WO2023032919A1 - 黒鉛-銅複合材料、それを用いたヒートシンク部材、および黒鉛-銅複合材料の製造方法 - Google Patents
黒鉛-銅複合材料、それを用いたヒートシンク部材、および黒鉛-銅複合材料の製造方法 Download PDFInfo
- Publication number
- WO2023032919A1 WO2023032919A1 PCT/JP2022/032419 JP2022032419W WO2023032919A1 WO 2023032919 A1 WO2023032919 A1 WO 2023032919A1 JP 2022032419 W JP2022032419 W JP 2022032419W WO 2023032919 A1 WO2023032919 A1 WO 2023032919A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- graphite
- composite material
- particles
- graphite particles
- Prior art date
Links
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 101
- 239000010949 copper Substances 0.000 title claims abstract description 101
- 239000002131 composite material Substances 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000002245 particle Substances 0.000 claims abstract description 104
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 97
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 92
- 239000010439 graphite Substances 0.000 claims abstract description 92
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 77
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000005751 Copper oxide Substances 0.000 claims abstract description 26
- 229910000431 copper oxide Inorganic materials 0.000 claims abstract description 26
- 238000005245 sintering Methods 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 19
- 238000000465 moulding Methods 0.000 claims description 15
- 238000002156 mixing Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 239000006061 abrasive grain Substances 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000013507 mapping Methods 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(i) oxide Chemical compound [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000349 field-emission scanning electron micrograph Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241001424392 Lucia limbaria Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3736—Metallic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/03—Press-moulding apparatus therefor
- B22F2003/031—Press-moulding apparatus therefor with punches moving in different directions in different planes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
- B22F2003/1051—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
Definitions
- the present invention relates to a graphite-copper composite material, a heat sink member using the same, and a method for producing the graphite-copper composite material.
- High thermal conductivity is required for materials for heat dissipation parts of semiconductor equipment.
- copper has a high thermal conductivity, it also has a high coefficient of thermal expansion.
- a metal-graphite composite material has been proposed as a composite material that can be obtained at low cost by reducing the coefficient of thermal expansion without impairing the high thermal conductivity of copper (see, for example, Patent Document 1).
- the metal-graphite composite material of Patent Document 1 is disclosed to have high cooling reliability and a low coefficient of linear expansion.
- an object of the present invention is to provide a graphite-copper composite material having a higher thermal conductivity than conventional ones, a heat sink member using the same, and a method for producing the graphite-copper composite material.
- the present inventors have found that by limiting the thickness of the copper oxide layer at the interface between the graphite particles and the copper layer to 100 nm or less, a higher thermal conductivity than before can be achieved. It has been found that a graphite-copper composite material with
- the present invention provides a graphite-copper composite material containing a copper layer and scale-like graphite particles laminated via the copper layer, and having a copper volume fraction of 3 to 30%, wherein the copper layer
- the graphite-copper composite material is characterized in that the thickness of the copper oxide layer at the interface between the and the scale-like graphite particles is 100 nm at maximum.
- the present invention also provides a heat sink member using the aforementioned graphite-copper composite material.
- the present invention provides a method for producing the aforementioned graphite-copper composite material, comprising: pre-treating graphite particles to obtain flaky graphite particles; A step of obtaining a molding raw material by mixing copper particles of 40% or less, and a step of sintering the compact obtained by molding the molding raw material by a multiaxial electric sintering method. manufacturing method.
- FIG. 1 is an example of EDS mapping of a laminated cross-section of a graphite-copper composite. It is a figure explaining an example of the thin-layer method of a graphite particle.
- FIG. 4 is a diagram illustrating another example of a thin layer method of graphite particles. It is a schematic diagram explaining a multi-axis electric current sintering apparatus. It is the schematic explaining a cooling board
- the graphite-copper composite material of the present invention (hereinafter also simply referred to as a composite material) is a sintered body obtained using flake graphite particles and copper particles as raw materials.
- the scale-like graphite particles are laminated via a copper layer.
- "through the copper layer” means that the scale-like graphite particles are connected by the adjacent copper layer. That is, the flake graphite particles in the composite material are electrically continuous.
- the thickness of the copper layer in the composite material is not particularly limited, it is generally about 3 to 25 ⁇ m.
- the volume fraction of copper in the composite material is 3-30%.
- the thermal conductivity of the composite material of the present invention is very high due to the high content of graphite with high thermal conductivity of 70-97%. Copper acts as a binder in the composite.
- the volume ratio of graphite to copper (graphite:copper) in the composite material is preferably 70:30 to 97:3.
- the volume ratio (graphite:copper) is more preferably 84:16 to 95:5.
- the volume fraction of copper in the composite material can be adjusted by adjusting the mixing ratio of the raw materials during production.
- the thickness of the copper oxide layer at the interface between the copper layer and the scale-like graphite particles is 100 nm or less.
- Copper oxide refers to copper (II) oxide, copper (I) oxide, etc., and is generated at the interface between the copper layer and the scale-like graphite particles due to oxygen in the copper particles used as the raw material for production.
- the present inventors focused on the copper oxide layer in the composite material and made it possible to increase the thermal conductivity by limiting the thickness of this copper oxide layer.
- a cross-section polisher was used to prepare a laminated cross-section in the composite material, and the cross-section was subjected to carbon vapor deposition.
- the thickness of the copper oxide layer present at the interface can be determined by observing the cross section of the laminate with a field emission scanning electron microscope (FE-SEM) and performing elemental mapping by energy dispersive X-ray spectroscopy (EDS).
- the lamination cross section is a cross section in which the laminated scaly graphite particles are observed. This plane includes the direction in which the graphite particles are pressed.
- the longitudinal direction of the column corresponds to the lamination direction of the scale-like graphite particles.
- an arbitrary region (approximately 3.2 ⁇ m ⁇ 4.2 ⁇ m) of the lamination cross section of the composite material is defined as an observation region.
- the observation area is observed by FE-SEM, and an FE-SEM image is taken at an acceleration voltage of 3 kV and an imaging magnification of 30000 times.
- Cu-mapping and O-mapping were obtained by EDS in the same field of view as this FE-SEM image, and by superimposing these two mapping data, the copper oxide layer at the interface between the copper layer and the scale-like graphite particles was determined. can be confirmed.
- FIG. 1 An example of the obtained EDS mapping is shown in FIG.
- a copper oxide layer 16 with a maximum thickness of about 100 nm is confirmed at a part of the interface between the scale-like graphite particles 12 and the copper layer 14 .
- Ten or more observation regions are similarly observed to confirm the thickness of the copper oxide layer 16 at the interface.
- a copper oxide layer 16 of about 50 to 90 nm is observed at the interface between the copper layer 12 and the scale-like graphite particles 14, but the copper oxide layer exceeding 100 nm is Not confirmed.
- the thickness of the copper oxide layer 16 is preferably 90 nm or less, more preferably 50 nm or less.
- the composite material of the present invention preferably has a thermal conductivity of 850 W/(m ⁇ K) or more.
- the thermal conductivity is a value measured in a direction perpendicular to the direction in which the flake graphite particles are laminated.
- the thermal conductivity is more preferably 880/(m ⁇ K) or more.
- the thermal conductivity was measured by cutting out a sample of predetermined dimensions (outer diameter 10 mm x thickness 2.5 mm) from the central part of the composite material and using NETZSCH LFA447 in accordance with the laser flash method (JIS H 7801: 2005). An average of the thermal conductivity of five samples measured and cut from the composite is used.
- the composite material of the present invention can be produced by subjecting graphite particles to pretreatment to obtain scale-like graphite particles, mixing them with predetermined copper particles to obtain a molding raw material, molding this, and sintering it under predetermined conditions. can. Each step will be described below.
- Graphite pretreatment Pretreatment of graphite particles (hereinafter sometimes referred to as thinning) is performed by applying a shearing force to the graphite particles to reduce their thickness.
- the graphite particles to be used are not particularly limited, but generally have a long side of about 2000 to 10 ⁇ m and a thickness of about 200 to 20 ⁇ m.
- Usable graphite includes, for example, +3299 (manufactured by Ito Graphite Industry Co., Ltd.).
- a sieve 21 on which graphite particles 23 are placed and a whetstone 22 that can reciprocate in the horizontal direction in contact with the graphite particles 23 can be used.
- the length of the long side of the obtained scaly graphite particles can be selected according to the mesh size of the sieve 21 to be used.
- the mesh size of the sieve 21 can be, for example, about 53 ⁇ m.
- the whetstone 22 is preferably a rough whetstone to a medium whetstone, and preferably uses alundum or natural diamond as abrasive grains.
- the thickness of the graphite particles 23 is reduced by placing the graphite particles 23 on the sieve 21 and reciprocating the grindstone 22 in the horizontal direction to apply a shearing force.
- the sieve 21 removes those that have internal cavities due to the shearing force and those that are brittle and easily crumbled. As a result, the thickness of the obtained flake graphite particles is reduced and the density is increased. Furthermore, impurities in the graphite particles are removed, leading to an improvement in purity.
- By changing the size of the abrasive grains used in the treatment and the opening of the sieve it is possible to obtain flaky graphite particles of various sizes.
- the whetstone 30b is a rotatable rotary whetstone.
- the grindstones 30a and 30b have metal plates 31a and 31b, respectively, and abrasive grains 33a and 33b such as diamond are provided on the opposing surfaces.
- the abrasive grains 33a and 33b are fixed by bonding metal members 32a and 32b such as plating, and the graphite particles 23 to be processed are arranged between the abrasive grains 33a and 33b.
- a scale-like graphite particle has a structure in which a plurality of graphite flakes are piled up.
- the thickness of the scale-like graphite particles can be adjusted by the type of graphite particles used, pretreatment conditions, and the like.
- the thickness of the flake graphite particles is preferably 30 ⁇ m or less.
- Such pretreatment fixes the shape of the flake graphite particles. For example, when the sieve 21 with a mesh size of 53 ⁇ m is used, graphite flake particles with a long side of 60 ⁇ m or more are obtained.
- Copper particles having an oxygen concentration of 0.40% or less are used as the copper particles. Copper particles conventionally used in the production of composite materials have an oxygen concentration of the order of 0.42%. The oxygen concentration in the copper particles can be confirmed by the high frequency combustion-infrared absorption method. Since the thermal conductivity of the composite material improves as the oxygen concentration decreases, the oxygen concentration in the copper particles is more preferably 0.35% or less, and even more preferably 0.25% or less.
- the volume-based median diameter of the copper particles can be about 1.5 ⁇ m or less.
- a composite material with stable thermal conductivity and workability can be obtained.
- Copper particles having a median diameter of 1.5 ⁇ m or less can be produced by any method.
- copper particles having a desired particle size can be obtained by a chemical reduction method or a physical manufacturing method.
- the scale-like graphite particles obtained by the pretreatment and the predetermined copper particles are blended in a predetermined ratio and mixed to obtain a molding raw material.
- mixing either dry mixing or wet mixing may be performed.
- the mixing ratio of the raw materials is selected so that the volume ratio of graphite to copper (graphite:copper) in the composite material is 70:30 to 97:3.
- the volume ratio (graphite:copper) is preferably selected to be 84:16 to 95:5.
- a small amount (approximately 40 g or less) of the molding raw material is filled into a predetermined mold, and compacted at a pressure of approximately 3 to 15 MPa using, for example, a hydraulic hand press.
- a mold for example, a SUS mold having a diameter of 30 mm can be used. Filling of the molding raw material and compaction are repeated to produce a compact of a desired size.
- the multi-axis electric sintering apparatus 40 shown in FIG. 4 has a carbon mold 44 containing a molded body, which is arranged in a vertical direction pressing shafts 45a, 45b, horizontal heating shafts (A) 47a, 47b and heating shafts.
- (B) 49a and 49b can be fixed in the vacuum vessel 42;
- the heating shafts (A) 47a, 47b and the heating shafts (B) 49a, 49b are configured to be alternately energized.
- the heating shaft (A) is energized in the directions of arrows x1 and x2, and the heating shaft (B) is energized in the directions of arrows y1 and y2.
- pressure shafts 45a, 45b and heating shafts 47a, 47b, 49a, 49b are separated. Specifically, the pressure axes 45a and 45b are in the z-axis direction, the heating axes (A) 47a and 47b are in the x-axis direction, and the heating axes (B) 49a and 49b are in the y-axis direction.
- the pressure inside the vacuum vessel 42 is 100 Pa or less, preferably 50 Pa or less in order to suppress oxidation deterioration of parts in the apparatus. Reduce the pressure to Then, the heating shafts (A) 47a and 47b are energized while applying pressure up to 10 MPa in the arrow z1 direction and the arrow z2 direction by the vertical pressing shafts 45a and 45b, and the temperature is about 650 to 750°C, preferably 670 to 730°C. Heat to about °C.
- the pressure shafts 45a and 45b in the vertical direction pressurize up to 30 to 100 MPa in the direction of the arrow z1 and the direction of the arrow z2. Heat to about 970°C.
- the pressure at this time is preferably about 30 to 100 MPa, more preferably about 40 to 70 MPa.
- the conditions for pressurization and temperature rise during sintering are not limited to those described above, and can be set as appropriate.
- the heating shafts (A) 47a and 47b are energized to about 650 to 750 ° C., preferably 670 to 730. Heat to about °C.
- the pressure shafts 45a and 45b in the vertical direction pressurize up to 30 to 100 MPa in the direction of the arrow z1 and the direction of the arrow z2. Heat to about 970°C.
- the pressure at this time is preferably about 30 to 100 MPa, more preferably about 40 to 70 MPa.
- the heating shafts (A) 47a and 47b are energized to heat to about 650 to 750°C, preferably about 670 to 730°C.
- the pressure shafts 45a and 45b in the vertical direction pressurize up to 30 to 100 MPa in the direction of the arrow z1 and the direction of the arrow z2. Heat to about 970°C.
- the pressure at this time is preferably about 30 to 100 MPa, more preferably about 40 to 70 MPa.
- the composite material of the present invention has a copper oxide layer at the interface between the copper layer and the scaly graphite particles. is 100 nm or less. By setting the thickness of the copper oxide layer to 100 nm or less, the composite material of the present invention has enhanced thermal conductivity without impairing conventional properties.
- the composite material of the present invention can be suitably used as a radiator plate (heat sink member).
- Heat sink members are used in a wide range of fields such as wireless communication fields, electronic control fields, and optical communication fields. Specific applications include power semiconductor modules, optical communication modules, projectors, Peltier coolers, water coolers, and LED heat dissipation fans.
- Fig. 5 shows an example of a cooling board using a heat sink.
- the cooling substrate 55 includes a heat sink 50 and a cooling layer 54 .
- the heat sink 50 has an electrical insulation layer 52 and a wiring layer 51 that are sequentially laminated on a stress buffer layer 53 .
- a heat-generating element such as a semiconductor element is mounted on the mounting surface 51a of the upper surface of the wiring layer 51.
- the composite material of the present invention can be used for at least one of the stress buffer layer 53 and the wiring layer 51 .
- the heat generated by the exothermic elements mounted on the mounting surface 51a of the radiator plate 50 is conducted sequentially to the wiring layer 51, the electrical insulation layer 52, the stress buffer layer 53, and the cooling layer 54, and is dissipated from the cooling layer 54. . Since the composite material of the present invention has a higher thermal conductivity than conventional ones, it can cool the heat-generating element more efficiently than conventional ones to lower its temperature.
- Example 1 Commercially available raw material graphite was pretreated by the method described with reference to FIG.
- the upper and lower whetstones were equipped with diamond as abrasive grains, and 5 g of graphite particles were inserted with 2 mL of water between them.
- the grindstone was rotated at 10 Hz to pre-treat the graphite particles for about 20 seconds.
- the pressure at that time was 0.5 MPa.
- the treated graphite particles were classified with a sieve with an opening of 500 ⁇ m, and the graphite particles remaining on the upper surface of the sieve were taken out and dried to obtain flake graphite particles as a raw material.
- the copper particles commercially available copper particles having an oxygen concentration of 0.22% were prepared.
- the molded body that was taken out was placed in a cylindrical carbon mold and sintered by a multiaxial electric current sintering method.
- a carbon mold 44 is placed in the vacuum vessel 42 of the multiaxial electric sintering apparatus 40 shown in FIG. B) Fixed with 45a and 45b.
- the pressure inside the vacuum container 42 was reduced to 5 Pa by a rotary pump, and the temperature was raised by increasing the output of the apparatus power supply while pressurizing the vacuum container 42 to 10 MPa in the directions of arrows z1 and z2 by means of the vertical pressurizing shafts 45a and 45b. After heating up to 700° C.
- the heating shafts (B) 49a, 49a, 49a, 49b are heated to 50 MPa in the directions of the arrows z1 and z2 by the vertical pressing shafts 45a and 45b. Changed to 49b and heated to 950°C.
- Example 1 After reaching 950° C., the temperature was maintained for 30 seconds, and the output of the power source was lowered to cool the device. After cooling, the carbon mold 44 was removed from the apparatus, and a cylindrical sintered body was obtained from the mold. The same operation was performed five times to produce five sintered bodies, and the composite material of Example 1 was obtained.
- Example 2 A composite material of Example 2 was produced in the same manner as in Example 1, except that the molding raw material was changed so that the volume fraction of copper after sintering was 16%.
- Example 3 A composite material of Example 3 was produced in the same manner as in Example 1, except that the molding raw material was changed so that the volume fraction of copper after sintering was 5%.
- Comparative example 1 A composite material of Comparative Example 1 was produced in the same manner as in Example 1, except that copper particles with an oxygen concentration of 0.42% were used.
- the copper particles used here correspond to those conventionally used in the production of composite materials.
- Comparative example 2 A composite material of Comparative Example 2 was produced in the same manner as in Example 2, except that copper particles with an oxygen concentration of 0.42% were used.
- Comparative Example 3 A composite material of Comparative Example 3 was produced in the same manner as in Example 3, except that copper particles with an oxygen concentration of 0.42% were used.
- the thickness of the copper oxide layer at the interface between the copper layer and the scaly graphite particles was determined, and the thermal conductivity was evaluated. All five composite materials were measured and averaged.
- ⁇ Thickness of copper oxide layer> As described above, the thickness of the copper oxide layer at the interface between the copper layer and the scale-like graphite particles in the composite material was determined.
- ⁇ Thermal conductivity> In preparing a sample for thermal conductivity measurement, first, a plate was cut in the longitudinal direction from the center of the cylinder of the composite material of Examples and Comparative Examples.
- the vertical direction of the cylinder is the direction in which the scale-like graphite particles are laminated.
- This plate was processed to obtain a sample for thermal conductivity measurement having an outer diameter of 10 mm and a thickness of 2.5 mm.
- the thickness direction of the sample is perpendicular to the direction in which the flake graphite particles are laminated (pressing direction).
- the thermal conductivity of the sample was measured in the thickness direction in accordance with the "method for measuring thermal diffusivity of metal by laser flash method (JIS H 7801:2005)".
- the thickness of the copper oxide layer at the interface between the copper layer and the scale-like graphite particles is 85 nm or less. (Examples 1 to 3). It is shown that the thickness of the copper oxide layer can be controlled to 100 nm or less by controlling the oxygen concentration in the copper particles to 0.40% or less.
- the composite materials of these examples have a higher thermal conductivity of 780 W/mK or greater.
- the thickness of the copper oxide layer at the interface between the copper layer and the scale-like graphite particles was 100 nm. has reached 148 nm at maximum.
- the composite materials of the comparative examples are inferior in thermal conductivity at any volume fraction.
- the thermal conductivity of the composite material depends on the thermal conductivity of graphite.
- the oxygen concentration in the copper layer affects the thermal conductivity
- the interface between the copper layer and the scale-like graphite particles greatly affects the thermal resistance of the composite material. From the above results, it can be concluded that reducing the thickness of the copper oxide layer at the interface between the copper layer and the scale-like graphite particles, rather than the amount of oxygen in the entire copper layer in the composite material, reduces thermal resistance and conducts heat. It was confirmed that a lead-copper composite material with a higher yield than before can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Powder Metallurgy (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Carbon And Carbon Compounds (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
そこで、本発明は、従来より高い熱伝導率を備えた黒鉛-銅複合材料、それを用いたヒートシンク部材、および黒鉛-銅複合材料の製造方法を提供することを目的とする。
本発明の黒鉛-銅複合材料(以下、単に複合材料とも称する)は、鱗片状黒鉛粒子と銅粒子とを原料として得られた焼結体である。鱗片状黒鉛粒子は、銅層を介して積層されている。ここで、「銅層を介して」とは、鱗片状黒鉛粒子が隣接する銅層により繋がっていることを意味する。すなわち、複合材料内の鱗片状黒鉛粒子は電気的に連続している。複合材料中の銅層の厚さは特に限定されないが、一般的には3~25μm程度である。
積層断面とは、積層された鱗片状黒鉛粒子が観察される断面であり、具体的には、鱗片状黒鉛粒子を含む成形原料を焼結して複合材料を製造する際、積層された鱗片状黒鉛粒子が加圧される方向を含む面である。複合材料が円柱状の場合、円柱の縦方向が鱗片状黒鉛粒子の積層された方向に相当するので、円柱の縦方向に厚さ2mm程度の板材を切り出し、積層断面を作製する。
本発明の複合材料は、黒鉛粒子に前処理を施して鱗片状黒鉛粒子を得、所定の銅粒子と混合して成形原料とし、これを成形して所定条件で焼結して製造することができる。各工程について、以下に説明する。
(黒鉛前処理)
黒鉛粒子の前処理(以下、薄層化と称することがある)は、黒鉛粒子にせん断力を付与して厚さを低減することにより行われる。用いる黒鉛粒子は特に限定されないが、一般的には長辺が2000~10μm程度、厚さが200~20μm程度である。使用し得る黒鉛としては、例えば、+3299(伊藤黒鉛工業(株)製)等が挙げられる。
銅粒子としては、酸素濃度が0.40%以下の銅粒子が用いられる。複合材料の製造に従来用いられていた銅粒子は、酸素濃度が0.42%程度であった。銅粒子中の酸素濃度は、高周波燃焼-赤外線吸収法により確認することができる。酸素濃度が低いほど複合材料の熱伝導性が向上するので、銅粒子中の酸素濃度は、0.35%以下がより好ましく、0.25%以下であることが更に好ましい。
前処理を施して得られた鱗片状黒鉛粒子と所定の銅粒子とを所定の割合で配合し、混合を行って成形原料を得る。混合にあたっては、乾式混合および湿式混合のいずれを行ってもよい。原料の配合割合は、複合材料における黒鉛と銅との体積比(黒鉛:銅)は、70:30~97:3となるように選択される。熱伝導率と加工性の観点から、体積比(黒鉛:銅)は、84:16~95:5となるように選択することが好ましい。
まず、少量(40g以下程度)の成形原料を所定の成形型に充填して、例えば油圧ハンドプレスを用いて3~15MPa程度の圧力で圧粉する。成形型としては、例えば直径30mmのSUS製型を用いることができる。成形原料の充填と圧粉とを繰り返して、所望の大きさの成形体を作製する。得られた成形体を、多軸通電焼結法により焼結することで、本発明の複合材料となる焼結体が得られる。
市販の原料黒鉛に、図3を参照して説明した方法により前処理を施した。上下の砥石は、砥粒としてダイヤモンドを備えており、その間に、5gの黒鉛粒子を2mLの水とともに挿入した。10Hzで回転砥石を回転させて、20秒間程度の前処理を黒鉛粒子に施した。その際の圧力は、0.5MPaとした。
直径30mmのSUS型に3gの成形原料を投入し、油圧プレスを用いて5MPaの圧力で圧粉した。成形原料の投入、圧粉の作業を10回超える程度に繰り返した成形を行い、SUS型から成形体を取り出した。
真空容器42内をロータリーポンプで5Paまで減圧し、上下方向の加圧軸45a、45bにより矢印z1方向および矢印z2方向に10MPaまで加圧しながら、装置電源の出力を上げて昇温させた。昇温により加熱軸(A)47a、47bで700℃まで加熱した後、上下方向の加圧軸45a、45bにより矢印z1方向および矢印z2方向に50MPaまで加圧しながら、加熱軸(B)49a,49bに変更して950℃まで加熱した。
同様の操作を5回行って5個の焼結体を作製し、実施例1の複合材料が得られた。
焼結後の銅の体積分率が16%となるように成形原料を変更した以外は、実施例1と同様にして実施例2の複合材料を製造した。
焼結後の銅の体積分率が5%となるように成形原料を変更した以外は、実施例1と同様にして実施例3の複合材料を製造した。
酸素濃度0.42%となる銅粒子を使用した以外は、実施例1と同様にして、比較例1の複合材料を製造した。ここで用いた銅粒子は、複合材料の製造に従来用いられていたものに相当する。
酸素濃度0.42%となる銅粒子を使用した以外は、実施例2と同様にして比較例2の複合材料を製造した。
酸素濃度0.42%となる銅粒子を使用した以外は、実施例3と同様にして比較例3の複合材料を製造した。
上述したように、複合材料中の銅層と鱗片状黒鉛粒子との界面における銅酸化物層の厚さを求めた。
熱伝導率測定用の試料を作製するに当たって、まず、実施例および比較例の複合材料の円柱中央から、縦方向に板を切り出した。円柱の縦方向は、鱗片状黒鉛粒子が積層された方向である。この板を加工して、外径10mm×厚さ2.5mmの熱伝導率測定用の試料を得た。試料の厚さ方向が、鱗片状黒鉛粒子が積層された方向(加圧方向)に垂直な方向となる。この厚さ方向について、「金属のレーザーフラッシュ法による熱拡散率の測定方法(JIS H 7801:2005)」に準拠して、試料の熱伝導率を測定した。
以上の結果から、複合材料中の銅層全体の酸素量ではなく、銅層と鱗片状黒鉛粒子との界面における銅酸化物層の厚さを減少させることによって、熱抵抗が低下して熱伝導率が従来より高められた鉛-銅複合材料が得られることが確認された。
21…篩 22…砥石 23…黒鉛粒子 30a,30b…砥石
31a,31b…金属板 32a,32b…接合用金属部材 33a,33b…砥粒
40…多軸通電焼結装置 42…真空容器 44…カーボン製型
45a,45b…加圧軸 47a,47b…加熱軸 49a,49b…加熱軸
50…放熱板 51…配線層 52…電気絶縁層 53…応力緩衝層 54…冷却層
55…冷却基板
Claims (4)
- 銅層と、前記銅層を介して積層された鱗片状黒鉛粒子とを含み、銅の体積分率が3~30%の黒鉛-銅複合材料であって、
前記銅層と前記鱗片状黒鉛粒子との界面における銅酸化物層の厚さが、最大で100nmであることを特徴とする黒鉛-銅複合材料。 - 前記鱗片状黒鉛粒子が積層された方向に垂直な方向での熱伝導率が850W/(m・K)以上である請求項1に記載の黒鉛-銅複合材料。
- 請求項1または2に記載の黒鉛-銅複合材料を用いたヒートシンク部材。
- 請求項1記載の黒鉛-銅複合材料の製造方法であって、
黒鉛粒子に前処理を施して、鱗片状黒鉛粒子を得る工程と、
前記鱗片状黒鉛粒子と、酸素濃度が0.40%以下の銅粒子とを混合して成形原料を得る工程と、
前記成形原料を成形して得られた成形体を多軸通電焼結法により焼結する工程と
を備えることを特徴とする製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280056881.1A CN117836931A (zh) | 2021-09-01 | 2022-08-29 | 石墨-铜复合材料、使用其的散热器构件、及石墨-铜复合材料的制造方法 |
EP22864501.6A EP4398294A1 (en) | 2021-09-01 | 2022-08-29 | Graphite-copper composite material, heat sink member using same, and method for manufacturing graphite-copper composite material |
KR1020247008153A KR20240047417A (ko) | 2021-09-01 | 2022-08-29 | 흑연-구리 복합 재료, 그것을 이용한 히트 싱크 부재, 및 흑연-구리 복합 재료의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021142732A JP2023035695A (ja) | 2021-09-01 | 2021-09-01 | 黒鉛-銅複合材料、それを用いたヒートシンク部材、および黒鉛-銅複合材料の製造方法 |
JP2021-142732 | 2021-09-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023032919A1 true WO2023032919A1 (ja) | 2023-03-09 |
Family
ID=85412770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/032419 WO2023032919A1 (ja) | 2021-09-01 | 2022-08-29 | 黒鉛-銅複合材料、それを用いたヒートシンク部材、および黒鉛-銅複合材料の製造方法 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4398294A1 (ja) |
JP (1) | JP2023035695A (ja) |
KR (1) | KR20240047417A (ja) |
CN (1) | CN117836931A (ja) |
TW (1) | TW202323541A (ja) |
WO (1) | WO2023032919A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003309316A (ja) * | 2002-04-16 | 2003-10-31 | Sumitomo Electric Ind Ltd | 半導体レーザー搭載用サブキャリアおよびそれを用いた発光素子 |
JP2015108183A (ja) * | 2013-10-24 | 2015-06-11 | 住友金属鉱山株式会社 | 銅粉末とその製造方法、及びそれを用いた銅ペースト |
JP2017128802A (ja) | 2016-01-15 | 2017-07-27 | 昭和電工株式会社 | 金属−黒鉛複合材料及びその製造方法 |
JP2019094248A (ja) * | 2017-11-28 | 2019-06-20 | 株式会社アカネ | 薄層黒鉛の製造方法 |
WO2021125196A1 (ja) * | 2019-12-17 | 2021-06-24 | 宇部興産株式会社 | 黒鉛-銅複合材料、それを用いたヒートシンク部材、および黒鉛-銅複合材料の製造方法 |
-
2021
- 2021-09-01 JP JP2021142732A patent/JP2023035695A/ja active Pending
-
2022
- 2022-08-29 WO PCT/JP2022/032419 patent/WO2023032919A1/ja active Application Filing
- 2022-08-29 CN CN202280056881.1A patent/CN117836931A/zh active Pending
- 2022-08-29 KR KR1020247008153A patent/KR20240047417A/ko unknown
- 2022-08-29 EP EP22864501.6A patent/EP4398294A1/en active Pending
- 2022-08-31 TW TW111132874A patent/TW202323541A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003309316A (ja) * | 2002-04-16 | 2003-10-31 | Sumitomo Electric Ind Ltd | 半導体レーザー搭載用サブキャリアおよびそれを用いた発光素子 |
JP2015108183A (ja) * | 2013-10-24 | 2015-06-11 | 住友金属鉱山株式会社 | 銅粉末とその製造方法、及びそれを用いた銅ペースト |
JP2017128802A (ja) | 2016-01-15 | 2017-07-27 | 昭和電工株式会社 | 金属−黒鉛複合材料及びその製造方法 |
JP2019094248A (ja) * | 2017-11-28 | 2019-06-20 | 株式会社アカネ | 薄層黒鉛の製造方法 |
WO2021125196A1 (ja) * | 2019-12-17 | 2021-06-24 | 宇部興産株式会社 | 黒鉛-銅複合材料、それを用いたヒートシンク部材、および黒鉛-銅複合材料の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4398294A1 (en) | 2024-07-10 |
JP2023035695A (ja) | 2023-03-13 |
KR20240047417A (ko) | 2024-04-12 |
TW202323541A (zh) | 2023-06-16 |
CN117836931A (zh) | 2024-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7165341B2 (ja) | 黒鉛-銅複合材料、それを用いたヒートシンク部材、および黒鉛-銅複合材料の製造方法 | |
CN112334408B (zh) | 块状氮化硼粒子、氮化硼粉末、氮化硼粉末的制造方法、树脂组合物、及散热构件 | |
JP4441768B2 (ja) | 高熱伝導性を有する金属−黒鉛複合材料およびその製造方法 | |
CN109863117B (zh) | 石墨/石墨烯复合材料、集热体、传热体、散热体及散热系统 | |
KR20160016857A (ko) | 수지 함침 질화 붕소 소결체 및 그 용도 | |
Oddone et al. | Isotropic thermal expansion in anisotropic thermal management composites filled with carbon fibres and graphite | |
CN100363131C (zh) | 一种晶粒尺寸可控的超细晶粒钨及钨铜复合材料的制备方法 | |
WO2023032919A1 (ja) | 黒鉛-銅複合材料、それを用いたヒートシンク部材、および黒鉛-銅複合材料の製造方法 | |
Bi et al. | Additive manufacturing of thermoelectric materials: materials, synthesis and manufacturing: a review | |
WO2021200724A1 (ja) | 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材 | |
WO2022210298A1 (ja) | 黒鉛-銅複合材料、それを用いたヒートシンク部材、および黒鉛-銅複合材料の製造方法 | |
WO2024210118A1 (ja) | 複合材料、それを用いたヒートシンク部材、および複合材料の製造方法 | |
JP2024149121A (ja) | 複合材料、それを用いたヒートシンク部材、および複合材料の製造方法 | |
JP2005119887A (ja) | 高熱伝導性部材及びその製造方法、並びにそれを用いた放熱システム | |
WO2022071240A1 (ja) | 炭窒化ホウ素粉末及びその製造方法、粉末組成物、窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法 | |
CN118477993B (zh) | 金刚石/铜-石墨/铜定向导热复合材料及其制备方法 | |
CN115213409B (zh) | 一种利用微波等离子体快速成型金刚石/金属基复合材料构件的方法 | |
WO2021200971A1 (ja) | 窒化ホウ素焼結体、複合体及びこれらの製造方法、並びに放熱部材 | |
CN117821792A (zh) | 一种钨铜合金及其制备方法与应用 | |
CN115298150A (zh) | 氮化硼烧结体及其制造方法、以及复合体及其制造方法 | |
CN117681510A (zh) | 具有零膨胀、定向高热导和强韧性的反钙钛矿/金属-金属叠层复合材料及其制备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22864501 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280056881.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18687884 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20247008153 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022864501 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022864501 Country of ref document: EP Effective date: 20240402 |