WO2023032406A1 - Rotary electrical machine - Google Patents

Rotary electrical machine Download PDF

Info

Publication number
WO2023032406A1
WO2023032406A1 PCT/JP2022/023595 JP2022023595W WO2023032406A1 WO 2023032406 A1 WO2023032406 A1 WO 2023032406A1 JP 2022023595 W JP2022023595 W JP 2022023595W WO 2023032406 A1 WO2023032406 A1 WO 2023032406A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
fixed
stator core
circumferential direction
Prior art date
Application number
PCT/JP2022/023595
Other languages
French (fr)
Japanese (ja)
Inventor
真弘 北野
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202280015865.8A priority Critical patent/CN116868480A/en
Publication of WO2023032406A1 publication Critical patent/WO2023032406A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a rotating electric machine that employs a structure in which a stator housed in a motor housing is fixed to the motor housing with fasteners such as bolts.
  • stator In a rotating electrical machine constructed by housing a rotatable rotor and a stator arranged on the outer periphery of the rotor in a motor housing, the stator is fixed to the motor housing.
  • Methods include a shrink fitting method, a bolt fastening method, or a combination of both methods.
  • a bolt fastening method is adopted as a method of fixing the stator to the motor housing, a plurality of fixing portions projecting radially outward are formed on the outer periphery of the stator, and the stator is inserted through each of the fixing portions. It is fixed to the motor housing by tightening fasteners such as bolts.
  • a stator core that constitutes a stator is formed into a cylindrical shape by laminating a plurality of ring-shaped electromagnetic steel sheets in the axial direction and connecting the plurality of electromagnetic steel sheets to each other by caulking or the like. defines the circumferential pitch between the connecting portion and the fixed portion by caulking or the like of the electromagnetic steel sheets forming the stator core in order to suppress the eddy current loss generated in the stator core.
  • the fixed portions are formed at a circumferential pitch equal to or a divisor of the circumferential pitch of the fastening portions with respect to the rotation center of the rotor.
  • the fixed portions are formed at a circumferential pitch corresponding to a divisor of the circumferential pitch of the fastening portion with respect to the rotor rotation center or a divisor of 180°.
  • Patent Document 2 in a rotating electric machine that adopts a shrink fitting method and a bolt fastening method as fixing methods of the stator, in order to increase the fastening force of the stator to the motor housing and to suppress deformation of the stator due to fastening, A configuration has been proposed in which a recess is formed at the base of the fixing portion (protruding portion) of the stator.
  • the present invention has been made in view of the above problems, and its object is to provide a rotating electric machine that can suppress torque ripple to a low level, thereby suppressing vibration and noise.
  • the present invention provides a rotatable rotor having a plurality of permanent magnets embedded in its outer peripheral portion, a stator fixed around the rotor and having a stator core provided with a plurality of coils, and A rotor and a motor housing that accommodates the stator therein are provided, and the stator is fixed to the motor housing by fasteners that are inserted through a plurality of fixing portions projecting radially outward from the outer peripheral edge of the stator core.
  • stator core on the q-axis other than the q-axis passing through the center of the fixed portion is axially provided with the q-axis of the rotor passing through the center of the fixed portion
  • a penetrating flux barrier is formed.
  • the magnetic path widens, reducing magnetic resistance and increasing torque.
  • a flux barrier is provided in the middle of the magnetic flux, the flux barrier narrows the magnetic path and increases the magnetic resistance. For this reason, the decrease in magnetic resistance caused by the magnetic flux flowing through the fixed part is offset by the increase in magnetic resistance due to the flux barrier, and the torque fluctuation of the rotor, that is, the torque ripple, is kept small, and the vibration and noise of the rotating electric machine are reduced. be kept low.
  • FIG. 1 is a vertical cross-sectional view of a rotary electric machine according to the present invention
  • FIG. FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1
  • FIG. 3 is an enlarged detailed view of a B portion of FIG. 2
  • FIG. 3 is an enlarged detailed view of a C portion of FIG. 2
  • FIG. 2 is an upper half view of a rotor and a stator showing the magnetic flux generated in the stator core at a predetermined electrical angle, where (a) shows the magnetic flux of the rotating electrical machine according to the present invention and (b) shows the magnetic flux of the conventional rotating electrical machine. is.
  • FIG. 1 is a vertical cross-sectional view of a rotary electric machine according to the present invention
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1
  • FIG. 3 is an enlarged detailed view of a B portion of FIG. 2
  • FIG. 3 is an enlarged detailed view of a C portion of FIG. 2
  • FIG. 2 is an upper half view of a rotor and a stator showing the magnetic flux generated in the stator core at a predetermined electrical angle, where (a) shows the magnetic flux of the rotating electrical machine according to the present invention and (b) shows the magnetic flux of the conventional rotating electrical machine.
  • FIG. 4 is a diagram showing a comparison of torque fluctuation with respect to electrical angle of a rotating electric machine according to the present invention with torque fluctuation of a conventional rotating electric machine;
  • FIG. 1 is a vertical cross-sectional view of a rotating electric machine according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view along line AA of FIG. 1
  • FIG. 3 is an enlarged detailed view of B part of FIG. 2, and
  • FIG. It is a partial enlarged detail view.
  • the rotary electric machine 1 is a three-phase synchronous motor generator, functions as an electric motor (motor) or a generator (generator), and can be used, for example, as an electric vehicle (EV vehicle) or a hybrid vehicle (HEV vehicle). It is used as a driving source such as As shown in FIG. 1 , the rotating electric machine 1 is constructed by housing a rotatable rotor 10 and a stator 20 fixed around the rotor 10 in a motor housing 30 .
  • the motor housing 30, the rotor 10, and the stator 20, which constitute the rotary electric machine 1, will be described below.
  • the motor housing 30 is constructed by covering the opening of a bottomed cylindrical main body 30A with one end face opened with a disc-shaped cover 30B, and is formed by die casting of aluminum, aluminum alloy, or the like, for example.
  • the rotor 10 includes a cylindrical rotor core 11, a round shaft (motor shaft) 12 passing through the center of the rotor core 11 in the axial direction (horizontal direction in FIG. Both ends of the shaft 12 in the axial direction are connected to bearings (ball bearings) 14 and 15 provided in the main body 30A and the cover 30B of the motor housing 30, respectively. is rotatably supported by Therefore, the rotor 10 is rotatable around the axis (rotational center) of the shaft 12 .
  • the rotor core 11 is formed in a columnar shape by laminating a plurality of plate-shaped thin electromagnetic steel sheets 11a such as iron or iron alloys.
  • the plurality of electromagnetic steel sheets 11a are integrated by being connected to each other by caulking, welding, or the like. It is fixed to the outer circumference of the shaft 12 by a technique such as fastening. Therefore, the rotor core 11 can rotate together with the shaft 12 .
  • the plurality of permanent magnets 13 are configured as rectangular plates elongated in the axial direction (perpendicular to the paper surface of FIG. 2). are arranged in a triangular shape, and a total of eight pairs of magnetic pole portions 40 are arranged at equal angular pitches (45° pitches) in the circumferential direction.
  • Cavities 16 each having a rectangular cross-section are provided axially (perpendicular to the paper surface of FIG. 2) through both longitudinal ends of each permanent magnet 13 of the rotor core 11 (see FIGS. 3 and 4).
  • the plurality (eight sets) of magnetic pole portions 40 are composed of N magnetic pole portions 40N and S magnetic pole portions 40S that are alternately arranged in the circumferential direction.
  • the two permanent magnets 13b and 13c, which are arranged obliquely along the radial direction, are arranged so that their north poles face the inner surfaces facing each other.
  • each S pole magnetic pole portion 40S as shown in FIG. 4, one of the three permanent magnets 13 (13a, 13b, 13c) arranged in a triangular shape is arranged along the circumferential direction.
  • the magnet 13a is arranged so that the S pole faces the outer peripheral side
  • the two permanent magnets 13b and 13c arranged obliquely along the radial direction are arranged so that the S pole faces the opposing inner surface side. ing.
  • the d (direct) axis shown in FIG. 2 is the magnetic pole center line indicating the main magnetic flux direction of each N pole magnetic pole portion 40N and each S pole magnetic pole portion 40S, and the q (quadrature) axis is the d axis.
  • the d-axis and the q-axis are magnetically orthogonal axes (axis between the N pole magnetic pole portion 40N and the S pole magnetic pole portion 40S), and in the rotating electric machine 1 according to the present embodiment, these d-axis and q-axis are in the circumferential direction. 8 are alternately arranged at an angular pitch of 22.5°.
  • the stator 20 includes a cylindrical stator core 21 and a plurality of coils 22, as shown in FIG.
  • the stator core 21 is configured in a columnar shape by laminating a plurality of plate-shaped thin electromagnetic steel sheets 21a such as iron or iron alloy.
  • the plurality of electromagnetic steel sheets 21a are integrated by being connected to each other by caulking, welding, or the like.
  • the stator core 21 has a ring-shaped yoke 21A and a plurality of (48 in the illustrated example) teeth 21B extending radially inward on the inner peripheral side of the yoke 21A.
  • a plurality of (48) teeth 21B are formed at an equal angular pitch (7.5° pitch) in the circumferential direction, and axially penetrating slots 21C are formed between adjacent teeth 21B. formed. Therefore, the same number (48) of slots 21C as the teeth 21B are formed in the stator core 21 at an equal angular pitch (7.5° pitch) in the circumferential direction. It takes the form of pole 48 slots.
  • coils 22 are provided around each tooth 21B, each coil 22 being formed by, for example, winding an insulating-coated conductive wire.
  • the plurality of coils 22 are composed of a U-phase coil, a V-phase coil, and a W-phase coil. is applied, an AC magnetic field is generated in each coil 22 in a direction penetrating through the U-phase coil, the V-phase coil, and the W-phase coil.
  • the stator 20 configured as described above is fixed to the motor housing 30 by four bolts (only one bolt is shown in FIG. 1) 23, which are fasteners, as shown in FIG.
  • four fixed portions 24 which form a substantially triangular shape when viewed in the axial direction are arranged on four orthogonal q-axes. It protrudes integrally toward the outside. That is, the four fixing portions 24 are integrally protruding from the outer peripheral portion of the stator core 21 at an equal angular pitch (90° pitch) in the circumferential direction, and each fixing portion 24 has a circular bolt insertion hole.
  • each fixed portion 24a are pierced in the axial direction (perpendicular to the paper surface of FIG. 2).
  • the top of the triangle forms a convex arc curved surface
  • the two oblique sides of the triangle form the ring-shaped stator core 21 (yoke). 21A), forming a concave curved surface that smoothly connects to the outer circumference.
  • the stator 20 includes a total of four bolts (one bolt in FIG. 1) that are respectively inserted into bolt insertion holes 24a provided through the four fixing portions 24 (see FIG. 2). (only shown) 23 is screwed into the main body 30A of the motor housing 30 to be fixed to the motor housing 30 .
  • Circular hole-shaped flux barriers 25 penetrating in the axial direction are formed in the stator cores 21 on four q-axes other than the first q-axis.
  • four fixed portions 24 are formed at an equal angular pitch (90° pitch) on the outer circumference of the stator core 21 on the q-axis perpendicular to each other.
  • the four flux barriers 25 are formed in the stator core 21 at equal angular pitches (90° pitches) in the circumferential direction.
  • the four fixed portions 24 are protruded on the outer circumference of the stator core 21 at equal angular pitches (90-degree pitches) in the circumferential direction, but the number of fixed portions 24 is arbitrary. However, if the number of fixing portions 24 is two, the mounting strength of the stator 20 to the motor housing 30 may be insufficient. Although the mounting strength to the stator core 21 can be increased, there is a problem that the shape of the stator core 21 becomes complicated and the manufacturing cost increases. Therefore, in this embodiment, the number of fixing portions 24 is set to four.
  • the shape of the flux barrier 25 is a circular hole, but it is not limited to this, and may be an elliptical hole shape or a polygonal hole shape. It can be set arbitrarily within the achievable range.
  • the electric rotating machine 1 mounted in an electric vehicle (EV vehicle), a hybrid vehicle (HEV vehicle), etc. (hereinafter simply referred to as “vehicle”) serves as an electric motor (motor) that drives wheels to rotate.
  • a DC current output from a DC power supply such as a battery (not shown) is converted into an AC current by an inverter (not shown).
  • this alternating current is supplied to each of the plurality of coils (U-phase, V-phase and W-phase coils) 22 provided in the stator 20 of the rotary electric machine 1, these coils 22 generate rotating magnetic fields.
  • the magnetic flux of each coil (U-phase, V-phase, and W-phase coils) 22 becomes a combined rotating magnetic flux. 10 rotates in synchronization with the rotating magnetic flux.
  • FIG. 5 and 6 are upper half views of the rotor and stator showing the magnetic flux generated in the stator core at a predetermined electrical angle, where (a) is the magnetic flux of the rotating electric machine according to the present invention, and (b) is the conventional rotating electric machine. and FIG. 7 is a diagram showing the torque fluctuation with respect to the electrical angle of the rotary electric machine according to the present invention in comparison with the torque fluctuation of the conventional rotary electric machine.
  • each N pole magnetic pole portion 40N provided on the rotor 10 is followed by each S pole magnetic pole portion.
  • the magnetic fluxes f1 and f2 entering 40S in opposite directions flow through the stator core 21. Since each fixed portion 24 is located at the position where the magnetic fluxes f1 and f2 diverge, these magnetic fluxes f1 and f2 are Not flowing. Moreover, since each flux barrier 25 is located at a position where the magnetic fluxes f1 and f2 diverge, the flux barriers 25 do not block the magnetic fluxes f1 and f2. Therefore, in the electrical angle range a shown in FIG.
  • the magnetic flux resistance is the same as the magnetic flux resistance in the conventional rotating electrical machine without the flux barrier 25 shown in FIG.
  • the torque waveforms in the predetermined electrical angle range a are the same between the rotating electrical machine 1 according to the present invention and the conventional rotating electrical machine.
  • 110 is a rotor
  • 111 is a rotor core
  • 140N is an N magnetic pole portion
  • 140S is an S magnetic pole portion
  • 120 is a stator
  • 121 is a stator core
  • 122 is a coil
  • 124 is the fixed part.
  • the flux barrier 25 is formed in the middle of the magnetic flux f1. Since the flux barrier 25 is provided, the flux barrier 25 narrows the magnetic path and increases the magnetic resistance. Therefore, the decrease in magnetic resistance caused by the flow of the magnetic flux f3 through the fixed portion 24 is offset by the increase in magnetic resistance due to the flux barrier 25, preventing the torque waveform from rising in the electrical angle range b in FIG.
  • the waveform has substantially the same shape over the entire electrical angle range, as indicated by the solid line in FIG.
  • the torque ripple indicates the amount of fluctuation in the output torque of the rotor 10 (shaft 12) as a percentage of the average torque.
  • the rotating electrical machine 1 mounted on the vehicle functions as a generator during deceleration due to regenerative braking of the vehicle. That is, when the rotor 10 is rotationally driven by the rotational power input to the shaft 12 of the rotary electric machine 1 from the wheel side, alternating current is applied to the coils 22 of the stator 20 by the rotating magnetic flux of the permanent magnets 13 embedded in the rotor 10 . Generates power generation. The alternating current generated by the power generation is converted into a direct current by a converter (not shown), and the direct current charges a battery (not shown).
  • the present invention is applied to a rotating electric machine mounted on an electric vehicle (EV vehicle) or a hybrid vehicle (HEV vehicle). It is also applicable to a rotating electrical machine with
  • the present invention is applied to a rotating electric machine (motor generator) that functions as both a motor and a generator. It is also applicable to electric machines in the same way.
  • stator core 1 rotating electrical machine 10 rotor 11 stator core 12 shaft 13 permanent magnet 20 stator 21 stator core 21A stator core yoke 21B stator core disk 21C stator core slot 22 coil 23 bolt (fastener) 24 Fixed portion 24a Bolt insertion hole (through hole) 25 flux barrier 30 motor housing 40 magnetic pole portion 40N N magnetic pole portion 40S S magnetic pole portion

Abstract

A rotary electrical machine 1 comprises: a rotatable rotor 10 having a plurality of permanent magnets 13 buried in an outer circumferential part thereof; a stator 20 that is fixed around the rotor and that is provided with a plurality of coils 22 at a stator core 21; and a motor housing 30 for housing the rotor 10 and the stator 20. The stator 20 is fixed to the motor housing 30 by bolts (fasteners) 23 inserted through a plurality of fixed parts 24 projecting radially outward from the outer circumferential edge of the stator core 21. In a state where a q-axis of the rotor 10 passes through centers of the fixed parts 24, a flux barrier 25 penetrating in an axial direction is formed in the stator core 21 on a q-axis other than the q-axis passing through the centers of the fixed parts 24.

Description

回転電機Rotating electric machine
 本発明は、モータハウジング内に収容されたステータをボルトなどの締結具によってモータハウジングに固定する構造を採用する回転電機に関する。
 本願は、2021年9月1日に出願された日本出願特願2021-142395号に基づき優先権を主張し、その内容をここに援用する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotating electric machine that employs a structure in which a stator housed in a motor housing is fixed to the motor housing with fasteners such as bolts.
This application claims priority based on Japanese Patent Application No. 2021-142395 filed on September 1, 2021, the contents of which are incorporated herein.
 回転可能なロータと、該ロータの外周に配置されたステータとをモータハウジング内に収容して構成される回転電機においては、ステータがモータハウジングに固定されるが、このステータのモータハウジングへの固定方式には、焼嵌め方式とボルト締結方式或いは両方式を併用するものがある。 In a rotating electrical machine constructed by housing a rotatable rotor and a stator arranged on the outer periphery of the rotor in a motor housing, the stator is fixed to the motor housing. Methods include a shrink fitting method, a bolt fastening method, or a combination of both methods.
 ステータのモータハウジングへの固定方式としてボルト締結方式を採用する場合、ステータの外周には、径方向外方へと突出する複数の固定部が形成されており、ステータは、各固定部に挿通するボルトなどの締結具の締め付けによってモータハウジングに固定される。 When a bolt fastening method is adopted as a method of fixing the stator to the motor housing, a plurality of fixing portions projecting radially outward are formed on the outer periphery of the stator, and the stator is inserted through each of the fixing portions. It is fixed to the motor housing by tightening fasteners such as bolts.
 ところで、ステータを構成するステータコアは、リング状の複数の電磁鋼板を軸方向に積層し、カシメなどによって複数の電磁鋼板同士を互いに連結することによって円筒状に成形されているが、特許文献1には、ステータコア内に生じる渦電流損失を低く抑えるために、ステータコアを構成する電磁鋼板のカシメなどによる連結部位と固定部との周方向ピッチを規定している。具体的には、締結部の数が奇数である場合には、固定部を、ロータ回転中心に対する締結部の周方向ピッチと同一またはその約数に相当する周方向ピッチで形成し、締結部の数が偶数である場合には、固定部を、ロータ回転中心に対する締結部の周方向ピッチの約数または180°の約数に相当する周方向ピッチで形成するものとしている。 By the way, a stator core that constitutes a stator is formed into a cylindrical shape by laminating a plurality of ring-shaped electromagnetic steel sheets in the axial direction and connecting the plurality of electromagnetic steel sheets to each other by caulking or the like. defines the circumferential pitch between the connecting portion and the fixed portion by caulking or the like of the electromagnetic steel sheets forming the stator core in order to suppress the eddy current loss generated in the stator core. Specifically, when the number of fastening portions is an odd number, the fixed portions are formed at a circumferential pitch equal to or a divisor of the circumferential pitch of the fastening portions with respect to the rotation center of the rotor. When the number is an even number, the fixed portions are formed at a circumferential pitch corresponding to a divisor of the circumferential pitch of the fastening portion with respect to the rotor rotation center or a divisor of 180°.
 また、特許文献2には、ステータの固定方式として焼嵌め方式とボルト締結方式を採用する回転電機において、ステータのモータハウジングへの締結力を高めるとともに、締結によるステータの変形を抑制するために、ステータの固定部(突出部)の根元に窪みを形成する構成が提案されている。 Further, in Patent Document 2, in a rotating electric machine that adopts a shrink fitting method and a bolt fastening method as fixing methods of the stator, in order to increase the fastening force of the stator to the motor housing and to suppress deformation of the stator due to fastening, A configuration has been proposed in which a recess is formed at the base of the fixing portion (protruding portion) of the stator.
特開2017-060326号公報JP 2017-060326 A WO2014/046101号公報WO2014/046101
 ところで、ステータのモータハウジングへの固定方式としてボルト締結方式を採用する場合には、ステータコアの外周縁には、ボルトが挿通するための挿通孔が形成された複数の固定部が径方向外方に向かって一体に突設されているが、これらの固定部が設けられたステータコアにおいては、固定部近傍における磁束密度の分布が固定部が設けられていないステータコアに対して周方向に不均一となる。このため、ステータの固定方式としてボルト締結方式を採用する回転電機においては、トルクリプル(出力トルクの変動幅)が大きくなり、振動と騒音が大きくなるという問題が発生する。 By the way, when a bolt fastening method is adopted as a method of fixing the stator to the motor housing, a plurality of fixing portions having through-holes for inserting bolts are formed on the outer peripheral edge of the stator core, extending radially outward. However, in the stator core provided with these fixed portions, the distribution of the magnetic flux density in the vicinity of the fixed portions is uneven in the circumferential direction with respect to the stator core in which the fixed portions are not provided. . For this reason, in a rotating electric machine that employs a bolt fastening method as a stator fixing method, torque ripple (fluctuation range of output torque) increases, causing a problem of increased vibration and noise.
 本発明は、上記問題に鑑みてなされたもので、その目的は、トルクリプルを小さく抑えて振動と騒音を低く抑えることができる回転電機を提供することにある。 The present invention has been made in view of the above problems, and its object is to provide a rotating electric machine that can suppress torque ripple to a low level, thereby suppressing vibration and noise.
 上記目的を達成するため、本発明は、外周部に複数の永久磁石が埋設された回転可能なロータと、前記ロータの周囲に固設され、ステータコアに複数のコイルが設けられたステータと、前記ロータと前記ステータを内部に収容するモータハウジングと、を備え、前記ステータを、前記ステータコアの外周縁から径方向外方に突設された複数の固定部に挿通する締結具によって前記モータハウジングに固定して構成される回転電機であって、前記ロータのq軸が前記固定部の中心を通る状態において、前記固定部の中心を通る前記q軸以外のq軸上の前記ステータコアに、軸方向に貫通するフラックスバリアを形成したことを特徴とする。 In order to achieve the above object, the present invention provides a rotatable rotor having a plurality of permanent magnets embedded in its outer peripheral portion, a stator fixed around the rotor and having a stator core provided with a plurality of coils, and A rotor and a motor housing that accommodates the stator therein are provided, and the stator is fixed to the motor housing by fasteners that are inserted through a plurality of fixing portions projecting radially outward from the outer peripheral edge of the stator core. wherein the stator core on the q-axis other than the q-axis passing through the center of the fixed portion is axially provided with the q-axis of the rotor passing through the center of the fixed portion A penetrating flux barrier is formed.
 本発明によれば、ロータの永久磁石のN極から出てS極へと入る磁束の一部がステータコアの固定部を流れる状態においては、磁路が広がるために磁気抵抗が下がってトルクが増大するが、磁束の途中にフラックスバリアが設けられているため、このフラックスバリアのために磁路が狭まって磁気抵抗が増大する。このため、磁束が固定部を流れることによって発生する磁気抵抗の低下がフラックスバリアによる磁気抵抗の増大によって相殺され、ロータのトルク変動、つまり、トルクリプルが小さく抑えられ、当該回転電機の振動と騒音が低く抑えられる。 According to the present invention, when part of the magnetic flux that exits the N pole of the permanent magnet of the rotor and enters the S pole flows through the fixed portion of the stator core, the magnetic path widens, reducing magnetic resistance and increasing torque. However, since a flux barrier is provided in the middle of the magnetic flux, the flux barrier narrows the magnetic path and increases the magnetic resistance. For this reason, the decrease in magnetic resistance caused by the magnetic flux flowing through the fixed part is offset by the increase in magnetic resistance due to the flux barrier, and the torque fluctuation of the rotor, that is, the torque ripple, is kept small, and the vibration and noise of the rotating electric machine are reduced. be kept low.
本発明に係る回転電機の縦断面図である。1 is a vertical cross-sectional view of a rotary electric machine according to the present invention; FIG. 図1のA-A線断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1; 図2のB部拡大詳細図である。FIG. 3 is an enlarged detailed view of a B portion of FIG. 2; 図2のC部拡大詳細図である。FIG. 3 is an enlarged detailed view of a C portion of FIG. 2; 所定の電気角においてステータコアに発生する磁束を示すロータとステータの上半図であって、(a)は本発明に係る回転電機の磁束、(b)は従来の回転電機の磁束をそれぞれ示す図である。FIG. 2 is an upper half view of a rotor and a stator showing the magnetic flux generated in the stator core at a predetermined electrical angle, where (a) shows the magnetic flux of the rotating electrical machine according to the present invention and (b) shows the magnetic flux of the conventional rotating electrical machine. is. 所定の電気角においてステータコアに発生する磁束を示すロータとステータの上半図であって、(a)は本発明に係る回転電機の磁束、(b)は従来の回転電機の磁束をそれぞれ示す図である。FIG. 2 is an upper half view of a rotor and a stator showing the magnetic flux generated in the stator core at a predetermined electrical angle, where (a) shows the magnetic flux of the rotating electrical machine according to the present invention and (b) shows the magnetic flux of the conventional rotating electrical machine. is. 本発明に係る回転電機の電気角に対するトルク変動を従来の回転電機のトルク変動と比較して示す図である。FIG. 4 is a diagram showing a comparison of torque fluctuation with respect to electrical angle of a rotating electric machine according to the present invention with torque fluctuation of a conventional rotating electric machine;
 以下に本発明の実施の形態を添付図面に基づいて説明する。 Embodiments of the present invention will be described below based on the accompanying drawings.
 図1は本発明の実施の形態に係る回転電機の縦断面図、図2は図1のA-A線断面図、図3は図2のB部拡大詳細図、図4は図2のC部拡大詳細図である。 1 is a vertical cross-sectional view of a rotating electric machine according to an embodiment of the present invention, FIG. 2 is a cross-sectional view along line AA of FIG. 1, FIG. 3 is an enlarged detailed view of B part of FIG. 2, and FIG. It is a partial enlarged detail view.
[回転電機の構成]
 本実施の形態に係る回転電機1は、三相同期型モータジェネレータであって、電動機(モータ)または発電機(ジェネレータ)として機能し、例えば、電気自動車(EV車)やハイブリッド車両(HEV車)などの駆動源として用いられる。この回転電機1は、図1に示すように、回転可能なロータ10と、該ロータ10の周囲に固設されたステータ20とをモータハウジング30内に収容して構成されている。以下、回転電機1を構成するモータハウジング30とロータ10およびステータ20についてそれぞれ説明する。
[Configuration of rotating electric machine]
The rotary electric machine 1 according to the present embodiment is a three-phase synchronous motor generator, functions as an electric motor (motor) or a generator (generator), and can be used, for example, as an electric vehicle (EV vehicle) or a hybrid vehicle (HEV vehicle). It is used as a driving source such as As shown in FIG. 1 , the rotating electric machine 1 is constructed by housing a rotatable rotor 10 and a stator 20 fixed around the rotor 10 in a motor housing 30 . The motor housing 30, the rotor 10, and the stator 20, which constitute the rotary electric machine 1, will be described below.
(モータハウジング)
 上記モータハウジング30は、一端面が開口した有底筒状の本体30Aの開口部を円板状のカバー30Bで覆って構成されており、例えば、アルミニウムやアルミニウム合金などのダイキャストによって成形されている。
(motor housing)
The motor housing 30 is constructed by covering the opening of a bottomed cylindrical main body 30A with one end face opened with a disc-shaped cover 30B, and is formed by die casting of aluminum, aluminum alloy, or the like, for example. there is
(ロータ)
 前記ロータ10は、円筒状のロータコア11と、該ロータコア11の中心を軸方向(図1の左右方向)に貫通する丸軸状のシャフト(モータ軸)12と、ロータコア11の外周部に埋設された複数の永久磁石13(図2参照)を含んで構成されており、シャフト12の軸方向両端部は、モータハウジング30の本体30Aとカバー30Bにそれぞれ設けられた軸受(ボールベアリング)14,15によって回転可能に支持されている。したがって、ロータ10は、シャフト12の軸中心(回転中心)回りに回転可能である。
(rotor)
The rotor 10 includes a cylindrical rotor core 11, a round shaft (motor shaft) 12 passing through the center of the rotor core 11 in the axial direction (horizontal direction in FIG. Both ends of the shaft 12 in the axial direction are connected to bearings (ball bearings) 14 and 15 provided in the main body 30A and the cover 30B of the motor housing 30, respectively. is rotatably supported by Therefore, the rotor 10 is rotatable around the axis (rotational center) of the shaft 12 .
 上記ロータコア11は、鉄や鉄合金などの板状の薄い電磁鋼板11aを複数積層して円柱状に構成されており、各電磁鋼板11aは、例えばプレスによる打抜きによってリング状に成形されている。ここで、複数の電磁鋼板11a同士は、カシメや溶接などによって互いに連結されることによって一体化されており、これらの電磁鋼板11aを積層して構成されるロータコア11は、カシメ、焼嵌め、ナット締結などの手法によってシャフト12の外周に固定されている。したがって、ロータコア11は、シャフト12と共に一体に回転可能である。 The rotor core 11 is formed in a columnar shape by laminating a plurality of plate-shaped thin electromagnetic steel sheets 11a such as iron or iron alloys. Here, the plurality of electromagnetic steel sheets 11a are integrated by being connected to each other by caulking, welding, or the like. It is fixed to the outer circumference of the shaft 12 by a technique such as fastening. Therefore, the rotor core 11 can rotate together with the shaft 12 .
 また、複数の永久磁石13は、図2に示すように、軸方向(図2の紙面垂直方向)に長い矩形プレートとして構成されており、ロータコア11の外周部には、各3つの永久磁石13が三角形状に配置されて構成される計8組の磁極部40が周方向に等角度ピッチ(45°ピッチ)で配置されている。なお、ロータコア11の各永久磁石13の長手方向両端部には、断面矩形の空洞部16が軸方向(図2の紙面垂直方向)にそれぞれ貫設されている(図3及び図4参照)。 As shown in FIG. 2, the plurality of permanent magnets 13 are configured as rectangular plates elongated in the axial direction (perpendicular to the paper surface of FIG. 2). are arranged in a triangular shape, and a total of eight pairs of magnetic pole portions 40 are arranged at equal angular pitches (45° pitches) in the circumferential direction. Cavities 16 each having a rectangular cross-section are provided axially (perpendicular to the paper surface of FIG. 2) through both longitudinal ends of each permanent magnet 13 of the rotor core 11 (see FIGS. 3 and 4).
 ここで、複数(8組)の磁極部40は、周方向に交互に配置されたN極磁極部40NとS極磁極部40Sとで構成されており、各N極磁極部40Nにおいては、図3に示すように、三角形状に配置された3つの永久磁石13(13a,13b,13c)のうち、周方向に沿って配置された1つの永久磁石13aは、N極が外周側を向くように配置されており、径方向に沿って斜めに配置された2つの永久磁石13b,13cは、対向する内面側にN極が向くように配置されている。 Here, the plurality (eight sets) of magnetic pole portions 40 are composed of N magnetic pole portions 40N and S magnetic pole portions 40S that are alternately arranged in the circumferential direction. 3, of the three permanent magnets 13 (13a, 13b, 13c) arranged in a triangular shape, one permanent magnet 13a arranged along the circumferential direction is oriented so that the N pole faces the outer circumference. The two permanent magnets 13b and 13c, which are arranged obliquely along the radial direction, are arranged so that their north poles face the inner surfaces facing each other.
 他方、各S極磁極部40Sにおいては、図4に示すように、三角形状に配置された3つの永久磁石13(13a,13b,13c)のうち、周方向に沿って配置された1つの永久磁石13aは、S極が外周側を向くように配置されており、径方向に沿って斜めに配置された2つの永久磁石13b,13cは、対向する内面側にS極が向くように配置されている。 On the other hand, in each S pole magnetic pole portion 40S, as shown in FIG. 4, one of the three permanent magnets 13 (13a, 13b, 13c) arranged in a triangular shape is arranged along the circumferential direction. The magnet 13a is arranged so that the S pole faces the outer peripheral side, and the two permanent magnets 13b and 13c arranged obliquely along the radial direction are arranged so that the S pole faces the opposing inner surface side. ing.
 なお、図2に示すd(direct)軸は、各N極磁極部40Nと各S極磁極部40Sの主磁束方向を示す磁極中心線であり、q(quadrature)軸は、d軸に電気的・磁気的に直交する軸(N極磁極部40NとS極磁極部40Sの間の軸)であり、本実施の形態に係る回転電機1においては、これらのd軸とq軸は、周方向に交互に各8本ずつ22.5°の角度ピッチで配置されている。 The d (direct) axis shown in FIG. 2 is the magnetic pole center line indicating the main magnetic flux direction of each N pole magnetic pole portion 40N and each S pole magnetic pole portion 40S, and the q (quadrature) axis is the d axis. The d-axis and the q-axis are magnetically orthogonal axes (axis between the N pole magnetic pole portion 40N and the S pole magnetic pole portion 40S), and in the rotating electric machine 1 according to the present embodiment, these d-axis and q-axis are in the circumferential direction. 8 are alternately arranged at an angular pitch of 22.5°.
(ステータ)
 ステータ20は、図2に示すように、円柱状のステータコア21と、複数のコイル22を含んで構成されている。ここで、ステータコア21は、鉄や鉄合金などの板状の薄い電磁鋼板21aを複数積層して円柱状に構成されており、各電磁鋼板21aは、例えばプレスによる打抜きによってリング状に成形されている。ここで、複数の電磁鋼板21a同士は、カシメや溶接などによって互いに連結されることによって一体化されている。
(stator)
The stator 20 includes a cylindrical stator core 21 and a plurality of coils 22, as shown in FIG. Here, the stator core 21 is configured in a columnar shape by laminating a plurality of plate-shaped thin electromagnetic steel sheets 21a such as iron or iron alloy. there is Here, the plurality of electromagnetic steel sheets 21a are integrated by being connected to each other by caulking, welding, or the like.
 上記ステータコア21には、リング状のヨーク21Aと、該ヨーク21Aの内周側に径方向内方に向かって延びる複数(図示例では、48個)のティース21Bを備えている。ここで、複数(48個)のティース21Bは、周方向に等角度ピッチ(7.5°ピッチ)で形成されており、隣接するティース21Bの間には、軸方向に貫通するスロット21Cがそれぞれ形成されている。したがって、ステータコア21には、ティース21Bと同数(48個)のスロット21Cが周方向に等角度ピッチ(7.5°ピッチ)で形成されており、本実施の形態に係る回転電機1は、8ポール48スロットの形式を採っている。 The stator core 21 has a ring-shaped yoke 21A and a plurality of (48 in the illustrated example) teeth 21B extending radially inward on the inner peripheral side of the yoke 21A. Here, a plurality of (48) teeth 21B are formed at an equal angular pitch (7.5° pitch) in the circumferential direction, and axially penetrating slots 21C are formed between adjacent teeth 21B. formed. Therefore, the same number (48) of slots 21C as the teeth 21B are formed in the stator core 21 at an equal angular pitch (7.5° pitch) in the circumferential direction. It takes the form of pole 48 slots.
 そして、ステータコア21においては、各ティース21Bの周囲に、例えば絶縁被覆された導線を巻装することによって構成されるコイル22がそれぞれ設けられている。ここで、複数のコイル22は、U相コイルとV相コイルおよびW相コイルで構成されており、これらのU相コイルとV相コイルおよびW相コイルによって構成される各コイル22にそれぞれ交流電流が印加されると、各コイル22には、U相コイルとV相コイルおよびW相コイルをそれぞれ貫通する方向に交流磁場が発生する。 In the stator core 21, coils 22 are provided around each tooth 21B, each coil 22 being formed by, for example, winding an insulating-coated conductive wire. Here, the plurality of coils 22 are composed of a U-phase coil, a V-phase coil, and a W-phase coil. is applied, an AC magnetic field is generated in each coil 22 in a direction penetrating through the U-phase coil, the V-phase coil, and the W-phase coil.
 ところで、以上のように構成されたステータ20は、図1に示すように、締結具である4本のボルト(図1には1本のみ図示)23によってモータハウジング30に固定されている。具体的には、図2に示すように、ステータコア21(ヨーク21A)の外周であって、直交する4つのq軸上には、軸方向視で略三角形を成す4つの固定部24が径方向外方に向かって一体に突設されている。すなわち、4つの固定部24は、ステータコア21の外周部に、周方向に等角度ピッチ(90°ピッチ)で一体に突設されており、各固定部24には、円孔状のボルト挿通孔24aが軸方向(図2の紙面垂直方向)にそれぞれ貫設されている。なお、各固定部24が成す形状、つまり、軸方向視で略三角形の形状において、三角形の頂部は、凸の円弧曲面を形成し、三角形の2つの斜辺部は、リング状のステータコア21(ヨーク21A)の外周に滑らかに繋がる凹の円弧曲面を形成している。各固定部24の形状をこのように設定することによって、該固定部24の両基端部(ヨーク21Aとの接続部)における応力集中を避けることでき、両基端部における亀裂の発生などを防ぐことができる。 By the way, the stator 20 configured as described above is fixed to the motor housing 30 by four bolts (only one bolt is shown in FIG. 1) 23, which are fasteners, as shown in FIG. Specifically, as shown in FIG. 2, on the outer circumference of the stator core 21 (yoke 21A), four fixed portions 24 which form a substantially triangular shape when viewed in the axial direction are arranged on four orthogonal q-axes. It protrudes integrally toward the outside. That is, the four fixing portions 24 are integrally protruding from the outer peripheral portion of the stator core 21 at an equal angular pitch (90° pitch) in the circumferential direction, and each fixing portion 24 has a circular bolt insertion hole. 24a are pierced in the axial direction (perpendicular to the paper surface of FIG. 2). In addition, in the shape formed by each fixed portion 24, that is, the shape of a substantially triangle when viewed in the axial direction, the top of the triangle forms a convex arc curved surface, and the two oblique sides of the triangle form the ring-shaped stator core 21 (yoke). 21A), forming a concave curved surface that smoothly connects to the outer circumference. By setting the shape of each fixing portion 24 in this way, stress concentration at both base end portions (connecting portions with the yoke 21A) of the fixing portion 24 can be avoided, and cracks at both base end portions can be prevented. can be prevented.
 そして、ステータ20は、図1に示すように、4つの各固定部24(図2参照)に貫設されたボルト挿通孔24aにそれぞれ挿通する計4本のボルト(図1には、1本のみ図示)23をモータハウジング30の本体30Aにねじ込むことによってモータハウジング30に固定されている。 As shown in FIG. 1, the stator 20 includes a total of four bolts (one bolt in FIG. 1) that are respectively inserted into bolt insertion holes 24a provided through the four fixing portions 24 (see FIG. 2). (only shown) 23 is screwed into the main body 30A of the motor housing 30 to be fixed to the motor housing 30 .
 ところで、本実施の形態に係る回転電機1においては、図2に示すように、ロータ10のq軸が固定部24の中心を通る状態にあるとき、4つの各固定部24の中心を通る4本のq軸以外の4本のq軸上のステータコア21に、軸方向に貫通する円孔状のフラックスバリア25がそれぞれ形成されている。ここで、前述のように、ステータコア21の互いに直交するq軸上の外周には、4つの固定部24が等角度ピッチ(90°ピッチ)で形成されているが、フラックスバリア25は、4つの各固定部24の中心を通る計4本のq軸以外の各q軸上(周方向に隣接する2つの固定部24の周方向中間位置(固定部24の中心を通るq軸に対して角度45°を成す位置)にそれぞれ計4つ形成されている。すなわち、本実施の形態では、ステータコア21には、4つのフラックスバリア25が周方向に等角度ピッチ(90°ピッチ)で形成されている。 By the way, in the rotary electric machine 1 according to the present embodiment, when the q-axis of the rotor 10 passes through the centers of the fixed portions 24 as shown in FIG. Circular hole-shaped flux barriers 25 penetrating in the axial direction are formed in the stator cores 21 on four q-axes other than the first q-axis. Here, as described above, four fixed portions 24 are formed at an equal angular pitch (90° pitch) on the outer circumference of the stator core 21 on the q-axis perpendicular to each other. On each q-axis other than a total of four q-axes passing through the center of each fixed portion 24 (circumferentially intermediate position of two fixed portions 24 adjacent in the circumferential direction (an angle to the q-axis passing through the center of the fixed portion 24 In other words, in the present embodiment, the four flux barriers 25 are formed in the stator core 21 at equal angular pitches (90° pitches) in the circumferential direction. there is
 なお、本実施の形態では、ステータコア21の外周に4つの固定部24を周方向に等角度ピッチ(90度ピッチ)で突設したが、この固定部24の数は任意である。但し、固定部24の数を2とした場合、ステータ20のモータハウジング30への取付強度が不足する可能性があり、固定部24の数を6とした場合には、ステータ20のモータハウジング30への取付強度は高められるが、ステータコア21の形状が複雑化してその製造コストが高くなるという問題がある。このため、本実施の形態では、固定部24の数を4に設定している。 In the present embodiment, the four fixed portions 24 are protruded on the outer circumference of the stator core 21 at equal angular pitches (90-degree pitches) in the circumferential direction, but the number of fixed portions 24 is arbitrary. However, if the number of fixing portions 24 is two, the mounting strength of the stator 20 to the motor housing 30 may be insufficient. Although the mounting strength to the stator core 21 can be increased, there is a problem that the shape of the stator core 21 becomes complicated and the manufacturing cost increases. Therefore, in this embodiment, the number of fixing portions 24 is set to four.
 また、本実施の形態では、フラックスバリア25の形状を円孔状としたが、これに限定されず、楕円孔状や多角孔状などとしてもよく、フラックスバリア25の大きさも本発明の目的が達成される範囲で任意に設定することができる。 In the present embodiment, the shape of the flux barrier 25 is a circular hole, but it is not limited to this, and may be an elliptical hole shape or a polygonal hole shape. It can be set arbitrarily within the achievable range.
[回転電機の作用効果]
 次に、本実施の形態に係る回転電機1の作用と効果について説明する。
[Action and effect of rotating electric machine]
Next, the action and effect of the rotary electric machine 1 according to this embodiment will be described.
 例えば、電気自動車(EV車)やハイブリッド車両(HEV車)など(以下、単に「車両」と称する)に搭載された本実施の形態に係る回転電機1が車輪を回転駆動する電動機(モータ)として作用する場合には、不図示のバッテリなどの直流電源から出力される直流電流が不図示のインバータによって交流電流に変換される。そして、この交流電流が回転電機1のステータ20に設けられた複数のコイル(U相、V相およびW相コイル)22にそれぞれ供給されると、これらのコイル22によって回転磁界が発生する。具体的には、各コイル(U相、V相およびW相コイル)22の磁束が合成された回転磁束となり、この回転磁束が発生する領域に配置された複数の永久磁石13が埋設されたロータ10が回転磁束に同期して回転する。 For example, the electric rotating machine 1 according to the present embodiment mounted in an electric vehicle (EV vehicle), a hybrid vehicle (HEV vehicle), etc. (hereinafter simply referred to as "vehicle") serves as an electric motor (motor) that drives wheels to rotate. When it works, a DC current output from a DC power supply such as a battery (not shown) is converted into an AC current by an inverter (not shown). When this alternating current is supplied to each of the plurality of coils (U-phase, V-phase and W-phase coils) 22 provided in the stator 20 of the rotary electric machine 1, these coils 22 generate rotating magnetic fields. Specifically, the magnetic flux of each coil (U-phase, V-phase, and W-phase coils) 22 becomes a combined rotating magnetic flux. 10 rotates in synchronization with the rotating magnetic flux.
 すなわち、バッテリから供給される電気エネルギが回転電機1によってロータ10の回転エネルギ(機械エネルギ)に変換され、シャフト12の回転として出力される。なお、シャフト12の回転は、不図示の変速機やディファレンシャル装置などを経て不図示の車軸へと伝達され、車軸に取り付けられた不図示の車輪が回転駆動されることによって車両が所定の速度で走行する。 That is, electrical energy supplied from the battery is converted by the rotating electric machine 1 into rotational energy (mechanical energy) of the rotor 10 and output as rotation of the shaft 12 . The rotation of the shaft 12 is transmitted to an axle (not shown) through a transmission, a differential device, etc. (not shown), and wheels (not shown) attached to the axle are driven to rotate, thereby driving the vehicle at a predetermined speed. run.
 ところで、本実施の形態に係る回転電機1のステータコア21においては、図2に示すようにロータ10のq軸が4つの固定部24の各中心を通る状態において、4つの各固定部24の各中心を通る4本のq軸以外のq軸上(周方向に隣接する2つの固定部24の周方向中間位置)に計4つのフラックスバリア25を周方向に等角度ピッチ(90°ピッチ)で形成したため、当該回転電機1が電動機(モータ)として機能する場合のロータ10(シャフト12)に出力されるトルクの変動(トルクリプル)が小さく抑えられる。以下にその理由を図5~図7に基づいて説明する。 By the way, in the stator core 21 of the rotary electric machine 1 according to the present embodiment, when the q-axis of the rotor 10 passes through the centers of the four fixed portions 24 as shown in FIG. A total of four flux barriers 25 are arranged at equal angular pitches (90° pitches) in the circumferential direction on q-axes other than the four q-axes passing through the center (intermediate positions in the circumferential direction between two fixing portions 24 adjacent in the circumferential direction). Since it is formed, the fluctuation (torque ripple) of the torque output to the rotor 10 (shaft 12) when the rotary electric machine 1 functions as an electric motor (motor) is suppressed. The reason will be described below with reference to FIGS. 5 to 7. FIG.
 図5および図6は所定の電気角においてステータコアに発生する磁束を示すロータとステータの上半図であって、(a)は本発明に係る回転電機の磁束、(b)は従来の回転電機の磁束をそれぞれ示す図、図7は本発明に係る回転電機の電気角に対するトルク変動を従来の回転電機のトルク変動と比較して示す図である。 5 and 6 are upper half views of the rotor and stator showing the magnetic flux generated in the stator core at a predetermined electrical angle, where (a) is the magnetic flux of the rotating electric machine according to the present invention, and (b) is the conventional rotating electric machine. and FIG. 7 is a diagram showing the torque fluctuation with respect to the electrical angle of the rotary electric machine according to the present invention in comparison with the torque fluctuation of the conventional rotary electric machine.
 図5(a)に示すように、ロータ10のd軸が4つの固定部24の各中心を通る状態においては、ロータ10に設けられた各N極磁極部40Nから出て各S極磁極部40Sに入る互いに逆向きの磁束f1,f2がステータコア21を流れるが、各固定部24は、磁束f1とf2が分岐する位置にあるため、これらの磁束f1,f2は、各固定部24には流れない。また、各フラックスバリア25は、磁束f1とf2が分岐する位置にあるため、磁束f1,f2は、フラックスバリア25によって妨げられることがない。このため、図7に示す電機角範囲aにおいては、磁束抵抗は、フラックスバリア25が無い図5(b)に示す従来の回転電機における磁束抵抗と同じになる。この結果、図7に示すように、所定の電気角範囲aにおけるトルクの波形は、本発明に係る回転電機1と従来の回転電機とで同じになる。なお、図5(b)及び図6(b)において、110はロータ、111はロータコア、140NはN極磁極部、140SはS極磁極部、120はステータ、121はステータコア、122はコイル、124は固定部である。 As shown in FIG. 5A, in a state where the d-axis of the rotor 10 passes through the centers of the four fixed portions 24, each N pole magnetic pole portion 40N provided on the rotor 10 is followed by each S pole magnetic pole portion. The magnetic fluxes f1 and f2 entering 40S in opposite directions flow through the stator core 21. Since each fixed portion 24 is located at the position where the magnetic fluxes f1 and f2 diverge, these magnetic fluxes f1 and f2 are Not flowing. Moreover, since each flux barrier 25 is located at a position where the magnetic fluxes f1 and f2 diverge, the flux barriers 25 do not block the magnetic fluxes f1 and f2. Therefore, in the electrical angle range a shown in FIG. 7, the magnetic flux resistance is the same as the magnetic flux resistance in the conventional rotating electrical machine without the flux barrier 25 shown in FIG. As a result, as shown in FIG. 7, the torque waveforms in the predetermined electrical angle range a are the same between the rotating electrical machine 1 according to the present invention and the conventional rotating electrical machine. 5(b) and 6(b), 110 is a rotor, 111 is a rotor core, 140N is an N magnetic pole portion, 140S is an S magnetic pole portion, 120 is a stator, 121 is a stator core, 122 is a coil, 124 is the fixed part.
 他方、図6(b)に示す従来の回転電機においては、ロータ110のq軸が4つの固定部124の各中心を通るときには、磁束f2の一部f3が各固定部124をそれぞれ流れる。このことは磁路が広がったことに相当するために磁気抵抗が下がり、図7に示す電気角範囲bにおいては、破線にて示すようにトルク波形が持ち上がり、トルクは最大値を示す。 On the other hand, in the conventional rotating electric machine shown in FIG. 6(b), when the q-axis of the rotor 110 passes through the centers of the four fixed portions 124, a portion f3 of the magnetic flux f2 flows through each fixed portion 124. This corresponds to the expansion of the magnetic path, so that the magnetic resistance decreases, and in the electrical angle range b shown in FIG.
 これに対して、本発明に係る回転電機1においても、図6(a)に示すように、磁束f2の一部f3が各固定部24をそれぞれ流れるが、磁束f1の途中にフラックスバリア25が設けられているため、このフラックスバリア25のために磁路が狭まって磁気抵抗が増大する。このため、磁束f3が固定部24を流れることによって発生する磁気抵抗の低下がフラックスバリア25による磁気抵抗の増大によって相殺され、図7の電気角範囲bにおけるトルク波形の持ち上がりが防がれ、トルク波形は、図7に実線にて示すように、全電気角範囲において略同じ形状を示す。この結果、ロータ10(シャフト12)のトルク変動、つまり、トルクリプルが小さく抑えられ、当該回転電機1の振動と騒音が低く抑えられる。なお、トルクリプルは、ロータ10(シャフト12)の出力トルクの変動分を、平均トルクに対する百分率で示すものである。 On the other hand, in the rotary electric machine 1 according to the present invention, as shown in FIG. 6A, a part f3 of the magnetic flux f2 flows through each fixed portion 24, but the flux barrier 25 is formed in the middle of the magnetic flux f1. Since the flux barrier 25 is provided, the flux barrier 25 narrows the magnetic path and increases the magnetic resistance. Therefore, the decrease in magnetic resistance caused by the flow of the magnetic flux f3 through the fixed portion 24 is offset by the increase in magnetic resistance due to the flux barrier 25, preventing the torque waveform from rising in the electrical angle range b in FIG. The waveform has substantially the same shape over the entire electrical angle range, as indicated by the solid line in FIG. As a result, the torque fluctuation of the rotor 10 (shaft 12), that is, the torque ripple is kept small, and the vibration and noise of the rotary electric machine 1 are kept low. Note that the torque ripple indicates the amount of fluctuation in the output torque of the rotor 10 (shaft 12) as a percentage of the average torque.
 他方、車両に搭載された回転電機1は、車両の回生制動による減速時には発電機(ジェネレータ)として機能する。すなわち、車輪側から回転電機1のシャフト12に入力される回転動力によってロータ10が回転駆動されると、このロータ10に埋設された永久磁石13の回転磁束によってステータ20のコイル22に交流電流が発生する発電がなされる。そして、発電によって発生した交流電流は、不図示のコンバータによって直流電流に変換され、この直流電流によって不図示のバッテリの充電がなされる。 On the other hand, the rotating electrical machine 1 mounted on the vehicle functions as a generator during deceleration due to regenerative braking of the vehicle. That is, when the rotor 10 is rotationally driven by the rotational power input to the shaft 12 of the rotary electric machine 1 from the wheel side, alternating current is applied to the coils 22 of the stator 20 by the rotating magnetic flux of the permanent magnets 13 embedded in the rotor 10 . Generates power generation. The alternating current generated by the power generation is converted into a direct current by a converter (not shown), and the direct current charges a battery (not shown).
 なお、以上は本発明を電気自動車(EV車)やハイブリッド車両(HEV車)などに搭載される回転電機に対して適用した形態について説明したが、本発明は、他の任意の用途に供される回転電機に対しても同様に適用可能である。 In the above description, the present invention is applied to a rotating electric machine mounted on an electric vehicle (EV vehicle) or a hybrid vehicle (HEV vehicle). It is also applicable to a rotating electrical machine with
 また、以上は本発明を電動機(モータ)と発電機(ジェネレータ)として機能する回転電機(モータジェネレータ)に対して適用した形態について説明したが、本発明は、電動機(モータ)としてのみ機能する回転電機に対しても同様に適用可能である。 In the above description, the present invention is applied to a rotating electric machine (motor generator) that functions as both a motor and a generator. It is also applicable to electric machines in the same way.
 その他、本発明は、以上説明した実施の形態に適用が限定されるものではなく、特許請求の範囲及び明細書と図面に記載された技術的思想の範囲内で種々の変形が可能であることは勿論である。 In addition, the application of the present invention is not limited to the embodiments described above, and various modifications are possible within the scope of the technical ideas described in the claims, the specification, and the drawings. is of course.
 1    回転電機
 10   ロータ
 11   ステータコア
 12   シャフト
 13   永久磁石
 20   ステータ
 21   ステータコア
 21A  ステータコアのヨーク
 21B  ステータコアのディース
 21C  ステータコアのスロット
 22   コイル
 23   ボルト(締結具)
 24   固定部
 24a  ボルト挿通孔(貫通孔)
 25   フラックスバリア
 30   モータハウジング
 40   磁極部
 40N  N磁極部
 40S  S磁極部
1 rotating electrical machine 10 rotor 11 stator core 12 shaft 13 permanent magnet 20 stator 21 stator core 21A stator core yoke 21B stator core disk 21C stator core slot 22 coil 23 bolt (fastener)
24 Fixed portion 24a Bolt insertion hole (through hole)
25 flux barrier 30 motor housing 40 magnetic pole portion 40N N magnetic pole portion 40S S magnetic pole portion

Claims (4)

  1.  外周部に複数の永久磁石が埋設された回転可能なロータと、
     前記ロータの周囲に固設され、ステータコアに複数のコイルが設けられたステータと、
     前記ロータと前記ステータを内部に収容するモータハウジングと、
    を備え、前記ステータを、前記ステータコアの外周縁から径方向外方に突設された複数の固定部に挿通する締結具によって前記モータハウジングに固定して構成される回転電機であって、
     前記ロータのq軸が前記固定部の中心を通る状態において、前記固定部の中心を通る前記q軸以外のq軸上の前記ステータコアに、軸方向に貫通するフラックスバリアを形成したことを特徴とする回転電機。
    a rotatable rotor having a plurality of permanent magnets embedded in its outer periphery;
    a stator fixed around the rotor and having a stator core provided with a plurality of coils;
    a motor housing housing the rotor and the stator therein;
    wherein the stator is fixed to the motor housing by fasteners that are inserted into a plurality of fixing portions projecting radially outward from the outer peripheral edge of the stator core,
    In a state in which the q-axis of the rotor passes through the center of the fixed portion, a flux barrier that penetrates in the axial direction is formed in the stator core on a q-axis other than the q-axis passing through the center of the fixed portion. Rotating electric machine.
  2.  前記ロータの外周には、N磁極部とS磁極部が周方向に交互に配置されており、各N極磁極と各S極磁極は、3つの前記永久磁石が軸方向視においてそれぞれ三角形状に配置されて構成されていることを特徴する請求項1に記載の回転電機。 On the outer circumference of the rotor, N magnetic pole portions and S magnetic pole portions are alternately arranged in the circumferential direction. 2. The electric rotating machine according to claim 1, which is arranged and configured.
  3.  前記N極磁極と前記S極磁極は、周方向に等角度ピッチで交互にそれぞれ4つずつ設けられ、
     前記固定部は、前記ステータコアの周方向に等角度ピッチで4つ形成されており、周方向に隣接する2つの前記固定部の周方向中間位置に前記フラックスバリアがそれぞれ形成されていることを特徴とする請求項2に記載の回転電機。
    Four each of the N pole magnetic poles and the S pole magnetic poles are provided alternately at equal angular pitches in the circumferential direction,
    Four fixed portions are formed at equal angular pitches in the circumferential direction of the stator core, and the flux barriers are formed at intermediate positions in the circumferential direction between the two fixed portions that are adjacent in the circumferential direction. The rotary electric machine according to claim 2, wherein
  4.  前記固定部は、前記ステータの外周縁から径方向外方に膨出する略三角形を成す部分であって、その中心部に、前記締結具が挿通する貫通孔が貫設されていることを特徴とする請求項1~3の何れかに記載の回転電機。 The fixed portion is a substantially triangular portion that bulges outward in the radial direction from the outer peripheral edge of the stator, and is characterized in that a through hole through which the fastener is inserted is provided in the central portion of the fixed portion. The electric rotating machine according to any one of claims 1 to 3.
PCT/JP2022/023595 2021-09-01 2022-06-13 Rotary electrical machine WO2023032406A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280015865.8A CN116868480A (en) 2021-09-01 2022-06-13 Rotary electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-142395 2021-09-01
JP2021142395 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023032406A1 true WO2023032406A1 (en) 2023-03-09

Family

ID=85411170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023595 WO2023032406A1 (en) 2021-09-01 2022-06-13 Rotary electrical machine

Country Status (2)

Country Link
CN (1) CN116868480A (en)
WO (1) WO2023032406A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178943A (en) * 1983-03-29 1984-10-11 Matsushita Electric Ind Co Ltd Brushless motor
JPH0583891A (en) * 1991-09-18 1993-04-02 Sony Corp Iron core motor
JP2013066341A (en) * 2011-09-20 2013-04-11 Toshiba Mitsubishi-Electric Industrial System Corp Rotary electric machine
JP2021023012A (en) * 2019-07-26 2021-02-18 株式会社東芝 Stator of rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178943A (en) * 1983-03-29 1984-10-11 Matsushita Electric Ind Co Ltd Brushless motor
JPH0583891A (en) * 1991-09-18 1993-04-02 Sony Corp Iron core motor
JP2013066341A (en) * 2011-09-20 2013-04-11 Toshiba Mitsubishi-Electric Industrial System Corp Rotary electric machine
JP2021023012A (en) * 2019-07-26 2021-02-18 株式会社東芝 Stator of rotary electric machine

Also Published As

Publication number Publication date
CN116868480A (en) 2023-10-10

Similar Documents

Publication Publication Date Title
US6815858B2 (en) Permanent magnet rotating electric machine
JP3509508B2 (en) Permanent magnet synchronous motor
JP3746372B2 (en) Permanent magnet type rotating electric machine and electric vehicle using the same
US10644550B2 (en) Rotor for rotating electric machine
CN103117604A (en) Electric rotating machine
JP2008187804A (en) Rotor and rotary electric machine equipped with rotor
JP5347588B2 (en) Embedded magnet motor
JP2009219343A (en) Rotating electric machine, and method for connecting stator coil of rotating electric machine
US10958120B2 (en) Electric machine rotor for harmonic flux reduction
JP3523557B2 (en) Permanent magnet type rotating electric machine and hybrid electric vehicle using the same
WO2015151344A1 (en) Permanent magnet brushless motor
WO2017038326A1 (en) Rotor, rotating electrical machine provided therewith, and method of manufacturing rotor
JP4881708B2 (en) Vehicle alternator and rotating electric machine
WO2023032406A1 (en) Rotary electrical machine
WO2017073275A1 (en) Magnet type rotor, rotary electric machine provided with magnet type rotor, and electric automobile provided with rotary electric machine
WO2023032403A1 (en) Dynamo-electric machine
WO2023026637A1 (en) Rotating electrical machine
WO2019044206A1 (en) Dynamo-electric machine
JP4211200B2 (en) Synchronous machine with magnet
WO2019003559A1 (en) Stator of dynamo-electrical machine, dynamo-electrical machine, and method for manufacturing stator of dynamo-electrical machine
JP4459886B2 (en) Stator and motor
JP2007221854A (en) Stator fixing structure and electric vehicle
JP2012016112A (en) End plate of rotation electrical machine for vehicle
JP7455994B2 (en) rotating electric machine
JP2011083114A (en) Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863994

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280015865.8

Country of ref document: CN