rod 26 .
  • the gear 241 is meshed with the rack 261 , and the driver turns the steering wheel 21 to drive the gear 241 to rotate, thereby driving the steering rod 26 to move along the extending direction of the rack 261 to change the direction of the wheels.
  • REPS27 is fixedly arranged on the housing 25, when the driver turns the steering wheel 21 to drive the steering rod 26 to move along the direction in which the rack 261 extends, the REPS27 can output a certain force to the steering rod 26 to reduce the driver's steering wheel 21. the force required.
  • the REPS 27 may also receive steering response request information sent by the automatic driving center, and the REPS 27 drives the steering rod 26 to move along the direction in which the rack 261 extends, thereby driving the front wheels of the vehicle 2 to change direction.
  • FIG. 7 is a schematic diagram of the transmission relationship of the rear wheel steering 20b in FIG. 5 .
  • the rear wheel steering 20 b includes: a housing 25 , a steering rod 26 and REPS 27 .
  • the housing 25 is fixedly arranged in the vehicle 2
  • the steering rod 26 is arranged in the housing 25.
  • REPS27 is fixedly arranged on the housing 25, and when the driver turns the steering wheel 21 to control the steering of the front wheels, the REPS27 can drive the steering rod 26 to move along the extension direction of the steering rod 26 to drive the rear wheels to turn.
  • the REPS 27 may also receive steering response request information sent by the automatic driving center, so as to drive the rear wheels of the vehicle 2 to change direction.
  • FIG. 8 is a schematic structural diagram of REPS27 in FIG. 5
  • FIG. 9 is a schematic exploded structural diagram of REPS27 in FIG. 5
  • the REPS 27 includes: a motor 271 , a driving wheel 272 , a driven wheel 273 , a bearing 274 , a transmission belt 275 and an adjustment pin 276 .
  • the motor 271 has a drive shaft 2711
  • the drive wheel 272 is arranged on the drive shaft 2711.
  • the motor 271 and the housing 25 are hinged by an adjustment pin 276, the adjustment pin 276 is arranged parallel to the drive shaft 2711, and the adjustment pin 276 is located on the motor 271 at an eccentric position with the drive shaft 2711, so that the motor 271 can rotate around the adjustment pin 276, Thereby, the positions of the driving shaft 2711 and the driving wheel 272 are adjusted.
  • the driven wheel 273 is fixed on the casing 25 through a bearing 274 or other rotating structures, so that the driven wheel 273 is located on the casing 25 corresponding to the driving wheel 272 and can rotate on the casing 25 .
  • the driving wheel 272 is connected with the driven wheel 273 by a transmission belt 275.
  • the transmission belt 275 can be made of rubber and additives, or an annular part with certain elasticity made by other suitable materials.
  • the transmission belt 275 is connected with the driving wheel 272 and the driven wheel There is a certain frictional force between 273.
  • the driving wheel 272 rotates, it can drive the driven wheel 273 to rotate through the transmission belt 275, so that the driving wheel 272, the driven wheel 273 and the transmission belt 275 form a belt transmission structure.
  • the motor 271 rotates around the adjusting pin 276 to adjust the position of the driving wheel 272 , and then adjust the distance between the driving wheel 272 and the driven wheel 273 to realize the adjustment of the tension of the transmission belt 275 . Since the motor 271 and the housing 25 are hinged through the adjusting pin 276, there is no need to set a boss on the housing of the motor 271 as in the first solution, thereby saving the material of the housing of the motor 271 and redesigning the motor.
  • the mold of 271 shells only needs to punch holes to install adjusting pin 276 at the corresponding position of motor 271 shells. The requirements on the processing accuracy of the motor 271 shell are reduced, and the production cost is saved.
  • the casing 25 encloses and forms a second chamber 251 inside, and the driving wheel 272 , the driven wheel 273 , the bearing 274 and the transmission belt 275 are arranged in the second chamber 251 .
  • the motor 271 is installed on the casing 25 and is located outside the second chamber 251 .
  • the driving shaft 2711 of the motor 271 extends into the second chamber 251 , and the driving wheel 272 is fixedly arranged on the driving shaft 2711 so that the motor 271 can drive the driving wheel 272 to rotate.
  • the driven wheel 273 can be arranged on the casing 25 through a bearing 274 or other rotating structures, so that the driven wheel 273 can rotate on the casing 25 .
  • the connection mode between the bearing 274 and the driven wheel 273 and the housing 25 may specifically be that the outer ring of the bearing 274 is fixedly connected with the housing 25 , and the inner ring of the bearing 274 is fixedly connected with the driven wheel 273 . Thereby, the driven wheel 273 can be fixed on the housing 25 and can be rotated on the housing 25 .
  • the steering rod 26 of the steering system 20 is passed through the driven wheel 273 , and the axis of the steering rod 26 coincides with the axis of the driven wheel 273 .
  • the steering rod 26 and the driven wheel 273 are screwed to form a screw transmission structure, so that when the driven wheel 273 rotates, the steering rod 26 can be driven to move linearly in the axial direction.
  • the screw drive structure may be a trapezoidal screw structure, a ball screw structure, a planetary roller screw structure or any other possible implementation forms.
  • the trapezoidal screw structure is that the steering rod 26 and the driven wheel 273 are threaded through the trapezoidal thread, thereby converting the rotational motion of the driven wheel 273 into the linear motion of the steering rod 26, which has the advantages of simple structure and low cost.
  • the ball screw structure can reduce the friction between the steering rod 26 and the driven wheel 273 by inserting balls between the steering rod 26 and the driven wheel 273 that are threaded, and replace the sliding friction with rolling friction, thereby improving the friction between the steering rod 26 and the driven wheel 273. and the transmission efficiency between the driven wheel 273.
  • the planetary roller screw structure is provided with a plurality of rollers in the driven wheel 273, the rollers can rotate in the driven wheel 273, and the plurality of rollers surround the outer peripheral surface of the steering rod 26, and the threads on the outer peripheral surface of the rollers are respectively Engage with the threads on the outer peripheral surface of the steering rod 26 .
  • the point contact between the ball and the steering rod 26 and the driven wheel 273 in the ball screw structure can be converted into the line contact between the roller and the steering rod 26, and the contact surface can be increased while maintaining high-efficiency transmission, thereby improving
  • the bearing capacity and rigidity between the steering rod 26 and the driven wheel 273 are improved, and the impact resistance between the steering rod 26 and the driven wheel 273 is enhanced.
  • the torque angle sensor provided in the vehicle 2 can collect the steering information transmitted by the steering wheel 21, and transmit the steering information to the controller in the vehicle 2, and the controller receives the steering information.
  • a motor current control request is sent to the motor 271 to control the drive shaft 2711 of the motor 271 to output corresponding torque and speed/rotation angle.
  • the steering rod 26 is finally driven to perform linear motion.
  • the REPS 27 in the front wheel steering 20a can be made to output a certain amount of force to the steering rod 26 when the driver operates the steering wheel 21, so as to assist the front wheel steering of the vehicle 2 and reduce the force required for the driver to operate the steering wheel 21.
  • the REPS 27 in the front wheel steering 20a and the rear wheel steering 20b can directly receive the steering response request information sent by the automatic driving center, so as to drive the front wheels and rear wheels of the vehicle 2 to change direction, and then realize the automatic control of the steering of the vehicle 2 .
  • FIG. 10 is a schematic structural diagram of an adjustment pin 276 in the embodiment of the present application, showing the specific structure of the adjustment pin 276 in FIG. 8 .
  • the adjustment pin 276 can be configured as a cylinder, and the adjustment pin 276 can be divided into two parts: a fixed end 2761 and an adjustment end 2762 along the axial direction.
  • the fixed end 2761 is used for fixed connection with the housing 25, and the connection method may be, for example, a screw connection, a press-fit connection and the like. Since the fixed connection between the adjusting pin 276 and the housing 25 has relatively low requirements on the thickness of the housing 25, the thickness of the housing 25 can be set to, for example, 4 mm to 6 mm.
  • the thickness of the casing 25 is set to be 8 mm to 10 mm.
  • the thickness of the casing 25 can be reduced, the weight of the casing 25 can be reduced, and the production cost can be reduced.
  • the driving shaft 2711 needs to pass through the housing 25 to install the driving wheel 272. Reducing the thickness of the housing 25 can reduce the length of the driving shaft 2711 accordingly, so that the driving shaft The length of 2711 exposed from the motor 271 is shorter, thereby improving the rigidity and durability of the drive shaft 2711 and making the transmission of the drive shaft 2711 more stable.
  • the length of the fixed end 2761 is greater than the thickness of the housing 25.
  • the motor 271 can be rotated on the casing 25 to adjust the position of the drive shaft 2711 and the drive wheel 272, and at the same time, the positioning of the motor 271 can be realized, which is convenient for bolt fixing.
  • the adjustment pin 276 connects the motor 271 and the housing 25, which can improve the connection strength between the housing 25 and the motor 271.
  • the adjusting pin 276 can prevent the motor 271 from rotating on the remaining one bolt, thereby realizing Fixing of the motor 271.
  • the adjustment end 2762 is located in the second chamber 251, and the adjustment end 2762 is fixed with a tensioning wheel 2764 corresponding to the driving wheel 272 and the driven wheel 273.
  • the tensioning wheel 2764 can be Consisting of bearings 274 or other types of rotating components, the tensioning wheel 2764 can be fixed on the adjustment end 2762 by means of interference fit, screw connection and the like.
  • the radii of the fixed end 2761 and the adjustment end 2762 can be set to be different, for example, the radius of the fixed end 2761 shown in FIG. 10 is smaller than that of the adjustment end 2762 .
  • a positioning end surface 2763 is disposed between the fixed end 2761 and the adjusting end 2762 , and the positioning end surface 2763 connects the outer peripheral surfaces of the fixing end 2761 and the adjusting end 2762 .
  • the positioning end surface 2763 can be set to form a certain inclination angle with the outer peripheral surfaces of the fixed end 2761 and the adjusting end 2762 , and can also be set to be perpendicular to the outer peripheral surfaces of the positioning end surface 2763 and the fixed end 2761 and the adjusting end 2762 as shown in FIG. 10 .
  • the positioning end surface 2763 can abut against the housing 25, thereby playing a role of positioning.
  • FIG. 11 is a schematic structural diagram of another adjustment pin 276 in the embodiment of the present application.
  • the radii of the fixed end 2761 and the adjusting end 2762 can be set to be the same, and an annular flange or other protruding structures are arranged at the joint position of the fixed end 2761 and the adjusting end 2762, and the annular flange faces the fixed
  • One side surface of the end 2761 is provided with a positioning end surface 2763 .
  • the positioning end surface 2763 can abut against the housing 25, thereby playing a role of positioning.
  • a first chamber 2712 is formed in the motor 271, a stator fixedly connected to the casing 2713 and a drive shaft 2711 can be fixedly connected in the first chamber 2712
  • the rotor of the motor 271 can isolate the first chamber 2712 from the outside of the motor 271 through the casing 2713 of the motor 271 .
  • the motor 271 is hinged with the adjusting pin 276 , the fixed end 2761 protrudes into the first chamber 2712 .
  • the adjustment pin 276 is also provided with a through hole 2765.
  • the through hole 2765 can be arranged along the axis of the adjustment pin 276 as shown in Figure 10 and Figure 11, or it can be located in the adjustment pin 276. other locations. When the through hole 2765 is located at the center of the axis, it is more convenient to process the through hole 2765 when producing the adjusting pin 276, so as to improve production efficiency. Alternatively, the adjusting pin 276 can be directly processed by using pipe material, so that no drilling operation is required during production, which simplifies the production process and improves production efficiency.
  • the first end 2765 a of the through hole 2765 is located in the first chamber 2712
  • the second end 2765 b of the through hole 2765 is located outside the motor 271 , so that the first chamber 2712 communicates with the outside of the motor 271 .
  • the rotor of the motor 271 rotates, it will push the air in the first chamber 2712 to move in the first chamber 2712 , so that the pressure in the first chamber 2712 will fluctuate, so that the motor 271 will generate a lot of noise.
  • the first chamber 2712 is connected to the outside of the motor 271 through the through hole 2765, so that air can enter or exit the first chamber 2712 through the through hole 2765, so that the pressure fluctuation in the first chamber 2712 is reduced when the rotor of the motor 271 rotates, thereby The noise generated when the motor 271 rotates can be reduced.
  • the air can enter or exit the first chamber 2712 through the through hole 2765, the air can flow between the first chamber 2712 and the outside of the motor 271, so that the inside of the first chamber 2712 is heated due to the operation of the motor 271
  • the air in the motor 271 is exchanged with the air outside the motor 271 to realize heat exchange, thereby improving the heat dissipation efficiency of the motor 271 .
  • the second end 2765 b of the through hole 2765 can be located in the second chamber 251 , so that the first chamber 2712 can communicate with the second chamber 251 through the through hole 2765 . Therefore, the airtightness test of the first chamber 2712 and the second chamber 251 can be performed simultaneously, so as to test the airtightness of the motor 271 and the casing 25 .
  • the adjusting pin 276 may be a straight shaft whose axes of each shaft section are on the same straight line, or a crankshaft whose axes of each shaft section are not on the same straight line, which is not limited.
  • FIG. 12 is an axial schematic view of a motor 271 in the embodiment of the present application, showing a possible way for the motor 271 to be fixedly connected to the casing 25 .
  • the housing 2713 of the motor 271 is provided with a ring-shaped first fixing part 2714 along the outer peripheral surface of the housing 2713 on the side facing the housing 25.
  • the first fixing part 2714 is provided with a plurality of connecting holes 2715, through which the bolts can pass.
  • the connecting hole 2715 is threadedly connected with the housing 25 , so that the motor 271 is fixed on the housing 25 .
  • the connection hole 2715 can be a circular arc hole as shown in FIG. 12 , or an oblong hole.
  • the arrangement form of the connection hole 2715 can be arranged with the adjustment pin 276 as the center of the circle as shown in FIG. Connected to the housing 25.
  • Fig. 13 is an axial schematic diagram of another motor 271 in the embodiment of the present application, showing another possible way for the motor 271 to be fixedly connected to the housing 25.
  • a plurality of positioning racks 2716 are disposed on the first fixing portion 2714 of the motor 271 , and the positioning racks 2716 are arranged with the adjusting pin 276 as the center of a circle.
  • the fixed plate 2717 is provided with a positioning tooth head 2718 corresponding to the rack 261, and the positioning tooth head 2718 meshes with the positioning rack 2716 to prevent the motor 271 from rotating.
  • FIG. 14 is a schematic structural diagram of another REPS 27 in the embodiment of the present application, showing another structural form of the REPS 27 in FIG. 5 .
  • the housing 25 is provided with a second chamber 251 , and the adjusting pin 276 and the two motors 271 are fixedly arranged on the housing 25 .
  • the middle part of the adjustment pin 276 is provided with a tensioning wheel 2764 , and the tensioning wheel 2764 is located in the second chamber 251 . Both ends of the adjusting pin 276 protrude from the outer surface of the housing 25 and are hinged to the two motors 271 respectively.
  • the two motors 271 are arranged opposite to each other on the casing 25 , and the axis centers of the drive shafts 2711 of the two motors 271 coincide and extend into the second chamber 251 for fixed connection.
  • the driving shaft 2711 is provided with a driving wheel 272
  • the second chamber 251 is provided with a driven wheel 273
  • the driving wheel 272 and the driven wheel 273 are connected by a transmission belt 275
  • the tensioning wheel 2764 is located between the driving wheel 272 and the driven wheel 273.
  • the outer peripheral surface of the tension pulley 2764 is in contact with the transmission belt 275 .
  • the two motors 271 can rotate around the adjusting pin 276 at the same time, thereby adjusting the positions of the driving shaft 2711 and the driving wheel 272 .
  • the distance between the driving wheel 272 and the driven wheel 273 can be adjusted, and then the tension of the transmission belt 275 can be adjusted.
  • the two motors 271 can be mutually redundant. When one motor 271 fails and the drive shaft 2711 cannot rotate, the other motor 271 can continue to work to drive the drive shaft 2711 to rotate. Thus, the REPS 27 can still work normally when a motor 271 fails, thereby improving the reliability of the REPS 27 .
  • the motor 271 can be a six-phase motor, a twelve-phase motor or other types of multi-phase induction motors, so that the multiple phases in the motor 271 are mutually redundant, when one (or several) stator windings are open or When one (or several) bridge arms of the inverter are open-circuit faulted, the starting and running of the motor 271 will not be affected. Thus, the reliability of REPS 27 can be further improved.
  • FIG. 15 is a schematic structural diagram of another adjustment pin 276 in the embodiment of the present application, showing the structure of the adjustment pin 276 in FIG. 14 .
  • the adjusting pin 276 can be configured as a cylinder, and the adjusting pin 276 can be divided into two fixed ends 2761 located at both ends and an adjusting end 2762 located in the middle along the axial direction.
  • the adjusting end 2762 is located in the second chamber 251 , and the fixed end 2761 is provided with a tensioning wheel 2764 .
  • the two fixed ends 2761 at both ends are respectively fixedly connected to the housing 25 , and the two fixed ends 2761 protrude from the housing 25 and enter into the first chamber 2712 of the motor 271 .
  • the radius of the adjustment end 2762 is larger than the radius of the two fixed ends 2761 , and the position where the adjustment end 2762 meets the two fixed ends 2761 forms a positioning end surface 2763 .
  • the positioning end face 2763 abuts against the inner surface of the second chamber 251.
  • a through hole 2765 is also provided in the adjustment pin 276, a part of the through hole 2765 is arranged along the axial direction of the adjustment pin 276, and the other part is arranged along the radial direction of the adjustment end 2762, the two parts of the through hole 2765 are connected, and the through hole 2765 is arranged along the
  • the axial portion of the adjustment pin 276 forms an open first end 2765a at both ends of the adjustment pin 276
  • the radial portion of the through hole 2765 along the adjustment end 2762 forms an open second end 2765b on the surface of the adjustment end 2762 .
  • the two first ends 2765a are located in the first chambers 2712 of the two motors 271 respectively, and the second ends 2765b are located in the second chamber 251, so that the second chamber 251 can communicate with the two first chambers 2765 through the through holes 2765.
  • a chamber 2712 communicates.
  • FIG. 16 is a schematic diagram of the positional relationship between the tensioning wheel 2764 and the driving wheel 272 and the driven wheel 273 .
  • the outer peripheral surface of the tensioning wheel 2764 abuts against the transmission belt 275, and the path of the transmission belt 275 between the driving wheel 272 and the driven wheel 273 is changed by the tensioning wheel 2764, so that the transmission belt 275 on one side is no longer
  • the driving wheel 272 is directly connected to the driven wheel 273, but is connected to the driven wheel 273 after being changed by the tension wheel 2764.
  • the path that the transmission belt 275 passes between the driving wheel 272 and the driven wheel 273 is longer, the tension of the transmission belt 275 is improved, and the adjustment range of the tension of the transmission belt 275 is expanded.
  • the outer peripheral surface of the tensioning pulley 2764 can be set to be in contact with the outer peripheral surface of the transmission belt 275 , or can be arranged to be in contact with the inner peripheral surface of the transmission belt 275 .
  • ⁇ 1 ⁇ > ⁇ 1 > ⁇ 1 ⁇ , ⁇ 2 ⁇ > ⁇ 2 > ⁇ 2 ⁇ therefore, when the outer peripheral surface of the tensioning pulley 2764 contacts the outer peripheral surface of the transmission belt 275, it can Increase the wrapping angle that driving belt 275 forms with driving wheel 272 and driven wheel 273, improve the maximum static friction force between driving belt 275, driving wheel 272 and driven wheel 273, thereby improve the friction between driving belt 275, driving wheel 272 and driven wheel 273
  • the anti-skid performance reduces the wearing and tearing of the transmission belt 275, making the belt transmission more stable.
  • FIG. 17 is a schematic diagram of the relationship between the length of the transmission belt 275 and the position of the driving wheel 272 .
  • the center of the tensioning wheel 2764 (that is, the center of the adjusting pin 276) is O
  • the center of the driving wheel 272 is O 1
  • the radius is r 1
  • the center of the driven wheel 273 is O 2
  • the radius is r 2 .
  • b and c are fixed values, and the size of a is related to the angle of ⁇ .
  • FIG. 18 is a schematic diagram of adjusting the tension of the transmission belt 275 .
  • the tension force of the transmission belt 275 is adjusted, the positions of the passive pulley 273 and the tension pulley 2764 are fixed, and the motor 271 rotates around the adjustment pin 276, so that the driving pulley 272 is rotated around the tension pulley 2764.
  • the center O is the center of rotation.
  • the position of driving wheel 272 is adjusted counterclockwise, so that the angle of rotation of driving wheel 272 is ⁇ .
  • the center of driving wheel 272 is O 1 ′.
  • the length of the transmission belt 275 between them is l ⁇ ; adjust the position of the driving wheel 272 clockwise, so that the angle of rotation of the driving wheel 272 is ⁇ , at this time the center of the driving wheel 272 is O 1 ⁇ , which is opposite to the tensioning wheel 2764
  • the length of the transmission belt 275 between the driving wheel 272 and the driven wheel 273 on one side is l ⁇ .
  • the length of driving belt 275 comprises the length of driving belt 275 and driving wheel 272, driven wheel 273 and the length of tensioning wheel 2764 contact parts, and the sum of the lengths of driving belt 275 and driving wheel 272, driven wheel 273 and tensioning wheel 2764 tangent parts .
  • the adjustment angle of the driving wheel 272 is very small, so the adjusted angle ( ⁇ or ⁇ ) can be regarded as the arc of its adjustment (the transmission belt 275 and the driving wheel 272, the passive Wheel 273 and tension wheel 2764 contact portion arc changes) equal.
  • the length change of the tangent part of the transmission belt 275 at the side opposite to the tension wheel 2764 with the driving wheel 272 and the driven wheel 273 can be regarded as the same as that of the transmission belt 275 on the corresponding side with the tension wheel 2764.
  • the length changes of the tangent parts of the driving wheel 272 and the driven wheel 273 are equal.
  • the length of the transmission belt 275 can be adjusted by adjusting the position of the driving wheel 272 .
  • the tension force of the transmission belt 275 can be adjusted, so that the transmission belt 275 will not wear the transmission belt 275 because the tension force is too large, and the belt drive will not slip because the tension force is too small or make noise.
  • the driving wheel 272 correspondingly rotates around the tensioning wheel 2764, thereby adjusting the position of the driving wheel 272, thereby adjusting O 1 O 2
  • the length that is, the distance between the driving wheel 272 and the driven wheel 273
  • the distance between the center O of the tensioning wheel 2764 and O 1 O 2 can also be adjusted. Since the greater the length of O 1 O 2 , the greater the length of the transmission belt 275 ; the smaller the distance between O and O 1 O 2 , the greater the length of the transmission belt 275 .
  • the driving wheel 272 When the outer peripheral surface of the tensioning wheel 2764 is in contact with the outer peripheral surface of the transmission belt 275, the driving wheel 272 is rotated clockwise/counterclockwise around the tensioning wheel 2764 to increase/decrease the length of O 1 O 2 , and at the same time, the distance between O and O 1 O 2 can be decreased/increased. That is, the distance between O 1 O 2 and the distance between O and O 1 O 2 can be adjusted at the same time, so that the adjustment range of the tension force of the transmission belt 275 can be increased, and the driving wheel 272 can also be adjusted at a smaller angle.
  • the tension of the driving belt 275 can be adjusted, thereby reducing the space required for adjusting the driving wheel 272 , and further reducing the volume of the housing 25 .
  • the embodiment of the present application also provides a method for adjusting the transmission device, so as to be able to adjust the tension of the transmission belt 275 in the transmission device.
  • FIG. 19 is a schematic flowchart of a transmission device adjustment method 100 in the embodiment of the present application. Taking REPS27 as an example, the specific process for adjusting the tension of the transmission belt 275 is introduced. As shown in Figure 19, the specific process of the transmission device adjustment method 100 of the present application includes:
  • Step S110 releasing the fixed connection between the motor 271 and the casing 25 .
  • Step S120 the driving motor 271 rotates on the adjusting pin 276 .
  • the adjusting pin 276 is installed on the housing 25, and the adjusting pin 276 is staggered with the driving shaft 2711 of the motor 271, and the driving wheel 272 on the driving shaft 2711 is connected with the driven wheel 273 on the housing 25 through the transmission belt 275.
  • the motor 271 rotates on the adjusting pin 276, so that the driving shaft 2711 and the driving wheel 272 on the driving shaft 2711 can be rotated around the adjusting pin 276, so that the distance between the driving wheel 272 and the driven wheel 273 can be adjusted, and then Adjust the tension of drive belt 275.
  • Step S130 making the outer peripheral surface of the tensioning wheel 2764 abut against the transmission belt 275 .
  • the tensioning wheel 2764 is arranged on the adjustment pin 276, so that the outer peripheral surface of the tensioning wheel 2764 abuts against the transmission belt 275, and the path passed by the transmission belt 275 when connecting the driving wheel 272 and the driven wheel 273 can be changed and extended, thereby changing the transmission belt
  • the length of 275 regulates the tension force of transmission belt 275.
  • step S130 may also include step S131 or step S132.
  • Step S131 make the outer peripheral surface of the tensioning wheel 2764 abut against the inner peripheral surface of the transmission belt 275 .
  • the path through which the transmission belt 275 connects the driving wheel 272 and the driven wheel 273 can be changed and extended, thereby changing the length of the transmission belt 275 and adjusting the tension of the transmission belt 275 .
  • Step S132 make the outer peripheral surface of the tensioning wheel 2764 abut against the outer peripheral surface of the transmission belt 275 .
  • the path through which the transmission belt 275 is connected to the driving wheel 272 and the driven wheel 273 can be changed through the tension pulley 2764, so that the distance between the transmission belts 275 on both sides of the part between the driving wheel 272 and the driven wheel 273 is closer, so that The radian that transmission belt 275 contacts with driving wheel 272 and driven wheel 273 and its corresponding wrap angle are bigger, to increase the contact area of transmission belt 275 and driving wheel 272 and driven wheel 273, thereby improved transmission belt 275 and driving wheel 272 and passive
  • the maximum static friction force between the wheels 273 reduces the possibility of slipping between the transmission belt 275 and the driving wheel 272 and the driven wheel 273, and reduces the wear of the transmission belt 275.
  • the motor 271 rotates relative to the housing 25, and the driving wheel 272 is adjusted to move away from/close to the driven wheel 273, so that when the transmission belt 275 is extended/shortened, the tension pulley 2764 will be correspondingly close to/away from the center of the driving wheel 272 and the center of the driven wheel 273.
  • the connection line between makes tension wheel 2764 can compress/loosen transmission belt 275.
  • Step S140 detecting the tension of the transmission belt 275 .
  • Step S150 judging whether the tension of the transmission belt is between the first tension threshold and the second tension threshold.
  • the tension of the transmission belt 275 is less than the first tension threshold, the tension of the transmission belt 275 is too small, and slipping will easily occur between the transmission belt 275 and the driving wheel 272 and the driven wheel 273, thus affecting the transmission efficiency and control accuracy. Can make the transmission belt 275 produce bigger noise when driving. At this time, it is necessary to return to step S120 to readjust the position of the motor 271 to increase the tension of the transmission belt 275 .
  • the tension of the transmission belt 275 is greater than or equal to the first tension threshold and less than or equal to the second tension threshold, the tension of the transmission belt 275 is in a suitable range, so that the transmission belt 275 can be connected with the driving wheel 272 and the driven wheel 273 Enough friction force is generated between them, thereby avoiding slipping or generating noise, and also avoiding the wearing and tearing of the transmission belt 275 due to excessive tension.
  • the motor 271 can be fixedly connected to the casing 25 .
  • Step S160 fixedly connect the motor 271 to the casing 25 .
  • the motor 271 and the housing 25 can be fixedly connected by means of bolt fixing, compression fixing or snap-fit fixing, so that the transmission belt 275 can maintain the tension transmission after adjustment.
  • the embodiment of the present application also provides an airtightness detection method to detect the airtightness of the second chamber 251 of the housing 25 and the first chamber 2712 of the motor 271, and the motor 271 and the housing 25 are connected through the adjustment pin 276 Connected, the adjustment pin 276 is provided with a through hole 2765 communicating with the second chamber 251 and the first chamber 2712 .
  • FIG. 20 is a schematic flowchart of an airtightness detection method 200 in an embodiment of the present application. As shown in Figure 20, the specific process of the air tightness detection method 200 of the present application includes:
  • Step S201 inject gas into the second chamber 251 .
  • Connecting the air tightness detector to the housing 25 may be through a connection hole specially provided on the housing 25 , or may be connected through a steering rod 26 protruding from the housing 25 . After the connection, the air tightness detector feeds gas into the second chamber 251 to increase the air pressure in the second chamber 251 .
  • Step S202 detecting the air pressure in the second chamber 251 .
  • Detect the air pressure in the second chamber 251 can be to detect the air pressure in the second chamber 251 by the air pressure gauge that carries on the air tightness detector or other equipment, thereby determine whether the air pressure in the second chamber 251 reaches the first A barometric pressure threshold.
  • the first air pressure threshold may be an air pressure value corresponding to an airtightness level.
  • Step S203 judging whether the air pressure in the second chamber 251 reaches the first air pressure threshold.
  • the control air tightness detector When detecting that the air pressure in the second chamber 251 does not reach the first air pressure threshold, the control air tightness detector continues to feed gas into the second chamber 251; when it is detected that the air pressure in the second chamber 251 reaches the first air pressure threshold When a threshold is reached, the air tightness detector is controlled to stop feeding gas into the second chamber 251 .
  • Step S204 maintaining the first duration.
  • the air tightness detector is controlled to keep the second chamber 251 and the first chamber 2712 in the current state for a first period of time, and the first period of time may be 5 minutes, 10 minutes or other periods of time. If the airtightness of the second chamber 251 and the first chamber 2712 is qualified, then the gas in the second chamber 251 and the first chamber 2712 will not leak out or only have a small amount of leaking; if the second chamber 251 1. If the airtightness of the first chamber 2712 is unqualified, the gas in the second chamber 251 and the first chamber 2712 will leak out beyond a predetermined amount.
  • Step S205 detecting the air pressure in the second chamber 251 .
  • the air pressure in the second chamber 251 is detected by a built-in barometer or other equipment on the air tightness detector, so as to determine whether the air pressure in the second chamber 251 is greater than or equal to the second air pressure threshold.
  • Step S206 judging whether the air pressure in the second chamber 251 is greater than or equal to a second air pressure threshold.
  • the airtightness of the first chamber 2712 is qualified; when it is detected that the air pressure in the second chamber 251 is less than the second air pressure threshold, it means that there is a gas leakage exceeding a predetermined amount in the second chamber 251 and the first chamber 2712 , the airtightness of the second chamber 251 or the first chamber 2712 is unqualified.
  • Step S207 when it is detected that the air pressure in the second chamber 251 is greater than or equal to the second air pressure threshold, the airtightness of the second chamber 251 and the first chamber 2712 is qualified.
  • Step S208 when it is detected that the air pressure in the second chamber 251 is lower than the second air pressure threshold, the airtightness of the second chamber 251 or the first chamber 2712 is unqualified.
  • the second chamber 251 communicates with the first chamber 2712 through the through hole 2765, it is only necessary to perform an airtight test on the second chamber 251 to determine the connection between the second chamber 251 and the first chamber 2712. Whether the airtightness of the chamber 2712 is qualified. As a result, it is not necessary to separately perform an airtight test on the motor 271 , thereby simplifying the production process and improving production efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

一种传动装置、传动装置调节方法、气密性检测方法及车辆,包括:壳体;电机,电机具有驱动轴;驱动轮,驱动轮设置在驱动轴上;被动轮,被动轮设置在壳体上;传动带,驱动轮通过传动带与被动轮连接;调节销,电机与壳体之间通过调节销铰接,调节销与驱动轴错开;其中,电机相对于壳体转动调节传动带的张紧力后,电机与壳体固定连接。由此,电机与壳体通过调节销铰接,使电机可以相对壳体转动,从而调节驱动轮与被动轮之间的传动带的张紧力的大小。本申请实施例提供的传动装置可以用于智能汽车、智能网联汽车、新能源汽车。

Description

一种传动装置、传动装置调节方法、转向系统及车辆 技术领域
本申请涉及车辆技术领域,特别是一种传动装置、传动装置调节方法、转向系统及车辆。
背景技术
助力转向系统是协助驾驶员进行车辆方向调整的系统,可以减小驾驶员操作方向盘转向时需要用到的力。助力系统有很多种,其中,REPS(Rack parallel electronic power steering system,齿条助力式电动助力转向器)由于其助力范围大,噪音特性好,近些年大量地运用到了中高端车型上。
REPS的工作原理为:驾驶员操作方向盘转向时,方向盘带动转向轴旋转。转向轴与转向杆通过相互啮合的齿轮、齿条连接,转向轴旋转驱动转向杆向左或右横向移动,进而驱动车轮向左或右转向。扭矩转角传感器可以采集方向盘传递过来的转向信息,并将其传递给控制器。或者,由自动驾驶中心发出转向响应要求信息,并传递给控制器。控制器接收到信息后进行计算和处理,然后发出电机电流控制信息,使电机输出相应的转矩和转速/转角。电机使用传动带连接电机输出轴上的驱动轮和转向杆上的被动轮,被动轮与转向杆形成丝杠传动结构,通过传动带减速增矩,被动轮再将旋转扭矩转换为转向杆轴向力从而实现汽车转向。
在REPS中,带传动具有传动平稳、噪音小、传动比大等优点,但是,由于传动带使用橡胶及添加剂制成,自身有一定的弹性。如果装配太紧会导致摩擦力太大,磨损严重。如果装配太松又容易产生噪音和打滑,所以装配时需要对传动带张紧力进行调节以使它处于合适的范围。
发明内容
本申请提供一种传动装置,能够调节传动带的张紧力,从而避免张紧力太大,对传动带造成磨损;或者避免张紧力太小,产生噪音及打滑。
本申请第一方面提供一种传动装置,包括:驱动轮、被动轮和传动带,其中,所述驱动轮通过所述传动带与所述被动轮连接,所述驱动轮轴线被配置为可绕第一轴线转动。由此,通过控制驱动轮绕第一轴线为轴心转动,可以调节驱动轮与被动轮之间的距离,从而调节驱动轮与被动轮之间的传动带的张紧力的大小。从而避免张紧力太大,对传动带造成磨损;或者避免张紧力太小,产生噪音及打滑。
作为第一方面第二种可能的实现方式,还包括:调节销,所述调节销轴线与所述第一轴线重合;张紧轮,张紧轮设置在调节销上,张紧轮的外周面与传动带相抵接。由此,通过设置在调节销上的张紧轮与传动带抵接,当驱动轮绕调节销为中心转动调节时,可以改变张紧轮与驱动轮之间的位置,从而可以改变传动带连接驱动轮与被动轮时所经过的路径,进而改变传动带的长度,调节传动带的张紧力。
作为第一方面第三种可能的实现方式,张紧轮的外周面与传动带的外周面相抵接。由此,可以通过张紧轮改变传动带连接驱动轮与被动轮时所经过的路径,使位于驱动轮与被动轮之间部分的两侧传动带的距离更近,从而使传动带与驱动轮及被动轮接触的弧度及其所对应的包角更大,以增加传动带与驱动轮及被动轮的接触面积,从而提高了传动带与驱动轮及被动轮之间的最大静摩擦力,降低了传动带与驱动轮及被动轮之间发生打滑的可能性,降低了传动带的磨损。同时,电机相对与壳体转动,调节驱动轮远离/接近被动轮,以使传动带延长/缩短时,张紧轮会相应地接近/远离驱动轮与被动轮中心之间的连接线,使张紧轮能够压紧/放松传动带。由此,可以提高对传动带张紧力的调节范围,减小了调节传动带张紧力时电机所需要转动的角度,减小了调节电机以及驱动轮位置时所需要的空间。
作为第一方面第四种可能的实现方式,驱动轮轴线、被动轮轴线和调节销轴线平行,被动轮轴线与调节销轴线的相对位置不变。由此,可以保证驱动轮绕调节销转动时,驱动轮与被动轮之间的传动带的正常连接,避免驱动轮与被动轮之间出现错位影响带传动的正常运行。
作为第一方面第五种可能的实现方式,还包括第一电机和壳体,第一电机用于驱动驱动轮,第一电机通过调节销安装在壳体上。由此,第一电机与壳体通过调节销安装在壳体上,在对第一电机进行安装时,可以通过调节销实现对第一电机的定位,以便实现第一电机与壳体之间的固定。调节销还可以提高第一电机与壳体之间的连接强度,当第一电机与壳体通过螺栓固定时,如果大部分螺栓因为震动等原因断裂或脱落失效,即使仅剩一颗螺栓连接在第一电机与壳体上,调节销也可以使第一电机保持固定,避免第一电机围绕仅剩的一颗螺栓转动。
作为第一方面第六种可能的实现方式,第一电机内还包括第一腔室,调节销还包括通孔,通孔的第一端位于第一腔室内,通孔的第二端位于第一电机外部,第一腔室通过通孔与第一电机外部连通。由此,当第一电机转动时,可以使第一腔室内的空气通过通孔进出第一腔室,以降低第一电机转动时第一腔室内的气压波动,从而降低第一电机转动时的噪音。第一腔室通过通孔与第一电机外部连通,还可以使第一腔室内因第一电机工作而被加热的空气与第一电机外部的空气通过通孔进行交换,提高了第一电机的散热效率。
作为第一方面第七种可能的实现方式,壳体围合形成第二腔室,驱动轮、被动轮、调节销被收容于第二腔室内;第一腔室通过通孔与第一电机外部连通,具体包括:第一腔室通过通孔与第二腔室连通。由此,可以使第一腔室与第二腔室通过通孔连通,从而使第一腔室与第二腔室可以同时进行气密性检测。进而可以简化生产步骤,加快生产速度,提高生产效率。
作为第一方面第八种可能的实现方式,通孔的轴线与调节销的轴线重合。由此,可以使通孔的加工更加简单,从而提高生产效率。调节销可以直接使用管材进行加工制作,从而可以在生产时无须进行打孔作业,简化了生产流程,提高了生产效率。
作为第一方面第九种可能的实现方式,调节销还包括定位端面,定位端面用于与壳体相抵接。由此,可以通过定位端面与壳体相抵接使调节销安装在壳体上时能够实现定位,以便于调节销的安装。
作为第一方面第十种可能的实现方式,调节销与壳体固定连接。由此,壳体不需要通过增加厚度来实现调节销与壳体配合的稳定性,从而能够减小壳体的厚度,节省材料,减轻壳体的重量。另外,由于第一电机安装在壳体上后,驱动轴需要穿过壳体后安装驱动轮,减小壳体的厚度可以相应地减小驱动轴的长度,从而使驱动轴由第一电机中露出的长度更短,从而提高了驱动轴的刚度以及耐久性,使驱动轴的传动更加平稳。
作为第一方面第十一种可能的实现方式,第一电机还包括第一固定部,第一电机通过第一固定部与壳体固定连接。由此,可以通过第一固定部方便地将第一电机固定在壳体上。
作为第一方面第十二种可能的实现方式,所述第一电机还包括第一固定部,具体包括:所述电机包括至少一个螺栓孔;所述第一电机通过螺栓连接与所述壳体保持相对固定。由此,可以通过螺栓实现先固定连接,方便安装与拆卸。
作为第一方面第十三种可能的实现方式,还包括第二电机,第二电机与第一电机共同驱动驱动轮。由此,可以提高驱动力,同时第一电机与第二电机之间还可以互为冗余,从而提高了传动装置的稳定性。
本申请第二方面提供一种调节销,调节销用于使电机与壳体铰接,调节销与电机的驱动轴错开;驱动轴上设置有驱动轮,壳体上与驱动轮相应位置设置有被动轮,驱动轮与被动轮通过传动带连接;电机相对于壳体转动调节传动带的张紧力后,电机与壳体固定连接。由此,电机与壳体通过调节销铰接,使电机可以相对壳体转动。由于调节销与电机的驱动轴错开,因此电机相对壳体转动时,驱动轴可以以调节销为轴心转动,从而使驱动轮以调节销为轴心转动。由于被动轮设置在壳体上,因此当电机相对壳体转动时,可以调节驱动轮与被动轮之间的距离,从而调节驱动轮与被动轮之间的传动带的张紧力的大小。同时,由于电机与壳体通过调节销实现铰接,在壳体上安装电机时,可以通过调节销实现对电机的定位,以便实现电机与壳体之间的固定。调节销还可以提高电机与壳体之间的连接强度,当电机与壳体通过螺栓固定时,如果大部分螺栓因为震动等原因断裂或脱落失效,即使仅剩一颗螺栓连接在电机与壳体上,调节销也可以使电机保持固定,避免电机围绕仅剩的一颗螺栓转动。
作为第二方面第二种可能的实现方式,还包括:张紧轮,张紧轮设置在调节销上,张紧轮用于与传动带相抵接。由此,通过设置在调节销上的张紧轮与传动带抵接,当电机以调节销为中心转动调节时,可以改变张紧轮与驱动轮之间的位置,从而可以改变传动带连接驱动轮与被动轮时所经过的路径,进而改变传动带的长度,调节传动带的张紧力。
作为第二方面第三种可能的实现方式,电机内部具有第一腔室,壳体内部具有第二腔室,驱动轮、被动轮以及传动带设置在第二腔室内;调节销还包括:通孔,通孔设置在调节销内,用于连通第一腔室与第二腔室。由此,可以使第一腔室与第二腔室通过通孔连通,从而能够同时对电机的第一腔室及壳体的第二腔室进行气密性检测。同时,由于第一腔室与第二腔室通过通孔连通,与单独的第二腔室相比空间更大,可以使电机旋转时在第二腔室内引起的压力波动降低,从而能够降低电机旋转时产生的噪音。第一腔室与第二腔室通过通孔连通,还可以使第二腔室内因电机工作而被加热 的空气与第一腔室内的空气通过通孔进行交换,提高了电机的散热效率。
作为第二方面第四种可能的实现方式,还包括:定位端面,定位端面用于与壳体相抵接。由此,可以通过定位端面与壳体相抵接使调节销安装在壳体上时能够实现定位,以便于调节销的安装。
本申请第三方面提供一种传动装置调节方法,传动装置为第一方面中第五种至第十三种传动装置任意一种可能的实现方式,方法包括:调节驱动轮围绕调节销旋转的旋转角度;当传动带张紧力大于第一张紧力阈值时,将第一电机与壳体固定连接。由此,可以控制驱动轮围绕调节销转动,以调节驱动轮与被动轮之间的距离,从而调节驱动轮与被动轮之间的传动带的张紧力的大小。
作为第三方面一种可能的实现方式,在调节驱动轮围绕调节销旋转的旋转角度之前,方法还包括:解除第一电机与壳体的固定连接。
本申请第四方面提供一种气密性检测方法,应用于第一方面中第七种传动装置可能的实现方式,包括:向壳体的第二腔室内输入气体,使第二腔室内的气压大于或等于第一气压阈值;保持第一时长后检测第二腔室的气压,当第二腔室的气压大于或等于第二气压阈值时,则气密性合格。由于第一腔室与第二腔室通过通孔连通,由此可以通过向第二腔室内输入气体,使第二腔室内的气压大于或等于第一气压阈值,同时可以使第一腔室内的气压大于或等于第一气压阈值。保持第一时长后,可以通过检测第二腔室内的气压是否大于或等于第二气压阈值,从而确定第一腔室与第二腔室是否漏气,或者漏气程度是否在合格范围内,从而可以同时确定壳体与电机的气密性是否合格。
本申请第五方面提供一种转向系统,包括:第一方面中任意一种传动装置可能的实现方式。
本申请第六方面提供一种车辆,包括第一方面中任意一种传动装置可能的实现方式。
本申请的这些和其它方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
以下参照附图来进一步说明本申请的各个特征和各个特征之间的联系。附图均为示例性的,一些特征并不以实际比例示出,并且一些附图中可能省略了本申请所涉及领域的惯常的且对于本申请非必要的特征,或是额外示出了对于本申请非必要的特征,附图所示的各个特征的组合并不用以限制本申请。另外,在本说明书全文中,相同的附图标记所指代的内容也是相同的。具体的附图说明如下:
图1为方案一中的一种传动装置的结构示意图;
图2为方案一中的另一种传动装置的结构示意图;
图3为方案二中的一种传动装置的结构示意图;
图4为本申请实施例中传动装置的结构示意图;
图5为本申请实施例中的REPS的应用场景示意图;
图6为图5中前轮转向的传动关系示意图;
图7为图5中后轮转向的传动关系示意图;
图8为图5中REPS的结构示意图;
图9为图5中REPS的结构分解示意图;
图10为本申请实施例中一种调节销的结构示意图;
图11为本申请实施例中另一种调节销的结构示意图;
图12为本申请实施例中一种电机的轴向示意图;
图13为本申请实施例中另一种电机的轴向示意图;
图14为本申请实施例中另一种REPS的结构示意图;
图15为本申请实施例中另一种调节销的结构示意图;
图16为张紧轮与驱动轮及被动轮之间的位置关系示意图;
图17为传动带长度与驱动轮位置的关系示意图;
图18为对传动带张紧力进行调节的示意图;
图19为本申请实施例中传动带张紧度调节方法的流程示意图;
图20为本申请实施例中气密性检测方法的流程示意图。
附图标记说明
101壳体;102长圆孔;103电机;104驱动轴;105驱动轮;106被动轮;107传动带;108凸台;109圆孔;110张紧轮;2车辆;20转向系统;20a前轮转向;20b后轮转向;21方向盘;22第一转向轴;23第二转向轴;24第三转向轴;241齿轮;25壳体;251第二腔室;26转向杆;261齿条;27REPS;271电机;2711驱动轴;2712第一腔室;2713外壳;2714第一固定部;2715连接孔;2716定位齿条;2717固定板;2718定位齿头;272驱动轮;273被动轮;274轴承;275传动带;276调节销;2761固定端;2762调节端;2763定位端面;2764张紧轮;2765通孔;2765a第一端;2765b第二端。
具体实施方式
为了调节传动带的张紧力,方案一为通过调节驱动轮与被动轮之间的中心距来实现传动带张紧力的调节。
图1为方案一中的一种传动装置的结构示意图。如图1所示,壳体101上设置有三个长圆孔102,螺栓可以穿过长圆孔102从而将电机103固定在壳体101上。螺栓可以在长圆孔102内沿长圆孔102移动,从而可以调节电机103在壳体101上的位置。由此,可以调节设置在电机103的驱动轴104上的驱动轮105与设置在壳体101上的被动轮106之间的距离,进而可以调节用于连接驱动轮105与被动轮106的传动带107的张紧力。
图2为方案一中的另一种传动装置的结构示意图。如图2所示,电机103的外壳上与驱动轴104偏心位置设置有圆柱形的凸台108,驱动轴104由凸台108内伸出。壳体101上设置有与凸台108相适配的圆孔109,凸台108在圆孔109内转动,从而可以调节电机103的驱动轴104在壳体101上的位置。由此,可以调节设置在电机103的驱动轴104上的驱动轮105与设置在壳体101上的被动轮106之间的距离,进而可以调节用于连接驱动轮105与被动轮106的传动带107的张紧力。
方案一中至少存在以下两点缺陷,缺陷一,调节传动带107的张紧力时需要较大 的调节距离或角度,从而要求壳体101的体积较大,较大的壳体101需要更多的材料以及布置空间,不方便整车布置。缺陷二,凸台108装配到圆孔109中,为了获得足够的稳定性,凸台108的厚度较厚,通常需要达到8mm~10mm。由此,壳体101也相应地需要达到相同的厚度,以使凸台108与圆孔109的装配更加稳定。
为了调节传动带的张紧力,方案二为通过增加张紧轮以改变传动带路径,从而实现对传动带张紧力的调节。
图3为方案二中的一种传动装置的结构示意图。如图3所示,驱动轮105与被动轮106之间还设置有张紧轮110,传动带107的外周面与张紧轮110的外周面相抵接,即传动带107与张紧轮110之间具有一定的力,通过张紧轮110改变了传动带107的路径。张紧轮110通过偏心的方式进行安装,以使张紧轮110的位置可以进行调节。通过改变张紧轮110的位置可以调节传动带107路径的长度,当传动带107路径增长时,传动带107张紧;当传动带107路径缩短时,传动带107放松。
方案二中至少存在以下缺陷,通过偏心方式安装的张紧轮110,在长时间使用后容易发生松动,由此会引起传动带107的张紧力降低,使传动带107工作时产生噪音。因此,张紧轮110在使用过程中需要很高的放松要求。
本申请提供一种传动装置,以能够调节传动带的张紧力。图4为本申请实施例中传动装置的结构示意图,如图4所示,本申请的传动装置包括:驱动轮272、被动轮273和传动带275,其中,驱动轮272通过传动带275与被动轮273连接,驱动轮轴线L1被配置为可绕第一轴线L2转动。需要说明的是,本申请说明书实施例提供的第一轴线L2为几何描述,该第一轴线L2可以为虚拟的旋转轴线。通过控制驱动轮轴线L1绕第一轴线L2为中心转动,可以调节驱动轮272与被动轮273之间的距离,从而调节驱动轮272与被动轮273之间的传动带275的张紧力的大小。从而避免张紧力太大,对传动带275造成磨损;或者避免张紧力太小,产生噪音及打滑。
在本申请实施例中提供的传动装置中,驱动轮272旋转中心的位置可以改变。在一种可能的实施方式中,驱动轮272旋转中心可以绕第一轴线L2旋转。当驱动轮272旋转中心绕该第一轴线L2旋转后,驱动轮轴线L1和被动轮轴线L3之间的相对距离发生改变。具体地,在本申请实施例提供的传动装置中,驱动轮272与电机输出轴连接,电机通过输出轴驱动驱动轮272旋转。当对驱动轮272的位置进行调节时,可以将电机绕第一轴线L2旋转。
在一种可能的实施方式中,本申请实施例提供的传动装置还包括调节销,该调节销轴线与第一轴线L2重合,电机可以通过该调节销安装在壳体上。当对驱动轮272的位置进行调节时,可以将电机绕调节销轴线旋转。
在一种可能的实施方式中,调节销上还设置有张紧轮2764,张紧轮2764的外周面与传动带275抵接。当驱动轮272绕调节销为中心转动调节时,可以改变张紧轮2764与驱动轮272之间的位置,从而可以改变传动带275连接驱动轮272与被动轮273时所经过的路径,进而改变传动带275的长度,调节传动带275的张紧力。
另一种可能的实施方式,电机还可以通过旋转轴与壳体连接,旋转轴的轴线与第一轴线L2重合,电机可以绕旋转轴旋转。此外,电机还可以通过其他方式与壳体连接,以使电机和壳体可以发生相对转动,例如可以是轴连接、销连接、旋转副连接等。 本领域技术人员可以理解的是,在没有创造性投入基础上的其他实施方式也在本申请技术方案的范围之内。
本申请实施例提供的传动装置可以用于REPS上,还可以用于例如电动工具等需要传动带来传动的系统上,在此不做限制。下面,结合附图,以REPS为例对本申请实施例中的传动装置的具体结构进行详细的描述。
图5为本申请实施例中的REPS27的应用场景示意图。如图5所示,车辆2中设置有转向系统20,转向系统20可以包括前轮转向20a与后轮转向20b。本申请实施例中的REPS27可以设置在前轮转向20a中,以能够辅助前轮转向,或者直接驱动前轮转向;还可以设置在后轮转向20b中,以能够驱动后轮转向,在此不做限制。
本申请实施例中的车辆2皆以汽车为例进行示例性的说明,不应视为对本申请实施例的限制。车辆2可以是传统的燃油汽车,也可以是纯电动汽车、混动汽车等新能源汽车。车辆2可以是轿车、货车、客运客车、SUV(sport utility vehicle,运动型多用途汽车)等不同类型汽车中的任意一种。
图6为图5中前轮转向20a的传动关系示意图。如图5、图6所示,前轮转向20a包括:方向盘21、第一转向轴22、第二转向轴23、第三转向轴24、壳体25、转向杆26以及REPS27。其中,壳体25固定设置在车辆2中,转向杆26设置在壳体25中,转向杆26的两端由壳体25的两端伸出,转向杆26的两端分别与相对应的两前轮连接。第二转向轴23的两端分别与第一转向轴22以及第三转向轴24的一端通过万向节连接,从而能够使第一转向轴22、第二转向轴23与第三转向轴24避开车辆2内的某些部件,以便于转向系统20的安装。第一转向轴22的另一端与方向盘21的中心连接,驾驶员可以控制方向盘21旋转。第三转向轴24的另一端伸入壳体25内,并在转向杆26相应位置设置有齿轮241。转向杆26上与齿轮241相应位置沿转向杆26延伸方向设置有齿条261。齿轮241与齿条261啮合,驾驶员转动方向盘21可以驱动齿轮241转动,从而驱动转向杆26沿齿条261延伸方向移动以改变车轮的方向。
REPS27固定设置在壳体25上,当驾驶员转动方向盘21,以驱动转向杆26沿齿条261延伸方向移动时,REPS27可以输出给转向杆26一定的力,以减小驾驶员转动方向盘21时所需要的力。或者,REPS27还可以接收由自动驾驶中心发出转向响应要求信息,由REPS27驱动转向杆26沿齿条261延伸方向移动,从而驱动车辆2的前轮改变方向。
图7为图5中后轮转向20b的传动关系示意图。如图5、图7所示,后轮转向20b包括:壳体25、转向杆26以及REPS27。其中,壳体25固定设置在车辆2中,转向杆26设置在壳体25中,转向杆26的两端由壳体25的两端伸出,转向杆26的两端分别与相对应的两后轮连接。REPS27固定设置在壳体25上,当驾驶员转动方向盘21,控制前轮转向时,REPS27可以驱动转向杆26沿转向杆26延伸方向移动,以驱动后轮转向。或者,REPS27还可以接收由自动驾驶中心发出转向响应要求信息,从而驱动车辆2的后轮改变方向。
图8为图5中REPS27的结构示意图;图9为图5中REPS27的结构分解示意图。如图8、图9所示,REPS27包括:电机271、驱动轮272、被动轮273、轴承274、传动带275以及调节销276。其中,电机271具有驱动轴2711,驱动轮272设置在驱 动轴2711上。电机271与壳体25之间通过调节销276铰接,调节销276与驱动轴2711平行设置,调节销276位于电机271上与驱动轴2711偏心位置,使电机271能够以调节销276为中心转动,从而调节驱动轴2711及驱动轮272的位置。
被动轮273通过轴承274或通过其他转动结构固定设置在壳体25上,使被动轮273位于壳体25上与驱动轮272相对应的位置,能够在壳体25上转动。驱动轮272与被动轮273之间通过传动带275连接,传动带275可以是由橡胶以及添加剂制成,或者由其他适合的材料制成的具有一定弹性的环形部件,传动带275与驱动轮272、被动轮273之间具有一定的摩擦力,驱动轮272转动时能通过传动带275带动被动轮273转动,使得驱动轮272、被动轮273与传动带275形成带传动结构。
电机271以调节销276为中心转动,可以调节驱动轮272的位置,进而可以调节驱动轮272与被动轮273之间的距离,以实现对传动带275张紧力的调节。由于电机271与壳体25之间通过调节销276实现铰接,不需要如方案一中一样,在电机271的外壳上设置凸台,由此可以节省电机271外壳的材料,也不需要重新设计电机271外壳的模具,只需要在电机271外壳的相应位置打孔以安装调节销276即可。降低了对电机271外壳的加工精度的要求,节省了生产成本。
壳体25围合并在内部形成有第二腔室251,驱动轮272、被动轮273、轴承274以及传动带275设置在第二腔室251内。电机271安装在壳体25上,位于第二腔室251外部。电机271的驱动轴2711伸入到第二腔室251内,驱动轮272固定设置在驱动轴2711上,以使电机271可以驱动驱动轮272转动。
被动轮273可以通过轴承274或者通过其他旋转结构设置在壳体25上,以使被动轮273可以在壳体25上转动。轴承274与被动轮273以及壳体25的连接方式,具体可以为轴承274的外圈与壳体25固定连接,轴承274的内圈与被动轮273固定连接。由此,可以使被动轮273固定在壳体25上,并能够在壳体25上转动。
转向系统20的转向杆26穿设在被动轮273上,转向杆26的轴心与被动轮273的轴心重合。转向杆26与被动轮273之间通过螺纹连接形成丝杠传动结构,以使被动轮273转动时,可以驱动转向杆26沿轴向做直线运动。丝杠传动结构可以是梯形丝杠结构、滚珠丝杠结构、行星滚柱丝杠结构或者其他任意可能的实现形式。其中,梯形丝杠结构为转向杆26与被动轮273之间通过梯形螺纹实现螺纹连接,从而将被动轮273的旋转运动转换为转向杆26的直线运动,具有结构简单,成本低等优点。滚珠丝杠结构通过在螺纹连接的转向杆26与被动轮273之间置入滚珠,以滚动摩擦取代滑动摩擦,从而可以减小转向杆26与被动轮273之间的摩擦力,提高转向杆26与被动轮273之间的传动效率。行星滚柱丝杠结构通过在被动轮273中设置多个滚柱,滚柱可以在被动轮273中转动,多个滚柱围绕在转向杆26的外周面上,滚柱外周面上的螺纹分别与转向杆26外周面上的螺纹相啮合。由此,可以将滚珠丝杠结构中滚珠与转向杆26及被动轮273之间的点接触,转换为滚柱与转向杆26的线接触,可以在保持高效传动的同时增加接触面,从而提高了转向杆26与被动轮273之间的承载能力及刚性,增强了转向杆26与被动轮273之间的抗冲击能力。
由上,当驾驶员操作方向盘21控制车辆2转向时,车辆2内设置的扭矩转角传感器可以采集方向盘21传递过来的转向信息,并将转向信息传递给车辆2内的控制 器,控制器接收转向信息后进行计算和处理后向电机271发出电机电流控制要求,以控制电机271的驱动轴2711输出相应的转矩和转速/转角。并通过驱动轮272、被动轮273与传动带275形成的带传动结构,以及转向杆26与被动轮273之间的丝杠传动结构,最终驱动转向杆26进行直线运动。由此,可以使前轮转向20a中的REPS27在驾驶员操作方向盘21时输出给转向杆26一定的力,以辅助车辆2的前轮转向,减小驾驶员操作方向盘21所需用到的力。还可以使后轮转向20b中的REPS27控制转向杆26进行直线运动,以驱动车辆2的后轮转向,从而提高车辆2转向时的机动性及稳定性,减小车辆2的转弯半径。
或者,前轮转向20a与后轮转向20b中的REPS27可以直接接收由自动驾驶中心发出转向响应要求信息,从而驱动车辆2的前轮、后轮改变方向,进而实现对车辆2转向的自动控制。
图10为本申请实施例中一种调节销276的结构示意图,示出了图8中调节销276的具体结构。如图10所示,调节销276可以设置为圆柱形,调节销276沿轴向可以分为固定端2761与调节端2762两部分。其中,固定端2761用于与壳体25固定连接,连接方式可以是例如螺纹连接、压配连接等连接方式。由于调节销276与壳体25之间的固定连接对壳体25厚度的要求较低,壳体25厚度可以设置为例如4mm~6mm即可,不需要如上述方案一中为了获得足够的稳定性将壳体25厚度设置为8mm~10mm。由此,可以降低壳体25的厚度,减轻壳体25的重量,降低了生产成本。同时,由于电机271安装在壳体25上后,驱动轴2711需要穿过壳体25后安装驱动轮272,减小壳体25的厚度可以相应地减小驱动轴2711的长度,从而使驱动轴2711由电机271中露出的长度更短,从而提高了驱动轴2711的刚度以及耐久性,使驱动轴2711的传动更加平稳。
如图8及图10所示,固定端2761的长度大于壳体25的厚度,固定端2761与壳体25固定连接后,固定端2761的一部分由壳体25露出,用于与电机271铰接,使电机271可以在壳体25上转动以调节驱动轴2711与驱动轮272的位置,同时也可以实现对电机271的定位,便于螺栓固定。同时,调节销276连接电机271与壳体25,可以提高壳体25与电机271之间的连接强度,当电机271与壳体25通过螺栓固定后,由于震动或其他原因导致螺栓松动或者失效时,例如多个螺栓中只剩一个螺栓固定在电机271与壳体25之间,其他螺栓全部掉落或断裂失效时,调节销276能够防止电机271在剩下的一个螺栓上旋转,从而实现了对电机271的固定。调节销276固定在壳体25上后,调节端2762位于第二腔室251内,调节端2762上与驱动轮272、被动轮273相应位置固定设置有张紧轮2764,张紧轮2764可以是由轴承274或者其他类型的旋转组件构成,张紧轮2764可以通过过盈配合、螺纹连接等方式固定在调节端2762上。
固定端2761与调节端2762的半径可以设置为不同,例如图10中所示的固定端2761的半径小于调节端2762。固定端2761与调节端2762之间设置有定位端面2763,定位端面2763连接固定端2761与调节端2762的外周面。定位端面2763可以设置为与固定端2761与调节端2762的外周面呈一定的倾斜角度,也可以设置为如图10所示的定位端面2763与固定端2761与调节端2762的外周面垂直。在调节销276固定 安装在壳体25上时,定位端面2763可以与壳体25相抵接,从而起到定位的作用。
图11为本申请实施例中另一种调节销276的结构示意图。如图11所示,固定端2761与调节端2762的半径可以设置为相同,在固定端2761与调节端2762的相接位置设置有环状凸缘或者其他凸起结构,环状凸缘朝向固定端2761一侧表面设置有定位端面2763。调节销276固定安装在壳体25上时,定位端面2763可以与壳体25相抵接,从而起到定位的作用。
如图8所示,由电机271的外壳2713围合,在电机271内形成有第一腔室2712,第一腔室2712内可以设置有与外壳2713固定连接的定子以及与驱动轴2711固定连接的转子,通过电机271的外壳2713可以将第一腔室2712与电机271的外部进行隔离。当电机271与调节销276铰接后,固定端2761伸入到第一腔室2712内。如图10、图11所示,调节销276上还设置有通孔2765,通孔2765可以如图10、图11所示,沿调节销276的轴心设置,也可以是位于调节销276内其他位置。当通孔2765位于轴心位置时,可以在生产调节销276时更加方便地对通孔2765进行加工,以提高生产效率。或者,调节销276可以使用管材直接进行加工,从而可以在生产时无须进行打孔作业,简化了生产流程,提高了生产效率。
通孔2765的第一端2765a位于第一腔室2712内,通孔2765的第二端2765b位于电机271的外部,从而使第一腔室2712与电机271的外部实现连通。由于电机271的转子旋转时会推动第一腔室2712内的空气在第一腔室2712内移动,使得第一腔室2712内的压力产生波动,从而使电机271产生较大的噪音。通过通孔2765连接第一腔室2712与电机271的外部,可以使空气通过通孔2765进入或排出第一腔室2712,使电机271转子旋转时第一腔室2712内的压力波动降低,从而能够降低电机271旋转时产生的噪音。同时,由于空气可以通过通孔2765进入或排出第一腔室2712,使得空气可以在第一腔室2712与电机271外部之间流动,从而使第一腔室2712内因为电机271工作而被加热的空气与电机271外部的空气进行交换从而实现热交换,从而提高了电机271的散热效率。
如图8所示,通孔2765的第二端2765b可以位于第二腔室251内,从而可以使第一腔室2712与第二腔室251通过通孔2765连通。由此可以同时对第一腔室2712与第二腔室251进行气密性检测,以检测电机271与壳体25的气密性。
进一步地,调节销276可以是各轴段的轴线在同一直线上的直轴,也可以是各轴段的轴线不在同一直线上的曲轴,对此并不限制。
图12为本申请实施例中一种电机271的轴向示意图,示出了电机271与壳体25固定连接的一种可能的方式。如图12所示,电机271的外壳2713朝向壳体25一侧沿外壳2713外周面设置有环状的第一固定部2714,第一固定部2714上设置有多个连接孔2715,螺栓可以穿过连接孔2715与壳体25螺纹连接,从而将电机271固定在壳体25上。连接孔2715可以是如图12所示的圆弧孔,也可以是长圆孔。连接孔2715的布置形式可以是如图12所示的以调节销276为圆心进行布置,以使电机271以调节销276为中心转动一定的角度后,螺栓能够穿过连接孔2715将电机271固定连接在壳体25上。
图13为本申请实施例中另一种电机271的轴向示意图,示出了电机271与壳体 25固定连接的另一种可能的方式。如图13所示,电机271的第一固定部2714上设置有多个定位齿条2716,定位齿条2716以调节销276为圆心进行布置。还包括用于将电机271固定在壳体25上的固定板2717,固定板2717通过螺栓固定在壳体25上与定位齿条2716相对应的位置,固定板2717延伸到第一固定部2714上,可以将第一固定部2714压紧固定在壳体25上。固定板2717与齿条261相对应位置设置有定位齿头2718,定位齿头2718与定位齿条2716啮合,可以防止电机271发生转动。
图14为本申请实施例中另一种REPS27的结构示意图,示出了图5中REPS27的另一种结构形式。如图14所示,壳体25内设置有第二腔室251,调节销276以及两个电机271固定设置在壳体25上。调节销276的中间部分设置有张紧轮2764,张紧轮2764位于第二腔室251内。调节销276的两端由壳体25的外表面伸出,分别与两个电机271铰接。两个电机271相对设置在壳体25上,两个电机271的驱动轴2711的轴心重合,并伸入第二腔室251内固定连接。驱动轴2711上设置有驱动轮272,第二腔室251内设置有被动轮273,驱动轮272与被动轮273通过传动带275连接,张紧轮2764位于驱动轮272与被动轮273之间位置,张紧轮2764的外周面与传动带275相抵接。由此,两个电机271可以同时以调节销276为轴心转动,从而调节驱动轴2711及驱动轮272的位置。由此可以调节驱动轮272与被动轮273之间的距离,进而调节传动带275的张紧力。同时,两个电机271可以互为冗余,当一个电机271发生故障驱动轴2711无法转动时,另一个电机271可以继续工作,以驱动驱动轴2711转动。由此,可以使REPS27能够在一个电机271发生故障时,仍然可以正常工作,从而提高了REPS27的可靠性。
进一步地,电机271可以是六相电机、十二相电机或者其他类型的多相感应电机,以使电机271中的多相之间互为冗余,当一个(或几个)定子绕组开路或逆变器的一个(或几个)桥臂开路故障时,不会影响电机271的启动和运行。由此,可以进一步提高REPS27的可靠性。
图15为本申请实施例中另一种调节销276的结构示意图,示出了图14中调节销276的结构。如图14、图15所示,调节销276可以设置为圆柱形,调节销276沿轴向可以分为位于两端的两个固定端2761已经一个位于中间位置的调节端2762。调节端2762位于第二腔室251内,固定端2761上设置有张紧轮2764。位于两端的两个固定端2761分别与壳体25固定连接,并且两个固定端2761由壳体25伸出后进入电机271的第一腔室2712内。调节端2762的半径大于两个固定端2761的半径,调节端2762与两个固定端2761相接的位置形成有定位端面2763。调节销276安装完成后定位端面2763与第二腔室251的内表面相抵接,通过设置定位端面2763可以在对调节销276进行安装固定时便于实现定位安装,还可以通过定位端面2763与第二腔室251的内表面相抵接提高调节销276安装的稳定性。调节销276内还设置有通孔2765,通孔2765一部分为沿调节销276的轴向设置,另一部分为沿调节端2762的径向设置,通孔2765的两部分相连通,通孔2765沿调节销276的轴向设置部分在调节销276的两端形成开口状的第一端2765a,通孔2765沿调节端2762的径向设置部分在调节端2762表面形成开口状的第二端2765b。安装后,两个第一端2765a分别位于两个电机271的第一腔室2712内,第二端2765b位于第二腔室251内,使第二腔室251通过通 孔2765实现与两个第一腔室2712的连通。
图16为张紧轮2764与驱动轮272及被动轮273之间的位置关系示意图。如图16所示,张紧轮2764的外周面与传动带275相抵接,通过张紧轮2764改变了传动带275在驱动轮272与被动轮273之间的路径,使得一侧的传动带275不再由驱动轮272直接连接被动轮273,而是被张紧轮2764改变路径后再与被动轮273连接。从而使得传动带275在驱动轮272与被动轮273之间所经过的路径更长,提高了传动带275的张紧力,扩大了传动带275张紧力的调节范围。
进一步地,如图16所示,张紧轮2764的外周面可以设置为与传动带275的外周面抵接,也可以设置为与传动带275的内周面抵接。通过张紧轮2764改变传动带275在驱动轮272与被动轮273之间的路径,从而可以改变传动带275与驱动轮272及被动轮273形成的包角(指传动带275与带轮的接触弧所对应的圆心角),包角越大传动带275与驱动轮272及被动轮273的接触面积越大,传动带275与驱动轮272及被动轮273之间的最大静摩擦力也就越大。如图16所示,当没有张紧轮2764时,传动带275与驱动轮272形成的包角为α 1,传动带275与被动轮273形成的包角为α 2;当张紧轮2764的外周面与传动带275的外周面抵接时,传动带275与驱动轮272形成的包角为α 1`,传动带275与被动轮273形成的包角为α 2`;当张紧轮2764的外周面与传动带275的内周面抵接时,传动带275与驱动轮272形成的包角为α 1``,传动带275与被动轮273形成的包角为α 2``。如图16所示,α 1`>α 1>α 1``,α 2`>α 2>α 2``,因此,张紧轮2764的外周面与传动带275的外周面抵接时,可以增加传动带275与驱动轮272及被动轮273形成的包角,提高传动带275与驱动轮272以及被动轮273之间的最大静摩擦力,从而提高了传动带275与驱动轮272及被动轮273之间的防滑性能,减轻了对传动带275的磨损,使得带传动更加稳定。
图17为传动带275长度与驱动轮272位置的关系示意图。如图17所示,张紧轮2764的中心(即调节销276的中心)为O,驱动轮272的中心为O 1,半径为r 1;被动轮273的中心为O 2,半径为r 2。设定O 1O 2=a,OO 1=b,OO 2=c,∠O 1OO 2=β,根据三角函数原理可以得出:
Figure PCTCN2021117231-appb-000001
Figure PCTCN2021117231-appb-000002
由此,b与c为固定值,a的大小与β的角度大小相关。
设定位于张紧轮2764相对一侧的驱动轮272与被动轮273之间的传动带275长度为l,其与O 1O 2的角度为δ,由此根据三角函数原理可以得出:
Figure PCTCN2021117231-appb-000003
Figure PCTCN2021117231-appb-000004
Figure PCTCN2021117231-appb-000005
Figure PCTCN2021117231-appb-000006
图18为对传动带275张紧力进行调节的示意图。如图18所示,对传动带275的张紧力进行调节时,被动轮273与张紧轮2764位置固定不变,电机271以调节销276为中心转动,从而使驱动轮272以张紧轮2764的中心O为中心转动。其中,逆时针调节驱动轮272的位置,使驱动轮272转动的角度为θ`,此时驱动轮272的中心为O 1`,位于张紧轮2764相对一侧的驱动轮272与被动轮273之间的传动带275长度为l`;顺时针调节驱动轮272的位置,使驱动轮272转动的角度为θ``,此时驱动轮272的中心为O 1``,位于张紧轮2764相对一侧的驱动轮272与被动轮273之间的传动带275长度为l``。设定O 1`O 2=a`,O 1`O 2=a``,根据三角函数原理可以得出:
Figure PCTCN2021117231-appb-000007
Figure PCTCN2021117231-appb-000008
Figure PCTCN2021117231-appb-000009
Figure PCTCN2021117231-appb-000010
Figure PCTCN2021117231-appb-000011
Figure PCTCN2021117231-appb-000012
Figure PCTCN2021117231-appb-000013
Figure PCTCN2021117231-appb-000014
由于传动带275的长度包括传动带275与驱动轮272、被动轮273以及张紧轮2764相接触部分的长度,与传动带275与驱动轮272、被动轮273以及张紧轮2764相 切部分的长度之和。对传动带275进行张紧力的调节时,驱动轮272的调节角度非常小,因此调节的角度(θ`或θ``)的大小可视为与其调节的弧度(传动带275与驱动轮272、被动轮273以及张紧轮2764相接触部分的弧度变化)相等。同时,因为调节角度非常小,传动带275在与张紧轮2764相对一侧与驱动轮272、被动轮273相切部分的长度变化,可视为与传动带275在与张紧轮2764相应一侧与驱动轮272、被动轮273相切部分的长度变化相等。
设定驱动轮272逆时针转动调节时,传动带275缩短的长度为Δl 1;驱动轮272顺时针转动调节时,传动带275伸长的长度为Δl 2,综上所述,
Figure PCTCN2021117231-appb-000015
Figure PCTCN2021117231-appb-000016
由此,可以通过调节驱动轮272的位置,从而调节传动带275的长度。传动带275的长度越大,传动带275的张紧力就越大。通过调节驱动轮272的位置,可以实现对传动带275张紧力的调节,使传动带275不会因为张紧力太大对传动带275造成磨损,也不会因为张紧力太小使带传动发生打滑或产生噪音。
进一步地,如图18所示,当电机271以调节销276为中心转动时,驱动轮272相应地以张紧轮2764为中心转动,从而调节驱动轮272的位置,进而可以调节O 1O 2的长度(即驱动轮272与被动轮273之间的距离),还可以调节张紧轮2764的中心O与O 1O 2的距离。由于O 1O 2的长度越大,传动带275的长度越大;O与O 1O 2的距离越小,传动带275的长度越大。当张紧轮2764的外周面与传动带275的外周面相抵接时,将驱动轮272以张紧轮2764为中心顺时针/逆时针转动,即可以使O 1O 2的长度增大/减小,同时也可以使O与O 1O 2的距离减小/增大。即可以同时实现对O 1O 2的距离以及O与O 1O 2的距离的调节,从而可以增大对传动带275张紧力的调节范围,也可以通过对驱动轮272调节较小的角度即可实现对传动带275张紧力的调节,从而可以减小调节驱动轮272所需的空间,进而可以减小壳体25的体积。
本申请实施例还提供一种传动装置调节方法,以能够调节传动装置中传动带275的张紧度。
图19为本申请实施例中传动装置调节方法100的流程示意图,以REPS27为例介绍了对传动带275张紧度进行调节的具体流程。如图19所示,本申请的传动装置调节方法100的具体流程包括:
步骤S110、解除电机271与壳体25的固定连接。
步骤S120、驱动电机271在调节销276上转动。
调节销276安装在壳体25上,调节销276与电机271的驱动轴2711错开,驱动轴2711上的驱动轮272与壳体25上的被动轮273通过传动带275连接。由此,电机271在调节销276上转动,可以使驱动轴2711与驱动轴2711上的驱动轮272以调节销276为中心转动,从而能够调节驱动轮272与被动轮273之间的距离,进而调节传动带275的张紧力。
步骤S130、使张紧轮2764的外周面与所述传动带275相抵接。
张紧轮2764设置在调节销276上,使张紧轮2764的外周面与所述传动带275相抵接,可以改变、延长传动带275连接驱动轮272与被动轮273时所经过的路径,从而改变传动带275的长度,调节传动带275的张紧力。
进一步地,步骤S130还可以包括步骤S131或步骤S132。
步骤S131、使张紧轮2764的外周面与传动带275内周面抵接。
由此,可以改变、延长传动带275连接驱动轮272与被动轮273时所经过的路径,从而改变传动带275的长度,调节传动带275的张紧力。
步骤S132、使张紧轮2764的外周面与传动带275外周面抵接。
由此,可以通过张紧轮2764改变传动带275连接驱动轮272与被动轮273时所经过的路径,使位于驱动轮272与被动轮273之间部分的两侧传动带275的距离更近,从而使传动带275与驱动轮272及被动轮273接触的弧度及其所对应的包角更大,以增加传动带275与驱动轮272及被动轮273的接触面积,从而提高了传动带275与驱动轮272及被动轮273之间的最大静摩擦力,降低了传动带275与驱动轮272及被动轮273之间发生打滑的可能性,降低了传动带275的磨损。同时,电机271相对于壳体25转动,调节驱动轮272远离/接近被动轮273,以使传动带275延长/缩短时,张紧轮2764会相应地接近/远离驱动轮272与被动轮273中心之间的连接线,使张紧轮2764能够压紧/放松传动带275。由此,可以提高对传动带275张紧力的调节范围,减小了调节传动带275张紧力时电机271所需要转动的角度,减小了调节电机271以及驱动轮272的位置所需要的空间。
步骤S140、检测传动带275的张紧力。
使用检测设备检测传动带275的张紧力,以判断传动带275的张紧力是否处于预定范围之内。
步骤S150、判断传动带的张紧力是否处于第一张紧力阈值与第二张紧力阈值之间。
当传动带275的张紧力小于第一张紧力阈值时,传动带275的张紧力太小,传动带275与驱动轮272及被动轮273之间容易发生打滑,从而影响传动效率及控制精度,同时会使传动带275在传动时产生较大的噪音。此时,需要回到步骤S120,重新调节电机271的位置,使传动带275的张紧力增大。
当传动带275的张紧力大于第二张紧力阈值时,传动带275的张紧力太大,传动带275与驱动轮272及被动轮273之间的摩擦力过大,会增大对传动带275的磨损,影响传动带275的使用寿命。此时,需要回到步骤S120,重新调节电机271的位置,使传动带275的张紧力减小。
当传动带275的张紧力大于等于第一张紧力阈值,小于等于第二张紧力阈值时,传动带275的张紧力处于适宜的范围内,可以使传动带275与驱动轮272及被动轮273之间产生足够的摩擦力,从而避免打滑或产生噪音,还可以避免传动带275因张紧力过大造成磨损。此时,可以对电机271与壳体25进行固定连接。
步骤S160、将电机271与壳体25固定连接。
可以通过螺栓固定、压紧固定或者卡合固定等方式,将电机271与壳体25实现固定连接,从而使传动带275能够保持调整后的张紧力传动。
本申请实施例还提供了一种气密性检测方法,以检测壳体25的第二腔室251与电机271的第一腔室2712的气密性,电机271与壳体25通过调节销276相连,调节销276内设置有连通第二腔室251与第一腔室2712的通孔2765。
图20为本申请实施例中气密性检测方法200的流程示意图。如图20所示,本申请的气密性检测方法200的具体流程包括:
步骤S201、向第二腔室251内通入气体。
将气密性检测仪连接壳体25,可以是通过专门设置在壳体25上的连接孔连接,也可以是通过转向杆26由壳体25伸出位置连接。连接后气密性检测仪向第二腔室251内通入气体,以使第二腔室251内的气压升高。
步骤S202、检测第二腔室251内的气压。
检测第二腔室251内的气压,可以是通过气密性检测仪上自带的气压计或其他设备检测第二腔室251内的气压,从而确定第二腔室251内的气压是否达到第一气压阈值。第一气压阈值可以是与气密性等级相对应的气压值。
步骤S203、判断第二腔室251内的气压是否达到第一气压阈值。
当检测到第二腔室251内的气压没有达到第一气压阈值时,控制气密性检测仪继续向第二腔室251内通入气体;当检测到第二腔室251内的气压达到第一前阈值时,控制气密性检测仪停止向第二腔室251内通入气体。
步骤S204、保持第一时长。
控制气密性检测仪使第二腔室251、第一腔室2712保持当前状态第一时长,第一时长可以是5分钟、10分钟或者其他时长。如果第二腔室251、第一腔室2712的气密性合格,则第二腔室251及第一腔室2712内的气体就不会泄出或者只有少量泄出;如果第二腔室251、第一腔室2712的气密性不合格,则第二腔室251及第一腔室2712内的气体就会有超出预定量的气体泄出。
步骤S205、检测第二腔室251内的气压。
通过气密性检测仪上自带的气压计或其他设备检测第二腔室251内的气压,从而确定第二腔室251内的气压是否大于或等于第二气压阈值。
步骤S206、判断第二腔室251内的气压是否大于或等于第二气压阈值。
当检测到第二腔室251内的气压大于或等于第二气压阈值时,说明第二腔室251与第一腔室2712内的气体没有泄出或只有少量泄出,第二腔室251与第一腔室2712的气密性合格;当检测到第二腔室251内的气压小于第二气压阈值时,说明第二腔室251与第一腔室2712内有超出预定量的气体泄出,第二腔室251或第一腔室2712的气密性不合格。
步骤S207、检测到第二腔室251内的气压大于或等于第二气压阈值时,第二腔室251与第一腔室2712的气密性合格。
步骤S208、检测到第二腔室251内的气压小于第二气压阈值时,第二腔室251或第一腔室2712的气密性不合格。
综上所述,由于第二腔室251与第一腔室2712通过通孔2765连通,因此,只需要对第二腔室251进行气密性检测,即可确定第二腔室251与第一腔室2712的气密性是否合格。由此,无须单独对电机271进行气密性检测,从而能够简化生产流程,提高生产效率。
注意,上述仅为本申请的较佳实施例及所运用的技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请的构思的情况下,还可以包括更多其他等效实施例,均属于本申请的保护范畴。

Claims (16)

  1. 一种传动装置,其特征在于,包括:驱动轮、被动轮和传动带,其中,所述驱动轮通过所述传动带与所述被动轮连接,所述驱动轮轴线被配置为可绕第一轴线转动。
  2. 根据权利要求1所述的装置,其特征在于,还包括:
    调节销,所述调节销轴线与所述第一轴线重合;
    张紧轮,所述张紧轮设置在所述调节销上,所述张紧轮的外周面与所述传动带相抵接。
  3. 根据权利要求1或2所述的装置,其特征在于,所述驱动轮轴线、所述被动轮轴线和所述调节销轴线平行,所述被动轮轴线与所述第一轴线的相对位置不变。
  4. 根据权利要求1至3中任一项所述的装置,其特征在于,所述装置还包括第一电机和壳体,所述第一电机用于驱动所述驱动轮,所述第一电机通过调节销安装在所述壳体上。
  5. 根据权利要求4所述的装置,其特征在于,所述第一电机内还包括第一腔室,所述调节销还包括通孔,所述通孔的第一端位于所述第一腔室内,所述通孔的第二端位于所述第一电机外部,所述第一腔室通过所述通孔与所述第一电机外部连通。
  6. 根据权利要求5所述的装置,其特征在于,所述壳体围合形成第二腔室,所述驱动轮、所述被动轮、所述调节销被收容于所述第二腔室内;
    所述第一腔室通过所述通孔与所述第一电机外部连通,具体包括:
    所述第一腔室通过所述通孔与所述第二腔室连通。
  7. 根据权利要求5或6中所述的装置,其特征在于,所述通孔的轴线与所述调节销的轴线重合。
  8. 根据权利要求4-7中任一项所述的装置,其特征在于,所述第一电机还包括第一固定部,所述第一电机通过所述第一固定部与所述壳体固定连接。
  9. 根据权利要求8所述的装置,其特征在于,所述第一电机还包括第一固定部,具体包括:所述电机包括至少一个螺栓孔;所述第一电机通过螺栓连接与所述壳体保持相对固定。
  10. 根据权利要求4-9中任一项所述的装置,其特征在于,所述装置还包括第二电机,所述第二电机与所述第一电机共同驱动所述驱动轮。
  11. 根据权利要求4-10中任一项所述的装置,其特征在于,所述调节销还包括定位端面,所述定位端面用于与所述壳体相抵接。
  12. 一种传动装置调节方法,其特征在于,所述传动装置为如权利要求1至11中任一项所述的装置,所述方法包括:
    调节所述驱动轮围绕所述第一轴线旋转的旋转角度;
    当所述传动带张紧力大于第一张紧力阈值时,将所述第一电机与所述壳体固定连接。
  13. 根据权利要求12中所述的方法,其特征在于,在所述调节所述驱动轮围绕所述调节销旋转的旋转角度之前,所述方法还包括:
    解除所述第一电机与所述壳体的固定连接。
  14. 一种气密性检测方法,其特征在于,所述方法应用于如权利要求6所述的装 置,所述方法包括:
    向所述壳体的所述第二腔室内输入气体,使所述第二腔室内的气压大于或等于第一气压阈值;
    保持第一时长后检测所述第二腔室的气压,当所述第二腔室的气压大于或等于第二气压阈值时,则气密性合格。
  15. 一种转向系统,其特征在于,所述转向系统包括如权利要求1至11中任一项所述的装置。
  16. 一种车辆,其特征在于,所述车辆包括如权利要求1至11中任一项所述的装置。
PCT/CN2021/117231 2021-09-08 2021-09-08 一种传动装置、传动装置调节方法、转向系统及车辆 WO2023035150A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/117231 WO2023035150A1 (zh) 2021-09-08 2021-09-08 一种传动装置、传动装置调节方法、转向系统及车辆
EP21956338.4A EP4382395A1 (en) 2021-09-08 2021-09-08 Transmission apparatus, method for adjusting transmission apparatus, steering system, and vehicle
CN202180009800.8A CN116997501A (zh) 2021-09-08 2021-09-08 一种传动装置、传动装置调节方法、转向系统及车辆
US18/597,802 US20240208564A1 (en) 2021-09-08 2024-03-06 Transmission apparatus, transmission apparatus adjustment method, steering system, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/117231 WO2023035150A1 (zh) 2021-09-08 2021-09-08 一种传动装置、传动装置调节方法、转向系统及车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/597,802 Continuation US20240208564A1 (en) 2021-09-08 2024-03-06 Transmission apparatus, transmission apparatus adjustment method, steering system, and vehicle

Publications (1)

Publication Number Publication Date
WO2023035150A1 true WO2023035150A1 (zh) 2023-03-16

Family

ID=85507101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117231 WO2023035150A1 (zh) 2021-09-08 2021-09-08 一种传动装置、传动装置调节方法、转向系统及车辆

Country Status (4)

Country Link
US (1) US20240208564A1 (zh)
EP (1) EP4382395A1 (zh)
CN (1) CN116997501A (zh)
WO (1) WO2023035150A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111418A (ja) * 2010-11-26 2012-06-14 Jtekt Corp 電動パワーステアリング装置
CN202992067U (zh) * 2012-12-27 2013-06-12 杭州新世宝电动转向系统有限公司 R-eps皮带张紧结构
CN104455258A (zh) * 2013-09-22 2015-03-25 西北机器有限公司 一种电机皮带水平张紧机构
CN107010101A (zh) * 2015-10-29 2017-08-04 株式会社万都 电动助力转向装置
CN110155158A (zh) * 2018-02-12 2019-08-23 操纵技术Ip控股公司 车内密封完整性验证系统
CN210240463U (zh) * 2019-06-11 2020-04-03 新乡艾迪威汽车科技有限公司 一种电动转向系统皮带张紧力调整结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111418A (ja) * 2010-11-26 2012-06-14 Jtekt Corp 電動パワーステアリング装置
CN202992067U (zh) * 2012-12-27 2013-06-12 杭州新世宝电动转向系统有限公司 R-eps皮带张紧结构
CN104455258A (zh) * 2013-09-22 2015-03-25 西北机器有限公司 一种电机皮带水平张紧机构
CN107010101A (zh) * 2015-10-29 2017-08-04 株式会社万都 电动助力转向装置
CN110155158A (zh) * 2018-02-12 2019-08-23 操纵技术Ip控股公司 车内密封完整性验证系统
CN210240463U (zh) * 2019-06-11 2020-04-03 新乡艾迪威汽车科技有限公司 一种电动转向系统皮带张紧力调整结构

Also Published As

Publication number Publication date
EP4382395A1 (en) 2024-06-12
US20240208564A1 (en) 2024-06-27
CN116997501A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
JP5072370B2 (ja) インホイールモータ駆動装置
US20160332521A1 (en) In-wheel motor drive device
EP1327790A2 (en) Torque limiter
US20120251354A1 (en) Electric oil pump
CN110159528A (zh) 一种双侧双槽并联式无油涡旋空压机
US20040221663A1 (en) Tension detection apparatus of endless loop power transferring member and torque detection apparatus using the same
WO2023035150A1 (zh) 一种传动装置、传动装置调节方法、转向系统及车辆
US10260604B2 (en) Speed increaser
WO2014168092A1 (ja) インホイールモータ駆動装置
US7024964B2 (en) Hydraulic drive device utilizing electric motor
US8459971B2 (en) Scroll compressor with balancer and oil passages
JP2006183527A (ja) 流体機械
CN112290731A (zh) 用于电机的电机轴总成及电机
CN111982373A (zh) 一种自动张紧器轮毂载荷的测量装置及测量方法
CN201133351Y (zh) 一种单螺杆压缩机的主机结构
US20080152511A1 (en) Power transmission device of a compressor
US7374407B2 (en) Power transmission mechanism and process of assembling the same
US7303478B2 (en) Power transmission mechanism capable of preventing breakage of a rotating shaft
JP3821028B2 (ja) 車両用回転圧縮機
CN101493036A (zh) 一种发电用发动机的附件轮系
KR20120041477A (ko) 자동차 엔진용 보기류의 동력전달장치
CN114734350B (zh) 一种气动磨抛装置
KR20220026287A (ko) 허브 일체형 등속 조인트 및 이를 포함하는 차량
US20240100664A1 (en) Torque sensing device of power tool
KR20010111281A (ko) 원환상형 무단변속기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180009800.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021956338

Country of ref document: EP

Effective date: 20240306

NENP Non-entry into the national phase

Ref country code: DE