WO2023033248A1 - Unmanned charging system for charging unmanned robot - Google Patents

Unmanned charging system for charging unmanned robot Download PDF

Info

Publication number
WO2023033248A1
WO2023033248A1 PCT/KR2021/017059 KR2021017059W WO2023033248A1 WO 2023033248 A1 WO2023033248 A1 WO 2023033248A1 KR 2021017059 W KR2021017059 W KR 2021017059W WO 2023033248 A1 WO2023033248 A1 WO 2023033248A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
unmanned
robot
unmanned robot
station
Prior art date
Application number
PCT/KR2021/017059
Other languages
French (fr)
Korean (ko)
Inventor
강동우
송익재
심원규
김정연
신희준
이현무
황동현
Original Assignee
강동우
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강동우 filed Critical 강동우
Publication of WO2023033248A1 publication Critical patent/WO2023033248A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles

Definitions

  • the present invention relates to an unmanned charging system, and relates to an unmanned charging system for charging an unmanned robot that is operated for amphibious use and automatically recharges an unmanned robot that collects water quality data.
  • the unmanned robot can be automatically charged through a separate charging station, but it can be charged in a state in which water is stained during the automatic charging process, so the manager manually wipes the water before charging.
  • An object of the present invention is to provide an unmanned charging system for charging an unmanned robot that supports stable and automatic charging of an unmanned robot that is operated for amphibious use and collects water quality data.
  • an unmanned charging system for charging an unmanned robot is operated for amphibious use, and when the unmanned robot collects water quality data in a predetermined area and the unmanned robot enters the interior for charging, and a charging station for opening a cover covering a frame of the unmanned robot, inducing docking with a charging terminal provided inside the frame, and then charging the unmanned robot.
  • the unmanned robot is characterized in that it is provided with a floating body at both ends, and the transfer means made of a caterpillar rotates while moving on the ground and on the water.
  • the unmanned robot is characterized in that the cover is closed along the frame when charging with the charging station is completed and the docking is terminated.
  • the charging station forms a rail protruding from the bottom surface, guides the unmanned robot to enter the inside along the rail, and enters while the rail and the cover are engaged as the unmanned robot enters the inside It is characterized in that the cover covering the charging terminal is opened by pushing the cover in the opposite direction.
  • the charging station is characterized in that an elastic member is provided at a portion in contact with the charging terminal to mitigate shock generated during docking.
  • the charging station is characterized in that the floating body is attached to the lower portion can be installed on the water surface.
  • the unmanned charging system for charging the unmanned robot of the present invention can be stably charged even in a state in which water is stained on the outer surface of the unmanned robot operated for amphibious use.
  • the present invention automatically charges after opening the cover covering the charging terminal in the process of docking with the unmanned robot and the charging station, thereby preventing electric shorts caused by water in advance and requiring no additional manpower, thereby reducing maintenance costs.
  • FIG. 1 is a configuration diagram for explaining an unattended charging system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram for explaining an unmanned robot according to an embodiment of the present invention.
  • FIG. 3 is a perspective view for explaining an unmanned robot according to an embodiment of the present invention.
  • FIG. 4 is a block diagram for explaining a charging station according to an embodiment of the present invention.
  • FIG. 5 is a perspective view for explaining a charging station according to an embodiment of the present invention.
  • 6 to 9 are diagrams for explaining a process of charging an unmanned robot at a charging station according to an embodiment of the present invention.
  • FIG. 1 is a configuration diagram for explaining an unattended charging system according to an embodiment of the present invention.
  • the unmanned charging system 400 supports the unmanned robot 100 to be reliably and automatically charged.
  • the unmanned charging system 400 includes the unmanned robot 100 and the charging station 200, and may further include a user terminal 300.
  • the unmanned robot 100 is operated for amphibious use and collects water quality data.
  • the unmanned robot 100 may collect water quality data for a preset area, and preferably collect water quality data for areas where water flow does not change rapidly, such as reservoirs, lakes, and ponds.
  • the unmanned robot 100 automatically estimates the current location when the electrical energy charged in the battery is lower than a preset standard, moves to the charging station 200 based on the estimated current location, and then the charging station. Electrical energy can be charged from (200).
  • the charging station 200 provides electrical energy to the unmanned robot 100 through docking with the unmanned robot 100 .
  • the charging station 200 has an accommodation space for accommodating the unmanned robot 100 therein, and may include a rail guiding entry into the accommodation space.
  • the charging station 200 uses rails to support stable charging even when the outer surface of the unmanned robot 100 is stained with water.
  • the charging station 200 can be installed on the ground or on water, and when installed on the ground, it can be installed in a fixed state, and when installed on the water, it can be installed in a floating state within a certain range without being affected by the water level. .
  • the user terminal 300 communicates with at least one of the unmanned robot 100 and the charging station 200 .
  • the user terminal 300 may receive a user input from a user and transmit the input user input to at least one of the unmanned robot 100 and the charging station 200 to perform control according to the user input.
  • the user terminal 300 may receive monitoring information from the unmanned robot 100 and the charging station 200 in real time and output the received monitoring information.
  • the user terminal 300 may be a computing system such as a smart phone, a laptop, a desktop, a server computer, or a cluster computer.
  • the unmanned charging system 400 builds a communication network 450 between the unmanned robot 100, the charging station 200, and the user terminal 300 to facilitate communication between them.
  • the communication network 450 may be composed of a backbone network and a subscriber network.
  • the backbone network may be composed of one or a plurality of integrated networks among an X.25 network, a Frame Relay network, an ATM network, a Multi Protocol Label Switching (MPLS) network, and a Generalized Multi Protocol Label Switching (GMPLS) network.
  • MPLS Multi Protocol Label Switching
  • GPLS Generalized Multi Protocol Label Switching
  • Subscriber networks include FTTH (Fiber To The Home), ADSL (Asymmetric Digital Subscriber Line), cable network, zigbee, Bluetooth, and wireless LAN (IEEE 802.11b, IEEE 802.11a, IEEE 802.11g, IEEE 802.11n ), Wireless Hart (ISO/IEC62591-1), ISA100.11a (ISO/IEC 62734), COAP (Constrained Application Protocol), MQTT (Multi-Client Publish/Subscribe Messaging), WIBro (Wireless Broadband), Wimax, 3G, It may be High Speed Downlink Packet Access (HSDPA), 4G and 5G.
  • the communication network 450 may be an internet network or a mobile communication network.
  • the communication network 150 may include all other widely known wireless communication or wired communication methods to be developed in the future.
  • FIG. 2 is a block diagram for explaining an unmanned robot according to an embodiment of the present invention
  • FIG. 3 is a perspective view for explaining an unmanned robot according to an embodiment of the present invention.
  • the unmanned robot 100 includes a robot body 110, a robot communication unit 120, a robot sensor unit 130, a robot Global Positioning System (GPS) unit 140, and a robot control unit 150. ), a robot drive unit 160, a robot power supply unit 170, and a robot storage unit 180.
  • GPS Global Positioning System
  • the robot body 110 is hardware corresponding to the frame of the unmanned robot 100.
  • the robot body 110 includes a torso 111 and a transfer unit 112 .
  • the body part 111 is located in the center of the frame, and at least one of a robot communication unit 120, a robot GPS unit 130, a robot control unit 150, a robot power supply unit 170, and a robot storage unit 180 is installed therein. Include a space that can be accommodated.
  • the body portion 111 is covered with a cover made of a waterproof material and subjected to waterproof treatment, even when the unmanned robot 100 operates underwater, water may not permeate into the accommodation space.
  • the cover normally covers the accommodation space and can be opened when docked with the charging station 200 .
  • the transportation means 112 drives the unmanned robot 100 in an amphibious manner on land and water.
  • the transfer means 112 is composed of caterpillars at both ends of the left and right sides of the unmanned robot 100.
  • the caterpillar may be wound on a plurality of idlers to perform forward, backward and direction conversion in an endless track manner.
  • the caterpillar connects a plurality of plates made of steel in a chain shape, is hung on the front and rear idlers like a belt, and rotates with power to drive.
  • a caterpillar has a larger contact area and greater friction with the ground than a wheel, so it can run freely on uneven roads or mud, and it is free to change direction by changing the left and right rotation speed, so the turning radius is minimized. can do.
  • the cater filter of the present invention further includes a floating body having buoyancy between a plurality of idlers to support the transport means 112 itself to act as a floating body.
  • the robot communication unit 120 communicates with the charging station 200 and the user terminal 300 .
  • the robot communication unit 120 may perform wireless communication.
  • the robot sensor unit 130 collects water quality data.
  • the robot sensor unit 130 detects the state of water quality of the water surface during driving, that is, TDS, PH, DO, ORP, HDO, conductivity, temperature, salinity, turbidity, water depth, chlorophyll a, blue-green algae, rhodamine, PAR, ion, CDOM, Collect water quality parameters such as CrudeOil.
  • the robot sensor unit 130 may be installed in a part submerged below the surface of the water.
  • the robot GPS unit 140 measures GPS information about the current location of the unmanned robot 100.
  • the robot GPS unit 140 may measure GPS information in real time, but is not limited thereto, and may measure GPS information at predetermined intervals.
  • the robot controller 150 performs overall control of the unmanned robot 100.
  • the robot control unit 150 moves to a preset area according to the user input and then controls to collect the water quality data.
  • the robot control unit 150 may transmit the collected water quality data to the user terminal 100 and support confirmation in the user terminal 100 .
  • the robot control unit 150 detects the amount of charge of the battery in real time or at predetermined intervals, and automatically moves to the charging station 200 when the amount of charge of the battery falls short of a predetermined reference level and controls to be automatically charged.
  • the robot control unit 150 may move to the charging station 200 using GPS information measured by the robot GPS unit 140 and location information based on the learned map.
  • the robot controller 150 may check whether the charging station 200 is currently charging another unmanned robot, and move to the corresponding charging station if the other unmanned robot is not charging.
  • the robot driving unit 160 is connected to the moving means 112 and transmits power for driving the moving means 112 .
  • the robot driving unit 160 may include a plurality of driving motors and is controlled by the robot controller 150 .
  • the robot power supply unit 170 includes a charging terminal for docking with the charging station 200 and a battery for storing electrical energy.
  • the charging terminal is formed in a structure that engages with the charging station 200 and is connected to a separate motor (not shown) for docking and can be moved to face the charging station 200 .
  • the battery may be a secondary battery capable of charging and discharging, and the amount of charge may be detected in real time or at predetermined intervals by the robot control unit 150 . At this time, the robot power supply unit 170 is provided inside the body unit 111 to prevent contact with water in advance.
  • the robot storage unit 180 stores a program or algorithm for driving the unmanned robot 100.
  • the robot storage unit 180 stores water quality data collected from the robot sensor unit 130 .
  • the robot storage unit 180 may be a flash memory type, a hard disk type, a multimedia card micro type, or a card type memory (for example, SD or XD memory).
  • RAM Random Access Memory, RAM
  • SRAM Static Random Access Memory
  • ROM Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • PROM Program Programmable Read-Only Memory
  • magnetic memory it may include at least one storage medium of a magnetic disk and an optical disk.
  • FIG. 4 is a block diagram for explaining a charging station according to an embodiment of the present invention
  • FIG. 5 is a perspective view for explaining a charging station according to an embodiment of the present invention.
  • the charging station 200 includes a station body 210, a station communication unit 220, a station sensor unit 230, a station control unit 240, a station charging unit 250, and a station A storage unit 260 is included.
  • the station body 210 is hardware corresponding to the frame of the charging station 200 .
  • the station body 210 includes an accommodation space capable of accommodating the unmanned robot 100.
  • the station body 210 forms a rail 211 protruding from the bottom surface.
  • the rail 211 serves as a guide and at the same time serves to open the cover by engaging with the cover of the unmanned robot 100.
  • the rail 211 is formed in the form of two protrusions, and the width between the protrusions is set to be narrower than the width of the transportation means of the unmanned robot 100. Through this, the unmanned robot 100 may enter the interior while aligning along the rail 211 .
  • the station main body 210 may be fixedly installed on the ground or installed on the water.
  • a floating body 213 may be further attached to the lower portion of the station body 210 so that the station body 210 floats on the water surface within a certain range.
  • the station communication unit 220 communicates with the unmanned robot 100 and the user terminal 300 .
  • the station communication unit 220 can perform wired/wireless communication when the station body 210 is installed on the ground, and can perform wireless communication when the station body 210 is installed on the water.
  • the station sensor unit 230 detects the position of the unmanned robot 100.
  • the station sensor unit 230 detects the moving direction, attitude, distance, etc. of the unmanned robot 100 entering the accommodating space.
  • the station sensor unit 230 may include a camera, an infrared sensor, an ultrasonic sensor, and a distance sensor.
  • the station controller 240 performs overall control of the charging station 200 .
  • the station controller 240 checks the location of the unmanned robot 100 by driving the station sensor unit 230 when the unmanned robot 100 enters the accommodating space.
  • the station control unit 240 controls the position of the station charging unit 250 based on the checked position of the unmanned robot 100 to dock it, and then controls charging of electric energy.
  • the station controller 240 cancels docking when charging of electric energy is completed.
  • the station charger 250 provides electrical energy to the unmanned robot 100 through docking with the unmanned robot 100 .
  • the station charging unit 250 includes a charging adapter having a shape that engages with the charging terminal of the unmanned robot 100 and a large-capacity battery.
  • the charging adapter can move up and down to match the location of the charging terminal.
  • the large-capacity battery stores electric energy in a large capacity and supplies the stored electric energy to a charging terminal through a charging adapter.
  • the station storage unit 260 stores programs or algorithms for driving the charging station 200 .
  • the station storage unit 260 is a flash memory type, a hard disk type, a media card micro type, a card type memory (eg SD or XD memory, etc.), RAM, SRAM, ROM, EEPROM, PROM, magnetic memory, or magnetic disk. and an optical disk.
  • the charging station 200 may further include a station GPS unit (not shown) capable of measuring GPS information.
  • the charging station 200 may further include a station energy generator (not shown) that generates electrical energy using renewable energy such as solar energy and wind energy.
  • 6 to 9 are diagrams for explaining a process of charging an unmanned robot at a charging station according to an embodiment of the present invention.
  • 6 is a diagram for explaining the process of the unmanned robot entering the charging station
  • FIG. 7 is a diagram for explaining the process of opening the cover of the unmanned robot
  • FIGS. 8 and 9 are for explaining the process of charging the unmanned robot. It is a drawing for
  • the unmanned charging system 400 can reliably charge the unmanned robot 100 operated for amphibious use even in a state in which water is stained on the outer surface. At this time, the unmanned charging system 400 automatically charges after opening the cover covering the charging terminal in the process of docking with the unmanned robot 100 and the charging station 200, thereby preventing an electric short caused by water in advance, Maintenance costs can be reduced as no additional manpower is required.
  • the unmanned robot 100 moves to the corresponding charging station 200 after identifying its current location and the location of the charging station 200 when the amount of charge in the battery is less than a preset standard.
  • the unmanned robot 100 arrives near the charging station 200, it transmits a request signal requesting charging to the corresponding charging station 200, and upon receiving a response signal allowing charging from the charging station 200, the charging station ( 200) enter the interior.
  • the moving means 112 of the unmanned robot 100 may enter the inside along the rail 211 of the charging station 200 .
  • the rail 211 engages with and pushes the cover covering the body 111 as the unmanned robot 100 enters the inside, thereby gradually opening a part of the cover.
  • the unmanned robot 100 and the charging station 200 charge the charging terminal provided in the open part of the cover and the station charging unit 250. Dock the adapter.
  • the charging station 200 provides the stored electric energy to the unmanned robot 100, and when charging is completed, the unmanned robot 100 charges the charging station 200. After canceling the docking with the device, it comes out of the charging station 200 and collects collected data again or moves to a preset location.
  • the method according to an embodiment of the present invention may be provided in the form of a computer readable medium suitable for storing computer program instructions and data.
  • a computer-readable recording medium may include program commands, data files, data structures, etc. alone or in combination, and includes all types of recording devices storing data that can be read by a computer system.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tapes, optical recording media such as CD-ROMs (Compact Disk Read Only Memory) and DVDs (Digital Video Disks).
  • the computer-readable recording medium is distributed in computer systems connected through a network, so that computer-readable codes can be stored and executed in a distributed manner.
  • functional programs, codes, and code segments for implementing the present invention can be easily inferred by programmers in the technical field to which the present invention belongs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Robotics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The present invention provides an unmanned charging system for charging an unmanned robot. An unmanned charging system of the present invention comprises: an unmanned robot which is amphibiously operated and collects water quality data of a preset area; and a charging station for, when the unmanned robot enters the charging station to be charged, opening a cover covering a frame of the unmanned robot, inducing the unmanned robot to be docked with a charging terminal provided in the frame, and then charging the unmanned robot.

Description

무인 로봇을 충전하는 무인 충전 시스템Unmanned charging system for unmanned robots
본 발명은 무인 충전 시스템에 관한 것으로, 수륙양용으로 운용되어 수질 데이터를 수집하는 무인 로봇을 자동 충전하는 무인 로봇을 충전하는 무인 충전 시스템에 관한 것이다.The present invention relates to an unmanned charging system, and relates to an unmanned charging system for charging an unmanned robot that is operated for amphibious use and automatically recharges an unmanned robot that collects water quality data.
종래에는 저수지, 호수, 연못 등의 수질을 분석하기 위해 소량의 물을 채취하여 수질을 분석하거나, 수질을 측정하고자 하는 특정위치에 센서를 고정 설치하고, 관리자가 이를 확인하여 수질을 파악하는 방식을 사용하였다. 하지만 이러한 방식은 특정 지점에 대한 조사만이 가능하여 전체 구역의 수질이나 오염 변화량 등을 측정하기 어려운 문제점이 가지고 있다.Conventionally, in order to analyze the water quality of reservoirs, lakes, ponds, etc., a small amount of water is collected and the water quality is analyzed, or a sensor is fixed and installed at a specific location to measure the water quality, and a manager checks it to determine the water quality. used However, this method has a problem in that it is difficult to measure the water quality or pollution change in the entire area because only a specific point can be investigated.
이에 따라 최근에는 수질을 측정하기 위한 무인 로봇을 수면 위로 주행시켜 실시간으로 수질을 측정하는 방식이 도입되고 있다. 이때 무인 로봇은 별도의 충전 스테이션을 통한 자동 충전을 할 수 있으나, 자동 충전 과정에서 물이 묻은 상태로 충전될 수 있어 관리자가 수동으로 물을 닦아준 후, 충전을 하고 있는 실정이다. Accordingly, recently, a method of measuring water quality in real time by driving an unmanned robot for measuring water quality on the surface of the water has been introduced. At this time, the unmanned robot can be automatically charged through a separate charging station, but it can be charged in a state in which water is stained during the automatic charging process, so the manager manually wipes the water before charging.
본 발명이 이루고자 하는 기술적 과제는 수륙양용으로 운용되어 수질 데이터를 수집하는 무인 로봇이 안정적으로 자동 충전되도록 지원하는 무인 로봇을 충전하는 무인 충전 시스템을 제공하는데 목적이 있다.An object of the present invention is to provide an unmanned charging system for charging an unmanned robot that supports stable and automatic charging of an unmanned robot that is operated for amphibious use and collects water quality data.
상기 목적을 달성하기 위해 본 발명에 따른 무인 로봇을 충전하는 무인 충전 시스템은 수륙양용으로 운용되고, 기 설정된 지역의 수질 데이터를 수집하는 무인 로봇 및 상기 무인 로봇이 충전을 위해 내부로 진입한 경우, 상기 무인 로봇의 프레임을 덮고 있는 덮개를 개방시키고, 상기 프레임 내부에 구비된 충전단자와의 도킹을 유도한 후, 상기 무인 로봇을 충전시키는 충전 스테이션을 포함한다.In order to achieve the above object, an unmanned charging system for charging an unmanned robot according to the present invention is operated for amphibious use, and when the unmanned robot collects water quality data in a predetermined area and the unmanned robot enters the interior for charging, and a charging station for opening a cover covering a frame of the unmanned robot, inducing docking with a charging terminal provided inside the frame, and then charging the unmanned robot.
또한 상기 무인 로봇은, 양끝단에 부유체를 구비하고, 캐터필러(caterpillar)로 이루어진 이송수단이 회전하면서 지상 및 수상을 이동하는 것을 특징으로 한다.In addition, the unmanned robot is characterized in that it is provided with a floating body at both ends, and the transfer means made of a caterpillar rotates while moving on the ground and on the water.
또한 상기 무인 로봇은, 상기 충전 스테이션과의 충전이 완료되고, 상기 도킹이 해지되면 상기 덮개가 상기 프레임을 따라 폐쇄되는 것을 특징으로 한다.In addition, the unmanned robot is characterized in that the cover is closed along the frame when charging with the charging station is completed and the docking is terminated.
또한 상기 충전 스테이션은, 바닥면에 돌출된 형상인 레일을 형성하고, 상기 레일을 따라 상기 무인 로봇이 내부로 진입하도록 유도하며, 상기 무인 로봇이 내부로 진입할수록 상기 레일과 상기 덮개가 맞물리면서 진입하는 반대 방향으로 상기 덮개를 밀어주어 상기 충전단자를 덮고 있던 덮개를 개방시키는 것을 특징으로 한다.In addition, the charging station forms a rail protruding from the bottom surface, guides the unmanned robot to enter the inside along the rail, and enters while the rail and the cover are engaged as the unmanned robot enters the inside It is characterized in that the cover covering the charging terminal is opened by pushing the cover in the opposite direction.
또한 상기 충전 스테이션은, 상기 충전단자와 접촉되는 부분에 탄성부재를 구비하여 도킹시 발생되는 충격을 완화하는 것을 특징으로 한다.In addition, the charging station is characterized in that an elastic member is provided at a portion in contact with the charging terminal to mitigate shock generated during docking.
또한 상기 충전 스테이션은, 하부에 부유체가 부착되어 수상에 설치가 가능한 것을 특징으로 한다.In addition, the charging station is characterized in that the floating body is attached to the lower portion can be installed on the water surface.
본 발명의 무인 로봇을 충전하는 무인 충전 시스템은 수륙양용으로 운용되는 무인 로봇의 겉표면에 물이 묻은 상태에서도 안정적으로 충전할 수 있다.The unmanned charging system for charging the unmanned robot of the present invention can be stably charged even in a state in which water is stained on the outer surface of the unmanned robot operated for amphibious use.
특히 본 발명은 무인 로봇 및 충전 스테이션과의 도킹 과정에서 충전단자를 덮고 있던 덮개를 개방시킨 후, 자동 충전함으로써, 물로 인한 전기 쇼트 현상이 미연에 방지하고, 별도의 인력이 필요하지 않아 유지보수 비용을 절감할 수 있다.In particular, the present invention automatically charges after opening the cover covering the charging terminal in the process of docking with the unmanned robot and the charging station, thereby preventing electric shorts caused by water in advance and requiring no additional manpower, thereby reducing maintenance costs. can save
도 1은 본 발명의 실시예에 따른 무인 충전 시스템을 설명하기 위한 구성도이다.1 is a configuration diagram for explaining an unattended charging system according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 무인 로봇을 설명하기 위한 블록도이다.2 is a block diagram for explaining an unmanned robot according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 무인 로봇을 설명하기 위한 사시도이다.3 is a perspective view for explaining an unmanned robot according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 충전 스테이션을 설명하기 위한 블록도이다.4 is a block diagram for explaining a charging station according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 충전 스테이션을 설명하기 위한 사시도이다.5 is a perspective view for explaining a charging station according to an embodiment of the present invention.
도 6 내지 도 9는 본 발명의 실시예에 따른 무인 로봇이 충전 스테이션에서 충전되는 과정을 설명하기 위한 도면이다.6 to 9 are diagrams for explaining a process of charging an unmanned robot at a charging station according to an embodiment of the present invention.
이하 본 발명의 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의한다. 또한 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 당업자에게 자명하거나 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, in adding reference numerals to the components of each drawing, it should be noted that the same components have the same numerals as much as possible even if they are displayed on different drawings. In addition, in describing the present invention, if it is determined that a detailed description of a related known configuration or function is obvious to those skilled in the art or may obscure the gist of the present invention, the detailed description will be omitted.
도 1은 본 발명의 실시예에 따른 무인 충전 시스템을 설명하기 위한 구성도이다.1 is a configuration diagram for explaining an unattended charging system according to an embodiment of the present invention.
도 1을 참조하면, 무인 충전 시스템(400)은 무인 로봇(100)이 안정적으로 자동 충전되도록 지원한다. 무인 충전 시스템(400)은 무인 로봇(100) 및 충전 스테이션(200)을 포함하고, 사용자 단말(300)을 더 포함할 수 있다.Referring to FIG. 1 , the unmanned charging system 400 supports the unmanned robot 100 to be reliably and automatically charged. The unmanned charging system 400 includes the unmanned robot 100 and the charging station 200, and may further include a user terminal 300.
무인 로봇(100)은 수륙양용으로 운용되어 수질 데이터를 수집한다. 이때 무인 로봇(100)은 기 설정된 지역에 대한 수질 데이터를 수집할 수 있으며, 바람직하게는 저수지, 호수, 연못 등 물흐름이 급변하지 않는 지역에 대한 수질 데이터를 수집할 수 있다. 한편 무인 로봇(100)은 배터리에 충전된 전기 에너지가 기 설정된 기준 이하로 낮아지는 경우, 자동으로 현재 위치를 추정하고, 추정된 현재 위치를 기반으로 충전 스테이션(200)으로 이동한 후, 충전 스테이션(200)으로부터 전기 에너지를 충전할 수 있다. The unmanned robot 100 is operated for amphibious use and collects water quality data. At this time, the unmanned robot 100 may collect water quality data for a preset area, and preferably collect water quality data for areas where water flow does not change rapidly, such as reservoirs, lakes, and ponds. Meanwhile, the unmanned robot 100 automatically estimates the current location when the electrical energy charged in the battery is lower than a preset standard, moves to the charging station 200 based on the estimated current location, and then the charging station. Electrical energy can be charged from (200).
충전 스테이션(200)은 무인 로봇(100)과의 도킹을 통해 무인 로봇(100)에 전기 에너지를 제공한다. 이를 위해 충전 스테이션(200)은 무인 로봇(100)이 수용되기 위한 수용공간을 내부에 구비하고 있으며, 수용공간으로의 진입을 가이드하는 레일을 포함할 수 있다. 특히 충전 스테이션(200)는 레일을 이용하여 무인 로봇(100)이 겉표면에 물이 묻어 상태에서도 안정적인 충전이 이루어질 수 있도록 지원한다. 충전 스테이션(200)은 지상 또는 수상에 설치가 가능하고, 지상에 설치된 경우 고정된 상태로 설치될 수 있으며, 수상에 설치된 경우 수위에 영향을 받지 않고 일정 범위 내에서 부유하는 상태로 설치될 수 있다. The charging station 200 provides electrical energy to the unmanned robot 100 through docking with the unmanned robot 100 . To this end, the charging station 200 has an accommodation space for accommodating the unmanned robot 100 therein, and may include a rail guiding entry into the accommodation space. In particular, the charging station 200 uses rails to support stable charging even when the outer surface of the unmanned robot 100 is stained with water. The charging station 200 can be installed on the ground or on water, and when installed on the ground, it can be installed in a fixed state, and when installed on the water, it can be installed in a floating state within a certain range without being affected by the water level. .
사용자 단말(300)은 무인 로봇(100) 및 충전 스테이션(200) 중 적어도 하나와 통신을 한다. 사용자 단말(300)은 사용자로부터 사용자 입력을 받고, 입력된 사용자 입력을 무인 로봇(100) 및 충전 스테이션(200) 중 적어도 하나로 전송하여 사용자 입력에 따른 제어를 할 수 있다. 또한 사용자 단말(300)은 무인 로봇(100) 및 충전 스테이션(200)으로부터 모니터링 정보를 실시간으로 수신하고, 수신된 모니터링 정보를 출력할 수 있다. 사용자 단말(300)은 스마트폰, 랩톱, 데스크톱, 서버 컴퓨터, 클러스터 컴퓨터 등 컴퓨팅 시스템일 수 있다.The user terminal 300 communicates with at least one of the unmanned robot 100 and the charging station 200 . The user terminal 300 may receive a user input from a user and transmit the input user input to at least one of the unmanned robot 100 and the charging station 200 to perform control according to the user input. In addition, the user terminal 300 may receive monitoring information from the unmanned robot 100 and the charging station 200 in real time and output the received monitoring information. The user terminal 300 may be a computing system such as a smart phone, a laptop, a desktop, a server computer, or a cluster computer.
여기서 무인 충전 시스템(400)은 무인 로봇(100), 충전 스테이션(200) 및 사용자 단말(300) 사이에 통신망(450)을 구축하여 서로 간의 통신이 원활히 이루어지도록 한다. 통신망(450)은 백본망과 가입자망으로 구성될 수 있다. 백본망은 X.25 망, Frame Relay 망, ATM망, MPLS(Multi Protocol Label Switching) 망 및 GMPLS(Generalized Multi Protocol Label Switching) 망 중 하나 또는 복수의 통합된 망으로 구성될 수 있다. 가입자망은 FTTH(Fiber To The Home), ADSL(Asymmetric Digital Subscriber Line), 케이블망, 지그비(zigbee), 블루투스(bluetooth), Wireless LAN(IEEE 802.11b, IEEE 802.11a, IEEE 802.11g, IEEE 802.11n), Wireless Hart(ISO/IEC62591-1), ISA100.11a(ISO/IEC 62734), COAP(Constrained Application Protocol), MQTT(Multi-Client Publish/Subscribe Messaging), WIBro(Wireless Broadband), Wimax, 3G, HSDPA(High Speed Downlink Packet Access), 4G 및 5G일 수 있다. 일부 실시예로, 통신망(450)은 인터넷망일 수 있고, 이동 통신망일 수 있다. 또한 통신망(150)은 기타 널리 공지되었거나 향후 개발될 모든 무선통신 또는 유선통신 방식을 포함할 수 있다.Here, the unmanned charging system 400 builds a communication network 450 between the unmanned robot 100, the charging station 200, and the user terminal 300 to facilitate communication between them. The communication network 450 may be composed of a backbone network and a subscriber network. The backbone network may be composed of one or a plurality of integrated networks among an X.25 network, a Frame Relay network, an ATM network, a Multi Protocol Label Switching (MPLS) network, and a Generalized Multi Protocol Label Switching (GMPLS) network. Subscriber networks include FTTH (Fiber To The Home), ADSL (Asymmetric Digital Subscriber Line), cable network, zigbee, Bluetooth, and wireless LAN (IEEE 802.11b, IEEE 802.11a, IEEE 802.11g, IEEE 802.11n ), Wireless Hart (ISO/IEC62591-1), ISA100.11a (ISO/IEC 62734), COAP (Constrained Application Protocol), MQTT (Multi-Client Publish/Subscribe Messaging), WIBro (Wireless Broadband), Wimax, 3G, It may be High Speed Downlink Packet Access (HSDPA), 4G and 5G. In some embodiments, the communication network 450 may be an internet network or a mobile communication network. In addition, the communication network 150 may include all other widely known wireless communication or wired communication methods to be developed in the future.
도 2는 본 발명의 실시예에 따른 무인 로봇을 설명하기 위한 블록도이고, 도 3은 본 발명의 실시예에 따른 무인 로봇을 설명하기 위한 사시도이다.2 is a block diagram for explaining an unmanned robot according to an embodiment of the present invention, and FIG. 3 is a perspective view for explaining an unmanned robot according to an embodiment of the present invention.
도 1 내지 도 3을 참조하면, 무인 로봇(100)은 로봇 본체(110), 로봇 통신부(120), 로봇 센서부(130), 로봇 GPS(Global Positioning System)부(140), 로봇 제어부(150), 로봇 구동부(160), 로봇 전원부(170) 및 로봇 저장부(180)를 포함한다.1 to 3, the unmanned robot 100 includes a robot body 110, a robot communication unit 120, a robot sensor unit 130, a robot Global Positioning System (GPS) unit 140, and a robot control unit 150. ), a robot drive unit 160, a robot power supply unit 170, and a robot storage unit 180.
로봇 본체(110)는 무인 로봇(100)의 프레임에 해당하는 하드웨어이다. 로봇 본체(110)는 몸통부(111) 및 이송수단(112)를 포함한다. 몸통부(111)는 프레임의 중앙에 위치하고, 내부에 로봇 통신부(120), 로봇 GPS부(130), 로봇 제어부(150), 로봇 전원부(170) 및 로봇 저장부(180) 중 적어도 하나가 설치될 수 있는 수용공간을 포함한다. 이때 몸통부(111)는 방수재질의 덮개로 덮여 방수 처리됨으로써, 무인 로봇(100)이 수중에서 동작하더라도, 수용공간 속으로 물이 스며들지 않을 수 있다. 여기서 덮개는 평상시에 수용공간을 덮고 있고, 충전 스테이션(200)과의 도킹 시에 개방될 수 있다. 즉 덮개는 충전 스테이션(200)과의 충전이 완료되고, 도킹이 해지되면 프레임을 따라 폐쇄된다. 이를 위해 덮개는 탄성 재질로 형성되거나, 덮개와 연결된 끝단에 탄성 부재가 연결될 수 있다. 이송수단(112)은 무인 로봇(100)을 지상 및 수상에서 수륙양용으로 주행시켜준다. 이를 위해 이송수단(112)은 무인 로봇(100)의 좌우인 양끝단이 캐터필러(caterpillar)로 이루어진다. 캐터필러는 복수의 아이들러(idler)에 감겨져 무한궤도 방식으로 전진, 후진 및 방향 전환을 수행할 수 있다. 상세하게는 캐터필러는 강판제로 제작되는 복수의 판을 체인 모양으로 연결하고, 앞, 뒤 아이들러에 벨트처럼 걸려 동력으로 회전시켜서 주행한다. 일반적으로 캐터필터는 바퀴에 비해 접지면적이 크고 지면과의 마찰도 크므로, 요철이 심한 도로 또는 진흙에서도 자유로이 주행할 수 있고, 좌우의 회전속도를 바꿔 방향 전환이 자유로워 회전반경을 최소한으로 작게 할 수 있다. 여기에 본 발명의 캐터필터는 추가적으로 복수의 아이들러 사이에 부력을 가지는 부유체를 더 구비하여 이송수단(112) 자체가 부유체의 역할을 하도록 지원한다.The robot body 110 is hardware corresponding to the frame of the unmanned robot 100. The robot body 110 includes a torso 111 and a transfer unit 112 . The body part 111 is located in the center of the frame, and at least one of a robot communication unit 120, a robot GPS unit 130, a robot control unit 150, a robot power supply unit 170, and a robot storage unit 180 is installed therein. Include a space that can be accommodated. At this time, since the body portion 111 is covered with a cover made of a waterproof material and subjected to waterproof treatment, even when the unmanned robot 100 operates underwater, water may not permeate into the accommodation space. Here, the cover normally covers the accommodation space and can be opened when docked with the charging station 200 . That is, the cover is closed along the frame when charging with the charging station 200 is completed and docking is terminated. To this end, the cover may be formed of an elastic material, or an elastic member may be connected to an end connected to the cover. The transportation means 112 drives the unmanned robot 100 in an amphibious manner on land and water. To this end, the transfer means 112 is composed of caterpillars at both ends of the left and right sides of the unmanned robot 100. The caterpillar may be wound on a plurality of idlers to perform forward, backward and direction conversion in an endless track manner. In detail, the caterpillar connects a plurality of plates made of steel in a chain shape, is hung on the front and rear idlers like a belt, and rotates with power to drive. In general, a caterpillar has a larger contact area and greater friction with the ground than a wheel, so it can run freely on uneven roads or mud, and it is free to change direction by changing the left and right rotation speed, so the turning radius is minimized. can do. Here, the cater filter of the present invention further includes a floating body having buoyancy between a plurality of idlers to support the transport means 112 itself to act as a floating body.
로봇 통신부(120)는 충전 스테이션(200) 및 사용자 단말(300)과 통신을 수행한다. 로봇 통신부(120)는 무선통신을 수행할 수 있다.The robot communication unit 120 communicates with the charging station 200 and the user terminal 300 . The robot communication unit 120 may perform wireless communication.
로봇 센서부(130)는 수질 데이터를 수집한다. 로봇 센서부(130)는 주행중인 수면의 수질의 상태, 즉 TDS, PH, DO, ORP, HDO, 전도도, 온도, 염도, 탁도, 수심, 클로로필a, 남조류, 로다민, PAR, 이온, CDOM, CrudeOil 등의 수질 파라미터를 수집한다. 로봇 센서부(130)는 수면 밑으로 일부 잠기는 부분에 설치될 수 있다.The robot sensor unit 130 collects water quality data. The robot sensor unit 130 detects the state of water quality of the water surface during driving, that is, TDS, PH, DO, ORP, HDO, conductivity, temperature, salinity, turbidity, water depth, chlorophyll a, blue-green algae, rhodamine, PAR, ion, CDOM, Collect water quality parameters such as CrudeOil. The robot sensor unit 130 may be installed in a part submerged below the surface of the water.
로봇 GPS부(140)는 무인 로봇(100)의 현재 위치에 대한 GPS 정보를 측정한다. 로봇 GPS부(140)는 실시간으로 GPS 정보를 측정할 수 있으나, 이에 한정하지 않고, 기 설정된 주기마다 GPS 정보를 측정할 수 있다.The robot GPS unit 140 measures GPS information about the current location of the unmanned robot 100. The robot GPS unit 140 may measure GPS information in real time, but is not limited thereto, and may measure GPS information at predetermined intervals.
로봇 제어부(150)는 무인 로봇(100)의 전반적인 제어를 수행한다. 로봇 제어부(150)는 사용자 단말(100)로부터 수질 데이터 수집을 요청하는 사용자 입력이 수신되면 해당 사용자 입력에 따라 기 설정된 지역으로 이동한 후, 수질 데이터를 수집하도록 제어한다. 로봇 제어부(150)는 수집된 수질 데이터를 사용자 단말(100)로 전송시켜 사용자 단말(100)에서 확인하도록 지원할 수 있다. 또한 로봇 제어부(150)는 실시간 또는 기 설정된 주기마다 배터리의 충전량을 감지하고, 배터리의 충전량이 기 설정된 기준 이하로 미달되는 경우, 자동으로 충전 스테이션(200)으로 이동하여 자동 충전되도록 제어한다. 이때 로봇 제어부(150)는 로봇 GPS부(140)로부터 측정된 GPS 정보 및 학습된 지도를 기반으로 한 위치정보를 이용하여 충전 스테이션(200)으로 이동할 수 있다. 특히 로봇 제어부(150)는 충전 스테이션(200)으로 이동하기 전에 충전 스테이션(200)이 현재 다른 무인 로봇을 충전하는지 여부를 확인하고, 다른 무인 로봇이 충전하지 않는 경우 해당 충전 스테이션으로 이동할 수 있다.The robot controller 150 performs overall control of the unmanned robot 100. When a user input requesting collection of water quality data is received from the user terminal 100, the robot control unit 150 moves to a preset area according to the user input and then controls to collect the water quality data. The robot control unit 150 may transmit the collected water quality data to the user terminal 100 and support confirmation in the user terminal 100 . In addition, the robot control unit 150 detects the amount of charge of the battery in real time or at predetermined intervals, and automatically moves to the charging station 200 when the amount of charge of the battery falls short of a predetermined reference level and controls to be automatically charged. At this time, the robot control unit 150 may move to the charging station 200 using GPS information measured by the robot GPS unit 140 and location information based on the learned map. In particular, before moving to the charging station 200, the robot controller 150 may check whether the charging station 200 is currently charging another unmanned robot, and move to the corresponding charging station if the other unmanned robot is not charging.
로봇 구동부(160)는 이동수단(112)과 연결되어 이동수단(112)이 구동하기 위한 동력을 전달한다. 로봇 구동부(160)는 복수의 구동 모터를 포함할 수 있으며, 로봇 제어부(150)에 의해 제어된다. The robot driving unit 160 is connected to the moving means 112 and transmits power for driving the moving means 112 . The robot driving unit 160 may include a plurality of driving motors and is controlled by the robot controller 150 .
로봇 전원부(170)는 충전 스테이션(200)과의 도킹을 위한 충전단자와 전기 에너지를 저장하는 배터리를 포함한다. 충전단자는 충전 스테이션(200)과 맞물리는 구조로 형성되고, 도킹을 위해 별도의 모터(미도시)와 연결되어 충전 스테이션(200)에 대향하도록 이동될 수 있다. 배터리는 충방전이 가능한 이차전지일 수 있으며, 로봇 제어부(150)에 의해 충전량이 실시간 또는 기 설정된 주기마다 감지될 수 있다. 이때 로봇 전원부(170)는 몸통부(111) 내부에 구비되어 물과의 접촉을 미연에 방지할 수 있다.The robot power supply unit 170 includes a charging terminal for docking with the charging station 200 and a battery for storing electrical energy. The charging terminal is formed in a structure that engages with the charging station 200 and is connected to a separate motor (not shown) for docking and can be moved to face the charging station 200 . The battery may be a secondary battery capable of charging and discharging, and the amount of charge may be detected in real time or at predetermined intervals by the robot control unit 150 . At this time, the robot power supply unit 170 is provided inside the body unit 111 to prevent contact with water in advance.
로봇 저장부(180)는 무인 로봇(100)을 구동하기 위한 프로그램 또는 알고리즘이 저장된다. 로봇 저장부(180)는 로봇 센서부(130)로부터 수집된 수질 데이터가 저장된다. 로봇 저장부(180)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기메모리, 자기 디스크 및 광디스크 중 적어도 하나의 저장매체를 포함할 수 있다. The robot storage unit 180 stores a program or algorithm for driving the unmanned robot 100. The robot storage unit 180 stores water quality data collected from the robot sensor unit 130 . The robot storage unit 180 may be a flash memory type, a hard disk type, a multimedia card micro type, or a card type memory (for example, SD or XD memory). , RAM (Random Access Memory, RAM), SRAM (Static Random Access Memory), ROM (Read-Only Memory, ROM), EEPROM (Electrically Erasable Programmable Read-Only Memory), PROM (Programmable Read-Only Memory), magnetic memory , it may include at least one storage medium of a magnetic disk and an optical disk.
도 4는 본 발명의 실시예에 따른 충전 스테이션을 설명하기 위한 블록도이고, 도 5는 본 발명의 실시예에 따른 충전 스테이션을 설명하기 위한 사시도이다.4 is a block diagram for explaining a charging station according to an embodiment of the present invention, and FIG. 5 is a perspective view for explaining a charging station according to an embodiment of the present invention.
도 1, 도 4 및 도 5를 참조하면, 충전 스테이션(200)은 스테이션 본체(210), 스테이션 통신부(220), 스테이션 센서부(230), 스테이션 제어부(240), 스테이션 충전부(250) 및 스테이션 저장부(260)를 포함한다. 1, 4 and 5, the charging station 200 includes a station body 210, a station communication unit 220, a station sensor unit 230, a station control unit 240, a station charging unit 250, and a station A storage unit 260 is included.
스테이션 본체(210)는 충전 스테이션(200)의 프레임에 해당하는 하드웨어이다. 스테이션 본체(210)는 무인 로봇(100)을 수용할 수 있는 수용공간을 포함한다. 스테이션 본체(210)는 바닥면에 돌출된 형상인 레일(211)을 형성한다. 레일(211)은 무인 로봇(100)이 스테이션 본체(210) 내부로 진입할 때, 가이드 역할을 하는 동시에 무인 로봇(100)의 덮개와 맞물려 덮개를 개방시키는 역할을 한다. 예를 들어 레일(211)은 두 개의 돌기 형태로 형성되고, 각 돌기 사이의 폭이 무인 로봇(100)의 이송수단 폭보다 좁게 설정된다. 이를 통해 무인 로봇(100)은 레일(211)을 따라 정렬하면서 내부 진입을 할 수 있다. 한편 스테이션 본체(210)는 지상에 고정되게 설치되거나, 수상에 설치될 수 있다. 특히 스테이션 본체(210)가 수면 위에 설치되는 경우, 스테이션 본체(210)는 하부에 부유체(213)가 더 부착되어 스테이션 본체(210)가 수면 위를 일정 범위 내에서 부유되도록 설치할 수 있다.The station body 210 is hardware corresponding to the frame of the charging station 200 . The station body 210 includes an accommodation space capable of accommodating the unmanned robot 100. The station body 210 forms a rail 211 protruding from the bottom surface. When the unmanned robot 100 enters the inside of the station body 210, the rail 211 serves as a guide and at the same time serves to open the cover by engaging with the cover of the unmanned robot 100. For example, the rail 211 is formed in the form of two protrusions, and the width between the protrusions is set to be narrower than the width of the transportation means of the unmanned robot 100. Through this, the unmanned robot 100 may enter the interior while aligning along the rail 211 . Meanwhile, the station main body 210 may be fixedly installed on the ground or installed on the water. In particular, when the station body 210 is installed on the water surface, a floating body 213 may be further attached to the lower portion of the station body 210 so that the station body 210 floats on the water surface within a certain range.
스테이션 통신부(220)는 무인 로봇(100) 및 사용자 단말(300)과 통신을 수행한다. 스테이션 통신부(220)는 스테이션 본체(210)가 지상에 설치된 경우, 유무선 통신을 수행할 수 있으며, 스테이션 본체(210)가 수상에 설치된 경우, 무선통신을 수행할 수 있다.The station communication unit 220 communicates with the unmanned robot 100 and the user terminal 300 . The station communication unit 220 can perform wired/wireless communication when the station body 210 is installed on the ground, and can perform wireless communication when the station body 210 is installed on the water.
스테이션 센서부(230)는 무인 로봇(100)의 위치를 감지한다. 스테이션 센서부(230)는 수용공간으로 진입하는 무인 로봇(100)의 이동방향, 자세, 거리 등을 감지한다. 이를 위해 스테이션 센서부(230)는 카메라, 적외선 센서, 초음파 센서, 거리 센서 등을 포함할 수 있다. The station sensor unit 230 detects the position of the unmanned robot 100. The station sensor unit 230 detects the moving direction, attitude, distance, etc. of the unmanned robot 100 entering the accommodating space. To this end, the station sensor unit 230 may include a camera, an infrared sensor, an ultrasonic sensor, and a distance sensor.
스테이션 제어부(240)는 충전 스테이션(200)의 전반적인 제어를 수행한다. 스테이션 제어부(240)는 무인 로봇(100)이 수용공간으로 진입하면 스테이션 센서부(230)를 구동시켜 무인 로봇(100)의 위치를 확인하다. 스테이션 제어부(240)는 확인된 무인 로봇(100)의 위치를 기반으로 스테이션 충전부(250)의 위치를 제어하여 도킹한 후, 전기 에너지의 충전을 제어한다. 스테이션 제어부(240)는 전기 에너지의 충전이 완료되면 도킹을 해지한다.The station controller 240 performs overall control of the charging station 200 . The station controller 240 checks the location of the unmanned robot 100 by driving the station sensor unit 230 when the unmanned robot 100 enters the accommodating space. The station control unit 240 controls the position of the station charging unit 250 based on the checked position of the unmanned robot 100 to dock it, and then controls charging of electric energy. The station controller 240 cancels docking when charging of electric energy is completed.
스테이션 충전부(250)는 무인 로봇(100)과의 도킹을 통해 전기 에너지를 무인 로봇(100)에 제공한다. 스테이션 충전부(250)는 무인 로봇(100)의 충전단자와 맞물리는 형상을 가지는 충전 어댑터 및 대용량 배터리를 포함한다. 충전 어댑터는 충전단자의 위치에 맞도록 상하 이동할 수 있다. 또한 대용량 배터리는 전기 에너지를 대용량으로 저장하고, 충전 어댑터를 통해 저장된 전기 에너지를 충전단자로 제공한다.The station charger 250 provides electrical energy to the unmanned robot 100 through docking with the unmanned robot 100 . The station charging unit 250 includes a charging adapter having a shape that engages with the charging terminal of the unmanned robot 100 and a large-capacity battery. The charging adapter can move up and down to match the location of the charging terminal. In addition, the large-capacity battery stores electric energy in a large capacity and supplies the stored electric energy to a charging terminal through a charging adapter.
스테이션 저장부(260)는 충전 스테이션(200)을 구동하기 위한 프로그램 또는 알고리즘이 저장된다. 스테이션 저장부(260)는 플래시 메모리 타입, 하드디스크 타입, 미디어 카드 마이크로 타입, 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램, SRAM, 롬, EEPROM, PROM, 자기메모리, 자기 디스크 및 광디스크 중 적어도 하나의 저장매체를 포함할 수 있다. The station storage unit 260 stores programs or algorithms for driving the charging station 200 . The station storage unit 260 is a flash memory type, a hard disk type, a media card micro type, a card type memory (eg SD or XD memory, etc.), RAM, SRAM, ROM, EEPROM, PROM, magnetic memory, or magnetic disk. and an optical disk.
한편 도면에 도시되지 않았으나, 스테이션 본체(210)가 수상에 설치된 경우, 충전 스테이션(200)은 GPS 정보를 측정할 수 있는 스테이션 GPS부(미도시)를 더 포함할 수 있다. 또한 충전 스테이션(200)은 별도의 태양 에너지, 풍력 에너지 등과 같은 신재생 에너지를 이용한 전기 에너지를 생성하는 스테이션 에너지 생성부(미도시)를 더 포함할 수 있다.Meanwhile, although not shown in the drawing, when the station body 210 is installed on the water, the charging station 200 may further include a station GPS unit (not shown) capable of measuring GPS information. In addition, the charging station 200 may further include a station energy generator (not shown) that generates electrical energy using renewable energy such as solar energy and wind energy.
도 6 내지 도 9는 본 발명의 실시예에 따른 무인 로봇이 충전 스테이션에서 충전되는 과정을 설명하기 위한 도면이다. 도 6은 무인 로봇이 충전 스테이션에 진입하는 과정을 설명하기 도면이고, 도 7은 무인 로봇의 덮개가 개방되는 과정을 설명하기 위한 도면이며, 도 8 및 도 9는 무인 로봇이 충전되는 과정을 설명하기 위한 도면이다.6 to 9 are diagrams for explaining a process of charging an unmanned robot at a charging station according to an embodiment of the present invention. 6 is a diagram for explaining the process of the unmanned robot entering the charging station, FIG. 7 is a diagram for explaining the process of opening the cover of the unmanned robot, and FIGS. 8 and 9 are for explaining the process of charging the unmanned robot. It is a drawing for
도 1, 도 6 내지 도 9를 참조하면, 무인 충전 시스템(400)은수륙양용으로 운용되는 무인 로봇(100)의 겉표면에 물이 묻은 상태에서도 안정적으로 충전할 수 있다. 이때 무인 충전 시스템(400)은 무인 로봇(100) 및 충전 스테이션(200)과의 도킹 과정에서 충전단자를 덮고 있던 덮개를 개방시킨 후, 자동 충전함으로써, 물로 인한 전기 쇼트 현상이 미연에 방지하고, 별도의 인력이 필요하지 않아 유지보수 비용을 절감할 수 있다.1, 6 to 9, the unmanned charging system 400 can reliably charge the unmanned robot 100 operated for amphibious use even in a state in which water is stained on the outer surface. At this time, the unmanned charging system 400 automatically charges after opening the cover covering the charging terminal in the process of docking with the unmanned robot 100 and the charging station 200, thereby preventing an electric short caused by water in advance, Maintenance costs can be reduced as no additional manpower is required.
무인 로봇(100)은 기 설정된 기준 이하로 배터리의 충전량이 미달되는 경우, 자신의 현재 위치 및 충전 스테이션(200)의 위치를 파악한 후, 해당 충전 스테이션(200)으로 이동한다. 무인 로봇(100)은 충전 스테이션(200) 근처에 도착하면 해당 충전 스테이션(200)에 충전을 요청하는 요청신호를 전송하고, 충전 스테이션(200)으로부터 충전을 허용하는 응답신호를 수신하면 충전 스테이션(200)의 내부로 진입한다. The unmanned robot 100 moves to the corresponding charging station 200 after identifying its current location and the location of the charging station 200 when the amount of charge in the battery is less than a preset standard. When the unmanned robot 100 arrives near the charging station 200, it transmits a request signal requesting charging to the corresponding charging station 200, and upon receiving a response signal allowing charging from the charging station 200, the charging station ( 200) enter the interior.
무인 로봇(100)의 이동수단(112)은 충전 스테이션(200)의 레일(211)을 따라 내부로 진입할 수 있다. 이때 레일(211)은 무인 로봇(100)이 내부로 진입할수록 몸통부(111)를 덮고 있는 덮개와 맞물려 밀어줌으로써, 덮개의 일부를 점진적으로 개방시켜준다. The moving means 112 of the unmanned robot 100 may enter the inside along the rail 211 of the charging station 200 . At this time, the rail 211 engages with and pushes the cover covering the body 111 as the unmanned robot 100 enters the inside, thereby gradually opening a part of the cover.
무인 로봇(100)이 충전 스테이션(200)과의 도킹이 이루어지는 거리까지 진입하면 무인 로봇(100) 및 충전 스테이션(200)은 덮개가 개방된 부분에 구비된 충전단자와 스테이션 충전부(250)의 충전 어댑터를 도킹한다. 무인 로봇(100) 및 충전 스테이션(200)의 도킹이 완료되면 충전 스테이션(200)은 저장된 전기 에너지를 무인 로봇(100)에 제공하고, 충전이 완료되면 무인 로봇(100)은 충전 스테이션(200)과의 도킹을 해지한 후, 충전 스테이션(200)에서 나와 수집 데이터를 재수집하거나, 기 설정된 위치로 이동한다.When the unmanned robot 100 enters the distance where docking with the charging station 200 occurs, the unmanned robot 100 and the charging station 200 charge the charging terminal provided in the open part of the cover and the station charging unit 250. Dock the adapter. When the docking of the unmanned robot 100 and the charging station 200 is completed, the charging station 200 provides the stored electric energy to the unmanned robot 100, and when charging is completed, the unmanned robot 100 charges the charging station 200. After canceling the docking with the device, it comes out of the charging station 200 and collects collected data again or moves to a preset location.
본 발명의 실시 예에 따른 방법은 컴퓨터 프로그램 명령어와 데이터를 저장하기에 적합한 컴퓨터로 판독 가능한 매체의 형태로 제공될 수도 있다. 이러한, 컴퓨터가 읽을 수 있는 기록매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있으며, 컴퓨터 시스템에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(Magnetic Media), CD-ROM(Compact Disk Read Only Memory), DVD(Digital Video Disk)와 같은 광기록 매체(Optical Media), 플롭티컬 디스크(Floptical Disk)와 같은 자기-광 매체(Magneto-Optical Media) 및 롬(ROM, Read Only Memory), 램(RAM, Random Access Memory), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치를 포함한다. 또한, 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 본 발명을 구현하기 위한 기능적인(functional) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.The method according to an embodiment of the present invention may be provided in the form of a computer readable medium suitable for storing computer program instructions and data. Such a computer-readable recording medium may include program commands, data files, data structures, etc. alone or in combination, and includes all types of recording devices storing data that can be read by a computer system. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tapes, optical recording media such as CD-ROMs (Compact Disk Read Only Memory) and DVDs (Digital Video Disks). Optical media), magneto-optical media such as floptical disks, and program instructions such as ROM (Read Only Memory), RAM (RAM, Random Access Memory), flash memory, etc. and a hardware device specially configured to do so. In addition, the computer-readable recording medium is distributed in computer systems connected through a network, so that computer-readable codes can be stored and executed in a distributed manner. In addition, functional programs, codes, and code segments for implementing the present invention can be easily inferred by programmers in the technical field to which the present invention belongs.
이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것은 아니며, 기술적 사상의 범주를 이탈함없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다. Although the above has been described and illustrated in relation to preferred embodiments for illustrating the technical idea of the present invention, the present invention is not limited to the configuration and operation as shown and described in this way, without departing from the scope of the technical idea. It will be readily apparent to those skilled in the art that many changes and modifications can be made to the present invention. Accordingly, all such appropriate changes and modifications and equivalents should be regarded as falling within the scope of the present invention.

Claims (6)

  1. 수륙양용으로 운용되고, 기 설정된 지역의 수질 데이터를 수집하는 무인 로봇; 및An unmanned robot that operates for amphibious use and collects water quality data in a preset area; and
    상기 무인 로봇이 충전을 위해 내부로 진입한 경우, 상기 무인 로봇의 프레임을 덮고 있는 덮개를 개방시키고, 상기 프레임 내부에 구비된 충전단자와의 도킹을 유도한 후, 상기 무인 로봇을 충전시키는 충전 스테이션;When the unmanned robot enters the inside for charging, the cover covering the frame of the unmanned robot is opened, docking with the charging terminal provided inside the frame is induced, and then the charging station charges the unmanned robot. ;
    을 포함하는 무인 로봇을 충전하는 무인 충전 시스템.An unmanned charging system for charging an unmanned robot comprising a.
  2. 제 1항에 있어서,According to claim 1,
    상기 무인 로봇은,The unmanned robot,
    양끝단에 부유체를 구비하고, 캐터필러(caterpillar)로 이루어진 이송수단이 회전하면서 지상 및 수상을 이동하는 것을 특징으로 하는 무인 로봇을 충전하는 무인 충전 시스템.An unmanned charging system for charging an unmanned robot, characterized in that a floating body is provided at both ends and a transport means made of a caterpillar rotates to move on the ground and on the water.
  3. 제 1항에 있어서,According to claim 1,
    상기 무인 로봇은,The unmanned robot,
    상기 충전 스테이션과의 충전이 완료되고, 상기 도킹이 해지되면 상기 덮개가 상기 프레임을 따라 폐쇄되는 것을 특징으로 하는 무인 로봇을 충전하는 무인 충전 시스템.The unmanned charging system for charging the unmanned robot, characterized in that the cover is closed along the frame when the charging with the charging station is completed and the docking is cancelled.
  4. 제 1항에 있어서,According to claim 1,
    상기 충전 스테이션은,The charging station,
    바닥면에 돌출된 형상인 레일을 형성하고, 상기 레일을 따라 상기 무인 로봇이 내부로 진입하도록 유도하며, 상기 무인 로봇이 내부로 진입할수록 상기 레일과 상기 덮개가 맞물리면서 진입하는 반대 방향으로 상기 덮개를 밀어주어 상기 충전단자를 덮고 있던 덮개를 개방시키는 것을 특징으로 하는 무인 로봇을 충전하는 무인 충전 시스템.A protruding rail is formed on the bottom surface, the guide guides the unmanned robot to enter the inside along the rail, and as the unmanned robot enters the inside, the rail and the cover engage and move the cover in the opposite direction to the entry. An unmanned charging system for charging an unmanned robot, characterized in that by pushing to open the cover covering the charging terminal.
  5. 제 1항에 있어서,According to claim 1,
    상기 충전 스테이션은,The charging station,
    상기 충전단자와 접촉되는 부분에 탄성부재를 구비하여 도킹시 발생되는 충격을 완화하는 것을 특징으로 하는 무인 로봇을 충전하는 무인 충전 시스템.An unmanned charging system for charging an unmanned robot, characterized in that by providing an elastic member at a portion in contact with the charging terminal to mitigate an impact generated during docking.
  6. 제 1항에 있어서,According to claim 1,
    상기 충전 스테이션은,The charging station,
    하부에 부유체가 부착되어 수상에 설치가 가능한 것을 특징으로 하는 무인 로봇을 충전하는 무인 충전 시스템.An unmanned charging system for charging an unmanned robot, characterized in that the floating body is attached to the lower part and can be installed on the water.
PCT/KR2021/017059 2021-09-03 2021-11-19 Unmanned charging system for charging unmanned robot WO2023033248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0117413 2021-09-03
KR1020210117413A KR102612397B1 (en) 2021-09-03 2021-09-03 Unmanned charging system for charging unmanned robot

Publications (1)

Publication Number Publication Date
WO2023033248A1 true WO2023033248A1 (en) 2023-03-09

Family

ID=85411418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017059 WO2023033248A1 (en) 2021-09-03 2021-11-19 Unmanned charging system for charging unmanned robot

Country Status (2)

Country Link
KR (1) KR102612397B1 (en)
WO (1) WO2023033248A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140065281A (en) * 2012-11-21 2014-05-29 삼성테크윈 주식회사 Docking module, mobile robot comprising the same, docking system compring the same and docking method for mobile robot
KR20150037348A (en) * 2013-09-30 2015-04-08 대우조선해양 주식회사 Apparatus for power charge in underwater robot and method thereof
KR20150109977A (en) * 2014-03-21 2015-10-02 주식회사 엔티리서치 Autonomously driving mobile robot comprising side-type charging means and charging station and system for the same
JP2016097774A (en) * 2014-11-20 2016-05-30 Jmuディフェンスシステムズ株式会社 Amphibian motor car
KR102229294B1 (en) * 2020-08-10 2021-03-17 한국해양과학기술원 Smart station system for unmanned moving objects for ocean observation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907277B1 (en) * 2007-02-06 2009-07-13 성균관대학교산학협력단 Auto Recharging System for Mobile Robot and Method thereof
KR101388910B1 (en) * 2012-10-08 2014-04-25 한국생산기술연구원 Water station of underwater robot
KR101895935B1 (en) 2016-11-04 2018-09-07 주식회사 웨이브쓰리디 Automatic charging system for unmanned aerial vehicle
JP6958368B2 (en) * 2018-01-12 2021-11-02 株式会社Ihi Amphibious vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140065281A (en) * 2012-11-21 2014-05-29 삼성테크윈 주식회사 Docking module, mobile robot comprising the same, docking system compring the same and docking method for mobile robot
KR20150037348A (en) * 2013-09-30 2015-04-08 대우조선해양 주식회사 Apparatus for power charge in underwater robot and method thereof
KR20150109977A (en) * 2014-03-21 2015-10-02 주식회사 엔티리서치 Autonomously driving mobile robot comprising side-type charging means and charging station and system for the same
JP2016097774A (en) * 2014-11-20 2016-05-30 Jmuディフェンスシステムズ株式会社 Amphibian motor car
KR102229294B1 (en) * 2020-08-10 2021-03-17 한국해양과학기술원 Smart station system for unmanned moving objects for ocean observation

Also Published As

Publication number Publication date
KR20230034544A (en) 2023-03-10
KR102612397B1 (en) 2023-12-11

Similar Documents

Publication Publication Date Title
CN106218427B (en) The charging method and device of unmanned vehicle
KR20190010718A (en) Electric car docking station (DOCKING STATION)
EP3892798B1 (en) Method for charging a pool cleaning robot
WO2014175569A1 (en) Robot for charging electric vehicle
CN109532511B (en) Driving method of electric scooter and electric scooter
CN105438408A (en) All-dimensional intelligent detection buoy
CN104908897B (en) A kind of autonomous cruise spilled oil on water surface recycling machine people
WO2023033248A1 (en) Unmanned charging system for charging unmanned robot
KR20130047049A (en) Camera robot of buoy type
KR101388910B1 (en) Water station of underwater robot
CN211741246U (en) Intelligent water quality monitoring system
KR101835553B1 (en) a docking apparatus for underwater wireless power transferring system
CN109774501B (en) Charging method of electric scooter and electric scooter
CN107040017A (en) A kind of N-free diet method intelligent charging system and its charging method based on lithium-ion capacitor
CN211810114U (en) Water surface garbage clearing and transporting management system
CN110927177A (en) Pollutant monitoring device based on image recognition
WO2021101223A1 (en) Method and device for controlling power of wireless charging inverter on basis of vehicle location
WO2015111776A1 (en) Movable apparatus for collecting floating matters
CN109760529B (en) Charging method of electric scooter and electric scooter
WO2020203929A1 (en) Transport system, mobile body, transport method, transport program, and recording medium
Howe et al. Moorings for ocean observatories: continuous and adaptive sampling
CN217385446U (en) Environmental monitoring system and device of plugging into thereof
CN111208269A (en) Low-cost offshore culture water quality monitoring system and method
CN214001990U (en) Sampling ship for water quality data analysis
CN215048075U (en) Unmanned ship lifting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE