WO2023033592A1 - Method for manufacturing lightweight component having porous metal combined with non-porous metal - Google Patents

Method for manufacturing lightweight component having porous metal combined with non-porous metal Download PDF

Info

Publication number
WO2023033592A1
WO2023033592A1 PCT/KR2022/013205 KR2022013205W WO2023033592A1 WO 2023033592 A1 WO2023033592 A1 WO 2023033592A1 KR 2022013205 W KR2022013205 W KR 2022013205W WO 2023033592 A1 WO2023033592 A1 WO 2023033592A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
porous metal
base material
porous
nozzle
Prior art date
Application number
PCT/KR2022/013205
Other languages
French (fr)
Korean (ko)
Inventor
심도식
박한별
Original Assignee
한국해양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양대학교 산학협력단 filed Critical 한국해양대학교 산학협력단
Publication of WO2023033592A1 publication Critical patent/WO2023033592A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • B22F10/47Structures for supporting workpieces or articles during manufacture and removed afterwards characterised by structural features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for manufacturing a lightweight part, and more particularly, to a method for manufacturing a lightweight part using a porous metal material and metal additive manufacturing technology.
  • porous metal refers to a porous material having numerous pores inside the metal material.
  • a porous metal is a representative lightweight material and has excellent sound insulation/sound absorption, shock absorption, compressibility and electromagnetic wave shielding, machinability and thermal conductivity, and has characteristics that can have a wide range of strength by changing density.
  • porous metals are commonly used in various industrial environments, in particular, structural materials, sound insulation materials, vibration-proof materials, heat exchangers, shock absorbing and buffer materials, insulation materials, filter materials, sound absorbing materials, biomaterials, vibration absorbing materials, etc. is widely used as
  • porous metals are used in particular for weight reduction of parts.
  • the problem to be solved by the present invention is that a flat metal layer can be laminated on the surface of a porous metal, and when stacking multiple metal layers, the density and strength of each metal layer can be increased through the process of crossing the moving direction of the nozzle in each layer. It is to provide a method for manufacturing lightweight parts that can be improved.
  • a lightweight part manufacturing method includes a first step of flattening the surface of the porous metal base material by disposing a metal plate on the surface of the porous metal base material; While moving the nozzle of a direct energy deposition (DED) linearly along one direction, a laser beam is irradiated onto the metal plate and metal powder is supplied at the same time, and the base material, the metal plate, and the metal powder are simultaneously melted.
  • DED direct energy deposition
  • the second step and the third step may be performed twice or more to stack multiple metal layers.
  • the nozzle in each sequence of two or more times of stacking the multi-stage metal layer, the nozzle may be linearly moved to intersect the nozzle movement direction in the previous sequence.
  • the nozzle in the second step, may supply an inert gas together with the metal powder.
  • a lightweight part manufacturing method includes a first step of flattening the surface of the porous metal base material by filling metal powder into the pores of the porous metal base material; While moving the nozzle of a direct energy deposition (DED) linearly along one direction, a laser beam is irradiated onto the metal plate and metal powder is supplied at the same time, and the base material, the metal plate, and the metal powder are simultaneously melted.
  • DED direct energy deposition
  • the surface of a porous metal having an uneven surface is simply flattened, then a molten pool is formed, and the molten pool is rapidly solidified to form a metal layer, so that a flat metal layer is laminated on the surface of the porous metal.
  • the density and strength of each metal layer can be improved through the process of crossing the moving directions of the nozzles in each layer.
  • FIGS. 1 to 4 are diagrams showing a process sequence of a method for manufacturing a lightweight component according to a first embodiment of the present invention.
  • FIG. 5 is a perspective view for explaining a process in which the metal layer shown in FIG. 4 is formed in multiple stages.
  • FIG. 6 is a view for explaining a method of manufacturing a lightweight part according to a second embodiment of the present invention.
  • Figure 7 shows a comparison between parts manufactured by the method for manufacturing lightweight parts according to the present invention and conventional parts made of non-porous materials.
  • first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
  • the lightweight part manufacturing method according to the present invention can manufacture a lightweight part having a porous metal material inside and a non-porous metal material outside.
  • 3D printing technology in which a cladding material such as metal powder is supplied to the surface to be laminated through a nozzle of a direct energy deposition (DED) while simultaneously melting and stacking with high energy such as a laser.
  • DED direct energy deposition
  • the porous metal may be any one of an open-cell type in which pores communicate with the outside and a closed-cell type in which pores are formed inside the metal.
  • the metal powder passes through the pores of the open-cell type porous metal, and the surface is not flat and the height of the surface is different. Since the irradiation height of the laser beam varies, it is difficult to form the metal layer flat.
  • the metal powder when the laser beam melts the metal powder while supplying the metal powder, the metal powder does not pass through the pores, but the porous metal surface is not flat and the height of the surface is different, so the irradiation height of the laser beam is different. Therefore, it is difficult to form the metal layer flat.
  • the method for manufacturing a lightweight part according to the present invention simply overcomes the above-mentioned problems occurring in laminating a metal layer on a porous metal surface through each of the embodiments described below, and laminates a flat metal layer to form a porous metal and a non-porous metal.
  • This combined lightweight component can be manufactured.
  • FIGS. 1 to 4 are diagrams showing a process sequence of a method for manufacturing a lightweight component according to a first embodiment of the present invention.
  • the method for manufacturing a lightweight part according to the first embodiment of the present invention may include a first step ( S110 ), a second step ( S120 ) and a third step ( S130 ).
  • the surface of the porous metal base material 110 may be planarized by disposing the metal plate 120 on the surface of the porous metal base material 110 .
  • the surface of the porous metal base material 110 can be quickly and simply flattened.
  • the metal plate 120 may be made of the same material as the porous metal base material 110 .
  • the metal plate 120 may be disposed to cover the entire surface of the porous metal base material 110 in a direction in which the metal layer is to be laminated.
  • the laser beam 11 is irradiated onto the metal plate 120 while linearly moving the nozzle 10 of the direct energy deposition (DED) along one direction, and at the same time the metal powder (12) can be supplied.
  • the laser beam 11 is irradiated with an output capable of simultaneously melting the porous metal base material 110, the metal plate 120, and the metal powder 12, and the nozzle 10 moves the linearly.
  • a plurality of rows of molten pools 20 overlapping each other may be formed on the surface of the porous metal base material 110 .
  • the plurality of rows of molten pools are rapidly solidified sequentially, and the metal layer 30 may be stacked on the surface of the porous metal base material 110 .
  • FIG. 5 is a perspective view for explaining a process in which the metal layer shown in FIG. 4 is formed in multiple stages.
  • the metal layer 30 may be stacked in multiple stages, and for this purpose, the second step ( S120 ) and the third step ( S130 ) may be performed twice or more.
  • the nozzle 10 may linearly move to intersect the nozzle movement direction in the previous order. That is, when the first to third steps (S110, S120, and S130) are performed once to form the first metal layer 30, and then the second step (S120) and the third step (S130) are performed.
  • the moving direction of the nozzle 10 in the second step (S120) is linearly moved to intersect with the moving direction of the nozzle 10 in the second step (S120) of the order of forming the first metal layer 30. can In this way, by crossing the moving direction of the nozzle 10, the density and strength of the multi-stage metal layer can be improved.
  • the nozzle 10 may supply inert gas (GAS) together with the metal powder 12 . Oxidation of the metal powder 12 can be prevented by supplying the inert gas.
  • GAS inert gas
  • FIG. 6 is a view for explaining a method of manufacturing a lightweight part according to a second embodiment of the present invention.
  • a method for manufacturing a lightweight part according to a second embodiment of the present invention includes a first step of flattening a surface of the porous metal base material by filling the pores of the porous metal base material with metal powder; While moving the nozzle of a direct energy deposition (DED) linearly along one direction, a laser beam is irradiated onto the metal plate and metal powder is supplied at the same time, and the base material, the metal plate, and the metal powder are simultaneously melted.
  • DED direct energy deposition
  • the entire porous metal base material may be filled with metal powder and flattened, and if the porous metal base material is closed-celled, metal powder may be filled only in pores on the surface requiring lamination to be flattened. .
  • the method for manufacturing a lightweight part according to the second embodiment of the present invention excludes the first step of flattening the surface of the porous metal base material 210 by filling the pores of the porous metal base material 210 with the metal powder 220. And, since the second step and the third step are the same as the second step (S120) and the third step (S130) of the method for manufacturing a lightweight part according to the first embodiment of the present invention, the second step and the third step A detailed description of the steps will be omitted.
  • the second step and the third step may be performed two or more times to stack multiple metal layers, and the multi-stage metal layers may be laminated two or more times.
  • the nozzle may be linearly moved to intersect the nozzle movement direction in the previous order, and in the second step, the nozzle may supply an inert gas together with the metal powder.
  • the surface of a porous metal having an uneven surface is simply flattened, then a molten pool is formed, and the molten pool is rapidly solidified to form a metal layer, thereby forming a flat metal layer on the surface of the porous metal.
  • the density and strength of each metal layer can be improved through a process of crossing moving directions of nozzles in each layer.
  • the method for manufacturing a lightweight part according to the present invention can manufacture a variety of three-dimensional lightweight parts without limiting the shape of the part.
  • the lightweight part manufactured by the method for manufacturing a lightweight part according to the present invention has a porous metal inside and a non-porous metal outside, it has an advantage of excellent light weight, and control of the number of metal layer laminations in the manufacturing process of the lightweight part. Since the strength can be adjusted through, the strength according to the purpose of use can be secured.
  • Figure 7 shows a comparison between parts manufactured by the method for manufacturing lightweight parts according to the present invention and conventional parts made of non-porous materials.
  • FIG. 7 shows a conventional part made of a non-porous material, (b) shows a light weight part manufactured using an open-celled porous metal base material, and (c) shows a closed-celled porous metal base material. It shows the appearance of a lightweight part manufactured using
  • the inside is porous and the outside has a surface made of a non-porous metal layer. manufacturing is possible
  • lightweight components shown in FIG. 7 represent gears, this is only an exemplary form, and lightweight components that can be manufactured according to the present invention are not limited to gears.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)

