WO2023033058A1 - 計測対象物の内部圧力又は剛性を測定する測定装置用の測定補助装置 - Google Patents

計測対象物の内部圧力又は剛性を測定する測定装置用の測定補助装置 Download PDF

Info

Publication number
WO2023033058A1
WO2023033058A1 PCT/JP2022/032812 JP2022032812W WO2023033058A1 WO 2023033058 A1 WO2023033058 A1 WO 2023033058A1 JP 2022032812 W JP2022032812 W JP 2022032812W WO 2023033058 A1 WO2023033058 A1 WO 2023033058A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
support
block
measurement
block portion
Prior art date
Application number
PCT/JP2022/032812
Other languages
English (en)
French (fr)
Inventor
鈴木康成
Original Assignee
鈴木康成
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鈴木康成 filed Critical 鈴木康成
Publication of WO2023033058A1 publication Critical patent/WO2023033058A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers

Definitions

  • This invention relates to a measuring device that measures the internal pressure or stiffness of an object to be measured.
  • Patent Document 1 A pressing portion having a contact surface that contacts the surface of a measurement object whose internal pressure or stiffness is to be measured, and a measuring portion, wherein the internal pressure or stiffness of the measurement object is known.
  • the pressing portion is moved in the direction of the measurement object by moving the measuring device in a state in which the pressing portion contact surface is brought into contact with the measurement object surface at the measurement position by an operation with a human hand or finger. Move in the direction of the measurement object.
  • the moving distance D of the pressing portion in the direction of the object to be measured is obtained from the moving speed of the pressing portion at this time, the acceleration in the movement of the pressing portion, or the moving distance of the pressing portion. and a change ⁇ F/ ⁇ D in a minute time ( ⁇ t) between the repulsive force F from the object to be measured when the pressing portion is moved in the direction of the object to be measured, and from this amount of change ⁇ F/ ⁇ D
  • Internal pressure or stiffness is measured.
  • the object to be measured is treated as a spring, and the internal pressure or stiffness of the object to be measured is obtained from the spring constant ⁇ F/ ⁇ D.
  • the measuring device for measuring the internal pressure or stiffness of the measurement object described in Patent Document 1 may be simply referred to as “measuring device”.
  • the side facing the surface of the measurement object at the position corresponding to the measurement position faces the pressing portion contact surface of the pressing portion of the measuring device. It is a measuring device support surface that supports the side to be measured.
  • the first end side of the plate-like body is perpendicular to the direction extending from the first end side toward the second end side on the upper side of the first support portion of the block portion, and the measurement is performed.
  • the first support portion of the block portion extending in parallel with the surface of the object can be supported by the upper end support portion in line contact.
  • the first end side of the plate-like body is supported by the first supporting portion of the block portion so as to be movable in the direction of the surface of the object to be measured, thereby supporting the measuring device of the plate-like body.
  • the plate-like body can be configured with a member that has rigidity and does not bend or bend.
  • a mechanism for adjusting the support height of the plate member corresponding to the distance between the contact surface of the block first support portion and the upper side is provided on the block first support portion.
  • the block part is A first block portion disposed on a side corresponding to the first end side and having a contact surface of a first block portion support portion contacting the surface of the measurement object in the vicinity of the measurement position on the measurement object a support; is disposed on a side corresponding to the second end side away from the first support portion of the block portion in a direction extending from the first end side toward the second end side; a block part second support part having a block part second support part contact surface that contacts the surface of the object to be measured in the vicinity of the measurement position on the object; consists of the first end side of the plate-like body is supported on the upper side of the first support portion of the block portion; The second end side of the plate-like body is supported on the upper side of the block second support, thereby creating a space between the block first support and the block second support.
  • the plate-like body is supported by the block portion by stretching the plate-like body across the block.
  • any of the various configurations adopted in the first embodiment can be adopted as described below.
  • a first elastic member interposed between the first end side of the plate-like body and the first support portion of the block portion;
  • a second elastic member is interposed between the second end side of the plate-like body and the second support portion of the block portion, so that the first end side of the plate-like body and the second end side of the plate-like body
  • the end side may be supported by the block portion so as to be movable in the direction of the surface of the object to be measured.
  • the first end side of the plate-like body is supported by surface bonding to the upper side of the block first support portion, and/or the side of the second end of the plate-like body is supported by surface bonding to the upper side of the second support portion of the block portion; can be configured
  • the plate-like body is supported by a so-called double-supported structure by the block first support and the block second support. Therefore, the first end side of the plate-like body and the first support portion of the block portion are surface-bonded, and the second end side of the plate-like body and the second support portion of the block portion are also surface-bonded.
  • a support structure with line contact or a support structure with point contact which are different from surface bonding, can be used, which will be described later.
  • the first end side of the plate-like body is the upper side of the block first support portion, and is perpendicular to the extending direction of the plate-like body and extends parallel to the surface of the object to be measured. supported in line contact with one support upper end support and/or
  • the side of the second end of the plate-like body is the upper side of the block part second supporting part, and is orthogonal to the extending direction of the plate-like body and extends in parallel with the surface of the object to be measured.
  • the two support parts are supported by line contact with the upper end support part, Can be configured.
  • the upper end support point of the block second support part is perpendicular to the upper surface of the block second support part in the direction extending from the first end side toward the second end side. A plurality of them may be arranged at intervals in a direction extending parallel to the surface of the object to be measured.
  • a plate-like body support is disposed on the block first support part upper end support part, and the first end side of the plate-like body is formed by the block part first support part upper end support part and the plate and/or
  • a plate-like body support is provided in the block part second support part upper end support part, and the second end side of the plate-like body is provided with the block part second support part upper end support part and the plate It can be configured such that it is sandwiched between it and the body support.
  • the plate-like body support can be composed of an elastic member, and Embodiment 1 is also capable of adopting other forms of plate-like body support. is the same as described in .
  • a plate-like body support strut support part is provided on the upper side of the first support part of the block part and the upper side of the second support part of the block part, and the plate-like body support strut is the plate-like body support strut It is the same as the first embodiment in that it can have a structure extending downward so as to be inserted into the plate-like body support hole from the support portion.
  • a member having flexibility or a member having elasticity can be employed as the plate-like body.
  • the first end of the plate-like body is supported by the first support portion of the block portion and the second support portion of the block portion, so to speak, in a structure that supports the plate-like body.
  • both the side of the plate and the first support part of the block part and the second end of the plate and the second support part of the block part are surface-bonded, they can be made of synthetic resin, etc. It is desirable to employ a plate-like body made of a member having flexibility or a plate-like body made of a member having elasticity such as rubber.
  • the block first support part and the block second support part surround the space and extend in the direction in which the plate member extends. It can be configured to be fixedly supported by a frame.
  • the relative position between the contact surface of the first support portion of the block portion and the contact surface of the second support portion of the block portion, and the support height of the plate-like body are fixed.
  • the block part first support part contact surface and the block part second support part contact surface are at the same position every time on the measurement object surface in the vicinity of the measurement position on the measurement object It is advantageous in coming to abut on. This is advantageous in that it becomes easier to make constant the strength with which the pressing portion contact surface contacts the object to be measured at the pressing start time in each measurement.
  • the hand for example, the right hand
  • the hand opposite to the hand (for example, the left hand) that supports the measurement auxiliary device
  • the auxiliary measurement device can be stably supported on the surface of the object to be measured without transmitting finger tremors to the measuring device, and the hand that presses can concentrate on pressing. Therefore, problems 1, 2, and 3 described above are improved.
  • the plate-like shape has a predetermined width in a direction perpendicular to the direction extending from the first end side to the second end side and extending in parallel with the surface of the object to be measured.
  • a side of the body facing the surface of the object to be measured at a position corresponding to the measurement position constitutes a measuring device support surface that supports a side of the pressing portion of the measuring device that faces the pressing portion contact surface.
  • the plate-like body is attached to the first support portion of the block portion on the first end side, and the plate-like body on the second end side so that the measurement device support surface can move in the direction of the surface of the object to be measured.
  • the block part is supported by the second support part.
  • the block portion includes a first block portion having a first block portion contact surface that contacts the surface of the measurement object in the vicinity of the measurement position on the measurement object, and the first block portion of the first block portion. a second block portion disposed on the upper side of the first block portion, which is the side facing the contact surface, The one end side of the plate-like body may be supported by the second block portion on the upper side of the second block portion.
  • the first end side of the plate-like body is supported by the second block portion so as to be movable in the direction of the surface of the object to be measured, so that the measuring device supporting surface of the plate-like body is It can be configured to be movable in the direction of the surface of the object to be measured.
  • an elastic member is interposed between the first end side of the plate-shaped body and the second block portion, so that the first end side of the plate-shaped body It can be configured to be supported by the block portion so as to be movable in the direction of the surface of the object.
  • the first end side of the plate-like body may be supported by surface bonding to the upper side of the second block portion.
  • the upper edge support point of the second block part is perpendicular to the direction extending from the first end side toward the second end side of the upper surface of the second block part, and the measurement is performed.
  • a configuration in which a plurality of them are arranged at intervals in a direction extending parallel to the surface of the object can be employed.
  • the support for the plate-shaped body can be made of an elastic member, other forms of the support for the plate-shaped body described in Embodiment 1 can be adopted, and support by line contact and point contact can be stabilized. It is also the same as that described in the first embodiment that the structure described in the first embodiment can be employed.
  • the mechanism for adjusting the support height of the plate-like body corresponding to the distance between the lower surface of the second block portion facing the upper side of the first block portion and the upper side of the second block portion is the It can be configured to be deployed in the second block part.
  • the block portion includes a first block portion having a first block portion contact surface that contacts the surface of the measurement object in the vicinity of the measurement position on the measurement object, and the first block portion of the first block portion.
  • a second block portion disposed on the upper side of the first block portion, which is the side facing the contact surface
  • the second block part is a second block portion first support portion disposed on the upper side of the first block portion on a side corresponding to the first end side;
  • the first block part on the side corresponding to the second end side away from the second block part first support part in a direction extending from the first end side toward the second end side a second block portion and a second support portion arranged on the upper side of the the first end side of the plate-like body is supported on the upper side of the second block portion first support portion;
  • the second end side of the plate-like body is supported on the upper side of the second block portion second support portion, thereby forming the second block portion first support portion and the second block portion second support portion.
  • the fifth embodiment is also a combination of the first block portion, which was not used in the third embodiment, with the third embodiment.
  • a first elastic member interposed between the first end side of the plate-like body and the second block portion first support portion
  • a second elastic member is interposed between the second end side of the plate-like body and the second support portion of the second block portion, so that the first end side of the plate-like body and the The second end side can be configured to be supported by the block portion so as to be movable in the direction of the surface of the object to be measured.
  • a spring or a gasket can be employed as the elastic member, and the spring or gasket is provided between the upper side of the second block portion first support portion and the lower side of the first end side of the plate-like body.
  • a configuration in which a gasket is arranged, and a configuration in which a spring or a gasket is arranged between the upper side of the second block portion and the second support portion and the lower side of the second end side of the plate-like body can be adopted. are the same as those described in the first embodiment.
  • this Embodiment 5 can also be employed, thereby achieving the same effects as those described above.
  • the first end side of the plate-like body extends perpendicularly to the extending direction of the plate-like body and parallel to the surface of the object to be measured on the upper side of the second block portion first support portion.
  • the second block part is supported by the upper end support part of the first support part in line contact, and/or
  • the second end side of the plate-like body extends perpendicularly to the extending direction of the plate-like body and parallel to the surface of the object to be measured on the upper side of the second block portion second support portion.
  • the first end side of the plate-like body is in point contact supported by an upper end support point of the second block portion first support portion arranged on the upper surface of the second block portion first support portion. and/or The second end side of the plate-like body is in point contact supported by an upper end support point of the second block portion second support portion arranged on the upper surface of the second block portion second support portion.
  • the second block portion first support portion upper end support point extends from the first end side toward the second end side of the upper surface of the second block portion first support portion. It is possible to adopt a configuration in which a plurality of sensors are arranged at intervals in a direction perpendicular to the direction and extending in parallel with the surface of the object to be measured. Further, the upper end support point of the second block portion second support portion is formed on the upper surface of the second block portion second support portion in a direction extending from the first end side toward the second end side. It is possible to adopt a configuration in which a plurality of them are arranged at intervals in a direction orthogonal to and extending parallel to the surface of the object to be measured.
  • a plate-like body supporter is provided on the upper end support part of the second block part first support part, and the first end side of the plate-like body is provided with the upper end support part of the second block part first support part and the plate support, and/or A plate-like body supporter is provided on the upper end support part of the second block part second support part, and the second end side of the plate-like body is provided with the upper end support part of the second block part second support part and the plate support.
  • a member having flexibility or a member having elasticity can be employed as the plate-like body.
  • the first end side of the plate-like body is supported by the first supporting portion of the second block portion so as to be movable in the direction of the surface of the object to be measured
  • the second end side of the plate-like body is the The measuring device supporting surface of the plate-like body
  • the plate-like body can be constructed of a member that has rigidity and does not bend or bend.
  • the plate-like body is supported by the first supporting portion of the second block portion and the second supporting portion of the second block portion, so to speak, in a double-supported structure. between the first end side of the second block portion and the first support portion, and between the second end side of the plate-shaped body and the second block portion second support portion, when both are surface-bonded If a plate-shaped body made of an elastic member such as rubber is used, the measurement can be performed with a weaker pressing force.
  • a mechanism for adjusting the support height of the plate-like body similar to that described in the first embodiment can be employed.
  • a plate-shaped body support height corresponding to the distance between the lower surface of the second block portion first support portion facing the upper side of the first block portion and the upper side of the second block portion first support portion and/or a mechanism for adjusting Plate-like body support height corresponding to the distance between the lower surface of the second block portion second support portion facing the upper side of the first block portion and the upper side of the second block portion second support portion is arranged on the second support portion of the second block portion.
  • the first block may be provided with a mechanism for adjusting a plate-like object support height corresponding to the distance between the contact surface of the first block and the upper side of the first block. can.
  • the first block portion is composed of a plurality of unit blocks stacked in the vertical direction.
  • the first block part having an appropriate vertical height is used. By selectively using it, the support height of the plate can be adjusted.
  • the first supporting portion of the second block portion and the second supporting portion of the second block portion are fixedly supported by a support frame surrounding the space portion and extending in the direction in which the plate-like body extends. can.
  • the effect of the support frame in the fifth embodiment is that the second block portion first support portion and the second block portion second support portion can be slid at the same time, which will be described later.
  • the second block part first support part is provided with respect to the first block part, in the direction in which the plate-shaped body extends and/or It can be arranged so as to be slidable in a direction orthogonal to the extending direction of the plate-like body.
  • the measurement auxiliary device of the following embodiments for a measuring device that measures the internal pressure or stiffness of a measurement object is a measuring device that measures the internal pressure or stiffness of the measurement object, and the internal pressure or stiffness of the measurement object is A pressing portion contacting surface that contacts the surface of the object to be measured at the measurement position where the stiffness is measured, and that moves in the direction of the object to be measured when the internal pressure or the stiffness is measured. It is intended for use with a measuring device comprising a part.
  • the measurement auxiliary device for the measuring device that measures the internal pressure or stiffness of the measurement object may be simply referred to as “measurement auxiliary device”.
  • the measurement position is the eyelid of the human body 2 as shown in FIG.
  • Example 1 One example corresponding to the first, second, and fourth embodiments will be described.
  • the measuring device 1 has a pressing portion 10 (FIGS. 8 and 9).
  • the pressing portion 10 includes a pressing portion contact surface 10a that contacts the surface of the measurement object (human body) 2 at the measurement position (human eyelid) where the internal pressure or stiffness of the measurement object (human body) 2 is measured.
  • the measurement device 1 When measuring the internal pressure or stiffness of the measurement object (human body) 2 using the measurement device 1, the measurement device 1 is in a state where the pressing portion contact surface 10a is in contact with the measurement object surface. , in the directions indicated by arrows 30 in FIGS. As a result, the measuring apparatus 1 moves in the direction indicated by the arrow 30, that is, in the direction of the measurement target surface at the measurement position (human eyelid). At the same time, the pressing portion 10 also moves in the direction of the surface of the object to be measured while keeping the contact surface 10a of the pressing portion in contact with the surface of the object to be measured.
  • the plate-like body 8 has a predetermined size in a direction perpendicular to the direction extending from one end 8c side to the other end 8d side and extending in parallel with the surface of the object to be measured (human body). It has a width of
  • surface bonding is adopted as a mode in which the one end 8c side of the plate-like body 8 is supported by the block portion 4.
  • the measurement position is placed on the surface of the measurement object (human body).
  • One end 8c side of the plate-like body 8 extending parallel to the surface of the object to be measured (human body) toward the upper side (eyelid of the human body) is joined by surface joining.
  • the plate-like body 8 at the position corresponding to the measurement position (eyelid of the human body) of the human body 2 receives a force in the direction of the measurement target (human body) indicated by an arrow 30, It can move in the direction of an object (human body).
  • the measuring device support surface 8a can move in the direction of the measurement object (human body) 2 when receiving a force in the direction of the measurement object (human body) indicated by the arrow 30 .
  • the one end 8c side of the plate-like body 8 is supported by the block portion 4 on the upper side of the block portion 4,
  • the other end 8d extends over the surface of the measurement object (human body) toward the upper side of the measurement position (eyelid of the human body). Therefore, as shown in FIG. 4, the other end 8d of the plate-like body 8 floats in the air.
  • the block portion contact surface 5 is brought into contact with the measurement object surface near the measurement position (eyelid) of the human body, and the measuring device support surface 8a of the plate-like body 8 is brought into contact with the pressing portion contact surface 10a against the surface of the eyelid. It is brought into contact with the side 1b facing the pressing portion contact surface 10a of the measuring device 1 in the contact state.
  • the measuring device 1 can be attached to the plate-like body 8 by a snap-in structure.
  • the measuring device support surface 8a supports the side 1b facing the pressing portion contact surface 10a of the measuring device 1 in a state where the pressing portion contacting surface 10a is in contact with the surface of the eyelid.
  • a force in the direction indicated by an arrow 30 in FIGS. 8 and 9 is applied to the plate-like body 8 of the device 3 .
  • a pressing force in the direction indicated by the arrow 30 is applied to the position corresponding to the measurement position (eyelid) of the plate-like body 8 in the measurement assisting device 3 in the state described above.
  • the plate-like body 8 has a predetermined width as described above. Then, on the upper surface of the block part 4 parallel to the surface of the measurement object (human body) near the measurement position (human eyelid) of the human body 2, the measurement position is placed on the surface of the measurement object (human body). One end 8c side of the plate-like body 8 extending parallel to the surface of the object to be measured (human body) toward the upper side (eyelid of the human body) is joined by surface joining.
  • the measuring device supporting surface 8a formed on the side of the plate-like body 8 facing the surface of the object to be measured at the position corresponding to (the eyelid of) the measuring position faces the pressing portion contact surface 10a of the measuring device 1.
  • the dorsal side 1b is supported.
  • the block portion 4 is a member having rigidity, and as described above, when the measuring device support surface 8a of the plate-like body 8 moves in the direction of the object to be measured indicated by the arrow 30, the plate-like portion is The other end 8d of the body 8 moves so as to rotate with respect to the block portion 4 in the direction of the object to be measured.
  • the auxiliary measurement device 3 of the first embodiment corrects the error in the distance measurement using the acceleration sensor caused by the change in the direction of the gravity applied to the measurement device 1 due to rotation. It is desirable to use it in combination with the measuring device 1 described in Patent Literature 1, which has a mechanism for This correction mechanism is described in paragraphs [0162 to 0166] of the specification of Patent Document 1.
  • the block part 4 is a member having rigidity
  • the plate-like body 8 is a member having rigidity
  • the other end 8d of the plate-like body 8 is rotated with respect to the block part 4 in the direction of the object to be measured. Movement is different from that of the flexible plate-like body described above.
  • the edge of the block contact surface 5 of the block 4 on the side of the measurement position eyelid of the human body
  • the left upper edge of the block 4 in FIG. It is used by contacting the surface of the measurement object near the measurement position (eyelid).
  • Example 2 One example corresponding to the first, second, and fourth embodiments will be described.
  • one end 8c of the plate-like body 8 is supported by the block portion 4 so as to be movable in the direction of the object to be measured, so that a pressing force indicated by an arrow 30 is applied to the plate-like body 8.
  • a pressing force indicated by an arrow 30 is applied to the plate-like body 8.
  • FIGS. 4 to 9 and Embodiment 1 Other configurations are the same as those described in FIGS. 4 to 9 and Embodiment 1, so the same components as those described in FIGS. 4 to 9 and Embodiment 1 are common in FIG. , and the description thereof is omitted.
  • Example 2 shown in FIG. 10 the adhesive member described in Example 1 is placed between the side 1b facing the pressing portion contact surface 10a of the measuring device 1 and the measuring device supporting surface 8a of the plate-like body 8. are interposed, and the two are used in an adhered state.
  • the block portion 4 is a lower unit block provided with a block portion contact surface 5 that contacts the measurement object surface 2c in the vicinity of the eyelid 2b, which is the measurement position of the face 2a of the human body. 4b and an upper unit block 4a laminated on the unit block 4b.
  • the plate-like body 8 employed in the measurement auxiliary device 3 of the second embodiment is a plate that does not bend or bend, that is, a plate that has rigidity.
  • One end 8c of the plate-like body 8 is supported by the block 4 in such a manner that an elastic member 12 such as a spring or gasket is interposed between the plate-like body 8 and the block 4 .
  • Example 2 shown in FIG. 10 a depression is formed in the upper side wall surface of the upper unit block 4a on the measurement position (eyelid 2b) side.
  • One end 8c of the plate-like body 8 is arranged on the upper side of the depression and the elastic member 12 is arranged on the lower side thereof, and the one end 8c is supported by the block 4 . That is, the one end 8c of the plate-like body 8 is supported by the block 4 in such a manner that it is always biased upward in FIG.
  • the block portion contact surface 5 is brought into contact with the measurement object surface 2c near the measurement position (eyelid 2b).
  • the pressing portion contact surface 10a is brought into contact with the surface of the eyelid 2b.
  • the side 1b facing the pressing portion contact surface 10a is supported by the measuring device support surface 8a. Then, a pressing force in the direction indicated by an arrow 30 is applied to a position corresponding to the measurement position (eyelid 2b) of the plate-like body 8. As shown in FIG.
  • the one end 8c of the plate-like body 8 is supported by the block 4 in such a manner that it is always biased upward in FIG. Therefore, by moving the plate-like body 8 in the direction indicated by the arrow 30, the elastic member 12 receives a compressive force downward in FIG. Get away from the wall.
  • the measuring device 1 supported on the measuring device supporting surface 8a is similarly supported by the measuring device supporting surface 8a with the pressing portion contact surface 10a in contact with the surface of the eyelid 2b, and is also indicated by the arrow 30. Move in the direction of the object to be measured. As a result, the pressing portion 10 provided in the measuring device 1 also moves toward the object to be measured while keeping the pressing portion contact surface 10a in contact with the surface of the eyelid 2b.
  • the one end 8c of the plate-like body 8 is supported by the block 4 in such a manner that it is always biased upward in FIG.
  • the block 4 When receiving a force in the direction of the object, it moves in the direction of the object to be measured while compressing the elastic member 12 .
  • the plate-like body 8 having rigidity has been described above, the plate-like body 8 made of a member having flexibility can be used to exhibit the same actions and functions as those described above.
  • the auxiliary measurement device 3 is arranged so that the direction of gravity applied to the measurement device 1 is rotated. It is desirable to use it in combination with the measuring device 1 described in Patent Document 1, which has a mechanism for correcting errors in distance measurement using an acceleration sensor due to changes.
  • a lower unit block 4b having a block portion contact surface 5 that contacts the measurement object surface 2c near the eyelid 2b, which is the measurement position of the face 2a of the human body, and the unit block 4b.
  • a block portion 4 is constituted by the unit blocks 4a laminated thereon.
  • the plate-like body support height which is the height for supporting the plate-like body 8
  • the plate-like body support height should be considered as the distance from the block portion contact surface 5 of the unit block 4b to the top of the unit block 4a. can be done.
  • the plate support height can be made lower than in the state shown in FIG.
  • the support height of the plate-like body can be made higher than the state shown in FIG.
  • the block part 4 is composed of a plurality of unit blocks stacked in the vertical direction, and the plate-like body is formed by increasing or decreasing the number of the plurality of unit blocks.
  • the support height can be made adjustable.
  • a screw mechanism or the like can be used as a configuration that allows the plate member support height to be arbitrarily adjusted by adjusting the distance between the block portion contact surface of the block portion and the upper side of the block portion.
  • various configurations can be employed.
  • Example 3 One example corresponding to the first, second, and fourth embodiments will be described.
  • Embodiment 1 described with reference to FIGS. 4 to 9 surface bonding is adopted as a form in which the one end 8c side of the plate-like body 8 is supported by the block portion 4.
  • line contact is adopted as a mode in which the one end 8c side of the plate-like body 8 is supported by the block portion 4. As shown in FIG.
  • the block part 4 has a block part upper end support part 9 on its upper end side.
  • the upper end support portion 9 of the block portion shown in FIG. 11 is the upper surface of the block portion 4 and extends perpendicularly to the direction extending from the one end 8c side of the plate-like body toward the other end 8d side. It is a block part upper end support piece extending parallel to the .
  • the block upper end support 9 in FIG. 11 is formed on the upper surface of the block 4 on the side where the measurement position (eyelid) of the object to be measured exists.
  • the one end 8c side of the plate-like body 8 is supported by the block upper end support portion 9 in line contact.
  • the plate-like body support 13 is an elastic cord-like body such as a rubber cord. As shown in FIGS. 11 to 14, when the plate support 13 is composed of a linear member extending along the block upper end support 9 on the upper side of the block upper end support 9, the elasticity is increased. It is advantageous to have the plate-like support 13 by means of a string-like material.
  • the support of the one end 8c side of the plate-like body 8 by the block part 4 is a so-called cantilever support, and moreover, a line contact support as described above.
  • the other end 8d of the plate-like body 8 floats in the air, and the one end 8c moves upward away from the upper surface of the block 4 around the position where it is supported by line contact. Because it moves, the support structure is a seesaw-like structure.
  • the portion that supports the plate-like body 8 in line contact is sandwiched between the block upper end support portion 9 and the plate-like body support 13 as described above. is desirable.
  • the structure for stabilizing the support in line contact and point contact is not limited to this, and various structures can be adopted.
  • the plate-like body 8 has a plate-like body support hole extending vertically through the plate-like body 8 near the one end 8c on the side of the one end 8c.
  • the block part 4 has a structure in which the upper end support part 9 of the block part is provided with a plate-like body support column.
  • the plate-like body support column extends upward from the block portion 4 so as to be inserted into the plate-like body support hole.
  • the plate-like body support struts may extend downward and be inserted into the plate-like body support holes.
  • a plate-like body support column support portion is attached to the upper side of the block portion 4, and the plate-like body support column extending downward from the plate-like body support column support portion is inserted into the plate-like body support hole. Structure.
  • the size of the inner diameter of the plate-like body support hole, the size of the outer diameter of the plate-like body support column, the thickness of the plate-like body 8, and the length of the plate-like body support column extending through the plate-like body support hole By appropriately adjusting the support, line contact and point contact support can be stabilized, and the plate-like body 8 can be prevented from falling off from the upper end support portion of the block portion.
  • a plurality of plate-like body support holes and plate-like body support struts may be provided in the width direction of the plate-like body 8 .
  • the block portion contact surface 5 is brought into contact with the surface of the measurement object near the measurement position (eyelid) of the human body.
  • the pressing portion contact surface 10a is brought into contact with the surface of the eyelid.
  • the side 1b facing the pressing portion contact surface 10a is supported by the measuring device support surface 8a. Then, a pressing force is applied in the direction indicated by arrow 30 in FIGS.
  • the plate-like body 8 made of a member having rigidity that does not bend or bend is adopted, since it is supported by line contact, it receives the pressing force in the direction indicated by the arrow 30 described above.
  • the measuring device support surface 8a moves toward the object to be measured, one end 8c of the plate-like body 8 moves away from the upper side of the block 4 like a seesaw with the block upper end support 9 as a fulcrum ( Figure 14).
  • the plate-like body 8 made of a member having flexibility is adopted, not only the operation like a seesaw but also the deflection of the plate-like body 8 causes the measurement device support surface 8a to move in the direction of the measurement object (human body). move to
  • the auxiliary measurement device 3 of the third embodiment is used as an acceleration sensor, which is caused by the change in the direction of gravity applied to the measurement device 1 due to rotation. It is desirable to use it in combination with the measuring device 1 described in Patent Document 1, which has a mechanism for correcting errors in distance measurement using the .
  • the mechanism that the movement in the X-axis direction is restricted by the predetermined lateral width of the plate-like body 8 is common to all the embodiments.
  • the mechanism that the movement in the Y-axis direction is restricted because the plate-like body 8 is supported by the block portion 4 is also common to all the embodiments.
  • 11 to 14 show a linear member extending along the block upper end support portion 9 on the upper side of the block upper end support portion 9 as the plate member support 13 .
  • various structures can be used to support the plate-shaped body. body can be adopted.
  • the plate-like body 8 is positioned between the hooks provided on the upper side of the block portion 4 at both ends of the block upper end support portion 9 and both ends of the block upper end support portion 9.
  • a structure in which both side edges are sandwiched can be adopted.
  • a screw mechanism or the like can be used as a configuration for arbitrarily adjusting the plate member support height by adjusting the distance between the block portion contact surface of the block portion and the upper side of the block portion.
  • Various configurations can be employed.
  • the upper end support part 9 of the block part is perpendicular to the direction extending from the one end 8c of the plate-like body to the other end 8d and parallel to the surface of the object to be measured. It is also possible to adopt the upper edge of the upper side of the block part 4, which extends in the same direction.
  • support by point contact can achieve the same mechanism as support by line contact.
  • the direction extending from the one end 8c side of the plate-like body 8 toward the other end 8d side is perpendicular to the direction extending in parallel with the measurement object surface.
  • a plurality of block upper end support points are provided at intervals in the direction, and the plurality of block upper end support points can form the block upper end support in the line contact support described above.
  • Example 4 One example corresponding to the first and third embodiments will be described.
  • the block portion is composed of a block portion first support portion 4c and a block portion second support portion 4d.
  • the block first support part 4c is arranged on the side corresponding to the one end 8c of the plate-like body 8, and is in contact with the surface of the object to be measured in the vicinity of the measurement position (eyelid) on the object to be measured. It has one support portion contact surface 5a (FIG. 17).
  • the block part second support part 4d is separated from the block part first support part 4c in a direction extending from the one end 8c side toward the other end 8d side, and is arranged on the side corresponding to the other end 8d side. It has a block second support contact surface 5b that contacts the surface of the measurement object in the vicinity of the measurement position (eyelid) on the measurement object (FIG. 17).
  • One end 8c side of the plate-like body 8 is supported on the upper side of the block part first supporting part 4c, and the other end 8d side of the plate-like body 8 is supported on the upper side of the block part second supporting part 4d (Fig. 17). .
  • the plate-like body 8 is spanned in the space between the block first support part 4c and the block part second support part 4d, so that the plate-like body 8 is supported by the block first support part 4c. and the second block support portion 4d (FIGS. 16 and 17).
  • the block portion first support portion contact surface 5a and the block portion second support portion contact surface 5b are brought into contact with the measurement object surface near the measurement position (eyelid) of the human body, and the pressing portion of the measuring device 1 is brought into contact.
  • the side 1b facing the surface 10a is in contact with and supported by the measuring device supporting surface 8a of the plate-like body 8. As shown in FIG.
  • the pressing portion contact surface 10a is in contact with the surface of the eyelid.
  • the flexible plate-like body 8 bends as shown in FIGS. 18 to 21, thereby moving the measurement device support surface 8a toward the measurement object (human body).
  • the measuring device 1 supported on the measuring device supporting surface 8a is similarly supported by the measuring device supporting surface 8a with the pressing portion contact surface 10a in contact with the surface of the eyelid, as indicated by an arrow 30. Move in the direction of the object to be measured. As a result, the pressing portion 10 provided in the measuring device 1 also moves toward the object to be measured while keeping the pressing portion contact surface 10a in contact with the surface of the eyelid.
  • Embodiment 4 As described in Embodiment 2 using FIG. 10, also in Embodiment 4 shown in FIGS. It is possible to use a laminated structure or adjust the support height of the plate-like body by means of a screw mechanism.
  • the height at which the one end 8c side of the plate-like body 8 is supported by the block first support part 4c and the other end 8d of the plate-like body 8 by the block second support part 4d are increased. It is also possible that the side of the support is different from the height at which it is supported.
  • the support height of the plate-like body can be adjusted in accordance with the subtle unevenness of the surface of the human face, which is the object of intraocular pressure measurement, and the pressing portion 10 presses in the Z-axis direction in FIG. It is possible to adjust the angle of the plate-like body 8 with respect to the object to be measured. This solves problems 4, 5, and 6 mentioned above.
  • the plate-like body 8 made of a member having flexibility is employed.
  • one end 8c side of the plate-like body 8 is supported by surface bonding on the upper side of the block portion first support portion 4c, and the other end 8d side is supported on the upper side of the block portion second support portion 4d by surface bonding. It is Therefore, as the plate-like body 8, a plate-like body made of a member having elasticity such as rubber can be employed.
  • Example 5 One example corresponding to the first and third embodiments will be described.
  • Embodiment 5 shown in FIG. 22 describes an embodiment in which modifications are made to Embodiment 4 shown in FIGS. It is common with the difference with Example 2 of 10.
  • the block first support part 4c is a lower unit block provided with a block first support part contact surface 5a that contacts the measurement object surface 2c near the eyelid 2b, which is the measurement position of the face 2a of the human body. 4f and a unit block 4e laminated on the unit block 4f.
  • the block second support part 4d is a lower unit block provided with a block part second support part contact surface 5b that contacts the measurement object surface 2d in the vicinity of the eyelid 2b, which is the measurement position of the face 2a of the human body. 4h and a unit block 4g laminated on the unit block 4h.
  • the plate-like body 8 employed in the measurement auxiliary device 3 of Example 5 is a plate that does not bend or bend, that is, a plate that has rigidity.
  • One end 8c of the plate-like body 8 is supported by the block first support portion 4c in such a manner that an elastic member 12a such as a spring or a gasket is interposed between it and the block 4e.
  • an elastic member 12a such as a spring or a gasket
  • the other end 8d of the plate-like body 8 is supported by the block second support portion 4d in such a manner that an elastic member 12b such as a spring or a gasket is interposed between it and the block 4g.
  • the one end 8c is always biased upward in FIG. 22 by the elastic force of the elastic member 12a
  • the other end 8d is always biased upward in FIG. 22 by the elastic force of the elastic member 12b. 22
  • the plate-like body 8 is supported by the first block support portion 4c and the second block support portion 4d in a so-called double-supported structure.
  • this embodiment 5 is also advantageous in that the rotation when the measuring device 1 moves in the Z-axis direction in FIG. 3 is minimized.
  • the contact surface 5a of the block first support 4c and the block second support 4d are attached. are brought into contact with each other.
  • a pressing portion contact surface 10a of the measuring device 1 contacts the surface of the eyelid 2b.
  • the side 1b facing the pressing portion contact surface 10a is supported by the measuring device support surface 8a.
  • a pressing force in the direction indicated by an arrow 30 is applied to a position corresponding to the measurement position (eyelid 2b) of the plate-like body 8.
  • the rigid plate-like body 8 moves in the direction indicated by the arrow 30, that is, in the direction of the object to be measured, and the measuring device support surface 8a moves in the direction of the object to be measured.
  • the one end 8c of the plate-like body 8 is always biased upward in FIG. Supported. Therefore, by moving the plate-like body 8 in the direction indicated by the arrow 30, the elastic member 12a receives a compressive force downward in FIG. Get away from the wall.
  • the other end 8d of the plate-like body 8 is supported by the block second support portion 4d in such a manner that it is always biased upward in FIG. 22 by the elastic force of the elastic member 12b. Therefore, by moving the plate-like body 8 in the direction indicated by the arrow 30, the elastic member 12b receives a compressive force downward in FIG. Get away from the wall.
  • the measuring device 1 supported on the measuring device supporting surface 8a is similarly supported by the measuring device supporting surface 8a with the pressing portion contact surface 10a in contact with the surface of the eyelid 2b, and is also indicated by the arrow 30. Move in the direction of the object to be measured. As a result, the pressing portion 10 provided in the measuring device 1 also moves toward the object to be measured while keeping the pressing portion contact surface 10a in contact with the surface of the eyelid 2b.
  • the support height of the plate-shaped body can be arbitrarily adjusted.
  • Example 6 One example corresponding to the first and third embodiments will be described.
  • Example 4 (Figs. 16 to 21) and Example 5 (Fig. 22) both had a support form of a double-supported structure.
  • the sixth embodiment shown in FIGS. 23 to 29 also supports the plate-like body 8 with a double-end structure. It is different from the fourth embodiment (FIGS. 16 to 21) and the fifth embodiment (FIG. 22) in that the line contact described in the third embodiment (FIGS. 11 to 14) is adopted as the supporting form.
  • Embodiment 4 (FIGS. 16 to 21) and Embodiment 5 (FIG. 22) are different in that they are fixedly supported by a support frame 14 extending vertically.
  • the block first support part 4k is a lower unit block provided with a block first support part contact surface 5a that contacts the measurement object surface 2c near the eyelid 2b, which is the measurement position of the face 2a of the human body. 4j and a unit block 4i laminated on the unit block 4j.
  • the height at which the one end 8c side of the plate-like body 8 is supported by the first block support part 4k is adjusted to the height of the other end 8d of the plate-like body 8 by the second block support part 4n.
  • the support height of the plate-like body can be adjusted, and the angle of the plate-like body 8 with respect to the object to be measured can be adjusted so that the pressing portion 10 is pressed in the Z-axis direction in FIG. .
  • Example 7 One example corresponding to the first and third embodiments will be described.
  • the male screw 17a passes through one end of the plate-like body 8 and the unit block 4p from the upper side of one end of the plate-like body 8 to the lower side. unit block 4o (FIG. 32).
  • the male screw 17b extends from the upper side through the unit block 4s to the lower unit block 4r. (Fig. 32).
  • the block first support 4q and the block second support 4t are provided.
  • the support frame bodies 14a and 14b extend around the space existing between them, and the ends of the support frame bodies 14a and 14b on the one end 8c side of the plate-like body 8 are fixed to the unit block 4p so that the plate
  • the ends of the support frames 14a and 14b on the side of the other end 8d of the shaped body 8 are fixed to the unit block 4s.
  • the plate-like body 8 is supported by the unit block 4p by surface bonding on the right side of FIG. 31, but is supported on the unit block 4s by line contact described in the third embodiment (FIGS. 11 to 14) on the left side of FIG. It is
  • An advantage of the seventh embodiment in which one side of the plate-like body 8 is surface-bonded is that the plate-like body 8 does not fall off from the measurement auxiliary device 3 when a rubber string is employed as the plate-like body support 13b. If the method of supporting the plate-like body differs between the one end 8c side and the other end 8d side of the plate-like body 8, the deflection rigidity of the plate-like body 8 becomes asymmetrical. Rotation will be included. However, the rotation can be prevented by setting the pressing position on the plate-like body 8 not at the center between the line contact portion and the surface joint portion but near the surface joint side.
  • a unit block 4o in which the angle of the contact surface 5a of the first support portion of the block portion is adjusted so as to correspond to the shape of the human forehead may be used. By doing so, it is possible to appropriately set the angle of the plate-like body 8 with respect to the object to be measured before pressing.
  • the contact surface 5a and the contact surface 5b of the second support portion of the block can maintain a state of stably contacting the surface of the object to be measured near the measurement position (eyelid) on the object to be measured.
  • the unit block 4o may be provided with an angle or step height adjusting mechanism of the block portion first support portion contact surface 5a with a screw structure.
  • the measuring device 1 supported on the measuring device supporting surface 8a contacts the surface of the eyelid 2b with the pressing portion contact surface 10a. It is moved in the direction of the object to be measured indicated by the arrow 30 while being in contact with and supported by the measuring device support surface 8a. As a result, the pressing portion 10 provided in the measuring device 1 also moves toward the object to be measured while keeping the pressing portion contact surface 10a in contact with the surface of the eyelid 2b.
  • this embodiment 7 is also advantageous in that the rotation when the measuring device 1 moves in the Z-axis direction in FIG. 3 is minimized.
  • the measurement auxiliary device 3 of the seventh embodiment has a stopper mechanism that prevents the measurement device support surface 8a of the plate-like body 8 from excessively moving in the direction of the object to be measured. is provided.
  • the measuring device support surface 8a of the plate-like body 8 moves in the direction of the object to be measured by receiving the pressing force in the direction indicated by the arrow 30, the movement can be stopped when it comes into contact with the stopper 27. As a result, it is possible to prevent the pressure in the eyelid direction from becoming too large when measuring the intraocular pressure.
  • Any object that contacts the stopper 27 may be moved by pressing, and may contact the measuring device 1, for example.
  • the place where the stopper 27 is installed may be any part included in the auxiliary measurement device 3 that does not move by pressing, for example, it may be installed on the support frame 14 .
  • FIG. 33 shows the measurement auxiliary device 3 of FIG. 31 in which a cushioning material 28 is arranged on the surface of the plate-like body 8 .
  • the cushioning material 28 can be adhered to the pressing position of the plate-like body 8 with double-sided tape or the like.
  • a cuboid made of urethane sponge and measuring length (10 mm) ⁇ width (10 mm) ⁇ thickness (5 mm) can be used as the cushioning material 28 .
  • the area where the cushioning material is slightly compressed immediately after the start of pressing and the repulsive force is very weak can be used as play.
  • an acceleration that makes the finger trembling negligible occurs in the finger, the plate-like body 8 begins to bend, and the pressing portion contact surface 10a begins to receive a repulsive force.
  • the cushioning material 28 further improves the problems 1, 2, 3, and 6 and solves the problem 7 described above.
  • the use of cushioning material to enable pressing from a state in which fingers are separated from the cushioning material or the plate-like body not only improves operability for humans, It is also effective in mitigating the impact when pressing with a mechanical device such as a cam. Incidentally, even in the case of pressing with a mechanical device, the problems 4, 5 and 6 can be easily solved by combining with the auxiliary pressing device 3 .
  • Example 8 Examples corresponding to Embodiments 1, 3, and 5, more specifically, one example corresponding to Embodiment 5 will be described.
  • An example of the auxiliary measurement device to be arranged on the upper side of the first block portion 19 having the first block portion contact surface 19a that contacts the surface of the object to be measured will be described.
  • the mechanism for arbitrarily adjusting the support height of the plate-like body by the screw mechanism in this eighth embodiment is as follows.
  • the male screw 17a extends from the upper side of the one end 8c side of the plate-like body 8 to the lower side through the one end 8c side of the plate-like body 8 and the unit block 4p. It extends to the unit block 4o.
  • the first block portion 19 has a cylindrical shape that can surround the measurement position (eyelid), and has a first block portion contact surface 19a on the edge on the side facing the surface of the measurement object (that is, the surface of the face). I have.
  • the second block portion is placed on the first block portion 19 provided with the first block portion contact surface 19a which is structured to appropriately contact the surface of the object to be measured (that is, the surface of the human face).
  • the first block portion 19 has a frame support portion 21 on the side facing the first block portion contact surface 19a (that is, the upper side in FIGS. 37 and 38).
  • the plate-like body 8 extends correspondingly to the supporting frame bodies 14a and 14b in the structure supporting the plate-like body 8 with the double-support structure described in the seventh embodiment shown in FIGS. 30 to 33.
  • Frame support portions 21a and 21b extending in the direction are formed by being attached to the first block portion 19 on the side facing the first block portion contact surface 19a.
  • the frame support portion 21a has slide grooves 22a and 22c extending in the direction in which the plate-like body 8 extends, on the one end 8c side and the other end 8d side of the plate-like body 8.
  • the frame support portion 21b is provided with slide grooves 22b and 22d extending in the direction in which the plate-like body 8 extends on the one end 8c side and the other end 8d side of the plate-like body 8 .
  • Through-holes 23a and 23b are formed in the unit blocks 4o and 4r to which both ends of the support frames 14a and 14b are fixed, respectively, in the direction perpendicular to the frame support portion 21a and toward the frame support portion 21b.
  • a fixing bolt 24a is inserted through the slide groove 22b of the frame support portion 21b and the through hole 23a of the unit block 4o, and a fixing nut 25a is screwed onto the tip side of the fixing bolt 24a projecting from the slide groove 22a of the frame support portion 21a. Together, the frame supporting portion 21 and the unit block 4o are fixed.
  • a fixing bolt 24b is inserted through the slide groove 22d of the support frame body 21b and the through hole 23b of the unit block 4r, and a fixing nut is attached to the tip of the fixing bolt 24b projecting from the slide groove 22c of the support frame body 21b. 25b are screwed together to fix the frame support portion 21 and the unit block 4r.
  • the plate-like body 8 Since the structure supporting the plate-like body 8 with the double-supported structure described in the seventh embodiment shown in FIGS. By loosening the connection state between the front end side and the fixing nut 25a and the connection state between the front end side of the fixing bolt 24b and the fixing nut 25b, the plate-like body 8 is supported by the double support structure described in the seventh embodiment. 37 in the direction in which the plate-like body 8 extends with respect to the first block portion 19. As shown in FIG.
  • the extending direction of the plate-like body 8 is the direction of the left and right human eyes (the X-axis direction in FIG. 3).
  • the support heights of the one end 8c side and the other end 8d side of the plate-like body 8 by 17a and 17b it is possible to adjust around the Y axis.
  • the plate-like body 8 is supported by contact, and the unit block 4p has the same structure as the unit block 4s.
  • a plurality of first block portions 19 having different shapes are prepared, and the angle of the plate-like body 8 is adjusted by selecting a block suitable for the shape of each subject's face and assembling the measurement auxiliary device 3. may Depending on the shape of the first block portion 19 selected, the angle of the plate-like body 8 around any of the XYZ axes can be adjusted.
  • the first block portion 19 may be custom shaped by methods such as thermoforming.
  • the effects of the support frame are that the contact surface of the block portion more reliably contacts the surface of the object to be measured, as described in Embodiment 6, and that the above-described It was to solve the problem 6 more easily.
  • the roles of the support frames 14a and 14b in this eighth embodiment are to enable the second block portion to be formed on the first block portion 19, and to allow the unit blocks 4p and 4s to slide when the sliding movement is performed. is to keep a distance from

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

計測対象物の内部圧力又は剛性を測定する測定装置と共に使用される測定補助装置。測定装置は、計測対象物における内部圧力又は前記剛性の測定が行われる測定位置の計測対象物表面に当接する押圧部当接面を備えていて内部圧力又は剛性の測定が行われる際に測定装置が計測対象物の方向に移動することに応じて計測対象物の方向に移動する押圧部を備えている。測定補助装置を用いることで測定装置による測定を容易にし、測定の精度を向上させる。 測定補助装置は、計測対象物における測定位置の近傍の計測対象物表面に当接するブロック部当接面を備えているブロック部と、ブロック部に支持される板状体とを備えている。第一端の側から第二端の側に向かって伸びる方向に直交し計測対象物表面に対して並行して伸びる方向で所定の大きさの横幅を有する板状体が、測定位置に対応する位置の計測対象物表面に面する側に、測定装置における押圧部の押圧部当接面に対向する側を支持する測定装置支持面を備えている。測定装置支持面が計測対象物表面の方向に移動できるように板状体がブロック部に支持されている。

Description

計測対象物の内部圧力又は剛性を測定する測定装置用の測定補助装置
 この発明は計測対象物の内部圧力又は剛性を測定する測定装置に関する。
 内部圧力又は剛性が測定される対象となっている計測対象物の表面に当接する当接面を備えている押圧部と、計測部とを備えていて前記計測対象物の前記内部圧力又は前記剛性を測定する測定装置が知られている。例えば、特許文献1。
 特許文献1の前記測定装置では、前記押圧部として、前記計測対象物の表面に当接する当接面を先端に備えていて前記計測対象物の方向に押圧される押圧部や、内側に内部中空部を備えている中空構造体を形成している複数の壁面の中の一つの壁面であって、前記中空部内に向けて移動できるように前記中空構造体に移動自在に支持されていて外側面が前記当接面を形成している前記中空構造体の壁面が例示されている。
 特許文献1の前記測定装置は、計測対象物がバネとして近似できるものであれば、内部圧力だけでなく、剛性そのものの測定や単位移動距離あたりの反発力そのものの測定にも応用できるとされている。人間の身体の目的とする測定箇所の剛性に相当する内部圧力を測定することが可能であるとされている。例えば、眼圧測定や筋肉硬度の測定に応用できるとされている。
 特許文献1の測定装置は、計測対象物における内部圧力又は剛性の測定が行われる測定位置の計測対象物表面に当接する押圧部当接面を備えていて前記内部圧力又は前記剛性の測定が行われる際に、前記測定装置が前記計測対象物の方向に移動することに応じて、前記計測対象物の方向に移動する押圧部を備えている。そして、前記計測対象物の内部圧力又は剛性を測定する際に、前記押圧部当接面を前記計測対象物の前記表面に当接させて前記押圧部が前記計測対象物の方向に押圧された時の前記計測対象物からの反発力Fと、前記押圧部の前記計測対象物方向への移動における加速度から把握した前記押圧部の前記計測対象物方向への移動距離Dとの微小時間(Δt)における変化分ΔF/ΔDから内部圧力又は剛性を測定している。計測対象物はバネとして扱われ、バネ定数ΔF/ΔDにより前記計測対象物の内部圧力又は剛性を求められる。
特許第6783416号公報
 特許文献1で提案されている測定装置を用いて、計測対象物の内部圧力又は剛性を求める際には、内部圧力又は剛性が測定される対象となっている計測対象物の表面に当接する押圧部当接面を備えている押圧部を計測対象物に向かって静止状態から並進運動させる必要がある。このように、押圧部が、計測対象物に向かって静止状態から並進運動するときに、特許文献1で提案されている測定装置では、押圧部の移動に応じて、測定装置に内蔵されている加速度センサが計測対象物に向かって静止状態から並進運動することになる。
 特許文献1で提案されている測定装置を、人間の身体の目的とする測定箇所の剛性または内部圧力を測定することに用いる場合であって、上述した押圧部を計測対象物に向かって静止状態から並進運動させることを人間の手や指による測定装置に対する押圧で行うことがある。このようなときには、人間の手や指による押圧に慣れておくことが望ましいが、慣れていても押圧方向が理想の方向から外れる場合は測定誤差となることがある。
 また、計測対象部物を線形バネとして近似できない場合、例えば、押圧に対応する計測対象部物の変形量に応じてその剛性が変わる場合、後述するように押圧開始時刻での反発力を毎回の測定において一定にし、計測対象物の内部圧力又は剛性を反映する変形量に達した時刻におけるΔF/ΔDを計算結果に採用することが望ましい。ここで変形量は、例えば、押圧距離または反発力を測定することにより把握できる。
 人間の手または指による操作で、前記押圧部当接面を測定位置の前記計測対象物表面に当接させた状態で、測定装置を前記計測対象物の方向に移動させることで前記押圧部を前記計測対象物の方向に移動させる。このときの前記押圧部の移動速度、前記押圧部の移動における加速度、あるいは、前記押圧部の移動距離から前記押圧部の前記計測対象物の方向への移動距離Dを求め、求めた移動距離Dと、前記押圧部を前記計測対象物の方向に移動させたときの前記計測対象物からの反発力Fとの微小時間(Δt)における変化分ΔF/ΔDを求め、この変化分ΔF/ΔDから内部圧力又は剛性が測定される。計測対象物はバネとして扱われ、バネ定数ΔF/ΔDにより計測対象物の内部圧力又は剛性が求められる。
 以下、本明細書において、特許文献1に記載されている計測対象物の内部圧力又は剛性を測定する測定装置を、単に「測定装置」と表すことがある。
 以下、測定装置を人間である測定者が使用して、計測対象物である人体における眼圧等の内部圧力又は剛性を測定する際に課題となる事項について説明する。
 特許文献1に記載されている測定装置に採用されている加速度センサの出力を用いた距離計算では、特許文献1で述べられているように、以下の状況にあることが好ましい。
 (1)加速度のS / N 比が大きいこと
 (2)加速度のD C (直流) 成分が少ないこと
 (3)積分時間が短時間であること
 加速度センサの出力を連続的に取得して二重積分することにより距離を計算する際、積分を開始する時刻を適切に決定することが望ましい。もし、取得した加速度に無視できない大きさのノイズが混入していて、ノイズをきっかけに積分を開始してしまうと、積分時間が長くなるほどノイズも積分され影響が大きくなり、速度および距離の算出値が実際の値から乖離する。二重積分においてはノイズも二重に積分されるため、積分期間の初期のノイズほど距離計算への影響度は大きい。
 図1(a)は特許文献1に記載されている測定装置を用いて人間の眼圧を測定する場合であって、自身の眼圧を計測しようとしている者が、特許文献1に記載されている測定装置を自分の手の指に縛りつけて眼瞼に押圧したときの加速度波形の一例であり、図1(b)は図1の縦軸を拡大して表したもので、図1(c)は二重積分により得られた距離を表すものである。図1(a)、(b)の縦軸の単位はミリ重力加速度であり横軸はミリ秒、図1(c)の縦軸の単位はミリメートルであり横軸はミリ秒である。横軸のスケールは図1(a)、(b)、(c)の間ですべて一致している。
 積分開始時刻を図1(b)におけるA点にする場合と、図1(b)におけるB点(10msecの時間差)にする場合とで算出される距離に8%の差が生じることが図1(c)に示されている。
 押圧開始時刻に加速度のふらつきがあると積分開始時刻を決定しにくくなることがわかる。
 図2(a)は特許文献1に記載されている測定装置を机の上に置いたときの測定装置に内蔵されている加速度センサの出力から把握される加速度の波形を示したものである。加速度センサに内在するノイズが波形に表されている。
 図2(b)は特許文献1に記載されている測定装置を測定者の指に縛り付けて、測定装置の押圧部の押圧部当接面を、人間の眼瞼に当接させたときの測定装置に内蔵されている加速度センサの出力から把握される加速度の波形を示したものである。指の震えが加速度の出力に反映されている。図2の軸の単位は図1(a)と同じである。
 このように、人間の手または指などは、静止しているつもりでも10Hz程度を主な周波数として振動している。
 熟練者にとってもこの振動はゼロにはならない。以降、本明細書において、人間の手または指などの意図しない振動を「震え」と表現する。指の震えは加速度センサにとってはノイズであり、加速度のふらつきとして図1(b)に表されている。
 課題1:測定装置を、人間である測定者が使用して、計測対象物である人体における眼圧、等の内部圧力又は剛性を測定する際に、指の震えの周波数が押圧部を人体の測定位置の方向に押圧する動作に含まれる周波数と重なると、加速度の積分を開始するべき時刻を決定するのが難しい。
 課題2:震えによるノイズが積分され、速度および距離の算出精度が悪化する。
 図3は、特許文献1記載の測定装置1を、人間である測定者2が使用して、計測対象物である人体の内部圧力又は剛性の一例としての眼圧を測定する状態を説明する概略斜視図である。測定装置1及び押圧部10が押圧動作によって移動する方向をZ軸の正方向として示している。
 上述した課題1、2が存在している下でも、加速度の積分時間を短くするために、理想的な押圧であるZ軸方向への押圧部の並進運動を素早く発生させる必要がある。
 理由は後述するが、人間の指の震えを抑えるために、初期状態として初速をつけておく方法は好ましくない。静止状態を初期状態とし、押圧部10の人体2への方向、例えば、眼圧を測定する際の眼瞼方向への押圧部10の移動が開始された瞬間から加速度の積分を開始することが望ましい。つまり、測定装置1の押圧部10を、眼瞼方向に、静止状態から素早く押圧することが望ましい。
 課題3:静止状態からの素早い押圧の際に、指の震えが測定装置に伝わらないようにすることが望ましい。
 以降、本明細書では「人間の手または指」を単純に「指」として表現することがある。
 なお、本明細書において、測定装置のローカル座標と加速度センサのローカル座標は一致しているものとする。また、説明を簡単にするために、測定装置の押圧部が計測対象物の測定箇所の方向に移動するように押圧されることに応じて計測対象物が変形するべき方向がグローバル座標のZ軸の正の方向になるように計測対象物の姿勢が設定されているものとして説明する。
 本発明に係る測定補助装置が使用される計測対象物の内部圧力又は剛性を測定する測定装置を使用して、計測対象物たる人間が自ら測定者2となって、計測対象物である人体の内部圧力又は剛性の一例としての眼圧を測定する状態を説明する図である図3を参照して説明すると、測定者2は、測定装置1のローカル座標とグローバル座標を一致させた状態から、グローバル座標のZ軸の正の方向に測定装置1の押圧部10を移動しようとする(図3)。
 図3では、本発明に係る測定補助装置3と特許文献1で提案されている測定装置1とを組み合わせて使用しているが、測定補助装置3と組み合わせずに、測定装置1における押圧部10の押圧部当接面に対向する側を、例えば、人間の指の腹に当てて押圧部10を人体方向、例えば眼圧を測定する際の眼瞼方向へ押圧する操作を行う場合、押圧部10は、3次元の全ての方向(X軸方向、Y軸方向、Z軸方向)に移動および回転ができる状態である。
 測定装置1のローカル座標とグローバル座標とが一致しない押圧、及び/又は、グローバル座標のX軸及び/又はY軸への移動成分がある押圧は理想的ではない。一方向への変形に対する反発力を測定することが理想的である。
 また、押圧に回転がともなうと、重力が加速度センサにかかる向きが変化するため、速度および距離の算出精度が悪化する。
 課題4:測定装置のローカル座標におけるZ軸をグローバル座標におけるZ軸に合わせて押圧することが好ましい。
 課題5:測定装置は、グローバル座標におけるZ軸の方向に加速し、並進運動することが好ましい。
 上述した課題1~5は、加速度センサにより速度または距離を算出することだけが目的の場合でも課題となる。
 特許文献1で提案されている測定装置では、加速度センサの出力を連続的に取得して二重積分することより求められる距離によって計測対象物の変形量を連続的に求め、同時に計測対象物からの反発力も連続的に求められている。
 ここで、押圧開始時刻、加速度センサが移動を開始する時刻、加速度の積分を開始するべき時刻、はすべて同一である。
 測定者である人間の手や指による押圧により特許文献1で提案されている測定装置を使用する場合、特許文献1にて述べられているように、押圧部の計測対象物方向への移動距離Dが少ない範囲においては、前記計測対象物を線形バネとして考えることができる。しかし、測定装置における押圧部当接面を対象物に過度に強く押し付けた状態から押圧を行う場合、または、押圧距離が大きい場合、対象物を線形バネとして扱えない可能性がある。例えば、押圧距離が増えるほどバネ定数が大きくなる場合などである。そこで、対象物を線形バネとして扱える程度の反発力の範囲を利用した測定を行うことが好ましい。
 しかし、対象物を線形バネとして扱えないほど大きい反発力の範囲を利用する場合でも、内部圧力又は剛性を表す対象物の変形量を定義し、定義された変形量におけるΔF/ΔDを採用すれば測定は成立する。押圧開始時刻での変形量は反発力と相関がある。押圧開始時刻以降の変形量は、特許文献1で提案されている測定装置においては、移動距離Dとして検知できる。よって、押圧開始時刻での反発力を毎回の測定において一定にできれば、内部圧力又は剛性を表す対象物の変形量を移動距離Dにより把握できる。
 ここで、押圧開始時刻での反発力とは、押圧開始時刻に押圧部当接面が対象物に当接する強さと同一である。そこで、押圧開始時刻に測定装置が検知する計測対象物からの反発力を毎回の測定において一定にするということは、以下の(1)~(3)のいずれか一つに言い換えることができる。
 (1)押圧開始時刻の計測対象物の変形量を一定にする
 (2)押圧開始時刻の計測対象物からの反発力を一定にする
 (3)押圧開始時刻に押圧部当接面が計測対象物へ当接する強さを一定にする
 課題6:押圧開始時刻に押圧部当接面が計測対象物へ当接する強さを毎回の測定において一定にすることが好ましい。
 特許文献1に記載されている測定装置の押圧部を人間(測定者)の指による押圧で計測対象物の計測位置方向に移動させる場合、上述したように、指の震えはノイズである不要な加速度を発生させるだけでなく、上述の課題4、5、及び6を解決することをも困難にする。
 押圧の初期状態として指に初速が存在すると、押圧開始時に過度な速度に達している可能性がある。
 素早い押圧を行うために、指が測定装置から離れた状態(指が空中にある状態)、又は、計測対象物から押圧部当接面が離れた状態から押圧を行い、押圧部当接面にかかる計測対象物からの反発力が変化し始める時点で指に過度な速度が存在する場合、以下の問題がある。
(1)指が測定装置から離れた状態から押圧する場合
 何らかの方法で測定装置を支え、押圧部当接面が計測対象物に接している状態で、測定装置から離れた状態にある指で、測定装置を叩くような動作により押圧部を計測対象物の方向に押圧する場合、指は測定装置から離れているため押圧開始時刻に指の震えが加速度センサに伝わることはない。そして、指は初速を得た状態で測定装置に当たるため、押圧に要する時間が短くなる。そこで、積分時間が短くなりノイズの積分量が小さくなるというメリットはあるが、指が過度な速度で測定装置に当たる瞬間の衝撃が測定装置および計測対象物に伝わる。計測対象物をZ軸方向へ押圧するべきだが、衝撃はX軸及び/又はY軸にも加速度を発生させる可能性がある。また、高周波を含む衝撃の加速度、および反発力を検知しようとするとき、採用しようとしている加速度センサおよび圧力センサ(例として、特許文献1で提案されている第一の検知手段として圧力センサが使用される場合)が高周波に対応できない場合、移動距離および反発力の算出が困難になる。
(2)押圧部当接面が計測対象物から離れた状態から押圧する場合
 上述の(1)の問題に加えて、例えば、測定装置を人間の指に装着し押圧部当接面が計測対象物から離れた状態から指で測定装置を押圧する場合、計測対象物に押圧部当接面が当たる瞬間の測定装置の速度(初速)を算出するために加速度センサの出力の積分を開始する時刻を決める必要があるが、指を空中で静止させようとすると震えが生じるため、加速度の変化が始まる時刻である積分開始時刻を正しく決定することが難しく、初速の算出精度が低い。また、この押圧方法の場合、課題4及び5を解決することが難しい。
 課題7: 押圧開始時に衝撃のような加速度が発生しないことが望ましい。
 特許文献1の測定装置は、計測対象物における内部圧力又は剛性の測定が行われる測定位置の計測対象物表面に当接する押圧部当接面を備えていて、前記内部圧力又は前記剛性の測定が行われる際に前記測定装置が前記計測対象物の方向に移動することに応じて前記計測対象物の方向に移動する押圧部を備えている。そこで、測定者の指によって測定装置を人体の方向に押圧することは、前記押圧部を人体の方向に押圧することになる。
 以上に説明した課題1~課題7の理由から、特許文献1に記載されている測定装置を、人間である測定者が使用して、計測対象物である人体における眼圧を測定する際に、測定者の指によって測定装置を押圧し、眼瞼を通して眼圧を測定するために、以下の四つが満たされることが望ましいことになる。
 (A)指の震えによる加速度のノイズを加速度センサに与えずに、静止状態から加速を開始する。上述した課題1、2、3、6に対応するものである。
 (B)押圧部当接面をZ軸方向へ向け、Z軸方向への並進運動以外の移動を最小化する。上述した課題4、5に対応するものである。
 (C)押圧開始時刻に押圧部当接面が眼瞼に当接する強さを毎回の測定において一定にする。上述した課題6に対応するものである。
 (D)初速を持った指による押圧の場合、押圧開始時の衝撃が緩和される。上述した課題7に対応するものである。
 本発明では、計測対象物の内部圧力又は剛性を測定する測定装置であって、前記計測対象物における前記内部圧力又は前記剛性の測定が行われる測定位置の前記計測対象物表面に当接する押圧部当接面を備えていて前記内部圧力又は前記剛性の測定が行われる際に前記計測対象物の方向に移動する押圧部を備えている測定装置と共に使用される前記測定装置用の測定補助装置であって、上述した(A)~(D)の課題を解決する、測定補助装置を提案することを目的にしている。
 本発明は、計測対象物の内部圧力又は剛性を測定する測定装置と共に使用される前記測定装置用の測定補助装置である。
 ここで、前記測定装置は、前記計測対象物における前記内部圧力又は前記剛性の測定が行われる測定位置の計測対象物表面に当接する押圧部当接面を備えていて前記内部圧力又は前記剛性の測定が行われる際に、前記測定装置が前記計測対象物の方向に移動することに応じて、前記計測対象物の方向に移動する押圧部を備えているものである。
 前記測定補助装置は、ブロック部と、板状体とを備えている。
 前記ブロック部は、前記計測対象物における前記測定位置の近傍の前記計測対象物表面に当接するブロック部当接面を有する。
 前記板状体は、
 一端側である第一端の側が、前記ブロック部の前記ブロック部当接面に対向する側である前記ブロック部の上側において前記ブロック部に支持され、
 他端側である第二端の側が、前記計測対象物表面の上側を前記測定位置の上側に向かって伸びる板状体である。
 前記板状体は、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びる方向で所定の大きさの横幅を有する。
 また、前記板状体は、前記測定位置に対応する位置の前記計測対象物表面に面する側が前記測定装置における前記押圧部の前記押圧部当接面に対向する側を支持する測定装置支持面を構成する構造になっていて、前記測定装置支持面が前記計測対象物表面の方向に移動できるように前記ブロック部に支持されている。
 前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びる方向で所定の大きさの横幅を有する板状体が、前記測定位置に対応する位置の前記計測対象物表面に面する側に、前記測定装置における前記押圧部の前記押圧部当接面に対向する側を支持する測定装置支持面を備えていて、前記測定装置支持面が前記計測対象物表面の方向に移動できるように前記ブロック部に支持されている構成を採用することで上述した課題を解決した。
 特許文献1で提案されている測定装置は、計測対象物の内部圧力又は剛性を測定する測定装置であって、前記計測対象物における前記内部圧力又は前記剛性の測定が行われる測定位置の計測対象物表面に当接する押圧部当接面を備えていて、前記内部圧力又は前記剛性の測定が行われる際に前記計測対象物の方向に移動する押圧部を備えている。人間の手または指による操作で前記測定装置における前記押圧部を、前記押圧部当接面を前記測定位置の前記計測対象物表面に当接させた状態で、前記計測対象物の方向に移動させる。このときの前記押圧部の移動速度、前記押圧部の移動における加速度、あるいは、前記押圧部の移動距離から前記押圧部の前記計測対象物の方向への移動距離Dを求め、求めた移動距離Dと、前記押圧部を前記計測対象物の方向に移動させたときの計前記測対象物からの反発力Fとの微小時間(Δt)における変化分ΔF/ΔDを求めることになっている。この際に、押圧部の移動における加速度を、測定装置に配備されている加速度センサを用いて求めることがあるとされている。
 このような場合に、この発明で提案する測定補助装置を組み合わせることで、特許文献1で提案されている測定装置を用いて計測対象物の内部圧力又は剛性を求める際、以下の五つを達成することが可能になる。
(1)人間の手または指による操作で測定装置における押圧部を計測対象物の方向に移動させる際に、手または指からの震えが加速度センサに伝わらないようにし、積分を開始する時刻を決定しやすくすることにより算出精度を向上させることができる。
(2)人間の手または指による操作で測定装置における押圧部を計測対象物の方向に移動させる際に、手または指からの震えが加速度センサに伝わらないようにし、震えによるノイズが積分されないようすることにより算出精度を向上させることができる。
(3)加速度センサ出力を速度または距離の算出に使用する際に、測定装置が回転すること及び、加速度センサが移動する方向をZ軸方向としたときにこれに直交するX軸方向、Y軸方向へ加速度センサが並進運動することを制限し、加速度センサにZ軸方向への並進運動のみが発生するようにして、算出精度を向上させることができる。
(4)押圧開始時刻での計測対象物の変形量を、毎回の測定において一定にすることが可能になる。
(5)特許文献1で提案されている測定装置又はこの発明で提案する測定補助装置における板状体から指が離れた位置からの押圧が可能になる。
 なお、この発明で提案する測定補助装置は、摺動自在の構造を必要としない。そこで、ピストン構造などに求められる摺動性を維持するための潤滑油やメンテナンスが不要になり、装置そのもののコストが安いだけでなくメンテナンスも不要になるという利点を有する。
 なお、本明細書においては、特許文献1における第二の検知手段として加速度を検知する場合について記載しているが、速度および距離を検知する場合においても本提案は適用可能である。第二の検知手段が距離を検知するものである場合は、積分が不要であるため、上述した課題1、2、3は課題にならない。
(a)は本発明に係る測定補助装置が使用される計測対象物の内部圧力又は剛性を測定する測定装置を用いて人間の眼圧を測定する場合であって、自身の眼圧を計測しようとしている者が測定装置を自分の手の指に縛りつけて眼瞼に押圧したときの加速度波形の一例を表し、(b)は図1の縦軸を拡大して表したもので、(c)は二重積分により得られた距離を表す図。 (a)本発明に係る測定補助装置が使用される計測対象物の内部圧力又は剛性を測定する測定装置が机の上に置かれているときの前記測定装置に内蔵されている加速度センサの出力から把握される加速度の波形の一例を示す図、(b)前記測定装置を測定者の指に縛り付けて人間の眼瞼に前記測定装置の押圧部の押圧部当接面を当接させたときの前記測定装置に内蔵されている加速度センサの出力から把握される加速度の波形の一例を示した図。 本発明に係る測定補助装置を用いて、計測対象物の内部圧力又は剛性を測定する測定装置を使用し、計測対象物たる人間が自ら測定者となって、計測対象物である人体の内部圧力又は剛性の一例としての眼圧を測定する状態を説明する概略斜視図。 本発明の一実施形態に係る測定補助装置を表す図であって、押圧を行う側から見た斜視図。 図4図示の状態を計測対象物たる人間の顔表面の側から見た斜視図。 図4図示の測定補助装置において計測対象物表面の上側を測定位置の上側に向かって伸びている板状体の他端側が計測対象物の方向に移動する状態を説明する斜視図。 図6図示の状態を計測対象物たる人間の顔表面の側から見た斜視図。 図4図示の測定補助装置において計測対象物表面の上側を測定位置の上側に向かって伸びている板状体の他端側が計測対象物の方向に移動することで測定装置の押圧部が計測対象物の方向に移動する状態を説明する斜視図。 図8図示の状態を計測対象物たる人間の顔表面の側から見た斜視図。 図4~図9図示の実施形態の測定補助装置の他の例による測定補助装置において板状体が計測対象物たる人間の眼瞼の方向に移動することで、測定装置及び測定装置の押圧部が計測対象物たる人間の眼瞼の方向に移動する実施形態の一例を説明する図。 図4~図9図示の実施形態の測定補助装置において板状体の一端側がブロック部に線接触で支持される実施形態の一例についての分解斜視図。 図11図示の測定補助装置を押圧を行う側から見た斜視図。 図11図示の測定補助装置を測定装置と組み合わせて使用する状態を説明する測定対象物の表面側から見た側面図。 図11図示の測定補助装置で測対象物表面の上側を測定位置の上側に向かって伸びている板状体の他端側が計測対象物の方向に移動することで測定装置の押圧部が計測対象物の方向に移動する状態を説明する側面図。 図11~図14図示の測定補助装置が使用される際の回転角度に対する各軸への移動量を説明する図。 本発明の他の実施形態に係る測定補助装置を計測対象物たる人間の顔表面の側から見た斜視図。 図16図示の測定補助装置の状態を押圧を行う側から見た斜視図。 図16図示の測定補助装置において、測定位置の上側に対応する位置の測定補助装置の板状体部分が計測対象物の方向に移動する状態を計測対象物たる人間の顔表面の側から見た斜視図。 図18図示の状態を押圧を行う側から見た斜視図。 図16図示の測定補助装置において、測定位置の上側に対応する位置の測定補助装置の板状体部分が計測対象物の方向に移動することで測定装置の押圧部が計測対象物の方向に移動する状態を計測対象物たる人間の顔表面の側から見た斜視図。 図20図示の状態を押圧を行う側から見た斜視図。 図16~図21図示の実施形態の測定補助装置の他の実施例に係る測定補助装置において板状体が計測対象物たる人間の眼瞼の方向に移動することで、測定装置及び測定装置の押圧部が計測対象物たる人間の眼瞼の方向に移動する実施形態の一例を説明する図。 本発明の他の実施形態に係る測定補助装置を計測対象物たる人間の顔表面の側から見た斜視図。 図23図示の状態を押圧を行う側から見た斜視図。 図23図示の測定補助装置において、測定位置の上側に対応する位置の測定補助装置の板状体部分が計測対象物の方向に移動する状態を計測対象物たる人間の顔表面の側から見た斜視図。 図25図示の状態を押圧を行う側から見た斜視図。 図23図示の測定補助装置において、測定位置の上側に対応する位置の測定補助装置の板状体部分が計測対象物の方向に移動することで測定装置の押圧部が計測対象物の方向に移動する状態を計測対象物たる人間の顔表面の側から見た斜視図。 図27図示の状態を押圧を行う側から見た斜視図。 図23~図28図示の実施形態の測定補助装置において、図23~図28に図示されている支持形態とは異なる支持形態で板状体が支持されている実施形態の斜視図。 図23~図29図示の実施形態に係る測定補助装置の他の実施例に係る測定補助装置が使用されている状態を計測対象物たる人間の顔表面の側から見た斜視図。 図30図示の測定補助装置を押圧を行う側から見た斜視図。 図30、図31図示の測定補助装置が使用される状態を説明する側面図。 図30~図32図示の測定補助装置において、緩衝材が採用されている実施形態を説明する斜視図。 計測対象物における測定位置の近傍の計測対象物表面に当接する当接面を備えている第一のブロック部と、その上側に配置されて板状体を支持する第二のブロック部とを備えている測定補助装置の一実施形態を計測対象物たる人間の顔表面の側から見た斜視図。 図34図示の状態の側面図。 図34図示の状態を押圧を行う側から見た斜視図。 図36図示の状態を計測対象物たる人間の顔表面の側から見た他の斜視図。 図34~図37図示の測定補助装置の分解斜視図。 本発明の一実施形態に係る測定補助装置が測定装置と共に使用されている状態の一例を説明する側面図。
 この実施の形態の測定補助装置は、計測対象物の内部圧力又は剛性を測定する測定装置と共に使用されるものである。
 ここで、前記測定装置は、前記計測対象物における前記内部圧力又は前記剛性の測定が行われる測定位置の計測対象物表面に当接する押圧部当接面を備えていて前記内部圧力又は前記剛性の測定が行われる際に、前記測定装置が前記計測対象物の方向に移動することに応じて、前記計測対象物の方向に移動する押圧部を備えているものである。
 この実施の形態の測定補助装置としては以下の実施形態のものを例示できる。
(実施の形態1)
 実施の形態1の測定補助装置は、ブロック部と、板状体とを備えている。
 前記ブロック部は、前記計測対象物における前記測定位置の近傍の前記計測対象物表面に当接するブロック部当接面を有するブロック部である。
 前記板状体は、
 一端側である第一端の側が、前記ブロック部の前記ブロック部当接面に対向する側である前記ブロック部の上側において前記ブロック部に支持され、
 他端側である第二端の側が、前記計測対象物表面の上側を前記測定位置の上側に向かって伸びる板状体である。
 更に、前記板状体は、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びる方向で所定の大きさの横幅を有している。
 また、前記板状体の前記測定位置に対応する位置の前記計測対象物表面に面する側が、前記測定装置における前記押圧部の前記押圧部当接面に対向する側を支持する測定装置支持面を構成し、
 前記板状体は、前記測定装置支持面が前記計測対象物表面の方向に移動できるように前記ブロック部に支持されている。
 測定補助装置をこのような構成にすることで上述した効果を発揮させるものになっている。
 図3を用いて説明したように、計測対象物たる人間が自ら測定者2となって眼圧を測定する場合、測定者2は、測定装置1のローカル座標とグローバル座標を一致させた状態から、グローバル座標のZ軸の正の方向に測定装置1の押圧部10を押圧する。測定装置1における押圧部10の押圧部当接面に対向する側を、測定者2が自分の指の腹に当てて押圧部10を眼瞼方向へ押圧する操作を行う際、本発明に係る測定補助装置が使用されない場合は、押圧部10は、3次元の全ての方向(X軸報告、Y軸方向、Z軸方向)に移動および回転ができる状態である。
 上述した構造の板状体が、上述したようにブロック部に支持されていることで、測定装置1及び押圧部10に加えられる図3のY軸及びX軸方向への力が最小化され、加えられる力のほとんどがZ軸方向への力になる。更に、図3のZ軸方向への力のみが測定装置1及び押圧部10に加えられ、Y軸及びX軸方向への力を最小化することを目的として、ブロック部による支持形態を面接合、線接触での支持、点接触での支持、等、種々の支持形態としたり、剛性を有する板状体、可撓性を有する板状体、弾性を有する板状体、等、種々の特性を有する板状体を採用したり、板状体の特性に応じてブロック部による板状体の支持形態を種々に変更して組み合わせることが可能である。
 前記において、前記板状体の前記第一端の側が、前記計測対象物表面の方向に移動できるように、前記ブロック部に支持されていることで、前記板状体の前記測定装置支持面が前記計測対象物表面の方向に移動可能な構成にできる。
 この場合、例えば、前記板状体の前記第一端の側と前記ブロック部との間に弾性部材が介在していることで前記板状体の前記第一端の側が、前記計測対象物表面の方向に移動可能に前記ブロック部に支持されている構成にできる。
 例えば、弾性部材としてバネやガスケットを採用し、前記ブロック部の上側と、前記板状体の前記第一端の側の下側との間にバネやガスケットを配置する構成が採用可能である。
 前記において、前記板状体の前記第一端の側は、前記ブロック部の前記上側に対して面接合で支持されている構成にできる。
 また、前記において、前記板状体の前記第一端の側は、前記ブロック部の前記上側で、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びるブロック部上端支持部に線接触で支持されている構成にできる。前記ブロック部上端支持部としては、前記ブロック部の前記上側で、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びるブロック部上端縁辺や、前記ブロック部の前記上側の面で、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びるブロック部上端支持片を例示できる。
 第一端の側から第二端の側に向かって伸びる方向に直交し、計測対象物表面に対して並行して伸びる方向で所定の大きさの横幅を有する板状体における前記測定位置に対応する位置の前記計測対象物表面に面する側が、前記測定装置における前記押圧部の前記押圧部当接面に対向する側を支持する測定装置支持面を構成し、前記測定装置支持面が前記計測対象物表面の方向に移動できるように前記第一端の側で前記ブロック部に板状体が支持されている構成にすることで発揮される上述した効果を、上述した形態での線接触での支持にすることで、より有利なものにできる。
 上述したブロック部上端支持部に線接触で支持される構成の場合、ブロック部上端支持部に支持されている位置から前記第一端に向かって伸びている板状体の部分は、前記測定装置支持面が前記計測対象物表面の方向に移動する際に、前記第一端がブロック部の上側面から上側に向かって離れるように、支持構造をシーソーのような動きをする構造にすることが可能である。
 このようなシーソーのような構造による線接触での支持にすることで発揮される効果の機序については後述の実施例6で説明する。
 また、前記において、前記板状体の前記第一端の側は、前記ブロック部の前記上側に配備されているブロック部上端支持点で支持される点接触での支持にできる。前記ブロック部上端支持点が上述した線接触での支持におけるブロック部上端支持部に相当する。
 この場合、前記ブロック部上端支持点は、前記ブロック部の前記上側の面に、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びる方向に間隔をあけて複数個配備されている構成にできる。
 このような形態の点接触での支持にすることでも、上述した形態での線接触での支持にすることで発揮されるのと同様の効果を発揮させることができる。
 これらの線接触、点接触での支持構造の場合、前記ブロック部上端支持部には板状体支持体が配備されており、前記板状体の前記第一端の側は、前記ブロック部上端支持部と、前記板状体支持体との間に挟持される構成にできる。
 線接触、点接触での支持を安定的なものにする上でこのような構成にすることが有利である。
 前記において、前記板状体支持体は弾性部材からなる構成にできる。弾性部材としては、例えば、ゴム紐など、弾性を有する紐状体を採用し、前記ブロック部上端支持部の上側で、前記ブロック部上端支持部に沿って弾性を有する紐状体が張設されている構成を採用できる。
 また、前記板状体支持体として、前記ブロック部の前記上側に配備されていて、ブロック部上端支持部との間に前記板状体を挟持する構成になる掛止部を採用できる。
 例えば、上述したブロック部上端縁辺やブロック部上端支持片の両端に掛止部がそれぞれ配備されていて、板状体の第一端の側から第二端の側に向かって伸びる両方の側縁辺が、ブロック部上端縁辺やブロック部上端支持片と上述した掛止部との間に挟持されることで、板状体の第一端の側がブロック部上端支持部と板状体支持体である前記掛止部との間に挟持される構成を採用できる。
 線接触、点接触での支持形態の場合に、ブロック部上端支持部に配備されている板状体支持体とブロック部上端支持部との間に、板状体の前記第一端の側を挟持するようになる構成であれば種々の形態の板状体支持体を採用可能である。
 線接触、点接触での支持を安定的なものにするための他の構造としては、前記板状体は、前記第一端の側で前記第一端の近傍に前記板状体を上下方向に貫通する板状体支持孔を備えており、前記ブロック部は、前記ブロック部上端支持部に配備されていて前記板状体支持孔に挿入されるように上側方向に向かって延びる板状体支持支柱を備えている構造を採用することができる。この板状体支持支柱は、前記ブロック部の上側に板状体支持支柱支持部を取り付け、前記板状体支持支柱が、この板状体支持支柱支持部から前記板状体支持孔に挿入されるように下側方向に向かって延びる構造にすることもできる。
 板状体支持孔の内径の大きさ、板状体支持支柱の外径の大きさ、板状体の厚さ、板状体支持孔を貫通する板状体支持支柱の長さを適宜に調整することで、線接触、点接触での支持を安定的なものにし、板状体がブロック部上端支持部から抜け落ちてしまうことを防止できる。
 なお、板状体支持孔及び、板状体支持支柱は、板状体の幅方向に複数個設けてもよい。
 この実施の形態1において、前記板状体は可撓性を有するものにできる。例えば、可撓性を有する合成樹脂製の板状体を採用できる。
 また、前記板状体は弾性を有するものとすることもできる。
 上述した板状体の、前記測定位置に対応する位置の前記計測対象物表面に面する側が、前記測定装置における前記押圧部の前記押圧部当接面に対向する側を支持する測定装置支持面を構成し、この測定装置支持面が前記計測対象物表面の方向に移動できるように前記第一端の側で前記ブロック部に板状体が支持されている構成を実現できるものであれば、可撓性を有する部材からなる板状体、弾性を有する部材からなる板状体のいずれであっても採用できる。
 ただし、板状体とブロック部との間の支持形態として面接合、線接触、点接触などがあることを考慮し、それぞれの支持形態に適した特性の板状体を採用することが望ましい。
 例えば、前記板状体の前記第一端の側が、前記計測対象物表面の方向に移動できるように前記ブロック部に支持されていることで前記板状体の前記測定装置支持面が前記計測対象物表面の方向に移動できる構成の場合などでは、剛性を有していて、たわんだり、曲がったりすることがない部材で板状体を構成できる。
 ブロック部による板状体の第一端の側の支持が、後述の実施形態で説明する片持ち状態での支持の場合、前記板状体の前記第二端の側は、空中に浮いている状態になる。そして、測定装置に組み合わせて測定補助装置を使用するときに、空中に浮いている板状体の第二端の側における測定装置支持面を測定装置における押圧部当接面に対向する側に当接させて使用することになる。
 そこで、片持ち状態での支持の場合であって、板状体として弾性を有する部材を使用するときには、測定装置に組み合わせて使用していない状態で、前記第二端の側が空中に浮いている状態を維持できる程度の弾性を有する部材を使用することが好ましい。
 この実施の形態1において、前記ブロック部の前記ブロック部当接面と、前記上側との距離に相当する板状体支持高さを調節する機構が前記ブロック部に配備されている構成にできる。
 この場合、前記ブロック部は、上下方向に複数個積層されている単位ブロックから構成されており、前記単位ブロックの数を増やす、あるいは減らすことで板状体支持高さを調節できる。また、上下方向の高さが異なる複数のブロック部を準備しておいて、測定装置に組み合わせて使用する際に適切な上下方向の高さを有するブロック部を選択して用いることで板状体支持高さを調節することもできる。
 また、上下方向に複数個積層されている単位ブロック同士の間の上下方向の距離を調節する機構によって、板状体支持高さを調節することもできる。上下方向に複数個積層されている単位ブロック同士の間の上下方向の距離を調節する機構としては、後述する実施例で説明するネジ機構などによるものを例示できる。
(実施の形態2)
 上述した実施の形態1において、
 前記ブロック部は、前記第一端の側に対応する側に配備されていて、前記計測対象物における前記測定位置の近傍の前記計測対象物表面に当接するブロック部第一支持部当接面を有するブロック部第一支持部からなり、
 前記板状体の前記第一端の側は、前記ブロック部第一支持部の前記上側において支持されることで前記ブロック部に支持され、
 前記板状体の前記第二端の側は、空中に浮いている
 構成にできる。
 この実施の形態2は、ブロック部第一支持部によって、いわば片持ち構造で板状体を支持するものである。
 空中に浮いている板状体の第二端の側では、前記測定位置に対応する位置の前記計測対象物表面に面する側が、前記測定装置における前記押圧部の前記押圧部当接面に対向する側を支持する測定装置支持面になっている。
 そこで、測定装置に組み合わせてこの実施形態の測定補助装置を使用するときには、空中に浮いている板状体の第二端の側における測定装置支持面が、測定装置における押圧部の押圧部当接面に対向する側に当接して使用されることになる。
 この実施の形態2においても、上述した実施の形態1で採用される種々の構成が以下で述べるように、いずれも採用可能である。
 すなわち、この実施の形態2では、前記板状体の前記第一端の側が、前記計測対象物表面の方向に移動できるように、前記ブロック部第一支持部に支持されていることで、前記板状体の前記測定装置支持面が前記計測対象物表面の方向に移動できる構成にできる。
 この場合、例えば、前記板状体の前記第一端の側と前記ブロック部第一支持部との間に弾性部材が介在していることで前記板状体の前記第一端の側が、前記計測対象物表面の方向に移動可能に前記ブロック部に支持されている構成にできる。
 前記弾性部材として、例えば、バネやガスケットが採用可能であって、前記ブロック部第一支持部の上側と、前記板状体の前記第一端の側の下側との間にバネやガスケットを配置する構成が採用可能であることは実施の形態1で説明したものと同様である。
 前記板状体の前記第一端の側は、前記ブロック部第一支持部の前記上側に対して面接合で支持されている構成にできる。
 この実施の形態2でも線接触、及び点接触での支持を採用することができる。発揮される効果の機序については後述の実施例6で説明する。
 すなわち、前記板状体の前記第一端の側は、前記ブロック部第一支持部の前記上側で、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びるブロック部第一支持部上端支持部に線接触で支持されている構成にできる。
 実施の形態1でブロック部上端支持部について説明した事情がこの実施の形態2のブロック部第一支持部上端支持部についても同様に適用可能である。
 また、前記板状体の前記第一端の側は、前記ブロック部第一支持部の前記上側に配備されているブロック部第一支持部上端支持点で支持される点接触での支持にできる。前記ブロック部第一支持部上端支持点が上述した線接触での支持におけるブロック部第一支持部上端支持部に相当する。
 この場合、前記ブロック部第一支持部上端支持点は、前記ブロック部第一支持部の前記上側の面に、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びる方向に間隔をあけて複数個配備されている構成にできる。
 また、線接触及び点接触による支持構造の場合に、前記ブロック部第一支持部上端支持部には板状体支持体が配備されており、前記板状体の前記第一端の側は、前記ブロック部第一支持部上端支持部と、前記板状体支持体との間に挟持される構成にできる。
 そして、この場合に、前記板状体支持体は弾性部材から構成できることも実施の形態1で説明したものと同様であり、その他の板状体支持体の形態を採用可能である点も実施の形態1で説明したものと同様である。
 また、線接触、点接触での支持を安定的なものにするための構造として実施の形体1で説明した構造を採用することができる。前記板状体は、前記第一端の側で前記第一端の近傍に前記板状体を上下方向に貫通する板状体支持孔を備えている。一方、前記ブロック部は、前記ブロック部上端支持部に配備されていて前記板状体支持孔に挿入されるように上側方向に向かって延びる板状体支持支柱を備えている構造である。あるいは、前記ブロック部の上側に板状体支持支柱支持部が取り付けられていて、前記板状体支持支柱が、この板状体支持支柱支持部から前記板状体支持孔に挿入されるように下側方向に向かって延びる構造にすることもできる。
 更に、この実施の形態2においても、実施の形態1で説明したものと同様に、 前記板状体として可撓性を有する部材や、弾性を有する部材を採用できる。
 板状体と、ブロック部第一支持部との間の支持形態として面接合、線接触、点接触などがあることを考慮し、それぞれの支持形態に適した特性の板状体を採用することが望ましい点も実施の形態1で説明したものと同様である。
 例えば、前記板状体の前記第一端の側が、前記計測対象物表面の方向に移動できるように前記ブロック部第一支持部に支持されていることで、前記板状体の前記測定装置支持面が前記計測対象物表面の方向に移動できる構成の場合などでは、剛性を有していて、たわんだり、曲がったりすることがない部材で板状体を構成できる。
 この実施の形態2においても、実施の形態1で説明したものと同様に、板状体支持高さを調節する機構を採用できる。
 すなわち、前記ブロック部第一支持部の前記ブロック部第一支持部当接面と、前記上側との距離に相当する板状体支持高さを調節する機構が前記ブロック部第一支持部に配備されている構成にできる。
 例えば、前記ブロック部第一支持部は、上下方向に複数個積層されている単位ブロックから構成されており、前記単位ブロックの数を増やす、あるいは減らすことで板状体支持高さを調節できる。また、上下方向の高さが異なる複数のブロック部第一支持部を準備しておいて、測定装置に組み合わせて使用する際に適切な上下方向高さを有するブロック部第一支持部を選択して用いることで板状体支持高さを調節することもできる。
 また、実施の形態1で説明したように、上下方向に複数個積層されている単位ブロック同士の間の上下方向の間隔をネジ機構などによって調整可能にすることで板状体支持高さを調節することもできる。
 実施の形態1で説明したように、この実施の形態2においても、第一端の側から第二端の側に向かって伸びる方向に直交し、計測対象物表面に対して並行して伸びる方向で所定の大きさの横幅を有する板状体における前記測定位置に対応する位置の前記計測対象物表面に面する側が、前記測定装置における前記押圧部の前記押圧部当接面に対向する側を支持する測定装置支持面を構成し、前記測定装置支持面が前記計測対象物表面の方向に移動できるように前記第一端の側で前記ブロック部第一支持部に板状体が支持されている構成にすることで、図3において、測定装置1及び押圧部10に加えられるY軸及びX軸方向への力が最小化され、加えられる力のほとんどがZ軸方向への力になる。
(実施の形態3)
 上述した実施の形態1において、
 前記ブロック部は、
  前記第一端の側に対応する側に配備されていて、前記計測対象物における前記測定位置の近傍の前記計測対象物表面に当接するブロック部第一支持部当接面を有するブロック部第一支持部と、
  前記ブロック部第一支持部に対して前記第一端の側から前記第二端の側に向かって伸びる方向に離れて、前記第二端の側に対応する側に配備されていて、前記計測対象物における前記測定位置の近傍の前記計測対象物表面に当接するブロック部第二支持部当接面を有するブロック部第二支持部と、
 からなり、
  前記板状体の前記第一端の側が、前記ブロック部第一支持部の前記上側において支持され、
  前記板状体の前記第二端の側が、前記ブロック部第二支持部の前記上側において支持され
 ることで前記ブロック部第一支持部と、前記ブロック部第二支持部との間の空間部に前記板状体が掛け渡されることで前記板状体が、前記ブロック部に支持される
 構成にできる。
 ブロック部第一支持部と、ブロック部第二支持部とによって、いわば両持ち構造で板状体を支持するものである。
 この実施の形態3においても、上述した実施の形態1で採用される種々の構成が以下で述べるように、いずれも採用可能である。
 すなわち、この実施の形態3では、
 前記板状体の前記第一端の側が、前記計測対象物表面の方向に移動できるように、前記ブロック部第一支持部に支持され、
 前記板状体の前記第二端の側が、前記計測対象物表面の方向に移動できるように、前記ブロック部第二支持部に支持され
 ていることで、前記板状体の前記測定装置支持面が前記計測対象物表面の方向に移動できる構成にできる。
 この場合、例えば、
 前記板状体の前記第一端の側と前記ブロック部第一支持部との間に第一の弾性部材が介在し、
 前記板状体の前記第二端の側と前記ブロック部第二支持部との間に第二の弾性部材が介在
 していることで前記板状体の前記第一端の側及び前記第二端の側が、前記計測対象物表面の方向に移動可能に前記ブロック部に支持されている構成にできる。
 前記第一、第二の弾性部材として、例えば、バネやガスケットが採用可能であって、前記ブロック部第一支持部の上側と前記板状体の前記第一端の側の下側との間、及び/又は、前記ブロック部第二支持部と前記板状体の前記第二端の側の下側との間にバネやガスケットを配置する構成などが採用可能であることは実施の形態1で説明したものと同様である。
 また、
 前記板状体の前記第一端の側は、前記ブロック部第一支持部の前記上側に対して面接合で支持され、及び/又は、
 前記板状体の前記第二端の側は、前記ブロック部第二支持部の前記上側に対して面接合で支持され、
 ている構成にできる。
 なお、この実施の形態3は、ブロック部第一支持部と、ブロック部第二支持部とによって、いわば両持ち構造で板状体を支持するものである。そこで、板状体の第一端の側とブロック部第一支持部との間が面接合され、板状体の第二端の側とブロック部第二支持部との間も面接合されている構造にできる。また、板状体の第一端の側とブロック部第一支持部との間、板状体の第二端の側とブロック部第二支持部との間のどちらか一方だけが面接合され、他方は、面接合とは異なる、例えば、後述する線接触での支持構造や、点接触での支持構造にすることもできる。
 この実施の形態3でも線接触、及び点接触での支持を採用することができる。線接触での支持にすることで発揮される効果の機序については後述の実施例6で説明する
 すなわち、
 前記板状体の前記第一端の側は、前記ブロック部第一支持部の前記上側で、前記板状体が伸びる方向に直交し前記計測対象物表面に対して並行して伸びるブロック部第一支持部上端支持部に線接触で支持されている、及び/又は、
 前記板状体の前記第二端の側は、前記ブロック部第二支持部の前記上側で、前記板状体が伸びる方向に直交し前記計測対象物表面に対して並行して伸びるブロック部第二支持部上端支持部に線接触で支持されている、
 構成にできる。
 実施の形態1でブロック部上端支持部について説明した事情がこの実施の形態3のブロック部第一支持部上端支持部、ブロック部第二支持部上端支持部についても同様に適用可能である。
 また、
 前記板状体の前記第一端の側は、前記ブロック部第一支持部の前記上側に配備されているブロック部第一支持部上端支持点で支持される点接触で支持されている、及び/又は、
 前記板状体の前記第二端の側は、前記ブロック部第二支持部の前記上側に配備されているブロック部第二支持部上端支持点で支持される点接触で支持されている
 構成にできる。
 前記ブロック部第一支持部上端支持点、ブロック部第二支持部上端支持点が上述した線接触での支持におけるブロック部第一支持部上端支持部、ブロック部第二支持部上端支持部を形成することになる。
 この場合、前記ブロック部第一支持部上端支持点は、前記ブロック部第一支持部の前記上側の面に、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びる方向に間隔をあけて複数個配備されている構成にできる。
 同様に、前記ブロック部第二支持部上端支持点は、前記ブロック部第二支持部の前記上側の面に、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びる方向に間隔をあけて複数個配備されている構成にできる。
 また、線接触、点接触での支持形態の場合に、実施の形態1、2で採用されていた板状体支持体が採用されている構成にすることもできる。
 すなわち、
 前記ブロック部第一支持部上端支持部には板状体支持体が配備されており、前記板状体の前記第一端の側は、前記ブロック部第一支持部上端支持部と、前記板状体支持体との間に挟持され、及び/又は、
 前記ブロック部第二支持部上端支持部には板状体支持体が配備されており、前記板状体の前記第二端の側は、前記ブロック部第二支持部上端支持部と、前記板状体支持体との間に挟持され
 る構成にできる。
 この場合に、前記板状体支持体は弾性部材から構成できることも実施の形態1で説明したものと同様であり、その他の板状体支持体の形態を採用可能である点も実施の形態1で説明したものと同様である。
 なお、この実施の形態3は、ブロック部第一支持部と、ブロック部第二支持部とによって、いわば両持ち構造で、板状体を支持するものである。
 そこで、板状体の第一端の側とブロック部第一支持部との間、板状体の第二端の側とブロック部第二支持部との間の双方を線接触での支持又は点接触での支持にできる。あるいは、板状体の第一端の側とブロック部第一支持部との間、板状体の第二端の側とブロック部第二支持部との間のどちらか一方を線接触又は点接触での支持にし、他方を面接合など、異なる支持形態にすることもできる。
 また、この実施の形体3においても、実施の形体1で説明したように、線接触、点接触での支持を安定的なものにする構造を採用できる。すなわち、前記板状体は、前記第一端の側、前記第二端の側で前記第一端の近傍、前記第二端の近傍に前記板状体を上下方向に貫通する板状体支持孔を備えている構造にする。また、前記ブロック部は、前記ブロック部第一支持部に配備されていて前記板状体支持孔に挿入されるように上側方向に向かって延びる板状体支持支柱、及び/又は、前記ブロック部第二支持部に配備されていて前記板状体支持孔に挿入されるように上側方向に向かって延びる板状体支持支柱を備えている構造にするものである。あるいは、前記ブロック部第一支持部の上側、前記ブロック部第二支持部の上側にそれぞれ板状体支持支柱支持部が配備されていて、前記板状体支持支柱は、この板状体支持支柱支持部から前記板状体支持孔に挿入されるように下側方向に向かって延びる構造にできる点も実施の形体1で説明したものと同様である。
 また、この実施の形態3においても、実施の形態1、2での説明と同様に、前記板状体として可撓性を有する部材や、弾性を有する部材を採用できる。
 板状体とブロック部第一支持部との間の支持形態、板状体とブロック部第二支持部との間の支持形態として面接合、線接触、点接触などがあることを考慮し、それぞれの支持形態に適した特性の板状体を採用することが望ましい点も実施の形態1で説明したものと同様である。
 例えば、前記板状体の前記第一端の側が前記計測対象物表面の方向に移動できるように前記ブロック部第一支持部に支持され、前記板状体の前記第二端の側が前記計測対象物表面の方向に移動できるように前記ブロック部第二支持部に支持されていることで前記板状体の前記測定装置支持面が、前記計測対象物表面の方向に移動できる構成の場合などでは、剛性を有していて、たわんだり、曲がったりすることがない部材で板状体を構成できる。
 なお、この実施の形態3は、ブロック部第一支持部と、ブロック部第二支持部とによって、いわば両持ち構造で、板状体を支持するものであるので、板状体の第一端の側とブロック部第一支持部との間、板状体の第二端の側とブロック部第二支持部との間の双方が面接合である場合には、合成樹脂製、等で可撓性を有する部材からなる板状体や、ゴムのような弾性を有する部材からなる板状体を採用することが望ましい。
 この実施の形態3においても、実施の形態1で説明したものと同様の板状体支持高さを調節する機構を採用できる。
 すなわち、
 前記ブロック部第一支持部の前記ブロック部第一支持部当接面と、前記上側との距離に相当する板状体支持高さを調節する機構が前記ブロック部第一支持部に配備されており、及び/又は、
 前記ブロック部第二支持部の前記ブロック部第二支持部当接面と、前記上側との距離に相当する板状体支持高さを調節する機構が前記ブロック部第二支持部に配備されている、
 構成にできる。
 この場合、
 前記ブロック部第一支持部は、上下方向に複数個積層されている単位ブロックから構成されており、前記単位ブロックの数を増やす、あるいは減らすことで前記ブロック部第一支持部に配備されている板状体支持高さを調節する前記機構が構成されていたり、上下方向の高さが異なる複数のブロック部第一支持部を準備し測定装置に組み合わせて使用する際に適切な上下方向高さを有するブロック部第一支持部を選択して用いることで板状体支持高さを調節する前記機構が構成されている、及び/又は、
 前記ブロック部第二支持部は、上下方向に複数個積層されている単位ブロックから構成されており、前記単位ブロックの数を増やす、あるいは減らすことで前記ブロック部第二支持部に配備されている板状体支持高さを調節する前記機構が構成されていたり、上下方向の高さが異なる複数のブロック部第二支持部を準備し測定装置に組み合わせて使用する際に適切な上下方向高さを有するブロック部第二支持部を選択して用いることで板状体支持高さを調節する前記機構が構成されている
 ようにすることが可能である。
 また、実施の形態1、2で説明したように、前記ブロック部第一支持部、前記ブロック部第二支持部が上下方向に複数個積層されている単位ブロックから構成されていて、単位ブロック同士の間の上下方向の間隔をネジ機構などによって調整可能にすることで板状体支持高さを調節することもできる。
 この実施の形態3においては、両持ち構造であるため、前記ブロック部第一支持部と、前記ブロック部第二支持部とは、前記空間部を囲んで前記板状体が伸びる方向に伸びる支持フレームによって固定的に支持されている構成にできる。
 前記計測対象物における前記測定位置の近傍の前記計測対象物表面に当接するブロック部第一支持部当接面を有するブロック部第一支持部と、前記ブロック部第一支持部に対して前記第一端の側から前記第二端の側に向かって伸びる方向に離れていて、前記計測対象物における前記測定位置の近傍の前記計測対象物表面に当接するブロック部第二支持部当接面を有するブロック部第二支持部とが、前記支持フレームによって固定的に支持されている。これによって、ブロック部第一支持部当接面と、ブロック部第二支持部当接面とが、計測対象物における測定位置の近傍の計測対象物表面に当接する状態をより確実に確保できる。この実施の形態3は両持ち構造であることから上述した支持フレームを採用することでこのような効果が発揮されるようにした。
 前記支持フレームを採用することにより、ブロック部第一支持部当接面とブロック部第二支持部当接面との相対位置、及び、板状体支持高さが固定されるため、測定補助装置が組み合わせて使用される測定装置による測定において、ブロック部第一支持部当接面及びブロック部第二支持部当接面が、毎回同じ位置で計測対象物における測定位置の近傍の計測対象物表面に当接するようになる上で有利である。これにより、押圧開始時刻に押圧部当接面が計測対象物へ当接する強さを毎回の測定において一定にすることがより容易になる点で有利である。
 また、支持フレームを採用すると、計測対象物表面に対して測定補助装置を支持する人間の力は板状体をたわませず、押圧部を計測対象物の方向に移動させるのに必要な力は押圧力のみによって与えられるため、測定補助装置を支持する力と押圧力とが独立になる。このことも、押圧開始時刻に押圧部当接面が計測対象物へ当接する強さを毎回の測定において一定にすることを容易にする。上述した複数の理由により、支持フレームを採用することは、上述した課題6の解決に貢献する。また、支持フレームは、図3のように測定補助装置を支持する手と押圧する手を同一の手にしても指の震えを測定装置に伝えずに測定補助装置を計測対象物表面に対して安定して支持することを可能にするため、上述した課題1、2、及び3の解決にも貢献する。
 なお、片持ち構造又は支持フレームを採用しない両持ち構造で板状体が支持される実施の形態の場合でも、測定補助装置を支持する手(例えば左手)とは反対の手(例えば右手)の指で板状体を押圧すれば、指の震えを測定装置に伝えずに測定補助装置を計測対象物表面に対して安定して支持することができ、押圧する手は押圧することに専念できるため、上述した課題1、2、及び3は改善する。
 この実施の形態3では、第一端の側から第二端の側に向かって伸びる方向に直交し、計測対象物表面に対して並行して伸びる方向で所定の大きさの横幅を有する板状体における前記測定位置に対応する位置の前記計測対象物表面に面する側が、前記測定装置における前記押圧部の前記押圧部当接面に対向する側を支持する測定装置支持面を構成している。そして、前記測定装置支持面が前記計測対象物表面の方向に移動できるように、板状体が、前記第一端の側で前記ブロック部第一支持部に、前記第二端の側で前記ブロック部第二支持部にそれぞれ支持されている。
 そこで、実施の形態1で説明したように、この実施の形態3でも、図3において、測定装置1及び押圧部10に加えられるY軸及びX軸方向への力が最小化され、加えられる力のほとんどがZ軸方向への力になる。
 ブロック部第一支持部によって、いわば片持ち構造で板状体が支持されている実施の形態2の場合と比較すると、この実施の形態3はブロック部第一支持部、ブロック部第二支持部によって、いわば両持ち構造であるため、測定装置に回転を発生させずに押圧部を計測対象物の方向に移動できるため、測定装置にかかる重力の向きが回転により変化することに起因する加速度センサを用いた距離測定の誤差を抑える上で有利である。
(実施の形態4)
 上述した実施の形態1において、
 前記ブロック部は、前記計測対象物における前記測定位置の近傍の前記計測対象物表面に当接する第一ブロック部当接面を有する第一ブロック部と、前記第一ブロック部の前記第一ブロック部当接面に対向する側である前記第一ブロック部の上側に配備される第二ブロック部とを備えていて、
 前記板状体の前記一端の側は、前記第二ブロック部の前記上側おいて前記第二ブロック部に支持されている
 構成にできる。
 第一ブロック部当接面は、前記計測対象物における前記測定位置の近傍の前記計測対象物表面に対してより適切に当接する。板状体を支持する第二ブロック部は、第一ブロック部の上に安定的に支持される。
 例えば、第一ブロック部は、測定位置の周囲を取り囲むことができるような筒状体で、前記計測対象物表面に向かう側の端縁に第一ブロック部当接面を形成し、前記計測対象物表面に当接する構造にできる。
 この実施の形態4は、実施の形態1には採用されていなかった第一ブロック部を実施の形態1の実施形態に組み合わせたものである。
 そこで、板状体が、第一端の側から第二端の側に向かって伸びる方向に直交し、計測対象物表面に対して並行して伸びる方向で所定の大きさの横幅を有し、前記測定位置に対応する位置の前記計測対象物表面に面する側が、前記測定装置における前記押圧部の前記押圧部当接面に対向する側を支持する測定装置支持面を構成し、前記測定装置支持面が前記計測対象物表面の方向に移動できるように前記第一端の側で第二ブロック部に支持されている構成にすることで発揮される機序は実施の形態1で説明したものと同様である。
 すなわち、上述した構造の板状体が第二ブロック部に支持されていることで、測定装置1及び押圧部10に加えられる図3のY軸及びX軸方向への力が最小化され、加えられる力のほとんどがZ軸方向への力になる。更に、図3のZ軸方向への力のみが測定装置1及び押圧部10に加えられ、Y軸及びX軸方向への力を最小化することを目的として、第二ブロック部による支持形態を面接合、又は線接触、又は点接触での支持、等、種々の支持形態としたり、剛性、又は可撓性、又は弾性を有する板状体、等、種々の特性を有する板状体を採用したり、板状体の特性に応じて第二ブロック部による板状体の支持形態を種々に変更して組み合わせることが可能である。
 これらの点は実施の形態1で説明したものと同様であるので、ここでは説明を省略する。
 この実施の形態4においても、上述した実施の形態1~3で採用される種々の構成が以下で述べるように、いずれも採用可能である。
 すなわち、この実施の形態4では、
 前記板状体の前記第一端の側が、前記計測対象物表面の方向に移動できるように、前記第二ブロック部に支持されていることで、前記板状体の前記測定装置支持面が前記計測対象物表面の方向に移動できる構成にできる。
 この場合に、例えば、前記板状体の前記第一端の側と前記第二ブロック部との間に弾性部材が介在していることで前記板状体の前記第一端の側が、前記計測対象物表面の方向に移動可能に前記ブロック部に支持されている構成にできる。
 前記弾性部材として、例えば、バネやガスケットが採用可能であって、前記第二ブロック部の上側と、前記板状体の前記第一端の側の下側との間にバネやガスケットを配置する構成が採用可能であることは実施の形態1で説明したものと同様である。
 前記板状体の前記第一端の側は、前記第二ブロック部の前記上側に対して面接合で支持されている構成にできる。
 線接触、点接触での支持構造に関しても、以下で説明するように、この実施の形態4でも採用することができ、これによって、上述したものと同様の効果を発揮させることができる。
 すなわち、
 前記板状体の前記第一端の側は、前記第二ブロック部の前記上側で、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びる第二ブロック部上端支持部に線接触で支持されている構成にできる。
 実施の形態1でブロック部上端支持部について説明した事情がこの実施の形態4の第二ブロック部上端支持部についても同様に適用可能である。
 また、
 前記板状体の前記第一端の側は、前記第二ブロック部の前記上側に配備されている第二ブロック部上端支持点で支持される点接触での支持にできる。第二ブロック部上端支持点が上述した線接触での支持における第二ブロック部上端支持部を形成することになる。
 この場合に、前記第二ブロック部上端縁辺支持点は、前記第二ブロック部の前記上側の面に、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びる方向に間隔をあけて複数個配備されている構成にできる。
 線接触、点接触での支持形態の場合に、実施の形態1、2、3で説明されていた板状体支持体を採用できることも同様である。
 すなわち、前記第二ブロック部上端支持部には板状体支持体が配備されており、前記板状体の前記第一端の側は、前記第二ブロック部上端支持部と、前記板状体支持体との間に挟持される構成にできる。
 この場合に、前記板状体支持体は弾性部材から構成できること、実施の形体1で説明したその他の板状体支持体の形態を採用可能であること、線接触、点接触での支持を安定的なものにする実施の形体1で説明した構造を採用できることも実施の形態1で説明したものと同様である。
 また、この実施の形態4においても、実施の形態1、2、3での説明と同様に、前記板状体として可撓性を有する部材や、弾性を有する部材を採用できる。
 板状体と第二ブロック部との間の支持形態として面接合、線接触、点接触などがあることを考慮し、それぞれの支持形態に適した特性の板状体を採用することが望ましい点も実施の形態1で説明したものと同様である。
 例えば、前記板状体の前記第一端の側が前記計測対象物表面の方向に移動できるように前記第二ブロック部に支持されていることで前記板状体の前記測定装置支持面が前記計測対象物表面の方向に移動できる構成の場合、剛性を有していて、たわんだり、曲がったりすることがない部材で板状体を構成できる。
 この実施の形態4でも、板状体支持高さを調節する機構を採用できる。
 例えば、前記第一ブロック部の上側に面する前記第二ブロック部の下側の面と、前記第二ブロック部の前記上側との距離に相当する板状体支持高さを調節する機構が前記第二ブロック部に配備されている構成にできる。
 この場合、前記第二ブロック部は、上下方向に複数個積層されている単位ブロックから構成されており、前記単位ブロックの数を増やす、あるいは減らすことで板状体支持高さを調節できる。また、上下方向の高さが異なる複数の第二ブロック部を準備しておいて、測定装置に組み合わせて使用する際に適切な上下方向高さを有する第二ブロック部を選択して用いることで板状体支持高さを調節することもできる。
 また、前記第一ブロック部当接面と、前記第一ブロック部の前記上側との距離に相当する板状体支持高さを調節する機構が前記第一ブロック部に配備されている構成にすることもできる。
 また、実施の形態1などで説明したように、前記第一ブロック部及び/又は前記第二ブロック部が上下方向に複数個積層されている単位ブロックから構成されていて、単位ブロック同士の間の上下方向の間隔をネジ機構などによって調整可能にすることで板状体支持高さを調節することもできる。
 この実施の形態4においては、前記第二ブロック部は、前記第一ブロック部に対して、
 前記板状体が前記第一端の側から前記第二端の側に向かって伸びる方向で、
及び/又は、
 前記板状体が前記第一端の側から前記第二端の側に向かって伸びる方向に対して直交する方向で
 スライド移動可能に配備されている形態にできる。
(実施の形態5)
 上述した実施の形態1において、
 前記ブロック部は、前記計測対象物における前記測定位置の近傍の前記計測対象物表面に当接する第一ブロック部当接面を有する第一ブロック部と、前記第一ブロック部の前記第一ブロック部当接面に対向する側である前記第一ブロック部の上側に配備される第二ブロック部とを備えていて、
 前記第二ブロック部は、
  前記第一端の側に対応する側で前記第一ブロック部の前記上側に配備される第二ブロック部第一支持部と、
  前記第二ブロック部第一支持部に対して前記第一端の側から前記第二端の側に向かって伸びる方向に離れて、前記第二端の側に対応する側で前記第一ブロック部の前記上側に配備される第二ブロック部第二支持部と
 からなり、
  前記板状体の前記第一端の側が、前記第二ブロック部第一支持部の前記上側において支持され、
  前記板状体の前記第二端の側が、前記第二ブロック部第二支持部の前記上側において支持され
 ることで前記第二ブロック部第一支持部と、前記第二ブロック部第二支持部との間の空間部に前記板状体が掛け渡されることで前記板状体が、前記ブロック部に支持される
 構成にできる。
 この実施の形態5は、上述した実施の形態4において、板状体が、第二ブロック部第一支持部と、第二ブロック部第二支持部とによって、いわば両持ち構造で支持されている構成にしたものである。
 実施の形態4で説明したように、第一ブロック部当接面を、前記計測対象物における前記測定位置の近傍の前記計測対象物表面に対してより適切に当接できる構造にし、板状体を支持する第二ブロック部は、第一ブロック部の上に安定的に支持されることで、より適切な計測、測定を行うことができるようになっている。
 また、この実施の形態5は、実施の形態3には採用されていなかった第一ブロック部を実施の形態3の実施形態に組み合わせたものでもある。
 第一端の側から第二端の側に向かって伸びる方向に直交し、計測対象物表面に対して並行して伸びる方向で所定の大きさの横幅を有する板状体における前記測定位置に対応する位置の前記計測対象物表面に面する側が、前記測定装置における前記押圧部の前記押圧部当接面に対向する側を支持する測定装置支持面を構成している。このような板状体が、前記測定装置支持面が前記計測対象物表面の方向に移動できるように、前記第一端の側で前記第二ブロック部第一支持部に、前記第二端の側で前記第二ブロック部第二支持部にそれぞれ支持されている。これらによって、測定装置1及び押圧部10に加えられる図3のY軸及びX軸方向への力が最小化され、加えられる力のほとんどがZ軸方向への力になることは実施の形態1、3で説明した通りである。
 更に、図3のZ軸方向への力のみが測定装置1、押圧部10に加えられ、Y軸及びX軸方向への力を最小化することを目的として、第二ブロック部第一支持部、第二ブロック部第二支持部による支持形態を面接合、線接触での支持、点接触での支持、等、種々の支持形態としたり、剛性を有する板状体、可撓性を有する板状体、弾性を有する板状体、等、種々の特性を有する板状体を採用したり、板状体の特性に応じてブロック部による板状体の支持形態を種々に変更して組み合わせることが可能である点も実施の形態1、3で説明した通りである。
 また、実施の形態3と同じく両持ち構造であることから片持ち構造での場合と比較して、測定装置に回転を発生させずに押圧部を計測対象物の方向に移動できるため、測定装置にかかる重力の向きが回転により変化することに起因する加速度センサを用いた距離測定の誤差を抑える上で有利である点も実施の形態3で説明したものと同様である。
 この実施の形態5においても、上述した実施の形態1~4で採用される種々の構成が以下で述べるように、いずれも採用可能である。
 すなわち、
 前記板状体の前記第一端の側が、前記計測対象物表面の方向に移動できるように、前記第二ブロック部第一支持部に支持され、
 前記板状体の前記第二端の側が、前記計測対象物表面の方向に移動できるように、前記第二ブロック部第二支持部に支持され
 ていることで、前記板状体の前記測定装置支持面が前記計測対象物表面の方向に移動できる構成にできる。
 この場合、例えば、
 前記板状体の前記第一端の側と前記第二ブロック部第一支持部との間に第一の弾性部材が介在し、
 前記板状体の前記第二端の側と前記第二ブロック部第二支持部との間に第二の弾性部材が介在
 していることで前記板状体の前記第一端の側及び前記第二端の側が、前記計測対象物表面の方向に移動可能に前記ブロック部に支持されている構成にできる。
 前記弾性部材として、例えば、バネやガスケットが採用可能であって、前記第二ブロック部第一支持部の上側と、前記板状体の前記第一端の側の下側との間にバネやガスケットを配置する構成、前記第二ブロック部第二支持部の上側と、前記板状体の前記第二端の側の下側との間にバネやガスケットを配置する構成が採用可能であることは実施の形態1で説明したものと同様である。
 前記板状体の前記第一端の側は、前記第二ブロック部第一支持部の前記上側に対して面接合で支持され、及び/又は、
 前記板状体の前記第二端の側は、前記第二ブロック部第二支持部の前記上側に対して面接合で支持され、
 ている構成にできる。
 なお、この実施の形態5は、第二ブロック部第一支持部と、第二ブロック部第二支持部とによって、いわば両持ち構造で、板状体を支持するものである。そこで、板状体の第一端の側と第二ブロック部第一支持部との間が面接合され、板状体の第二端の側と第二ブロック部第二支持部との間も面接合されている構造にできる。また、板状体の第一端の側と第二ブロック部第一支持部との間、板状体の第二端の側と第二ブロック部第二支持部との間のどちらか一方だけが面接合され、他方は、面接合とは異なる、例えば、後述する線接触での支持又は点接触での支持にすることもできる。
 線接触、点接触での支持構造に関しても、以下で説明するように、この実施の形態5でも採用することができ、これによって、上述したものと同様の効果を発揮させることができる。
 すなわち、
 前記板状体の前記第一端の側は、前記第二ブロック部第一支持部の前記上側で、前記板状体が伸びる方向に直交し前記計測対象物表面に対して並行して伸びる第二ブロック部第一支持部上端支持部に線接触で支持されている、及び/又は、
 前記板状体の前記第二端の側は、前記第二ブロック部第二支持部の前記上側で、前記板状体が伸びる方向に直交し前記計測対象物表面に対して並行して伸びる第二ブロック部第二支持部上端支持部に線接触で支持されている、
 構成にできる。
 実施の形態1でブロック部上端支持部について説明した事情がこの実施の形態5の第二ブロック部第一支持部上端支持部、第二ブロック部第二支持部上端支持部についても同様に適用可能である。
 また、
 前記板状体の前記第一端の側は、前記第二ブロック部第一支持部の前記上側の面に配備されている第二ブロック部第一支持部上端支持点で支持される点接触での支持、及び/又は、
 前記板状体の前記第二端の側は、前記第二ブロック部第二支持部の前記上側の面に配備されている第二ブロック部第二支持部上端支持点で支持される点接触での支持
 による構成にできる。
 第二ブロック部第一支持部上端支持点、第二ブロック部第二支持部上端支持点が上述した線接触での支持における第二ブロック部第一支持部上端支持部、第二ブロック部第二支持部上端支持部を形成することになる。
 この場合に、第二ブロック部第一支持部上端支持点は、前記第二ブロック部第一支持部の前記上側の面に、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びる方向に間隔をあけて複数個配備されている構成にできる。また、第二ブロック部第二支持部上端支持点は、前記第二ブロック部第二支持部の前記上側の面に、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びる方向に間隔をあけて複数個配備されている構成にできる。
 また、線接触での支持形態、点接触での支持形態の場合に、板状体支持体が採用される構成が採用可能であることも実施の形態1~4で説明したものと同様である。
 すなわち、
 前記第二ブロック部第一支持部上端支持部には板状体支持体が配備されており、前記板状体の前記第一端の側は、前記第二ブロック部第一支持部上端支持部と、前記板状体支持体との間に挟持され、及び/又は、
 前記第二ブロック部第二支持部上端支持部には板状体支持体が配備されており、前記板状体の前記第二端の側は、前記第二ブロック部第二支持部上端支持部と、前記板状体支持体との間に挟持され
 る構成にできる。
 この場合に、前記板状体支持体は弾性部材から構成できることも実施の形態1で説明したものと同様であり、その他の板状体支持体の形態を採用可能である点も実施の形態1で説明したものと同様である。
 なお、この実施の形態5は、第二ブロック部第一支持部と、第二ブロック部第二支持部とによって、いわば両持ち構造で、板状体を支持するものである。
 そこで、板状体の第一端の側と第二ブロック部第一支持部との間、板状体の第二端の側と第二ブロック部第二支持部との間の双方を線接触での支持又は点接触での支持にできる。あるいは、板状体の第一端の側と第二ブロック部第一支持部との間、板状体の第二端の側と第二ブロック部第二支持部との間のどちらか一方を線接触での支持又は点接触での支持にし、他方を、面接合など、異なる支持形態にすることもできる。
 また、この実施の形態5においても、実施の形態1、2、3、4での説明と同様に、前記板状体として可撓性を有する部材や、弾性を有する部材を採用できる。
 板状体と第二ブロック部第一支持部との間の支持形態、板状体と第二ブロック部第二支持部との間の支持形態として面接合、線接触、点接触などがあることを考慮し、それぞれの支持形態に適した特性の板状体を採用することが望ましい点も実施の形態1で説明したものと同様である。
 例えば、前記板状体の前記第一端の側が前記計測対象物表面の方向に移動できるように前記第二ブロック部第一支持部に支持され、前記板状体の前記第二端の側が前記計測対象物表面の方向に移動できるように前記第二ブロック部第二支持部に支持されていることで前記板状体の前記測定装置支持面が前記計測対象物表面の方向に移動できる構成の場合、剛性を有していて、たわんだり、曲がったりすることがない部材で板状体を構成できる。
 なお、この実施の形態5は、第二ブロック部第一支持部と、第二ブロック部第二支持部とによって、いわば両持ち構造で、板状体を支持するものであるので、板状体の第一端の側と第二ブロック部第一支持部との間、板状体の第二端の側と第二ブロック部第二支持部との間の双方が面接合である場合には、ゴムのような弾性を有する部材からなる板状体を採用すると、より弱い押圧力で測定できる。
 この実施の形態5においても、実施の形態1で説明したものと同様の板状体支持高さを調節する機構を採用できる。
 すなわち、
 前記第一ブロック部の上側に面する前記第二ブロック部第一支持部の下側の面と、前記第二ブロック部第一支持部の前記上側との距離に相当する板状体支持高さを調節する機構が前記第二ブロック部第一支持部に配備されており、及び/又は、
 前記第一ブロック部の上側に面する前記第二ブロック部第二支持部の下側の面と、前記第二ブロック部第二支持部の前記上側との距離に相当する板状体支持高さを調節する機構が前記第二ブロック部第二支持部に配備されている
 構成にできる。
 この場合に、
 前記第二ブロック部第一支持部は、上下方向に複数個積層されている単位ブロックから構成されており、前記単位ブロックの数を増やす、あるいは減らすことで前記第二ブロック部第一支持部に配備されている板状体支持高さを調節する前記機構が構成されていたり、上下方向の高さが異なる複数の第二ブロック部第一支持部を準備し測定装置に組み合わせて使用する際に適切な上下方向高さを有する第二ブロック部第一支持部を選択して用いることで板状体支持高さを調節する前記機構が構成されている形態にする、及び/又は、
 前記第二ブロック部第二支持部は、上下方向に複数個積層されている単位ブロックから構成されており、前記単位ブロックの数を増やす、あるいは減らすことで前記第二ブロック部第二支持部に配備されている板状体支持高さを調節する前記機構が構成されていたり、上下方向の高さが異なる複数の第二ブロック部第二支持部を準備し測定装置に組み合わせて使用する際に適切な上下方向高さを有する第二ブロック部第二支持部を選択して用いることで板状体支持高さを調節する前記機構が構成されている
 ようにできる。
 また、
 前記第一ブロック部当接面と、前記第一ブロック部の前記上側との距離に相当する板状体支持高さを調節する機構が前記第一ブロック部に配備されている構成にすることもできる。
 この場合に、
 前記第一ブロック部は、上下方向に複数個積層されている単位ブロックから構成されており、前記単位ブロックの数を増やす、あるいは減らすことで前記第一ブロック部に配備されている板状体支持高さを調節する前記機構を構成したり、上下方向の高さが異なる複数の第一ブロック部を準備し測定装置に組み合わせて使用する際に適切な上下方向高さを有する第一ブロック部を選択して用いることで板状体支持高さを調節できる。
 なお、実施の形態1などで説明したように、前記第二ブロック部第一支持部、前記第二ブロック部第二支持部、及び/又は前記第一ブロック部が上下方向に複数個積層されている単位ブロックから構成されていて、単位ブロック同士の間の上下方向の間隔をネジ機構などによって調整可能にすることで板状体支持高さを調節することもできる。
 この実施の形態5においては、
 前記第二ブロック部第一支持部と、前記第二ブロック部第二支持部とは、前記空間部を囲んで前記板状体が伸びる方向に伸びる支持フレームによって固定的に支持されている構成にできる。この実施の形態5における支持フレームの効果は、前記第二ブロック部第一支持部と前記第二ブロック部第二支持部とを同時に、後述するスライド移動できることである。
 実施の形態3で説明した支持フレームが発揮する効果は、この実施の形態5においては、第一ブロック部の存在により発揮される。
 この実施の形態5においては、
 前記第二ブロック部第一支持部は、前記第一ブロック部に対して、
 前記板状体が伸びる方向に
及び/又は、
 前記板状体が伸びる方向に対して直交する方向に
 スライド移動可能に配備されている構成にできる。
 同様に、この実施の形態5においては、
 前記第二ブロック部第二支持部は、前記第一ブロック部に対して、
 前記板状体が伸びる方向に
及び/又は、
 前記板状体が伸びる方向に対して直交する方向に
 スライド移動可能に配備されている構成にできる。
 以下、添付図面を参照して上述した実施の形態1~5の具体的な実施例をいくつか説明するが、本発明は上述した実施の形態1~5及び、後述する実施例の記載に限られることなく、特許請求の範囲の記載から把握される技術的範囲において種々に変更可能である。
 計測対象物の内部圧力又は剛性を測定する測定装置用の以下の実施例の測定補助装置は、計測対象物の内部圧力又は剛性を測定する測定装置であって前記計測対象物における前記内部圧力又は前記剛性の測定が行われる測定位置の前記計測対象物表面に当接する押圧部当接面を備えていて前記内部圧力又は前記剛性の測定が行われる際に前記計測対象物の方向に移動する押圧部を備えている測定装置と共に使用されるものである。
 上述した実施形態の測定補助装置を用いることで測定装置による測定を容易にし、測定精度を向上できる。
 以降では計測対象物である人体の内部圧力又は剛性の一例として眼圧を測定する場合で説明しているが、本発明は、眼圧測定に限定されず、特許文献1で提案されている測定装置を用いて、計測対象物の内部圧力又は剛性を測定するあらゆる場合に適用できる。さらに、加速度を積分して速度または距離を求めるだけの用途にも適用できる。
 以下、本明細書において、計測対象物の内部圧力又は剛性を測定する測定装置用の測定補助装置を単に「測定補助装置」と表すことがある。
 測定装置1で測定する計測対象物(人体2)の内部圧力又は剛性が眼圧である場合、測定位置は図3図示のように人体2の眼瞼となる。
(実施例1)
 実施の形態1、実施の形態2、実施の形態4に対応する実施例の一つを説明する。
 図4~図9図示の測定補助装置3は、ブロック部4と、板状体8とを備えている。
 測定装置1は押圧部10を備えている(図8、図9)。押圧部10は、計測対象物(人体)2における内部圧力又は剛性の測定が行われる測定位置(人体の眼瞼)の計測対象物表面に当接する押圧部当接面10aを備えている。
 測定装置1を用いて計測対象物(人体)2における内部圧力又は剛性の測定が行われる場合、押圧部当接面10aを計測対象物表面に当接させている状態の測定装置1に対して、図8、図9に矢印30で示す方向の力が加えられる。これにより、測定装置1は、矢印30で示す方向、すなわち、測定位置(人体の眼瞼)の計測対象物表面の方向に移動する。同時に、押圧部10も押圧部当接面10aを計測対象物表面に当接させた状態で計測対象物表面の方向に移動する。
 ブロック部4は、図39図示の使用状態で測定補助装置3が使用される際に人体2の測定位置(人体の眼瞼)の近傍の計測対象物(人体)表面に当接するブロック部当接面5を備えている(図5)。
 板状体8は、一端8cの側が、ブロック部当接面5に対向する側であるブロック部4の上側においてブロック部4に支持されている。板状体8の他端8dの側は、計測対象物(人体)表面の上を、上述した測定位置(人体の眼瞼)の上側に向かって伸びることになる。
 板状体8は、図4図示のように、一端8cの側から他端8dの側に向かって伸びる方向に直交し計測対象物(人体)表面に対して並行して伸びる方向で所定の大きさの横幅を有している。
 この実施例1では、板状体8の一端8cの側がブロック部4に支持される形態として面接合が採用されている。すなわち、人体2の測定位置(人体の眼瞼)の近傍の計測対象物(人体)表面に対して平行になっているブロック部4の上側面に、計測対象物(人体)表面の上を測定位置(人体の眼瞼)の上側に向かって計測対象物(人体)表面に対して平行に伸びている板状体8の一端8cの側が面接合によって接合されている。
 人体2の測定位置(人体の眼瞼)に対応する位置の板状体8の計測対象物(人体)表面に面する側が測定装置支持面8aになる(図5)。測定装置支持面8aは、測定装置1における押圧部10の押圧部当接面10aに対向する側1bを支持する(図8、図9)。
 図6、図7図示のように、人体2の測定位置(人体の眼瞼)に対応する位置の板状体8は、矢印30で示す計測対象物(人体)方向への力を受けると計測対象物(人体)の方向に移動可能になっている。これによって、矢印30で示す計測対象物(人体)方向への力を受けると測定装置支持面8aが計測対象物(人体)2の方向に移動可能になっている。
 この実施例1では板状体8を可撓性を有する部材で形成しておくことで、図6、図7図示のように、矢印30方向の力を受けたときに板状体8がたわむ。これによって、剛性を有していて変形することのないブロック部4に板状体8の一端8cの側が面接合によって接合されていても測定装置支持面8aが計測対象物(人体)の方向に移動できる。
 測定装置1を用いて眼圧を測定する場合、測定装置1の押圧部当接面10aを人体2の眼瞼の表面に当接させたまま測定装置1を計測対象物(人体)の方向に移動させる。すなわち、測定装置1の押圧部当接面10aを眼瞼の表面に当接させた状態で、図8、図9に矢印30で示す方向の押圧力を測定装置1に加えることになる。
 上述した測定装置1による眼圧測定の際に測定装置1に組み合わせて使用する前の測定補助装置3では、板状体8の一端8cの側がブロック部4の上側においてブロック部4に支持され、他端8dの側は、計測対象物(人体)表面の上を、測定位置(人体の眼瞼)の上側に向かって伸びている。そこで、図4図示のように、板状体8の他端8dの側は空中に浮いている。
 本発明の一実施形態に係る測定補助装置3が測定装置1と共に使用されている状態の一例が図39に示されている。この実施例1の測定補助装置3を上述した測定装置1による眼圧測定の際に測定装置1に組み合わせて使用すると次のようになる。
 人体の測定位置(眼瞼)の近傍の計測対象物表面にブロック部当接面5を当接させ、板状体8の測定装置支持面8aを、押圧部当接面10aを眼瞼の表面に当接させている状態の測定装置1の押圧部当接面10aに対向する側1bに当接させる。
 押圧部当接面10aに対向する側1bと測定装置支持面8aとの支持形態として、両面テープ又は接着剤等の種々の接着部材を使用できる。また、測定装置1を板状体8に対してスナップイン構造により装着することもできる。
 このように、押圧部当接面10aを眼瞼の表面に当接させている状態の測定装置1の押圧部当接面10aに対向する側1bを測定装置支持面8aで支持している測定補助装置3の板状体8に対して図8、図9に矢印30で示す方向の力を加える。
 すなわち、上述した状態の測定補助装置3における板状体8の測定位置(眼瞼)に対応する位置に対して矢印30で示す方向の押圧力を加える。
 これにより、可撓性を有する板状体8が図8図示のようにたわむことで測定装置支持面8aが計測対象物(人体)の方向に移動する。
 そこで、測定装置支持面8aに支持されている測定装置1は、押圧部当接面10aを眼瞼の表面に当接させ測定装置支持面8aに支持されている状態で、同じく、矢印30で示す計測対象物の方向に移動する。これにより、測定装置1が備えている押圧部10も、押圧部当接面10aを眼瞼の表面に当接させたまま計測対象物の方向に移動する。
 板状体8は、上述したように所定の横幅を有している。そして、人体2の測定位置(人体の眼瞼)の近傍の計測対象物(人体)表面に対して平行になっているブロック部4の上側面に、計測対象物(人体)表面の上を測定位置(人体の眼瞼)の上側に向かって計測対象物(人体)表面に対して平行に伸びている板状体8の一端8cの側が面接合によって接合されている。この板状体8の、測定位置(の眼瞼)に対応する位置の計測対象物表面に面する側に形成されている測定装置支持面8aによって、測定装置1における押圧部当接面10aに対向する側1bが支持されている。
 このような構成の下で、測定装置支持面8aに支持されている測定装置1が、押圧部当接面10aを眼瞼の表面に当接させ測定装置支持面8aに支持されている状態で、矢印30で示す計測対象物の方向に移動するため、測定装置1及び押圧部10に加えられる図3のY軸及びX軸方向への力が最小化され、加えられる力のほとんどがZ軸方向への力になる。
 なお、この実施例1ではブロック部4は剛性を有する部材であって、上述したように、板状体8の測定装置支持面8aが矢印30で示す計測対象物の方向に移動すると、板状体8の他端8dがブロック部4に対して計測対象物の方向に回転するように動く。
 そこで、より正確な測定を目指す上では、この実施例1の測定補助装置3を、測定装置1にかかる重力の向きが回転により変化することに起因する加速度センサを用いた距離測定の誤差を補正する機構を備えている特許文献1記載の測定装置1と組み合わせて使用することが望ましい。この補正機構は、特許文献1の明細書の[0162~0166]段落に記載されている。
 上記では可撓性を有する部材で板状体8が形成されている場合で説明した。これに替えて、たわんだり、曲がったりすることのない剛性を有する部材で板状体8が形成されている場合でも、上述したものと同様になる。
 ただし、ブロック部4は剛性を有する部材であり、板状体8が剛性を有する部材である場合、板状体8の他端8dがブロック部4に対して計測対象物の方向に回転するような動きが、上述した可撓性を有する板状体の場合とは異なる。剛性を有する板状体の場合には、ブロック部4のブロック部当接面5における測定位置(人体の眼瞼)側の縁辺、すなわち、図5でブロック部4の左側上端縁の辺を、人体の測定位置(眼瞼)の近傍の計測対象物表面に当接させて使用する。
 すなわち、ブロック部当接面5の全体でブロック部4及び板状体8を支持するのではなく、ブロック部当接面5における測定位置(人体の眼瞼)側の縁辺のみで、線接触でブロック部4及び板状体8が支持される。そして、ブロック部当接面5の線接触の縁辺を中心にして、面接合されたブロック部4と板状体8とから成り立つ剛体が回転しながら、押圧部10が計測対象物の方向に移動する。
(実施例2)
 実施の形態1、実施の形態2、実施の形態4に対応する実施例の一つを説明する。
 図10は、板状体8の一端8cが、計測対象物の方向に移動可能にブロック部4に支持されていることで、板状体8に対して矢印30方向で示す押圧力が加えられた時に測定装置支持面8aが計測対象物の方向に移動する実施例を説明するものである。
 その他の構成に関しては図4~図9、実施例1で説明したものと同様であるので、図4~図9、実施例1で説明している構成部材と同一のものについては図10において共通する符号をつけてその説明を省略する。
 なお、図10図示の実施例2では、測定装置1の押圧部当接面10aに対向する側1bと、板状体8の測定装置支持面8aとの間に実施例1で説明した接着部材を介在させ、両者の間を接着状態にして使用している。
 図10図示の実施例2ではブロック部4は、人体における顔2aの測定位置である眼瞼2bの近傍の計測対象物表面2cに当接するブロック部当接面5を備えている下側の単位ブロック4bと、単位ブロック4bの上に積層されている上側の単位ブロック4aとで構成されている。
 この実施例2の測定補助装置3に採用されている板状体8は、たわまず、曲がらない板、すなわち剛性を有する板である。
 板状体8の一端8cは、バネやガスケットのような弾性材12を、ブロック4との間に介在させる形態でブロック4に支持されている。
 図10図示の実施例2では上側の単位ブロック4aの測定位置(眼瞼2b)側の上部側壁面にくぼみ部が形成されている。このくぼみ部に、上側に板状体8の一端8c、その下側に弾性材12が配置される形式で、一端8cがブロック4に支持されている。すなわち、板状体8の一端8cは、弾性材12の弾性力によって、常に、図10において上側方向へ付勢力を受ける形態でブロック4に支持されている。
 図10図示のように、測定位置(眼瞼2b)の近傍の計測対象物表面2cにブロック部当接面5を当接させる。押圧部当接面10aは眼瞼2bの表面に当接させる。押圧部当接面10aに対向する側1bは、測定装置支持面8aで支持されている。そして、板状体8の測定位置(眼瞼2b)に対応する位置に対して矢印30で示す方向の押圧力を加える。
 これにより、剛性を有する板状体8は、矢印30で示す方向、すなわち、計測対象物の方向に移動し、測定装置支持面8aが計測対象物の方向に移動する。
 上述したように、この実施例2では、板状体8の一端8cは、弾性材12の弾性力によって、常に、図10において上側方向へ付勢力を受ける形態でブロック4に支持されている。そこで、板状体8が矢印30で示す方向に移動することで、弾性材12は図10で下側への圧縮力を受け、一端8cの上側は、上側の単位ブロック4aのくぼみ部における下向き壁面から離れるようになる。
 そこで、測定装置支持面8aに支持されている測定装置1は、押圧部当接面10aを眼瞼2bの表面に当接させ測定装置支持面8aに支持されている状態で、同じく、矢印30で示す計測対象物の方向に移動する。これにより、測定装置1が備えている押圧部10も、押圧部当接面10aを眼瞼2bの表面に当接させたまま計測対象物の方向に移動する。
 測定装置1及び押圧部10に加えられる図3のY軸及びX軸方向への力が最小化され、加えられる力のほとんどがZ軸方向への力になるメカニズムは実施例1で説明したものと同様である。
 上述したように、板状体8の一端8cは、弾性材12の弾性力によって、常に、図10において上側方向へ付勢力を受ける形態でブロック4に支持されていて、矢印30で示す計測対象物方向への力を受けると弾性材12を圧縮しながら計測対象物の方向に移動する。
 そこで、上記では剛性を有する板状体8で説明したが、可撓性を有する部材からなる板状体8を用いても上述したものと同等の作用、機能を発揮させることができる。
 なお、可撓性を有する部材からなる板状体8を用いる場合には、板状体8の測定装置支持面8aが矢印30で示す計測対象物の方向に移動すると、実施例1で説明したものよりは少なくなるが、板状体8の他端8dがブロック部4に対して計測対象物の方向に回転するように動くことになる。
 そこで、この実施例2で、可撓性を有する部材からなる板状体8を用いる場合、より正確な測定を目指す上では、測定補助装置3を、測定装置1にかかる重力の向きが回転により変化することに起因する加速度センサを用いた距離測定の誤差を補正する機構を備えている特許文献1記載の測定装置1と組み合わせて使用することが望ましい。
 この実施例2では、人体における顔2aの測定位置である眼瞼2bの近傍の計測対象物表面2cに当接するブロック部当接面5を備えている下側の単位ブロック4bと、単位ブロック4bの上に積層されている単位ブロック4aとでブロック部4を構成している。
 そこで、図10図示の状態では、板状体8を支持する高さである板状体支持高さは、単位ブロック4bのブロック部当接面5から単位ブロック4aの上への距離で考えることができる。
 ここで、例えば、単位ブロック4bの上側面と、単位ブロック4aの下側面との間を離接自在の関係にしておき、単位ブロック4bを取り除いて、単位ブロック4aのみでブロック部4を構成すると、板状体支持高さを図10図示の状態よりも低くできる。
 また逆に、単位ブロック4bと単位ブロック4aとの間にもう一層の単位ブロックを装入することで、板状体支持高さを図10図示の状態よりも高くできる。
 また、ブロック部当接面5からブロック部4までの上下方向の大きさが異なっているブロック部4を複数個準備しておき、測定装置1と組み合わせて使用する際に、より適切な上下方向の大きさであるブロック部4を選択して使用することで板状体支持高さを調節するようにもできる。
 図4~図9を用いて説明した実施例1においても、上下方向に積層される複数個の単位ブロックによってブロック部4を構成し、複数個の単位ブロックの数を増減させる等によって板状体支持高さを調節可能にできる。
 なお、ブロック部のブロック部当接面と、ブロック部の上側との距離を調節することで板状体支持高さを任意に調節可能にする構成としては、上述した以外にも、ネジ機構等、種々の構成を採用することが可能である。
 板状体支持高さが任意に調節可能になっていると上述した課題6を解決する上で有利である。
(実施例3)
 実施の形態1、実施の形態2、実施の形態4に対応する実施例の一つを説明する。
 図4~図9で説明した実施例1では、板状体8の一端8cの側がブロック部4に支持される形態として面接合が採用されていた。
 図11~図15図示の実施例3では、板状体8の一端8cの側がブロック部4に支持される形態として線接触が採用されている。
 基本的な構成は、図4~図9、実施例1で説明したものと同様であるので、図4~図9、実施例1で説明している構成部材と同一のものについては図11~図15において共通する符号をつけてその説明を省略する。
 ブロック部4はその上端側にブロック部上端支持部9を備えている。図11に図示されているブロック部上端支持部9は、ブロック部4の上側の面で、板状体の一端8cの側から他端8dの側に向かって伸びる方向に直交し計測対象物表面に対して並行して伸びるブロック部上端支持片である。図11におけるブロック部上端支持部9は、計測対象物における測定位置(眼瞼)が存在する側におけるブロック部4の上側の面に形成されている。
 図11~図14図示のように、この実施例3では、板状体8の一端8cの側は、ブロック部上端支持部9に線接触で支持されている。
 人体2の測定位置(人体の眼瞼)の近傍の計測対象物(人体)表面に対して平行になっているブロック部4の上側面で、計測対象物(人体)表面の上を測定位置(人体の眼瞼)の上側に向かって計測対象物(人体)表面に対して平行に伸びている板状体8の一端8cの側が、ブロック部上端支持部9に線接触で支持されている構造である。
 図11~図14図示の実施形態では、ブロック部上端支持部9に板状体支持体13が配備されていて、板状体8の一端8cの側は、ブロック部上端支持部9と、板状体支持体13との間に挟持されている。
 板状体支持体13は、ゴム紐など、弾性を有する紐状体である。図11~図14図示のように、ブロック部上端支持部9の上側で、ブロック部上端支持部9に沿って伸びる線状の部材によって板状体支持体13を構成する場合には、弾性を有する紐状体による板状体支持体13にすることが有利である。
 ブロック部4におけるブロック部上端支持部9に対向する側にブロック部溝7を設置することで、板状体支持体13として使用するゴム紐などのズレを防ぐことができる。
 この実施例3ではブロック部4による板状体8の一端8cの側の支持はいわゆる片持ち状態での支持であって、しかも、上述したように線接触での支持である。図12図示のように、板状体8の他端8dの側は空中に浮いていて、一端8cは線接触で支持されている位置を中心にしてブロック部4の上側面から離れる上側方向に動くため、支持構造はシーソーのような構造である。
 シーソーのように動作させるために、上述したように、板状体8を線接触で支持している部分が、ブロック部上端支持部9と板状体支持体13との間に挟持されることが望ましい。
 このような板状体支持体13を採用する構造は、板状体8を線接触や点接触で支持する時の支持を安定的なものにするための構造である。
 線接触、点接触での支持を安定なものにするための構造としては、これに限らず、種々の構造を採用することができる。例えば、図示していないが、板状体8は、一端8cの側で一端8cの近傍に板状体8を上下方向に貫通する板状体支持孔を備えている構造にする。一方、ブロック部4は、ブロック部上端支持部9に板状体支持支柱を備えている構造にする。板状体支持支柱は、前記板状体支持孔に挿入されるようにブロック部4から上側方向に向かって延びているものである。板状体支持支柱は下側方向に向かって延びて前記板状体支持孔に挿入される構造にすることもできる。例えば、ブロック部4の上側に板状体支持支柱支持部を取り付け、この板状体支持支柱支持部から下側方向に向かって延びる板状体支持支柱が前記板状体支持孔に挿入される構造である。
 板状体支持孔の内径の大きさ、板状体支持支柱の外径の大きさ、板状体8の厚さ、板状体支持孔を貫通して延びる板状体支持支柱の長さを適宜に調整することで、線接触、点接触での支持を安定的なものにし、板状体8がブロック部上端支持部から抜け落ちてしまうことを防止できる。板状体支持孔及び板状体支持支柱を板状体8の幅方向に複数個設けてもよい。
 この実施例3の測定補助装置3を使用する場合、空中に浮いている板状体8の他端8dの側における測定装置支持面8aを測定装置1における押圧部当接面10aに対向する側に当接させて使用する。
 なお、図13、図14では、測定装置1の押圧部当接面10aに対向する側1bと、板状体8の測定装置支持面8aとの間に実施例1で説明した接着部材を介在させ、両者の間を接着状態にして使用している。
 実施例1で説明したように、人体の測定位置(眼瞼)の近傍の計測対象物表面にブロック部当接面5を当接させる。押圧部当接面10aは眼瞼の表面に当接させる。押圧部当接面10aに対向する側1bは、測定装置支持面8aで支持されている。そして、測定補助装置板状体8の測定位置(眼瞼)に対応する位置に対して図13、図14に矢印30で示す方向の押圧力を加える。
 たわんだり曲がることなどがない剛性を有する部材からなる板状体8が採用されている場合には、線接触での支持形態であることから、上述した矢印30で示す方向の押圧力を受けて測定装置支持面8aが計測対象物の方向に移動すると、板状体8の一端8cが、ブロック部上端支持部9を支点として、シーソーのように、ブロック部4の上側から離れるようになる(図14)。
 可撓性を有する部材からなる板状体8が採用されている場合、シーソーのような動作だけでなく、板状体8がたわむことでも測定装置支持面8aが計測対象物(人体)の方向に移動する。
 そこで、測定装置支持面8aに支持されている測定装置1は、押圧部当接面10aを眼瞼の表面に当接させ測定装置支持面8aに支持されている状態で、同じく、矢印30で示す計測対象物の方向に移動する。これにより、測定装置1が備えている押圧部10も、押圧部当接面10aを眼瞼の表面に当接させたまま計測対象物の方向に移動する。
 測定装置1及び押圧部10に加えられる図3のY軸及びX軸方向への力が最小化され、加えられる力のほとんどがZ軸方向への力になるメカニズムは実施例1で説明したものと同様である。
 なお、この実施例3でも、実施例1での説明と同様に、板状体8の測定装置支持面8aが矢印30で示す計測対象物の方向に移動すると、板状体8の他端8dがブロック部4に対して計測対象物の方向に回転するように動くことになる。
 そこで、実施例1で説明したように、より正確な測定を目指す上では、この実施例3の測定補助装置3を、測定装置1にかかる重力の向きが回転により変化することに起因する加速度センサを用いた距離測定の誤差を補正する機構を備えている特許文献1記載の測定装置1と組み合わせて使用することが望ましい。
なお、図14、図15のように、ブロック部上端支持部9を軸に角度θ、板状体8が回転したとき、板状体8と一緒に回転する物体のY軸方向への移動(図14における右側への移動)は、回転半径×(1-cosθ)となり、Z軸方向への移動は回転半径×(sinθ)となる。そこで、適切な回転半径を設定することによりY軸方向への移動を無視できるほど小さくしてZ軸方向への移動を発生できるという機序は、片持ち構造の場合(実施例1、2、3)において共通である。X軸方向への動きは板状体8の所定の横幅によって制限されるという機序は、すべての実施例において共通である。板状体8がブロック部4に支持されているためY軸方向への動きが制限されるという機序も、すべての実施例において共通である。
 図11~図14では、板状体支持体13として、ブロック部上端支持部9の上側で、ブロック部上端支持部9に沿って伸びる線状の部材が示されている。これに替えて、上述した、可撓性を有する部材からなる板状体8、剛性を有する部材からなる板状体8の動作を可能にできる構造であれば、種々の構造の板状体支持体を採用できる。
 例えば、図示していないが、ブロック部上端支持部9の両端でそれぞれブロック部4の上側に設けられている掛止部と、ブロック部上端支持部9の両端との間に板状体8の両側縁辺を挟持する構造などが採用可能である。
 板状体8の一端8cの側がブロック部4に支持される形態として線接触が採用されていることで、片持ち構造の場合に、剛性を持つ板状体を採用しても、人体の測定位置(眼瞼)の近傍の計測対象物表面に当接させたブロック部当接面5を安定させたまま押圧部10を図3のZ軸方向へ移動させることが可能になる。
 線接触が採用されることの全ての実施例で共通する利点は、実施例6で説明するように、より弱い押圧力で測定装置支持面8aを計測対象物の方向に移動できることである。片持ち構造の実施例においては、線接触の利点として、剛性を有する板状体8を採用しても、ブロック部当接面5の全体でブロック部4及び板状体8を支持できるという点が追加される。
 この実施例3においても、ブロック部のブロック部当接面と、ブロック部の上側との距離を調節することで板状体支持高さを任意に調節可能にする構成としては、ネジ機構等、種々の構成を採用することが可能である。
 この実施例3では、ブロック部上端支持部9として、ブロック部4の上側の面で、板状体の一端8cの側から他端8dの側に向かって伸びる方向に直交し計測対象物表面に対して並行して伸びるブロック部上端支持片が採用されている。
 板状体8を線接触により支持するので、ブロック部上端支持部9として、板状体の一端8cの側から他端8dの側に向かって伸びる方向に直交し計測対象物表面に対して並行して伸びる、ブロック部4の上側の上端縁辺を採用することもできる。
 また、点接触による支持にしても線接触による支持と同様の機序を実現できる。
 この場合には、例えば、ブロック部4の上側の面に、板状体8の一端8cの側から他端8dの側に向かって伸びる方向に直交し計測対象物表面に対して並行して伸びる方向に間隔をあけて複数個のブロック部上端支持点を配備し、この複数個のブロック部上端支持点によって、上述した線接触での支持におけるブロック部上端支持部を形成できる。
(実施例4)
 実施の形態1、実施の形態3に対応する実施例の一つを説明する。
 実施例1~実施例3は、いわば、片持ち構造で板状体8を支持するものであった。図16~図21図示の実施例4は、いわば、両持ち構造で板状体8を支持するものである。
 基本的な構成は、図4~図9、実施例1で説明したものと同様であるので、図4~図9、実施例1で説明している構成部材と同一のものについては図16~図21において共通する符号をつけてその説明を省略する。
 図16~図21図示の実施例4では、ブロック部は、ブロック部第一支持部4cと、ブロック部第二支持部4dとによって構成されている。
 ブロック部第一支持部4cは、板状体8の一端8cの側に対応する側に配備されていて、計測対象物における測定位置(眼瞼)の近傍の計測対象物表面に当接するブロック部第一支持部当接面5aを備えている(図17)。
 ブロック部第二支持部4dは、ブロック部第一支持部4cに対して一端8cの側から多端8dの側に向かって伸びる方向に離れて、他端8dの側に対応する側に配備されていて、計測対象物における測定位置(眼瞼)の近傍の計測対象物表面に当接するブロック部第二支持部当接面5bを備えている(図17)。
 板状体8の一端8cの側がブロック部第一支持部4cの上側において支持され、板状体8の他端8dの側がブロック部第二支持部4dの上側において支持されている(図17)。
 このように、ブロック部第一支持部4cと、ブロック部第二支持部4dとの間の空間部に板状体8が掛け渡されることで板状体8が、ブロック部第一支持部4cとブロック部第二支持部4dとによって構成されるブロック部に支持されている(図16、図17)。
 この実施例4の測定補助装置3を測定装置1に組み合わせて使用すると次のようになる。
 なお、ここでは、可撓性を有する部材からなる板状体8が採用されている例で説明する。
 人体の測定位置(眼瞼)の近傍の計測対象物表面にブロック部第一支持部当接面5a、ブロック部第二支持部当接面5bをそれぞれ当接させ、測定装置1の押圧部当接面10aに対向する側1bは板状体8の測定装置支持面8aに当接し、支持されている。
 押圧部当接面10aは眼瞼の表面に当接している。
 この状態で、板状体8の測定位置(眼瞼)に対応する位置に対して、図20と図21に矢印30で示された方向の力が加えられる。
 これにより、可撓性を有する板状体8が図18~図21図示のようにたわむことで測定装置支持面8aが計測対象物(人体)の方向に移動する。
 そこで、測定装置支持面8aに支持されている測定装置1は、押圧部当接面10aを眼瞼の表面に当接させ測定装置支持面8aに支持されている状態で、同じく、矢印30で示す計測対象物の方向に移動する。これにより、測定装置1が備えている押圧部10も、押圧部当接面10aを眼瞼の表面に当接させたまま計測対象物の方向に移動する。
 測定装置1及び押圧部10に加えられる図3のY軸及びX軸方向への力が最小化され、加えられる力のほとんどがZ軸方向への力になるメカニズムは実施例1で説明したものと同様である。
 この実施例4は、ブロック部第一支持部4cとブロック部第二支持部4dとによる両持ち構造で板状体8を支持するため、図3のZ軸方向へ測定装置1が移動するときの回転が最小化される点で有利である。後述する両持ち構造の別の実施例でもこの利点は共通である。
 図10を用いた実施例2で説明したように、図16~図21図示の実施例4においても、ブロック部第一支持部4c、ブロック部第二支持部4dを、複数個の単位ブロックが積層されてなる構造にしたり、ネジ機構により板状体支持高さを調節可能である。
 両持ち構造による支持を採用することにより、ブロック部第一支持部4cによって板状体8の一端8cの側が支持される高さと、ブロック部第二支持部4dによって板状体8の他端8dの側が支持される高さとが異なるようにすることもできる。
 これにより、眼圧測定の対象になっている人間の顔の表面の微妙な凹凸状態に対応させて、板状体支持高さを調節するとともに、押圧部10が図3のZ軸方向に押圧されるように板状体8の計測対象物に対する角度を調節できる。こうすることで、上述した課題4、5、及び6が解決する。
 上記では、可撓性を有する部材からなる板状体8が採用されている例で説明した。この実施例4では、板状体8の一端8cの側がブロック部第一支持部4cの上側に面接合で支持され、他端8dの側がブロック部第二支持部4dの上側に面接合で支持されている。そこで、板状体8としてゴムのような弾性を有する部材からなる板状体を採用することもできる。
 この実施例4では、ブロック部第一支持部4cとブロック部第二支持部4dとの間にそれぞれに対して面接合されている板状体8が掛け渡されているだけで、板状体8の他に、ブロック部第一支持部4cとブロック部第二支持部4dとの間の位置関係を固定的に維持する部材は存在していない。
(実施例5)
 実施の形態1、実施の形態3に対応する実施例の一つを説明する。
 図22は、板状体8の両端がそれぞれ計測対象物の方向に移動可能にブロック部に支持されていることで、板状体8に対して矢印30方向で示す押圧力が加えられた時に測定装置支持面8aが計測対象物の方向に移動する実施例を説明するものである。
 図22図示の実施例5は、図16~図21図示の実施例4に対する変更が加えられた実施形態を説明するもので、加えた変更点は、図4~図9の実施例1と図10の実施例2との差分と共通している。
 基本的な構成は、図4~図9、図10、及び図16~図21図示の実施例で説明したものと同様であるので、先の実施例で説明している構成部材と同一のものについては図22において共通する符号をつけてその説明を省略する。
 ブロック部第一支持部4cは、人体における顔2aの測定位置である眼瞼2bの近傍の計測対象物表面2cに当接するブロック部第一支持部当接面5aを備えている下側の単位ブロック4fと、単位ブロック4fの上に積層されている単位ブロック4eとで構成されている。
 ブロック部第二支持部4dは、人体における顔2aの測定位置である眼瞼2bの近傍の計測対象物表面2dに当接するブロック部第二支持部当接面5bを備えている下側の単位ブロック4hと、単位ブロック4hの上に積層されている単位ブロック4gとで構成されている。
 この実施例5の測定補助装置3に採用されている板状体8は、たわまず、曲がらない板、すなわち剛性を有する板である。
 板状体8の一端8cは、バネやガスケットのような弾性材12aを、ブロック4eとの間に介在させる形態でブロック部第一支持部4cに支持されている。
 板状体8の他端8dは、バネやガスケットのような弾性材12bを、ブロック4gとの間に介在させる形態でブロック部第二支持部4dに支持されている。
 上側の単位ブロック4eの測定位置(眼瞼2b)側の上部側壁面にくぼみ部が形成されている。このくぼみ部に、上側に板状体8の一端8c、その下側に弾性材12aが配置される形式で、一端8cがブロック部第一支持部4cに支持されている。上側の単位ブロック4gの測定位置(眼瞼2b)側の上部側壁面にくぼみ部が形成されている。このくぼみ部に、上側に板状体8の他端8d、その下側に弾性材12bが配置される形式で、他端8dがブロック部第二支持部4dに支持されている。
 このように、一端8cが弾性材12aの弾性力によって常に図22において上側方向へ付勢力を受け、他端8dが弾性材12bの弾性力によって常に図22において上側方向へ付勢力を受けることで、板状体8は常に図22において上側方向へ付勢力を受ける形態でブロック部第一支持部4c、ブロック部第二支持部4dに、いわば、両持ち構造で支持されている。
 両持ち構造による支持を採用することにより、この実施例5においても、図3のZ軸方向へ測定装置1が移動するときの回転が最小化される点で有利である。
 図22図示のように、測定位置(眼瞼2b)の近傍の計測対象物表面2c、2dにブロック部第一支持部4cのブロック部第一支持部当接面5a、ブロック部第二支持部4dのブロック部第二支持部当接面5bをそれぞれ当接させる。測定装置1の押圧部当接面10aは眼瞼2bの表面に当接する。押圧部当接面10aに対向する側1bは、測定装置支持面8aで支持されている。そして、板状体8の測定位置(眼瞼2b)に対応する位置に対して矢印30で示す方向の押圧力を加える。
 これにより、剛性を有する板状体8は、矢印30で示す方向、すなわち、計測対象物の方向に移動し、測定装置支持面8aが計測対象物の方向に移動する。
 上述したように、この実施例5では、板状体8の一端8cは、弾性材12aの弾性力によって、常に、図22において上側方向へ付勢力を受ける形態でブロック部第一支持部4cに支持されている。そこで、板状体8が矢印30で示す方向に移動することで、弾性材12aは図22において下側方向へ圧縮力を受け、一端8cの上側は、上側の単位ブロック4eのくぼみ部における下向き壁面から離れるようになる。
 また、板状体8の他端8dは、弾性材12bの弾性力によって、常に、図22において上側方向へ付勢力を受ける形態でブロック部第二支持部4dに支持されている。そこで、板状体8が矢印30で示す方向に移動することで、弾性材12bは図8で下側へ圧縮力を受け、他端8dの上側は、上側の単位ブロック4gのくぼみ部における下向き壁面から離れるようになる。
 そこで、測定装置支持面8aに支持されている測定装置1は、押圧部当接面10aを眼瞼2bの表面に当接させ測定装置支持面8aに支持されている状態で、同じく、矢印30で示す計測対象物の方向に移動する。これにより、測定装置1が備えている押圧部10も、押圧部当接面10aを眼瞼2bの表面に当接させたまま計測対象物の方向に移動する。
 測定装置1及び押圧部10に加えられる図3のY軸及びX軸方向への力が最小化され、加えられる力のほとんどがZ軸方向への力になるメカニズムは実施例1で説明したものと同様である。
 この実施形態においても、板状体8として剛性を有する部材からなるものだけでなく、可撓性を有する部材からなる板状体8を用いても上述したものと同等の作用、機能を発揮させることができる点は実施例2で説明したことと同様である。
 また、板状体支持高さを任意に調節可能であることも実施例2で説明したことと同様である。
(実施例6)
 実施の形態1、実施の形態3に対応する実施例の一つを説明する。
 実施例4(図16~図21)、実施例5(図22)はいずれも両持ち構造の支持形態であった。図23~図29の実施例6も両持ち構造で板状体8を支持するものである。支持形態として実施例3(図11~図14)で説明した線接触が採用されている点で実施例4(図16~図21)、実施例5(図22)とは異なっている。
 また、図23~図29の実施例6では、ブロック部第一支持部4kと、ブロック部第二支持部4nとが、両者の間に存在する空間部を囲んで板状体8が伸びる方向に伸びる支持フレーム14によって固定的に支持されている点で実施例4(図16~図21)、実施例5(図22)とは異なっている。
 基本的な構成は、図11~図14、図16~図21、及び図22図示の実施例で説明したものと同様であるので、先の実施例で説明している構成部材と同一のものについては図23~図29において共通する符号をつけてその説明を省略する。
 ブロック部第一支持部4kは、人体における顔2aの測定位置である眼瞼2bの近傍の計測対象物表面2cに当接するブロック部第一支持部当接面5aを備えている下側の単位ブロック4jと、単位ブロック4jの上に積層されている単位ブロック4iとで構成されている。
 ブロック部第二支持部4nは、人体における顔2aの測定位置である眼瞼2bの近傍の計測対象物表面2dに当接するブロック部第二支持部当接面5bを備えている下側の単位ブロック4mと、単位ブロック4mの上に積層されている単位ブロック4lとで構成されている。
 この実施例6の測定補助装置3に採用されている板状体8は可撓性を有する板である。
 線接触での支持形態を説明した実施例3(図11~図14)と同様に、上側の単位ブロック4iはその上端側にブロック部上端支持部9cを備えている(図24)。単位ブロック4iが備えているブロック部上端支持部は、計測対象物における測定位置が存在する側(図24の左側)における単位ブロック4iの上側に形成されている縁辺で、板状体8の一端8cの側から他端8dの側に向かって伸びる方向に直交して伸び、なおかつ、計測対象物表面に対して並行して伸びている縁辺である。
 また、上側の単位ブロック4lはその上端側にブロック部上端支持部9dを備えている(図24)。単位ブロック4lが備えているブロック部上端支持部は、計測対象物における測定位置が存在する側(図24の右側)における単位ブロック4lの上側に形成されている縁辺で、板状体8の一端8cの側から他端8dの側に向かって伸びる方向に直交して伸び、なおかつ、計測対象物表面に対して並行して伸びている縁辺である。
 板状体8の一端8cの側は、単位ブロック4iの上述したブロック部上端支持部9cに線接触で支持されることで単位ブロック4i(すなわち、ブロック部第一支持部4k)に支持され、板状体8の一端8dの側は、単位ブロック4lの上述したブロック部上端支持部9dに線接触で支持されていることで、単位ブロック4l(すなわち、ブロック部第二支持部4n)に支持されている。
 人体2の測定位置(人体の眼瞼)の近傍の計測対象物(人体)表面に対して平行になっている単位ブロック4iの上側面及び、単位ブロック4lの上側面で、計測対象物(人体)表面の上を測定位置(人体の眼瞼)の計測対象物(人体)表面に対して平行に伸びている板状体8の一端8cの側及び、他端8dの側が、単位ブロック4iのブロック部上端支持部9c及び単位ブロック4lのブロック部上端支持部9dに、それぞれ、線接触で支持されている。そして、ブロック部第一支持部4kと、ブロック部第二支持部4nとの間の空間部に板状体8が掛け渡されることで板状体8が、ブロック部第一支持部4kとブロック部第二支持部4nとで構成されるブロック部に支持されている構造である(図23、図24)。
 図23~図29図示の実施形態では、単位ブロック4iの上述したブロック部上端支持部9cに板状体支持体13aが配備されていて、板状体8の一端8cの側は、単位ブロック4iのブロック部上端支持部9cと板状体支持体13aとの間に挟持されている。また、単位ブロック4lの上述したブロック部上端支持部9dに板状体支持体13bが配備されていて、板状体8の他端8dの側は、単位ブロック4lのブロック部上端支持部9dと板状体支持体13bとの間に挟持されている(図24、図26、図28)。
 板状体支持体13a、13bとしてゴム紐など、弾性を有する紐状体を採用できること、これによって発揮される効果は実施例3(図11~図14)で説明したものと同様である。
 また、図示していないが、実施例3で説明した板状体8を線接触や点接触で支持する時の支持を安定的なものにするための構造をこの実施例でも採用することができる。
 この実施例6の測定補助装置3では、ブロック部第一支持部4kと、ブロック部第二支持部4nとが、ブロック部第一支持部4kとブロック部第二支持部4nとの間に存在している空間部を囲んで板状体8が伸びる方向に伸びる支持フレーム14によって固定的に支持されている。図23~図29図示の実施例6では、支持フレーム14はブロック部第一支持部4kとブロック部第二支持部4nとの間に存在している空間部を囲んで板状体8が伸びる方向に伸びる支持フレーム体14a、14bを備えている。
 ブロック部第一支持部4kを構成する単位ブロック4iと、ブロック部第二支持部4nを構成する単位ブロック4lとの間に、ブロック部第一支持部4kとブロック部第二支持部4nとの間に存在している空間部を囲んで支持フレーム体14a、14bが伸びていて、板状体8の一端8cの側の支持フレーム体14a、14bの端部が単位ブロック4iに固定され、板状体8の他端8dの側の支持フレーム体14a、14bの端部が単位ブロック4lに固定されている。
 この実施例6においても、板状体支持高さを任意に調節可能であることも実施例1、実施例2等で説明したことと同様である。
 両持ち構造を採用することにより、ブロック部第一支持部4kによって板状体8の一端8cの側が支持される高さを、ブロック部第二支持部4nによって板状体8の他端8dの側が支持される高をそれぞれ調節し、板状体支持高さを調節するとともに、押圧部10が図3のZ軸方向に押圧されるように板状体8の計測対象物に対する角度を調節できる。こうすることで、上述した課題4、5、及び6が解決する。さらに、両持ち構造を採用することで、支持フレーム14を設置することが可能になる。
 計測対象物における測定位置(眼瞼)の近傍の計測対象物表面に当接するブロック部第一支持部当接面5aを有するブロック部第一支持部4kと、ブロック部第一支持部4kに対して板状体8の一端8cの側から他端8dの側に向かって伸びる方向に離れていて、計測対象物における測定位置(眼瞼)の近傍の計測対象物表面に当接するブロック部第二支持部当接面5bを有するブロック部第二支持部4nとが、支持フレーム14によって固定的に支持されていることで、ブロック部第一支持部当接面5aと、ブロック部第二支持部当接面5bとが、計測対象物における測定位置(眼瞼)の近傍の計測対象物表面に当接する状態をより確実にできる。
 また、支持フレーム14によって、ブロック部第一支持部当接面5aとブロック部第二支持部当接面5bとの相対的な位置、及び、板状体支持高さと角度は毎回の測定において一定になるため、押圧開始時刻に押圧部当接面10aが計測対象物へ当接する強さを毎回の測定において一定にすることが、実施の形態3に記載した理由により、さらに容易なり、上述した課題6をより容易に解決できる。
実施例6(図23~図29)図示の測定補助装置3は次のように使用される。
 実施例1(図4~図9)、実施例3(図11~図14)で説明したように、測定位置(眼瞼)の近傍の計測対象物表面にブロック部当接面5a、5bを当接させる。押圧部当接面10aは眼瞼の表面に当接させる。押圧部当接面10aに対向する側1bは測定装置支持面8aで支持されている。そして、板状体8の測定位置(眼瞼)に対応する位置に対して図25、図26に矢印30で示す方向の押圧力を加える。
 可撓性を有する部材からなる板状体8が採用されていることから、矢印30で示す方向の押圧力を受けた板状体8はたわみ、これによって、測定装置支持面8aが計測対象物(人体)の方向に移動する(図27、図28)。
 なお、上述したように線接触で支持されていることから、この際に、板状体8の一端8cが、単位ブロック4iのブロック部上端支持部9cを支点として、シーソーのように、単位ブロック4iの上側から離れるようになり、板状体8の他端8dも、単位ブロック4lのブロック部上端支持部9dを支点として、シーソーのように、単位ブロック4lの上側から離れるようになる(図26、図28)。このとき、もし、シーソーのような動きを妨げるように、例えば面接合により板状体8の一端8c(及び/又は他端8d)が単位ブロック4i(及び/又は4l)から離れないような力が加わると、ブロック部上端支持部9c(及び/又は9d)を支点として、測定装置支持面8aには矢印30の逆向きに力がかかり、板状体8のたわみは妨げられる。そこで、線接触で支持することにより、面接合の場合よりも弱い押圧力で測定装置支持面8aを計測対象物(人体)の方向に移動させることができる。そのため押圧中においても、押圧力によるズレを発生させずに、ブロック部第一支持部当接面5aとブロック部第二支持部当接面5bとが、計測対象物における測定位置(眼瞼)の近傍の計測対象物表面に安定して当接する状態を維持できる。
 なお、図29図示のように、ブロック部上端支持部9eとしてのブロック部上端支持片にゴム素材等を採用し、板状体8の一端8dをブロック部上端支持片の側面で支持することにより、線接触(ブロック部上端支持片の形状次第では点接触)を構成することも可能である。この場合、シーソーのような動きにはならないが、効果は同様に、可撓性を有する板状体8のたわみが妨げられず、弱い押圧力での測定が可能になることである。
 可撓性を有する板状体8のたわみ剛性が温度特性や経年劣化により変化しても、測定装置1による測定に影響はない。たわみ剛性の選択の自由度は大きいが、両持ち構造であれば、例えば、長さ(80mm)×幅(20mm)×厚み(0.5mm)の大きさの合成樹脂製の板を、可撓性を有する板状体8として採用できる。
 そこで、測定装置支持面8aに支持されている測定装置1は、押圧部当接面10aを眼瞼の表面に当接させ測定装置支持面8aに支持されている状態で、同じく、矢印30で示す計測対象物の方向に移動する。これにより、測定装置1が備えている押圧部10も、押圧部当接面10aを眼瞼の表面に当接させたまま計測対象物の方向に移動する。
 測定装置1及び押圧部10に加えられる図3のY軸及びX軸方向への力が最小化され、加えられる力のほとんどがZ軸方向への力になるメカニズムは実施例1で説明したものと同様である。
 両持ち支持を採用することにより、この実施例6においても、図3のZ軸方向へ測定装置1が移動するときの回転を最小化する点で有利である。
(実施例7)
 実施の形態1、実施の形態3に対応する実施例の一つを説明する。
 図30~図33図示の実施例7は、図23~図29図示の実施例6と同様に、両持ち構造で板状体8を支持するものである。
 この実施例7の測定補助装置3に採用されている板状体8も、図23~図29図示の実施例6と同様に可撓性を有する板である。
 板状体8を支持する形態として一方の側(図31の右側)では実施例1(図4~図9)で説明した面接合が、他方の側(図31の左側)では実施例3(図11~図14)で説明した線接触が採用されている点で実施例6(図23~図29)とは異なっている。
 基本的な構成は、図4~図9、図11~図14、図23~図29図示の実施例で説明したものと同様であるので、先の実施例で説明している構成部材と同一のものについては図30~図33において共通する符号をつけてその説明を省略する。
 ブロック部第一支持部4qは、人体における顔2aの測定位置である眼瞼2bの近傍の計測対象物表面2cに当接するブロック部第一支持部当接面5aを備えている下側の単位ブロック4oと、単位ブロック4oの上に配置されている単位ブロック4pとで構成されている(図30、図31)。
 ブロック部第二支持部4tは、人体における顔2aの測定位置である眼瞼2bの近傍の計測対象物表面2dに当接するブロック部第二支持部当接面5bを備えている下側の単位ブロック4rと、単位ブロック4rの上に配置されている単位ブロック4sとで構成されている(図30、図31)。
 単位ブロック4pはスライド溝15aを、単位ブロック4oはスライド溝15a内を挿通可能な大きさのスライド部16aを備えている(図31)。図示の実施形態では、スライド溝15aは板状体8に直交する方向に伸びる溝である。
 単位ブロック4sはスライド溝15bを、単位ブロック4rはスライド溝15b内を挿通可能な大きさのスライド部16bを備えている(図31)。図示の実施形態では、スライド溝15bは板状体8に直交する方向に伸びる溝である。
 図31、図32中で図面の右側になる、板状体8の一端の側は、実施例1(図4~図9)で説明したように、計測対象物表面2cに対して平行に延びている単位ブロック4pの上側面に面接合で支持されている。
 図31、図32中で図面の左側になる、板状体8の他端8dの側は、実施例3(図11~図14)で説明したように、計測対象物表面2cに対して平行に延びている単位ブロック4sの上側面に線接触で支持されている。
 図31、図32中で図面の右側になる、板状体8の一端の側の上側から、雄ネジ17aが、板状体8の一端の側と、単位ブロック4pとを貫通して下側の単位ブロック4oまで伸びている(図32)。
 図31、図32中で図面の左側になる、板状体8の他端8dの側では、上側から、雄ネジ17bが、単位ブロック4sを貫通して下側の単位ブロック4rまで伸びている(図32)。
 雄ネジ17aのネジ溝18aに治具を装入して雄ネジ17aを所定の方向に回転させることで単位ブロック4pと単位ブロック4oとの距離を狭めたり、広げたりできる。
 同様に、雄ネジ17bのネジ溝18bに治具を装入して雄ネジ17bを所定の方向に回転させることで単位ブロック4sと単位ブロック4rとの距離を狭めたり、広げたりできる。
 例えば、雄ネジ17aを所定の方向に回転させることで単位ブロック4pと単位ブロック4oとの距離を狭めると、スライド部16aがスライド溝15aを通って単位ブロック4pの上側に突き出るようになる(図31、図32)。
 一方、雄ネジ17bを所定の方向に回転させることで単位ブロック4sと単位ブロック4rとの距離を広げると、図32、図31図示のように、スライド溝15bにはスライド部16bの上端が見えない状態になる。
 上下方向に複数個積層されている単位ブロック同士の間の上下方向の距離を調節する機構、等によって、板状体支持高さを調節する機構として本実施例では、このようなネジ機構によるものが採用されている。
 実施例1~6でも、それぞれの実施例で説明した板状体支持高さを調節する機構に替えて、この実施例で説明しているネジ機構による板状体支持高さ調節機構を採用できる。
 この実施例7の測定補助装置3では、ブロック部第一支持部4qと、ブロック部第二支持部4tとが、ブロック部第一支持部4qとブロック部第二支持部4tとの間に存在している空間部を囲んで板状体8が伸びる方向に伸びる支持フレーム14によって固定的に支持されている。図30~図33図示のように、支持フレーム14はブロック部第一支持部4qとブロック部第二支持部4tとの間に存在している空間部を囲んで板状体8が伸びる方向に伸びる支持フレーム体14a、14bを備えている。
 ブロック部第一支持部4qを構成する単位ブロック4pと、ブロック部第二支持部4tを構成する単位ブロック4sとの間に、ブロック部第一支持部4qとブロック部第二支持部4tとの間に存在している空間部を囲んで支持フレーム体14a、14bが伸びていて、板状体8の一端8cの側の支持フレーム体14a、14bの端部が単位ブロック4pに固定され、板状体8の他端8dの側の支持フレーム体14a、14bの端部が単位ブロック4sに固定されている。
 支持フレーム14が存在するため、ブロック部第一支持部4qによって板状体8の一端8cの側が支持される高さを、ブロック部第二支持部4tによって板状体8の他端8dの側が支持される高をそれぞれ調節し、板状体支持高さを調節するとともに、押圧部10が図3のZ軸方向に押圧されるように板状体8の計測対象物に対する角度を調節できる。こうすることで、上述した課題4、5、及び6が解決する。両持ち構造は支持フレーム14を設置することを可能にする。
 計測対象物における測定位置(眼瞼)の近傍の計測対象物表面に当接するブロック部第一支持部当接面5aを有するブロック部第一支持部4qと、ブロック部第一支持部4qに対して、板状体8の一端8cの側から他端8dの側に向かって伸びる方向に離れていて、計測対象物における測定位置(眼瞼)の近傍の計測対象物表面に当接するブロック部第二支持部当接面5bを有するブロック部第二支持部4tとが、支持フレーム14によって固定的に支持されていることで、ブロック部第一支持部当接面5aと、ブロック部第二支持部当接面5bとが、計測対象物における測定位置(眼瞼)の近傍の計測対象物表面に当接する状態をより確実にできる。
 また、支持フレーム14によって、ブロック部第一支持部当接面5aとブロック部第二支持部当接面5bとの相対的な位置、及び、板状体支持高さと角度は毎回の測定において一定になるため、押圧開始時刻に押圧部当接面10aが計測対象物へ当接する強さを毎回の測定において一定にすることがさらに容易なり、上述した課題6をより容易に解決できる。
 この実施例7(図30~図33)の測定補助装置3は次のように使用される。
 実施例1(図4~図9)、実施例3(図11~図14)で説明したように、人体の測定位置(眼瞼)の近傍の計測対象物表面にブロック部当接面5a、5bを当接させる。測定装置1の押圧部当接面10aは眼瞼の表面に当接する。押圧部当接面10aに対向する側1bは、測定装置支持面8aで支持されている。そして、板状体8の測定位置(眼瞼)に対応する位置に対して図31、図32に矢印30で示す方向の押圧力を加える。
 可撓性を有する部材からなる板状体8が採用されていることから、矢印30で示す方向の押圧力を受けた板状体8はたわみ、これによって、測定装置支持面8aが計測対象物(人体)の方向に移動する。
 板状体8は、図31の右側では面接合で単位ブロック4pに支持されているが、図31の左側では実施例3(図11~図14)で説明した線接触で単位ブロック4sに支持されている。
 線接触の利点は、実施例6で説明したことと同じである。板状体8の片側を面接合にするこの実施例7の利点は、例えば板状体支持体13bとしてゴム紐を採用する場合に板状体8が測定補助装置3から抜け落ちないことである。板状体を支持する方法が板状体8の一端8cの側と他端8dの側とで異なると、板状体8のたわみ剛性が非対称になるため、押圧により移動する測定装置1には回転が含まれることになる。しかし、押圧する板状体8上の位置を線接触部分と面接合部分との中央ではなく、面接合の側に近い位置にすることにより、回転を防ぐことができる。
 人間の額の形状に対応させて、ブロック部第一支持部当接面5aの角度が調節された単位ブロック4oを用いてもよい。こうすることで、押圧前には計測対象物に対する板状体8の角度を適切に設定することができ、押圧中においては適切な板状体8の角度を維持しつつブロック部第一支持部当接面5aとブロック部第二支持部当接面5bとが、計測対象物における測定位置(眼瞼)の近傍の計測対象物表面に安定して当接する状態を維持できる。
 人間の額の外側と内側の段差に対応するように、ブロック部第一支持部当接面5aを平面にするのではなく段差を設けることにより、上述した安定して当接する状態を実現してもよい。
単位ブロック4oに、ネジ構造によるブロック部第一支持部当接面5aの角度又は段差高さ調節機構を設けてもよい。
 眼圧を測定する場合、ブロック部第一支持部4q及び/又は単位ブロック4oを取り付け・取り外し可能な構造や回転可能な構造にし、180度回転すれば、1組の測定補助装置3と測定装置1を左右の目に使用できる。額の角度が左右対称でない場合、形状の異なる2種類の単位ブロック4oを用いて左右の目の眼圧を測定してもよい。
 上述したように、測定装置支持面8aが計測対象物の方向に移動することで、測定装置支持面8aに支持されている測定装置1は、押圧部当接面10aを眼瞼2bの表面に当接させ、測定装置支持面8aに支持されている状態で、同じく、矢印30で示す計測対象物の方向に移動する。これにより、測定装置1が備えている押圧部10も、押圧部当接面10aを眼瞼2bの表面に当接させたまま計測対象物の方向に移動する。
 測定装置1及び押圧部10に加えられる図3のY軸及びX軸方向への力が最小化され、加えられる力のほとんどがZ軸方向への力になるメカニズムは実施例1で説明したものと同様である。
 両持ち支持を採用することにより、この実施例7においても、図3のZ軸方向へ測定装置1が移動するときの回転が最小化される点で有利である。
 この実施例7(図30~図33)の測定補助装置3は、上述した板状体8の測定装置支持面8aが計測対象物の方向に過度に移動することがないようにするストッパ機構が設けられている。
 図30~図33図示の実施例では、板状体8を線接触で支持する単位ブロック4sから、ブロック部第一支持部4qとブロック部第二支持部4tとの間の空間部に向かって突出するストッパ27が採用されている。ストッパ27はネジ構造になっていて、ブロック単体4sから、ブロック部第一支持部4qとブロック部第二支持部4tとの間の空間部に向かって突出する大きさを調整可能になっている。
 矢印30で示す方向の押圧力を受けて、板状体8の測定装置支持面8aが計測対象物の方向に移動する際に、ストッパ27に接触するとそこで移動を停止させることができる。これによって、眼圧を測定する際に、眼瞼の方向への押圧が大きくなりすぎることを防止できる。
 ストッパ27に接触するものは、押圧により移動するものであればよく、例えば、測定装置1に接触してもよい。ストッパ27を設置する場所は、押圧により移動しない測定補助装置3に含まれる部位であればどこでもよく、例えば、支持フレーム14に設置してもよい。
 測定に必要な適切な押圧距離でストッパが機能するようにして、ストッパが機能するまで押圧するように操作することもできる。
 上述した実施例1~実施例6でも板状体8を支持しているブロック部にこのようなストッパ機構を採用することが可能である。
  図33は図31の測定補助装置3における板状体8の表面に緩衝材28が配備されたものである。緩衝材28は、板状体8の押圧位置に両面テープ等で接着できる。例えば、ウレタン製のスポンジから成る長さ(10mm)×幅(10mm)×厚み(5mm)の大きさの直方体を緩衝材28として採用できる。
指が緩衝材に軽く触れた状態から押圧する場合は、押圧開始直後における緩衝材だけがわずかに圧縮されていて反発力が非常に弱い区間を遊びとして使用できる。遊び区間を過ぎるころには、指の震えが無視できる加速度が指に発生し、板状体8のたわみが開始し、押圧部当接面10aが反発力を受け始める。
緩衝材が衝撃を十分に減衰できる範囲であれば、緩衝材から指が離れた位置から押圧してもよい。この場合、加速度の上昇が速くなるため、また、指の震えによる加速度のノイズが無視できることで積分を開始するべき時刻の判断が容易になるため、積分計算にとって有利である。このように、緩衝材28は、上述した課題1、2、3、及び6をさらに改善し、課題7を解決する。また、緩衝材により、緩衝材または板状体から指が離れた状態からの押圧を可能にすることは、人間にとっての操作性が向上するだけでなく、人間の手や指でなくモーター駆動やカム等の機械装置で押圧する場合の衝撃緩和にも有効である。なお、機械装置で押圧する場合でも、押圧補助装置3と組み合わせれば、課題4、5、及び6を解決することが容易になる。
 緩衝材28の位置を押圧するべき板状体8の位置とする目印にすることができる。上述したように、可撓性の板の片側が面接合、片側が線接触または点接触でブロックに支持される場合、板状体8のたわみが非対称なることを考慮して、面接合に近い側に緩衝材28を貼り付ければ、使用者が緩衝材28の位置を毎回確実に押圧できるため、回転の少ない押圧が毎回可能になる。
 上述した実施例1~実施例6でも板状体8の表面に緩衝材28が配備された構成を採用することで上述した機序が発揮される測定補助装置にすることができる。
(実施例8)
 実施の形態1、実施の形態3、実施の形態5に対応する実施例、より具体的には、実施の形態5に対応する実施例の一つを説明する。
 図34~図38図示の実施例8は、図30~図33図示の実施例7で説明した両持ち構造で板状体8を支持する測定補助装置が、計測対象物における測定位置の近傍の計測対象物表面に当接する第一ブロック部当接面19aを有する第一ブロック部19の上側に配備されることになる測定補助装置の一例を説明するものである。
 図30~図33図示の実施例7で説明した両持ち構造で板状体8を支持する測定補助装置が第一ブロック部19の上側に配備されているものであるので、先行している実施例で説明している構成部材と同一のものについては図34~図38において共通する符号をつけてその説明を省略する。
 なお、この実施例8におけるネジ機構によって板状体支持高さを任意に調節する機構は次のようになっている。
 単位ブロック4oはスライド溝15a、15bを備えている。スライド溝15a、15bは、板状体8に直交する方向で互いの間に間隔をあけて単位ブロック4oに形成されている。単位ブロック4pはスライド溝15a、15b内を挿通可能な大きさのスライド部16a、16bを備えている(図38)。
 単位ブロック4rはスライド溝15c、15dを備えている。スライド溝15c、15dは、板状体8に直交する方向で互いの間に間隔をあけて単位ブロック4rに形成されている。単位ブロック4sはスライド溝15c、15d内を挿通可能な大きさのスライド部16c、16dを備えている(図38)。
 図36中で図面の右側になる、板状体8の一端8cの側は、単位ブロック4pの上側面に面接合で支持されている。
 図36中で図面の左側になる、板状体8の他端8dの側は、単位ブロック4sの上側面に線接触で支持されている。
 図36中で図面の右側になる、板状体8の一端8cの側の上側から、雄ネジ17aが、板状体8の一端8cの側と、単位ブロック4pとを貫通して下側の単位ブロック4oまで伸びている。
 図36中で図面の左側になる、板状体8の他端8dの側では、上側から、雄ネジ17bが、単位ブロック4sを貫通して下側の単位ブロック4rまで伸びている。
 雄ネジ17aのネジ溝18aに治具を装入して雄ネジ17aを所定の方向に回転させることで単位ブロック4pと単位ブロック4oとの距離を狭めたり、広げたりできる。
 同様に、雄ネジ17bのネジ溝18bに治具を装入して雄ネジ17bを所定の方向に回転させることで単位ブロック4sと単位ブロック4rとの距離を狭めたり、広げたりできる。
 このような機構は実施例7で説明したものと同様である。
 第一ブロック部19は、測定位置(眼瞼)の周囲を取り囲むことができる筒状で、計測対象物表面(すなわち、顔の表面)に向かう側の端縁に第一ブロック部当接面19aを備えている。
 計測対象物表面(すなわち、人間の顔の表面)に適切に当接できる構造になっている第一ブロック部当接面19aを備えている第一ブロック部19の上に、第二ブロック部を形成することになる図30~図33図示の実施例7で説明した両持ち構造で板状体8を支持する構造体が安定的に支持されることで、より適切な測定を行うことができるようにするものである。
 第一ブロック部19は第一ブロック部当接面19aに対向する側(すなわち、図37、図38の上側)にフレーム支持部21を備えている。フレーム支持部21には、図30~図33図示の実施例7で説明した両持ち構造で板状体8を支持する構造体における支持フレーム体14a、14bに対応して板状体8が伸びる方向に伸びるフレーム支持部21a、21bが、第一ブロック部当接面19aに対向する側で第一ブロック部19に取り付けられて形成されている。
 フレーム支持部21aは、板状体8の一端8cの側及び、他端8dの側で、板状体8が伸びる方向に伸びているスライド溝22a、22cを備えている。
 フレーム支持部21bは、板状体8の一端8cの側及び、他端8dの側で、板状体8が伸びる方向に伸びているスライド溝22b、22dを備えている。
 支持フレーム体14a、14bの両端がそれぞれ固定される単位ブロック4o、4rには、それぞれ、フレーム支持部21aに直交してフレーム支持部21bへ向かう方向に貫通孔23a、23bが形成されている。
 フレーム支持部21bのスライド溝22b、単位ブロック4oの貫通孔23aを貫通するように固定ボルト24aを差し込み、フレーム支持部21aのスライド溝22aから突出した固定ボルト24aの先端側に固定ナット25aを螺合させてフレーム支持部21と単位ブロック4oとを固定する。
 同様に、支持フレーム体21bのスライド溝22d、単位ブロック4rの貫通孔23bを貫通するように固定ボルト24bを差し込み、支持フレーム体21bのスライド溝22cから突出した固定ボルト24bの先端側に固定ナット25bを螺合させてフレーム支持部21と単位ブロック4rとを固定する。
 このようにすることで、図30~図33図示の実施例7で説明した両持ち構造で板状体8を支持する構造体を、第一ブロック部19の上側に安定的に配備できる。
 図30~図33図示の実施例7で説明した両持ち構造で板状体8を支持する構造体は上述したようにして第一ブロック部19の上側に配備されることから、固定ボルト24aの先端側と固定ナット25aとの間の結合状態、及び固定ボルト24bの先端側と固定ナット25bとの間の結合状態を緩めて、実施例7で説明した両持ち構造で板状体8を支持する構造体を、第一ブロック部19に対して板状体8が伸びる方向で図37の左右方向へスライド移動させることが可能である。
 図示していないが、積み重ねるフレーム支持部を増やし、スライド構造を追加すれば異なる方向へのスライド移動が可能になる。
 図34~図37の測定装置を板状体8の伸びる方向が人間の左右の目の方向(図3におけるX軸方向)になるように使用するとき、板状体8の角度は、雄ネジ17a、17bによる板状体8の一端8cの側及び、他端8dの側の支持高さを調節することにより、Y軸まわりに調節できる。
 X軸まわりの角度を調節したい場合は、積み重ねるブロックを増やして角度調節機構を設置する、または、単位ブロック4sを分割しそれぞれの部分にネジ機構による高さ調節機構を設置し、二点による点接触による板状体8の支持を行い、単位ブロック4pも4s側と同様の構成にする等の方法が挙げられる。
 形状の異なる複数の第一ブロック部19を準備しておいて、各被測定者の顔の形状に適したものを選択して測定補助装置3を組み立てることで板状体8の角度を調節してもよい。選択される第一ブロック部19の形状によりXYZいずれの軸まわりの板状体8の角度でも調節できる。第一ブロック部19を熱成形等の方法によるカスタム形状にしてもよい。
 実施例6と実施例7の構成では、支持フレームの効果は、実施例6で説明したように、ブロック部当接面が計測対象物表面に当接する状態をより確実にすることと、上述した課題6をより容易に解決することであった。
 この実施例8では、前者のブロック部当接面が計測対象物表面に当接する状態をより確実することは、フレーム支持部21が取り付けられた第一ブロック部19および第一ブロック部当接面19aによって実現される。
 この実施例8における支持フレーム体14a、14bの役割は、第一ブロック部19の上に第二ブロック部を形成することを可能にするため、および上記スライド移動をしたときに単位ブロック4pと4sとの距離を保つことである。
 その他の基本的な機能は上述してきた実施例と共通しているので説明を省略する。

Claims (18)

  1.  計測対象物の内部圧力又は剛性を測定する測定装置と共に使用される前記測定装置用の測定補助装置であって、
     前記測定装置は、前記計測対象物における前記内部圧力又は前記剛性の測定が行われる測定位置の計測対象物表面に当接する押圧部当接面を備えていて前記内部圧力又は前記剛性の測定が行われる際に、前記測定装置が前記計測対象物の方向に移動することに応じて、前記計測対象物の方向に移動する押圧部を備えており、
     前記測定補助装置は、
      前記計測対象物における前記測定位置の近傍の前記計測対象物表面に当接するブロック部当接面を有するブロック部と、
     一端側である第一端の側が、前記ブロック部の前記ブロック部当接面に対向する側である前記ブロック部の上側において前記ブロック部に支持され、
     他端側である第二端の側が、前記計測対象物表面の上側を前記測定位置の上側に向かって伸びる
     板状体であって、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びる方向で所定の大きさの横幅を有する板状体とを備えていて、
     前記板状体の前記測定位置に対応する位置の前記計測対象物表面に面する側が、前記測定装置における前記押圧部の前記押圧部当接面に対向する側を支持する測定装置支持面を構成し、
     前記板状体は、前記測定装置支持面が前記計測対象物表面の方向に移動できるように前記ブロック部に支持されている
     測定補助装置。
  2.  前記板状体の前記第一端の側が、前記計測対象物表面の方向に移動できるように、前記ブロック部に支持されていることで、前記板状体の前記測定装置支持面が前記計測対象物表面の方向に移動できる請求項1記載の測定補助装置。
  3.  前記板状体の前記第一端の側は、前記ブロック部の前記上側に対して面接合で支持されている請求項1又は2記載の測定補助装置。
  4.  前記板状体の前記第一端の側と前記ブロック部との間に弾性部材が介在していることで前記板状体の前記第一端の側が、前記計測対象物表面の方向に移動可能に前記ブロック部に支持されている請求項2又は3記載の測定補助装置。
  5.  前記板状体の前記第一端の側は、前記ブロック部の前記上側で、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びるブロック部上端支持部に線接触で支持されている請求項1記載の測定補助装置。
  6.  前記板状体の前記第一端の側は、前記ブロック部の前記上側の面に配備されているブロック部上端支持点で支持される点接触での支持である請求項1記載の測定補助装置。
  7.  前記ブロック部上端支持点は、前記第一端の側から前記第二端の側に向かって伸びる方向に直交し前記計測対象物表面に対して並行して伸びる方向に間隔をあけて前記ブロック部の前記上側の面に複数個配備されている請求項6記載の測定補助装置。
  8.  前記ブロック部上端支持部には板状体支持体が配備されており、前記板状体の前記第一端の側は、前記ブロック部上端支持部と、前記板状体支持体との間に挟持される請求項5、6、7のいずれか一項に記載の測定補助装置。
  9.  前記板状体支持体は弾性部材からなる請求項8記載の測定補助装置。
  10.  前記板状体は、前記第一端の側で前記第一端の近傍に前記板状体を上下方向に貫通する板状体支持孔を備えており、
     前記ブロック部は、前記板状体支持孔に挿入されるように前記ブロック部から上側方向に向かって延びる板状体支持支柱を備えている、あるいは、
     前記ブロック部の上側に板状体支持支柱支持体が配備されていて、前記板状体支持支柱支持体から前記板状体支持支柱が下側方向に向かって延びて前記板状体支持孔に挿入される
     請求項5又は6記載の測定補助装置。
  11.  前記板状体は可撓性を有する請求項1乃至請求項10のいずれか一項に記載の測定補助装置。
  12.  前記板状体は弾性を有する請求項1乃至請求項10のいずれか一項に記載の測定補助装置。
  13.  前記ブロック部の前記ブロック部当接面と、前記上側との距離に相当する板状体支持高さを調節する機構が前記ブロック部に配備されている請求項1~請求項12のいずれか一項に記載の測定補助装置。
  14.  前記ブロック部は、上下方向に複数個積層されている単位ブロックから構成されており、前記単位ブロックの数を増やす、あるいは減らすことで板状体支持高さを調節する前記機構が構成されている請求項13記載の測定補助装置。
  15.  前記ブロック部は、前記第一端の側に対応する側に配備されていて、前記計測対象物における前記測定位置の近傍の前記計測対象物表面に当接するブロック部第一支持部当接面を有するブロック部第一支持部からなり、
     前記板状体の前記第一端の側は、前記ブロック部第一支持部の前記上側において支持されることで前記ブロック部に支持され、
     前記板状体の前記第二端の側は、空中に浮いている
     請求項1記載の測定補助装置。
  16.  前記ブロック部は、
      前記第一端の側に対応する側に配備されていて、前記計測対象物における前記測定位置の近傍の前記計測対象物表面に当接するブロック部第一支持部当接面を有するブロック部第一支持部と、
      前記ブロック部第一支持部に対して前記第一端の側から前記第二端の側に向かって伸びる方向に離れて、前記第二端の側に対応する側に配備されていて、前記計測対象物における前記測定位置の近傍の前記計測対象物表面に当接するブロック部第二支持部当接面を有するブロック部第二支持部と、
     からなり、
      前記板状体の前記第一端の側が、前記ブロック部第一支持部の前記上側において支持され、
      前記板状体の前記第二端の側が、前記ブロック部第二支持部の前記上側において支持され
     ることで前記ブロック部第一支持部と、前記ブロック部第二支持部との間の空間部に前記板状体が掛け渡されることで前記板状体が、前記ブロック部に支持される
     請求項1記載の測定補助装置。
  17.  前記ブロック部は、前記計測対象物における前記測定位置の近傍の前記計測対象物表面に当接する第一ブロック部当接面を有する第一ブロック部と、前記第一ブロック部の前記第一ブロック部当接面に対向する側である前記第一ブロック部の上側に配備される第二ブロック部とを備えていて、
     前記板状体の前記一端の側は、前記第二ブロック部の前記上側おいて前記第二ブロック部に支持されている
     請求項1記載の測定補助装置。
  18.  前記ブロック部は、前記計測対象物における前記測定位置の近傍の前記計測対象物表面に当接する第一ブロック部当接面を有する第一ブロック部と、前記第一ブロック部の前記第一ブロック部当接面に対向する側である前記第一ブロック部の上側に配備される第二ブロック部とを備えていて、
     前記第二ブロック部は、
      前記第一端の側に対応する側で前記第一ブロック部の前記上側に配備される第二ブロック部第一支持部と、
      前記第二ブロック部第一支持部に対して前記第一端の側から前記第二端の側に向かって伸びる方向に離れて、前記第二端の側に対応する側で前記第一ブロック部の前記上側に配備される第二ブロック部第二支持部と
     からなり、
      前記板状体の前記第一端の側が、前記第二ブロック部第一支持部の前記上側において支持され、
      前記板状体の前記第二端の側が、前記第二ブロック部第二支持部の前記上側において支持され
     ることで前記第二ブロック部第一支持部と、前記第二ブロック部第二支持部との間の空間部に前記板状体が掛け渡されることで前記板状体が、前記ブロック部に支持される
     請求項1記載の測定補助装置。
PCT/JP2022/032812 2021-08-31 2022-08-31 計測対象物の内部圧力又は剛性を測定する測定装置用の測定補助装置 WO2023033058A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-141093 2021-08-31
JP2021141093 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023033058A1 true WO2023033058A1 (ja) 2023-03-09

Family

ID=85411357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032812 WO2023033058A1 (ja) 2021-08-31 2022-08-31 計測対象物の内部圧力又は剛性を測定する測定装置用の測定補助装置

Country Status (1)

Country Link
WO (1) WO2023033058A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6783416B1 (ja) * 2018-12-21 2020-11-11 康成 鈴木 計測対象物の内部圧力又は剛性を測定する測定装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6783416B1 (ja) * 2018-12-21 2020-11-11 康成 鈴木 計測対象物の内部圧力又は剛性を測定する測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Ophthalmology Handbook, 4th Edition", 1 June 2005, MEDICAL SCHOOL , JP , ISBN: 4-260-13780-8, article OGUCHI, YOSHIHISA. SAWA, MITSURU. OHTSUKI, HIROSHI. YUZAWA, MITSUKO.: ""C Impression tonometer", "D Applanation tonometer"", pages: 202 - 206, XP009544186 *

Similar Documents

Publication Publication Date Title
US6651352B2 (en) Wrist motion measurement device
KR101902248B1 (ko) 압력 반응형 햅틱 장치
JP4820407B2 (ja) 振動遮断装置
WO2023033058A1 (ja) 計測対象物の内部圧力又は剛性を測定する測定装置用の測定補助装置
US20220079437A1 (en) Measurement device and method for internal pressure or rigidity of measured object
JP2000254888A (ja) 足平センサ及びこれを備えた人間型ロボット
WO2002014807A1 (fr) Balance
WO1997024976A1 (fr) Appareil de detection de signaux emanant d'organes vivants
EP3367377B1 (en) Musical instrument stand
US20100300206A1 (en) Self-Supporting And Self-Aligning Vibration Excitator
US10247628B2 (en) Force measurement mechanism
JP5032031B2 (ja) 接触プローブおよび形状測定装置
JP3961476B2 (ja) 圧脈波センサ及び圧脈波計測装置
Choi et al. Design of a variable compliant humanoid foot with a new toe mechanism
JP2746356B2 (ja) 床反力計
EP2634665A2 (en) Input device
US7242540B1 (en) Axis-adjustable optical device and optical instrument utilizing the same
US20200333370A1 (en) Orientation preserved damping for object tracking subjected to haptic stimulus
JP2939235B1 (ja) 動吸振器
JP6643216B2 (ja) 拍動検出装置
US20160189690A1 (en) Musical instrument support and sound source body support
JP2019141343A (ja) センサモジュール固定器具
JP7092266B2 (ja) 脳波測定装置
JP2009263864A (ja) 床振動および床衝撃音の制振装置
US10544033B2 (en) Micromechanical component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE