WO2023033041A1 - 気泡を利用した浮力発電装置及び気泡を利用した浮力発電方法 - Google Patents

気泡を利用した浮力発電装置及び気泡を利用した浮力発電方法 Download PDF

Info

Publication number
WO2023033041A1
WO2023033041A1 PCT/JP2022/032759 JP2022032759W WO2023033041A1 WO 2023033041 A1 WO2023033041 A1 WO 2023033041A1 JP 2022032759 W JP2022032759 W JP 2022032759W WO 2023033041 A1 WO2023033041 A1 WO 2023033041A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel gas
water tank
water
buoyancy
gas introduction
Prior art date
Application number
PCT/JP2022/032759
Other languages
English (en)
French (fr)
Inventor
義隆 島村
Original Assignee
株式会社島村技建コンサルタント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021142760A external-priority patent/JP7009004B1/ja
Application filed by 株式会社島村技建コンサルタント filed Critical 株式会社島村技建コンサルタント
Publication of WO2023033041A1 publication Critical patent/WO2023033041A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/02Other machines or engines using hydrostatic thrust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a buoyancy power generation device using air bubbles and a buoyancy power generation method using air bubbles.
  • thermal power generation requires large amounts of fossil fuels, and problems such as the emission of large amounts of carbon dioxide, a cause of global warming, have been recognized.
  • problems such as the emission of large amounts of carbon dioxide, a cause of global warming, have been recognized.
  • Photovoltaic power generation is greatly affected by the weather, and there are problems such as being unable to generate power at night.
  • Wind power generation has problems such as the fact that it cannot generate power when there is no wind, and that the amount of power generated is affected by wind speed.
  • Conventional hydroelectric power generation has problems such as the destruction of the natural environment due to dam construction, and the amount of power generation being affected by the amount of rainfall and water storage.
  • buoyancy power generation which uses the buoyancy of air bubbles to rotate a rotating body underwater, is being considered as a renewable energy source that is less affected by the weather and has less impact on the environment.
  • Patent Document 1 As buoyancy power generation, air bubbles are put into a bucket with reduced water resistance, and the buoyancy of the air bubbles is used to rotate a rotating body (Patent Document 1). A buoyancy generator (Patent Document 2) has been proposed.
  • buoyancy generator that has less impact on the natural environment, less impact on the climate, and is more energy efficient than before.
  • the gist of the present invention is as follows.
  • a water tank configured to store water; a fuel gas introduction part, a fuel gas recovery part positioned above the surface of the water that can be stored, a fuel gas discharge part connected to the fuel gas recovery part, an air bubble receiving part, and a bubble receiving part connected to the air bubble receiving part a belt connected to the belt, a rotating body connected to the belt, and a generator connected to the rotating body;
  • the fuel gas introduction unit is configured to be capable of introducing pressurized fuel gas obtained by vaporizing liquefied gas into the water tank
  • the fuel gas recovery unit is configured to recover the fuel gas introduced into the water tank above the surface of water that can be stored in the water tank
  • the fuel gas discharge unit is configured to be able to discharge the fuel gas collected by the fuel gas collection unit to the outside, Bubbles of the fuel gas introduced from the fuel gas introduction portion into the water tank are received by the bubble receiving portion, and the belt connected to the bubble receiving portion is moved by the buoyancy of the bubbles to rotate the belt connected to
  • a buoyancy generator that rotates a body and generates power with the generator that is connected to the rotating body.
  • a buoyancy power generation method comprising recovering the fuel gas introduced into the water as the bubbles above a surface of the water, and discharging the recovered fuel gas to the outside.
  • FIG. 1 is a schematic cross-sectional view of an example of this device.
  • FIG. 2 is a schematic cross-sectional view of another example of the device.
  • FIG. 3 is a schematic cross-sectional view of another example of this device.
  • FIG. 4 is a schematic cross-sectional view of an example of a bubble receiver in this device.
  • FIG. 5 is an example of an LNG power generation system including the buoyancy power generation device of the present disclosure.
  • the present disclosure includes a water storage tank configured to store water, a fuel gas introduction section, a fuel gas recovery section positioned above the surface of the water that can be stored, and a fuel gas connected to the fuel gas recovery section.
  • the vaporized and pressurized fuel gas is capable of being introduced into the water tank, and the fuel gas recovery unit reduces the fuel gas introduced into the water tank above the surface of the water that can be stored in the water tank.
  • the fuel gas discharge section is configured to be capable of being collected at an upper portion, and the fuel gas discharge section is configured to be capable of discharging the fuel gas collected by the fuel gas collection section to the outside, and the fuel introduced from the fuel gas introduction section into the water tank.
  • the air bubbles of the gas are received by the air bubble receiver, the belt connected to the air bubble receiver is moved by the buoyancy of the air bubbles, the rotor connected to the belt is rotated, and the power generator connected to the rotor is rotated.
  • the target is a buoyancy power generation device that generates power with a machine.
  • the fuel gas used in this device is pressurized fuel gas in conventional systems such as LNG power plants that vaporize liquefied gas and use it as fuel gas.
  • LNG power plants that vaporize liquefied gas and use it as fuel gas.
  • BACKGROUND ART Conventionally, in order to transport fuel gas from a production site to a consumption site or to simplify the handling of fuel gas, the produced gaseous fuel gas is cooled and liquefied at the production site. When the fuel gas is liquefied, a lot of energy is used at a huge cost.
  • this device it is possible to generate electricity using part of the pressure generated when the liquefied fuel gas is returned to gas.
  • a part of the energy used at the cost of liquefying the fuel gas at the production site can be used not only for combustion but also for buoyancy at the consumption site. That is, liquefied fuel gas produced by applying energy to gaseous fuel gas at the production site can be used at the consumption site as a medium for transporting pressure energy. Therefore, according to this device, it is possible to generate power with less impact on the natural environment, less impact on the climate, and with superior energy efficiency than before. A power generation method using this device will be described with reference to the drawings.
  • FIG. 1 is a cross-sectional schematic diagram of an example of this device.
  • a buoyancy generator 100 shown in FIG. 1 includes a box-shaped water tank 10 .
  • the buoyancy generator 100 includes a water tank 10 capable of storing water 14, a fuel gas introduction portion 11, a fuel gas recovery portion 16 positioned above the surface of the water 14 capable of being stored, and a fuel gas recovery portion 16.
  • a fuel gas discharge section 12 connected to a gas recovery section 16 is provided.
  • the fuel gas introduction section 11 , the fuel gas recovery section 16 and the fuel gas discharge section 12 are provided in the water tank 10 .
  • the buoyancy generator 100 also includes an air bubble receiver 20, a belt 30 connected to the air bubble receiver 20, a rotating body 40 rotating in conjunction with movement of the belt, and a generator (not shown) connected to the rotating body 40. )including. There is one or a plurality of bubble receivers 20, preferably a plurality. In the buoyancy power generation device 100 shown in FIG. The generator may be located either inside or outside the reservoir 10 .
  • the pressurized gaseous fuel gas is introduced into the water 14 from the fuel gas introduction part 11 to form bubbles 15 .
  • Air bubbles 15 formed in the water 14 are received by the air bubble receiver 20, and the buoyancy of the air bubbles 15 is used to move the belt 30 connected to the air bubble receiver 20.
  • the rotating body 40 that rotates in conjunction with the movement of the belt 30 rotates, and the generator connected to the rotating body 40 generates electricity.
  • At least two rotating bodies 40 can be installed above and below near the water surface and near the lower fuel gas introduction section 11 .
  • the belt 30 can be arranged so as to go around at least two rotating bodies 40 arranged one above the other.
  • the upper rotating body 40 may be positioned above or below the surface of the water 14 that can be stored.
  • the rotating body 40 arranged on the upper side When the rotating body 40 arranged on the upper side is positioned below the water surface of the water 14 that can be stored, the air bubbles 15 and the air bubble receiver 20 move in the moving direction of the belt 30 in the water 14 that can be stored. It is possible to generate a flow that circulates along, and to improve power generation efficiency.
  • the fuel gas recovery unit 16 recovers the fuel gas coming out of the water surface of the water tank 10 , and the fuel gas is discharged from the fuel gas discharge unit 12 connected to the fuel gas recovery unit 16 .
  • the discharged fuel gas is used for power generation in conventional systems.
  • the fuel gas recovered by the fuel gas recovery portion 16 can be discharged so as to be pushed out from the fuel gas discharge portion 12 by the pressure of the fuel gas that is successively emitted from the water surface.
  • the water tank 10 is provided with a fuel gas recovery part 16 configured to be able to recover the fuel gas introduced into the water tank 10 above the surface of the water and within the water tank 10, so that the fuel gas introduction part 11 Even if the water level rises when bubbles of the fuel gas are introduced into the water tank 10, the water can be kept in the water tank 10 by preventing the water from overflowing from the fuel gas discharge part 12. ⁇ Further, the fuel gas discharge part 12 can be connected to an arbitrary position of the fuel gas recovery part 16 which is above the surface of the water and is configured to be recoverable in the water tank 10 .
  • the shape and material of the water tank 10 shown in FIG. There is no particular limitation as long as it has a pressure-tight sealed structure that does not leak into the water.
  • the material of the water tank 10 can be, for example, steel used in conventional LNG tanks or conventional LNG conduits or piping (hereinafter collectively referred to as piping).
  • the shape of the water tank 10 can be, for example, a columnar shape, a rectangular parallelepiped shape, or a combination thereof, and the columnar shape is preferable in terms of high pressure resistance.
  • the water tank 10 having the fuel gas recovery unit 16 inside has a cylindrical shape and has a pressure-tight sealing structure made of steel, so that the pressurized gaseous fuel gas is discharged through the fuel gas recovery unit 16. It can be used more safely in the provided water tank 10. - ⁇
  • the apparatus preferably comprises a controller capable of opening and closing said valve.
  • the valve can be opened and closed manually or electrically. When the valve is electrically opened and closed, electric power for operation may be obtained from the outside, but preferably electric power generated by the generator of the device may be used.
  • the water tank 10 is provided with the fuel gas introduction part 11 having the on-off valve, the water stored in the water tank 10 can be operated continuously or intermittently without leaking to the piping side outside the water tank 10. can be operated.
  • the installation location of this device is not limited to a location where high-pressure gas is continuously sent, but can be installed at any location equipped with a device for vaporizing liquefied gas.
  • the fuel gas introduction part 11 can be arranged at the bottom of the water tank 10 and/or at the side of the water tank 10 .
  • the fuel gas introduction part 11 arranged on the side of the water tank 10 is preferably horizontally movable.
  • Air bubbles can be introduced into the air bubble receiver 20 positioned relatively above the water tank 10 by horizontally moving the fuel gas introduction part 11 positioned relatively above the side of the water tank 10 .
  • the buoyant force is proportional to the volume of the bubble (the cube of the radius of the bubble), and the drag force is proportional to the cross-sectional area of the bubble (the square of the radius of the bubble) and the square of the rising speed. Therefore, the larger the bubble radius, the greater the buoyancy.
  • the movement of the fuel gas introduction part 11 can be performed manually or electrically. When the fuel gas introduction part 11 is electrically moved, the electric power for the operation may be obtained from the outside, or the electric power generated by the generator of the present apparatus may be used.
  • the water tank 10 can be provided with one or more fuel gas introduction parts 11 .
  • the plurality of fuel gas inlets 11 can be arranged horizontally at the bottom of the water tank 10 and/or arranged vertically at the sides of the water tank 10 .
  • the pressure of the fuel gas introduced from the fuel gas introduction portion 11 is higher than the water pressure in the fuel gas introduction portion 11 .
  • the pressure of the fuel gas introduced from the fuel gas introduction part 11 is higher than the pressure of the fuel gas recovered in the fuel gas recovery part 16, which is higher than the pressure corresponding to the depth from the water surface where the fuel gas introduction part 11 is located. have.
  • NG natural gas
  • this device is combined with this conventional LNG system and the depth of water stored in the water tank 10 in which the fuel gas introduction part 11 is arranged at the bottom is set to 20 m, the pressure of the fuel gas introduced from the fuel gas introduction part 11 is , 17 atmospheres plus 2 atmospheres corresponding to a water depth of 20 m, which is greater than 19 atmospheres.
  • the fuel gas recovered by the fuel gas recovery part 16 from the water surface of the water 14 with a depth of 20 m is , with a pressure greater than 17 atmospheres.
  • This fuel gas above 17 atmospheres can be delivered as is or decompressed to 17 atmospheres via conduits in the natural gas system of conventional systems to power plants and factory uses.
  • the pressure can be reduced by using a pressure reducing valve, by branching a portion of the fuel gas from a pipe for sending the fuel gas discharged from the fuel gas discharge part to another pipe, or by discharging the fuel gas to the outside. can be done.
  • the branched or discharged gas is used in other lower pressure systems in the conventional LNG system, returned to the LNG tank and used to prevent negative pressure inside the tank, and re-liquefied by heat exchange with LNG for reuse. may be equal.
  • the pressure of the fuel gas introduced from the fuel gas introduction part 11 is higher than the water pressure in the fuel gas introduction part 11 by preferably 1 atmosphere or more, more preferably 2 atmospheres or more, further preferably 3 atmospheres or more. Since the pressure of the fuel gas introduced from the fuel gas introduction portion 11 is the preferable pressure, a larger amount of fuel gas bubbles can be easily introduced into the water 14 from the fuel gas introduction portion 11 .
  • the upper limit of the pressure of the fuel gas introduced from the fuel gas introduction part 11 is not particularly limited, but the higher the pressure of the fuel gas introduced from the fuel gas introduction part 11, the more the amount of pressure reduction of the fuel gas discharged from the fuel gas discharge part.
  • the water pressure in the fuel gas introduction part 11 is within plus 5 atmospheres or plus 4 atmospheres. It is within atmospheric pressure.
  • a vaporizer (vaporizer) is used to vaporize the liquid fuel gas.
  • the pressure of the fuel gas introduced from the fuel gas introduction part 11 the pressure of the fuel gas discharged from the vaporizer for vaporizing the liquefied gas in the conventional system can be used.
  • LNG at minus 162°C is sent to a vaporizer by an LNG pump in an LNG tank, and passes through a vaporizer using seawater to produce 600 times the volume of room temperature natural gas (NG). become.
  • High-pressure natural gas (NG) due to volume expansion due to vaporization is decompressed through a pressure-reducing valve and sent through a pipe to a fuel gas usage part such as a boiler.
  • the pressure reducing valve can reduce the pressure of the high-pressure natural gas vaporized by the vaporizer in accordance with the working pressure of the use portion.
  • the pressure at the outlet of the pressure reducing valve varies according to the natural gas consumption at the point of use, and the control device of the pressure reducing valve controls this pressure.
  • the pressure reducing valve controller opens the pressure reducing valve so as to increase the outlet pressure of the pressure reducing valve.
  • the pressure reducing valve control device closes the pressure reducing valve to keep the value of the pressure at the outlet of the pressure reducing valve constant.
  • This device can be used by being incorporated between the vaporizer in the conventional system and the part that uses fuel gas such as a boiler.
  • the pressure of the fuel gas introduced from the fuel gas introduction portion 11 can be adjusted by a pressure reducing valve.
  • Vaporizers include, for example, open rack type vaporizers for normal use, submerged type vaporizers for emergency use, and intermediate heat medium type vaporizers.
  • open rack type vaporizer when LNG sent by an LNG pump passes through the inside of a panel in which many tubes with vertical fins are assembled in a rack shape, it is warmed by sea water flowing down the outer surface of the tube and evaporated. It is heated and discharged as gas from the upper header.
  • the pressure of the fuel gas at the vaporizer outlet is controlled by the flow rate control on the liquid side at the vaporizer inlet. Therefore, the liquid flow rate at the inlet of the vaporizer may be controlled so that the pressure of the fuel gas at the outlet of the vaporizer becomes the desired pressure required in the fuel gas introduction section 11 .
  • the water depth of the water stored in the water tank can be adjusted according to the number of air bubble receivers arranged and the pressure of the fuel gas to be introduced. , still more preferably 50 m or more, even more preferably 100 m or more.
  • the deeper the water depth the more air bubble receivers can be arranged, and the more the buoyancy of the air bubbles can be utilized.
  • the deeper the water depth the higher the water pressure in the lower part of the water tank, so it is necessary to introduce fuel gas with a higher pressure.
  • the deeper the water the smaller the volume of air bubbles and the smaller the buoyancy generated, so the generator has a torque adjustment function that can reduce or eliminate the torque so that the belt can move even with a small buoyancy at the time of initial movement. is preferred.
  • the height of the water tank 10 in FIG. 1 may be determined according to the depth of the water stored inside. , a belt connected to the bubble receiver, a rotor connected to the belt, and optionally a generator connected to the rotor.
  • the height of the water tank is, for example, 12-150m.
  • the air bubble receiver 20 may have a structure capable of receiving air bubbles of the fuel gas and moving the belt, but is preferably made of a lightweight material that is corrosion resistant to water and fuel gas. preferable.
  • Bubble catcher 20 is preferably made of stainless steel, aluminum, titanium, or a combination thereof.
  • the bubble receiver 20 can be, for example, a cube, a rectangular parallelepiped, a hemisphere in diameter, or the like.
  • the size of the bubble receiver 20 is not particularly limited, but may be, for example, a cube with length, width and length of 1 m, or a hemisphere with a radius of 1 m.
  • the air bubble receiver 20 preferably moves the belt 30 connected to the air bubble receiver 20 and rotates the rotating body 40 connected to the belt 30 by the buoyancy of the air bubbles 15 received by the lowest air bubble receiver 20. More preferably, the belt 30 connected to the bubble receiver 20 is moved by the buoyancy of the bubble 15 received by the lowermost bubble receiver 20, and the belt 30 connected to the belt 30 is moved. It rotates the rotating body 40 and has a capacity for receiving air bubbles that can generate electricity with a generator connected to the rotating body 40 .
  • the volume of air bubbles that can be received by the air bubble receiver 20 is preferably 0.1 to 10 m 3 . Assuming that the density of water is about 1000 kg/m 3 , a buoyancy force of 980-98000 N (100-10000 kg) is obtained when the air bubbles are filled in one bubble receiver with the above preferred acceptable volume.
  • the interval between the plurality of air bubble receivers 20 connected to the belt 30 is such that the air bubble receivers 20 can rotate together with the belt 30 and the air bubbles 15 introduced from the fuel gas inlet 11 can be sequentially received. good.
  • the interval between the plurality of bubble receivers 20 connected to the belt 30 is preferably such that each bubble receiver 20 rotating at a steady speed with the belt 30 has a volume capable of receiving the bubbles 15 of each bubble receiver 20 . is a distance that can accommodate 70% or more, more preferably 80% or more, and even more preferably 90% or more of air bubbles.
  • At least some of the plurality of bubble receivers 20 may have through holes 21 as shown in FIG.
  • the air bubble receiving portion 20 receives the buoyant force of the air bubbles 15 introduced from the fuel gas introducing portion 11, while allowing part of the air bubbles 15 to pass through the other air bubble receiving portion positioned above. can be introduced into At the bottom of the water tank, the water pressure is high and the bubbles are small, so the buoyancy of the air bubbles 15 is relatively small.
  • the device By introducing an air bubble 15 into the space, the device can be operated with greater buoyancy.
  • the position of the through hole 21 is not particularly limited as long as it receives air bubbles in the air bubble receiving portion 20, but the upper region of the air bubble receiving portion 20 where air bubbles tend to gather is preferable.
  • the size of the through hole 21 may be the same as the diameter of the air bubble 15 introduced from the fuel gas introduction portion 11 , smaller than the air bubble 15 , or larger than the air bubble 15 .
  • the size of the through-holes 21 is determined according to the total volume of the air bubbles 15 that are successively introduced into the water 14 and received by the air-bubble receiving section 20, while the air-bubble receiving section 20 receives buoyant force, and the air bubbles reach the upper air-bubble receiving section 20. can be of such a size that it can be moved.
  • the through hole 21 is preferably openable and closable, and more preferably adjustable in opening.
  • the degree of opening is the degree to which the through hole 21 opens.
  • the through-hole 21 may be open in the region near the bottom of the water tank and the through-hole 21 may be closed in the region near the top of the water tank.
  • the through hole 21 may be half open in the region near the middle of the water tank.
  • the device preferably comprises a controller for opening and closing the through hole 21 .
  • the opening and closing of the through hole 21 can be performed manually or electrically. When the through hole 21 is electrically opened and closed, electric power for operation may be obtained from the outside, but preferably electric power generated by the generator of this device may be used.
  • the shape and dimensions of the plurality of bubble receivers 20 may be different from each other.
  • the horizontal dimension of some of the plurality of bubble receivers 20 is larger than the horizontal dimension of the other bubble receivers 20, the lower bubble receiver with the smaller horizontal dimension Air bubbles overflowing from 20 can be captured by air bubble receiver 20 located above and having a large horizontal dimension.
  • At least a part of the belt 30 is placed in water, connected to the air bubble receiver 20, and has a configuration capable of moving the rotating body 40, and may be a metal chain belt, a rubber belt, or the like. can.
  • the rotating body 40 may be a rotating body used in conventional generators as long as it has a structure that transmits the force of the belt to the generator.
  • the generator can be a conventionally used generator.
  • the generator preferably has a torque regulation function.
  • the torque of the generator may be small.
  • the torque of the generator may be increased because the buoyancy of the air bubbles increases as the belt connected to the air bubble receiver is moved and the air bubble receiver is lifted.
  • the generator is preferably connected with the storage device. As a result, the electricity generated by the generator can be stored in the power storage device, and the stored electricity can be transmitted to the outside when necessary.
  • the fuel gas introduction part 11 of the buoyancy generator 100 can be connected to the vaporization part 70 connected to the liquefied gas storage container in the conventional system.
  • the vaporization section 70 is configured to vaporize the liquefied gas to generate the fuel gas and transport the vaporized fuel gas to the fuel gas introduction section 11 .
  • the fuel gas discharge section 12 of the buoyancy power generator 100 can be connected to the fuel gas usage section 80 in the conventional system.
  • the use portion 80 can be, for example, in LNG power generation in conventional systems, a boiler, a turbine, or a combination thereof in steam power generation, gas turbine power generation, or combined cycle power generation.
  • the water tank 10 may be U-shaped as shown in FIG.
  • FIG. 2 is a schematic cross-sectional view of another example of the device.
  • the buoyancy generator 100 shown in FIG. 2 includes an air bubble receiver 20, a belt 30 connected to the air bubble receiver 20, a rotor 40 connected to the belt, and a generator (not shown) connected to the rotor 40. including.
  • one of the belt 30 connected to the air bubble receiver 20 and the rotating body 40 connected to the belt is disposed in the water tank 10, and the other rotating body 40 is
  • the generator provided outside the water tank 10 and inside the wall portion 60 and connected to the rotating body 40 may be arranged either inside or outside the wall portion 60 .
  • the fuel gas can be recovered and discharged from the fuel gas discharge portion 12 provided in the wall portion 60 .
  • the shape and material of the wall part 60 should include the water tank 10, the fuel gas recovery part, and the fuel gas discharge part, and have a pressure-resistant sealing structure that prevents gaseous fuel gas from leaking outside from the fuel gas discharge part. It is not particularly limited.
  • the material of the wall 60 can be, for example, steel used in conventional LNG tanks or piping.
  • the wall portion 60 preferably has at least one fuel gas discharge portion 12 inside the wall portion 60 at a position where the fuel gas discharged from the surface of the water 14 can be collected between the wall portion 60 and discharged from the fuel gas discharge portion 12 .
  • a stage partition 61 is provided.
  • the wall portion 60 illustrated in FIG. 2 includes two stages of partition portions 61 . Since the wall portion 60 and the uppermost partition portion 61 can constitute the fuel gas recovery portion 16, the fuel gas can be discharged from the fuel gas discharge portion 12 more efficiently.
  • the partition part 61 can also be used as a scaffold for equipment inspection.
  • the water tank 10 in FIG. 2 is not particularly limited as long as it has a fuel gas introduction part 11 and has a configuration capable of storing water 14 inside, and is used in a conventional LNG tank or pipe, for example. Can be made of steel.
  • the height of the water tank 10 in FIG. 2 may be determined according to the depth of the water 14 stored therein.
  • the buoyancy power generation device 100 has a height capable of accommodating at least a part and one of the rotating bodies 40, and the buoyancy generator 100 is placed between the wall part 60 and the fuel gas recovery part 16, the other rotating body 40 connected to the belt, and can be of such height that it can be provided with a generator coupled to the rotating body if desired.
  • the width of each of the U-shaped portions of the water tank 10 is such that water can flow between the air bubble receiving part 20 and the water tank so that the resistance received from the water when moving the air bubble receiving part 20 in the water of the water tank is small. It can be any width that has space for smooth movement.
  • the width of the water tank is preferably 1.2 times or more, more preferably 1.3 times or more, still more preferably 1.4 times or more, and even more preferably 1.5 times the width of the air bubble receiving portion 20. That's it.
  • the height of the water tank is, for example, 12-150m.
  • Other configurations of the buoyancy generator shown in FIG. 2 are common to those in FIG.
  • the water tank 10 may have an O-shaped cross section as shown in FIG.
  • FIG. 3 is a schematic cross-sectional view of another example of the device.
  • a buoyancy generator 100 shown in FIG. 3 includes a columnar, for example, pipe-shaped water tank 10 configured to store water.
  • the pipe shape consists of flat surfaces, curved surfaces, or a combination thereof.
  • the buoyancy generator 100 further includes a fuel gas introduction section 11 , a fuel gas recovery section 16 and a fuel gas discharge section 12 .
  • the fuel gas introduction section 11 , the fuel gas recovery section 16 and the fuel gas discharge section 12 are provided in the water tank 10 .
  • the buoyancy generator 100 also includes a bubble receiver 20, a belt 30 connected to the bubble receiver 20, a rotor 40 connected to the belt, and a generator (not shown) connected to the rotor 40.
  • the bubble receiver 20 , the belt 30 connected to the bubble receiver 20 , and the rotating body 40 connected to the belt are provided in the water tank 10 and connected to the rotating body 40 .
  • the generator may be located either inside or outside the reservoir 10 .
  • buoyancy power generation device 100 illustrated in FIG. The discharge and other configurations are similar to the buoyancy generator illustrated in FIG.
  • the present disclosure also includes introducing a pressurized fuel gas obtained by vaporizing a liquefied gas into water in a water tank that stores water to form air bubbles in the water; a belt connected to the air bubble receiving part is moved by the buoyancy of the air bubbles to rotate a rotating body connected to the belt, and power generation connected to the rotating body a buoyancy power generation method comprising: generating power with a machine, recovering the fuel gas introduced into the water as the bubbles above the water surface of the water, and discharging the recovered fuel gas to the outside. set to target.
  • the fuel gas used in the buoyancy power generation device and buoyancy power generation method of the present disclosure is preferably natural gas, propane gas, hydrogen gas, or ammonia gas.
  • Liquefied fuel gases are liquefied natural gas, liquefied propane gas, liquefied hydrogen gas, or liquefied ammonia gas.
  • Liquefied natural gas (hereinafter also referred to as LNG) is a gaseous fuel gas, which is cooled to minus 162 ° C and condensed for transportation, and the volume is reduced to 1/600. It is a relatively clean fossil fuel with less CO2 emissions and nitrogen oxides than other fossil fuels.
  • Natural gas is used as the main raw material for city gas, and is stored and transported as liquefied LNG after being cooled to -162°C.
  • LNG is transported from overseas using LNG vessels such as dedicated tankers and stored in dedicated LNG tanks at LNG bases.
  • the LNG delivered from the LNG tank is vaporized by passing through a vaporizer, and is used as fuel for electric power or the like as natural gas at room temperature.
  • NG natural gas
  • vaporized LNG is burned to form high-temperature, high-pressure steam. It can move and generate electricity.
  • FIG. 5 shows an example of an LNG power generation system incorporating the buoyancy power generation device of the present disclosure.
  • LNG is stored in LNG tanks 82 from LNG vessels 81 through arm loading and piping.
  • LNG at minus 162° C. is sent from the LNG tank 82 to the vaporization section 70 by the LNG pump, passes through the vaporization section 70 to normal temperature natural gas (NG), and is sent to the buoyancy power generator 100 through piping.
  • NG normal temperature natural gas
  • seawater is flowed on the outer surface of the heat transfer tube of the vaporizer to vaporize the LNG inside the vaporizer.
  • the natural gas (NG) used for buoyancy power generation in this buoyancy power generation device 100 is sent to a natural gas usage section 80 such as a power plant or factory. Natural gas (NG) is burned in the boiler of a power plant or factory to generate high-temperature, high-pressure steam, which is used to turn the impeller of a steam turbine to drive a generator connected to the turbine. Generate electricity.
  • NG natural gas
  • the installation location of this device is not particularly limited as long as it is equipped with a device for vaporizing LNG, but it is a port or coast where a tanker that transports LNG calls, a power generation device using LNG, or a place adjacent to an LNG power plant. , or in a building housing gas cylinders storing LNG. Building reuse is also possible by placing the device in empty buildings, closed schools, and the like. For example, the device illustrated in FIGS. 1-3 can be placed fixedly on the skeleton of an empty building.
  • NG natural gas
  • LPG liquefied propane gas
  • hydrogen gas liquefied hydrogen gas
  • ammonia gas liquefied ammonia gas
  • LPG is generally filled into storage containers such as cylinders and delivered to places of consumption such as city buildings and homes. At these places of consumption, LPG is vaporized and used as fuel gas in offices and homes. By installing this device between an LPG storage container and a place of consumption such as a city building or a home, the vaporized gas of LPG can be used for buoyancy power generation.
  • Liquefied hydrogen gas is generally filled into mobile storage containers such as tank trucks and delivered to places of consumption such as hydrogen stations. By installing this device between a storage container of liquefied hydrogen gas and a place of consumption such as a hydrogen station, vaporized gas of liquefied hydrogen gas can be used for buoyancy power generation.
  • Ammonia is easily liquefied by pressurization and cooling, and the liquefied product is usually sent by pipeline, transported by tanker or tank truck, or packed in cylinders and transported. By installing this device between a storage container of liquefied ammonia and a place where ammonia gas is consumed, vaporized gas of liquefied ammonia can be used for buoyancy power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

自然環境への影響が小さく、気候の影響が小さく、エネルギー効率に優れた浮力発電装置を提供する。水を貯水可能に構成された貯水槽、燃料ガス導入部、前記貯水可能な水の水面よりも上方に位置する燃料ガス回収部、及び前記燃料ガス回収部に連結された燃料ガス排出部、並びに気泡受け部、前記気泡受け部に接続されたベルト、前記ベルトに接続された回転体、及び前記回転体に連結された発電機を含み、前記燃料ガス導入部は、液化ガスを気化した圧力が加えられた燃料ガスを前記貯水槽に導入可能に構成され、前記燃料ガス導入部から前記貯水槽に導入される前記燃料ガスの気泡を前記気泡受け部で受け、前記気泡の浮力によって前記気泡受け部に接続されたベルトを動かし、前記ベルトに接続された回転体を回転させて、前記回転体に連結された前記発電機で発電する浮力発電装置。

Description

気泡を利用した浮力発電装置及び気泡を利用した浮力発電方法
 本発明は、気泡を利用した浮力発電装置及び気泡を利用した浮力発電方法に関する。
 近年、火力発電には大量の化石燃料が必要であり、地球温暖化の原因である二酸化炭素を多量に排出する等の問題が認識されている。原子力発電には様々なリスクがあり、施設建設から廃炉、再処理コストまで含めると多大なコストがかかることからその効率性にも疑義が生じている。
 このようなエネルギー問題及び環境問題が注目されてきており、2015年には、国連サミットにおける「持続可能な開発のための2030アジェンダ」(持続可能な開発目標(SDGs))が採択され、従来の環境影響が大きいエネルギー源を代替する再生可能エネルギーの活用が求められている。
 しかしながら、従来のエネルギーに代えて再生可能エネルギーを主に活用していくには多くのハードルがある。太陽光発電は天候に大きく影響され、夜間は発電できない等の問題がある。風力発電は無風時には発電できないことや、風速によって発電量に影響が出る等の問題がある。従来の水力発電は、ダム建設による自然環境破壊、降雨量、貯水量により発電量が左右される等の問題がある。
 これに対して、天候に左右されにくく且つ環境への影響が小さい再生可能エネルギー源の一つとして、気泡の浮力を使って水中で回転体を回すことにより発電する浮力発電が検討されている。
 浮力発電として、水の抵抗を小さくしたバケットに気泡を入れ、気泡の浮力で回転体を回す浮力発電装置(特許文献1)や、水槽底の水車で水と空気を置換することにより気泡の取込を行う浮力発電装置(特許文献2)が提案されている。
特開2019-138293号公報 特開2007-138883号公報
 しかしながら、特許文献1の装置では、気泡の発生には、装置の最下部に外部より接続された空気ポンプを用いるため、気泡を発生させるために電力等の他のエネルギーを必要とし、気泡を発生させるための投入エネルギーよりも浮力発電装置による出力エネルギーが小さくなるエネルギー効率の問題がある。特許文献2の装置では、水車を利用するため、従来の水力発電と同様にダム建設による自然環境破壊、降雨量、貯水量等の気候により発電量が左右される等の問題がある。
 したがって、従来よりも、自然環境への影響が小さく、気候の影響が小さく、エネルギー効率に優れた浮力発電装置が求められている。
 本発明の要旨は以下のとおりである。
 (1)水を貯水可能に構成された貯水槽、
 燃料ガス導入部、前記貯水可能な水の水面よりも上方に位置する燃料ガス回収部、及び前記燃料ガス回収部に連結された燃料ガス排出部、並びに
 気泡受け部、前記気泡受け部に接続されたベルト、前記ベルトに接続された回転体、及び前記回転体に連結された発電機
 を含み、
 前記燃料ガス導入部は、液化ガスを気化した圧力が加えられた燃料ガスを前記貯水槽に導入可能に構成され、
 前記燃料ガス回収部は、前記貯水槽に導入される燃料ガスを、前記貯水槽に貯水可能な水の水面よりも上部で回収可能に構成され、
 前記燃料ガス排出部は、前記燃料ガス回収部で回収される燃料ガスを外部に排出可能に構成され、
 前記燃料ガス導入部から前記貯水槽に導入される前記燃料ガスの気泡を前記気泡受け部で受け、前記気泡の浮力によって前記気泡受け部に接続されたベルトを動かし、前記ベルトに接続された回転体を回転させて、前記回転体に連結された前記発電機で発電する
 浮力発電装置。
 (2)液化ガスを気化した圧力が加えられた燃料ガスを、水を貯水する貯水槽の水中に導入して、前記水中に気泡を形成すること、
 前記気泡を、前記貯水槽の内部に配置された気泡受け部で受けること、
 前記気泡による浮力によって前記気泡受け部に接続されたベルトを動かして、前記ベルトに接続された回転体を回転させて、前記回転体に連結された発電機で発電すること、
 前記気泡として前記水中に導入した前記燃料ガスを、前記水の水面よりも上部で回収すること、及び
 前記回収した燃料ガスを外部に排出すること
 を含む、浮力発電方法。
 本発明により、従来よりも、自然環境への影響が小さく、気候の影響が小さく、エネルギー効率に優れた浮力発電装置設置を提供することができる。
図1は、本装置の一例の断面模式図である。 図2は、本装置の他の例の断面模式図である。 図3は、本装置の他の例の断面模式図である。 図4は、本装置における気泡受け部の一例の断面模式図である。 図5は、本開示の浮力発電装置を含むLNG発電システムの一例である。
 本開示は、水を貯水可能に構成された貯水槽、燃料ガス導入部、前記貯水可能な水の水面よりも上方に位置する燃料ガス回収部、及び前記燃料ガス回収部に連結された燃料ガス排出部、並びに気泡受け部、前記気泡受け部に接続されたベルト、前記ベルトに接続された回転体、及び前記回転体に連結された発電機を含み、前記燃料ガス導入部は、液化ガスを気化した圧力が加えられた燃料ガスを前記貯水槽に導入可能に構成され、前記燃料ガス回収部は、前記貯水槽に導入される燃料ガスを、前記貯水槽に貯水可能な水の水面よりも上部で回収可能に構成され、前記燃料ガス排出部は、前記燃料ガス回収部で回収される燃料ガスを外部に排出可能に構成され、前記燃料ガス導入部から前記貯水槽に導入される前記燃料ガスの気泡を前記気泡受け部で受け、前記気泡の浮力によって前記気泡受け部に接続されたベルトを動かし、前記ベルトに接続された回転体を回転させて、前記回転体に連結された前記発電機で発電する浮力発電装置を対象とする。
 本装置で用いられる燃料ガスは、液化ガスを気化して燃料ガスとして使用するLNG発電所等の従来システムにおける圧力が加えられた燃料ガスである。従来、燃料ガスを生産地から消費地まで運搬または燃料ガスの取扱いを簡単にするために、産出した気体の燃料ガスを生産地で冷却して液化することが行われている。燃料ガスを液化するときに、莫大なコストをかけて多くのエネルギーを使っている。
 本装置によれば、液化した燃料ガスを気体に戻すときに発生する圧力の一部を利用して発電することができる。本装置によれば、燃料ガスを生産地で液化するときにコストをかけて使用したエネルギーの一部を消費地で燃焼だけでなく浮力として活用することができる。すなわち、産出地で気体の燃料ガスにエネルギーをかけて作った液化燃料ガスを、圧力エネルギーの運搬用媒体として消費地で利用することができる。したがって、本装置によれば、従来よりも、自然環境への影響が小さく、気候の影響が小さく、エネルギー効率に優れた発電が可能になる。図面を参照しながら、本装置を用いた発電方法について説明する。
 図1は、本装置の一例の断面模式図である。図1に示す浮力発電装置100は、箱形状の貯水槽10を備える。浮力発電装置100は、水14を貯水可能に構成された貯水槽10を備え、さらに、燃料ガス導入部11、貯水可能な水14の水面よりも上方に位置する燃料ガス回収部16、及び燃料ガス回収部16に連結された燃料ガス排出部12を備える。図1に示す浮力発電装置100においては、燃料ガス導入部11、燃料ガス回収部16、及び燃料ガス排出部12は貯水槽10に備えられる。
 浮力発電装置100はまた、気泡受け部20、気泡受け部20に接続されたベルト30、ベルトの動きに連動して回転する回転体40、及び回転体40に連結された発電機(図示せず)を含む。気泡受け部20は一つまたは複数であり、好ましくは複数である。図1に示す浮力発電装置100において、気泡受け部20、気泡受け部20に接続されたベルト30、及びベルトに接続された回転体40は、貯水槽10内に備えられ、回転体40に連結された発電機は、貯水槽10の内部または外部のいずれに配置してもよい。
 圧力が加えられた気体の燃料ガスを、燃料ガス導入部11から水14中に導入して気泡15を形成する。水14中で、形成された気泡15を気泡受け部20で受けて、気泡15による浮力を利用して気泡受け部20に接続されたベルト30を動かす。ベルト30が動くことで、ベルト30の動きに連動して回転する回転体40が回転し、回転体40に連結された発電機で発電する。回転体40は、少なくとも、水面近くと下方の燃料ガス導入部11の近くとの上下に2つ設置され得る。ベルト30は、上下に配置された少なくとも2つの回転体40を一周するように配置され得る。上側に配置された回転体40は、貯水可能な水14の水面よりも上方または下方に位置してもよい。上側に配置された回転体40が、貯水可能な水14の水面よりも下方に位置する場合、気泡15と気泡受け部20との動作により、貯水可能な水14中にベルト30の移動方向に沿って周回する流れを発生させることができ、発電効率を向上することができる。
 燃料ガス回収部16で、貯水槽10の水面から出てくる燃料ガスが回収され、燃料ガス回収部16に連結された燃料ガス排出部12から燃料ガスが排出される。排出された燃料ガスは、従来システムの発電等に利用される。燃料ガス回収部16で回収される燃料ガスは、水面から次々に出てくる燃料ガスの圧力で燃料ガス排出部12から押し出されるように排出可能である。貯水槽10が、貯水槽10に導入される燃料ガスを、水の水面よりも上部且つ貯水槽10内で回収可能に構成された燃料ガス回収部16を備えることにより、燃料ガス導入部11から貯水槽10内に燃料ガスの気泡を導入したときに水位が上昇しても、燃料ガス排出部12から水があふれ出ることを防止して貯水槽10内に水を留めることができる。また、燃料ガス排出部12を、水の水面よりも上部且つ貯水槽10内で回収可能に構成された燃料ガス回収部16の任意の位置に連結することができる。
 図1に示す貯水槽10の形状及び材質は、燃料ガス導入部、燃料ガス回収部及び燃料ガス排出部を備え、水を内部に貯留可能且つ気体の燃料ガスを燃料ガス排出部以外からは外部に漏らさない耐圧密閉構造を有するものであれば特に限定されない。貯水槽10の材質は、例えば、従来のLNGのタンクまたは従来のLNGの導管若しくは配管(以下、まとめて配管ともいう)に用いられている鋼製であることができる。貯水槽10の形状は、例えば、円柱形状、直方体形状、またはそれらの組合せであることができ、円柱形状が耐圧性が高い点で好ましい。燃料ガス回収部16を内部に備えた貯水槽10が、円柱形状を有し、且つ鋼製の耐圧密閉構造を有することにより、圧力が加えられた気体の燃料ガスを、燃料ガス回収部16を備えた貯水槽10内でより安全に利用することができる。
 燃料ガス導入部11は、燃料ガス導入部11に接続された外部の配管から貯水槽10の内部の水圧よりも高い圧力が加えられたときに、貯水槽10の内部に外部の配管から燃料ガスを導入可能であり、且つ貯水槽10の内部の水が燃料ガス導入部11に接続された外部の配管側に漏れないバルブ(開閉弁)の構成を備える。本装置は、好ましくは、前記バルブの開閉が可能な制御装置を備える。バルブの開閉は手動または電動で行うことができる。バルブを電動で開閉する場合は、動作させるための電力を外部から得てもよいが、好ましくは本装置の発電機で発電した電力を利用してもよい。貯水槽10が、上記開閉弁を備える燃料ガス導入部11を備えることにより、貯水槽10に貯水される水を貯水槽10の外部の配管側に漏らさずに、連続的または断続的に本装置を動作させることが可能になる。これにより、本装置の配置場所は、連続的に高圧ガスが送られる箇所に限定されず、液化ガスを気化する装置を備える任意の場所に設置が可能になる。
 燃料ガス導入部11は、貯水槽10の底部に配置及び/または貯水槽10の側部に配置することができる。貯水槽10の側部に配置された燃料ガス導入部11は、好ましくは、水平方向に移動可能である。貯水槽10の側部の比較的上方に配置された燃料ガス導入部11を水平方向に移動させて、貯水槽10の比較的上方に位置する気泡受け部20に気泡を導入することができる。浮力は気泡の体積(泡の半径の3乗)に比例し、抗力は気泡の断面積(泡の半径の2乗)と上昇速度の2乗に比例する。したがって気泡の半径が大きいほど、浮力が大きくなる。水面に近いほど水圧が小さく気泡が大きくなり気泡による浮力は大きくなるので、本装置の起動時に、貯水槽10の側部に配置された燃料ガス導入部11から気泡を導入することで、より大きな浮力でベルトを動かして発電を開始することができる。燃料ガス導入部11の移動は手動または電動で行うことができる。燃料ガス導入部11を電動で移動させる場合は、動作させるための電力を外部から得てもよいが、本装置の発電機で発電した電力を利用してもよい。
 貯水槽10は、燃料ガス導入部11を1つまたは複数備えることができる。複数の燃料ガス導入部11は、貯水槽10の底部に水平方向に配置及び/または貯水槽10の側部に鉛直方向に配置することができる。
 燃料ガス導入部11から導入する燃料ガスの圧力は、燃料ガス導入部11における水圧よりも大きい。燃料ガス導入部11から導入する燃料ガスの圧力は、燃料ガス回収部16に回収される燃料ガスの圧力に、燃料ガス導入部11が位置する水面からの深さに応じた圧力より大きい圧力を有する。
 例えば、従来のLNGシステムにおいて、天然ガス(NG)が発電所や工場等の天然ガスの使用部に送られる天然ガス系統として、約1.7MPa(17気圧)の導管がある。この従来のLNGシステムに本装置を組み合わせて、燃料ガス導入部11が底部に配置された貯水槽10に貯水される水深を20mとしたとき、燃料ガス導入部11から導入する燃料ガスの圧力は、17気圧に水深20mに応じた2気圧を加えた19気圧よりも大きい圧力とする。19気圧よりも大きな圧力を有する燃料ガスを、貯水槽10の底部に位置する燃料ガス導入部11から導入する場合、20mの水深の水14の水面から燃料ガス回収部16で回収する燃料ガスは、17気圧超の圧力を有する。この17気圧超の燃料ガスをそのまま、または17気圧に減圧して、従来システムの天然ガス系統の導管で発電所や工場の使用部に送ることができる。減圧は、減圧弁で減圧するか、燃料ガス排出部から排出される燃料ガスを送る配管から他の配管に燃料ガスの一部を分岐するか、または燃料ガスを外部に排出することにより行うことができる。分岐または排出したガスは、従来のLNGシステムにおけるより低圧の他の系統の使用部で使用、LNGタンクに戻してタンク内の負圧防止に使用、LNGと熱交換させて再液化して再利用等してもよい。
 燃料ガス導入部11から導入する燃料ガスの圧力は、燃料ガス導入部11における水圧よりも、好ましくは1気圧以上、より好ましくは2気圧以上、さらに好ましくは3気圧以上高い。燃料ガス導入部11から導入する燃料ガスの圧力が上記好ましい圧力であることにより、燃料ガス導入部11から水14中に燃料ガスの気泡をより多量に導入しやすくなる。燃料ガス導入部11から導入する燃料ガスの圧力の上限は特に限定されないが、燃料ガス導入部11から導入する燃料ガスの圧力が高いほど、燃料ガス排出部から排出される燃料ガスの減圧量を増やす必要があり、燃料ガスを送る配管や本装置の貯水槽等がより高圧に耐える構造を備える必要となるので、好ましくは、燃料ガス導入部11における水圧に対してプラス5気圧以内またはプラス4気圧以内である。
 従来システムにおいて、液体の燃料ガスを気化させるには気化装置(気化器)が用いられている。燃料ガス導入部11から導入する燃料ガスの圧力は、従来システムにおける液化ガスを気化させる気化器から排出される燃料ガスの圧力を利用することができる。例えば、従来のLNGシステムにおいて、マイナス162℃のLNGは、LNGタンク内のLNGポンプで気化器に送られ、海水を利用した気化器を通ると、体積が600倍の常温の天然ガス(NG)になる。気化にともなう体積膨張による高圧の天然ガス(NG)は、減圧弁を介して減圧した状態で、配管を通ってボイラー等の燃料ガスの使用部に送られる。減圧弁は、気化器により気化させた高圧の天然ガスを、使用部の使用圧力に応じて減圧することができる。減圧弁の出口圧力は、使用部における天然ガスの消費量に応じて変化し、減圧弁の制御装置は、この圧力を制御する。減圧弁の制御装置は、使用部における天然ガスの消費量が増大して減圧弁の出口圧力が低下すると、減圧弁の出口圧力を上昇させるように減圧弁を開動作させる。逆に、減圧弁の出口圧力が上昇すると、減圧弁制御装置は、減圧弁を閉動作することにより、減圧弁の出口圧力の値を一定に保持する。
 本装置は、従来システムにおける気化器とボイラー等の燃料ガスの使用部との間に組みこんで使用することができる。燃料ガス導入部11から導入する燃料ガスの圧力は、減圧弁により調整することができる。
 従来用いられているLNG気化器は、LNGに蒸発の潜熱及びマイナス162℃から常温までの顕熱を与えて再ガス化するもので、種々のタイプがある。気化器としては、例えば、常用のオープンラックタイプベーパライザー、非常用のサブマージドタイプベーパライザー、中間熱媒体式気化器等がある。例えば、オープンラックタイプベーパライザーは、多数の垂直フィン付きチューブがラック状に組み立てられたパネル内部を、LNGポンプによって送られたLNGが通過する際、チューブの外表を流下する海水によって温められて蒸発加熱されて上部ヘッダよりガスとなって排出される。気化器出口の燃料ガスの圧力は気化器入り口液体側の流量制御によって行われる。したがって、気化器出口の燃料ガスの圧力を、燃料ガス導入部11で必要とされる所望の圧力になるように、気化器入り口液体側の流量制御を行ってもよい。
 貯水槽に貯水される水の水深は、気泡受け部の配置数及び導入する燃料ガスの圧力に応じて調整することができるが、好ましくは10m以上、より好ましくは20m以上、さらに好ましくは30m以上、さらにより好ましくは50m以上、さらにより好ましくは100m以上である。水深が深いほど、より多数の気泡受け部を配置することができ、気泡による浮力をより活用することができる。ただし、水深が深いほど貯水槽の下部における水圧が高くなるので、それより大きい圧力の燃料ガスを導入する必要がある。また、水深が深いほど気泡の体積が小さくなり発生する浮力も小さくなるので、初動時は小さい浮力でもベルトが動くように発電機がトルクを小さくするまたはゼロにすることができるトルク調整機能を有することが好ましい。
 図1における貯水槽10の高さは、内部に貯留する水の水深に応じて決めればよいが、燃料ガス導入部、燃料ガス回収部、及び燃料ガス排出部を備え、内部に、気泡受け部、気泡受け部に接続されたベルト、ベルトに接続された回転体、並びに所望により回転体に連結された発電機を備えることができる高さであることができる。貯水槽の高さは、例えば12~150mである。
 気泡受け部20は、燃料ガスの気泡を受けてベルトを動かすことができる構造を有すればよいが、好ましくは、水及び燃料ガスに対して耐腐食性で軽量の材料で構成されることが好ましい。気泡受け部20は、好ましくはステンレス製、アルミニウム製、チタン製、またはそれらの組み合わせである。
 気泡受け部20は、例えば、立方体、直方体、直径が半球体等であることができる。気泡受け部20の寸法は特に限定されるものではないが、例えば、縦、横及び長さが1mの立方体や、半径が1mの半球体でもよい。
 気泡受け部20は、好ましくは、最下部の気泡受け部20が受けた気泡15による浮力で、気泡受け部20に接続されたベルト30を動かし、ベルト30に接続された回転体40を回転させることができる気泡の受入可能容積を備え、より好ましくは、最下部の気泡受け部20が受けた気泡15による浮力で、気泡受け部20に接続されたベルト30を動かし、ベルト30に接続された回転体40を回転させ、回転体40に連結された発電機で発電することができる気泡の受入可能容積を備える。気泡受け部20の気泡の受入可能容積は、好ましくは0.1~10mである。水の密度を約1000kg/mとすると、上記好ましい受入可能容積を有する1つの気泡受け部に気泡が充填された場合、980~98000N(100~10000kg)の浮力が得られる。
 ベルト30に接続する複数の気泡受け部20同士の間隔は、ベルト30とともに気泡受け部20が回転可能であり、燃料ガス導入部11から導入される気泡15を順次受け入れることができる間隔であればよい。ベルト30に接続する複数の気泡受け部20同士の間隔は、好ましくは、ベルト30とともに定常速度で回転している各気泡受け部20が、各気泡受け部20の気泡15の受入可能容積の好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上の気泡を受け入れることができる間隔である。
 複数の気泡受け部20のうち少なくとも一部の気泡受け部20は、図4に示すように、一部に貫通孔21を有してもよい。気泡受け部20が貫通孔21を備えることにより、気泡受け部20は、燃料ガス導入部11から導入する気泡15による浮力を受けつつ、気泡15の一部を上方に位置する他の気泡受け部に導入することができる。貯水槽の底では水圧が大きく気泡が小さくなるので気泡15の浮力は比較的小さいが、水圧が低い貯水槽の上方では気泡15の体積膨張とともに浮力も大きくなるため、より上方の気泡受け部20に気泡15を導入することにより、より大きな浮力で本装置を動作させることができる。貫通孔21の位置は、気泡受け部20の気泡を受ける箇所であれば特に限定されないが、気泡が集まりやすい気泡受け部20の上部領域が好ましい。貫通孔21の大きさは、燃料ガス導入部11から導入する気泡15の直径と同じか、気泡15より小さいか、または気泡15より大きくてもよい。貫通孔21の大きさは、次々に水14中に導入され気泡受け部20が受ける気泡15の合計体積に応じて、気泡受け部20が浮力を受けつつ、より上方の気泡受け部20に気泡を移動可能な大きさであることができる。
 貫通孔21は好ましくは開閉可能であり、より好ましくは開度を調節可能である。開度とは、貫通孔21が開く度合いである。貯水槽の底部に近い領域では貫通孔21が開き、貯水槽の上部に近い領域では貫通孔21が閉じてもよい。貯水槽の中部に近い領域では貫通孔21が半分開いてもよい。本装置は、好ましくは、貫通孔21の開閉を行う制御部を備える。貫通孔21の開閉は手動または電動で行うことができる。貫通孔21を電動で開閉する場合は、動作させるための電力を外部から得てもよいが、好ましくは本装置の発電機で発電した電力を利用してもよい。
 複数の気泡受け部20の形状及び寸法は互いに異なっていてもよい。複数の気泡受け部20のうち一部の気泡受け部20の水平方向の寸法が他の気泡受け部20の水平方向の寸法よりも大きい場合、下方に位置する水平方向の寸法が小さい気泡受け部20からあふれた気泡を、上方に位置する水平方向の寸法が大きい気泡受け部20で補足することができる。
 ベルト30は少なくとも一部が水中に配置され、気泡受け部20に接続され、回転体40を動かすことができる構成を有すればよく、金属製のチェーンベルト、ゴム製のベルト等であることができる。
 回転体40は、ベルトの力を発電機に伝える構造であればよく、従来の発電機に用いられる回転体であることができる。
 発電機は、従来用いられている発電機であることができる。発電機は好ましくはトルク調整機能を有する。本装置を始動する際、燃料ガス導入部から貯水槽に導入する気泡は貯水槽の下部にあり、気泡の浮力が比較的小さいため、発電機のトルクは小さくてもよい。気泡による浮力で気泡受け部に接続されたベルトを動かしながら気泡受け部を上昇させるにつれて浮力が増加するため、発電機のトルクを大きくしてもよい。発電機は、好ましくは、蓄電装置と接続される。これにより、発電機で発電した電気を蓄電装置に蓄電し、必要なときに蓄電した電気を外部に送電等することができる。
 浮力発電装置100の燃料ガス導入部11は、従来システムにおける液化ガスの貯蔵容器に接続された気化部70と接続され得る。気化部70においては、液化ガスを気化して燃料ガスを生成し、気化した燃料ガスを燃料ガス導入部11に搬送可能に構成される。
 浮力発電装置100の燃料ガス排出部12は、従来システムにおける燃料ガスの使用部80に接続され得る。使用部80は、例えば、従来システムにおけるLNG発電においては、汽力発電、ガスタービン発電、またはコンバインド・サイクル発電におけるボイラー、タービン、またはそれらの組み合わせであることができる。
 貯水槽10は、図2に示すようなU字形状でもよい。図2は、本装置の別の例の断面模式図である。図2に示す浮力発電装置100は、気泡受け部20、気泡受け部20に接続されたベルト30、ベルトに接続された回転体40、及び回転体40に連結された発電機(図示せず)を含む。図2に示す浮力発電装置100においては、気泡受け部20に接続されたベルト30の一部とベルトに接続された回転体40の一方が貯水槽10内に配置され、回転体40の他方は貯水槽10の外部であって壁部60の内部に備えられ、回転体40に連結された発電機は、壁部60の内部または外部のいずれに配置してもよい。
 貯水槽10が図2に示すようなU字形状の場合、燃料ガス導入部11は貯水槽10に備えられ、貯水槽10の少なくとも上部を取り囲む壁部60で構成された燃料ガス回収部16に燃料ガスを回収して、壁部60が備える燃料ガス排出部12から燃料ガスを排出することができる。壁部60の形状及び材質は、貯水槽10、燃料ガス回収部及び燃料ガス排出部を備え、気体の燃料ガスを燃料ガス排出部以外からは外部に漏らさない耐圧密閉構造を有するものであれば特に限定されない。壁部60の材質は、例えば、従来のLNGのタンクまたは配管に用いられている鋼製であることができる。
 壁部60は、好ましくは、壁部60の内部に、水14の水面から放出される燃料ガスを壁部60との間で回収して燃料ガス排出部12から排出可能な位置に、少なくとも1段の仕切り部61を備える。図2に例示する壁部60は、2段の仕切り部61を備える。壁部60と最上段の仕切り部61とで燃料ガス回収部16を構成することができるので、燃料ガス排出部12から燃料ガスをより効率良く排出することができる。仕切り部61は、装置点検用の足場としても使用可能である。
 図2における貯水槽10は、燃料ガス導入部11を備え、水14を内部に貯留可能な構成を有するものであれば特に限定されず、例えば、従来のLNGのタンクまたは配管に用いられている鋼製であることができる。
 図2における貯水槽10の高さは、内部に貯留する水14の水深に応じて決めればよいが、燃料ガス導入部11を備え、気泡受け部20及び気泡受け部に接続されたベルト30の少なくとも一部並びに回転体40の一方を収容可能な高さを有し、浮力発電装置100が、壁部60との間に、燃料ガス回収部16、ベルトに接続された回転体40の他方、及び所望により回転体に連結された発電機を備えることができる高さであることができる。貯水槽10のU字部分のそれぞれの幅は、気泡受け部20を貯水槽の水中を移動させるときに水から受ける抵抗が小さくなるように、気泡受け部20と貯水槽との間で水がスムーズに移動可能なスペースを有する幅であることができる。貯水槽の幅は、気泡受け部20の幅方向の寸法の好ましくは1.2倍以上、より好ましくは1.3倍以上、さらに好ましくは1.4倍以上、さらにより好ましくは1.5倍以上である。下記の図3に示す貯水槽の幅についても同様である。貯水槽の高さは、例えば12~150mである。図2に示す浮力発電装置のその他の構成は図1と共通である。
 貯水槽10は、図3に示すようなO字形状の断面を有してもよい。図3は、本装置の別の例の断面模式図である。図3に示す浮力発電装置100は、水を貯水可能に構成された円柱形状、例えばパイプ形状の貯水槽10を備える。パイプ形状は、平面、曲面、またはそれらの組み合わせで構成される。浮力発電装置100は、さらに、燃料ガス導入部11、燃料ガス回収部16、及び燃料ガス排出部12を備える。図3に示す浮力発電装置100においては、燃料ガス導入部11、燃料ガス回収部16、及び燃料ガス排出部12は貯水槽10に備えられる。
 浮力発電装置100はまた、気泡受け部20、気泡受け部20に接続されたベルト30、ベルトに接続された回転体40、及び回転体40に連結された発電機(図示せず)を含む。気泡受け部20は一つまたは複数であり、好ましくは複数である。図3に示す浮力発電装置100においては、気泡受け部20、気泡受け部20に接続されたベルト30、及びベルトに接続された回転体40は、貯水槽10に備えられ、回転体40に連結された発電機は、貯水槽10の内部または外部のいずれに配置してもよい。
 図3に例示の浮力発電装置100における、圧力が加えられた気体の燃料ガスの導入、気泡15の形成、ベルト30の動作、回転体40の回転、発電機による発電、及び燃料ガスの回収及び排出、並びにその他の構成は、図1に例示の浮力発電装置と同様である。
 本開示はまた、液化ガスを気化した圧力が加えられた燃料ガスを、水を貯水する貯水槽の水中に導入して、前記水中に気泡を形成すること、前記気泡を、前記貯水槽の内部に配置された気泡受け部で受けること、前記気泡による浮力によって前記気泡受け部に接続されたベルトを動かして、前記ベルトに接続された回転体を回転させて、前記回転体に連結された発電機で発電すること、前記気泡として前記水中に導入した前記燃料ガスを、前記水の水面よりも上部で回収すること、及び前記回収した燃料ガスを外部に排出することを含む、浮力発電方法を対象とする。
 本開示の浮力発電装置及び浮力発電方法に用いられる燃料ガスは、好ましくは、天然ガス、プロパンガス、水素ガス、またはアンモニアガスである。これら燃料ガスを液化したものは、液化天然ガス、液化プロパンガス、液化水素ガス、または液化アンモニアガスである。
 液化天然ガス(以下、LNGともいう)は、気体の燃料ガスである天然ガスを、輸送するためにマイナス162℃に冷却、凝縮し、体積を600分の1にしたものであり、燃焼時のCO排出量や窒素酸化物が他の化石燃料より少なく、比較的クリーンな化石燃料である。
 天然ガスは、都市ガスの主原料として用いられ、マイナス162℃まで冷却して液化したLNGとして貯蔵・輸送される。従来のLNG発電においては、LNGが専用タンカー等のLNG船を用いて海外から運搬され、LNG基地の専用のLNGタンクに貯蔵される。LNGタンクから送出されたLNGは、気化器を通過することで気化され、常温の天然ガスとして電力燃料等に使用される。
 従来のLNG発電においては、LNGを気化した天然ガス(NG)を燃やした熱で高温・高圧の蒸気を形成し、この蒸気を使って蒸気タービンの羽根車を回し、タービンにつないだ発電機を動かして発電することができる。
 図5に、本開示の浮力発電装置を組み込んだLNG発電システムの一例を示す。図5に示すLNG発電システムにおいては、LNGは、LNG船81から、アームローディング及び配管を通してLNGタンク82に貯蔵される。マイナス162℃のLNGは、LNGタンク82からLNGポンプで気化部70に送られ、気化部70を通ると常温の天然ガス(NG)になり、配管を通って本浮力発電装置100に送られる。気化部70においては、気化器の伝熱管の外面に海水を流して、気化器の内部のLNGを気化させる。
 本浮力発電装置100で浮力発電に使用された天然ガス(NG)は、発電所や工場等の天然ガスの使用部80に送られる。発電所や工場のボイラー中で天然ガス(NG)を燃やした熱で高温、高圧の蒸気を発生させて、この蒸気を使って蒸気タービンの羽根車を回し、タービンにつないだ発電機を動かして発電する。
 本装置の配置場所は、LNGを気化する装置を備える場所であれば、特に限定されないが、LNGを運搬するタンカーが寄港する港若しくは海岸、LNGを利用した発電装置若しくはLNG発電所に隣接した場所、またはLNGを貯蔵したガスボンベを配置した建物内であることができる。本装置を、空きビル、閉鎖された学校等に配置することにより、建物の再利用も可能である。例えば、図1~3に例示する本装置を、空きビルの躯体に固定して配置することができる。
 LNGボンベが配置されLNGを用いた冷暖房設備を備えるビル等の建物に、本装置を設置することによって、天然ガスを使用して冷暖房を行うとともに、LNGの気化ガスを用いて浮力発電を同時に行うことが可能になる。
 上記のように、本装置によれば、天然ガス(NG)を冷却、凝縮してLNGにするときのエネルギーの一部を再利用することが可能である。本装置によれば、LNG以外にも、液化プロパンガス(LPG)、液化水素ガス、液化アンモニアガス等の液化燃料ガスを使用する従来システムにける液化時のエネルギーの一部を再利用することが可能である。
 LPGは、一般的に、ボンベ等の貯蔵容器に充填して、都市ビルや家庭等の消費場所に配送される。これらの消費場所においては、LPGを気化して事務所や家庭で燃料ガスとして用いられる。本装置を、LPGの貯蔵容器と都市ビルや家庭等の消費場所との間に設置することにより、LPGの気化ガスを浮力発電に使用することができる。
 液化水素ガスは、一般的に、タンクローリー等の移動貯蔵容器に充填して、水素ステーション等の消費場所に配送される。本装置を、液化水素ガスの貯蔵容器と水素ステーション等の消費場所との間に設置することにより、液化水素ガスの気化ガスを浮力発電に使用することができる。
 アンモニアは加圧・冷却により容易に液化し、液化したものは通常、パイプラインで送るか、タンカー若しくはタンクローリーで運ばれ、またはボンベに詰めて搬送される。本装置を、液化アンモニアの貯蔵容器とアンモニアガスの消費場所との間に設置することにより、液化アンモニアの気化ガスを浮力発電に使用することができる。
 100  浮力発電装置
 10  貯水槽
 11  燃料ガス導入部
 12  燃料ガス排出部
 14  水
 15  気泡
 16  燃料ガス回収部
 20  気泡受け部
 21  気泡受け部の貫通孔
 30  ベルト
 40  回転体
 60  壁部
 61  仕切り部
 70  気化部
 80  使用部
 81 LNG船
 82 LNGタンク

 

Claims (14)

  1.  水を貯水可能に構成された貯水槽、
     燃料ガス導入部、前記貯水可能な水の水面よりも上方且つ前記貯水槽内に位置する燃料ガス回収部、及び前記燃料ガス回収部に連結された燃料ガス排出部、並びに
     気泡受け部、前記気泡受け部に接続されたベルト、前記ベルトに接続された回転体、及び前記回転体に連結された発電機
     を含み、
     前記貯水槽が、前記燃料ガス導入部、前記燃料ガス回収部、及び前記燃料ガス排出部を備え、
     前記燃料ガス導入部は、液化ガスを気化した圧力が加えられた燃料ガスを前記貯水槽に導入可能に構成され、
     前記燃料ガス回収部は、前記貯水槽に導入される燃料ガスを、前記貯水槽に貯水可能な水の水面よりも上部且つ前記貯水槽内で回収可能に構成され、
     前記燃料ガス排出部は、前記燃料ガス回収部で回収される燃料ガスを外部に排出可能に構成され、
     前記燃料ガス導入部から前記貯水槽に導入される前記燃料ガスの気泡を前記気泡受け部で受け、前記気泡の浮力によって前記気泡受け部に接続されたベルトを動かし、前記ベルトに接続された回転体を回転させて、前記回転体に連結された前記発電機で発電する
     浮力発電装置。
  2.  前記燃料ガス導入部は、前記燃料ガス導入部に接続された外部の配管から、液化ガスを気化した圧力が加えられた燃料ガスにより、前記貯水槽の内部の水圧よりも高い圧力が加えられたときに、前記貯水槽の内部に前記外部の配管から前記燃料ガスを導入可能であり、且つ前記貯水槽の内部の水が前記燃料ガス導入部に接続された前記外部の配管側に漏れない開閉弁の構成を備える、請求項1に記載の浮力発電装置。
  3.  前記貯水槽は、前記燃料ガスを前記燃料ガス排出部以外からは外部に漏らさない鋼製の耐圧密閉構造を有する、請求項1または2に記載の浮力発電装置。
  4.  前記貯水槽は、前記貯水槽の底部及び側部に前記燃料ガス導入部を備える、請求項1~3のいずれか一項に記載の浮力発電装置。
  5.  前記燃料ガス導入部から導入する前記燃料ガスの圧力が、前記燃料ガス導入部における水圧よりも1気圧以上高い、請求項1~4のいずれか一項に記載の浮力発電装置。
  6.  前記気泡受け部は、ステンレス製、アルミニウム製、チタン製、またはそれらの組み合わせである、請求項1~5のいずれか一項に記載の浮力発電装置。
  7.  前記気泡受け部を複数備え、前記複数の気泡受け部のうち少なくとも一部の気泡受け部の形状及び寸法が互いに異なり、下方であふれた気泡を上方で補足することができる、請求項1~6のいずれか一項に記載の浮力発電装置。
  8.  液化ガスを気化した圧力が加えられた燃料ガスを、燃料ガス導入部を介して水を貯水する貯水槽の水中に導入して、前記水中に気泡を形成すること、
     前記気泡を、前記貯水槽の内部に配置された気泡受け部で受けること、
     前記気泡による浮力によって前記気泡受け部に接続されたベルトを動かして、前記ベルトに接続された回転体を回転させて、前記回転体に連結された発電機で発電すること、
     前記気泡として前記水中に導入した前記燃料ガスを、前記水の水面よりも上部且つ前記貯水槽内の燃料ガス回収部で回収すること、及び
     前記回収した燃料ガスを前記貯水槽の燃料ガス排出部から外部に排出すること
     を含み、
     前記貯水槽が、前記燃料ガス導入部、前記燃料ガス回収部、及び前記燃料ガス排出部を備え、
     前記燃料ガス導入部は、液化ガスを気化した圧力が加えられた燃料ガスを前記貯水槽に導入可能に構成される、
     浮力発電方法。
  9.  前記燃料ガス導入部は、前記燃料ガス導入部に接続された外部の配管から、液化ガスを気化した圧力が加えられた燃料ガスにより、前記貯水槽の内部の水圧よりも高い圧力が加えられたときに、前記貯水槽の内部に前記外部の配管から前記燃料ガスを導入可能であり、且つ前記貯水槽の内部の水が前記燃料ガス導入部に接続された前記外部の配管側に漏れない開閉弁の構成を備える、請求項8に記載の浮力発電方法。
  10.  前記貯水槽は、前記燃料ガスを前記燃料ガス排出部以外からは外部に漏らさない鋼製の耐圧密閉構造を有する、請求項8または9に記載の浮力発電方法。
  11.  前記貯水槽は、前記貯水槽の底部及び側部に前記燃料ガス導入部を備える、請求項8~10のいずれか一項に記載の浮力発電方法。
  12.  前記燃料ガス導入部から導入する前記燃料ガスの圧力が、前記燃料ガス導入部における水圧よりも1気圧以上高い、請求項8~11のいずれか一項に記載の浮力発電方法。
  13.  前記気泡受け部は、ステンレス製、アルミニウム製、チタン製、またはそれらの組み合わせである、請求項8~12のいずれか一項に記載の浮力発電方法。
  14.  前記気泡受け部を複数備え、前記複数の気泡受け部のうち少なくとも一部の気泡受け部の形状及び寸法が互いに異なり、下方であふれた気泡を上方で補足することができる、請求項8~13のいずれか一項に記載の浮力発電方法。
PCT/JP2022/032759 2021-09-01 2022-08-31 気泡を利用した浮力発電装置及び気泡を利用した浮力発電方法 WO2023033041A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021142760A JP7009004B1 (ja) 2021-09-01 2021-09-01 気泡を利用した浮力発電装置及び気泡を利用した浮力発電方法
JP2021-142760 2021-09-01
JP2021188249A JP7134450B1 (ja) 2021-09-01 2021-11-19 気泡を利用した浮力発電装置及び気泡を利用した浮力発電方法
JP2021-188249 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023033041A1 true WO2023033041A1 (ja) 2023-03-09

Family

ID=85411322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032759 WO2023033041A1 (ja) 2021-09-01 2022-08-31 気泡を利用した浮力発電装置及び気泡を利用した浮力発電方法

Country Status (2)

Country Link
JP (1) JP7134450B1 (ja)
WO (1) WO2023033041A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099137A1 (ja) * 2008-02-06 2009-08-13 Takeshige Shimonohara 発電装置
JP2011074915A (ja) * 1995-02-03 2011-04-14 Independent Natural Resources Inc 天然ガスパイプラインの過剰圧力を使用して動力を発生する方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074915A (ja) * 1995-02-03 2011-04-14 Independent Natural Resources Inc 天然ガスパイプラインの過剰圧力を使用して動力を発生する方法
WO2009099137A1 (ja) * 2008-02-06 2009-08-13 Takeshige Shimonohara 発電装置

Also Published As

Publication number Publication date
JP7134450B1 (ja) 2022-09-12
JP2023035769A (ja) 2023-03-13

Similar Documents

Publication Publication Date Title
US8415814B2 (en) Systems and methods for producing, shipping, distributing, and storing hydrogen
CN107110427B (zh) 用于冷却液化气的装置和方法
KR100743904B1 (ko) 액화천연가스운반선 내에서의 액화천연가스 재기화 설비 및 방법
KR102462361B1 (ko) 액화 가스 냉각 방법
CN109154421B (zh) 用于向消耗气体的构件供给可燃气体并用于液化所述可燃气体的装置
JP2009529455A (ja) 周囲空気を用いたlngの船上再ガス化中のバラスト水管理
WO2005019721A2 (en) Hydrogen handling or dispensing system
US20100205979A1 (en) Integrated LNG Re-Gasification Apparatus
SG173272A1 (en) Floating type lng regasification unit
Kim et al. Operation scenario-based design methodology for large-scale storage systems of liquid hydrogen import terminal
US20220074373A1 (en) System and method for sustainable generation of energy
WO2007109017A2 (en) Dynamic combustion chamber
WO2023033041A1 (ja) 気泡を利用した浮力発電装置及び気泡を利用した浮力発電方法
JP2023035712A (ja) 気泡を利用した浮力発電装置及び気泡を利用した浮力発電方法
US20140260253A1 (en) Thermal energy conversion system for regasification of cryogenic liquids
WO2024048754A1 (ja) 風力/浮力ハイブリッド発電装置及び風力/浮力ハイブリッド発電方法
JP6338517B2 (ja) 可搬式液化天然ガス供給設備
KR20220152592A (ko) 수소 운반선의 가스 관리시스템
US20240230029A9 (en) Combined high pressure receptacles
WO2024166542A1 (ja) ガス循環システム及び輸送機械
KR101716487B1 (ko) 이중 튜브 구조의 비행선 및 그를 이용한 전기에너지 공급 및 수소 가스 운송시스템
WO2018139997A1 (en) Floating liquid natural gas storage, regasification, and generation vessel
US20240240761A1 (en) Hybrid marine regasification system
Andriani et al. Performance Analysis of a Renewable‐Powered Multi‐Gas Floating Storage and Regasification Facility for Ammonia Vessels With Reconversion to Hydrogen
JPH03224897A (ja) 宇宙機のエネルギー供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22864623

Country of ref document: EP

Kind code of ref document: A1