Abstract

A method for manufacturing a lightweight component is disclosed. The method for manufacturing a lightweight component comprises: a first step of planarizing the surface of a porous metal base material by placing a metal plate on the surface of the porous metal base material; a second step of simultaneously irradiating a laser beam on the metal plate and supplying metal powder while linearly moving a nozzle of a directed energy deposition (DED) apparatus in one direction, wherein the linear movement is repeated while the laser beam is irradiated at an output capable of melting the base material, the metal plate, and the metal powder to form multiple rows of molten pools which overlap one another on the surface of the porous metal base material; and a third step in which the multiple rows of molten pools rapidly coagulate in sequences such that metal layers are deposited on the surface of the porous metal base material.

Description

다공성 금속 및 비다공성 금속이 결합된 경량화 부품 제조방법Method for manufacturing lightweight parts combining porous metal and non-porous metal
본 발명은 경량화 부품 제조방법에 관한 것으로, 더욱 상세하게는 다공성 금속 소재 및 금속 적층 제조기술을 이용한 경량화 부품 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a lightweight part, and more particularly, to a method for manufacturing a lightweight part using a porous metal material and metal additive manufacturing technology.
일반적으로 다공성 금속이란 금속 재료 내부에 수많은 기공을 가진 다공질(porous)의 소재를 일컫는다. 이러한 다공성 금속은 대표적인 경량소재로 높은 차음/흡음성, 충격흡수성, 압축성 및 전자파 차폐성, 기계가공성 및 열전도성이 우수하며, 밀도를 변화시켜 광범위한 강도를 지니게 할 수 있는 특성이 있다.In general, porous metal refers to a porous material having numerous pores inside the metal material. Such a porous metal is a representative lightweight material and has excellent sound insulation/sound absorption, shock absorption, compressibility and electromagnetic wave shielding, machinability and thermal conductivity, and has characteristics that can have a wide range of strength by changing density.
그리고, 다공성 금속은 다양한 산업 환경에 범용적으로 사용되고 있으며, 특히 구조재료, 차음재료, 방진재료, 열교환기, 충격흡수 및 완충재료, 단열재료, 필터재료, 흡음재료, 생체재료, 진동흡수 재료 등으로 널리 사용되고 있다.In addition, porous metals are commonly used in various industrial environments, in particular, structural materials, sound insulation materials, vibration-proof materials, heat exchangers, shock absorbing and buffer materials, insulation materials, filter materials, sound absorbing materials, biomaterials, vibration absorbing materials, etc. is widely used as
이러한 다공성 금속은 특히 부품의 경량화를 위해 사용된다. 그러나 다공성 소재만으로는 경량성과 강도를 모두 만족키기기 어렵다. 따라서, 다공성 고재와 비다공성(solid) 소재를 결합하는 방식으로 경량 부품을 제작하고 있다.Such porous metals are used in particular for weight reduction of parts. However, it is difficult to satisfy both lightness and strength only with porous materials. Therefore, lightweight parts are manufactured by combining a porous solid material with a non-porous material.
종래의 다공성 소재와 비다공성(solid) 소재를 결합하는 방식으로써 용접 공정이 이용되고 있으나, 다공성 소재와 비다공성 소재를 결합할 때 기공이 발생하고, 열영향부(Heat Affected Zone, HAZ), 열 변형과 같은 문제가 발생되어 제품의 품질을 저하시키며, 여러 공정을 거쳐야하기 때문에 제작비가 상승되는 문제가 있었다.Although a welding process is used as a method of combining a conventional porous material and a non-porous (solid) material, pores are generated when porous and non-porous materials are combined, and the Heat Affected Zone (HAZ), heat Problems such as deformation occur, degrading the quality of the product, and there is a problem of increasing production cost because it has to go through several processes.
따라서 본 발명이 해결하고자 하는 과제는 다공성 금속의 표면에 평탄한 금속층을 적층시킬 수 있고, 다단의 금속층을 적층할 때 각 층에서의 노즐의 이동 방향을 교차시키는 과정을 통해 각 금속층의 밀도 및 강도가 향상될 수 있도록 한 경량화 부품 제조방법을 제공하는데 있다.Therefore, the problem to be solved by the present invention is that a flat metal layer can be laminated on the surface of a porous metal, and when stacking multiple metal layers, the density and strength of each metal layer can be increased through the process of crossing the moving direction of the nozzle in each layer. It is to provide a method for manufacturing lightweight parts that can be improved.
본 발명의 일 실시예에 따른 경량화 부품 제조방법은 다공성 금속 모재의 표면에 금속 판재를 배치하여 상기 다공성 금속 모재의 표면을 평탄화시키는 제1 단계; 직접용착적층장치(Direct Energy Deposition, DED)의 노즐을 일방향을 따라 선형 이동시키면서 상기 금속 판재 위로 레이저 빔을 조사함과 동시에 금속 분말을 공급하되, 상기 모재와 상기 금속 판재 및 상기 금속 분말이 동시 용융될 수 있는 출력으로 레이저 빔을 조사하면서 상기 선형 이동을 반복하여 상기 다공성 금속 모재의 표면에 서로 오버랩되는 다수 열의 용융 풀이 형성되는 제2 단계; 및 상기 다수 열의 용융풀이 순차적으로 급속 응고되어 상기 다공성 금속 모재 표면에 금속층이 적층되는 제3 단계를 포함하는 것을 특징으로 한다.A lightweight part manufacturing method according to an embodiment of the present invention includes a first step of flattening the surface of the porous metal base material by disposing a metal plate on the surface of the porous metal base material; While moving the nozzle of a direct energy deposition (DED) linearly along one direction, a laser beam is irradiated onto the metal plate and metal powder is supplied at the same time, and the base material, the metal plate, and the metal powder are simultaneously melted. A second step of forming multiple rows of molten pools overlapping each other on the surface of the porous metal base material by repeating the linear movement while irradiating a laser beam with a possible output; and a third step of sequentially and rapidly solidifying the plurality of rows of molten pools so that a metal layer is laminated on the surface of the porous metal base material.
일 실시예에서, 상기 제2 단계 및 상기 제3 단계가 2회 이상 수행되어 다단의 금속층이 적층될 수 있다.In one embodiment, the second step and the third step may be performed twice or more to stack multiple metal layers.
일 실시예에서, 상기 다단의 금속층을 적층하는 2회 이상의 각 순번에서 상기 노즐은 이전 순번에서의 노즐 이동 방향과 교차하도록 선형 이동될 수 있다.In one embodiment, in each sequence of two or more times of stacking the multi-stage metal layer, the nozzle may be linearly moved to intersect the nozzle movement direction in the previous sequence.
일 실시예에서, 상기 제2 단계에서 상기 노즐은 상기 금속 분말과 함께 불활성 가스를 공급할 수 있다.In one embodiment, in the second step, the nozzle may supply an inert gas together with the metal powder.
본 발명의 다른 실시예에 따른 경량화 부품 제조방법은 상기 다공성 금속 모재의 기공 내에 금속 분말을 채워서 상기 다공성 금속 모재의 표면을 평탄화시키는 제1 단계; 직접용착적층장치(Direct Energy Deposition, DED)의 노즐을 일방향을 따라 선형 이동시키면서 상기 금속 판재 위로 레이저 빔을 조사함과 동시에 금속 분말을 공급하되, 상기 모재와 상기 금속 판재 및 상기 금속 분말이 동시 용융될 수 있는 출력으로 레이저 빔을 조사하면서 상기 선형 이동을 반복하여 상기 금속 모재의 표면에 서로 오버랩되는 다수 열의 용융풀이 형성되는 제2 단계; 및 상기 다수 열의 용융풀이 순차적으로 급속 응고되어 상기 다공성 금속 모재 표면에 금속층이 적층되는 제3 단계를 포함할 수 있다.A lightweight part manufacturing method according to another embodiment of the present invention includes a first step of flattening the surface of the porous metal base material by filling metal powder into the pores of the porous metal base material; While moving the nozzle of a direct energy deposition (DED) linearly along one direction, a laser beam is irradiated onto the metal plate and metal powder is supplied at the same time, and the base material, the metal plate, and the metal powder are simultaneously melted. A second step of forming multiple rows of molten pools overlapping each other on the surface of the metal base material by repeating the linear movement while irradiating a laser beam with a possible output; and a third step of sequentially rapidly solidifying the plurality of rows of molten pools and depositing a metal layer on the surface of the porous metal base material.
본 발명에 따른 경량화 부품 제조방법에 의하면, 표면이 평탄하지 못한 다공성 금속의 표면을 간단히 평탄화시킨 후 용융 풀을 형성하고 그 용융 풀을 급속 응고시켜 금속층을 형성하므로 다공성 금속의 표면에 평탄한 금속층을 적층시킬 수 있고, 다단의 금속층을 적층할 때 각 층에서의 노즐의 이동 방향을 교차시키는 과정을 통해 각 금속층의 밀도 및 강도가 향상될 수 있는 이점이 있다.According to the method for manufacturing a lightweight part according to the present invention, the surface of a porous metal having an uneven surface is simply flattened, then a molten pool is formed, and the molten pool is rapidly solidified to form a metal layer, so that a flat metal layer is laminated on the surface of the porous metal. When multi-stage metal layers are stacked, the density and strength of each metal layer can be improved through the process of crossing the moving directions of the nozzles in each layer.
도 1 내지 도 4는 본 발명의 제1 실시예에 따른 경량화 부품 제조방법의 공정 순서를 나타내는 도면들이다.1 to 4 are diagrams showing a process sequence of a method for manufacturing a lightweight component according to a first embodiment of the present invention.
도 5는 도 4에 도시된 금속층이 다단으로 형성되는 과정을 설명하기 위한 사시도이다.FIG. 5 is a perspective view for explaining a process in which the metal layer shown in FIG. 4 is formed in multiple stages.
도 6은 본 발명의 제2 실시예에 따른 경량화 부품 제조방법을 설명하기 위한 도면이다.6 is a view for explaining a method of manufacturing a lightweight part according to a second embodiment of the present invention.
도 7은 본 발명에 따른 경량화 부품 제조방법에 의해 제조된 부품들과 비다공성 소재로 제조된 종래 부품 간의 비교 모습을 나타낸다.Figure 7 shows a comparison between parts manufactured by the method for manufacturing lightweight parts according to the present invention and conventional parts made of non-porous materials.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 경량화 부품 제조방법에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. Hereinafter, a method for manufacturing a lightweight component according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Since the present invention can have various changes and various forms, specific embodiments will be illustrated in the drawings and described in detail in the text. However, it should be understood that this is not intended to limit the present invention to the specific disclosed form, and includes all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. Like reference numerals have been used for like elements throughout the description of each figure. In the accompanying drawings, the dimensions of the structures are shown enlarged than actual for clarity of the present invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in this application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as "comprise" or "have" are intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that it does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in the present application, they should not be interpreted in an ideal or excessively formal meaning. don't
본 발명에 따른 경량화 부품 제조방법은 내부는 다공성 금속 소재이면서 외부는 비다공성 금속 소재인 경량화 부품을 제조할 수 있다.The lightweight part manufacturing method according to the present invention can manufacture a lightweight part having a porous metal material inside and a non-porous metal material outside.
이를 위해, 직접용착적층장치(Direct Energy Deposition, DED)의 노즐을 통해 금속 분말 등 클래딩 소재를 피적층면에 공급하면서 동시에 레이저 등의 고에너지로 용융하여 적층하는 방식의 3D 프린팅 기술이 이용된다.To this end, 3D printing technology is used in which a cladding material such as metal powder is supplied to the surface to be laminated through a nozzle of a direct energy deposition (DED) while simultaneously melting and stacking with high energy such as a laser.
상기 다공성 금속은, 기공이 외부와 연통되는 개포형(open-cell) 및 기공이 금속 내부에 형성되는 폐포형(closed-cell) 중 어는 하나일 수 있다.The porous metal may be any one of an open-cell type in which pores communicate with the outside and a closed-cell type in which pores are formed inside the metal.
이러한 다공성 금속은 표면이 평탄하지 못하기 때문에 다공성 금속의 표면에 상기 직접용착적층장치의 노즐을 이용하여 레이저 빔을 조사함과 동시에 금속 분말을 공급하면서 금속층을 적층하는 것이 쉽지 않다.Since the surface of such a porous metal is not flat, it is not easy to apply a laser beam to the surface of the porous metal using a nozzle of the direct deposition deposition apparatus and simultaneously supply metal powder to laminate a metal layer.
즉, 상기 개포형의 경우 상기 금속 분말을 공급하면서 상기 레이저 빔 상기금속 분말을 용융시킬 때 상기 금속 분말이 개포형의 다공성 금속의 기공을 통해 통과되는 문제 및 표면이 평탄하지 못하고 표면의 높낮이가 달라서 레이저 빔의 조사 높이가 달라지기 때문에 금속층을 평탄하게 형성하는데 어려움이 있다.That is, in the case of the open-cell type, when the laser beam melts the metal powder while supplying the metal powder, the metal powder passes through the pores of the open-cell type porous metal, and the surface is not flat and the height of the surface is different. Since the irradiation height of the laser beam varies, it is difficult to form the metal layer flat.
상기 폐포형의 경우에는 상기 금속 분말을 공급하면서 상기 레이저 빔 상기금속 분말을 용융시킬 때 금속 분말이 기공을 통과하지는 않지만 다공성 금속 표면이 평탄하지 못하고 표면의 높낮이가 달라서 레이저 빔의 조사 높이가 달라지기 때문에 금속층을 평탄하게 형성하는데 어려움이 있다.In the case of the closed-cell type, when the laser beam melts the metal powder while supplying the metal powder, the metal powder does not pass through the pores, but the porous metal surface is not flat and the height of the surface is different, so the irradiation height of the laser beam is different. Therefore, it is difficult to form the metal layer flat.
본 발명에 따른 경량화 부품 제조방법은 아래에서 설명되는 각 실시예들을 통해 다공성 금속 표면 상에 금속층을 적층함에 있어서 발생되는 상기 언급된 문제들을 간단히 극복하여 평탄한 금속층을 적층시켜, 다공성 금속 및 비다공성 금속이 결합된 경량화 부품을 제조할 수 있다.The method for manufacturing a lightweight part according to the present invention simply overcomes the above-mentioned problems occurring in laminating a metal layer on a porous metal surface through each of the embodiments described below, and laminates a flat metal layer to form a porous metal and a non-porous metal. This combined lightweight component can be manufactured.
제1 실시예Example 1
도 1 내지 도 4는 본 발명의 제1 실시예에 따른 경량화 부품 제조방법의 공정 순서를 나타내는 도면들이다.1 to 4 are diagrams showing a process sequence of a method for manufacturing a lightweight component according to a first embodiment of the present invention.
도 1 내지 도 4를 참조하면, 본 발명의 제1 실시예에 따른 경량화 부품 제조방법은 제1 단계(S110), 제2 단계(S120) 및 제3 단계(S130)를 포함할 수 있다.Referring to FIGS. 1 to 4 , the method for manufacturing a lightweight part according to the first embodiment of the present invention may include a first step ( S110 ), a second step ( S120 ) and a third step ( S130 ).
제1 단계(S110)에서, 다공성 금속 모재(110)의 표면에 금속 판재(120)를 배치하여 상기 다공성 금속 모재(110)의 표면을 평탄화시킬 수 있다. In the first step ( S110 ), the surface of the porous metal base material 110 may be planarized by disposing the metal plate 120 on the surface of the porous metal base material 110 .
상기 금속 판재(120)를 상기 다공성 금속 모재(110)의 표면에 배치함으로써 상기 다공성 금속 모재(110)의 표면을 신속하고 간단하게 평탄화시킬 수 있다.By disposing the metal plate 120 on the surface of the porous metal base material 110, the surface of the porous metal base material 110 can be quickly and simply flattened.
상기 금속 판재(120)는 상기 다공성 금속 모재(110)와 동일 소재로 구비될 수 있다. The metal plate 120 may be made of the same material as the porous metal base material 110 .
일 예로, 상기 금속 판재(120)는 상기 다공성 금속 모재(110)의 금속층을 적층하고자 하는 방향의 표면 전체를 덮도록 배치될 수 있다.For example, the metal plate 120 may be disposed to cover the entire surface of the porous metal base material 110 in a direction in which the metal layer is to be laminated.
제2 단계(S120)에서, 직접용착적층장치(Direct Energy Deposition, DED)의 노즐(10)을 일방향을 따라 선형 이동시키면서 상기 금속 판재(120) 위로 레이저 빔(11)을 조사함과 동시에 금속 분말(12)을 공급할 수 있다. 이때, 상기 레이저 빔(11)은 상기 다공성 금속 모재(110)와 상기 금속 판재(120) 및 상기 금속 분말(12)이 동시 용융될 수 있는 출력으로 조사되며, 상기 노즐(10)은 상기 선형 이동을 반복하여 상기 다공성 금속 모재(110)의 표면에 서로 오버랩되는 다수 열의 용융 풀(20)이 형성될 수 있다.In the second step (S120), the laser beam 11 is irradiated onto the metal plate 120 while linearly moving the nozzle 10 of the direct energy deposition (DED) along one direction, and at the same time the metal powder (12) can be supplied. At this time, the laser beam 11 is irradiated with an output capable of simultaneously melting the porous metal base material 110, the metal plate 120, and the metal powder 12, and the nozzle 10 moves the linearly. By repeating the process, a plurality of rows of molten pools 20 overlapping each other may be formed on the surface of the porous metal base material 110 .
제3 단계(S130)에서, 상기 다수 열의 용융 풀이 순차적으로 급속 응고되어 상기 다공성 금속 모재(110) 표면에 금속층(30)이 적층될 수 있다.In the third step ( S130 ), the plurality of rows of molten pools are rapidly solidified sequentially, and the metal layer 30 may be stacked on the surface of the porous metal base material 110 .
도 5는 도 4에 도시된 금속층이 다단으로 형성되는 과정을 설명하기 위한 사시도이다.FIG. 5 is a perspective view for explaining a process in which the metal layer shown in FIG. 4 is formed in multiple stages.
한편, 상기 금속층(30)은 다단으로 적층될 수 있고, 이를 위해, 상기 제2 단계(S120) 및 상기 제3 단계(S130)가 2회 이상 수행될 수 있다. 이때, 상기 다단의 금속층을 적층하는 2회 이상의 각 순번에서 도 5에 도시된 바와 같이 상기 노즐(10)은 이전 순번에서의 노즐 이동 방향과 교차하도록 선형 이동될 수 있다. 즉, 상기 제1 내지 제3 단계(S110, S120, S130)가 1회 수행되어 1층의 금속층(30)이 형성된 후, 상기 제2 단계(S120) 및 제3 단계(S130)가 수행될 때 제2 단계(S120)에서의 노즐(10)의 이동 방향은 상기 1층의 금속층(30)을 형성하는 순번의 제2 단계(S120)에서의 노즐(10)의 이동 방향과 교차하도록 선형 이동될 수 있다. 이와 같이, 상기 노즐(10)의 이동 방향을 교차시키는 것에 의해 다단의 금속층의 밀도 및 강도가 향상될 수 있다.Meanwhile, the metal layer 30 may be stacked in multiple stages, and for this purpose, the second step ( S120 ) and the third step ( S130 ) may be performed twice or more. At this time, as shown in FIG. 5 in each order of two or more times of stacking the multi-stage metal layers, the nozzle 10 may linearly move to intersect the nozzle movement direction in the previous order. That is, when the first to third steps (S110, S120, and S130) are performed once to form the first metal layer 30, and then the second step (S120) and the third step (S130) are performed. The moving direction of the nozzle 10 in the second step (S120) is linearly moved to intersect with the moving direction of the nozzle 10 in the second step (S120) of the order of forming the first metal layer 30. can In this way, by crossing the moving direction of the nozzle 10, the density and strength of the multi-stage metal layer can be improved.
한편, 상기 제2 단계(S120)에서, 상기 노즐(10)은 상기 금속 분말(12)과 함께 불활성 가스(GAS)를 공급할 수 있다. 상기 불황성 가스를 공급함에 따라 금속 분말(12)의 산화를 방지할 수 있다.Meanwhile, in the second step ( S120 ), the nozzle 10 may supply inert gas (GAS) together with the metal powder 12 . Oxidation of the metal powder 12 can be prevented by supplying the inert gas.
제2 실시예Second embodiment
도 6은 본 발명의 제2 실시예에 따른 경량화 부품 제조방법을 설명하기 위한 도면이다.6 is a view for explaining a method of manufacturing a lightweight part according to a second embodiment of the present invention.
본 발명의 제2 실시예에 따른 경량화 부품 제조방법은 상기 다공성 금속 모재의 기공 내에 금속 분말을 채워서 상기 다공성 금속 모재의 표면을 평탄화시키는 제1 단계; 직접용착적층장치(Direct Energy Deposition, DED)의 노즐을 일방향을 따라 선형 이동시키면서 상기 금속 판재 위로 레이저 빔을 조사함과 동시에 금속 분말을 공급하되, 상기 모재와 상기 금속 판재 및 상기 금속 분말이 동시 용융될 수 있는 출력으로 레이저 빔을 조사하면서 상기 선형 이동을 반복하여 상기 금속 모재의 표면에 서로 오버랩되는 다수 열의 용융풀이 형성되는 제2 단계; 및 상기 다수 열의 용융풀이 순차적으로 급속 응고되어 상기 다공성 금속 모재 표면에 금속층이 적층되는 제3 단계를 포함할 수 있다.A method for manufacturing a lightweight part according to a second embodiment of the present invention includes a first step of flattening a surface of the porous metal base material by filling the pores of the porous metal base material with metal powder; While moving the nozzle of a direct energy deposition (DED) linearly along one direction, a laser beam is irradiated onto the metal plate and metal powder is supplied at the same time, and the base material, the metal plate, and the metal powder are simultaneously melted. A second step of forming multiple rows of molten pools overlapping each other on the surface of the metal base material by repeating the linear movement while irradiating a laser beam with a possible output; and a third step of sequentially rapidly solidifying the plurality of rows of molten pools and depositing a metal layer on the surface of the porous metal base material.
상기 제1 단계에서, 다공성 금속 모재가 개포형인 경우 다공성 금속 모재 전체에 금속 분말이 채워져서 평탄화될 수 있고, 다공성 금속 모재가 폐포형인 경우 적층이 필요한 표면의 기공에만 금속 분말을 채워서 평탄화될 수 있다.In the first step, if the porous metal base material is open-celled, the entire porous metal base material may be filled with metal powder and flattened, and if the porous metal base material is closed-celled, metal powder may be filled only in pores on the surface requiring lamination to be flattened. .
이러한 본 발명의 제2 실시예에 따른 경량화 부품 제조방법은 상기 금속 분말(220)을 상기 다공성 금속 모재(210)의 기공 내에 채워서 상기 다공성 금속 모재(210)의 표면을 평탄화시키는 제1 단계를 제외하고는 상기 제2 단계 및 상기 제3 단계는 본 발명의 제1 실시예에 따른 경량화 부품 제조방법의 제2 단계(S120) 및 제3 단계(S130)와 동일하므로 상기 제2 단계 및 상기 제3 단계에 대한 구체적인 설명은 생략하기로 한다.The method for manufacturing a lightweight part according to the second embodiment of the present invention excludes the first step of flattening the surface of the porous metal base material 210 by filling the pores of the porous metal base material 210 with the metal powder 220. And, since the second step and the third step are the same as the second step (S120) and the third step (S130) of the method for manufacturing a lightweight part according to the first embodiment of the present invention, the second step and the third step A detailed description of the steps will be omitted.
한편, 본 발명의 제2 실시예에 따른 경량화 부품 제조방법은 상기 제2 단계 및 상기 제3 단계가 2회 이상 수행되어 다단의 금속층이 적층될 수 있고, 상기 다단의 금속층을 적층하는 2회 이상의 각 순번에서 상기 노즐은 이전 순번에서의 노즐 이동 방향과 교차하도록 선형 이동될 수 있으며, 상기 제2 단계에서 상기 노즐은 상기 금속 분말과 함께 불활성 가스를 공급할 수 있다.Meanwhile, in the method for manufacturing a lightweight part according to the second embodiment of the present invention, the second step and the third step may be performed two or more times to stack multiple metal layers, and the multi-stage metal layers may be laminated two or more times. In each turn, the nozzle may be linearly moved to intersect the nozzle movement direction in the previous order, and in the second step, the nozzle may supply an inert gas together with the metal powder.
이러한 과정들은 본 발명의 제1 실시예에 따른 경량화 부품 제조방법과 동일하므로 구체적인 설명은 생략하기로 한다.Since these processes are the same as the method for manufacturing a lightweight part according to the first embodiment of the present invention, a detailed description thereof will be omitted.
이러한 본 발명에 따른 경량화 부품 제조방법에 의하면, 표면이 평탄하지 못한 다공성 금속의 표면을 간단히 평탄화시킨 후 용융 풀을 형성하고 그 용융 풀을 급속 응고시켜 금속층을 형성하므로 다공성 금속의 표면에 평탄한 금속층을 적층시킬 수 있고, 다단의 금속층을 적층할 때 각 층에서의 노즐의 이동 방향을 교차시키는 과정을 통해 각 금속층의 밀도 및 강도가 향상될 수 있는 이점이 있다.According to the method for manufacturing a lightweight part according to the present invention, the surface of a porous metal having an uneven surface is simply flattened, then a molten pool is formed, and the molten pool is rapidly solidified to form a metal layer, thereby forming a flat metal layer on the surface of the porous metal. When multi-stage metal layers are stacked, the density and strength of each metal layer can be improved through a process of crossing moving directions of nozzles in each layer.
본 발명에 따른 경량화 부품 제조방법은 부품의 형상에 제한이 없이, 3차원 형상의 경량화 부품을 다양하게 제조할 수 있다. The method for manufacturing a lightweight part according to the present invention can manufacture a variety of three-dimensional lightweight parts without limiting the shape of the part.
한편, 이러한 본 발명에 따른 경량화 부품 제조방법에 의해 제조되는 경량화 부품은 내부는 다공성 금속이고 외부는 비다공성 금속인 형태이므로 경량성이 우수한 이점이 있고, 경량화 부품 제조 과정에서의 금속층 적층 회수의 조절을 통해 강도가 조절될 수 있으므로 사용 목적에 따른 강도가 확보될 수 있다.On the other hand, since the lightweight part manufactured by the method for manufacturing a lightweight part according to the present invention has a porous metal inside and a non-porous metal outside, it has an advantage of excellent light weight, and control of the number of metal layer laminations in the manufacturing process of the lightweight part. Since the strength can be adjusted through, the strength according to the purpose of use can be secured.
도 7은 본 발명에 따른 경량화 부품 제조방법에 의해 제조된 부품들과 비다공성 소재로 제조된 종래 부품 간의 비교 모습을 나타낸다.Figure 7 shows a comparison between parts manufactured by the method for manufacturing lightweight parts according to the present invention and conventional parts made of non-porous materials.
도 7에서 (a)는 비다공성 소재로 제조된 종래 부품의 모습을 나타내고, (b)는 개포형 다공성 금속 모재를 이용하여 제조된 경량화 부품의 모습을 나타내고, (c)는 폐포형 다공성 금속 모재를 이용하여 제조된 경량화 부품의 모습을 나타낸다.In FIG. 7, (a) shows a conventional part made of a non-porous material, (b) shows a light weight part manufactured using an open-celled porous metal base material, and (c) shows a closed-celled porous metal base material. It shows the appearance of a lightweight part manufactured using
본 발명에 따른 경량화 부품 제조방법에 의해 도 7의 비다공성 소재로만 제조된 (a)와 달리 (b) 및 (c)와 같이 내부가 다공성이고 외부는 비다공성 금속층으로 이루어진 표면을 갖는 경량화 부품의 제조가 가능하다.Unlike (a) manufactured only with non-porous material of FIG. 7 by the method of manufacturing a lightweight part according to the present invention, as shown in (b) and (c), the inside is porous and the outside has a surface made of a non-porous metal layer. manufacturing is possible
도 7에 도시된 경량화 부품들은 기어를 나타내고 있지만, 이는 예시적인 형태일 뿐, 본 발명에 따라 제조 가능한 경량화 부품은 기어에 한정되는 것은 아니다.Although the lightweight components shown in FIG. 7 represent gears, this is only an exemplary form, and lightweight components that can be manufactured according to the present invention are not limited to gears.
제시된 실시예들에 대한 설명은 임의의 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.The description of the presented embodiments is provided to enable any person skilled in the art to use or practice the present invention. Various modifications to these embodiments will be apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments without departing from the scope of the present invention. Thus, the present invention is not to be limited to the embodiments presented herein, but is to be construed in the widest scope consistent with the principles and novel features presented herein.

Claims (8)

  1. 다공성 금속 모재의 표면에 금속 판재를 배치하여 상기 다공성 금속 모재의 표면을 평탄화시키는 제1 단계; A first step of flattening the surface of the porous metal base material by placing a metal plate on the surface of the porous metal base material;
    직접용착적층장치(Direct Energy Deposition, DED)의 노즐을 일방향을 따라 선형 이동시키면서 상기 금속 판재 위로 레이저 빔을 조사함과 동시에 금속 분말을 공급하되, 상기 모재와 상기 금속 판재 및 상기 금속 분말이 동시 용융될 수 있는 출력으로 레이저 빔을 조사하면서 상기 선형 이동을 반복하여 상기 다공성 금속 모재의 표면에 서로 오버랩되는 다수 열의 용융 풀이 형성되는 제2 단계; 및While moving the nozzle of a direct energy deposition (DED) linearly along one direction, a laser beam is irradiated onto the metal plate and metal powder is supplied at the same time, and the base material, the metal plate, and the metal powder are simultaneously melted. A second step of forming multiple rows of molten pools overlapping each other on the surface of the porous metal base material by repeating the linear movement while irradiating a laser beam with a possible output; and
    상기 다수 열의 용융풀이 순차적으로 급속 응고되어 상기 다공성 금속 모재 표면에 금속층이 적층되는 제3 단계를 포함하는,A third step in which the plurality of rows of molten pools are rapidly solidified in sequence and a metal layer is laminated on the surface of the porous metal base material,
    다공성 금속 및 비다공성 금속이 결합된 경량화 부품 제조방법.A method for manufacturing lightweight parts in which porous metal and non-porous metal are combined.
  2. 제1항에 있어서,According to claim 1,
    상기 제2 단계 및 상기 제3 단계가 2회 이상 수행되어 다단의 금속층이 적층되는,The second step and the third step are performed two or more times to stack multiple metal layers.
    다공성 금속 및 비다공성 금속이 결합된 경량화 부품 제조방법.A method for manufacturing lightweight parts in which porous metal and non-porous metal are combined.
  3. 제2항에 있어서,According to claim 2,
    상기 다단의 금속층을 적층하는 2회 이상의 각 순번에서 상기 노즐은 이전 순번에서의 노즐 이동 방향과 교차하도록 선형 이동되는,In each sequence of two or more times of stacking the multi-stage metal layer, the nozzle is linearly moved to intersect the nozzle movement direction in the previous sequence,
    다공성 금속 및 비다공성 금속이 결합된 경량화 부품 제조방법.A method for manufacturing lightweight parts in which porous metal and non-porous metal are combined.
  4. 제1항에 있어서,According to claim 1,
    상기 제2 단계에서 상기 노즐은 상기 금속 분말과 함께 불활성 가스를 공급하는,In the second step, the nozzle supplies an inert gas together with the metal powder.
    다공성 금속 및 비다공성 금속이 결합된 경량화 부품 제조방법.A method for manufacturing lightweight parts in which porous metal and non-porous metal are combined.
  5. 상기 다공성 금속 모재의 기공 내에 금속 분말을 채워서 상기 다공성 금속 모재의 표면을 평탄화시키는 제1 단계;A first step of flattening the surface of the porous metal base material by filling the pores of the porous metal base material with metal powder;
    직접용착적층장치(Direct Energy Deposition, DED)의 노즐을 일방향을 따라 선형 이동시키면서 상기 금속 판재 위로 레이저 빔을 조사함과 동시에 금속 분말을 공급하되, 상기 모재와 상기 금속 판재 및 상기 금속 분말이 동시 용융될 수 있는 출력으로 레이저 빔을 조사하면서 상기 선형 이동을 반복하여 상기 금속 모재의 표면에 서로 오버랩되는 다수 열의 용융풀이 형성되는 제2 단계; 및While moving the nozzle of a direct energy deposition (DED) linearly along one direction, a laser beam is irradiated onto the metal plate and metal powder is supplied at the same time, and the base material, the metal plate, and the metal powder are simultaneously melted. A second step of forming multiple rows of molten pools overlapping each other on the surface of the metal base material by repeating the linear movement while irradiating a laser beam with a possible output; and
    상기 다수 열의 용융풀이 순차적으로 급속 응고되어 상기 다공성 금속 모재 표면에 금속층이 적층되는 제3 단계를 포함하는,A third step in which the plurality of rows of molten pools are rapidly solidified in sequence and a metal layer is laminated on the surface of the porous metal base material,
    다공성 금속 및 비다공성 금속이 결합된 경량화 부품 제조방법.A method for manufacturing lightweight parts in which porous metal and non-porous metal are combined.
  6. 제1항에 있어서,According to claim 1,
    상기 제2 단계 및 상기 제3 단계가 2회 이상 수행되어 다단의 금속층이 적층되는,The second step and the third step are performed two or more times to stack multiple metal layers.
    다공성 금속 및 비다공성 금속이 결합된 경량화 부품 제조방법.A method for manufacturing lightweight parts in which porous metal and non-porous metal are combined.
  7. 제2항에 있어서,According to claim 2,
    상기 다단의 금속층을 적층하는 2회 이상의 각 순번에서 상기 노즐은 이전 순번에서의 노즐 이동 방향과 교차하도록 선형 이동되는,In each sequence of two or more times of stacking the multi-stage metal layer, the nozzle is linearly moved to intersect the nozzle movement direction in the previous sequence,
    다공성 금속 및 비다공성 금속이 결합된 경량화 부품 제조방법.A method for manufacturing lightweight parts in which porous metal and non-porous metal are combined.
  8. 제1항에 있어서,According to claim 1,
    상기 제2 단계에서 상기 노즐은 상기 금속 분말과 함께 불활성 가스를 공급하는,In the second step, the nozzle supplies an inert gas together with the metal powder.
    다공성 금속 및 비다공성 금속이 결합된 경량화 부품 제조방법.A method for manufacturing lightweight parts in which porous metal and non-porous metal are combined.
PCT/KR2022/013205 2021-09-02 2022-09-02 Method for manufacturing lightweight component having porous metal combined with non-porous metal WO2023033592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0117142 2021-09-02
KR1020210117142A KR102529862B1 (en) 2021-09-02 2021-09-02 Manuracturing method of lightweight parts combined with porous and non-porous metal

Publications (1)

Publication Number Publication Date
WO2023033592A1 true WO2023033592A1 (en) 2023-03-09

Family

ID=85411466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013205 WO2023033592A1 (en) 2021-09-02 2022-09-02 Method for manufacturing lightweight component having porous metal combined with non-porous metal

Country Status (2)

Country Link
KR (1) KR102529862B1 (en)
WO (1) WO2023033592A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347761A (en) * 1998-06-12 1999-12-21 Mitsubishi Heavy Ind Ltd Three-dimensional molding device by laser
JP2005537934A (en) * 2002-09-06 2005-12-15 アルストム テクノロジー リミテッド Control method of hard layer microstructure by laser metal forming
KR20100061655A (en) * 2007-08-14 2010-06-08 더 펜 스테이트 리서어치 파운데이션 3-d printing of near net shape products
KR101504072B1 (en) * 2014-09-22 2015-03-19 박정동 Three Dimensional Printing Method using Thin Film Lamination
KR20160116920A (en) * 2015-03-31 2016-10-10 부산대학교 산학협력단 method for alloying of metal surface using laser beam

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10722947B2 (en) 2016-04-01 2020-07-28 Board Of Regents, The University Of Texas System Micro-selective sintering laser systems and methods thereof
KR20180097373A (en) * 2017-02-23 2018-08-31 주식회사 이오테크닉스 Apparatus and method for processing metal material using nozzle
KR102205851B1 (en) * 2018-12-26 2021-01-20 한국해양대학교 산학협력단 three dimentional printer for metal porous with closed-cell pores and three dimentional printing method thereof
CN112024902B (en) 2020-09-02 2022-04-26 江苏科技大学 Preparation method of refractory high-entropy alloy framework-copper spontaneous perspiration composite structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347761A (en) * 1998-06-12 1999-12-21 Mitsubishi Heavy Ind Ltd Three-dimensional molding device by laser
JP2005537934A (en) * 2002-09-06 2005-12-15 アルストム テクノロジー リミテッド Control method of hard layer microstructure by laser metal forming
KR20100061655A (en) * 2007-08-14 2010-06-08 더 펜 스테이트 리서어치 파운데이션 3-d printing of near net shape products
KR101504072B1 (en) * 2014-09-22 2015-03-19 박정동 Three Dimensional Printing Method using Thin Film Lamination
KR20160116920A (en) * 2015-03-31 2016-10-10 부산대학교 산학협력단 method for alloying of metal surface using laser beam

Also Published As

Publication number Publication date
KR20230034039A (en) 2023-03-09
KR102529862B1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
CN112848553B (en) Reinforced single cell structure, preparation method and application thereof, and sandwich board
US10259172B2 (en) Fabrication method of magnetic device
JP3601671B2 (en) Manufacturing method of composite laminate
EP1731303B1 (en) Method for forming a fire resisting laminate
US20090022975A1 (en) Metal/Fiber Laminate and Fabrication Using A Porous Metal/Fiber Preform
CA2881458C (en) High-quality flame-retardant decorative finish for interior panels
WO2023033592A1 (en) Method for manufacturing lightweight component having porous metal combined with non-porous metal
KR100755795B1 (en) Method of manufacturing multi-layer circuit board
CA2055982A1 (en) Thermoplastic film, reinforced hollow glass microsphere reinforced laminates for thin low dielectric constant substrates
DE19513652A1 (en) Advanced vacuum heat insulation for ovens
CN103369866A (en) Method for manufacturing printed circuit board containing blind holes and manufactured printed circuit board
KR20160037070A (en) Method for manufacturing double-faced metal laminate, method for manufacturing printed circuit board, method for manufacturing multiple layered laminate, and method for manufacturing multiple layered printed circuit board
JP2011124108A (en) Nonflammable translucent plate, and manufacturing method thereof
KR20100030769A (en) Multi layer circuit board and manufacturing method of the same
US8409377B2 (en) Combustible structural composites and methods of forming combustible structural composites
CN111670082B (en) Brazing method
KR20200106070A (en) System and method for simultaneous casting of additive manufactured interface nodes
JPS62214939A (en) Manufacture of laminated plate
EP1413871B1 (en) Optical table
KR102601962B1 (en) Materials for 3d printing and 3d printer using the same
KR102256526B1 (en) An unit-cell structure and A sandwich plate comprising the same
KR19990033148A (en) Multi-layered Porous Aluminum Powder Sintered Body with Wire Mesh Reinforcement and Manufacturing Method Thereof
KR101987043B1 (en) Printed circuit board
CN217239614U (en) Lower box and battery pack with same
WO2021101079A1 (en) Metal-clad steel sheet for neutron shielding and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22865094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE