WO2023033149A1 - 内耳血管条辺縁細胞の製造方法、薬剤の評価方法、及び薬剤評価用細胞培養物 - Google Patents

内耳血管条辺縁細胞の製造方法、薬剤の評価方法、及び薬剤評価用細胞培養物 Download PDF

Info

Publication number
WO2023033149A1
WO2023033149A1 PCT/JP2022/033140 JP2022033140W WO2023033149A1 WO 2023033149 A1 WO2023033149 A1 WO 2023033149A1 JP 2022033140 W JP2022033140 W JP 2022033140W WO 2023033149 A1 WO2023033149 A1 WO 2023033149A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
inner ear
marginal
insulin
cell
Prior art date
Application number
PCT/JP2022/033140
Other languages
English (en)
French (fr)
Inventor
智香 三枝
正人 藤岡
栄之 岡野
Original Assignee
学校法人北里研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人北里研究所 filed Critical 学校法人北里研究所
Priority to JP2023545700A priority Critical patent/JPWO2023033149A1/ja
Publication of WO2023033149A1 publication Critical patent/WO2023033149A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention relates to a method for producing inner ear marginal cells of the stria vascularis, a method for evaluating drugs, and a cell culture for drug evaluation.
  • Hearing loss is a disease that causes a significant decrease in QOL, but there is no fundamental treatment method yet. In recent years, hearing loss has also attracted attention as a risk factor for dementia, etc., and understanding the onset mechanism of hearing loss and establishing treatment methods are important and urgent issues.
  • rodents such as genetically modified mice, drug-administered mice, and rats have been mainly used as model animals for the analysis of the onset of hearing loss, but the phenotypes of rodent model animals do not necessarily match the pathology of humans.
  • Many examples have been reported, and the use of human cells and tissues for pathophysiological analysis has been particularly important in recent years.
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • the laboratory to which the inventors belong has also developed a method for inducing the differentiation of human iPS cells into inner ear cell-like cells (Patent Document 1), and using this, constructs a pathological analysis system for hearing loss called Pendred syndrome (PDS) and We are searching for therapeutic agents (Non-Patent Document 1).
  • PDS Pendred syndrome
  • Non-Patent Document 1 some of the candidate drugs obtained as a result of the search have been confirmed to be effective in physician-initiated clinical trials (clinical trial registration ID: UMIN000033083).
  • the stria vascularis is an essential tissue for maintaining the homeostasis of the ionic environment in the cochlea of the inner ear (Fig. 21, left).
  • One of the causes of this type of hearing loss is believed to be dysfunction of the stria vascularis.
  • marginal cells are cells that have essential functions in unidirectional ion transport and barrier formation between tissue and endolymph (see FIG. 21, right).
  • Makoto Hosoya MasatoFujioka, Takefumi Sone,Satoshi Okamoto, Wado Akamatsu,Hideki Ukai, Hiroki R. Ueda, Kaoru Ogawa, TatsuoMatsunaga, andHideyuki Okano ⁇ CochlearCell Modeling UsingDisease-Specific iPSCs Unveils a DegenerativePhenotypeand Suggests Treatments for Congenital Progressive Hearing Loss ⁇ Cell Reports 18 , 68-81, January 3, 2017.
  • an object of the present invention is to provide a technique for producing functional marginal cells of the stria vascularis interna, which may be applied to pathological analysis of hearing loss and drug screening.
  • a step of culturing a cell population containing inner ear progenitor cells differentiated from pluripotent stem cells in an insulin-free medium containing no insulin or only a trace amount comprising:
  • a cell population containing inner ear progenitor cells differentiated from pluripotent stem cells is cultured in an insulin-free medium containing no insulin or only a trace amount. Therefore, we can obtain functional marginal cells of the stria vascularis of the inner ear, which may be applied to pathological analysis of hearing loss and drug screening.
  • the insulin-free medium preferably has an insulin concentration of 0 nM or more and 100 nM or less. According to this, it is possible to more reliably induce differentiation into good-quality marginal cells of the stria vascularis.
  • the insulin-free medium contains EGF and further contains at least one or more selected from the group consisting of bFGF, FGF3, and BMP4. is preferred.
  • EGF contains FGF3 and BMP4 as the initial insulin-free medium during the suspension culture period. According to this, it is possible to more reliably induce differentiation into good-quality marginal cells of the stria vascularis.
  • the method for producing inner ear vascular striatum cells preferably includes the following steps (1) and (2).
  • a step of subjecting a cell population containing inner ear progenitor cells differentiated from pluripotent stem cells to cell detachment/dispersion treatment (2) The cells or cell population obtained in step (1) are Floating culture in the insulin-free medium below
  • the extracellular matrix material is preferably at least one or more selected from the group consisting of matrigel, pronectin, collagen, laminin, and fibronectin.
  • the cell population containing inner ear progenitor cells differentiated from pluripotent stem cells is subjected to cell detachment and dispersion treatment, so that cells not suitable for culture are eliminated, resulting in inner ear progenitor cells of good quality. can be more certain.
  • suspension culture in the presence of an extracellular matrix material has the effect of serving as a scaffold for differentiation into striatal marginal cells. As a result, good-quality inner ear stria vascular marginal cells can be obtained with good reproducibility.
  • the method for producing inner ear vascular striatum cells preferably includes the following steps (1) to (3).
  • a step of subjecting a cell population containing inner ear progenitor cells differentiated from pluripotent stem cells to cell detachment/dispersion treatment (2) The cells or cell population obtained in step (1) are (3) A step of seeding the cells or cell populations after suspension culture in step (2) onto feeder cells previously adherently cultured and culturing them in the insulin-free medium.
  • the feeder cells are preferably melanocytes or melanocyte-like cells.
  • the cell population containing inner ear progenitor cells differentiated from pluripotent stem cells is subjected to cell detachment and dispersion treatment, so that cells not suitable for culture are eliminated, resulting in inner ear progenitor cells of good quality. can be more certain.
  • the cells are cultured in suspension in an insulin-free medium in the presence of an extracellular matrix material, the presence of the extracellular matrix material has the effect of serving as a scaffold for differentiation into striatal marginal cells.
  • the marginal cells of the stria vascularis co-cultured with the adherently cultured feeder cells are also , promotes the formation of a structure (layered) in which stria vascular marginal cells are two-dimensionally cultured on the surface of the feeder cells.
  • two-dimensional culturing of good-quality inner ear stria vascular marginal cells can be performed with better reproducibility.
  • the cell population containing inner ear progenitor cells obtained by differentiation induction from the pluripotent stem cells includes the following steps (1) to (4). It is preferably obtained by a method.
  • Step of culturing pluripotent stem cells in the presence of a ROCK inhibitor without the addition of a growth factor (2) The cell population obtained in step (1) without the addition of a growth factor in the absence of a ROCK inhibitor (3) Culturing the cell population obtained in step (2) in the presence of at least one growth factor selected from the group consisting of bFGF, FGF3, FGF10, and FGF19, and BMP4 Step (4) the cell population obtained in step (3) in the presence of at least one growth factor selected from the group consisting of bFGF, FGF3, FGF10, and FGF19 and in the absence of BMP4 culturing process
  • the marginal cells of the striatum vascularis are obtained under serum-free conditions. According to this, the risk of differentiation into unintended cells due to serum factors can be suppressed.
  • the marginal cells of the striatum vascularis preferably express a potassium channel protein and a tight junction protein. According to this, the quality of the obtained cells to be functional marginal cells of the stria vascularis in the inner ear can be ensured, and thus good-quality marginal cells of the stria vascularis in the inner ear can be obtained with high reproducibility. .
  • the present invention provides a cell culture for drug evaluation, containing inner ear marginal cells of the stria vascularis, which are differentiated from inner ear progenitor cells.
  • the cell culture for drug evaluation since it contains inner ear marginal cells of the stria vascularis that are differentiated from inner ear progenitor cells, it is used to evaluate drugs that affect the marginal cells of the inner ear striatum vascularis. effectively and efficiently.
  • the present invention provides the production of inner ear vascular marginal cells, comprising the step of culturing a cell population containing inner ear progenitor cells in an insulin-free medium that does not contain insulin or contains only a trace amount of insulin. It provides a method.
  • a cell population containing inner ear progenitor cells is cultured in an insulin-free medium containing no insulin or only a trace amount of insulin.
  • a functional marginal cell of the stria vascularis of the inner ear is obtained with potential application in drug screening.
  • FIG. 1 is a flow diagram illustrating an embodiment of a method for producing inner ear vascular stria marginal cells according to the present invention.
  • FIG. 2 is a flow diagram illustrating another embodiment of a method for producing inner ear vascular stria marginal cells according to the present invention.
  • FIG. 2 is a flow diagram illustrating still another embodiment of the method for producing inner ear vascular stria marginal cells according to the present invention.
  • Test Example 1 induction of differentiation from pluripotent stem cells to inner ear progenitor cells was performed, and the expression of PAX2, PAX8, and SOX2 known as marker molecules of inner ear progenitor cells was detected by immunostaining with respective specific antibodies. It is a chart showing.
  • inner ear progenitor cells were induced to differentiate into marginal cells of the stria vascularis in the inner ear. It is a chart which shows the result detected by staining.
  • inner ear progenitor cells were induced to differentiate into inner ear marginal cells of the stria vascularis. It is a chart which shows the detected result.
  • inner ear progenitor cells were induced to differentiate into inner ear marginal cells of the stria vascularis, and the expression of Na/K ATPase, known as a functional protein in marginal cells of the stria vascularis, was examined by immunostaining with its specific antibody. It is a chart which shows the detected result.
  • inner ear progenitor cells were induced to differentiate into inner ear marginal cells of the stria vascularis. It is a chart which shows the detected result.
  • inner ear progenitor cells were induced to differentiate into inner ear marginal cells of the stria vascularis, and the expression of occludin, known as an intercellular tight junction protein, in marginal cells of the stria vascularis was examined by immunostaining with its specific antibody. It is a chart which shows the detected result.
  • Test Example 2 inner ear progenitor cells were induced to differentiate into marginal cells of the stria vascularis in the inner ear, and the expression of ZO-1, known as an intercellular tight junction protein in marginal cells of the stria vascularis, was immunized with its specific antibody. It is a chart which shows the result detected by staining.
  • Test Example 3 pluripotent stem cells were induced to differentiate into inner ear progenitor cells, and further induced to differentiate into marginal cells of the stria vascularis in the inner ear. It is a chart showing the results detected by immunostaining with the specific antibody.
  • test Example 3 pluripotent stem cells were induced to differentiate into inner ear progenitor cells and further induced to differentiate into marginal cells of the stria vascularis in the inner ear.
  • Occludin known as an intercellular tight junction protein in marginal cells of the stria vascularis, induces differentiation of pluripotent stem cells into inner ear progenitor cells and further induces differentiation into marginal cells of the stria vascularis of the inner ear;
  • FIG. 10 is a diagram showing the results of detecting the expression of Claudin-1 and ZO-1 by immunostaining with their specific antibodies.
  • Test Example 4 induction of differentiation from inner ear progenitor cells to inner ear marginal cells of the stria vascularis was carried out by co-culturing with feeder cells (melanocytes) that had been adherently cultured separately in advance.
  • FIG. 4 is a chart showing the results of detection of the expression of ZO-1 and Claudin-1, known as junction proteins, by immunostaining using their respective specific antibodies.
  • FIG. 4 induction of differentiation from inner ear progenitor cells to inner ear marginal cells of the stria vascularis was carried out by co-culturing with feeder cells (melanocytes) that had been adherently cultured separately in advance.
  • FIG. 4 induction of differentiation from inner ear progenitor cells to inner ear marginal cells of the stria vascularis was carried out by co-culturing with feeder cells (melanocytes) that had been adherently cultured separately in advance.
  • FIG. 4 is a chart showing the results of detecting the expression of Occludin, known as a junction protein, by immunostaining with its specific antibody.
  • FIG. 2 is a chart showing the results of detection of known NKCC1, KCNQ1, and LRP2 expression by immunostaining using their specific antibodies.
  • FIG. 10 is a chart showing the results of quantification of OTX2 gene expression by qPCR when using a culture medium prepared according to the present invention.
  • FIG. 10 is a chart showing the results of a barrier function assay performed in Test Example 6, where the left row is a photograph showing a fluorescence microscope image, and the right row is a photograph showing a bright field microscope image.
  • FIG. 2 is a chart showing the results of detection of caspase-3 expression by immunostaining with its specific antibody.
  • FIG. 10 is a chart showing the results of calculating the ratio of cleaved caspase-3 expressing cells to the total number of cells after drug treatment of marginal cells of the stria vascularis in the inner ear differentiated from pluripotent stem cells in Test Example 7.
  • FIG. . FIG. 4 is an explanatory view schematically showing an enlarged stria vascularis portion in a cross section of the cochlea of the inner ear.
  • the present invention relates to a method for inducing the differentiation of inner ear cells that constitute the inner ear organ, and more particularly, to promote the induction of differentiation from stem cells such as pluripotent stem cells and progenitor cells to inner ear vascular stria marginal cells. It relates to an improved method for producing inner ear vascular stria marginal cells.
  • pluripotent stem cell has the same meaning as generally understood by those skilled in the art, and refers to stem cells that have the ability to differentiate into almost all cells that make up the body.
  • Known pluripotent stem cells include induced pluripotent stem cells (iPS cells) and embryonic stem cells (ES cells).
  • iPS cells induced pluripotent stem cells
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • ES cells embryonic stem cells
  • those prepared by reprogramming somatic cells of a healthy individual or those prepared by reprogramming somatic cells of a disease carrier may be used.
  • Diseases particularly include those related to the inner ear organ, hearing, hearing, and the like, such as Pendred's syndrome and Usher's syndrome.
  • the term "marginal cells of the stria vascularis in the inner ear” refers to cells that exhibit the same physiological functions as the marginal cells of the stria vascularis that are inherent in the inner ear organ.
  • the physiological functionality similar to that of the stria vascular marginal cells endogenous to the inner ear organ is not limited to cases in which all of the intrinsic functionality is provided, but in cases in which a part of the physiological functionality is partially expressed. It also means that Therefore, it is meant to include, for example, marginal cells of the stria vascularis inneris.
  • adhere to the bottom surface of the culture vessel, etc. means that the cells or cell populations adhere to the bottom surface of the culture vessel, etc. through the cell-substrate adhesion molecules contained in the extracellular matrix (ECM), etc. It refers to a state in which cells or cell clusters do not float in the culture solution even if the culture solution is gently shaken.
  • ECM extracellular matrix
  • ECM extracellular matrix
  • the bottom surface of the plastic dish is chemically treated or coated with an adhesive coating agent (gelatin, polylysine, agar, etc.) to promote adhesion of cells to the substrate. is preferred.
  • the surface of the plastic dish such as the bottom, should be left untreated or coated with an anti-adhesion coating agent (such as poly(2-hydroxyethyl methacrylate)) to prevent cell adhesion to the substrate.
  • an anti-adhesion coating agent such as poly(2-hydroxyethyl methacrylate)
  • adherent culture promotes differentiation induction, conversely suppresses differentiation induction, and facilitates operations such as medium exchange for regulating them.
  • suspension culture facilitates the formation of three-dimensional organoids that mimic tissue in vivo. Even in adhesion culture, it takes time for the target cells to adhere, and they may remain in a floating state for a certain amount of time. To be included in adherent culture.
  • Step of culturing pluripotent stem cells in the presence of a ROCK inhibitor without the addition of a growth factor (2A)
  • the cell population obtained in step (1A) without the addition of a growth factor in the absence of a ROCK inhibitor (3A) Culturing the cell population obtained in step (2A) in the presence of at least one growth factor selected from the group consisting of bFGF, FGF3, FGF10, and FGF19, and BMP4 process
  • (4A) The cell population obtained in step (3A) is cultured in the presence of at least one growth factor selected from the group consisting of bFGF, FGF3, FGF10, and FGF19 and in the absence of BMP4.
  • the medium used in the above step (1A) is not particularly limited as long as it can maintain pluripotent stem cells or cells undergoing differentiation from pluripotent stem cells.
  • mTeSR1 STMCELL Technologies
  • STMCELL Technologies which is a feeder cell-free serum-free medium for maintaining pluripotent stem cells
  • a ROCK inhibitor has a cell death inhibitory effect on pluripotent stem cells.
  • Step (1A) is preferably carried out for 1 to 3 days, more preferably for 1 to 2 days.
  • ROCK inhibitor used in the above step (1A) examples include Y-27632 ((R)-(+)-trans-N-(4-Pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide), Fasudil hydrochloride, K-115 (ripasudil hydrochloride hydrate), DE-104 and the like.
  • the optimum concentration of the ROCK inhibitor may be appropriately determined depending on the type of ROCK inhibitor.
  • the concentration is preferably 1-100 ⁇ M, more preferably 10-20 ⁇ M.
  • the medium used in the above step (2A) is not particularly limited as long as it can maintain pluripotent stem cells or cells undergoing differentiation from pluripotent stem cells.
  • "mTeSR1" STMCELL Technologies
  • culture is performed in the absence of a growth factor and in the absence of a ROCK inhibitor.
  • the medium is transferred to the basal medium used in the subsequent steps (for example, serum-free medium "DMEM/F12" (trade name “D- MEM/Ham's F-12", Fujifilm Wako Pure Chemical Industries, Ltd.), and the cells are preferably maintained by culturing while replacing the medium with fresh medium every day.
  • the basal medium used in the subsequent steps for example, serum-free medium "DMEM/F12” (trade name “D- MEM/Ham's F-12", Fujifilm Wako Pure Chemical Industries, Ltd.)
  • the cells are preferably maintained by culturing while replacing the medium with fresh medium every day.
  • Step (2A) is preferably carried out for 1 to 10 days in total, more preferably for 2 to 8 days, and carried out for 3 to 6 days. is even more preferred.
  • the absence of growth factors and/or ROCK inhibitors means that the growth factors and/or ROCK inhibitors are substantially absent, Growth factors and/or ROCK inhibitors may be included at ineffective levels of concentration.
  • the medium used in the above step (3A) is not particularly limited as long as it is a medium that can maintain cells undergoing differentiation from pluripotent stem cells.
  • serum-free medium “DMEM/F12” (trade name “D-MEM/Ham's F-12", Fujifilm Wako Pure Chemical Industries, Ltd.
  • serum-free supplement "B27” (trade name “Gibco B-27 Supplement", Thermo Fisher Scientific)
  • serum-free supplement "N2” (trade name “Gibco N-2 Supplement” (Thermo Fisher Scientific)
  • serum-free supplement "Gibco GlutaMAX” (Thermo Fisher Scientific)
  • medium supplemented with serum-free supplement "Nonessential aminoacid” (Nacalai Tesque, Inc.), etc.
  • Step (3A) a growth factor and cultured in the presence of at least one growth factor selected from the group consisting of bFGF, FGF3, FGF10, and FGF19, and BMP4, where all of bFGF, FGF3, FGF10, and FGF19 are present
  • concentration range of the growth factors bFGF, FGF3, FGF10, FGF19, and BMP4 in the medium is preferably 10 to 50 ng/mL, more preferably 10 to 25 ng/mL.
  • Step (3A) is preferably performed for a total of 1 to 6 days, more preferably 2 to 5 days, and even more preferably 3 to 4 days.
  • the medium used in the above step (4A) is not particularly limited as long as it is a medium that can maintain cells heading for differentiation from pluripotent stem cells.
  • serum-free medium "DMEM/F12” (trade name “D-MEM/Ham's F-12", Fujifilm Wako Pure Chemical Industries, Ltd.
  • serum-free supplement “B27” (trade name “Gibco B-27 Supplement", Thermo Fisher Scientific)
  • serum-free supplement "N2” (trade name “Gibco N-2 Supplement” (Thermo Fisher Scientific)
  • Preferred examples include media supplemented with serum-free supplement “Gibco GlutaMAX” (Thermo Fisher Scientific), serum-free supplement "Nonessential aminoacid” (Nacalai Tesque, Inc.), etc.
  • the concentration range of the growth factors bFGF, FGF3, FGF10, and FGF19 in the medium is preferably 10 to 50 ng/mL, preferably 25 ng/mL.
  • the effect of directing the desired differentiation by the growth factor Step (4A) is preferably carried out for a total of 1 to 6 days, more preferably 2 to 5 days, and even more preferably 3 to 4 days.
  • step (4A) the absence of BMP4 means that BMP4 is substantially absent, and may be included at a concentration level that has no effect.
  • a series of culturing from step (1A) to step (4A) is preferably by adherent culture, in which culture is performed while adhering to the bottom of a culture dish. According to this, cells can be efficiently cultured. In addition, it is easy to promote the induction of differentiation, conversely suppress the induction of differentiation, and perform operations such as medium exchange for regulating them. Moreover, it is preferable to culture in a serum-free medium. According to this, the risk of differentiation into unintended cells due to serum factors can be suppressed.
  • inner ear progenitor cell markers PAX2 and PAX8 is used as an index to evaluate the degree of differentiation into inner ear cells. That is, when the progenitor cells, which are immature to a certain degree of differentiation, are differentiated into inner ear cells through a predetermined culture, the expression of PAX2 and PAX8 increases accordingly (Reference 1: Ealy M, Ellwanger DC, Kosaric N, Stapper AP, Heller S. "Single-cell analysis delineates a trajectory toward the human early otic lineage.” Proc Natl Acad Sci USA 2016 Jul.
  • the degree of differentiation into inner ear cells can also be evaluated by examining the expression of PAX2 and PAX8 at the protein expression level and mRNA expression level of the inner ear progenitor cells obtained by the method described above. . That is, when the expression of PAX2 or PAX8 is examined at the protein expression level or the mRNA expression level, the cell population reaches at least the level at which the expression can be detected.
  • inner ear progenitor cell refers to a pre-differentiated cell that has the ability to differentiate into inner ear cells that constitute the inner ear organ. Therefore, it includes, for example, those called inner ear stem cells, ectodermal placode cells, cochlear stem cells, cochlear progenitor cells, tissue stem cells contained in inner ear organ tissues, and the like.
  • FIG. 1 shows a flow diagram illustrating an embodiment of the method for producing marginal cells of the stria vascularis according to the present invention.
  • inner ear progenitor cells are induced to differentiate into more mature inner ear cells by subjecting inner ear progenitor cells to specific treatments.
  • a cell population containing inner ear progenitor cells is cultured in an insulin-free medium containing no insulin or only a trace amount of insulin to induce differentiation into inner ear marginal cells of the stria vascularis.
  • a basal medium used for culture in an insulin-free medium for example, "DMEM/F12" (trade name “D-MEM/Ham's F-12", Fuji Film Wako Pure Chemical Industries, Ltd.) and the like can be used.
  • supplementary nutrients may be added to the basal medium as appropriate. Examples thereof include serum-free supplement “Gibco GlutaMAX” (Thermo Fisher Scientific) and serum-free supplement "Nonessential aminoacid” (Nacalai Tesque, Inc.).
  • the insulin-free medium used in the present invention should limit the insulin concentration in the medium. This is because, as will be shown in Examples described later, a medium with a normal insulin concentration hinders differentiation induction into the desired marginal cells.
  • the lower limit of insulin concentration is 0 nM or more, and the upper limit is preferably 100 nM or less, for example.
  • the upper limit of insulin concentration is 90 nM or less, 80 nM or less, 70 nM or less, 60 nM or less, 50 nM or less, 40 nM or less, 30 nM or less, 20 nM or less, 10 nM or less, 5 nM or less, 4 nM or less, 3 nM or less, 2 nM or less, or 1 nM or less.
  • serum-free supplements that can be added or supplemented to the basal medium are serum-free supplement "B27” (trade name “Gibco B-27 Supplement", Thermo Fisher Scientific), serum-free Supplement “N2" (trade name “Gibco N-2 Supplement” (Thermo Fisher Scientific) was exemplified, but these contain insulin at a certain concentration or higher.Therefore, according to these product protocols, the normal amount
  • serum-free supplement containing similar components a serum-free supplement "N21-Ins” containing no insulin (trade name "N21-MAX Insulin Free Media Supplement ", R&D Systems, Inc.), etc.
  • Such supplement products for culture that do not contain insulin can be added or replenished to the insulin-free medium used in the present invention in a normal amount according to the product protocol. It is possible.
  • EGF, bFGF, FGF3, BMP4, etc. are generally known as growth factors that contribute to differentiation induction from inner ear progenitor cells to more mature inner ear cells. Therefore, even in the culture in the above-mentioned insulin-free medium, the culture can be performed by adding one or more of these growth factors to the medium.
  • the concentration range of these growth factors in the medium is preferably 10 to 50 ng/mL, more preferably 20 to 30 ng/mL for EGF.
  • bFGF preferably ranges from 10 to 50 ng/mL, more preferably from 10 to 30 ng/mL.
  • FGF3 it is preferably 10-100 ng/mL, more preferably 20-80 ng/mL.
  • BMP4 it is preferably 10-50 ng/mL, more preferably 20-30 ng/mL.
  • Cultivation in the insulin-free medium can be performed in an environment in which at least EGF is present as a growth factor and at least one or more selected from the group consisting of bFGF, FGF3, and BMP4 are present.
  • at least EGF is present as a growth factor and at least one or more selected from the group consisting of bFGF, FGF3, and BMP4 are present.
  • Each growth factor is present at each timing, such as culturing in the presence of EGF and FGF3 in the middle of the period, and culturing in the presence of EGF and bFGF in the latter half of the period. It is more preferable to replace the culture medium.
  • the medium does not contain IGF-1. This avoids giving an insulin-like signal by IGF-1.
  • the culture method may be adherent culture or suspension culture, but from the viewpoint of facilitating the formation of three-dimensional organoids that mimic tissue in vivo, suspension culture is more preferable. .
  • the culture period is preferably 50 to 70 days in total, more preferably 55 to 65 days, and even more preferably 60 to 65 days from the start of differentiation induction of pluripotent stem cells.
  • the culture period in the insulin-free medium is preferably 30 to 50 days in total, more preferably 35 to 45 days, and even more preferably 40 to 45 days.
  • FIG. 2 shows a flow chart explaining another embodiment of the method for producing marginal cells of the stria vascularis according to the present invention.
  • inner ear progenitor cells differentiated from pluripotent stem cells are subjected to the following steps (1B) and (2B) to induce differentiation into inner ear striatum cells. I am trying to be more certain.
  • the cells or cell population obtained in step (1B) are Floating culture in the insulin-free medium below
  • a cell population containing inner ear progenitor cells differentiated from pluripotent stem cells is first subjected to cell detachment and dispersion.
  • the proliferated cells adhere to each other. Dissociated into a small number of cell clusters, such as ⁇ 10, individual cells become susceptible to direct exposure to culture medium or incubator.
  • the cells are undifferentiated or have weak growth activity, they die without surviving.
  • cells unnecessary for differentiation into inner ear cells are selected, and the expression levels of, for example, PAX2 and PAX8 can be reliably maintained.
  • the detachment/dispersion treatment of cells is not particularly limited as long as it is a means capable of detaching the adhered cells from the culture substrate and dispersing the cells into individual cells.
  • Examples include enzymatic treatment with a formulation (trade name "TrypLE Select", Thermo Fisher Scientific Co., Ltd.) and actase (enzyme preparation for cell detachment: trade name "Accutase", Nacalai Tesque Co., Ltd.).
  • dissociation of cells can be ensured by pipetting in a liquid medium or the like.
  • remaining cell aggregates may be removed by passing through a mesh having a predetermined pore size.
  • a mesh used for such a purpose a cell strainer equipped with a nylon mesh having a predetermined pore size stepwise in the range of 1 to 1000 ⁇ m is commercially available. A suitable pore size may be selected from the above and used.
  • cells or cell populations subjected to cell detachment/dispersion treatment contain no insulin or only a trace amount of insulin in the presence of an extracellular matrix material.
  • Suspension culture in non-insulin-free medium For suspension culture, cells or cell populations that have undergone cell detachment/dispersion processing are suspended in an appropriate liquid medium and placed in a suspension culture incubator that can be cultured in a non-adherent state. It is preferable to culture the cells in the medium.
  • the incubator for non-adhesive culture specifically, for example, a plastic dish for non-adhesive cell culture can be used.
  • the above-mentioned insulin-free medium may be used as the medium for the suspension culture.
  • an extracellular matrix material is added to this.
  • the presence of the extracellular matrix material facilitates the formation of cell polarity and has the effect of serving as a scaffold for differentiation into striatal marginal cells.
  • the extracellular matrix material is not particularly limited as long as it functions as a scaffold when cells grow three-dimensionally. Examples thereof include matrigel, pronectin, collagen, laminin, and fibronectin. These may be used individually by 1 type, and may use 2 or more types together.
  • the content of the extracellular matrix material in the insulin-free medium is not particularly limited as long as it is within the range normally used by those skilled in the art, but is typically, for example, 0.01 to 10 mg/in terms of protein, which is not limited. mL, such as 0.05-5 mg/mL, such as 0.1-1 mg/mL.
  • This suspension culture is preferably performed for a total of 30 to 50 days, more preferably 35 to 45 days, and even more preferably 40 to 45 days from the start of suspension culture in an insulin-free medium.
  • the spheres (cell masses) formed by centrifugation or the like are collected so as not to be broken, replaced with fresh medium, or fresh medium is added, and the suspension culture is further performed. may continue. In this case, it is preferable to replace the medium in the additional suspension culture or add fresh medium every 3 to 4 days.
  • the three-dimensionally cultured striatal marginal cells which can be prepared in this manner, have intrinsic characteristics similar to striatal marginal cells endogenous to the inner ear organ, such as expressing intercellular tight junction proteins and ion transporters. It is a cell that expresses various physiological functions.
  • FIG. 3 shows a flow diagram illustrating still another embodiment of the method for producing marginal cells of the striatum vascularis according to the present invention.
  • inner ear progenitor cells differentiated from pluripotent stem cells are subjected to the following steps (1C) to (3C) to induce differentiation into inner ear striatum cells.
  • steps (1C) to (3C) to induce differentiation into inner ear striatum cells.
  • a two-dimensional structure is formed by the marginal cells of the stria vascularis in the inner ear. That is, two-dimensional culture (2D culture) of inner ear marginal cells of the stria vascularis can be performed.
  • the cells or cell population obtained in step (1C) are (3C) a step of seeding the cells or cell populations after suspension culture in step (2C) onto feeder cells previously adherently cultured separately and culturing them in the insulin-free medium;
  • steps (1C) and (2C) for the suspension culture in insulin-free medium described above are replaced by the steps described above with reference to FIG. Common to (1B) and step (2B), in the process, the cells are collected as appropriate for the cell population in the suspension culture, and if necessary, the cells are pipetted in an enzyme-added solution to disperse them. After that, the cells are separately seeded on feeder cells that have been adherently cultured in advance. Then, in that state, the culture in the insulin-free medium described above is further continued. Melanocytes, melanocyte-like cells, or the like can be used as feeder cells.
  • the two-dimensional structure is formed along the surface of the two-dimensional structure such as the inner bottom surface of the culture vessel, and is seeded thereon.
  • feeder cells such as melanocytes
  • the co-culture with feeder cells is preferably carried out for a total of 30 to 50 days, more preferably 35 to 45 days, and even more preferably 40 to 45 days from the start.
  • fresh medium may be replaced or fresh medium may be added, and the co-culture with the feeder cells may be continued. In this case, it is preferable to replace the medium in additional co-cultivation or add fresh medium every 3 to 4 days.
  • the concentration of potassium ions is reduced.
  • the present invention can provide a drug evaluation method. That is, a step of treating inner ear marginal cells of the stria vascularis that have been differentiated from pluripotent stem cells with a test drug, and a step of evaluating the state of the inner ear stria vascular marginal cells treated with the test drug A drug evaluation method is provided.
  • an arbitrary test drug is allowed to act on the marginal cells of the stria vascularis induced to differentiate from pluripotent stem cells, and the effect of the test drug on the marginal cells of the stria vascularis of the inner ear is determined. influence or can be evaluated. Thus, for example, it is useful as a tool for effectively and efficiently screening substances involved in inner ear organ functionality.
  • a test agent for example, but not limited to, marginal cells obtained as described above are suspended in a buffer solution, and the test agent is added to the solution at a predetermined concentration.
  • the state of the cells may be observed after a predetermined period of time has elapsed, or, under the culture of marginal cells of the stria vascularis obtained as described above, a predetermined concentration is added to the medium for the culture. Then, the cells may be cultured for a predetermined period of time, and the state of the cells thereafter may be observed.
  • the state of the marginal cells of the stria vascularis in the inner ear after the treatment for example, but not limited to, the ion permeability, barrier function, apoptosis, oxidative stress, etc. of the cells involved in the functionality of the inner ear organ are examined. You may
  • the present invention provides a cell culture for drug evaluation. That is, the present invention provides a cell culture for drug evaluation, containing inner ear marginal cells differentiated from pluripotent stem cells.
  • any test drug can be allowed to act on it, and it is possible to evaluate how the test drug affects the marginal cells of the stria vascularis interna.
  • the cell culture may be in the form of cells or cell populations containing at least the marginal cells of the stria vascularis, and is usually in the form of cell clusters obtained by suspension culture.
  • a storage solution such as a medium or culture medium, and at the time of use, replace the storage solution with a test solution containing the test drug. It can be used to evaluate a test drug by observing the state of cells after a predetermined period of time has elapsed.
  • the storage solution should be placed in a culture container so as to cover the cell culture with a storage solution such as a medium or a storage solution for the purpose of protecting or storing the two-dimensional structural (layered) form.
  • a storage solution such as a medium or a storage solution for the purpose of protecting or storing the two-dimensional structural (layered) form.
  • the storage solution can be replaced with a test solution containing the test drug, and the state of the cells can be observed after the lapse of a predetermined period of time to evaluate the test drug.
  • the evaluation may include, but is not limited to, examining ion permeability, barrier function, apoptosis, oxidative stress, etc. of cells that are involved in the functionality of the inner ear organ.
  • ampicillin was used at a concentration of 100 ⁇ g/mL as an appropriate antibacterial agent in the medium for cell culture as needed. Unless otherwise specified, culture was performed under normal oxygen conditions (O 2 20%, CO 2 5%).
  • Test Example 1 In this test example, inner ear progenitor cells were induced to differentiate from human iPS cells.
  • Serum-free medium (Day 6) Serum-free medium (DMEM/F12 + 2% B27 + 1% N2 + 1% GlutaMAX + 1% Nonessential aminoacid) was replaced with a medium supplemented with growth factors bFGF, FGF3, FGF10, and FGF19 (all growth factor concentrations were 25 ng/mL) until Day 8. cultured.
  • L-glutamine was added to serum-free medium (DMEM/F12 + 2% B27 + 1% N2) to a concentration of 2 mM, and growth factors bFGF, EGF, and IGF-1 were added to concentrations of 20 ng/mL and 20 ng/mL, respectively.
  • the medium was replaced with a medium prepared by adding 50 ng/mL in mL.
  • PAX2, PAX8, SOX2 (Day 12) Cells on day 12 from the start of differentiation induction (Day 12) were fixed by treating with 4% paraformaldehyde for 20 minutes at room temperature, treated with 0.3% PBST for 30 minutes, and then treated with 10% normal donkey serum. /0.3% PBST for 1 hour at room temperature.
  • As primary antibodies mouse anti-PAX2 antibody, rabbit anti-PAX8 antibody and goat anti-SOX2 antibody were used at concentrations of 1:500, 1:500 and 1:500, respectively, and reacted at room temperature for 2 hours. Fluorescent-labeled secondary antibodies specific for each primary antibody's IgG animal species were reacted for 1 hour at room temperature. Nuclei were also stained with Hoechst33258.
  • FIG. 4 shows microscopy images obtained by observing with a confocal microscope (scale bar: 50 ⁇ m).
  • Cells were suspended to a concentration of 5 ⁇ 10 5 cells/10 mL, seeded in a low-adhesion 6-well plate (trade name “Corning Ultra-Low Attachment Plate”, Corning), and hypoxic. Suspension culture was initiated under the conditions (4% O 2 , 5% CO 2 ). At this time, the medium used was a serum-free medium (DMEM/F12+2%B27+1%N2) containing growth factors bFGF, EGF, IGF-1, FGF3, and FGF10 at concentrations of 10 ng/mL, 10 ng/mL, and 25 ng/mL, respectively.
  • DMEM/F12+2%B27+1%N2 serum-free medium
  • growth factors bFGF, EGF, IGF-1, FGF3, and FGF10 at concentrations of 10 ng/mL, 10 ng/mL, and 25 ng/mL, respectively.
  • L-glutamine was added to a concentration of 2 mM
  • Y-27632 was added to a concentration of 10 ⁇ M
  • Matrigel was added to a concentration of 1 %
  • SB431542 was added to a concentration of 2 ⁇ M
  • heparin was added to a concentration of 50 ng/mL to suspend the cells and perform suspension culture. started.
  • the growth factors bFGF and EGF were added to serum-free medium (DMEM/F12 + 2% N21-Ins) at concentrations of 2 ng/mL and 10 ng/mL, respectively. Furthermore, L-glutamine was added to a concentration of 2 mM, and a medium prepared by adding SB431542 to a concentration of 2 ⁇ M was used. Suspension culture was continued at (O 2 20%, CO 2 5%).
  • the expression state of various marker proteins was examined by immunostaining for cells in the process of differentiation induction by the above method and cells after differentiation induction.
  • KCNQ1, KCNE1, LRP2 Day 63
  • Day 63 Fifty-one days after the initiation of suspension culture (Day 63), the cells were fixed by treatment with 4% paraformaldehyde at 4°C for 3 hours, and 7 ⁇ m cryosections were prepared. The frozen sections were treated with 0.3% PBST for 10 minutes and then blocked with 10% normal donkey serum/0.1% PBST at room temperature for 1 hour.
  • primary antibodies mouse anti-LRP antibody, rabbit anti-KCNE1 antibody and goat anti-KCNQ1 antibody were used at concentrations of 1:200, 1:200 and 1:100, respectively, and reacted overnight at 4°C.
  • FIG. 5 shows microscopic observation images obtained by observing with a confocal microscope (scale bar: 20 ⁇ m on the left, 20 ⁇ m on the right).
  • NKCC1, KCNQ1 Day 63
  • NKCC1, KCNQ1 Day 63
  • Fifty-one days after the initiation of suspension culture Day 63
  • the cells were fixed by treatment with 4% paraformaldehyde at 4°C for 3 hours, and 7 ⁇ m cryosections were prepared.
  • the frozen sections were treated with 0.3% PBST for 10 minutes and then blocked with 10% normal donkey serum/0.1% PBST at room temperature for 1 hour.
  • primary antibodies a rabbit anti-KCNQ1 antibody and a goat anti-NKCC1 antibody were used at a concentration of 1:200, respectively, and reacted overnight at 4°C.
  • Fluorescent-labeled secondary antibodies specific for each primary antibody's IgG animal species were reacted for 1 hour at room temperature. Nuclei were also stained with Hoechst33258.
  • FIG. 6 shows microscopy images obtained by observing with a confocal microscope (scale bar: 50 ⁇ m).
  • NKCC1 and KCNQ1 which are known as functional proteins in marginal cells of the striatum vascularis, was detected. In addition, they were not co-localized at the cell membrane, suggesting that the expression pattern in endogenous marginal cells could be reproduced.
  • the expression of Na/K ATPase known as a functional protein, was detected in marginal cells of the striatum vascularis. In addition, it was localized in the cell membrane, and it was thought that the expression pattern in endogenous limbic cells could be reproduced.
  • LMX1, ESRRB 28 days after the start of suspension culture (Day40), the cells were fixed by treating with 4% paraformaldehyde for 20 minutes at room temperature, treated with 0.3% PBST for 20 minutes, and then treated with 10% normal donkey serum. /0.3% PBST for 1 hour at room temperature.
  • primary antibodies a mouse anti-ESRRB antibody and a rabbit anti-LMX1 antibody were used at a concentration of 1:100, respectively, and reacted overnight at 4°C. Fluorescently labeled secondary antibodies specific for the IgG animal species of each primary antibody were reacted for 2 hours at room temperature. Nuclei were also stained with Hoechst33258.
  • FIG. 8 shows microscopy images obtained by observing with a confocal microscope (scale bar: 20 ⁇ m).
  • Occludin (Day 52) 40 days after the start of suspension culture (Day52), the cells were treated with 10% TCA at 4 ° C. for 15 minutes and fixed, treated with 0.3% PBST for 10 minutes, and then treated with 10% normal donkey serum / Blocking was performed with 0.1% PBST at room temperature for 1 hour.
  • a primary antibody a rabbit anti-Occludin antibody was used at a concentration of 1:100 and allowed to react overnight at 4°C.
  • Fluorescently labeled secondary antibody specific to the primary antibody IgG animal species was allowed to react at room temperature for 1 hour and observed with a confocal microscope.
  • FIG. 9 shows microscopy images obtained by observing with a confocal microscope (scale bar: 20 ⁇ m).
  • Occludin known as an intercellular tight junction protein
  • the expression of Occludin was detected in the marginal cells of the stria vascularis in the inner ear.
  • it showed a characteristic cobblestone-like signal, suggesting that the differentiation-induced cells were inner ear vascular stria marginal cells, which are epithelial cell-like cells.
  • FIG. 10 shows microscopy images obtained by observing with a confocal microscope (scale bar: 20 ⁇ m).
  • the expression of ZO-1 known as a functional protein, was detected in marginal cells of the stria vascularis in the inner ear.
  • it showed cobblestone-like signals characteristic of epithelial cells, suggesting that the cells induced to differentiate were epithelial cell-like cells, the stria vascular marginal cells.
  • inner ear progenitor cells obtained by differentiation induction from pluripotent stem cells can be further induced to differentiate into inner ear vascular stria marginal cells by culturing using this induction method.
  • Test Example 3 human iPS cells were induced to differentiate into inner ear progenitor cells by a method different from that in Test Example 1, and the inner ear progenitor cells were induced to differentiate into inner ear vascular stria marginal cells.
  • L-glutamine was added to serum-free medium (DMEM/F12 + 2% B27 + 1% N2) to a concentration of 2 mM, and growth factors bFGF, EGF, and IGF-1 were added to concentrations of 20 ng/mL and 20 ng/mL, respectively.
  • the medium was replaced with a medium prepared by adding 50 ng/mL in mL.
  • NKCC1 (Day 60) Cells 49 days after initiation of suspension culture (Day 60) were treated with 4% paraformaldehyde at room temperature for 15 minutes to fix, and 7 ⁇ m cryosections were prepared. The frozen sections were treated with 0.3% PBST for 10 minutes and then blocked with 10% normal goat serum/0.1% PBST at room temperature for 1 hour.
  • a primary antibody a rabbit anti-NKCC1 antibody was used at a concentration of 1:100 and allowed to react overnight at 4°C. Fluorescently-labeled secondary antibody specific for the primary antibody IgG animal species was reacted for 1 hour at room temperature. Nuclei were also stained with Hoechst33258.
  • FIG. 11 shows microscopy images obtained by observing with a confocal microscope (scale bar: 10 ⁇ m).
  • NKCC1 known as a functional protein
  • ESRRB, KCNQ1 (Day 60) Cells 49 days after initiation of suspension culture (Day 60) were treated with 4% paraformaldehyde at room temperature for 15 minutes to fix, and 7 ⁇ m cryosections were prepared. The frozen sections were treated with 0.3% PBST for 10 minutes and then blocked with 10% normal donkey serum/0.1% PBST at room temperature for 1 hour.
  • primary antibodies a mouse anti-ESRRB antibody and a rabbit anti-KCNQ1 antibody were used at a concentration of 1:100, respectively, and reacted overnight at 4°C. Fluorescently-labeled secondary antibody specific for the primary antibody IgG animal species was reacted for 1 hour at room temperature. Nuclei were also stained with Hoechst33258.
  • FIG. 12 shows microscopy images obtained by observing with a confocal microscope (scale bar: 10 ⁇ m).
  • ESRRB and KCNQ1 which are known as functional proteins in marginal cells of the stria vascularis, was detected.
  • ESRRB is localized in the nucleus, and it was considered that the expression pattern in endogenous marginal cells could be reproduced.
  • FIG. 13 shows a microscopic image obtained by observing with a Keyence BZ-X810 microscope (scale bar: 10 ⁇ m).
  • Test Example 4 In this test example, two-dimensional culture of inner ear marginal cells of the stria vascularis was attempted in order to differentiate inner ear marginal cells from the inner ear progenitor cells.
  • Inner ear progenitor cells were obtained from human iPS cells in the same manner as in Test Example 1, and cultured until Day 20 in the same manner as in Test Example 2 using the inner ear progenitor cells.
  • the cells were collected and treated with a trypsin-like enzyme preparation (trade name “TrypLE Select”, Thermo Fisher Scientific Co., Ltd.) to which EDTA was added to 1 mM at 37° C. for 20 minutes.
  • a double amount of DMEM/F12 was added, passed through a nylon mesh (pore size 40 ⁇ m), and the number of cells was counted with a hemocytometer.
  • the cells after detachment treatment were suspended in a medium having the same composition as the medium on Day 20 to a concentration of 1.2 ⁇ 10 6 cells/10 mL, and seeded separately on previously cultured feeder cells.
  • melanocytes trade name “normal human epidermal melanocytes”, TAKARA
  • TAKARA normal human epidermal melanocytes
  • IWAKI 8-well chamber
  • FIG. 14 shows microscopy images obtained by observing with a confocal microscope (scale bar: 20 ⁇ m).
  • the expression of ZO-1 and Claudin-1 was detected in marginal cells of the stria vascularis in the inner ear.
  • it shows cobblestone-like signals characteristic of epithelial cells, and is an epithelial cell-like cell even in a two-dimensional culture that proliferates and spreads in a monolayer on melanocytes by co-culturing with melanocytes that have been adherently cultured in advance. It was considered that the inner ear striatum cells could be induced to differentiate.
  • Inner ear progenitor cells were obtained from human iPS cells in the same manner as in Test Example 1, and cultured until Day 21 in the same manner as in Test Example 2 using the inner ear progenitor cells.
  • FIG. 15 shows microscopy images obtained by observing with a confocal microscope (scale bar: 10 ⁇ m).
  • Occludin known as an intercellular tight junction protein
  • FIG. 15 shows cobblestone-like signals characteristic of epithelial cells, and is an epithelial cell-like cell even in a two-dimensional culture that proliferates and spreads in a monolayer on melanocytes by co-culturing with melanocytes that have been adherently cultured in advance. It was considered that the inner ear striatum cells could be induced to differentiate.
  • Inner ear progenitor cells were obtained from human iPS cells in the same manner as in Test Example 1, and cultured until Day 20 in the same manner as in Test Example 2 using the inner ear progenitor cells.
  • NKCC1, KCNQ1, LRP2 (Day 65) 48 days after the start of suspension culture (Day60), the cells were fixed by treating with 4% paraformaldehyde overnight at 4°C, treated with 0.3% PBST for 10 minutes, and treated with 10% normal donkey. Blocking was performed with serum/0.1% PBST at room temperature for 1 hour.
  • primary antibodies goat anti-NKCC1 antibody, rabbit anti-KCNQ1 antibody, and mouse anti-LRP2 antibody were used at a concentration of 1:100, respectively, and reacted overnight at 4°C. Fluorescently-labeled secondary antibody specific for the primary antibody IgG animal species was reacted for 1 hour at room temperature. Nuclei were also stained with Hoechst33258.
  • FIG. 16 shows microscopic observation images obtained by observing with a confocal microscope (scale bar: upper 10 ⁇ m, lower 5 ⁇ m).
  • NKCC1, KCNQ1, and LRP2 known as functional proteins in marginal cells of the striatum vascularis was detected.
  • KCNQ1 and LRP2 co-localize at the plasma membrane
  • NKCC1 and KCNQ1 do not co-localize at the plasma membrane. It was considered that differentiation induction of the expressing cells could be achieved.
  • Cells were suspended to a concentration of 5 ⁇ 10 5 cells/10 mL, seeded in a low-adhesion 6-well plate (trade name “Corning Ultra-Low Attachment Plate”, Corning), and hypoxic. Suspension culture was initiated under the conditions (4% O 2 , 5% CO 2 ). At this time, the medium used was a serum-free medium (DMEM/F12+2%B27+1%N2) containing growth factors bFGF, EGF, IGF-1, FGF3, and FGF10 at concentrations of 10 ng/mL, 10 ng/mL, and 25 ng/mL, respectively.
  • DMEM/F12+2%B27+1%N2 serum-free medium
  • growth factors bFGF, EGF, IGF-1, FGF3, and FGF10 at concentrations of 10 ng/mL, 10 ng/mL, and 25 ng/mL, respectively.
  • L-glutamine was added to a concentration of 2 mM
  • Y-27632 was added to a concentration of 10 ⁇ M
  • Matrigel was added to a concentration of 1 %
  • SB431542 was added to a concentration of 1 ⁇ M
  • heparin was added to a concentration of 50 ng/mL to suspend the cells and perform suspension culture. started.
  • Insulin-containing serum replacement medium used Suspension culture was continued until Day 59 in the same manner as Test Example 2-Day 20 and thereafter, except that a serum-free medium (DMEM/F12 + 2% B27 + 1% N2) was used as the medium.
  • a serum-free medium DMEM/F12 + 2% B27 + 1% N2
  • Insulin-free medium Suspension culture was continued until Day 59 in the same manner as Test Example 2-Day 20 and thereafter, except that a serum-free medium (DMEM/F12+2% N21-Ins) was used as the medium.
  • the cells are collected 48 days after the start of the suspension culture (Day60), and are known to be expressed in the Reissner's membrane, which is the inner ear organ.
  • the expression level of the OTX2 gene which is known to be poorly expressed in limbal cells, was quantified by qPCR in the same manner as in Test Example 1.
  • Inner ear progenitor cells were obtained from human iPS cells in the same manner as in Test Example 1, and suspension culture was continued in the same manner as in Test Example 2 until day 49 (Day 61) after the initiation of suspension culture using the inner ear progenitor cells. .
  • a barrier function assay was performed on the obtained cells. Specifically, the culture after floating culture was placed in a 1.5 mL microtube together with the cells, centrifuged, the medium was discarded, and 0.5 mL of HBSS containing 2 mM EDTA was added. As a control, a sample to which HBBS containing no EDTA was added under the same conditions was also prepared. Each was placed in a container on ice for 15 minutes, then 4 kDa FITC-Dextran was added to each to a concentration of 2 mg/mL, suspended, and immediately observed with a confocal microscope.
  • the method of the present invention yields cells exhibiting the same intrinsic physiological functionality as marginal cells of the stria vascularis that are endogenous to the inner ear organ.
  • Test Example 7 In this test example, the marginal cells of the stria vascularis induced to differentiate in the same manner as in test example 3 were used to evaluate drugs.
  • frozen sections were prepared in the same manner using cells 49 days after initiation of suspension culture (Day 60) without drug treatment. Each frozen section was treated with 0.3% PBST for 10 minutes and then blocked with 10% normal donkey serum/0.1% PBST at room temperature for 1 hour.
  • FIG. 19 shows microscopy images obtained by observing with a confocal microscope (scale bar: 20 ⁇ m).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

難聴の病態解析や薬剤スクリーニングへの応用可能性のある機能的な内耳血管条辺縁細胞を作製する技術を提供する。内耳前駆細胞を含む細胞集団を、インスリンを含有しないか又はトレース量しか含有しないインスリン不含培地で培養する工程を含む、内耳血管条辺縁細胞の製造方法である。

Description

内耳血管条辺縁細胞の製造方法、薬剤の評価方法、及び薬剤評価用細胞培養物
 本発明は、内耳血管条辺縁細胞の製造方法、薬剤の評価方法、及び薬剤評価細胞培養物に関する。
 難聴はQOLの著しい低下をもたらす疾患であるが根本的な治療方法は未だ存在しない。また難聴は近年認知症などのリスクファクターとしても注目され、難聴の発症機構の理解および治療方法の確立は重要かつ緊急の課題である。
 これまで難聴発症機構解析には遺伝子改変マウスや薬剤投与マウス・ラットなどの齧歯類がモデル動物として主に用いられてきたが、齧歯類モデル動物の表現型が必ずしもヒトの病態と一致しない例も数多く報告されており、ヒトの細胞・組織を用いて病態解析を行うことが近年特に重要視されている。しかしながら、他の内耳組織と同様に血管条をヒトから解剖学的に非侵襲的に採取することが困難であり、更に難聴自体は致死的な疾患ではないためヒト病理組織を入手することが困難であるなどの理由から、ヒトの細胞・組織を用いて難聴の発症機構を解析することは容易ではない。
 このような問題点を解決するリサーチツールとして、近年、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)等の多能性幹細胞由来分化細胞が注目されている。発明者らの所属研究室においてもヒトiPS細胞から内耳細胞様細胞を分化誘導する方法を開発し(特許文献1)、これを用いてペンドレッド症候群(PDS)という難聴の病態解析系の構築および治療薬の探索を行っている(非特許文献1)。また、その探索の結果得られた候補薬の一部では、医師主導治験で有効性を確認している(臨床試験登録ID:UMIN000033083)。
 一方、内耳蝸牛血管条は内耳蝸牛におけるイオン環境の恒常性維持に必須の組織であり(図21左段参照)、遺伝性・薬剤性・加齢性・騒音性・ウイルス感染性難聴など多くの種類の難聴の原因の一つは血管条の機能不全であると考えられている。血管条を構成する3種類の細胞のうち、辺縁細胞は一方向性イオン輸送や組織-内リンパ間のバリア形成において必須の機能を持つ細胞である(図21右段参照)。
Makoto Hosoya, MasatoFujioka, Takefumi Sone,Satoshi Okamoto, Wado Akamatsu,Hideki Ukai, Hiroki R. Ueda, Kaoru Ogawa, TatsuoMatsunaga, andHideyuki Okano「CochlearCell Modeling UsingDisease-Specific iPSCs Unveils a DegenerativePhenotypeand Suggests Treatments for Congenital Progressive Hearing Loss」Cell Reports 18, 68-81, January 3, 2017.
特許第6218152号公報
 従来の技術により分化誘導された辺縁細胞様細胞においては、一部のマーカー発現が認められるものの、カリウムイオン濃度の恒常性維持に必要な細胞間のタイトジャンクションタンパク質による敷石状平面構造も形成しないため、内耳器官に内在している血管条辺縁細胞と同様の生理機能性をあらわす細胞とはいい難く、よって、内耳血管条辺縁細胞が関与する難聴の病態解析や薬剤スクリーニングへの応用には至らなかった。
 よって、本発明の目的は、難聴の病態解析や薬剤スクリーニングへの応用可能性のある機能的な内耳血管条辺縁細胞を作製する技術を提供することにある。
 本発明者らは、上記目的を達成するため鋭意検討を重ね、本発明を完成するに至った。
 すなわち、本発明は、その第1の観点において、多能性幹細胞から分化誘導した内耳前駆細胞を含む細胞集団を、インスリンを含有しないか又はトレース量しか含有しないインスリン不含培地で培養する工程を含む、内耳血管条辺縁細胞の製造方法を提供するものである。
 本発明による内耳血管条辺縁細胞の製造方法によれば、多能性幹細胞から分化誘導した内耳前駆細胞を含む細胞集団を、インスリンを含有しないか又はトレース量しか含有しないインスリン不含培地で培養するので、難聴の病態解析や薬剤スクリーニングへの応用可能性のある機能的な内耳血管条辺縁細胞が得られる。
 本発明による内耳血管条辺縁細胞の製造方法においては、前記インスリン不含培地はインスリン濃度が0nM以上100nM以下であることが好ましい。これによれば、品質の良好な内耳血管条辺縁細胞への分化誘導をより確実にすることができる。
 本発明による内耳血管条辺縁細胞の製造方法においては、前記インスリン不含培地は、EGFを含み、更にbFGF、FGF3、及びBMP4からなる群から選択される少なくとも1種又は2種以上を含むことが好ましい。また、特に浮遊培養において、その浮遊培養期間における最初のインスリン不含培地としては、EGFにFGF3及びBMP4を含むことが好ましい。これによれば、品質の良好な内耳血管条辺縁細胞への分化誘導をより確実にすることができる。
 本発明による内耳血管条辺縁細胞の製造方法においては、以下の工程(1)及び工程(2)を含むことが好ましい。
 (1)多能性幹細胞から分化誘導した内耳前駆細胞を含む細胞集団を、細胞剥離・分散処理する工程
 (2)工程(1)で得られた細胞又は細胞集団を、細胞外マトリクス素材の存在下に前記インスリン不含培地で浮遊培養する工程
 その細胞外マトリクス素材としては、マトリゲル、プロネクチン、コラーゲン、ラミニン、及びフィブロネクチンからなる群から選択される少なくとも1種又は2種以上であることが好ましい。
 上記製造方法によれば、多能性幹細胞から分化誘導した内耳前駆細胞を含む細胞集団を、細胞剥離・分散処理するので、培養適性のない細胞が淘汰され、品質の良好な内耳前駆細胞であることをより確実にすることができる。また、細胞外マトリクス素材の存在下の浮遊培養により、血管条辺縁細胞への分化の足場となるという効果がある。ひいては、品質の良好な内耳血管条辺縁細胞をより再現性よく得ることができる。
 本発明による内耳血管条辺縁細胞の製造方法においては、以下の工程(1)~工程(3)を含むことが好ましい。
 (1)多能性幹細胞から分化誘導した内耳前駆細胞を含む細胞集団を、細胞剥離・分散処理する工程
 (2)工程(1)で得られた細胞又は細胞集団を、細胞外マトリクス素材の存在下に前記インスリン不含培地で浮遊培養する工程
 (3)工程(2)の浮遊培養後の細胞又は細胞集団を、別に予め接着培養したフィーダー細胞に播種して前記インスリン不含培地で培養する工程
 そのフィーダー細胞としては、メラノサイト又はメラノサイト様細胞であることが好ましい。
 上記製造方法によれば、多能性幹細胞から分化誘導した内耳前駆細胞を含む細胞集団を、細胞剥離・分散処理するので、培養適性のない細胞が淘汰され、品質の良好な内耳前駆細胞であることをより確実にすることができる。また、細胞外マトリクス素材の存在下にインスリン不含培地で浮遊培養するので、その細胞外マトリクス素材の存在により、血管条辺縁細胞への分化の足場となる効果がある。更に、浮遊培養後の細胞又は細胞集団を、別に予め接着培養したフィーダー細胞に播種してインスリン不含培地で培養するので、接着培養したフィーダー細胞と共培養される内耳血管条辺縁細胞についても、そのフィーダー細胞の表面上に血管条辺縁細胞が二次元的に培養された構造(層状)の形成が促進される。ひいては品質の良好な内耳血管条辺縁細胞の二次元培養をより再現性よく行うことができる。
 本発明による内耳血管条辺縁細胞の製造方法においては、前記多能性幹細胞から分化誘導して得られた内耳前駆細胞を含む細胞集団が、以下の工程(1)~工程(4)を含む方法で得られたものであることが好ましい。
 (1)多能性幹細胞を、成長因子無添加、ROCK阻害剤の存在下で培養する工程
 (2)工程(1)で得られた細胞集団を、成長因子無添加、ROCK阻害剤の非存在下で培養する工程
 (3)工程(2)で得られた細胞集団を、bFGF、FGF3、FGF10、及びFGF19からなる群から選ばれた少なくとも1種の成長因子、及びBMP4の存在下で培養する工程
 (4)工程(3)で得られた細胞集団を、bFGF、FGF3、FGF10、及びFGF19からなる群から選ばれた少なくとも1種の成長因子の存在下であって、BMP4の非存在下で培養する工程
 上記製造方法によれば、多能性幹細胞からより確実に内耳前駆細胞を分化誘導することができ、ひいては品質の良好な内耳血管条辺縁細胞をより再現性よく得ることができる。
 本発明による内耳血管条辺縁細胞の製造方法においては、前記内耳血管条辺縁細胞を無血清条件下に得るものであることが好ましい。これによれば、血清因子に起因して目的外の細胞に分化してしまうリスクを抑えることができる。
 本発明による内耳血管条辺縁細胞の製造方法においては、前記内耳血管条辺縁細胞は、カリウムチャネルタンパク質及びタイトジャンクションタンパク質を発現するものであることが好ましい。これによれば、得られた細胞が機能的な内耳血管条辺縁細胞であることの品質をより確実にして、ひいては品質の良好な内耳血管条辺縁細胞をより再現性よく得ることができる。
 本発明は、その第2の観点において、内耳前駆細胞から分化誘導してなる内耳血管条辺縁細胞を被検薬剤で処理する工程と、前記被検薬剤で処理した前記内耳血管条辺縁細胞の状態を評価する工程とを含む、薬剤の評価方法を提供するものである。
 本発明による薬剤の評価方法によれば、内耳血管条辺縁細胞に影響を与える薬剤の評価を有効かつ効率的に行うことができる。
 本発明は、その第3の観点において、内耳前駆細胞から分化誘導してなる内耳血管条辺縁細胞を含有する、薬剤評価用細胞培養物を提供するものである。
 本発明による薬剤評価用細胞培養物によれば、内耳前駆細胞から分化誘導してなる内耳血管条辺縁細胞を含有するので、これを用いて内耳血管条辺縁細胞に影響を与える薬剤の評価を有効かつ効率的に行うことができる。
 本発明は、その第4の観点において、内耳前駆細胞を含む細胞集団を、インスリンを含有しないか又はトレース量しか含有しないインスリン不含培地で培養する工程を含む、内耳血管条辺縁細胞の製造方法を提供するものである。
 本発明による内耳血管条辺縁細胞の製造方法によれば、内耳前駆細胞を含む細胞集団を、インスリンを含有しないか又はトレース量しか含有しないインスリン不含培地で培養するので、難聴の病態解析や薬剤スクリーニングへの応用可能性のある機能的な内耳血管条辺縁細胞が得られる。
本発明による内耳血管条辺縁細胞の製造方法の一実施形態を説明するフロー図である。 本発明による内耳血管条辺縁細胞の製造方法の他の実施形態を説明するフロー図である。 本発明による内耳血管条辺縁細胞の製造方法の更に他の実施形態を説明するフロー図である。 試験例1において、多能性幹細胞から内耳前駆細胞への分化誘導を行い、内耳前駆細胞のマーカー分子として知られるPAX2、PAX8、SOX2の発現を、それぞれの特異抗体による免疫染色により検出した結果を示す図表である。 試験例2において、内耳前駆細胞から内耳血管条辺縁細胞への分化誘導を行い、内耳血管条辺縁細胞における機能性タンパク質として知られるKCNQ1、KCNE1、LRP2の発現を、それぞれの特異抗体による免疫染色により検出した結果を示す図表である。 試験例2において、内耳前駆細胞から内耳血管条辺縁細胞への分化誘導を行い、内耳血管条辺縁細胞における機能性タンパク質として知られるNKCC1、KCNQ1の発現を、それぞれの特異抗体による免疫染色により検出した結果を示す図表である。 試験例2において、内耳前駆細胞から内耳血管条辺縁細胞への分化誘導を行い、内耳血管条辺縁細胞における機能性タンパク質として知られるNa/K ATPaseの発現を、その特異抗体による免疫染色により検出した結果を示す図表である。 試験例2において、内耳前駆細胞から内耳血管条辺縁細胞への分化誘導を行い、内耳血管条辺縁細胞における機能性タンパク質として知られるLMX1、ESRRBの発現を、それぞれの特異抗体による免疫染色により検出した結果を示す図表である。 試験例2において、内耳前駆細胞から内耳血管条辺縁細胞への分化誘導を行い、内耳血管条辺縁細胞における細胞間のタイトジャンクションタンパク質として知られるOccludinの発現を、その特異抗体による免疫染色により検出した結果を示す図表である。 試験例2において、内耳前駆細胞から内耳血管条辺縁細胞への分化誘導を行い、内耳血管条辺縁細胞における細胞間のタイトジャンクションタンパク質として知られるZO-1の発現を、その特異抗体による免疫染色により検出した結果を示す図表である。 試験例3において、多能性幹細胞から内耳前駆細胞を分化誘導し、更に内耳血管条辺縁細胞への分化誘導を行い、内耳血管条辺縁細胞における機能性タンパク質として知られるNKCC1の発現を、その特異抗体による免疫染色により検出した結果を示す図表である。 試験例3において、多能性幹細胞から内耳前駆細胞を分化誘導し、更に内耳血管条辺縁細胞への分化誘導を行い、内耳血管条辺縁細胞における機能性タンパク質として知られるESRRB、KCNQ1の発現を、その特異抗体による免疫染色により検出した結果を示す図表である。 試験例3において、多能性幹細胞から内耳前駆細胞を分化誘導し、更に内耳血管条辺縁細胞への分化誘導を行い、内耳血管条辺縁細胞における細胞間のタイトジャンクションタンパク質として知られるOccludin、Claudin-1、及びZO-1の発現を、その特異抗体による免疫染色により検出した結果を示す図表である。 試験例4において、内耳前駆細胞から内耳血管条辺縁細胞への分化誘導を、別に予め接着培養させたフィーダー細胞(メラノサイト)との共培養により行い、内耳血管条辺縁細胞における細胞間のタイトジャンクションタンパク質として知られるZO-1及びClaudin-1の発現を、それぞれの特異抗体による免疫染色により検出した結果を示す図表である。 試験例4において、内耳前駆細胞から内耳血管条辺縁細胞への分化誘導を、別に予め接着培養させたフィーダー細胞(メラノサイト)との共培養により行い、内耳血管条辺縁細胞における細胞間のタイトジャンクションタンパク質として知られるOccludinの発現を、その特異抗体による免疫染色により検出した結果を示す図表である。 試験例4において、内耳前駆細胞から内耳血管条辺縁細胞への分化誘導を、別に予め接着培養させたフィーダー細胞(メラノサイト)との共培養により行い、内耳血管条辺縁細胞における機能性タンパク質として知られるNKCC1、KCNQ1、LRP2の発現を、それぞれの特異抗体による免疫染色により検出した結果を示す図表である。 試験例5において、内耳前駆細胞から内耳血管条辺縁細胞へと分化誘導する過程において、その培地としてインスリン含有血清代替物を含む培地、インスリン不含培地、又は、インスリン不含培地にインスリンを添加した培地を用いたときのOTX2の遺伝子発現をqPCRにより定量した結果を示す図表である。 試験例6において、バリア機能アッセイを行った結果を示す図表であり、左段は蛍光顕微鏡像を示す写真であり、右段は明視野顕微鏡像を示す写真である。 試験例7において、多能性幹細胞から分化誘導してなる内耳血管条辺縁細胞に薬剤処理を行なった後、細胞間のタイトジャンクションタンパク質として知られるZO-1と、アポトーシスのマーカーとして知られるcleaved caspase-3との発現を、その特異抗体による免疫染色により検出した結果を示す図表である。 試験例7において、多能性幹細胞から分化誘導してなる内耳血管条辺縁細胞に薬剤処理を行なった後、総細胞数に対するcleaved caspase-3発現細胞の割合を計算した結果を示す図表である。 内耳蝸牛断面における血管条部分を拡大して模式的に示す説明図である。
 本発明は、内耳器官を構成する内耳細胞を分化誘導する方法に関し、より詳細には、多能性幹細胞等の幹細胞や前駆細胞から内耳血管条辺縁細胞への分化誘導が促進されるように改良された、内耳血管条辺縁細胞の製造方法に関する。
 本明細書において「多能性幹細胞」とは、一般に当業者に理解される意味と同義であり、身体を構成するほとんどすべての細胞に分化する能力のある幹細胞のことをいう。多能性幹細胞としては、人工多能性幹細胞(iPS細胞)や胚性幹細胞(ES細胞)などが知られている。また、ヒト由来のものであってもよく、ヒト以外の生物に由来するものであってもよい。更に、健常人の体細胞から初期化して調製されたものを用いてもよく、疾患保有者の体細胞から初期化して調製されたものを用いてもよい。疾患としては、特には、内耳器官、聴覚、聴力等に関するものが挙げられ、例えば、ペンドレッド症候群、アッシャー症候群等が挙げられる。
 本明細書において「内耳血管条辺縁細胞」とは、内耳器官に内在している血管条辺縁細胞と同様の生理機能性をあらわす細胞のこという。ただし、内耳器官に内在している血管条辺縁細胞と同様の生理機能性とは、その本来的な機能性をすべて備える場合だけでなく、その一部の生理機能性を部分的にあらわす場合も含む意味である。したがって、例えば、内耳血管条辺縁様細胞を含む意味である。
 本明細書において「接着培養」とは、目的の細胞や細胞集団を培養器の底面等に接着させて培養することを意味し、また、「浮遊培養」とは、目的の細胞や細胞集団を培養器の底面等に接着させずに培養することを意味する。この場合、培養中、細胞や細胞集団が培養器の底面等に接着するとは、細胞や細胞集団が、細胞外マトリクス(ECM)などに含まれる細胞-基質接着分子を通じて、培養器の底面等と接着している状態を意味し、培養液を軽く揺らしても細胞や細胞集団が培養液中に浮かんでこない状態をいう。一方、培養中、細胞や細胞集団が培養器の底面等に接着しないとは、細胞や細胞集団が、細胞外マトリクス(ECM)などに含まれる細胞-基質接着分子を通じて、培養器の底面等と接着していない状態を意味し、たとえ底面等に触れていても培養液を軽く揺らすと細胞や細胞集団が培養液中に浮かんでくるような状態をいう。接着培養の際は、細胞の基質への接着を促進するために、プラスティックディッシュの底表面を化学処理したり、接着を促進する接着用コーティング剤(ゼラチン、ポリリジン、寒天など)でコートしたりすることが好ましい。浮遊培養の際は、プラスティックディッシュの底面等の表面は処理しないか、細胞の基質への接着を阻止するための接着阻止用コーティング剤(ポリ(2-ヒドロキシエチルメタクリレート)など)でコートしたりすることが好ましい。一般に、接着培養によると、分化誘導を促進したり、逆に分化誘導を抑えたり、それらを調節するための培地交換等の操作が容易である。一方、浮遊培養によると、生体内の組織を模した三次元のオルガノイド形成を促しやすい。なお、接着培養であっても、目的の細胞が接着するまでに時間がかかり、ある程度の時間、浮遊状態にある場合があるが、時間がかかってもその細胞が最終的に接着する場合は、接着培養に含めることとする。
 [1]多能性幹細胞から内耳前駆細胞への分化誘導
 多能性幹細胞から内耳前駆細胞への分化誘導は、例えば、以下に説明するような工程(1A)~工程(4A)を経ることにより成し得る。ただし、本発明の技術的範囲は、以下に説明する方法により調製される内耳前駆細胞を用いることに限定されずに、その他のいかなる分化誘導法により調製されたものであっても、その内耳前駆細胞を用いることができる。例えば、上述した特許第6218152号公報に記載の方法や、Makoto Hosoyaら(Cell Reports 18, 68-81, January 3, 2017)に記載の方法、Sho Kuriharaら(Stem Cells Transl Med. 2022 Mar 31;11(3):282-296.)に記載の方法によっても、本発明に用いる内耳前駆細胞を調製し得る。
 (1A)多能性幹細胞を、成長因子無添加、ROCK阻害剤の存在下で培養する工程
 (2A)工程(1A)で得られた細胞集団を、成長因子無添加、ROCK阻害剤の非存在下で培養する工程
 (3A)工程(2A)で得られた細胞集団を、bFGF、FGF3、FGF10、及びFGF19からなる群から選ばれた少なくとも1種の成長因子、及びBMP4の存在下で培養する工程、
 (4A)工程(3A)で得られた細胞集団を、bFGF、FGF3、FGF10、及びFGF19からなる群から選ばれた少なくとも1種の成長因子の存在下であって、BMP4の非存在下で培養する工程
 上記の工程(1A)で用いる培地としては、多能性幹細胞もしくは多能性幹細胞から分化に向かう細胞を維持できる培地であればよく、特に限定されない。例えば、多能性幹細胞維持用のフィーダー細胞不要な無血清培地である「mTeSR1」(STEMCELL Technologies社)などが好ましく例示される。ただし、この工程(1A)では、成長因子の非存在下であって、ROCK(Rho-associated coiled-coil forming kinase/Rho結合キナーゼ)の阻害剤の存在下で培養を行う。ROCK阻害剤により、多能性幹細胞に対して、細胞死抑制効果がある。工程(1A)は、1~3日間行うことが好ましく、1~2日間行うことがより好ましい。
 上記の工程(1A)で用いるROCK阻害剤としては、例えば、Y-27632((R)-(+)-trans-N-(4-Pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide)、Fasudil hydrochloride、K-115(リパスジル塩酸塩水和物)、DE-104などが例示される。ROCK阻害剤の濃度は、ROCK阻害剤の種類に応じて、適宜最適濃度を決定すればよいが、例えばY-27632の場合、1~100μMが好ましく、10~20μMがより好ましい。
 上記の工程(2A)で用いる培地としては、多能性幹細胞もしくは多能性幹細胞から分化に向かう細胞を維持できる培地であればよく、特に限定されない。例えば、工程(1A)の培養に好ましく使用される培地と同様に、多能性幹細胞維持用のフィーダー細胞不要な無血清培地である「mTeSR1」(STEMCELL Technologies社)などが好ましく例示される。ただし、この工程(2A)では、成長因子の非存在下であって、ROCK阻害剤の非存在下で培養する。また、その際、好ましい態様においては、上記mTeSR1メディウムで1日程度培養した後、培地を、続く工程で使用する基礎培地(例えば、無血清培地である「DMEM/F12」(商品名「D-MEM/Ham’s F-12」、富士フイルム和光純薬株式会社)に交換し、1日毎に新鮮培地に交換しつつ培養して細胞を維持することが好ましい。これによれば、成長因子を作用させるために用いる基礎培地に細胞をよくなじませることができる。また、その基礎培地には、適宜、補充栄養成分を添加してもよい。例えば、無血清サプリメント「B27」(商品名「Gibco B-27 Supplement」、Thermo Fisher Scientific社)、無血清サプリメント「N2」(商品名「Gibco N-2 Supplement」(Thermo Fisher Scientific社)、無血清サプリメント「Gibco GlutaMAX」(Thermo Fisher Scientific社)、無血清サプリメント「Nonessential aminoacid」(ナカライテスク株式会社)などが挙げられる。工程(2A)は、トータルで1~10日間行うことが好ましく、2~8日間行うことがより好ましい。3~6日間行うことが更により好ましい。
 なお、上記の工程(1A)及び工程(2A)において、成長因子及び/又はROCK阻害剤の非存在下の意味は、成長因子及び/又はROCK阻害剤が実質的に非存在であればよく、成長因子及び/又はROCK阻害剤は効果がないレベルの濃度で含まれていてもよい。
 上記の工程(3A)で用いる培地としては、多能性幹細胞から分化に向かう細胞を維持できる培地であればよく、特に限定されない。例えば、工程(2A)の後半培養で好ましく使用される培地と同様に、無血清培地である「DMEM/F12」(商品名「D-MEM/Ham’s F-12」、富士フイルム和光純薬株式会社)に、無血清サプリメント「B27」(商品名「Gibco B-27 Supplement」、Thermo Fisher Scientific社)、無血清サプリメント「N2」(商品名「Gibco N-2 Supplement」(Thermo Fisher Scientific社)、無血清サプリメント「Gibco GlutaMAX」(Thermo Fisher Scientific社)、無血清サプリメント「Nonessential aminoacid」(ナカライテスク株式会社)を補充した培地などが好ましく例示される。ただし、この工程(3A)では、成長因子としてbFGF、FGF3、FGF10、及びFGF19からなる群から選ばれた少なくとも1種の成長因子、及びBMP4の存在下に培養する。その際、bFGF、FGF3、FGF10、及びFGF19は、それらの全部を存在させることが好ましい。成長因子であるbFGF、FGF3、FGF10、FGF19、及びBMP4の培地中の濃度範囲としては、それぞれにおいて10~50ng/mLであることが好ましく、10~25ng/mLであることがより好ましい。また、培地は、例えば、およそ1日毎に新鮮なものに交換しつつ培養して、細胞を維持することが好ましい。これによれば、上記成長因子による所望の分化に向かわせる効果を更に高めることができる。工程(3A)は、トータルで1~6日間行うことが好ましく、2~5日間行うことがより好ましい。3~4日間行うことが更により好ましい。
 上記の工程(4A)で用いる培地としては、多能性幹細胞から分化に向かう細胞を維持できる培地であればよく、特に限定されない。例えば、工程(3A)の培養に好ましく使用される培地と同様に、無血清培地である「DMEM/F12」(商品名「D-MEM/Ham’s F-12」、富士フイルム和光純薬株式会社)に、無血清サプリメント「B27」(商品名「Gibco B-27 Supplement」、Thermo Fisher Scientific社)、無血清サプリメント「N2」(商品名「Gibco N-2 Supplement」(Thermo Fisher Scientific社)、無血清サプリメント「Gibco GlutaMAX」(Thermo Fisher Scientific社)、無血清サプリメント「Nonessential aminoacid」(ナカライテスク株式会社)を補充した培地などが好ましく例示される。ただし、この工程(4A)では、成長因子としてbFGF、FGF3、FGF10、及びFGF19からなる群から選ばれた少なくとも1種の成長因子の存在下であって、BMP4の非存在下に培養する。その際、bFGF、FGF3、FGF10、及びFGF19は、それらの全部を存在させることが好ましい。成長因子であるbFGF、FGF3、FGF10、及びFGF19の培地中の濃度範囲としては、それぞれにおいて10~50ng/mLであることが好ましく、25ng/mLであることがより好ましい。また、培地は、例えば、およそ1日毎に新鮮なものに交換しつつ培養して、細胞を維持することが好ましい。これによれば、上記成長因子による所望の分化に向かわせる効果を更に高めることができる。工程(4A)は、トータルで1~6日間行うことが好ましく、2~5日間行うことがより好ましい。3~4日間行うことが更により好ましい。
 なお、工程(4A)において、BMP4の非存在下の意味は、BMP4が実質的に非存在であればよく、効果がないレベルの濃度で含まれていてもよい。
 工程(1A)~工程(4A)の一連の培養は、培養皿の底面等に付着させつつ培養する、接着培養によることが好ましい。これによれば、細胞を効率よく培養することができる。また、分化誘導を促進したり、逆に分化誘導を抑えたり、それらを調節するための培地交換等の操作が容易である。また、無血清培地で培養することが好ましい。これによれば、血清因子に起因して目的外の細胞に分化してしまうリスクを抑えることができる。
 ここで、一般に、内耳細胞への分化の程度を評価するには、内耳前駆細胞マーカーであるPAX2やPAX8の発現を指標にすることが行われている。すなわち、分化の程度の未熟な前駆細胞から所定の培養を経ることにより内耳細胞への分化に向かうと、それにともなってPAX2やPAX8の発現が上昇する(参考文献1:Ealy M, Ellwanger DC, Kosaric N, Stapper AP, Heller S.「Single-cell analysis delineates a trajectory toward the human early otic lineage.」Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):8508-13.;参考文献2:Koehler KR, Nie J, Longworth-Mills E, Liu XP, Lee J, Holt JR, Hashino E.「Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells.」Nat Biotechnol. 2017 Jun;35(6):583-589.)。よって、上記に説明した方法を経ることにより得られた内耳前駆細胞についても、PAX2やPAX8の発現をタンパク発現レベルやmRNA発現レベルで調べることにより、内耳細胞へ分化の程度を評価することができる。すなわち、PAX2やPAX8の発現をタンパク発現レベルやmRNA発現レベルで調べたとき、少なくともその発現を検知することができるレベルに達した細胞集団となっている。ここで、内耳細胞へ分化の程度を評価する指標としては、PAX2、PAX8以外にも、FoxG1、GATA3、TFAP2A、ECAD、SOX10、JAG1など、内耳前駆細胞のマーカーとして周知であり、これらを含むマーカーのうちいずれか1種又は2種以上を用いて評価してもよい。なお、本明細書において「内耳前駆細胞」とは、内耳器官を構成する内耳細胞へ分化できる能力をもつその分化前の細胞のことをいう。よって、例えば、内耳幹細胞と称されるものや、外胚葉性プラコード細胞、蝸牛幹細胞、蝸牛前駆細胞、内耳器官の組織中に含まれる組織幹細胞などを含む意味である。
 [2]内耳前駆細胞から内耳血管条辺縁細胞への分化誘導
 図1には、本発明による内耳血管条辺縁細胞の製造方法の一実施形態を説明するフロー図を示す。図1に示されるように、本発明においては、内耳前駆細胞に対して特定の処理を施すことにより、内耳前駆細胞からより成熟した内耳細胞へと分化誘導する。具体的には、内耳前駆細胞を含む細胞集団を、インスリンを含有しないか又はトレース量しか含有しないインスリン不含培地で培養することにより、内耳血管条辺縁細胞へと分化誘導する。
 インスリン不含培地での培養に用いる基礎培地としては、上述した内耳前駆細胞の調製の場合と同様に、例えば「DMEM/F12」(商品名「D-MEM/Ham’s F-12」、富士フイルム和光純薬株式会社)などを使用し得る。また、その基礎培地には、適宜、補充栄養成分を添加してもよい。例えば、無血清サプリメント「Gibco GlutaMAX」(Thermo Fisher Scientific社)、無血清サプリメント「Nonessential aminoacid」(ナカライテスク株式会社)などが挙げられる。ただし、本発明に用いるインスリン不含培地は、その培地中でのインスリン濃度が制限される必要がある。後述する実施例で示されるように、通常インスリン濃度の培地であると目的とする辺縁細胞への分化誘導が妨げられるからである。インスリン濃度の下限値として0nM以上であり、その上限値としては、例えば100nM以下であることが好ましい。インスリン濃度の上限値としては90nM以下、80nM以下、70nM以下、60nM以下、50nM以下、40nM以下、30nM以下、20nM以下、10nM以下、5nM以下、4nM以下、3nM以下、2nM以下、又は1nM以下などであってもよい。
 なお、上述した内耳前駆細胞の調製においては、基礎培地に添加・補充可能な無血清サプリメントとして、無血清サプリメント「B27」(商品名「Gibco B-27 Supplement」、Thermo Fisher Scientific社)、無血清サプリメント「N2」(商品名「Gibco N-2 Supplement」(Thermo Fisher Scientific社)などが例示されたが、これらには一定濃度以上のインスリンが含まれている。よって、これらの製品プロトコルに従って通常量で上記インスリン不含培地に添加・補充することは好ましくない。一方、類似の成分を含む無血清サプリメントとして、インスリンを含有しない無血清サプリメント「N21-Ins」(商品名「N21-MAX InsulinFree Media Supplement」、R&D Systems社)などがある。このようなインスリンを含有しない培養用サプリメント製品であれば、その製品プロトコルに従い、通常量で、本発明に用いる上記インスリン不含培地に添加・補充することが可能である。
 ここで一般に、内耳前駆細胞からより成熟した内耳細胞への分化誘導に寄与する成長因子としては、EGF、bFGF、FGF3、BMP4などが知られている。よって、上記インスリン不含培地による培養においてもこれら成長因子の1種又は2種以上を培地に含有せしめて培養することができる。この場合、これら成長因子の培地中の濃度範囲としては、EGFでは、10~50ng/mLであることが好ましく、20~30ng/mLであることがより好ましい。bFGFでは、10~50ng/mLであることが好ましく、10~30ng/mLであることがより好ましい。FGF3では、10~100ng/mLであることが好ましく、20~80ng/mLであることがより好ましい。BMP4では、10~50ng/mLであることが好ましく、20~30ng/mLであることがより好ましい。
 上記インスリン不含培地による培養は、特に、成長因子としてEGFが少なくとも存在し、更にbFGF、FGF3、及びBMP4からなる群から選択される少なくとも1種又は2種以上が存在する環境下に行うことが好ましい。特に浮遊培養において、インスリン不含培地として最初に培地交換される培地では、EGFに更にFGF3及びBMP4が含まれている培地で培養することが重要である。より具体的には、インスリン不含培地での浮遊培養においては、少なくとも成長因子としてEGFの存在下に培養を行うことが好ましく、更に、その浮遊培養期間における前半においてはEGFに加えてFGF3及びBMP4の存在下に培養し、その半ばにおいてはEGFに加えてFGF3の存在下に培養し、その後半においてはEGFに加えてbFGFの存在下に培養するなど、それぞれのタイミングで各成長因子を存在させるよう培地交換することがより好ましい。
 一方、上記インスリン不含培地による培養においては、その培地にIGF-1を含有させないことがより好ましい。これによれば、IGF-1によりインスリン様のシグナルを与えることを避けることができる。
 上記インスリン不含培地を用いるとともに、これらの好ましい成長因子の存在やその入れ替えにより、内耳血管条辺縁細胞への分化誘導をより確実にすることができる。培養方式としては、接着培養で行ってもよく、浮遊培養で行ってもよいが、生体内の組織を模した三次元のオルガノイド形成を促しやすいという観点からは、浮遊培養で行うことがより好ましい。また、無血清培地で培養することが好ましい。これによれば、血清因子に起因して目的外の細胞に分化してしまうリスクを抑えることができる。また、培養期間は、多能性幹細胞の分化誘導の開始からトータル50~70日間行うことが好ましく、55~65日間行うことがより好ましく、60~65日間行うことが更により好ましい。また、インスリン不含培地での培養期間が、トータル30~50日間であることが好ましく、35~45日間であることがより好ましく、40~45日間であることが更により好ましい。
 図2には、本発明による内耳血管条辺縁細胞の製造方法の他の実施形態を説明するフロー図を示す。この実施形態においては、多能性幹細胞から分化誘導した内耳前駆細胞に対して、以下の工程(1B)及び工程(2B)の処理を施すことにより、内耳血管条辺縁細胞への分化誘導をより確実にするようにしている。
 (1B)多能性幹細胞から分化誘導した内耳前駆細胞を含む細胞集団を、細胞剥離・分散処理する工程
 (2B)工程(1B)で得られた細胞又は細胞集団を、細胞外マトリクス素材の存在下に前記インスリン不含培地で浮遊培養する工程
 具体的には、図2に示されるように、この実施形態においては、多能性幹細胞から分化誘導した内耳前駆細胞を含む細胞集団について、まず細胞の剥離・分散の処理を施す。多能性幹細胞の培養により内耳細胞へと分化誘導させる過程では、増殖した細胞は細胞同士が接着した状態となるところ、細胞の個々を分離したうえで次の培養に移すと、単細胞化もしくは2~10個の少数の細胞塊などに解離して、細胞の個々が培地や培養器に直接に暴露して影響を受けやすくなる。このとき、細胞が未分化であったり、細胞の生育活性が弱かったりすると、生き残れずに死滅する。これにより、内耳細胞への分化にとって不必要な細胞が淘汰されて、例えばPAX2やPAX8の発現レベルを確実に維持することができる。細胞の剥離・分散の処理は、接着している細胞を培養基材から剥離し、細胞を個々の細胞に分散することができる手段であればよく、特に制限はないが、例えば、トリプシン様酵素製剤(商品名「TrypLE Select」、Thermo Fisher Scientific株式会社)やアクターゼ(細胞剥離用酵素製剤:商品名「Accutase」、ナカライテスク株式会社)などによる酵素処理が挙げられる。酵素処理後には、液体培地中でのピペッティングなどで細胞同士の解離を確実にすることができる。また、所定の孔径を有するメッシュを通すことにより、残存する細胞塊を除去してもよい。そのような目的で用いられるメッシュとしては、孔径1~1000μmなどの範囲で段階的に所定の孔径を有するナイロンメッシュを備えたセルストレーナーが市販されているので、そのような市販のセルストレーナーのなかから適宜適当な孔径のものを選択して利用してもよい。
 また、図2に示されるように、この実施形態においては、細胞の剥離・分散の処理を施した細胞又は細胞集団を、細胞外マトリクス素材の存在下にインスリンを含有しないか又はトレース量しか含有しないインスリン不含培地で浮遊培養する。浮遊培養のためには、細胞の剥離・分散の処理を施した細胞又は細胞集団を、適当な液体培地に懸濁させたうえ、非接着状態で培養することができる浮遊培養用の培養器に入れて培養することが好ましい。非接着培養用の培養器としては、具体的には、例えば、非接着性細胞培養用プラスティックディッシュなどを用いることができる。
 上記浮遊培養のための培地としては、上述したインスリン不含培地を用いればよい。ただし、これに細胞外マトリクス素材を添加する。その細胞外マトリクス素材の存在により、細胞の極性を形成させやすくなり、血管条辺縁細胞への分化の足場となる効果がある。細胞外マトリクス素材としては、細胞が三次元的に生育するときの足場として機能する素材であればよく、特に制限はないが、例えばマトリゲル、プロネクチン、コラーゲン、ラミニン、フィブロネクチンなどが挙げられる。これらは1種類を単独で用いてもよく2種以上を併用してもよい。細胞外マトリクス素材のインスリン不含培地中の含有量としては、通常当業者に用いられる範囲であればよく、特に制限されないが、典型的に、例えば限定されないタンパク量換算で0.01~10mg/mLなどであり、0.05~5mg/mLなどであってよく、0.1~1mg/mLなどであってよい。
 この浮遊培養は、インスリン不含培地での浮遊培養開始からトータル30~50日間行うことが好ましく、35~45日間行うことがより好ましく、40~45日間行うことが更により好ましい。また、その浮遊培養においては、遠心分離等により形成されたスフェア(細胞塊)を壊さないように回収して、新鮮な培地を入れ替えたり、新鮮な培地を追加したりして、更にその浮遊培養を続けてもよい。この場合、追加的な浮遊培養における培地交換や新鮮培地の追加を3~4日間ごとに行うことが好ましい。
 このようにして調製することができる三次元培養血管条辺縁細胞は、細胞間タイトジャンクションタンパク質やイオントランスポーターを発現するなど、内耳器官に内在している血管条辺縁細胞と同様な本来的な生理機能性をあらわす細胞である。
 [3]内耳血管条辺縁細胞の二次元培養
 図3には、本発明による内耳血管条辺縁細胞の製造方法の更に他の実施形態を説明するフロー図を示す。この実施形態においては、多能性幹細胞から分化誘導した内耳前駆細胞に対して、以下の工程(1C)~工程(3C)の処理を施すことにより、内耳血管条辺縁細胞への分化誘導をより確実にするとともに、内耳血管条辺縁細胞による二次元的な構造(層状)が形成されるようにしている。すなわち、内耳血管条辺縁細胞の二次元培養(2D培養)を行うことができるようにしている。
 (1C)多能性幹細胞から分化誘導した内耳前駆細胞を含む細胞集団を、細胞剥離・分散処理する工程
 (2C)工程(1C)で得られた細胞又は細胞集団を、細胞外マトリクス素材の存在下に前記インスリン不含培地で浮遊培養する工程
 (3C)工程(2C)の浮遊培養後の細胞又は細胞集団を、別に予め接着培養したフィーダー細胞に播種して前記インスリン不含培地で培養する工程
 具体的には、図3に示されるように、この実施形態においては、上述したインスリン不含培地での浮遊培養のための工程(1C)及び工程(2C)は、図2によって説明した上記工程(1B)及び工程(2B)と共通であるが、その過程で浮遊培養中の細胞集団について、適宜、細胞を回収し、必要に応じて酵素を添加した溶液中でピペッティングして分散処理を行ったうえ、別に予め接着培養したフィーダー細胞に播種する。そして、その状態で上述したインスリン不含培地での培養を更に続ける。フィーダー細胞としては、メラノサイトあるいはメラノサイト様細胞などを用いることができる。これにより、メラノサイト等のフィーダー細胞を接着培養することにより、培養容器の内側底面等の二次元構造体の表面に沿って二次元構造状(層状)に形成されているところ、その上に播種して共培養することで、内耳血管条辺縁細胞についても二次元的な構造(層状)の形成が促される。
 このフィーダー細胞との共培養は、開始からトータル30~50日間行うことが好ましく、35~45日間行うことがより好ましく、40~45日間行うことが更により好ましい。また、そのフィーダー細胞との共培養においては、新鮮な培地を入れ替えたり、新鮮な培地を追加したりして、更にそのフィーダー細胞との共培養を続けてもよい。この場合、追加的な共培養における培地交換や新鮮培地の追加を3~4日間ごとに行うことが好ましい。
 このようにして調製することができる二次元培養化した内耳血管条辺縁細胞によれば、後述する実施例で示されるように、バリア機能を備えた層状の構造となるので、カリウムイオン濃度の恒常性維持に必要な細胞間のタイトジャンクション機能や一方向性イオン輸送など、内耳器官に内在している血管条辺縁細胞と同様な本来的な生理機能性をあらわす細胞が層構造を有して平面的に培養された機能的なツール細胞として、より好適に利用し得る。
 [4]薬剤の評価方法
 本発明の別の観点では、本発明は薬剤の評価方法を提供することができる。すなわち、多能性幹細胞から分化誘導した内耳血管条辺縁細胞を被検薬剤で処理する工程と、前記被検薬剤で処理した前記内耳血管条辺縁細胞の状態を評価する工程とを含む、薬剤の評価方法を提供するものである。
 本発明による薬剤の評価方法においては、多能性幹細胞から分化誘導した内耳血管条辺縁細胞に対して任意の被験薬剤を作用させて、その被験薬剤が内耳血管条辺縁細胞にどのような影響を与えるか評価することができる。よって、例えば、内耳器官の機能性にかかわる物資を有効に且つ効率的にスクリーニングするためのツールとして有用である。被験薬剤で処理する工程においては、限定されないが、例えば、上記に説明したようにして得られる内耳血管条辺縁細胞を緩衝液中に懸濁させその溶液中に被験薬剤を所定濃度で添加し、所定時間経過後に細胞の状態を観察するようにしてもよく、あるいは、上記に説明したようにして得られる内耳血管条辺縁細胞の培養下、その培養のための培地中に所定濃度を添加して、所定時間培養し、その後の細胞の状態を観察するようにしてもよい。また、その処理後に内耳血管条辺縁細胞の状態を評価する工程においては、限定されないが、例えば、内耳器官の機能性にかかわる細胞のイオン透過能、バリア機能、アポトーシス、酸化ストレス等を調べたりしてもよい。
 [5]薬剤評価用細胞培養物
 本発明の更に別の観点では、本発明は薬剤評価用細胞培養物を提供するものである。すなわち、多能性幹細胞から分化誘導した内耳血管条辺縁細胞を含有する、薬剤評価用細胞培養物を提供するものである。
 本発明による薬剤評価用細胞培養物によれば、これに任意の被験薬剤を作用させて、その被験薬剤が内耳血管条辺縁細胞にどのような影響を与えるか評価することができる、よって、例えば、内耳器官の機能性にかかわる物資を有効に且つ効率的にスクリーニングするためのツールとして有用である。当該細胞培養物の形態としては、上記内耳血管条辺縁細胞を少なくとも含む細胞又は細胞集団の形態であればよく、通常は浮遊培養により得られる細胞塊状の形態となっている。この場合、その細胞塊状の形態を保護したり保管したりする目的でメディウムや培地等の保存溶液中で保存することが好ましく、使用時には当該保存溶液を、被験薬剤を含む試験液で置換して、所定時間経過後に細胞の状態を観察するようにして、被験薬剤の評価に用いることができる。
 あるいは、上述したようにメラノサイト等のフィーダー細胞との共培養により、培養容器の内側底面等の二次元構造体の表面に沿って二次元構造状(層状)にも形成させることができるので、当該細胞培養物の形態としては、そのように二次元培養(2D培養)させた形態を採用することもできる。この場合、その二次元構造状(層状)の形態を保護したり保管したりする目的のメディウムや培地等の保存溶液で当該細胞培養物を覆うように培養容器に保存溶液を入れて保存することが好ましく、使用時には、当該保存溶液を、被験薬剤を含む試験液で置換して、所定時間経過後に細胞の状態を観察するようにして、被験薬剤の評価に用いることができる。評価は、限定されないが、例えば、内耳器官の機能性にかかわる細胞のイオン透過能、バリア機能、アポトーシス、酸化ストレス等を調べたりしてもよい。
 以下に実施例を挙げて本発明を更に具体的に説明する。ただし、これらの実施例は本発明の範囲を限定するものではない。
 (試薬)
(1)マトリゲル:コーティング剤(商品名「Corning Matrigel基底膜マトリックス」、Corning社)
(2)アクターゼ:細胞剥離用酵素製剤(商品名「Accutase」、ナカライテスク株式会社)
(3)トリプシン様酵素製剤(商品名「TrypLE Select」、Thermo Fisher Scientific株式会社)
(4)Y-27632:ROCK阻害剤(Rho-associated coiled-coil forming kinase/Rho結合キナーゼの特異的阻害剤)(商品名「Y-27632」、富士フイルム和光純薬株式会社)
(5)mTeSR1:iPS細胞用維持培地(商品名「mTeSR1」、STEMCELL Technologies社)
(6)DMEM/F12:無血清培地(商品名「D-MEM/Ham’s F-12」、富士フイルム和光純薬株式会社)
(7)B27:無血清サプリメント(50X)(商品名「Gibco B-27 Supplement」、Thermo Fisher Scientific社)
(8)N2:無血清サプリメント(100X)(商品名「Gibco N-2 Supplement」、Thermo Fisher Scientific社)
(9)N21-Ins:無血清サプリメント(50X)(商品名「N21-MAX Insulin Free Media Supplement」、R&D Systems社)
(10)GlutaMAX:無血清サプリメント(100X)(商品名「Gibco GlutaMAX」、Thermo Fisher Scientific社)
(11)Nonessential aminoacid(100X):非必須アミノ酸サプリメント(商品名「MEM 非必須アミノ酸溶液」、ナカライテスク株式会社)
(12)poly-L-ornithine/fibronectin:コーティング剤(商品名「Poly-L-ornithine」、Sigma-Aldrich社)、(商品名「Fibronectin」、Sigma-Aldrich社)
(13)bFGF(商品名「Recombinant Human FGF-basic」、Peprotech社)
(14)FGF3(商品名「Recombinant Human FGF-3 protein」、R&D Systems社)
(15)FGF10(商品名「Recombinant Human FGF-10 protein」、Peprotech社)
(16)FGF19(商品名「Recombinant Human FGF-19 protein」、Peprotech社)
(17)BMP4(商品名「Recombinant Human BMP-4 protein」、Peprotech社)
(18)IGF-1(商品名「Recombinant Human IGF-1 Protein」、R&D Systems社)
(19)SB431542:TGF-β受容体阻害剤(商品名「SB431542」、リプロセル社)
(20)ヘパリン(商品名「へパラン硫酸ナトリウム塩」、Sigma-Aldrich社)
(21)L-グルタミン(商品名「L-Glutamine」、ナカライテスク株式会社)
(22)iMatrix-511 silk:コーティング剤(商品名「iMatrix-511 silk」、nippi社)
(23)StemFit AK02N:iPS細胞用維持培地(商品名「StemFit AK02N」、味の素社)
(24)CHIR99021:GSK-3阻害剤(商品名「CHIR-99021」、Focus biomolecules社)
(25)qPCRに用いたプライマーの配列を表1に示す。
Figure JPOXMLDOC01-appb-T000001


 なお、以下の試験例において細胞培養の培地には、必要に応じて、適宜抗菌剤としてアンピシリン100μg/mLの濃度で使用した。また、特に言及しない場合には、培養は通常酸素条件下(O20%、CO5%)に行った。
 [試験例1]
 本試験例では、ヒトiPS細胞から内耳前駆細胞を分化誘導した。
 [分化誘導方法]
(分化誘導前:(-)Day2)
1) 6ウェルプレートをマトリゲルでコーティングした。
2) コンフルエントなfeeder-freeヒトiPS細胞にアクターゼを添加して37℃で2~3分インキュベートし、ディッシュから剥離した。
3) PBSで希釈後遠心し、細胞を回収した。
4) 上澄みをすてROCK阻害剤(Y-27632)(10μM)を加えたmTeSR1メディウムに細胞を懸濁した。
5) ナイロンメッシュ(孔径40μm)を通し、血球計算盤で細胞数をカウントした。
6) 前記1)でマトリゲルコーティングしたウェルにY-27632を添加したmTeSR1メディウムを加えた。
7) 1ウェルあたり2.5×10cells/cmとなるように細胞懸濁液を播種した。
(分化誘導前:(-)Day1)
 ROCK阻害剤を含まないmTeSR1メディウムに培地交換した。
(Day0)
 無血清培地(DMEM/F12+2%B27+1%N2+1%GlutaMAX+1%Nonessential aminoacid)に培地交換した。以後、Day2まで、毎日培地交換した。
(Day3)
 無血清培地(DMEM/F12+2%B27+1%N2+1%GlutaMAX+1%Nonessential aminoacid)に、成長因子bFGF、FGF3、FGF10、FGF19、BMP4を、それぞれ濃度が25ng/mL、25ng/mL、25ng/mL、25ng/mL、10ng/mLとなるように添加した培地に培地交換した。以後、Day5まで、毎日培地交換した。
(Day6)
 無血清培地(DMEM/F12+2%B27+1%N2+1%GlutaMAX+1%Nonessential aminoacid)に、成長因子bFGF、FGF3、FGF10、FGF19を添加した培地(成長因子の濃度は全て25ng/mL)に培地交換し、Day8まで培養した。
(Day9)
 細胞にアクターゼを添加して37℃で2~3分インキュベートし、ディッシュから剥離し、PBSで希釈した。遠心して細胞を回収し、無血清培地(DMEM/F12+2%B27+1%N2)に、L-グルタミンを濃度が2mMとなるように添加し、更に、成長因子bFGF、FGF3、FGF10、FGF19を、それぞれ濃度が25ng/mLとなるように添加して調製した培地で懸濁した。この細胞懸濁液を、1ウェルあたり細胞剥離処理前のおよそ3分の1の細胞濃度となるようにpoly-L-ornithine/fibronectinでコーティングしたウェルに播種し、低酸素条件下(O4%、CO5%)で接着培養を行った。
(Day10)
 無血清培地(DMEM/F12+2%B27+1%N2)に、L-グルタミンを濃度が2mMとなるように添加し、更に、成長因子bFGF、EGF、IGF-1を、それぞれ濃度が20ng/mL、20ng/mL、50ng/mLとなるように添加して調製した培地で培地交換を行った。
(Day12)
 分化誘導の開始から12日目(Day12)の細胞について、RNeasyスピンカラムキット(Qiagen社)を用いてtotal RNAを抽出し、各サンプル1μgのtotal RNAから逆転写酵素(商品名「Invitrogen SuperScript IV Reverse Transcriptase(Thermo Fisher Scientific社)によりcDNA合成を行い、マーカー遺伝子の発現量をqPCRにより定量した。
 その結果、内耳前駆細胞のマーカー分子であることが知られたPAX2、PAX8など、内耳前駆細胞に特有の遺伝子の発現が確認された。
 また、分化誘導の開始から12日目(Day12)の細胞について、各種マーカータンパク質の発現状態を免疫染色により調べた。
 [1]PAX2、PAX8、SOX2(Day12)
 分化誘導の開始から12日目(Day12)の細胞を、4%パラフォルムアルデヒドを用いて室温で20分間処理して固定し、0.3%PBSTで30分間処理した後、10%normal donkey serum/0.3%PBSTにより室温で1時間ブロッキングを行なった。一次抗体としては、マウス抗PAX2抗体、ウサギ抗PAX8抗体、ヤギ抗SOX2抗体をそれぞれ1:500、1:500、1:500の濃度で用い、室温で2時間反応させた。それぞれの一次抗体のIgG動物種に特異的な蛍光標識二次抗体を室温で1時間反応させた。また、核をHoechst33258で染色した。図4には、共焦点顕微鏡で観察して得らえた顕微鏡観察像を示す(scale bar:50μm)。
 その結果、図4に示されるように、内耳前駆細胞のマーカータンパク質として知られるPAX2、PAX8、SOX2の発現が確認された。したがって、上記方法によって、ヒトiPS細胞から内耳前駆細胞が分化誘導されることが確認された。
 [試験例2]
 本試験例では、内耳前駆細胞から内耳血管条辺縁細胞を分化誘導した。
 [分化誘導方法]
(Day12)
 試験例1と同様の方法でヒトiPS細胞から内耳前駆細胞への分化誘導を行い、分化誘導の開始から12日目(Day12)の細胞をアクターゼで剥離し、等量のPBSを加えて、ナイロンメッシュ(孔径40μm)を通し、血球計算盤で細胞数をカウントした。
 5×10cells/10mLの濃度になるように細胞を懸濁し、低接着6ウェルプレート(商品名「Corning超低接着表面(Ultra-Low Attachment)プレート」、Corning社)に播種し、低酸素条件下(O4%、CO5%)で浮遊培養を開始した。このとき、培地としては、無血清培地(DMEM/F12+2%B27+1%N2)に、成長因子bFGF、EGF、IGF-1、FGF3、FGF10を、それぞれ濃度が10ng/mL、10ng/mL、25ng/mL、50ng/mL、50ng/mLとなるように添加し、更に、L-グルタミンを濃度が2mMとなるように添加し、Y-27632を濃度が10μMとなるように添加し、マトリゲルを濃度が1%となるように添加し、SB431542を濃度が2μMとなるように添加し、ヘパリンを濃度が50ng/mLとなるように添加して調製した培地を使用して、細胞を懸濁して浮遊培養を開始した。
(Day16)
 浮遊培養の開始後4日目(Day16)に、浮遊培養を開始したときの培地からマトリゲルとY-27632を除いた組成の培地で全量培地交換を行い、更に低酸素条件下(O4%、CO5%)で浮遊培養を継続した。
(Day20)
 浮遊培養の開始後8日目(Day20)に、培地として、無血清培地(DMEM/F12+2%N21-Ins)に、成長因子EGF、FGF3、BMP4を、それぞれ濃度が10ng/mL、50ng/mL、10ng/mLとなるように添加し、更に、L-グルタミンを濃度が2mMとなるように添加し、ヘパリンを濃度が50ng/mLとなるように添加して調製した培地を使用し、全量培地交換を行い、更に通常酸素条件下(O20%、CO5%)で浮遊培養を継続した。
(Day24)
 浮遊培養の開始後12日目(Day24)に、培地として、無血清培地(DMEM/F12+2%N21-Ins)に、成長因子EGF、FGF3を、それぞれ濃度が10ng/mL、50ng/mLとなるように添加し、更に、L-グルタミンを濃度が2mMとなるように添加し、SB431542を濃度が2μMとなるように添加して調製した培地を使用し、全量培地交換を行い、更に通常酸素条件下(O20%、CO5%)で浮遊培養を継続した。
(Day32)
 浮遊培養の開始後20日目(Day32)に、培地として、無血清培地(DMEM/F12+2%N21-Ins)に、成長因子bFGF、EGFを、それぞれ濃度が2ng/mL、10ng/mLとなるように添加し、更に、L-グルタミンを濃度が2mMとなるように添加し、SB431542を濃度が2μMとなるように添加して調製した培地を使用し、全量培地交換を行い、更に通常酸素条件下(O20%、CO5%)で浮遊培養を継続した。
(Day36)
 浮遊培養の開始後24日目(Day36)に、培地として、Day32で培地交換に使用したのと同じ組成の培地を使用し、全量培地交換を行い、更に通常酸素条件下(O20%、CO5%)で浮遊培養を継続した。
(Day40)
 浮遊培養の開始後28日目(Day40)に、培地として、無血清培地(DMEM/F12+2%N21-Ins)に、成長因子EGFを、その濃度が10ng/mLとなるように添加し、更に、L-グルタミンを濃度が2mMとなるように添加し、SB431542を濃度が2μMとなるように添加して調製した培地を使用し、全量培地交換を行った。その後は、Day63まで3日に1度の頻度で培地交換を行い、更に通常酸素条件下(O20%、CO5%)で浮遊培養を継続した。
 上記方法による分化誘導の過程にある細胞や分化誘導後の細胞について、各種マーカータンパク質の発現状態を免疫染色により調べた。
 [2-1]KCNQ1、KCNE1、LRP2(Day63)
 浮遊培養の開始後51日目(Day63)の細胞を、4%パラフォルムアルデヒドを用いて4℃で3時間処理して固定し、7μmの凍結切片を作成した。その凍結切片を0.3%PBSTで10分間処理した後、10%normal donkey serum/0.1%PBSTにより室温で1時間ブロッキングを行なった。一次抗体としては、マウス抗LRP抗体、ウサギ抗KCNE1抗体、ヤギ抗KCNQ1抗体をそれぞれ1:200、1:200、1:100の濃度で用い、4℃で一晩反応させた。それぞれの一次抗体のIgG動物種に特異的な蛍光標識二次抗体を室温で1時間反応させた。また、核をHoechst33258で染色した。図5には、共焦点顕微鏡で観察して得らえた顕微鏡観察像を示す(scale bar:左段20μm、右段20μm)。
 その結果、図5に示されるように、内耳血管条辺縁細胞における機能性タンパク質として知られるKCNQ1、KCNE1、LRP2の発現が検出された。また、それらは細胞膜に共局在しており、内在辺縁細胞での発現様式を再現できていると考えられた。
 [2-2]NKCC1、KCNQ1(Day63)
 浮遊培養の開始後51日目(Day63)の細胞を、4%パラフォルムアルデヒドを用いて4℃で3時間処理して固定し、7μmの凍結切片を作成した。その凍結切片を0.3%PBSTで10分間処理した後、10%normal donkey serum/0.1%PBSTにより室温で1時間ブロッキングを行なった。一次抗体としては、ウサギ抗KCNQ1抗体、ヤギ抗NKCC1抗体をそれぞれ1:200の濃度で用い、4℃で一晩反応させた。それぞれの一次抗体のIgG動物種に特異的な蛍光標識二次抗体を室温で1時間反応させた。また、核をHoechst33258で染色した。図6には、共焦点顕微鏡で観察して得らえた顕微鏡観察像を示す(scale bar:50μm)。
 その結果、図6に示されるように、内耳血管条辺縁細胞における機能性タンパク質として知られるNKCC1、KCNQ1の発現が検出された。また、それらは細胞膜で共局在しておらず、内在辺縁細胞での発現様式を再現できていると考えられた。
 [2-3]Na/K ATPase(Day24)
 浮遊培養の開始後12日目(Day24)の細胞を、10%TCAを用いて4℃で15分間処理して固定し、10%normal donkey serum/0.1%PBSTにより室温で1時間ブロッキングを行なった。一次抗体としては、ウサギ抗Na/K ATPase抗体を1:100の濃度で用い、4℃で一晩反応させた。一次抗体のIgG動物種に特異的な蛍光標識二次抗体を室温で1時間反応させ、共焦点顕微鏡で観察した。図7には、共焦点顕微鏡で観察して得らえた顕微鏡観察像を示す(scale bar:20μm)。
 その結果、図7に示されるように、内耳血管条辺縁細胞における機能性タンパク質として知られるNa/K ATPaseの発現が検出された。また、それは細胞膜に局在しており、内在辺縁細胞での発現様式を再現できていると考えられた。
 [2-4]LMX1、ESRRB(Day40)
 浮遊培養の開始後28日目(Day40)の細胞を、4%パラフォルムアルデヒドを用いて室温で20分間処理して固定し、0.3%PBSTで20分間処理した後、10%normal donkey serum/0.3%PBSTにより室温で1時間ブロッキングを行なった。一次抗体としては、マウス抗ESRRB抗体、ウサギ抗LMX1抗体をそれぞれ1:100の濃度で用い、4℃で一晩反応させた。それぞれの一次抗体のIgG動物種に特異的な蛍光標識二次抗体を室温で2時間反応させた。また、核をHoechst33258で染色した。図8には、共焦点顕微鏡で観察して得らえた顕微鏡観察像を示す(scale bar:20μm)。
 その結果、図8に示されるように、内耳血管条辺縁細胞における機能性タンパク質として知られるLMX1、ESRRBの発現が検出された。また、それは核に局在しており、内在辺縁細胞での発現様式を再現できていると考えられた。
 [2-5]Occludin(Day52)
 浮遊培養の開始後40日目(Day52)の細胞を、10%TCAを用いて4℃で15分間処理して固定し、0.3%PBSTで10分間処理した後、10%normal donkey serum/0.1%PBSTにより室温で1時間ブロッキングを行なった。一次抗体としては、ウサギ抗Occludin抗体を1:100の濃度で用い、4℃で一晩反応させた。一次抗体のIgG動物種に特異的な蛍光標識二次抗体を室温で1時間反応させ、共焦点顕微鏡で観察した。図9には、共焦点顕微鏡で観察して得らえた顕微鏡観察像を示す(scale bar:20μm)。
 その結果、図9に示されるように、内耳血管条辺縁細胞における細胞間のタイトジャンクションタンパク質として知られるOccludinの発現が検出された。また、それは特徴的な敷石状のシグナルを示し、分化誘導した細胞は上皮細胞様細胞である内耳血管条辺縁細胞であると考えられた。
 [2-6]ZO-1(Day43)
 浮遊培養の開始後31日目(Day43)の細胞を、10%TCAを用いて4℃で15分間処理して固定し、10%normal donkey serum/0.1%PBSTにより室温で1時間ブロッキングを行なった。一次抗体としては、ヤギ抗ZO-1抗体を1:100の濃度で用い、4℃で一晩反応させた。一次抗体のIgG動物種に特異的な蛍光標識二次抗体を室温で2時間反応させ、共焦点顕微鏡で観察した。図10には、共焦点顕微鏡で観察して得らえた顕微鏡観察像を示す(scale bar:20μm)。
 その結果、図10に示されるように、内耳血管条辺縁細胞における機能性タンパク質として知られるZO-1の発現が検出された。また、それは上皮細胞に特徴的な敷石状のシグナルを示し、分化誘導した細胞は上皮細胞様細胞である血管条辺縁細胞であると考えられた。
 以上の結果から、本誘導法を用いて培養することで、多能性幹細胞から分化誘導して得られた内耳前駆細胞を、更に内耳血管条辺縁細胞にまで分化誘導できることが明らかとなった。
 [試験例3]
 本試験例では、試験例1とは異なる方法でヒトiPS細胞から内耳前駆細胞を分化誘導し、該内耳前駆細胞から内耳血管条辺縁細胞を分化誘導した。
 [内耳前駆細胞の分化誘導方法]
(分化誘導前:(-)Day2)
1) 6ウェルプレートをiMatrix-511 silkでコーティングした。
2) コンフルエントなfeeder-freeヒトiPS細胞にアクターゼを添加して37℃で2~3分インキュベートし、ディッシュから剥離した。
3) PBSで希釈後遠心し、細胞を回収した。
4) 上澄みをすてROCK阻害剤(Y-27632)(10μM)を加えたStemFit AK02Nに細胞を懸濁した。
5) ナイロンメッシュ(孔径40μm)を通し、血球計算盤で細胞数をカウントした。
6) 前記1)でiMatrix-511 silk コーティングしたウェルにY-27632を添加したStemFit AK02Nを加えた。
7) 1ウェルあたり2.5×10cells/cmとなるように細胞懸濁液を播種した。
(分化誘導前:(-)Day1)
 ROCK阻害剤を含まないStemFit AK02Nに培地交換した。
(Day0)
 無血清培地(DMEM/F12+2%B27+1%N2+1%GlutaMAX+1%Nonessential aminoacid)に培地交換した。以後、Day2まで、毎日培地交換した。
(Day3)
 無血清培地(DMEM/F12+2%B27+1%N2+1%GlutaMAX+1%Nonessential aminoacid)に、成長因子bFGF、FGF3、FGF10、FGF19、BMP4を、それぞれ濃度が25ng/mL、25ng/mL、25ng/mL、25ng/mL、10ng/mLとなるように添加した培地に培地交換した。以後、Day5まで、毎日培地交換した。
(Day6)
 無血清培地(DMEM/F12+2%B27+1%N2+1%GlutaMAX+1%Nonessential aminoacid)に、成長因子bFGF、FGF3、FGF10、FGF19、CHIR99021を添加した培地(成長因子の濃度は全て25ng/mL、GSK-3阻害剤であるCHIR99021の濃度は8μM)に培地交換し、Day8まで培養した。
(Day9)
 細胞にアクターゼを添加して37℃で2~3分インキュベートし、ディッシュから剥離し、PBSで希釈した。遠心して細胞を回収し、無血清培地(DMEM/F12+2%B27+1%N2)に、L-グルタミンを濃度が2mMとなるように添加し、更に、成長因子bFGF、FGF3、FGF10、FGF19を、それぞれ濃度が25ng/mLとなるように添加して調製した培地で懸濁した。この細胞懸濁液を、1ウェルあたり細胞剥離処理前のおよそ3分の1の細胞濃度となるようにpoly-L-ornithine/fibronectinでコーティングしたウェルに播種し、低酸素条件下(O4%、CO5%)で接着培養を行った。
(Day10)
 無血清培地(DMEM/F12+2%B27+1%N2)に、L-グルタミンを濃度が2mMとなるように添加し、更に、成長因子bFGF、EGF、IGF-1を、それぞれ濃度が20ng/mL、20ng/mL、50ng/mLとなるように添加して調製した培地で培地交換を行った。
 [内耳血管条辺縁細胞の分化誘導方法]
(Day11)
 試験例2-Day12以降と同様の方法で内耳血管条辺縁細胞を分化誘導した。
 上記方法による分化誘導後の細胞について、各種マーカータンパク質の発現状態を免疫染色により調べた。
 [3-1]NKCC1(Day60)
 浮遊培養の開始後49日目(Day60)の細胞を、4%パラフォルムアルデヒドを用いて室温で15分処理して固定し、7μmの凍結切片を作成した。その凍結切片を0.3%PBSTで10分間処理した後、10%normal goat serum/0.1%PBSTにより室温で1時間ブロッキングを行なった。一次抗体としては、ウサギ抗NKCC1抗体を1:100の濃度で用い、4℃で一晩反応させた。一次抗体のIgG動物種に特異的な蛍光標識二次抗体を室温で1時間反応させた。また、核をHoechst33258で染色した。図11には、共焦点顕微鏡で観察して得らえた顕微鏡観察像を示す(scale bar:10μm)。
 その結果、図11に示されるように、内耳血管条辺縁細胞における機能性タンパク質として知られるNKCC1の発現が確認された。したがって、上記方法によって、試験例1とは異なる方法でヒトiPS細胞から分化誘導された内耳前駆細胞から、内耳血管条辺縁細胞が分化誘導されることが確認された。
 [3-2]ESRRB、KCNQ1(Day60)
 浮遊培養の開始後49日目(Day60)の細胞を、4%パラフォルムアルデヒドを用いて室温で15分処理して固定し、7μmの凍結切片を作成した。その凍結切片を0.3%PBSTで10分間処理した後、10%normal donkey serum/0.1%PBSTにより室温で1時間ブロッキングを行なった。一次抗体としては、マウス抗ESRRB抗体、ウサギ抗KCNQ1抗体をそれぞれ1:100の濃度で用い、4℃で一晩反応させた。一次抗体のIgG動物種に特異的な蛍光標識二次抗体を室温で1時間反応させた。また、核をHoechst33258で染色した。図12には、共焦点顕微鏡で観察して得られた顕微鏡観察像を示す(scale bar:10μm)。
 その結果、図12に示されるように、内耳血管条辺縁細胞における機能性タンパク質として知られるESRRB、KCNQ1の発現が検出された。また、ESRRBは核に局在しており、内在辺縁細胞での発現様式を再現できていると考えられた。
 [3-3]ZO-1、Claudin-1、Occludin(Day60)
 浮遊培養の開始後49日目(Day60)の細胞を、10%TCAを用いて4℃で15分間処理して固定し、7μmの凍結切片を作成した。その凍結切片を0.3%PBSTで10分間処理した後、10%normal goat serum/0.1%PBSTにより室温で1時間ブロッキングを行なった(ZO-1抗体はブロッキングなし)。一次抗体としては、ヤギ抗ZO-1抗体、ウサギ抗Claudin-1抗体、ウサギ抗Occludin抗体をそれぞれ1:100の濃度で用い、4℃で一晩反応させた。一次抗体のIgG動物種に特異的な蛍光標識二次抗体を室温で1時間反応させた。また、核をHoechst33258で染色した。図13には、キーエンスBZ-X810顕微鏡で観察して得らえた顕微鏡観察像を示す(scale bar:10μm)。
 その結果、図13に示されるように、内耳血管条辺縁細胞における細胞間のタイトジャンクションタンパク質として知られるZO-1、Claudin-1及びOccludinの発現が検出された。また、それらは特徴的な敷石状のシグナルを示し、分化誘導した細胞は上皮細胞様細胞である内耳血管条辺縁細胞であると考えられた。
 [試験例4]
 本試験例では、内耳前駆細胞から内耳血管条辺縁細胞を分化誘導するにあたり、その内耳血管条辺縁細胞の二次元培養を試みた。
 [分化誘導方法(その1)]
(Day20)
 試験例1と同様の方法でヒトiPS細胞から内耳前駆細胞を得、その内耳前駆細胞を用いて試験例2と同様の方法でDay20まで培養した。
 細胞を回収し、トリプシン様酵素製剤(商品名「TrypLE Select」、Thermo Fisher Scientific株式会社)にEDTAを1mMとなるよう添加したものを使用して、37℃で20分間処理した後、3~5倍量のDMEM/F12を加えて、ナイロンメッシュ(孔径40μm)を通し、血球計算盤で細胞数をカウントした。
 剥離処理後の細胞を1.2×10cells/10mLの濃度になるようにDay20の培地と同じ組成の培地に懸濁し、別に予め培養したフィーダー細胞に播種した。なお、フィーダー細胞としてはメラノサイト(商品名「正常ヒト表皮メラノサイト」、TAKARA社)を8ウェルチャンバー(商品名「チャンバースライドII」、IWAKI社)の1ウェルあたり1×10cells/cmで播種して、メラノサイト増殖用M2培地(TAKARA社)で6~7日間培養することより、コンフルエントになるまで接着培養することにより調製した。
 以後、浮遊培養を行ったときと同じ組成の培地を用いて、培地交換のタイミングも同様に行って、浮遊培養の開始後53日目(Day65)までフィーダー細胞(メラノサイト)との共培養を行った。
 [4-1]ZO-1、Claudin-1(Day65)
 浮遊培養の開始後53日目(Day65)の細胞を、10%TCAを用いて4℃で15分間処理して固定し、0.3%PBSTで10分間処理した後、10%normal donkey serum/0.1%PBSTにより室温で1時間ブロッキングを行なった。一次抗体としては、ヤギ抗ZO-1抗体、ウサギ抗Claudin-1抗体をそれぞれ1:100の濃度で用い、4℃で一晩反応させた。一次抗体のIgG動物種に特異的な蛍光標識二次抗体を室温で1時間反応させた。また、核をHoechst33258で染色した。図14には、共焦点顕微鏡で観察して得らえた顕微鏡観察像を示す(scale bar:20μm)。
 その結果、図14に示されるように、内耳血管条辺縁細胞における細胞間タイトジャンクションタンパク質として知られるZO-1及びClaudin-1の発現が検出された。また、それは上皮細胞に特徴的な敷石状のシグナルを示しており、予め接着培養したメラノサイトとの共培養によりメラノサイト上に単層で増殖・伸展した二次元培養においても、上皮細胞様細胞である内耳血管条辺縁細胞を分化誘導できたと考えられた。
 [分化誘導方法(その2)]
(Day20)
 試験例1と同様の方法でヒトiPS細胞から内耳前駆細胞を得、その内耳前駆細胞を用いて試験例2と同様の方法でDay21まで培養した。
 以後、「分化誘導方法(その1)」と同様にして、フィーダー細胞(メラノサイト)との共培養を、浮遊培養の開始後48日目(Day60)まで行った。
 [4-2]Occludin(Day60)
 浮遊培養の開始後48日目(Day60)の細胞を、4%パラフォルムアルデヒドを用いて室温で15分間処理して固定し、0.3%PBSTで10分間処理した後、10%normal donkey serum/0.1%PBSTにより室温で1時間ブロッキングを行なった。一次抗体としては、ウサギ抗Occludin抗体を1:100の濃度で用い、4℃で一晩反応させた。一次抗体のIgG動物種に特異的な蛍光標識二次抗体を室温で1時間反応させた。また、核をHoechst33258で染色した。図15には、共焦点顕微鏡で観察して得らえた顕微鏡観察像を示す(scale bar:10μm)。
 その結果、図15に示されるように、内耳血管条辺縁細胞における細胞間のタイトジャンクションタンパク質として知られるOccludinの発現が検出された。また、それは上皮細胞に特徴的な敷石状のシグナルを示しており、予め接着培養したメラノサイトとの共培養によりメラノサイト上に単層で増殖・伸展した二次元培養においても、上皮細胞様細胞である内耳血管条辺縁細胞を分化誘導できたと考えられた。
 [分化誘導方法(その3)]
(Day20)
 試験例1と同様の方法でヒトiPS細胞から内耳前駆細胞を得、その内耳前駆細胞を用いて試験例2と同様の方法でDay20まで培養した。
 以後、「分化誘導方法(その1)」と同様にして、フィーダー細胞(メラノサイト)との共培養を、浮遊培養の開始後53日目(Day65)まで行った。
 [4-3]NKCC1、KCNQ1、LRP2(Day65)
 浮遊培養の開始後48日目(Day60)の細胞を、4%パラフォルムアルデヒドを用いて4℃で一晩処理して固定し、0.3%PBSTで10分間処理した後、10%normal donkey serum/0.1%PBSTにより室温で1時間ブロッキングを行なった。一次抗体としては、ヤギ抗NKCC1抗体、ウサギ抗KCNQ1抗体、マウス抗LRP2抗体をそれぞれ1:100の濃度で用い、4℃で一晩反応させた。一次抗体のIgG動物種に特異的な蛍光標識二次抗体を室温で1時間反応させた。また、核をHoechst33258で染色した。図16には、共焦点顕微鏡で観察して得らえた顕微鏡観察像を示す(scale bar:上段10μm、下段5μm)。
 その結果、図16に示されるように、内耳血管条辺縁細胞における機能性タンパク質として知られるNKCC1、KCNQ1、LRP2の発現が検出された。また、KCNQ1、LRP2は細胞膜に共局在している一方、NKCC1、KCNQ1は細胞膜で共局在しておらず、二次元培養においても、辺縁細胞マーカーを内在辺縁細胞と同様の極性で発現する細胞を分化誘導できたと考えられた。
 [試験例5]
 本試験例では、内耳前駆細胞から内耳血管条辺縁細胞へと分化誘導する過程において、その培地としてインスリン不含培地を用いることによる効果を検討した。
 [分化誘導方法]
(Day12)
 試験例1と同様の方法でヒトiPS細胞から内耳前駆細胞への分化誘導を行い、分化誘導の開始から12日目(Day12)の細胞をアクターゼで剥離し、等量のPBSを加えて、ナイロンメッシュ(孔径40μm)を通し、血球計算盤で細胞数をカウントした。
 5×10cells/10mLの濃度になるように細胞を懸濁し、低接着6ウェルプレート(商品名「Corning超低接着表面(Ultra-Low Attachment)プレート」、Corning社)に播種し、低酸素条件下(O4%、CO5%)で浮遊培養を開始した。このとき、培地としては、無血清培地(DMEM/F12+2%B27+1%N2)に、成長因子bFGF、EGF、IGF-1、FGF3、FGF10を、それぞれ濃度が10ng/mL、10ng/mL、25ng/mL、50ng/mL、50ng/mLとなるように添加し、更に、L-グルタミンを濃度が2mMとなるように添加し、Y-27632を濃度が10μMとなるように添加し、マトリゲルを濃度が1%となるように添加し、SB431542を濃度が1μMとなるように添加し、ヘパリンを濃度が50ng/mLとなるように添加して調製した培地を使用して、細胞を懸濁して浮遊培養を開始した。
 浮遊培養の開始後8日目(Day20)から、以下の3種類の異なる培養条件で培養を行った。
・条件1)インスリン含有血清代替物使用培地:
 培地として無血清培地(DMEM/F12+2%B27+1%N2)を用いる以外は、試験例2-Day20以降と同様の方法でDay59まで浮遊培養を継続した。
・条件2)インスリン不含培地:
 培地として無血清培地(DMEM/F12+2%N21-Ins)を用いる以外は、試験例2-Day20以降と同様の方法でDay59まで浮遊培養を継続した。
・条件3)インスリン不含培地にインスリンを添加した培地:
 培地として無血清培地(DMEM/F12+2%N21-Ins)に、インスリンを1.5μMとなるように添加した培地を用いる以外は、試験例2-Day20以降と同様の方法でDay59まで浮遊培養を継続した。
(Day60)
 上記条件1)~3)のいずれの場合も、浮遊培養の開始後48日目(Day60)の細胞を回収して、内耳器官であるライスナー膜に発現することが知られる一方、内耳血管条辺縁細胞には発現が乏しいことが知られるOTX2の遺伝子の発現量を、試験例1と同様にしてqPCRにより定量した。
 その結果、図17に示されるように、培地にインスリンを含有する場合(インスリン含有血清代替物使用培地及びインスリン不含培地にインスリンを添加した培地)と比較して、インスリンを含有しない場合に、OTX2の発現量が低いことがわかった。すなわち、インスリンを培地に添加しないことでOTX2発現量を低下させることができた。このことにより、内在辺縁細胞と同様な本来的な生理機能性をあらわす細胞を得るには、インスリン不含培地を用いることが必要であると考えられた。
 [試験例6]
 試験例1と同様の方法でヒトiPS細胞から内耳前駆細胞を得、その内耳前駆細胞を用いて試験例2と同様の方法で浮遊培養の開始後49日目(Day61)まで浮遊培養を継続した。
 得られた細胞について、バリア機能アッセイを行った。具体的には、浮遊培養後の培養物を細胞ごと1.5mL容量のマイクロチューブに入れ、遠心分離して、培地を捨て、2mMEDTAを含むHBSSを0.5mL加えた。また、対照として、同様の条件でEDTAを含まないHBBSを添加したしたものも用意した。それぞれを容器ごと氷上で15分間置き、その後、それぞれに4kDa FITC-Dextranを2mg/mLの濃度となるよう加えて、懸濁し、直ちに共焦点顕微鏡で観察した。
 その結果、図18上段に示されるように、EDTA非処理ではFITC-Dextran(蛍光)が細胞塊内部へ移行することを示す蛍光像は観察できなかったのに対して、図18下段に示されるように、EDTA処理によりFITC-Dextran(蛍光)が細胞塊内部へ移行することを示す蛍光像は観察された。これは、EDTA非処理では細胞間のバリア機能が発揮されて細胞塊内部へ移行がみられなかったのに対して、EDTA処理により、カルシウム依存的なバリア機能が損なわれて細胞塊内部へ移行がみられたものであると考えられた。
 以上から、本発明の方法により、内耳器官に内在している血管条辺縁細胞と同様な本来的な生理機能性をあらわす細胞が得られることが明らかとなった。
 [試験例7]
 本試験例では、試験例3と同様の方法で分化誘導した内耳血管条辺縁細胞を用いて、薬剤の評価を行なった。
 具体的には、試験例3における浮遊培養の開始後47日目(Day58)に、培地に10μMシスプラチン(抗ガン剤)または100μMネオマイシン(アミノ配糖体系抗生剤)を添加し、通常酸素条件下(O20%、CO5%)でDay60まで48時間、浮遊培養を継続した。
 上記方法による薬剤処理後の細胞について、各種マーカータンパク質の発現状態を免疫染色により調べた。
 [7-1]cleaved caspase-3、ZO-1(Day60)
 浮遊培養の開始後49日目(Day60)、薬剤処理の開始後2日目の細胞を、4%パラフォルムアルデヒドを用いて室温で30分処理して固定し、7μmの凍結切片を作成した。また、対照として、薬剤処理を行わない浮遊培養の開始後49日目(Day60)の細胞を用いて、同様に凍結切片を作成した。それぞれの凍結切片を0.3%PBSTで10分間処理した後、10%normal donkey serum/0.1%PBSTにより室温で1時間ブロッキングを行なった。一次抗体としては、ウサギ抗cleaved caspase-3抗体、ヤギ抗ZO-1抗体をそれぞれ1:200の濃度で用い、4℃で一晩反応させた。一次抗体のIgG動物種に特異的な蛍光標識二次抗体を室温で1時間反応させた。また、核をHoechst33258で染色した。図19には、共焦点顕微鏡で観察して得らえた顕微鏡観察像を示す(scale bar:20μm)。
 更に、それぞれの顕微鏡観察像においてHoechst33258により総細胞数をカウントし、またcleaved caspase-3を発現している細胞数をカウントし、総細胞数に対するcleaved caspase-3発現細胞の割合を計算した。結果を図20に示す。
 その結果、図19及び図20に示されるように、各薬剤で処理を行うと、アポトーシスのマーカーとして知られるcleaved caspase-3を発現している細胞が、対照と比較して増加することが確認された。以上から、ヒトiPS細胞から分化誘導してなる内耳血管条辺縁細胞を用いることにより、各種薬剤による耳毒性を評価できることが明らかとなった。

Claims (14)

  1.  多能性幹細胞から分化誘導した内耳前駆細胞を含む細胞集団を、インスリンを含有しないか又はトレース量しか含有しないインスリン不含培地で培養する工程を含む、内耳血管条辺縁細胞の製造方法。
  2.  前記インスリン不含培地はインスリン濃度が0nM以上100nM以下である、請求項1記載の内耳血管条辺縁細胞の製造方法。
  3.  前記インスリン不含培地は、EGFを含み、更にbFGF、FGF3、及びBMP4からなる群から選択される少なくとも1種又は2種以上を含む、請求項1又は2記載の内耳血管条辺縁細胞の製造方法。
  4.  前記インスリン不含培地は、FGF3及びBMP4を選択するものである、請求項3に記載の血管条辺縁細胞の製造方法。
  5.  請求項1記載の内耳血管条辺縁細胞の製造方法であって、以下の工程(1)及び工程(2)を含む、該内耳血管条辺縁細胞の製造方法。
     (1)多能性幹細胞から分化誘導した内耳前駆細胞を含む細胞集団を、細胞剥離・分散処理する工程
     (2)工程(1)で得られた細胞又は細胞集団を、細胞外マトリクス素材の存在下に前記インスリン不含培地で浮遊培養する工程
  6.  前記細胞外マトリクス素材は、マトリゲル、プロネクチン、コラーゲン、ラミニン、及びフィブロネクチンからなる群から選択される少なくとも1種又は2種以上を含む、請求項5記載の内耳血管条辺縁細胞の製造方法。
  7.  請求項1記載の内耳血管条辺縁細胞の製造方法であって、以下の工程(1)~工程(3)を含む、該血管条辺縁細胞の製造方法。
     (1)多能性幹細胞から分化誘導した内耳前駆細胞を含む細胞集団を、細胞剥離・分散処理する工程
     (2)工程(1)で得られた細胞又は細胞集団を、細胞外マトリクス素材の存在下に前記インスリン不含培地で浮遊培養する工程
     (3)工程(2)の浮遊培養後の細胞又は細胞集団を、別に予め接着培養したフィーダー細胞に播種して前記インスリン不含培地で培養する工程
  8.  前記フィーダー細胞がメラノサイト又はメラノサイト様細胞である、請求項7記載の内耳血管条辺縁細胞の製造方法。
  9.  前記多能性幹細胞から分化誘導した内耳前駆細胞を含む細胞集団が、以下の工程(1)~工程(4)を含む方法で得られたものである、請求項1記載の内耳血管条辺縁細胞の製造方法。
     (1)多能性幹細胞を、成長因子無添加、ROCK阻害剤の存在下で培養する工程
     (2)工程(1)で得られた細胞集団を、成長因子無添加、ROCK阻害剤の非存在下で培養する工程
     (3)工程(2)で得られた細胞集団を、bFGF、FGF3、FGF10、及びFGF19からなる群から選ばれた少なくとも1種の成長因子、及びBMP4の存在下で培養する工程
     (4)工程(3)で得られた細胞集団を、bFGF、FGF3、FGF10、及びFGF19からなる群から選ばれた少なくとも1種の成長因子の存在下であって、BMP4の非存在下で培養する工程
  10.  前記内耳血管条辺縁細胞を無血清条件下に得るものである、請求項1記載の内耳血管条辺縁細胞の製造方法。
  11.  前記内耳血管条辺縁細胞は、カリウムチャネルタンパク質及びタイトジャンクションタンパク質を発現するものである、請求項1記載の内耳血管条辺縁細胞の製造方法。
  12.  内耳前駆細胞から分化誘導してなる内耳血管条辺縁細胞を被検薬剤で処理する工程と、前記被検薬剤で処理した前記内耳血管条辺縁細胞の状態を評価する工程とを含む、薬剤の評価方法。
  13.  内耳前駆細胞から分化誘導してなる内耳血管条辺縁細胞を含有する、薬剤評価用細胞培養物。
  14.  内耳前駆細胞を含む細胞集団を、インスリンを含有しないか又はトレース量しか含有しないインスリン不含培地で培養する工程を含む、内耳血管条辺縁細胞の製造方法。
PCT/JP2022/033140 2021-09-03 2022-09-02 内耳血管条辺縁細胞の製造方法、薬剤の評価方法、及び薬剤評価用細胞培養物 WO2023033149A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023545700A JPWO2023033149A1 (ja) 2021-09-03 2022-09-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021144125 2021-09-03
JP2021-144125 2021-09-03

Publications (1)

Publication Number Publication Date
WO2023033149A1 true WO2023033149A1 (ja) 2023-03-09

Family

ID=85412461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033140 WO2023033149A1 (ja) 2021-09-03 2022-09-02 内耳血管条辺縁細胞の製造方法、薬剤の評価方法、及び薬剤評価用細胞培養物

Country Status (2)

Country Link
JP (1) JPWO2023033149A1 (ja)
WO (1) WO2023033149A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231365A (ja) * 2014-05-13 2015-12-24 学校法人慶應義塾 内耳細胞誘導方法
US20170327557A1 (en) * 2014-10-29 2017-11-16 Massachusetts Eye And Ear Infirmary Efficient delivery of therapeutic molecules to cells of the inner ear
WO2021251418A1 (ja) * 2020-06-09 2021-12-16 株式会社オトリンク 内耳前駆細胞の製造方法、内耳有毛細胞の製造方法、薬剤の評価方法、及び内耳細胞分化誘導用組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231365A (ja) * 2014-05-13 2015-12-24 学校法人慶應義塾 内耳細胞誘導方法
JP6218152B2 (ja) 2014-05-13 2017-10-25 学校法人慶應義塾 内耳細胞誘導方法
US20170327557A1 (en) * 2014-10-29 2017-11-16 Massachusetts Eye And Ear Infirmary Efficient delivery of therapeutic molecules to cells of the inner ear
WO2021251418A1 (ja) * 2020-06-09 2021-12-16 株式会社オトリンク 内耳前駆細胞の製造方法、内耳有毛細胞の製造方法、薬剤の評価方法、及び内耳細胞分化誘導用組成物

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
EALY MELLWANGER DCKOSARIC NSTAPPER APHELLER S: "Single-cell analysis delineates a trajectory toward the human early otic lineage.", PROC NATL ACAD SCI U S A., vol. 113, no. 30, 26 July 2016 (2016-07-26), pages 8508 - 13, XP055885378, DOI: 10.1073/pnas.1605537113
KOEHLER KRNIE JLONGWORTH-MILLS ELIU XPLEE JHOLT JRHASHINO E: "Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells.", NAT BIOTECHNOL, vol. 5, no. 6, 3 June 2017 (2017-06-03), pages 583 - 589
MAKOTO HOSOYA ET AL., CELL REPORTS, vol. 18, 3 January 2017 (2017-01-03), pages 68 - 81
MAKOTO HOSOYAMASATO FUJIOKATAKEFUMI SONESATOSHI OKAMOTOWADO AKAMATSUHIDEKI UKAIHIROKI R. UEDAKAORU OGAWATATSUO MATSUNAGAHIDEYUKI O: "Cochlear Cell Modeling Using Disease-Specific iPSCs Unveils a Degenerative Phenotype and Suggests Treatments for Congenital Progressive Hearing Loss", CELL REPORTS, vol. 18, 3 January 2017 (2017-01-03), pages 68 - 81
SAEGUSA, CHIKA ET AL.: "O51-5 Realization of System for Inducing Stria Vascularis Border Cell Differentiation from Human Pluripotent Stem Cells", ABSTRACTS OF THE 29TH ANNUAL MEETING OF THE JAPAN OTOLOGICAL SOCIETY; YAMAGATA; OCTOBER 10-12, 2019, vol. 29, 30 September 2019 (2019-09-30) - 12 October 2019 (2019-10-12), pages 522, XP009544079 *
SHO KURIHARA ET AL., STEM CELLS TRANSL MED, vol. 11, no. 3, 31 March 2022 (2022-03-31), pages 282 - 296
WATANABE, KOTARO ET AL.: "Attempt at Cochlear Lateral Wall Cell Induction Using Human iPS Cells", OTOLOGY JAPAN, NIHON JIKA GAKKAI,OTOLOGICAL SOCIETY OF JAPAN, JP, vol. 24, no. 4, 1 January 2014 (2014-01-01), JP , pages 541, XP009544081, ISSN: 0917-2025 *

Also Published As

Publication number Publication date
JPWO2023033149A1 (ja) 2023-03-09

Similar Documents

Publication Publication Date Title
JP7023820B2 (ja) 多分化能細胞および多能性細胞の分化を方向付けることによって発生させる皮質介在ニューロンおよびその他のニューロン細胞
JP6835335B2 (ja) 終脳又はその前駆組織の製造方法
CN105431522B (zh) 内侧神经节隆起前体细胞的体外产生
JP7360583B2 (ja) 網膜組織の製造方法
CN110573609A (zh) 双分化或多分化类器官
CN105829526A (zh) 用于纯化视网膜色素上皮细胞的方法
CN105940101A (zh) 由人多能干细胞特化功能性颅基板衍生物
EP3882341A1 (en) Heart tissue model
WO2015015655A1 (ja) フックス角膜内皮ジストロフィ不死化細胞株およびその作製法
Völkner et al. Mouse retinal organoid growth and maintenance in longer-term culture
EP3853344A1 (en) Polarised three-dimensional cellular aggregates
KR102208889B1 (ko) 다능성줄기세포의 분화 제어 방법
KR20200088880A (ko) 신경 세포/조직 및 비신경 상피 조직을 포함하는 세포 덩어리의 제조 방법, 및 그로부터의 세포 덩어리
Lu et al. Pluripotent stem cells as models of retina development
JP6218152B2 (ja) 内耳細胞誘導方法
JP7274683B2 (ja) 多能性幹細胞から樹状分岐した集合管を伴う腎臓構造を作製する方法
Saeki et al. Critical roles of FGF, RA, and WNT signalling in the development of the human otic placode and subsequent lineages in a dish
WO2023033149A1 (ja) 内耳血管条辺縁細胞の製造方法、薬剤の評価方法、及び薬剤評価用細胞培養物
WO2021251418A1 (ja) 内耳前駆細胞の製造方法、内耳有毛細胞の製造方法、薬剤の評価方法、及び内耳細胞分化誘導用組成物
Pesirikan et al. Characterization of schwann cells in self-assembled sheets from thermoresponsive substrates
WO2021201175A1 (ja) 下垂体ホルモン産生細胞及びその前駆細胞の分離法
Meharwade et al. Cross-activation of FGF, NODAL, and WNT pathways constrains BMP-signaling-mediated induction of the totipotent state in mouse embryonic stem cells
WO2021251419A1 (ja) 内耳有毛細胞の製造方法、薬剤の評価方法、及び細胞分化誘導用組成物
Frias-Aldeguer et al. Polar-like trophoblast stem cells form an embryonic-abembryonic axis in blastoids
EP1961810A1 (en) Method for obtaining intestinal stem-precursor cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864731

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2023545700

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022864731

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022864731

Country of ref document: EP

Effective date: 20240403