WO2023035095A1 - Base station antennas having spaced apart radome elements and reflector heat sink structures - Google Patents

Base station antennas having spaced apart radome elements and reflector heat sink structures Download PDF

Info

Publication number
WO2023035095A1
WO2023035095A1 PCT/CN2021/116847 CN2021116847W WO2023035095A1 WO 2023035095 A1 WO2023035095 A1 WO 2023035095A1 CN 2021116847 W CN2021116847 W CN 2021116847W WO 2023035095 A1 WO2023035095 A1 WO 2023035095A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
reflector
elements
radome
walls
Prior art date
Application number
PCT/CN2021/116847
Other languages
French (fr)
Inventor
Xiaohua Hou
Ligang WU
Bjoern Lindmark
Yongjie Xu
Peter J. Bisiules
Haifeng Li
Original Assignee
Commscope Technologies Llc
Ligang WU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commscope Technologies Llc, Ligang WU filed Critical Commscope Technologies Llc
Priority to PCT/CN2021/116847 priority Critical patent/WO2023035095A1/en
Publication of WO2023035095A1 publication Critical patent/WO2023035095A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/02Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials

Definitions

  • the present invention relates to communications systems and, more particularly, to base station antennas.
  • a geographic area is divided into a series of regions that are referred to as “cells, " and each cell is served by a base station.
  • the base station may include baseband equipment, radios and antennas that are configured to provide two-way radio frequency ( "RF" ) communications with subscribers that are positioned throughout the cell.
  • the base station antennas generate radiation beams ( “antenna beams” ) that are directed outwardly to serve the entire cell or a portion thereof.
  • a base station antenna includes one or more phase-controlled arrays of radiating elements, which are commonly referred to as phased array antennas.
  • the radiating elements are typically arranged in one or more vertical columns when the antenna is mounted for use.
  • An RF signal that is to be transmitted by a phased array antenna is divided into a plurality of sub-components, and each sub-component of the RF signal is then transmitted through a respective radiating element or sub-array of radiating elements.
  • the base station antennas are mounted on a tower or other raised structure, with the radiation patterns (also referred to herein as "antenna beams" ) that are generated by the base station antennas directed outwardly.
  • Base station antennas are often implemented as linear or planar phased arrays of radiating elements.
  • Base station antennas are now being deployed that have one or more radios incorporated into the antenna or that couple to one or more active antenna modules with respective radios.
  • some base station antennas have full two-dimensional beam-steering capabilities that allow the antenna to generate small, highly-focused antenna beams that can be steered by phase-weighting the sub-components of the RF signal that are transmitted/received at the different sub-arrays of radiating elements as opposed to a constant antenna beam that covers a full sector.
  • These antennas may have a two-dimensional array that includes multiple rows and columns of radiating elements that may be configured to provide independent amplitude and/or phase control for each radiating element in the array (or for individual sub-groups of radiating elements) .
  • base station antennas are being deployed that have less sophisticated beam-steering capabilities, such as the ability to scan the antenna beam in the azimuth plane.
  • conventional "passive" base station antennas may be modified to have one or more remote radio heads either coupled thereto or incorporated into the antenna in order to avoid the need to separately mount the remote radio heads on the antenna tower (which may involve additional costs and which results in additional "clutter” on the antenna tower) .
  • active antenna is used to encompass any base station antenna that has at least one transceiver (radio) incorporated therein or coupled thereto, such as provided in an active antenna module.
  • active antenna modules see PCT/US2021/023617, the contents of which are hereby incorporated by reference as if recited in full herein.
  • the number of base station antennas deployed at a typical base station has increased significantly.
  • multi-band base station antennas have been introduced which include multiple linear arrays of radiating elements.
  • One common multi-band base station antenna design includes two linear arrays of "low-band” radiating elements that are used to provide service in some or all of the 617-960 MHz frequency band and two linear arrays of "mid-band” radiating elements that are used to provide service in some or all of the 1427-2690 MHz frequency band.
  • the four linear arrays are mounted in side-by-side fashion.
  • base station antennas that include one or more linear arrays of "high-band” radiating elements that operate in higher frequency bands, such as some, or all, of the 3.3-4.2 GHz frequency band. Further details of example conventional antennas can be found in co-pending WO2019/236203 and WO2020/072880, the contents of which are hereby incorporated by reference as if recited in full herein.
  • the base station antennas may generate excessive heat due to the high-power demands that can negatively affect the performance of the base station antennas, particularly in small volumetric configurations.
  • antennas are provided that can provide improved heat dissipation configurations.
  • Embodiments of the present invention provide an antenna that includes: a reflector; a plurality of dipole antenna elements projecting forward of the reflector; and a plurality of radome elements arranged to reside in front of the reflector. Each of the plurality of radome elements resides over one or more of the dipole antenna elements. Neighboring pairs of the radome elements are positioned laterally spaced apart with a longitudinally extending segment of the reflector residing therebetween that is exposed to environmental conditions to thereby provide external heat dissipation paths.
  • the reflector can extend in a length and width direction behind at least some of the plurality of radome elements.
  • the antenna can further include a plurality of longitudinally extending walls that project forward from the reflector, outside the plurality of radome elements and along respective longitudinally extending segments between respective neighboring pairs of the radome elements whereby the walls define heat dissipating surfaces and provide RF isolation between neighboring columns of dipole antenna elements.
  • Each of the radome elements can cover one or a plurality of dipole antenna elements arranged in a column in front of the reflector.
  • the walls can have an outwardly facing free end that faces a front of the base station antenna.
  • Each of the walls can be provided as a continuous planar wall extending along a length dimension of the antenna and that is orthogonal to a reflector surface behind each of the walls.
  • the outwardly facing free end can be flush with or recessed relative to an outer front facing surface of the radome elements.
  • the antenna can have first and second side surfaces with a plurality of outwardly extending, external fins.
  • the reflector can define the outwardly extending, external fins.
  • the reflector can have a body providing a primary reflector surface behind a plurality of longitudinally extending, parallel walls.
  • the body can further include side walls with thermally conductive fins and the body can define a cavity extending rearward of the primary reflector surface between the side walls.
  • the body can be aluminum or aluminum alloy, optionally at least part of the body can be extruded.
  • the dipole antenna elements are diecast members to thereby facilitate heat dissipation in a forward direction of the antenna.
  • the dipole antenna elements can be arranged in parallel columns.
  • the radome elements can be arranged in parallel columns, with at least one radome element per column.
  • Each radome element can extend over an entire length of the antenna with a lateral extent that covers a single column of dipole antenna elements.
  • the radome elements can be provided in parallel columns and can be configured to occupy a sub-length of the reflector and can expose a laterally extending segment of the reflector.
  • Other embodiments are directed to active antennas that include: a plurality of radome elements; and a reflector behind the plurality of radome elements. Portions of the reflector are exposed external surfaces that extend between neighboring radome elements thereby defining heat dissipation surfaces exposed to environmental conditions.
  • the reflector can have a unitary reflector body with a primary reflector surface behind a plurality of longitudinally extending, parallel walls.
  • the unitary reflector body can also include side walls with thermally conductive fins.
  • the reflector body can define a cavity extending rearward of the primary reflector surface between the side walls.
  • the reflector body can be an extruded body comprising aluminum or aluminum alloy.
  • Still other embodiments are directed to antennas that include: a plurality of radome elements facing a front of the antenna; a plurality of reflector elements residing behind the plurality of radome elements, one radome element coupled to one reflector element with a plurality of dipole antenna elements therebetween; and a cavity having a width dimension and a length dimension and residing behind the reflector elements and in front of a back plate. The cavity extends behind at least some of the plurality of the reflector elements.
  • the antenna can also include a plurality of walls extending longitudinally and facing the front of the antenna forward of the cavity.
  • One wall can extend between each neighboring reflector element and can define an external heat dissipation surface and RF isolation between neighboring columns of dipole antenna elements.
  • Some embodiments of the present invention include a reflector positioned behind a plurality of dipole antenna elements and that include a plurality of radome elements arranged to reside in front of the reflector with neighboring pairs of the radome elements positioned laterally spaced apart with a longitudinally extending segment of the reflector residing therebetween that is exposed to environmental conditions to thereby provide heat dissipation paths.
  • the reflector can have a primary reflector surface that extends in a length and width direction behind a plurality of rows and columns of the radome elements.
  • Embodiments of the present invention provide base station antennas with a plurality of longitudinally extending, parallel walls that project forward from the reflector, optionally defined by elements of the reflector, wherein the longitudinally extending walls are positioned outside the radome elements along respective longitudinally extending segments between the neighboring pairs of radome elements whereby the walls define heat dissipating surfaces and current isolation between neighboring columns of dipole antenna elements.
  • the first and second side surfaces can include a plurality of outwardly extending fins.
  • FIG. 1 is a front, side perspective view of a base station antenna according to embodiments of the present invention.
  • FIG. 2 is a partially exploded front, side perspective view of the base station antenna shown in FIG. 1 according to embodiments of the present invention.
  • FIGs. 3A-3D are front, side, back and top views, respectively, of the base station antenna of FIG. 1.
  • FIG. 4 is a front, side perspective partial assembly view of the base station antenna shown in FIG. 2.
  • FIG. 5 is a greatly enlarged perspective view of a portion of the reflector and dipole elements shown in FIG. 2.
  • FIG. 6 is an enlarged front, side perspective view of the reflector shown in FIG. 2.
  • FIG. 7 is a greatly enlarged top, front perspective view of a portion of the base station antenna shown in FIG. 1.
  • FIGs. 8A, 8B and 9 are front, side perspective views of other embodiments of the base station antennas illustrating different radome element configurations according to embodiments of the present invention.
  • FIG. 10 is a partially exploded front, side perspective view of the base station antenna illustrating another embodiment of the radome elements according to embodiments of the present invention.
  • FIG. 11 is a front, side perspective view of an example modular antenna array according to embodiments of the present invention.
  • FIG. 12 is an exploded view of the modular antenna array shown in FIG. 11.
  • FIG. 13 is a front, side perspective view of a base station antenna with a plurality of the modular antenna arrays shown in FIG. 11 according to embodiments of the present invention.
  • FIG. 14 is a partially exploded view of the base station antenna shown in FIG. 13.
  • FIG. 15A is a front, side perspective view of the base station antenna of FIG. 13 shown with a cooperating cover according to embodiments of the present invention.
  • FIG. 15B is a greatly enlarged, front, side perspective view of a portion of the device shown in FIG. 15A.
  • FIG. 16 is a back perspective view of the base station antenna shown in FIG. 13 according to embodiments of the present invention.
  • FIG. 17 is a partially exploded view of the back of the base station antenna shown in FIG. 16 according to embodiments of the present invention.
  • FIGs. 18A and 18B are simulated temperature plots of an antenna having the configuration of FIG. 1, simulated with a 350W dissipations on the back plate, 55 degrees C ambient with a 1120W/M2 solar load, with 5 MPH wind.
  • FIGs. 19A and 19B are simulated temperature plots of the reflector shown in FIG. 6, simulated with a 350W dissipations on the back plate, 55 degrees C ambient with a 1120W/M2 solar load, with 5 MPH wind.
  • FIGs. 20A and 20B are simulated temperature plots of the top heat sink shown in FIG. 1, simulated with a 350W dissipations on the back plate, 55 degrees C ambient with a 1120W/M2 solar load, with 5 MPH wind.
  • a base station antenna 100 that has a front 100f that faces outward away from a support structure in a use orientation, a rear 100r, a top 100t and a bottom 100b.
  • the front 100f comprises a plurality of radome elements 110 that are positioned in front of a reflector 150.
  • the radome elements 110 are each sized and configured to cover a plurality of dipole antenna elements 160.
  • One or more of the radome elements 110 can be configured to enclose 6-12 dipole antenna elements 160 in each column 160c, in some embodiments. However, each radome element 110 can enclose a lesser number or greater number of dipole antenna elements 160.
  • the dipole antenna elements 160 can be provided in a number of parallel column arrays 160c, shown as eight.
  • the radome elements 110 can be configured to enclose the same number of dipole antenna elements 160 in each column 160c.
  • the radome elements 110 can be configured to enclose a different number of dipole antenna elements 160 in different columns or along each column 160c.
  • the dipole antenna elements 160 can be diecast to provide a heat dissipating configuration, in some embodiments.
  • the dipole antenna elements 160 can be provided in an array configuration and it is not necessary that they are aligned.
  • the dipole anenna elements 160 can be provided in a stagger, or non-linear array.
  • Neighboring pairs 110n of the radome elements 110 are laterally spaced apart such that longitudinally extending and laterally extending segments 151 of the reflector 150 are outside the radome elements 110 and define an external portion of the front 100f of the base station antenna 100.
  • These longitudinally extending reflector segments 151 can define heat conductive and heat dissipation surfaces.
  • the lateral exposed extent of the longitudinally extending reflector segments 151 can have a width or lateral extent W that is much less than a width or lateral extent W of the radome elements 110, typically 10-100X smaller, i.e., are narrow relative to the radome elements 110.
  • the longitudinally extending reflector segments 151 can be exposed to environmental conditions while the radome elements 110 enclose dipole antenna elements 160 and portions of the reflector 150 thereunder at other locations of the reflector 150.
  • the radome elements 110 can optionally be provided in aligned rows and columns with at least one radome element 110 per column and can attach and seal to the reflector 150.
  • the radome elements 110 can be provided and/or arranged to extend in a plurality of adjacent columns, shown as eight columns, along a front 100f of the base station antenna.
  • the radome elements 110 can be rectangular as shown but may be provided in other shapes including circular and oval, for example.
  • the radome elements 110 can be discrete elements that are not connected to each other.
  • the radome elements 110 can be discrete elements that are connected to each other while still providing the longitudinally extending segments 151 of the reflector 150.
  • the base station antenna 100 can also have longitudinally extending external walls 155 that face the front 100f of the base station antenna 100 and that extend between neighboring 110n radome elements 110.
  • the walls 155 can define heat dissipation surfaces (e.g., act as thermal heat fins) and can also provide RF isolation between neighboring columns of dipole antenna elements 160.
  • the walls 155 can be integral to or coupled to the reflector 150.
  • the walls 155 can be orthogonal to the reflector surface behind the walls 155 and can be parallel to side walls 110w of the radome elements 110.
  • the longitudinally extending walls 155 can be planar with free outer ends 155e.
  • the free outer ends 155e can terminate behind or flush with a front surface 110f of the radome elements 110 to avoid interference with signal transmission paths.
  • the free outer ends 155e may be in front of the dipole rather than lower depending on the RF performance desired.
  • the sides 100s of the base station antenna 100 and the top 100t can include external thermally-conducting fins 165, 180 respectively.
  • the side fins 165 can be provided by frame members of the base station antenna 100.
  • the side fins 165 can be provided by projections of the reflector 150 (FIG. 6) .
  • the top fins 180 can be provided by a top end cap 181 (FIG. 2) .
  • the walls 155, side fins 165 and/or top 180 may be formed, for example, by extrusion.
  • One or more of, or portions of the walls 155 and side fins 165 can be part of the reflector 150 and can be formed by extrusion.
  • One or both of the heat sink fins 165, 180 can also be built with an extruded segment coupled to other body portions, such as a bottom member or frame, by friction and/or welding, for example.
  • conventional finned heat sink structures employed on active radios have been formed via die casting or computer numerical control ( "CNC" ) machining processes.
  • the tooling and labor costs required for die casting or CNC machining may be significantly more expensive than the tooling costs for extruded structures (e.g., an order of magnitude difference) .
  • die cast or CNC machined structures may have dimensional limitations (e.g., minimum thickness requirements) that exceed the dimensional requirements for extruded structures (e.g., fins formed by die casting or CNC machining may need to be thicker than fins formed using an extrusion process) .
  • the active antennas according to embodiments of the present invention may also be less expensive to manufacture and/or provide improved performance as compared to conventional active antennas.
  • the reflector 150 can have a unitary, monolithic (extruded) body providing the reflector primary surface 150p, the longitudinally extending walls 155 and the side fins 165.
  • the reflector 150 can be provided in multiple pieces and the single piece structure is not required according to embodiments of the present invention.
  • the reflector 150 can position the primary surface 150p with the walls 155 in front of an open cavity 157 that spans between the side walls 150s of the reflector 150.
  • the open cavity 157 can be configured to receive operational components 300 (FIG. 10) of the base station antenna 100 such as one or more printed circuit boards, filters, phase shifters, radios and the like.
  • the base station antenna 100 can have a relatively shallow depth D (front-to-back dimension) such as 60-100 mm, a width W that is 3-4 times greater than the depth, such as 300-500mm, such as about 375 mm, in some embodiments, and a length that is 600-1200 mm, such as 740 mm, in some embodiments.
  • the shallow depth positions the dipole antenna elements 160, such as of mMIMO arrangements, close to the front 100f of the antenna and/or close to the front 110f of the radome element 110, such as within 1-20 mm, in some embodiments.
  • the radome elements 110 can be configured to expose a laterally extending segment 152 of the reflector 150 providing an additional externally exposed segment of the reflector to facilitate heat dissipation.
  • this segment is not required and/or a polycarbonate material may be placed thereat.
  • the base station antenna 100 can be configured to couple to at least one active antenna module that can project rearward from the rear 100r of the base station antenna (not shown) .
  • active antenna module refers to a cellular communications unit comprising radio circuitry including a remote radio unit (RRU) and associated antenna elements that are capable of electronically adjusting the amplitude and/or phase of the subcomponents of an RF signal that are output to different antenna elements or groups thereof.
  • the active antenna module comprises the RRU and antenna elements (e.g., a massive MIMO array) but may include other components such as filters, a, calibration network, antenna interface signal group (AISG) controller and the like.
  • RSSG antenna interface signal group
  • one or more of the radome elements 110 can be attached directly or indirectly to the reflector 150 using one or more retaining members 202 such as a screw (s) .
  • retaining members 202 such as a screw (s)
  • other attachment configurations may be used including, for example, frictional engagement or rail and channel configurations.
  • FIGs. 8A, 8B illustrate that the base station antenna 100 can have a single radome element 110’ extending along an entire column length.
  • FIG. 8B also illustrates a top cover 180c can be provided over the top fins 180.
  • FIG. 9 illustrates that more than two radome elements 110” can extend over a respective column length.
  • the radome elements 110 can be configured to be provided as a set of attached or attachable members. As shown, bridge connectors 220, 225 can be used to connect the radome elements 110.
  • One or more of the reflector 150, the walls 155, the side fins 165 and/or the top fins 180 may be provided by aluminum or aluminum alloys for providing improved thermal conductivity relative to conventional die cast fin heat sinks.
  • the reflector 150 with the heat sink features may use less material and be significantly lighter than the conventional die cast heat sink structures.
  • the base station antennas according to embodiments of the present invention may be lighter and/or cheaper to manufacture than comparable conventional base station antennas and may have increased heat dissipation in a forward direction relative to conventional base station antennas.
  • the radome elements 110 may be fabricated in a conventional manner and may include a front surface 110f that is substantially transparent to RF energy in the operating frequency range (s) of the base station antenna 100.
  • the back plate 170 may comprise, for example, a plastic or metal component that extends between the sides 100s to enclose the rear 100r of the base station antenna 100.
  • the bottom 100b may further include a plurality of connectors 103. Cables (not shown) may be attached to the connectors 103 to provide wired connections between, for example, baseband equipment, control equipment and/or power supplies.
  • a modular antenna array 110m is provided with a respective radome element 110”” coupled to a respective reflector element 150e and with a plurality of the reflector elements 150e providing the reflector 150’.
  • the radome element 110” may have outwardly projecting tabs 110t.
  • the tabs 110t can facilitate small gap spacing between adjacent radome elements 110”” to inhibit environmental debris (dust, leaf debris, bird debris, etc%) from entering thereat and may reside under a cosmetic external cover 210 (FIG. 15A) .
  • FIGs. 13 and 14 show the modular antenna arrays 110m arranged on a front 100f of a base station antenna 100’ with a plurality of the modular antenna arrays 110m in front of the cavity 157 between the front and the rear 100r of the base station antenna 100’.
  • the longitudinally extending walls 155 can extend between laterally neighboring modular antenna arrays 110m.
  • FIGs. 15A-15B show a cover 210 can be provided to extend about a perimeter of the modular arrays 110m and laterally between longitudinally neighboring pairs 110n of the modular arrays 110m.
  • FIGs. 16 and 17 illustrate that the rear 100r of the base station antenna 100’ can have a back panel 170 that is thermally conductive, such as metal. Heat conducting shunts 100h can be provided by a frame of the base station antenna 100’. When remote radio/active antenna modules are mounted to the back plate 170, heat can be thermally conducted to the side heat sink fins 165 that may be provided by the reflector 150’ or by a frame coupled thereto, then to the top heat sink fins 180.
  • FIGs. 18A and 18B are simulated temperature plots of an antenna 100 having the configuration of FIG. 1, simulated with a 350W dissipation on the back plate, 55 degrees C ambient with a 1120W/M 2 solar load, with 5 MPH wind.
  • FIGs. 19A and 19B are simulated temperature plots of the reflector 150 shown in FIG. 6, simulated with a 350W dissipation on the back plate, 55 degrees C ambient with a 1120W/M 2 solar load, with 5 MPH wind.
  • FIGs. 20A and 20B are simulated temperature plots of the top heat sink 180 shown in FIG. 1, simulated with a 350W dissipation on the back plate, 55 degrees C ambient with a 1120W/M 2 solar load, with 5 MPH wind.
  • the antennas according to embodiments of the present invention may exhibit better heat transfer using a physically lighter and less expensive heat transfer system.
  • additional heat transfer elements/features may be used in combination with any of the elements described herein, such as, for example, fans, heat pipes and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

Active antennas are provided that include a reflector defining part of an external heat dissipation surface and a plurality of radome elements coupled to the reflector (s). The reflector can include or be coupled to longitudinally extending walls that define heat dissipation surfaces and/or that provide RF isolation between neighboring columns of dipole antenna elements.

Description

BASE STATION ANTENNAS HAVING SPACED APART RADOME ELEMENTS AND REFLECTOR HEAT SINK STRUCTURES FIELD
The present invention relates to communications systems and, more particularly, to base station antennas.
BACKGROUND
Cellular communications systems are now widely deployed. In a typical cellular communications system, a geographic area is divided into a series of regions that are referred to as "cells, " and each cell is served by a base station. The base station may include baseband equipment, radios and antennas that are configured to provide two-way radio frequency ( "RF" ) communications with subscribers that are positioned throughout the cell. The base station antennas generate radiation beams ( "antenna beams" ) that are directed outwardly to serve the entire cell or a portion thereof. Typically, a base station antenna includes one or more phase-controlled arrays of radiating elements, which are commonly referred to as phased array antennas. The radiating elements are typically arranged in one or more vertical columns when the antenna is mounted for use. An RF signal that is to be transmitted by a phased array antenna is divided into a plurality of sub-components, and each sub-component of the RF signal is then transmitted through a respective radiating element or sub-array of radiating elements.
Typically, the base station antennas are mounted on a tower or other raised structure, with the radiation patterns (also referred to herein as "antenna beams" ) that are generated by the base station antennas directed outwardly. Base station antennas are often implemented as linear or planar phased arrays of radiating elements.
Base station antennas are now being deployed that have one or more radios incorporated into the antenna or that couple to one or more active antenna modules with respective radios. For example, some base station antennas have full two-dimensional beam-steering capabilities that allow the antenna to generate small, highly-focused antenna beams that can be steered by phase-weighting the sub-components of the RF signal that are transmitted/received at the different sub-arrays of radiating elements as opposed to a constant antenna beam that covers a full sector. These antennas may have a two-dimensional array that includes multiple rows and columns of radiating elements that may be configured to provide independent amplitude and/or phase control for each radiating element in the array  (or for individual sub-groups of radiating elements) . As another example, base station antennas are being deployed that have less sophisticated beam-steering capabilities, such as the ability to scan the antenna beam in the azimuth plane. As yet another example, conventional "passive" base station antennas may be modified to have one or more remote radio heads either coupled thereto or incorporated into the antenna in order to avoid the need to separately mount the remote radio heads on the antenna tower (which may involve additional costs and which results in additional "clutter" on the antenna tower) . For purposes of this document, the term "active antenna" is used to encompass any base station antenna that has at least one transceiver (radio) incorporated therein or coupled thereto, such as provided in an active antenna module. For examples of active antenna modules, see PCT/US2021/023617, the contents of which are hereby incorporated by reference as if recited in full herein.
In order to accommodate the increasing volume of cellular communications, cellular operators have added cellular service in a variety of new frequency bands. While in some cases it is possible to use a single linear array of so-called "wide-band" radiating elements to provide service in multiple frequency bands, in other cases it is necessary to use different linear arrays (or planar arrays) of radiating elements to support service in the different frequency bands.
As the number of frequency bands has proliferated, and increased sectorization has become more common (e.g., dividing a cell into six, nine or even twelve sectors) , the number of base station antennas deployed at a typical base station has increased significantly. However, due to, for example, local zoning ordinances and/or weight and wind loading constraints for the antenna towers, there is often a limit as to the number of base station antennas that can be deployed at a given base station. In order to increase capacity without further increasing the number of base station antennas, multi-band base station antennas have been introduced which include multiple linear arrays of radiating elements. One common multi-band base station antenna design includes two linear arrays of "low-band" radiating elements that are used to provide service in some or all of the 617-960 MHz frequency band and two linear arrays of "mid-band" radiating elements that are used to provide service in some or all of the 1427-2690 MHz frequency band. The four linear arrays are mounted in side-by-side fashion. There is also interest in deploying base station antennas that include one or more linear arrays of "high-band" radiating elements that operate in higher frequency bands, such as some, or all, of the 3.3-4.2 GHz frequency band. Further details of example conventional antennas can be found in co-pending WO2019/236203 and  WO2020/072880, the contents of which are hereby incorporated by reference as if recited in full herein.
The base station antennas may generate excessive heat due to the high-power demands that can negatively affect the performance of the base station antennas, particularly in small volumetric configurations.
SUMMARY
Pursuant to some embodiments of the present invention, antennas are provided that can provide improved heat dissipation configurations.
Embodiments of the present invention provide an antenna that includes: a reflector; a plurality of dipole antenna elements projecting forward of the reflector; and a plurality of radome elements arranged to reside in front of the reflector. Each of the plurality of radome elements resides over one or more of the dipole antenna elements. Neighboring pairs of the radome elements are positioned laterally spaced apart with a longitudinally extending segment of the reflector residing therebetween that is exposed to environmental conditions to thereby provide external heat dissipation paths.
The reflector can extend in a length and width direction behind at least some of the plurality of radome elements.
The antenna can further include a plurality of longitudinally extending walls that project forward from the reflector, outside the plurality of radome elements and along respective longitudinally extending segments between respective neighboring pairs of the radome elements whereby the walls define heat dissipating surfaces and provide RF isolation between neighboring columns of dipole antenna elements.
Each of the radome elements can cover one or a plurality of dipole antenna elements arranged in a column in front of the reflector.
The walls can have an outwardly facing free end that faces a front of the base station antenna.
Each of the walls can be provided as a continuous planar wall extending along a length dimension of the antenna and that is orthogonal to a reflector surface behind each of the walls.
The outwardly facing free end can be flush with or recessed relative to an outer front facing surface of the radome elements.
The antenna can have first and second side surfaces with a plurality of outwardly extending, external fins. Optionally, the reflector can define the outwardly extending, external fins.
The reflector can have a body providing a primary reflector surface behind a plurality of longitudinally extending, parallel walls.
The body can further include side walls with thermally conductive fins and the body can define a cavity extending rearward of the primary reflector surface between the side walls.
The body can be aluminum or aluminum alloy, optionally at least part of the body can be extruded.
The dipole antenna elements are diecast members to thereby facilitate heat dissipation in a forward direction of the antenna.
The dipole antenna elements can be arranged in parallel columns.
The radome elements can be arranged in parallel columns, with at least one radome element per column.
Each radome element can extend over an entire length of the antenna with a lateral extent that covers a single column of dipole antenna elements.
The radome elements can be provided in parallel columns and can be configured to occupy a sub-length of the reflector and can expose a laterally extending segment of the reflector.
Other embodiments are directed to active antennas that include: a plurality of radome elements; and a reflector behind the plurality of radome elements. Portions of the reflector are exposed external surfaces that extend between neighboring radome elements thereby defining heat dissipation surfaces exposed to environmental conditions.
Yet other embodiments are directed to a reflector for an antenna. The reflector can have a unitary reflector body with a primary reflector surface behind a plurality of longitudinally extending, parallel walls.
The unitary reflector body can also include side walls with thermally conductive fins. The reflector body can define a cavity extending rearward of the primary reflector surface between the side walls.
The reflector body can be an extruded body comprising aluminum or aluminum alloy.
Still other embodiments are directed to antennas that include: a plurality of radome elements facing a front of the antenna; a plurality of reflector elements residing  behind the plurality of radome elements, one radome element coupled to one reflector element with a plurality of dipole antenna elements therebetween; and a cavity having a width dimension and a length dimension and residing behind the reflector elements and in front of a back plate. The cavity extends behind at least some of the plurality of the reflector elements.
The antenna can also include a plurality of walls extending longitudinally and facing the front of the antenna forward of the cavity. One wall can extend between each neighboring reflector element and can define an external heat dissipation surface and RF isolation between neighboring columns of dipole antenna elements.
Some embodiments of the present invention include a reflector positioned behind a plurality of dipole antenna elements and that include a plurality of radome elements arranged to reside in front of the reflector with neighboring pairs of the radome elements positioned laterally spaced apart with a longitudinally extending segment of the reflector residing therebetween that is exposed to environmental conditions to thereby provide heat dissipation paths.
The reflector can have a primary reflector surface that extends in a length and width direction behind a plurality of rows and columns of the radome elements.
Embodiments of the present invention provide base station antennas with a plurality of longitudinally extending, parallel walls that project forward from the reflector, optionally defined by elements of the reflector, wherein the longitudinally extending walls are positioned outside the radome elements along respective longitudinally extending segments between the neighboring pairs of radome elements whereby the walls define heat dissipating surfaces and current isolation between neighboring columns of dipole antenna elements.
The first and second side surfaces can include a plurality of outwardly extending fins.
Further features, advantages and details of the present invention will be appreciated by those of ordinary skill in the art from a reading of the figures and the detailed description of the preferred embodiments that follow, such description being merely illustrative of the present invention.
It is noted that aspects of the invention described with respect to one embodiment, may be incorporated in a different embodiment although not specifically described relative thereto. That is, all embodiments and/or features of any embodiment can be combined in any way and/or combination. Applicant reserves the right to change any  originally filed claim or file any new claim accordingly, including the right to be able to amend any originally filed claim to depend from and/or incorporate any feature of any other claim although not originally claimed in that manner. These and other objects and/or aspects of the present invention are explained in detail in the specification set forth below.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a front, side perspective view of a base station antenna according to embodiments of the present invention.
FIG. 2 is a partially exploded front, side perspective view of the base station antenna shown in FIG. 1 according to embodiments of the present invention.
FIGs. 3A-3D are front, side, back and top views, respectively, of the base station antenna of FIG. 1.
FIG. 4 is a front, side perspective partial assembly view of the base station antenna shown in FIG. 2.
FIG. 5 is a greatly enlarged perspective view of a portion of the reflector and dipole elements shown in FIG. 2.
FIG. 6 is an enlarged front, side perspective view of the reflector shown in FIG. 2.
FIG. 7 is a greatly enlarged top, front perspective view of a portion of the base station antenna shown in FIG. 1.
FIGs. 8A, 8B and 9 are front, side perspective views of other embodiments of the base station antennas illustrating different radome element configurations according to embodiments of the present invention.
FIG. 10 is a partially exploded front, side perspective view of the base station antenna illustrating another embodiment of the radome elements according to embodiments of the present invention.
FIG. 11 is a front, side perspective view of an example modular antenna array according to embodiments of the present invention.
FIG. 12 is an exploded view of the modular antenna array shown in FIG. 11.
FIG. 13 is a front, side perspective view of a base station antenna with a plurality of the modular antenna arrays shown in FIG. 11 according to embodiments of the present invention.
FIG. 14 is a partially exploded view of the base station antenna shown in FIG. 13.
FIG. 15A is a front, side perspective view of the base station antenna of FIG. 13 shown with a cooperating cover according to embodiments of the present invention.
FIG. 15B is a greatly enlarged, front, side perspective view of a portion of the device shown in FIG. 15A.
FIG. 16 is a back perspective view of the base station antenna shown in FIG. 13 according to embodiments of the present invention.
FIG. 17 is a partially exploded view of the back of the base station antenna shown in FIG. 16 according to embodiments of the present invention.
FIGs. 18A and 18B are simulated temperature plots of an antenna having the configuration of FIG. 1, simulated with a 350W dissipations on the back plate, 55 degrees C ambient with a 1120W/M2 solar load, with 5 MPH wind.
FIGs. 19A and 19B are simulated temperature plots of the reflector shown in FIG. 6, simulated with a 350W dissipations on the back plate, 55 degrees C ambient with a 1120W/M2 solar load, with 5 MPH wind.
FIGs. 20A and 20B are simulated temperature plots of the top heat sink shown in FIG. 1, simulated with a 350W dissipations on the back plate, 55 degrees C ambient with a 1120W/M2 solar load, with 5 MPH wind.
DETAILED DESCRIPTION
Referring to FIGs. 1-7, a base station antenna 100 is shown that has a front 100f that faces outward away from a support structure in a use orientation, a rear 100r, a top 100t and a bottom 100b. The front 100f comprises a plurality of radome elements 110 that are positioned in front of a reflector 150. The radome elements 110 are each sized and configured to cover a plurality of dipole antenna elements 160.
One or more of the radome elements 110 can be configured to enclose 6-12 dipole antenna elements 160 in each column 160c, in some embodiments. However, each radome element 110 can enclose a lesser number or greater number of dipole antenna elements 160.
The dipole antenna elements 160 can be provided in a number of parallel column arrays 160c, shown as eight. The radome elements 110 can be configured to enclose the same number of dipole antenna elements 160 in each column 160c. The radome elements 110 can be configured to enclose a different number of dipole antenna elements 160 in different columns or along each column 160c. The dipole antenna elements 160 can be diecast to provide a heat dissipating configuration, in some embodiments.
The dipole antenna elements 160 can be provided in an array configuration and it is not necessary that they are aligned. The dipole anenna elements 160 can be provided in a stagger, or non-linear array.
Neighboring pairs 110n of the radome elements 110 are laterally spaced apart such that longitudinally extending and laterally extending segments 151 of the reflector 150 are outside the radome elements 110 and define an external portion of the front 100f of the base station antenna 100. These longitudinally extending reflector segments 151 can define heat conductive and heat dissipation surfaces. The lateral exposed extent of the longitudinally extending reflector segments 151 can have a width or lateral extent W that is much less than a width or lateral extent W of the radome elements 110, typically 10-100X smaller, i.e., are narrow relative to the radome elements 110.
The longitudinally extending reflector segments 151 can be exposed to environmental conditions while the radome elements 110 enclose dipole antenna elements 160 and portions of the reflector 150 thereunder at other locations of the reflector 150.
The radome elements 110 can optionally be provided in aligned rows and columns with at least one radome element 110 per column and can attach and seal to the reflector 150. The radome elements 110 can be provided and/or arranged to extend in a plurality of adjacent columns, shown as eight columns, along a front 100f of the base station antenna. The radome elements 110 can be rectangular as shown but may be provided in other shapes including circular and oval, for example.
The radome elements 110 can be discrete elements that are not connected to each other. The radome elements 110 can be discrete elements that are connected to each other while still providing the longitudinally extending segments 151 of the reflector 150.
The base station antenna 100 can also have longitudinally extending external walls 155 that face the front 100f of the base station antenna 100 and that extend between neighboring 110n radome elements 110. The walls 155 can define heat dissipation surfaces (e.g., act as thermal heat fins) and can also provide RF isolation between neighboring columns of dipole antenna elements 160.
The walls 155 can be integral to or coupled to the reflector 150. The walls 155 can be orthogonal to the reflector surface behind the walls 155 and can be parallel to side walls 110w of the radome elements 110. The longitudinally extending walls 155 can be planar with free outer ends 155e. The free outer ends 155e can terminate behind or flush with a front surface 110f of the radome elements 110 to avoid interference with signal  transmission paths. The free outer ends 155e may be in front of the dipole rather than lower depending on the RF performance desired.
The sides 100s of the base station antenna 100 and the top 100t can include external thermally-conducting  fins  165, 180 respectively. The side fins 165 can be provided by frame members of the base station antenna 100. The side fins 165 can be provided by projections of the reflector 150 (FIG. 6) . The top fins 180 can be provided by a top end cap 181 (FIG. 2) .
The walls 155, side fins 165 and/or top 180 may be formed, for example, by extrusion. One or more of, or portions of the walls 155 and side fins 165 can be part of the reflector 150 and can be formed by extrusion. One or both of the  heat sink fins  165, 180 can also be built with an extruded segment coupled to other body portions, such as a bottom member or frame, by friction and/or welding, for example. In contrast, conventional finned heat sink structures employed on active radios have been formed via die casting or computer numerical control ( "CNC" ) machining processes. The tooling and labor costs required for die casting or CNC machining may be significantly more expensive than the tooling costs for extruded structures (e.g., an order of magnitude difference) . Additionally, die cast or CNC machined structures may have dimensional limitations (e.g., minimum thickness requirements) that exceed the dimensional requirements for extruded structures (e.g., fins formed by die casting or CNC machining may need to be thicker than fins formed using an extrusion process) . Thus, the active antennas according to embodiments of the present invention may also be less expensive to manufacture and/or provide improved performance as compared to conventional active antennas.
Referring to FIG. 6, the reflector 150 can have a unitary, monolithic (extruded) body providing the reflector primary surface 150p, the longitudinally extending walls 155 and the side fins 165. However, the reflector 150 can be provided in multiple pieces and the single piece structure is not required according to embodiments of the present invention. The reflector 150 can position the primary surface 150p with the walls 155 in front of an open cavity 157 that spans between the side walls 150s of the reflector 150. The open cavity 157 can be configured to receive operational components 300 (FIG. 10) of the base station antenna 100 such as one or more printed circuit boards, filters, phase shifters, radios and the like.
Referring to FIGs. 3A-3D, the base station antenna 100 can have a relatively shallow depth D (front-to-back dimension) such as 60-100 mm, a width W that is 3-4 times greater than the depth, such as 300-500mm, such as about 375 mm, in some embodiments,  and a length that is 600-1200 mm, such as 740 mm, in some embodiments. The shallow depth positions the dipole antenna elements 160, such as of mMIMO arrangements, close to the front 100f of the antenna and/or close to the front 110f of the radome element 110, such as within 1-20 mm, in some embodiments.
As shown in FIG. 3A, the radome elements 110 can be configured to expose a laterally extending segment 152 of the reflector 150 providing an additional externally exposed segment of the reflector to facilitate heat dissipation. In other embodiments, this segment is not required and/or a polycarbonate material may be placed thereat.
The base station antenna 100 can be configured to couple to at least one active antenna module that can project rearward from the rear 100r of the base station antenna (not shown) . The term “active antenna module” refers to a cellular communications unit comprising radio circuitry including a remote radio unit (RRU) and associated antenna elements that are capable of electronically adjusting the amplitude and/or phase of the subcomponents of an RF signal that are output to different antenna elements or groups thereof. The active antenna module comprises the RRU and antenna elements (e.g., a massive MIMO array) but may include other components such as filters, a, calibration network, antenna interface signal group (AISG) controller and the like. For examples of active antenna modules, see PCT/US2021/023617, the contents of which are hereby incorporated by reference as if recited in full herein.
Referring to FIG. 7, one or more of the radome elements 110 can be attached directly or indirectly to the reflector 150 using one or more retaining members 202 such as a screw (s) . However, other attachment configurations may be used including, for example, frictional engagement or rail and channel configurations.
FIGs. 8A, 8B illustrate that the base station antenna 100 can have a single radome element 110’ extending along an entire column length. FIG. 8B also illustrates a top cover 180c can be provided over the top fins 180. FIG. 9 illustrates that more than two radome elements 110” can extend over a respective column length.
Turning now to FIG. 10, the radome elements 110 can be configured to be provided as a set of attached or attachable members. As shown,  bridge connectors  220, 225 can be used to connect the radome elements 110.
One or more of the reflector 150, the walls 155, the side fins 165 and/or the top fins 180 may be provided by aluminum or aluminum alloys for providing improved thermal conductivity relative to conventional die cast fin heat sinks.
Moreover, the reflector 150 with the heat sink features may use less material and be significantly lighter than the conventional die cast heat sink structures. Thus, the base station antennas according to embodiments of the present invention may be lighter and/or cheaper to manufacture than comparable conventional base station antennas and may have increased heat dissipation in a forward direction relative to conventional base station antennas.
The radome elements 110 may be fabricated in a conventional manner and may include a front surface 110f that is substantially transparent to RF energy in the operating frequency range (s) of the base station antenna 100. The back plate 170 may comprise, for example, a plastic or metal component that extends between the sides 100s to enclose the rear 100r of the base station antenna 100. The bottom 100b may further include a plurality of connectors 103. Cables (not shown) may be attached to the connectors 103 to provide wired connections between, for example, baseband equipment, control equipment and/or power supplies.
Turning now to FIGs. 11-12 another embodiment of a reflector and radome elements are shown. In this embodiment, a modular antenna array 110m is provided with a respective radome element 110”” coupled to a respective reflector element 150e and with a plurality of the reflector elements 150e providing the reflector 150’. The radome element 110”” may have outwardly projecting tabs 110t. The tabs 110t can facilitate small gap spacing between adjacent radome elements 110”” to inhibit environmental debris (dust, leaf debris, bird debris, etc…) from entering thereat and may reside under a cosmetic external cover 210 (FIG. 15A) .
FIGs. 13 and 14 show the modular antenna arrays 110m arranged on a front 100f of a base station antenna 100’ with a plurality of the modular antenna arrays 110m in front of the cavity 157 between the front and the rear 100r of the base station antenna 100’. The longitudinally extending walls 155 can extend between laterally neighboring modular antenna arrays 110m.
FIGs. 15A-15B show a cover 210 can be provided to extend about a perimeter of the modular arrays 110m and laterally between longitudinally neighboring pairs 110n of the modular arrays 110m.
FIGs. 16 and 17 illustrate that the rear 100r of the base station antenna 100’ can have a back panel 170 that is thermally conductive, such as metal. Heat conducting shunts 100h can be provided by a frame of the base station antenna 100’. When remote radio/active antenna modules are mounted to the back plate 170, heat can be thermally  conducted to the side heat sink fins 165 that may be provided by the reflector 150’ or by a frame coupled thereto, then to the top heat sink fins 180.
FIGs. 18A and 18B are simulated temperature plots of an antenna 100 having the configuration of FIG. 1, simulated with a 350W dissipation on the back plate, 55 degrees C ambient with a 1120W/M 2 solar load, with 5 MPH wind.
FIGs. 19A and 19B are simulated temperature plots of the reflector 150 shown in FIG. 6, simulated with a 350W dissipation on the back plate, 55 degrees C ambient with a 1120W/M 2 solar load, with 5 MPH wind.
FIGs. 20A and 20B are simulated temperature plots of the top heat sink 180 shown in FIG. 1, simulated with a 350W dissipation on the back plate, 55 degrees C ambient with a 1120W/M 2 solar load, with 5 MPH wind.
Thus, the antennas according to embodiments of the present invention may exhibit better heat transfer using a physically lighter and less expensive heat transfer system. Although not shown, additional heat transfer elements/features may be used in combination with any of the elements described herein, such as, for example, fans, heat pipes and the like.
The present invention has been described above with reference to the accompanying drawings. The invention is not limited to the illustrated embodiments; rather, these embodiments are intended to fully and completely disclose the invention to those skilled in this art. In the drawings, like numbers refer to like elements throughout. Thicknesses and dimensions of some elements may not be to scale.
Spatially relative terms, such as "under" , "below" , "lower" , "over" , "upper" , "top" , "bottom" and the like, may be used herein for ease of description to describe one element or feature's relationship to another element (s) or feature (s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as "under" or "beneath" other elements or features would then be oriented "over" the other elements or features. Thus, the exemplary term "under" can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Well-known functions or constructions may not be described in detail for brevity and/or clarity. As used herein the expression "and/or" includes any and all combinations of one or more of the associated listed items.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention.
It will be understood that the above embodiments may be combined in any way to provide a plurality of additional embodiments.

Claims (23)

  1. An antenna, comprising:
    a reflector;
    a plurality of dipole antenna elements projecting forward of the reflector; and
    a plurality of radome elements arranged to reside in front of the reflector, wherein each of the plurality of radome elements resides over one or more of the dipole antenna elements, and wherein neighboring pairs of the radome elements are positioned laterally spaced apart with a longitudinally extending segment of the reflector residing therebetween that is exposed to environmental conditions to thereby provide external heat dissipation paths.
  2. The antenna of Claim 1, wherein the reflector extends in a length and width direction behind at least some of the plurality of radome elements.
  3. The antenna of Claim 1, further comprising a plurality of longitudinally extending walls that project forward from the reflector, outside the plurality of radome elements and along respective longitudinally extending segments between respective neighboring pairs of the radome elements whereby the walls define heat dissipating surfaces and provide RF isolation between neighboring columns of dipole antenna elements.
  4. The antenna of Claim 1, wherein each of the radome elements covers one or a plurality of dipole antenna elements arranged in a column in front of the reflector.
  5. The antenna of Claim 3, wherein the walls have an outwardly facing free end that faces a front of the base station antenna.
  6. The antenna of Claim 3, wherein each of the walls is provided as a continuous planar wall extending along a length dimension of the antenna and that is orthogonal to a reflector surface behind each of the walls.
  7. The antenna of Claim 5, wherein the outwardly facing free end is flush with or recessed relative to an outer front facing surface of the radome elements.
  8. The antenna of Claim 1, wherein the antenna comprises first and second side surfaces with a plurality of outwardly extending, external fins.
  9. The antenna of Claim 8, wherein the reflector defines the outwardly extending, external fins.
  10. The antenna of Claim 1, wherein the reflector has a body providing a primary reflector surface behind a plurality of longitudinally extending, parallel walls.
  11. The antenna of Claim 10, wherein the body further comprises side walls with thermally conductive fins, and wherein the body defines a cavity extending rearward of the primary reflector surface between the side walls.
  12. The antenna of Claim 10, wherein the body comprises aluminum or aluminum alloy, and optionally wherein at least a portion of the body is extruded.
  13. The antenna of Claim 1, wherein the dipole antenna elements are diecast members to thereby facilitate heat dissipation in a forward direction of the antenna.
  14. The antenna of Claim 1, wherein the dipole antenna elements are arranged in parallel columns.
  15. The antenna of Claim 14, wherein the radome elements are arranged in parallel columns, with at least one radome element per column.
  16. The antenna of Claim 1, wherein each radome element extends over an entire length of the antenna with a lateral extent that covers a single column of dipole antenna elements.
  17. The antenna of Claim 1, wherein the radome elements are provided in parallel columns and are configured to occupy a sub-length of the reflector and expose a laterally extending segment of the reflector.
  18. An active antenna, comprising:
    a plurality of radome elements; and
    a reflector behind the plurality of radome elements, wherein portions of the reflector are exposed external surfaces that extend between neighboring radome elements thereby defining heat dissipation surfaces exposed to environmental conditions.
  19. A reflector for an antenna, comprising a unitary reflector body with a primary reflector surface behind a plurality of longitudinally extending, parallel walls.
  20. The reflector of Claim 19, wherein the unitary reflector body further comprises side walls with thermally conductive fins, and wherein the reflector body defines a cavity extending rearward of the primary reflector surface between the side walls.
  21. The reflector of Claim 19, wherein the reflector body is an extruded body comprising aluminum or aluminum alloy.
  22. An antenna comprising:
    a plurality of radome elements facing a front of the antenna;
    a plurality of reflector elements residing behind the plurality of radome elements, one radome element coupled to one reflector element with a plurality of dipole antenna elements therebetween; and
    a cavity having a width dimension and a length dimension and residing behind the reflector elements and in front of a back plate, wherein the cavity extends behind at least some of the plurality of the reflector elements.
  23. The antenna of Claim 22, further comprising a plurality of walls extending longitudinally and facing the front of the antenna forward of the cavity, wherein one wall extends between each neighboring reflector element and defines an external heat dissipation surface and RF isolation between neighboring columns of dipole antenna elements.
PCT/CN2021/116847 2021-09-07 2021-09-07 Base station antennas having spaced apart radome elements and reflector heat sink structures WO2023035095A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/116847 WO2023035095A1 (en) 2021-09-07 2021-09-07 Base station antennas having spaced apart radome elements and reflector heat sink structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/116847 WO2023035095A1 (en) 2021-09-07 2021-09-07 Base station antennas having spaced apart radome elements and reflector heat sink structures

Publications (1)

Publication Number Publication Date
WO2023035095A1 true WO2023035095A1 (en) 2023-03-16

Family

ID=77998660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116847 WO2023035095A1 (en) 2021-09-07 2021-09-07 Base station antennas having spaced apart radome elements and reflector heat sink structures

Country Status (1)

Country Link
WO (1) WO2023035095A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117039390A (en) * 2023-10-09 2023-11-10 成都天锐星通科技有限公司 Phased array antenna and communication equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068562A1 (en) * 2009-12-02 2011-06-09 Andrew Llc Panel antenna having sealed radio enclosure
US20180219277A1 (en) * 2015-08-25 2018-08-02 Sumitomo Electric Industries, Ltd. Antenna device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068562A1 (en) * 2009-12-02 2011-06-09 Andrew Llc Panel antenna having sealed radio enclosure
US20180219277A1 (en) * 2015-08-25 2018-08-02 Sumitomo Electric Industries, Ltd. Antenna device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117039390A (en) * 2023-10-09 2023-11-10 成都天锐星通科技有限公司 Phased array antenna and communication equipment
CN117039390B (en) * 2023-10-09 2023-12-29 成都天锐星通科技有限公司 Phased array antenna and communication equipment

Similar Documents

Publication Publication Date Title
US11469487B2 (en) Base station antennas having fully embedded radios and housings with integrated heat sink structures
US20230064015A1 (en) Metrocell antennas configured for mounting around utility poles
US11764486B2 (en) Waveguide antenna element based beam forming phased array antenna system for millimeter wave communication
US20110205119A1 (en) Dual-Beam Sector Antenna and Array
US20030052828A1 (en) Co-located antenna array for passive beam forming
US8182103B1 (en) Modular MMW power source
US11545762B2 (en) Multi-system multi-band antenna assembly with Rotman lens
CN107645070B (en) Multi-beam antenna based on one-dimensional microwave planar lens and double-gradient-groove antenna linear array
SE535830C2 (en) Antenna array and a multi-band antenna
US11811141B2 (en) Active electronically scanned array system and method with optimized subarrays
US20240186711A1 (en) Base station antennas having at least one grid reflector and related devices
WO2023035095A1 (en) Base station antennas having spaced apart radome elements and reflector heat sink structures
US11855335B2 (en) Integrated active antennas suitable for massive MIMO operation
US20220181768A1 (en) Connectivity and field replaceability of radios mounted on base station antennas
US20230253693A1 (en) Rf module for antenna, rf module assembly, and antenna apparatus including same
US11581638B2 (en) Dual-beam antenna array
CN112821090B (en) Sparse array antenna layout method and sparse array antenna
CN211629275U (en) Phased array antenna
US20230037629A1 (en) Radio nodes having beam steering antenna arrays
US20230291123A1 (en) Twin-beam base station antennas having integrated beamforming networks
CN208873896U (en) A kind of six beam array antenna of wideband
US20240120635A1 (en) Active antenna units and base station antennas with heat dissipation members
US20240162626A1 (en) Packaging for antenna arrays
CN217740763U (en) Phased array antenna structure
US20240213650A1 (en) Base station antennas having an active antenna module(s) and related mounting systems and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21763202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE