JP4211200B2 - Synchronous machine with magnet - Google Patents

Synchronous machine with magnet Download PDF

Info

Publication number
JP4211200B2
JP4211200B2 JP2000175273A JP2000175273A JP4211200B2 JP 4211200 B2 JP4211200 B2 JP 4211200B2 JP 2000175273 A JP2000175273 A JP 2000175273A JP 2000175273 A JP2000175273 A JP 2000175273A JP 4211200 B2 JP4211200 B2 JP 4211200B2
Authority
JP
Japan
Prior art keywords
magnetic
rotor core
magnet
peripheral surface
synchronous machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000175273A
Other languages
Japanese (ja)
Other versions
JP2001359263A (en
Inventor
明 福島
裕章 梶浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000175273A priority Critical patent/JP4211200B2/en
Publication of JP2001359263A publication Critical patent/JP2001359263A/en
Application granted granted Critical
Publication of JP4211200B2 publication Critical patent/JP4211200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁石併用式同期機に関する。
【0002】
【従来の技術】
永久磁石型同期機は他の形式の同期機に比較して高出力でコンパクト化が容易であり、ハイブリッド車や電気自動車の車両走行モータ用磁石併用同期機に好適である。
【0003】
しかしながら、車両走行モータ用磁石併用同期機では、低速トルクを十分に確保するとともに、高速回転時に過大な電機子巻線誘起電圧が駆動回路の半導体駆動素子などに印加されるのを防止するため、高速回転時の磁石磁界を低減する手段を設ける必要がある。
【0004】
本出願人の出願になる特開平10ー304633号公報は、ロータコアに永久磁石、永久磁石磁極を磁気的に短絡する短絡部材、及び、短絡部材の磁束量を制御する界磁コイルを設け、界磁コイルへの通電により短絡部材を含む短絡磁気回路の磁気抵抗を調節し、これにより電機子巻線と有効に鎖交する有効運磁界を制御して電機子巻線の発電電圧を調節可能する磁石併用同期機を提案している。
【0005】
【発明が解決しようとする課題】
しかしながら、上記した磁石併用式同期機は、積層電磁鋼板からなるロータコアの内周側をくりぬいて界磁コイルを収容するために、高価な電磁鋼板の利用率が悪く、材料費増大により実用性が低下していた。
【0006】
本発明は上記問題点に鑑みなされたものであり、発電電圧過昇抑止性能を低下させることなく電磁鋼板利用率を向上可能な磁石併用式同期機を提供することを、その目的としている。
【0007】
【課題を解決するための手段】
請求項1の磁石併用式同期機は、ハウジングと、前記ハウジングの内周面に固定されたステータコアと、前記ステータコアに巻装された電機子巻線と、前記ステータコアの内周面に所定ギャップを隔てて前記ハウジングに相対回転自在に支承される円筒状のロータコアと、前記ロータコアに固定されて前記ロータコアの外周面に界磁極を形成する永久磁石と、前記ロータコアに軸方向に挿通されて前記永久磁石により形成される磁石磁界を磁気的に短絡する磁気短絡部材と、前記ロータコアの径内側に配置されて前記界磁ヨーク及び前記ロータコアを通じて前記磁気短絡部材に磁束を流す界磁コイルと、前記ロータコアの径内側に配置されて前記ロータコア及び磁気短絡部材とともに前記界磁コイルが形成する磁束を貫流させる磁気部材とを備え、前記ロータコアは、螺旋巻きされて軸方向に積層された軟磁性板により形成されて前記界磁コイルの外周面と前記ステータコアの内周面との間に介設され、前記短絡部材は、前記ロータコアに軸方向に貫設された短絡部材収容用貫通孔に挿通され、前記ロータコアの内周部は、前記界磁コイルの両側に位置して前記磁気部材の外周面に向けて径内側へ突設された磁気的凸部と、前記界磁ヨークとの間の磁気抵抗が前記磁気的凸部よりも大きい磁気的凹部とを前記ロータコアの周方向磁極ピッチで交互に有し、前記ロータコアの軸方向一端側は、他端側に対して前記磁気的凸部及び磁気的凹部を周方向逆位置に有し、前記磁石収容用貫通孔は、長辺が径方向に対して45度未満の傾斜角を有する径方向断面形状を有し、隣接する2つの前記永久磁石の前記傾斜角は、前記ロータコアの前記磁気的凸部が前記磁気的凹部より幅広かつ径方向を基準に逆向きに形成されていることを特徴としている。
この発明によれば、ロータコアを、帯板状の軟磁性板を螺旋巻きして軸方向に積層して形成したので、通常、ロータコアとして採用される電磁鋼板を節約して材料使用量を低減することができる。
【0008】
また、螺旋巻きされた軟磁性板を軸方向に貫通する磁気短絡部材は、ロータコアを軸方向に磁気短絡する磁路を構成するとともに、螺旋巻きされた軟磁性板を周方向又は軸方向にばらけないように締結する機能を奏することができ、螺旋巻き構成のロータコアの固定のための特別のピン部材を省略することができる。
また、前記ロータコアの内周部は、前記界磁コイルの両側に位置して前記磁気部材の外周面に向けて径内側へ突設された磁気的凸部と、前記界磁ヨークとの間の磁気抵抗が前記磁気的凸部よりも大きい磁気的凹部とを前記ロータコアの周方向磁極ピッチで交互に有し、前記ロータコアの軸方向一端側は他端側に対して、前記磁気的凸部及び磁気的凹部を周方向逆位置に有し、前記磁石収容用貫通孔は、長辺が径方向に対して45度未満の所定の傾斜角を有する径方向断面形状を有し、隣接する2つの前記永久磁石の前記傾斜角は、前記ロータコアの前記磁気的凸部が前記磁気的凹部より幅広かつ径方向を基準に逆向きに形成されているので、界磁コイルが形成する電流磁束が磁石磁束の磁路と独立にロータコアを軸方向に流れることにより磁石磁束を制御する効果が低下することを防止することができる。
【0009】
請求項2記載の構成によれば請求項1記載の磁石併用式同期機において更に、短絡部材収容用貫通孔とロータコアの内周面とを連通するスリットがロータコアに形成されている。
【0010】
本構成によれば、短絡部材収容用貫通孔がスリットとともにロータコア形成用の軟磁性板の塑性変形を容易化するため、ロータコア製造が容易となる。
【0011】
請求項3記載の構成によれば請求項1又は2記載の磁石併用式同期機において更に、ロータコアは、軸方向に貫設された磁石収容用貫通孔と、前記磁石収容用貫通孔を前記ロータコアの内周面に連通するスリットとを有するので、磁石収容用貫通孔がスリットとともにロータコア形成用の軟磁性板の塑性変形を容易化するため、ロータコア製造が容易となる。
【0012】
請求項4記載の構成によれば請求項1乃至3のいずれか記載の磁石併用同期機において更に、前記磁石収容用貫通孔は、一対の辺が略径方向に伸びる矩形断面形状を有し、前記永久磁石の磁極面は、周方向両端面に形成され、互いに周方向に隣接する2つの前記永久磁石は、逆方向に磁化されていることを特徴としている。
【0013】
本構成によれば、磁石収容用貫通孔が矩形断面を有するので、軟磁性板の塑性変形が容易となる他、磁石磁束を増大することができる。
【0014】
請求項5記載の構成によれば請求項1〜4のいずれか記載の磁石併用同期機において更に、前記ロータコアの外周面は、前記磁石挿入孔の径外側の部位に位置して径内側に凹設され、かつ、前記軟磁性板の積層方向に隣接する薄板部同士が溶接されている接続部を有することを特徴としているので、磁石磁束の漏れを低減できるとともに、ロータコアの強度を強化することができる。
【0015】
特に、この接続部にてロータコアは径内側へ凹設されているので、上記溶接による盛り上がりを吸収することができるとともに、接続部を通じてのステータコアに対する磁気漏洩を低減することができ、更に溶接熱によりこの接続部の磁気特性を劣化させて接続部を周方向に通過する漏れ磁石磁束を低減することができる。
【0019】
請求項記載の構成によれば請求項1乃至のいずれか記載の磁石併用式同期機において更に、前記磁気部材は、前記ハウジングの内端壁に固定されて外周面が前記ロータコアの内周面に所定ギャップを隔てて対面する界磁ヨークを有することを特徴としている。
【0020】
これにより、回転質量を低減して加速性を向上するとともに、界磁コイルへの給電経路を簡素な構造とすることができる。
【0021】
【発明の実施の形態】
本発明の好適な態様を実施例を参照して以下に説明する。
【0022】
【実施例1】
実施例1記載の磁石併用式同期機を図1〜図3を参照して説明する。
(全体構造の説明)
回転機1000は、ステータ1100と、ロータ1200を有し、ステータ1100はフロントフレーム1910およびエンドフレーム1911の内周面に固定されている。
【0023】
ロータ1200は、軸受け1920、1921を介してフロントフレーム1910およびエンドフレーム1911に支承されており、その外周面はエアギャップを介してステータ1100の内周面に対面している。1930はロータ1200の回転位置を測定するレゾルバロータであり、1931はレゾルステータである。
【0024】
ステータ1100は、電磁鋼板を軸方向に積層してなるステータコア1120に3相コイル1110を巻装してなり、ステータコア1120は、3相コイル1110を挿入するスロット1121、ティース1122およびコアバック1123を有している。
【0025】
ロータ1200は、電磁鋼板製のロータコア1210、軟磁性体鉄心製のロータヨーク1270を有している。
【0026】
ロータコア1210は、図2(図1におけるEーE線矢視断面図)に示すように電磁薄鋼板を螺旋状に巻き重ねて軸方向に積層することにより円筒形状に形成されている。ロータコア1210は、周方向に等間隔ピッチで軸方向に貫設された角形の磁石挿入孔(磁石収容用貫通孔)1211、及び、隣り合う2つの磁石挿入孔1211の間に軸方向に貫設された丸孔(短絡部材収容用貫通孔)1212を有している。ロータコア1210の内周部には、後述の界磁ヨーク1232からの磁束が通過容易な磁気的凸部1250、及び、通過しにくい磁気的凹部1251が磁極ピッチ毎に交互に形成されてなる磁気的凹凸部が形成されている。磁気的凸部1250は、径方向に形成されて丸孔1212とロータコア1210の内周面とを連通するスリット1252を有している。
【0027】
ロータコア1210の展開形状、すなわち長尺帯板状の電磁鋼板の螺旋巻き重ね前の形状を図8に示す。展開状態(螺旋巻き重ね前)のロータコア1210にはプレス打ち抜きにより、磁石挿入孔1211、丸孔1212及びスリット1252が形成されている。これら各磁石挿入孔1211、丸孔1212及びスリット1252は、巻き重ね後、軸方向に一直線に並ぶように形成されている。
【0028】
磁石挿入孔1211には磁石1280が、丸孔1212には軟磁性体からなる磁性ピン(磁気短絡部材)1281が圧入(または嵌合)されている。磁性ピン1281は螺旋巻きされた上記長尺帯板状の電磁鋼板の周方向への戻りや軸方向へのばらけを阻止している。
【0029】
螺旋巻き前のロータコア1210すなわち上記長尺帯板状の電磁鋼板のスリット1252は、内周に向かうにつれてスリット幅が広くなる形状を有しており、これにより螺旋巻き後のスリット1252のスリット幅は各部において微小となっている。これにより、界磁磁束に対するロータコア1210の磁気抵抗を低減することができる。このスリット1252の形成により、上記長尺帯板状の電磁鋼板の螺旋巻きが容易となるが、この実施例では、スリット1252を丸孔1212の位置に設けているため、丸孔1212もスリット1252も実質的にスリットとしての機能を果たすことができ、上記長尺帯板状の電磁鋼板の螺旋巻きを一層容易化することができる。
【0030】
磁気的凸部1250は、周方向一つおきの丸孔1212の内周側に隣接して周方向両側の2つの磁石挿入孔1211の間にわたって設けられ、 磁気的凹部1251は、他の丸孔1212の内周側に隣接して周方向両側の2つの磁石挿入孔1211の間にわたって設けられている。
【0031】
この実施例では、スリット1252は、磁気的凸部1250に設けられており、これにより、磁気的凸部1250の螺旋巻きのための塑性変形を容易化している。もちろん、磁気的凹部1250にスリット1252を設けてもよい。また、磁気的凸部1250及び磁気的凹部1251は、図1に示すように、ロータコア1210の軸方向前半部と軸方向後半部とで位置が逆転して形成されている。
【0032】
各磁石挿入孔1211に軸方向に挿入された磁石1280は、その厚さ方向すなわち略軸方向に磁化されており、周方向に隣接する2つの磁石1280は、互いに対面する端面が同一極性の磁極面となっている。
【0033】
磁性ピン(軟磁性体ピン)1281は、基端部に丸孔1212より径大の鍔部を有し、圧入後に軟磁性体ピン1281の先端部材を押し広げて螺旋状に巻き重ねられた上記長尺帯板状の電磁鋼板からなるロータコア1210を軸方向に固定している。また、一つおきの磁性ピン1281はロータコア1210をロータヨーク1270に固定している。
【0034】
ロータコア1210は、その外周面と磁石挿入孔1211の径外端との間にて図8に示すように径内側へ凹設された凹設部をもち、この凹設部は、磁石挿入孔1211に沿って軸方向に形成されている。この凹設部は、磁石1280の外周面とステータコア1120の内周面との間に大きなギャップを確保し、磁石1280の磁束が電機子巻線1110と十分に鎖交せずに漏れ磁束となってしまうのを抑止している。また、この凹設部は、ロータコア1210の外周面と磁石挿入孔1211の径外端との間のロータコア1210の周方向磁気通路を狭窄して、磁石1280の漏れ磁束を低減している。更に、この凹設部は、ロータコア1210の外周面側から軸方向にレーザ溶接されており、これにより、螺旋巻きされてロータコア1210を構成する長尺帯板状の電磁鋼板の各層を一体化するとともに、この凹設部の磁気特性を劣化させてこの部位を周方向に流れる漏れ磁束を低減している。
【0035】
ロータヨーク1270は、図1及び図1のP視断面図である図3に示すように、軟磁性体鉄心を鍛造加工して形成されている。ロータヨーク1270は、径方向に延在する円板部1271と、円板部1271の内周端からリヤ側に延在するボス部1272とからなるフランジ部材であって、円板部1271は、円板部1271の外周端縁から径外方向へ放射状に張り出した磁石挿入孔1211の半分の数のリブ1273を有している。リブ1273は、ロータヨーク1270の軸方向後半部の丸孔1212(図2参照)と同一位置に同一径で形成された丸孔1278を有している。ロータヨーク1270の丸孔1212を貫通した軟磁性体ピン(磁性ピン)1281はリブ1273の丸孔1278に圧入され、これにより、ロータコア1210がロータヨーク1270に固定されている。1240はスプライン1241をもつシャフトであって、ボス部1272に相対回転不能に圧入されている。
【0036】
1274は、軟磁性体よりなるフランジ状の界磁コア(静止ヨーク)であって、その円板部はエンドフレーム1911の端壁部にねじ1940にて固定されている。界磁コア1274のボス部の内周面は、ロータヨーク1270のボス部1272の外周面に微小ギャップを隔てて相対回転自在に嵌着され、ロータコア1210の径内側に存在する空間に軸方向に突出している。界磁コア1274の上記ボス部の外周面には、界磁巻線1230が巻装され、界磁巻線1230の軸方向両側には、界磁磁束をロータコア1210の内周面に導くための積層電磁鋼板製の界磁ヨーク1232が圧入により嵌着されている。
【0037】
なお、1350は、外部から界磁巻線1230へ給電するためのリード部1350である。
【0038】
回転電機1000の3相コイル1110は、直ー交電力変換器(インバータ)200を通じてバッテリ300から給電されている。界磁コイル1230に流れる界磁電流は、リード線1350を通じて界磁電流制御回路400から給電され、レゾルバのステータ1931は信号処理回路500に出力し、インバータ200、界磁電流制御回路400及び信号処理回路500は制御回路600により制御される。
(磁気回路の説明)
次に、磁石1280が形成する磁石磁界及び界磁コイル1230の電流が形成する電流磁界について以下に説明する。特に重要な点は、既に説明したようにロータコア1210の軸方向前半部の磁気的凸部1250と軸方向後半部の磁気的凸部1250とが周方向へ1磁極ピッチだけずれている点にある。
【0039】
厚さ方向(略周方向)に着磁された磁石1280はロータコア1210の外周面に周方向交互にS磁極、N磁極を形成する。このS磁極から出た磁束は、ステータコア1120との間のエアギャップを通じてステータコア1120内で電機子巻線1110と鎖交し、エアギャップを通じてロータコア1210に戻る有効磁束となる。
【0040】
また、磁石1280のS磁極から出た磁石磁束は、ロータコア1210のS磁極部分の軟磁性体ピン1281、ロータヨーク1270のリブ部1273、円板部1271、ボス部1272、界磁コア1274のボス部、界磁ヨーク1232、ロータコア1210の軸方向後半部の磁気的凸部1250、N磁極側軟磁性体ピン1281を通って磁石1280のN磁極に戻り、これにより短絡磁気回路が形成される。
【0041】
また、磁石1280のS磁極から出た磁石磁束は、ロータコア1210のS磁極部分の軟磁性体ピン1281、ロータコア1210の軸方向前半部の磁気的凸部1250、界磁ヨーク1232(軸方向前部)、界磁コア1274のボス部、界磁ヨーク1232(軸方向後部)、ロータコア1210の軸方向後半部の磁気的凸部1250、N磁極側軟磁性体ピン1281を通って磁石1280のN磁極に戻り、これにより上記短絡磁気回路とほぼ並列の短絡磁気回路が形成される。
【0042】
当然、ステータ1100の電機子巻線1110と鎖交する上記有効磁束は、この短絡磁気回路を流れる磁束分だけ減少する。
【0043】
上記両短絡磁気回路は、界磁コイル1230とも鎖交しているので、磁石磁界から短絡磁気回路にされる磁束の量は、界磁コイル1230に通電する電流により制御することができる。
【0044】
この回転電機の等価磁気回路を図4に示す。
【0045】
ステータ1100側の磁気抵抗をRs、エアギャップの磁気抵抗をRg、磁石部の磁気抵抗をRmとする。Rmは上記有効磁束が流れる磁気回路のロータ側の磁気抵抗である。上記短絡磁気回路の磁気抵抗のうち上記Rmを除く磁気抵抗(短絡磁気抵抗)をRr、磁石の起磁力をFm、界磁巻線の起磁力をFcとすると、ステータ1100側に流れる有効磁束量Φ1は次式で表わせる。
【0046】
Φ1=(RmFc+RrFm)/(RrRm+Rm(Rg+Rs)+(Rg+Rs)Rr)
Φ2は短絡磁束量である。各パラメータの設定により有効磁束量Φ1は任意に設定できる。例えば界磁巻線1230に電流を流さないとき(Fc=0)の有効磁束量Φ10は、
Φ10=RrFm/(RrRm+Rm(Rg+Rs)+(Rg+Rs)Rr)
となり、短絡磁気抵抗Rrが小のときはΦ10はほぼ0となる。短絡磁気抵抗Rrは、軟磁性体ピン1281、リブ部1223、円筒状鉄心1231および各部材の接合部の磁気抵抗により決定されるため、各部の断面積および長さを設定することで、界磁巻線1230に電流を流さない時の有効磁束量Φ10を設定することができる。ここでは、有効磁束が流れる磁路を構成する磁性材料のBーH特性の線形領域(図5に示す0〜Φ’の領域)に設定し、有効磁束量Φ1が磁路を構成する磁性材料の磁気飽和領域に達しないようにする。
【0047】
界磁巻線1230に通電した場合は、界磁巻線起磁力Fc分の磁束量Φ1cが形成される。
【0048】
Φ1c=RmFc/(RrRm+Rm(Rg+Rs)+(Rs+Rs)Rr)
その結果、有効磁束量Φ1は
Φ1=Φ10+Φ1c
となり、界磁巻線通電流により有効磁束量を調整することができる。なお、磁束量Φ1cは、短絡磁気回路に漏れる磁石磁束量を減らすと考えることができる。
【0049】
(実施例効果)
上記説明した磁石併用式同期機は、ハイブリッド車や電機自動車などの走行用モータとして特に好適である。
【0050】
この種の走行用モータは車輪回転数に応じて広い回転数範囲で用いられる。弱め界磁制御が不要な低回転域では、界磁巻線1230への通電電流を増加させ、有効磁束量Φ1を増加する。モータ発生トルクは有効磁束量Φ1とトルク電流とに比例するため、有効磁束量Φ1を増加させることにより電機子巻線1110に通電する電機子電流を低減することができる。
【0051】
反作用誘起電圧が印加電圧を超えるため、モータ駆動に弱め界磁制御が必要な高回転域では、界磁巻線1230への通電電流をゼロとし、磁石磁束を短絡磁路へ最大に分流させて、電機子巻線に流す弱め界磁電流を減少又は0とすることができる。これにより、最大電機子電流を減らすことができるため、巻線部の発熱が抑えられ回転機を小型化ができ、更に電力変換器200の半導体スイッチング素子を小型化することができる。
【0052】
なお、界磁コイル1230の銅損は電機子巻線1110の銅損に比べてわずかであるため、この実施例記載の界磁電流による弱め界磁は、従来の電機子電流によるそれに比較して効率向上をもたらす。
【0053】
また、界磁巻線起磁力Fc=0のときの有効磁束量Φ10を有効磁路を構成する磁性材料のBーH特性の線形領域に設定しているので、有効磁束量Φ10による反作用誘起電圧が印加電圧以上となる高回転域でモータ駆動する必要が生じたとき、電機子巻線1110からの弱め界磁に必要な電機子電流を最小限に抑えることができる。
【0054】
図5において説明すると、電機子電流により有効磁束をΦoからΦ’に減少させる場合、BーHカーブが線形であるときに必要ATをATa、非線形であるときの必要ATをATbとするとATa<ATbとなるので、その差に比例して電機子電流を低減することができる。
【0055】
更に、従来の永久磁石回式転電機をモータとして動作させ、電機子巻線に弱め界磁電流を流して制御する場合のTーN(トルクー回転数)特性上の効率マップを図6に示し、この実施例の回転電機を上記制御方法にて駆動した場合のTーN特性上の効率マップを図7に示す。両図の比較からわかるように、効率マップ上の最大効率範囲が拡大する。
【0056】
なお、この実施例の回転電機を発電機動作させる場合、Φ10を車両用常用負荷のレベルに設定しておき、それ以上の出力が要求されるときのみ界磁巻線に通電すれば、界磁巻線の銅損が低減でき高効率の発電が可能である。
【0057】
更に付言すれば、従来、ロータから界磁コントロ−ル可能な同期回転機として突極形同期機、クローボール形同期機があるが、これらは共に界磁巻線のみにより有効磁束を得ており、有効磁束の必要最小限(短絡磁束解消分)を界磁巻線で補うことが可能なこの実施例の回転電機と比較して、界磁巻線への通電電流が大きく、界磁コイルの大型化、や界磁コイルの抵抗損が大きいという問題がある。ロータ巻装の界磁コイルは冷却性において電機子巻線に劣るので、本実施例の採用により界磁コイルの損失、発熱低減が可能となる。
【0058】
【実施例2】
本発明の磁石併用式同期機の他の実施例を図9を参照して説明する。
【0059】
この実施例の磁石併用式同期機は、磁石挿入孔1211もロータコア1210の内周面に連通するスリット1253を有している。また、図示しない角柱形状の磁性ピンを嵌合する第2の孔(実施例1の丸孔1212に相当)1214もロータコア1210の内周面と連通する開口部1254、1255を有している。孔1211、1214、および開口部1253、1254、1255は、コア展開時(螺旋巻き前)には内周面に向かう程開口幅を広くされていることは実施例1のスリットと同じである。ロータコア1210を螺旋巻きした時、上記した磁気的凸部に位置する開口部1254の開口幅は狭くされ、上記した磁気的凹部に位置する開口部1255の開口幅は広くされている。1261は、磁石が径内側へ離脱するのを防止するために開口部1253に周方向に突設された突起部である。1262は、幅広の開口部1255の両側に設けられたフック部であって、図示しない角柱形状の磁性ピン1281に当接させることにより、ロータコア1210が径外側へ変位や偏心するのを防止している。このように、磁性ピンを角柱形状とすることにより磁性ピンの磁路断面積を増大してその磁気抵抗を低減し、界磁コイルの磁束量を増大することができる。また、磁性ピンが、ロータコア1210に嵌入される部位で角柱形状、ロータヨーク1270に嵌入される部位で円柱形状としてもよい。また、図9に示すように、ロータコア1210の内周面に磁石挿入孔1211及び磁性ピン挿入孔1214と連通する開口部1253、1254を設けたことにより、磁石及び磁性ピンの装着が容易となる。また、開口部1253、1254を設けることにより、電磁鋼板の塑性変形圧入との残留応力を緩和して磁気特性を改善することができる。
【0060】
【実施例3】
本発明の磁石併用式同期機の他の実施例を図10を参照して説明する。
【0061】
この実施例の磁石併用式同期機は、ロータコア1210の磁石挿入孔1211の長辺がロータコア1210の軸心から放射状に伸ばした法線に対して所定の傾斜角をもつ点をその特徴としている。
【0062】
ロータコア1210を構成する電磁鋼板は長尺帯板形状をもち、磁石挿入孔1211の長辺方向はロータコア1210の軸心から放射状に伸ばした法線に対して傾斜角θをもち、更にロータコア1210の内周面に連通する開口部1253を有している。また、磁性ピン1281を圧入する第2の孔(実施例1の丸孔に相当)1212もロータコア1210の内周面に連通する開口部1252を有している。また、コア展開時、開口部1252、1253は、内周に向かう程開口部を広くしておき、円環状に巻き重ねた時、所望の開口幅になるようにしている。1261は磁石が内周方向に離脱するのを防止する突起部である。
【0063】
この実施例では、上述したように磁石を傾設するので、ロータの磁気的凸部1250を磁気的凹部1251よりも幅広にし、界磁ヨーク1232からの磁束を通り易くすると、磁石磁束を磁極面により良好に集中することができる。なお、磁石は、磁石挿入孔1211に装着後に着磁してもよく、その前に着磁してもよいが、前者のほうが生産性が向上する。
【0064】
また、磁石はロータコア1210の軸方向前半部と軸方向後半部とに分割して配設することができるので、磁石挿入孔1211の径外の部位における周方向ピッチを軸方向前半部と後半部とで異ならせることにより、合成磁束の空間分布波形をトルクリップル等が小さくなるように調節することができる。
【0065】
以上説明した実施例は、埋込み磁石型回転子の径内側の空きスペースに有効磁束を制御するための界磁巻線を設けているので、回転機の全回転数領域において効率最大となる制御が可能となる。また、磁極を螺旋巻きした電磁鋼板により構成しているため耐遠心力性に優れ、鉄損も低減することができる。
【図面の簡単な説明】
【図1】本発明の実施例1の磁石併用式同期機の軸方向断面図である。
【図2】図1のEーE線矢視断面図である。
【図3】図1のロータのP視矢視側面図である。
【図4】図1の同期機の等価磁気回路図である。
【図5】図1の同期機に用いる磁気材料の磁束密度と磁界との関係を示すB−H特性図である。
【図6】従来の永久磁石型同期機のトルクと回転数の関係を示す特性図である。
【図7】図1の磁石併用式同期機のトルクと回転数の関係を示す特性図である。
【図8】実施例1のロータコア形状を示す図であり、(a)は展開図、(b)は螺旋巻き後の部分側面図である。
【図9】実施例2のロータコア形状を示す図であり、(a)は展開図、(b)は螺旋巻き後の部分側面図である。
【図10】実施例3のロータコア形状を示す図であり、(a)は展開図、(b)は螺旋巻き後の部分側面図である。
【符号の説明】
1000 回転電機
1100 ステータ
1120 ステータコア
1200 ロータ
1230 界磁巻線
1211 磁石挿入孔(磁石収容用貫通孔)
1212 丸孔(短絡部材収容用貫通孔)
1270 ロータヨーク(磁気部材)
1280 磁石(永久磁石)
1281 軟磁性体ピン(磁気短絡部材)
1910 フロントフレーム(ハウジング)
1911 エンドフレーム(ハウジング)
1110 電機子巻線
1232 界磁ヨーク(磁気部材)
1274 界磁コア(磁気部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnet combined type synchronous machine.
[0002]
[Prior art]
The permanent magnet type synchronous machine has a high output and can be easily downsized as compared with other types of synchronous machines, and is suitable for a synchronous motor using a magnet for a vehicle running motor of a hybrid vehicle or an electric vehicle.
[0003]
However, in the magnet combined use synchronous machine for the vehicle running motor, in order to ensure sufficient low-speed torque and prevent an excessive armature winding induced voltage from being applied to the semiconductor drive element of the drive circuit during high-speed rotation, It is necessary to provide means for reducing the magnetic field during high-speed rotation.
[0004]
Japanese Patent Application Laid-Open No. 10-304633, filed by the present applicant, provides a rotor core with a permanent magnet, a short-circuit member that magnetically short-circuits the permanent magnet magnetic pole, and a field coil that controls the amount of magnetic flux of the short-circuit member. The magnetic resistance of the short-circuit magnetic circuit including the short-circuit member is adjusted by energizing the magnetic coil, thereby controlling the effective magnetic field effectively interlinked with the armature winding to adjust the generated voltage of the armature winding. A magnet synchronous machine is proposed.
[0005]
[Problems to be solved by the invention]
However, since the above-described synchronous magnet synchronous machine is hollowed out on the inner peripheral side of the rotor core made of laminated electromagnetic steel sheets and accommodates the field coils, the utilization rate of expensive electromagnetic steel sheets is poor, and the practicality is increased due to the increase in material costs. It was falling.
[0006]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a magnet combined type synchronous machine capable of improving the electrical steel sheet utilization rate without deteriorating the power generation voltage excessive rise suppression performance.
[0007]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a synchronous machine including a magnet, a stator core fixed to an inner peripheral surface of the housing, an armature winding wound around the stator core, and a predetermined gap on an inner peripheral surface of the stator core. A cylindrical rotor core that is supported by the housing so as to be relatively rotatable, a permanent magnet that is fixed to the rotor core and that forms a field pole on an outer peripheral surface of the rotor core, and is inserted into the rotor core in the axial direction so that the permanent A magnetic short-circuit member that magnetically short-circuits a magnetic field formed by a magnet; a field coil that is disposed inside the rotor core and that flows magnetic flux to the magnetic short-circuit member through the field yoke and the rotor core; and the rotor core A magnetic member that is disposed on the inner side of the magnetic core and allows the magnetic flux formed by the field coil to flow through together with the rotor core and the magnetic short-circuit member. The rotor core is formed of a soft magnetic plate spirally wound and laminated in the axial direction, and is interposed between the outer peripheral surface of the field coil and the inner peripheral surface of the stator core, and the short-circuit member is The rotor core is inserted into a through hole for accommodating a short-circuit member extending in the axial direction, and the inner peripheral portion of the rotor core is located on both sides of the field coil and is radially inward toward the outer peripheral surface of the magnetic member. Protruding magnetic convex portions and magnetic concave portions having a magnetic resistance larger than the magnetic convex portions between the magnetic yokes are alternately arranged at the circumferential magnetic pole pitch of the rotor core, and the rotor core One end in the axial direction has the magnetic convex portion and the magnetic concave portion in the circumferentially opposite position with respect to the other end side, and the through hole for accommodating the magnet has a long side of less than 45 degrees with respect to the radial direction. Two cross-sections with a radial cross-section with an angle of inclination The tilt angle of the permanent magnets is characterized in that the magnetic protrusions of the rotor core are formed in the opposite direction relative to the wide and radially from the magnetic recess.
  This inventionAccording to the above, since the rotor core is formed by spirally winding a strip-shaped soft magnetic plate and laminating in the axial direction, it is possible to save the electromagnetic steel sheet normally used as the rotor core and reduce the amount of material used. it can.
[0008]
  Also,The magnetic short-circuit member passing through the spirally wound soft magnetic plate in the axial direction constitutes a magnetic path for magnetically short-circuiting the rotor core in the axial direction, and the spirally wound soft magnetic plate cannot be dispersed in the circumferential direction or the axial direction. Thus, a special pin member for fixing the rotor core having a spiral winding configuration can be omitted.
Further, the inner peripheral portion of the rotor core is located between both sides of the field coil and a magnetic convex portion projecting radially inward toward the outer peripheral surface of the magnetic member, and the field yoke. Magnetic recesses having magnetic reluctance larger than that of the magnetic protrusions are alternately arranged at the circumferential magnetic pole pitch of the rotor core, and one end side in the axial direction of the rotor core is opposite to the other end side, and the magnetic protrusions and A magnetic recess has a circumferentially opposite position, and the magnet housing through-hole has a radial cross-sectional shape having a predetermined inclination angle whose long side is less than 45 degrees with respect to the radial direction. The inclination angle of the permanent magnet is such that the magnetic convex portion of the rotor core is wider than the magnetic concave portion and formed in the opposite direction with respect to the radial direction, so that the current magnetic flux formed by the field coil is the magnet magnetic flux. By flowing in the axial direction of the rotor core independently of the magnetic path of the Can effect of controlling the magnetic flux is prevented from being lowered.
[0009]
According to the second aspect of the present invention, in the synchronous magnet synchronous machine according to the first aspect, the rotor core is further formed with a slit that connects the through hole for accommodating the short-circuit member and the inner peripheral surface of the rotor core.
[0010]
According to this configuration, the through hole for accommodating the short-circuit member facilitates plastic deformation of the soft magnetic plate for forming the rotor core together with the slit, so that the rotor core can be manufactured easily.
[0011]
According to the configuration of claim 3, in the synchronous magnet synchronous machine according to claim 1 or 2, the rotor core further includes a magnet housing through-hole penetrating in the axial direction and the magnet housing through-hole. Since the through hole for accommodating the magnet facilitates plastic deformation of the soft magnetic plate for forming the rotor core together with the slit, the rotor core can be manufactured easily.
[0012]
According to the configuration of claim 4, in the synchronous magnet synchronous machine according to any one of claims 1 to 3, the magnet housing through hole has a rectangular cross-sectional shape in which a pair of sides extend in a substantially radial direction, The magnetic pole surface of the permanent magnet is formed on both end surfaces in the circumferential direction, and the two permanent magnets adjacent to each other in the circumferential direction are magnetized in opposite directions.
[0013]
According to this configuration, since the magnet housing through-hole has a rectangular cross section, the soft magnetic plate can be easily plastically deformed, and the magnet magnetic flux can be increased.
[0014]
According to the fifth aspect of the present invention, in the synchronous magnet synchronous machine according to any one of the first to fourth aspects, the outer peripheral surface of the rotor core is located at a radially outer portion of the magnet insertion hole and is recessed radially inward. And having a connection portion where thin plate portions adjacent to each other in the stacking direction of the soft magnetic plates are welded together, so that leakage of magnet magnetic flux can be reduced and the strength of the rotor core can be enhanced. Can do.
[0015]
In particular, since the rotor core is recessed radially inward at this connecting portion, it is possible to absorb the bulge caused by the welding and to reduce magnetic leakage to the stator core through the connecting portion, and further by welding heat. The leakage magnet magnetic flux which passes through a connection part in the circumferential direction can be reduced by degrading the magnetic characteristic of this connection part.
[0019]
  Claim6According to the described configuration, claims 1 to5The magnetic member synchronous machine further includes a field yoke fixed to the inner end wall of the housing and having an outer peripheral surface facing the inner peripheral surface of the rotor core with a predetermined gap therebetween. It is characterized by that.
[0020]
As a result, the rotational mass can be reduced to improve the acceleration performance, and the power feeding path to the field coil can have a simple structure.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the invention are described below with reference to examples.
[0022]
[Example 1]
The synchronous magnet synchronous machine described in the first embodiment will be described with reference to FIGS.
(Description of overall structure)
The rotating machine 1000 includes a stator 1100 and a rotor 1200, and the stator 1100 is fixed to the inner peripheral surfaces of the front frame 1910 and the end frame 1911.
[0023]
The rotor 1200 is supported on the front frame 1910 and the end frame 1911 via bearings 1920 and 1921, and the outer peripheral surface thereof faces the inner peripheral surface of the stator 1100 via an air gap. Reference numeral 1930 denotes a resolver rotor for measuring the rotational position of the rotor 1200, and reference numeral 1931 denotes a resolver stator.
[0024]
The stator 1100 is formed by winding a three-phase coil 1110 around a stator core 1120 formed by laminating electromagnetic steel plates in the axial direction. The stator core 1120 has a slot 1121, a tooth 1122 and a core back 1123 into which the three-phase coil 1110 is inserted. is doing.
[0025]
The rotor 1200 includes a rotor core 1210 made of an electromagnetic steel plate and a rotor yoke 1270 made of a soft magnetic iron core.
[0026]
As shown in FIG. 2 (a cross-sectional view taken along line EE in FIG. 1), the rotor core 1210 is formed in a cylindrical shape by spirally winding electromagnetic thin steel sheets and stacking them in the axial direction. The rotor core 1210 penetrates in the axial direction between a rectangular magnet insertion hole (magnet accommodating through hole) 1211 that is penetrated in the axial direction at equal intervals in the circumferential direction, and two adjacent magnet insertion holes 1211. A round hole (short-circuit member accommodating through hole) 1212 is provided. A magnetic convex portion 1250 in which a magnetic flux from a field yoke 1232 (described later) easily passes and a magnetic concave portion 1251 in which the magnetic flux from a field yoke 1232 which will be described later hardly passes are alternately formed on the inner peripheral portion of the rotor core 1210 for each magnetic pole pitch. Concave and convex portions are formed. The magnetic convex portion 1250 has a slit 1252 that is formed in the radial direction and communicates the round hole 1212 and the inner peripheral surface of the rotor core 1210.
[0027]
FIG. 8 shows a developed shape of the rotor core 1210, that is, a shape before spiral winding of a long strip-shaped electromagnetic steel sheet. The rotor core 1210 in the unfolded state (before spiral winding) is formed with a magnet insertion hole 1211, a round hole 1212, and a slit 1252 by press punching. Each of the magnet insertion holes 1211, the round holes 1212, and the slits 1252 are formed so as to be aligned in a straight line in the axial direction after being rolled up.
[0028]
A magnet 1280 is press-fitted (or fitted) into the magnet insertion hole 1211 and a magnetic pin (magnetic short-circuit member) 1281 made of a soft magnetic material is press-fitted (or fitted) into the round hole 1212. The magnetic pin 1281 prevents the long strip-shaped electromagnetic steel sheet spirally wound from returning in the circumferential direction and from being scattered in the axial direction.
[0029]
The rotor core 1210 before spiral winding, that is, the slit 1252 of the long strip-shaped electromagnetic steel sheet has a shape in which the slit width becomes wider toward the inner periphery, whereby the slit width of the slit 1252 after spiral winding is Each part is very small. Thereby, the magnetic resistance of the rotor core 1210 with respect to the field magnetic flux can be reduced. The formation of the slit 1252 facilitates spiral winding of the long strip-shaped electromagnetic steel sheet. However, in this embodiment, since the slit 1252 is provided at the position of the round hole 1212, the round hole 1212 is also the slit 1252. Can substantially serve as a slit, and the spiral winding of the long strip-shaped electromagnetic steel sheet can be further facilitated.
[0030]
The magnetic convex portion 1250 is provided between the two magnet insertion holes 1211 on both sides in the circumferential direction adjacent to the inner peripheral side of every other circular hole 1212 in the circumferential direction, and the magnetic concave portion 1251 includes other round holes. Adjacent to the inner peripheral side of 1212, it is provided between two magnet insertion holes 1211 on both sides in the circumferential direction.
[0031]
In this embodiment, the slit 1252 is provided in the magnetic convex portion 1250, thereby facilitating plastic deformation for spiral winding of the magnetic convex portion 1250. Of course, a slit 1252 may be provided in the magnetic recess 1250. Further, as shown in FIG. 1, the magnetic convex portion 1250 and the magnetic concave portion 1251 are formed by reversing the positions of the front half portion and the rear half portion of the rotor core 1210 in the axial direction.
[0032]
The magnet 1280 inserted in each magnet insertion hole 1211 in the axial direction is magnetized in the thickness direction, that is, substantially in the axial direction, and the two magnets 1280 adjacent to each other in the circumferential direction have magnetic poles having end faces facing each other of the same polarity. It is a surface.
[0033]
The magnetic pin (soft magnetic pin) 1281 has a flange portion having a diameter larger than that of the round hole 1212 at the base end portion, and after press-fitting, the distal end member of the soft magnetic pin 1281 is spread and spirally wound. A rotor core 1210 made of a long strip-shaped electromagnetic steel plate is fixed in the axial direction. Further, every other magnetic pin 1281 fixes the rotor core 1210 to the rotor yoke 1270.
[0034]
The rotor core 1210 has a recessed portion that is recessed radially inward as shown in FIG. 8 between the outer peripheral surface of the rotor core 12 and the outer diameter end of the magnet insertion hole 1211. Are formed in the axial direction. This recessed portion secures a large gap between the outer peripheral surface of the magnet 1280 and the inner peripheral surface of the stator core 1120, and the magnetic flux of the magnet 1280 does not sufficiently interlink with the armature winding 1110 and becomes a leakage magnetic flux. It is deterring. Further, the recessed portion narrows the circumferential magnetic path of the rotor core 1210 between the outer peripheral surface of the rotor core 1210 and the outer diameter end of the magnet insertion hole 1211 to reduce the leakage magnetic flux of the magnet 1280. Further, this recessed portion is laser-welded in the axial direction from the outer peripheral surface side of the rotor core 1210, and thereby, the layers of the long strip-shaped electromagnetic steel plates constituting the rotor core 1210 are integrated by spiral winding. At the same time, the magnetic characteristics of the recessed portion are deteriorated to reduce the leakage magnetic flux flowing in the circumferential direction through this portion.
[0035]
The rotor yoke 1270 is formed by forging a soft magnetic core as shown in FIG. 3 which is a cross-sectional view taken along the line P in FIGS. The rotor yoke 1270 is a flange member including a disk portion 1271 extending in the radial direction and a boss portion 1272 extending from the inner peripheral end of the disk portion 1271 to the rear side. The number of ribs 1273 is half the number of the magnet insertion holes 1211 projecting radially outward from the outer peripheral edge of the plate portion 1271. The rib 1273 has a round hole 1278 formed with the same diameter at the same position as the round hole 1212 (see FIG. 2) in the rear half of the rotor yoke 1270 in the axial direction. A soft magnetic pin (magnetic pin) 1281 penetrating through the round hole 1212 of the rotor yoke 1270 is press-fitted into the round hole 1278 of the rib 1273, whereby the rotor core 1210 is fixed to the rotor yoke 1270. Reference numeral 1240 denotes a shaft having a spline 1241, which is press-fitted into the boss portion 1272 so as not to be relatively rotatable.
[0036]
Reference numeral 1274 denotes a flange-shaped field core (stationary yoke) made of a soft magnetic material, and the disk portion is fixed to the end wall portion of the end frame 1911 with screws 1940. The inner peripheral surface of the boss portion of the field core 1274 is fitted to the outer peripheral surface of the boss portion 1272 of the rotor yoke 1270 so as to be relatively rotatable with a small gap therebetween, and protrudes in the axial direction into a space existing on the inner diameter side of the rotor core 1210. ing. A field winding 1230 is wound on the outer peripheral surface of the boss portion of the field core 1274, and field flux is guided to the inner peripheral surface of the rotor core 1210 on both sides in the axial direction of the field winding 1230. A field yoke 1232 made of laminated electromagnetic steel sheets is fitted by press fitting.
[0037]
Reference numeral 1350 denotes a lead portion 1350 for supplying power to the field winding 1230 from the outside.
[0038]
The three-phase coil 1110 of the rotating electrical machine 1000 is supplied with power from the battery 300 through the direct-current power converter (inverter) 200. The field current flowing in the field coil 1230 is supplied from the field current control circuit 400 through the lead wire 1350, and the resolver stator 1931 is output to the signal processing circuit 500, and the inverter 200, the field current control circuit 400, and the signal processing. The circuit 500 is controlled by the control circuit 600.
(Description of magnetic circuit)
Next, the magnetic field formed by the magnet 1280 and the current magnetic field formed by the current of the field coil 1230 will be described below. The particularly important point is that the magnetic convex portion 1250 in the first half in the axial direction of the rotor core 1210 and the magnetic convex portion 1250 in the second half in the axial direction are shifted by one magnetic pole pitch in the circumferential direction as already described. .
[0039]
The magnet 1280 magnetized in the thickness direction (substantially circumferential direction) forms S magnetic poles and N magnetic poles alternately on the outer peripheral surface of the rotor core 1210 in the circumferential direction. The magnetic flux emitted from the S magnetic pole becomes an effective magnetic flux that links with the armature winding 1110 in the stator core 1120 through the air gap with the stator core 1120 and returns to the rotor core 1210 through the air gap.
[0040]
Further, the magnetic flux emitted from the S magnetic pole of the magnet 1280 includes the soft magnetic pin 1281 of the S magnetic pole portion of the rotor core 1210, the rib portion 1273 of the rotor yoke 1270, the disc portion 1271, the boss portion 1272, and the boss portion of the field core 1274. The magnetic field returns to the N magnetic pole of the magnet 1280 through the field yoke 1232, the magnetic convex portion 1250 in the rear half of the axial direction of the rotor core 1210, and the N magnetic pole side soft magnetic body pin 1281, thereby forming a short circuit magnetic circuit.
[0041]
Further, the magnet magnetic flux emitted from the S magnetic pole of the magnet 1280 includes a soft magnetic pin 1281 at the S magnetic pole portion of the rotor core 1210, a magnetic convex portion 1250 in the first half in the axial direction of the rotor core 1210, and a field yoke 1232 (front in the axial direction). ), The boss portion of the field core 1274, the field yoke 1232 (rear portion in the axial direction), the magnetic convex portion 1250 in the rear half portion in the axial direction of the rotor core 1210, and the N magnetic pole of the magnet 1280 through the N magnetic pole side soft magnetic pin 1281. Thus, a short-circuit magnetic circuit substantially parallel to the short-circuit magnetic circuit is formed.
[0042]
Naturally, the effective magnetic flux interlinking with the armature winding 1110 of the stator 1100 is reduced by the magnetic flux flowing through the short-circuit magnetic circuit.
[0043]
Since both the short-circuit magnetic circuits are also linked to the field coil 1230, the amount of magnetic flux that is changed from the magnet magnetic field to the short-circuit magnetic circuit can be controlled by the current supplied to the field coil 1230.
[0044]
An equivalent magnetic circuit of this rotating electric machine is shown in FIG.
[0045]
The magnetic resistance on the stator 1100 side is Rs, the magnetic resistance of the air gap is Rg, and the magnetic resistance of the magnet part is Rm. Rm is the magnetic resistance on the rotor side of the magnetic circuit through which the effective magnetic flux flows. Of the magnetic resistance of the short-circuit magnetic circuit, if Rr is a magnetic resistance (short-circuit magnetic resistance) excluding Rm, the magnetomotive force of the magnet is Fm, and the magnetomotive force of the field winding is Fc, the effective magnetic flux flowing to the stator 1100 side Φ1 can be expressed by the following equation.
[0046]
Φ1 = (RmFc + RrFm) / (RrRm + Rm (Rg + Rs) + (Rg + Rs) Rr)
Φ2 is a short-circuit magnetic flux amount. The effective magnetic flux amount Φ1 can be arbitrarily set by setting each parameter. For example, when the current is not passed through the field winding 1230 (Fc = 0), the effective magnetic flux amount Φ10 is
Φ10 = RrFm / (RrRm + Rm (Rg + Rs) + (Rg + Rs) Rr)
Thus, when the short-circuit magnetic resistance Rr is small, Φ10 is almost zero. The short-circuit magnetic resistance Rr is determined by the magnetic resistance of the soft magnetic pin 1281, the rib portion 1223, the cylindrical iron core 1231, and the joint portion of each member. Therefore, by setting the cross-sectional area and length of each portion, the field magnet The effective magnetic flux amount Φ10 when no current flows through the winding 1230 can be set. Here, the magnetic material that is set in the linear region (region of 0 to Φ ′ shown in FIG. 5) of the BH characteristic of the magnetic material constituting the magnetic path through which the effective magnetic flux flows, and the effective magnetic flux amount Φ1 constitutes the magnetic path. Do not reach the magnetic saturation region.
[0047]
When the field winding 1230 is energized, a magnetic flux amount Φ1c corresponding to the field winding magnetomotive force Fc is formed.
[0048]
Φ1c = RmFc / (RrRm + Rm (Rg + Rs) + (Rs + Rs) Rr)
As a result, the effective magnetic flux amount Φ1 is
Φ1 = Φ10 + Φ1c
Thus, the effective magnetic flux amount can be adjusted by the field winding current. Note that the magnetic flux amount Φ1c can be considered to reduce the magnetic flux amount leaking to the short-circuit magnetic circuit.
[0049]
(Example effect)
The above-described synchronous magnet synchronous machine is particularly suitable as a traveling motor for a hybrid vehicle or an electric vehicle.
[0050]
This type of traveling motor is used in a wide rotational speed range according to the rotational speed of the wheel. In a low rotation range where field-weakening control is not required, the energization current to the field winding 1230 is increased to increase the effective magnetic flux amount Φ1. Since the torque generated by the motor is proportional to the effective magnetic flux amount Φ1 and the torque current, the armature current supplied to the armature winding 1110 can be reduced by increasing the effective magnetic flux amount Φ1.
[0051]
Since the reaction-induced voltage exceeds the applied voltage, in the high rotation range where field weakening control is required for motor driving, the energization current to the field winding 1230 is set to zero and the magnetic flux is shunted to the short-circuit magnetic path to the maximum. The field weakening current flowing through the child winding can be reduced or zero. Thereby, since the maximum armature current can be reduced, heat generation in the winding part can be suppressed, the rotating machine can be downsized, and the semiconductor switching element of the power converter 200 can be downsized.
[0052]
Since the copper loss of the field coil 1230 is small compared to the copper loss of the armature winding 1110, the field weakening due to the field current described in this embodiment is compared with that of the conventional armature current. Increase efficiency.
[0053]
Further, since the effective magnetic flux amount Φ10 when the field winding magnetomotive force Fc = 0 is set in the linear region of the BH characteristic of the magnetic material constituting the effective magnetic path, the reaction-induced voltage caused by the effective magnetic flux amount Φ10 is set. When it is necessary to drive the motor in a high rotation range where is equal to or higher than the applied voltage, the armature current necessary for field weakening from the armature winding 1110 can be minimized.
[0054]
Referring to FIG. 5, when the effective magnetic flux is reduced from Φo to Φ ′ by the armature current, if the required AT is ATa when the BH curve is linear and the required AT when it is non-linear is ATb, then ATa < Since ATb, the armature current can be reduced in proportion to the difference.
[0055]
Further, FIG. 6 shows an efficiency map on the TN (torque-rotational speed) characteristic when the conventional permanent magnet type rotary electric machine is operated as a motor and a field weakening current is supplied to the armature winding for control. FIG. 7 shows an efficiency map on the TN characteristic when the rotating electrical machine of this embodiment is driven by the above control method. As can be seen from the comparison of both figures, the maximum efficiency range on the efficiency map is expanded.
[0056]
When the rotating electric machine of this embodiment is operated as a generator, if Φ10 is set to the level of a vehicle load, and the field winding is energized only when a higher output is required, the field The copper loss of the winding can be reduced, and highly efficient power generation is possible.
[0057]
In addition, in the past, there are salient pole type synchronous machines and claw ball type synchronous machines as synchronous rotating machines that can control the field from the rotor, both of which obtain effective magnetic flux only by field windings. Compared with the rotating electrical machine of this embodiment that can compensate the necessary minimum effective magnetic flux (short-circuit magnetic flux elimination) with the field winding, the energization current to the field winding is large, and the field coil There are problems such as an increase in size and a large resistance loss of the field coil. Since the rotor-wrapped field coil is inferior to the armature winding in terms of cooling, the use of this embodiment makes it possible to reduce the field coil loss and heat generation.
[0058]
[Example 2]
Another embodiment of the synchronous magnet synchronous machine of the present invention will be described with reference to FIG.
[0059]
In the combined magnet synchronous machine of this embodiment, the magnet insertion hole 1211 also has a slit 1253 communicating with the inner peripheral surface of the rotor core 1210. A second hole (corresponding to the round hole 1212 of the first embodiment) 1214 for fitting a prismatic magnetic pin (not shown) also has openings 1254 and 1255 communicating with the inner peripheral surface of the rotor core 1210. The holes 1211 and 1214 and the openings 1253, 1254, and 1255 are the same as the slits of the first embodiment in that the opening width is increased toward the inner peripheral surface when the core is unfolded (before spiral winding). When the rotor core 1210 is spirally wound, the opening width of the opening 1254 located at the magnetic convex portion is narrowed, and the opening width of the opening 1255 located at the magnetic concave portion is widened. Reference numeral 1261 denotes a protrusion protruding in the circumferential direction at the opening 1253 in order to prevent the magnet from separating inward. Reference numeral 1262 denotes hook portions provided on both sides of the wide opening 1255, which prevents the rotor core 1210 from being displaced or decentered radially outward by abutting against a prismatic magnetic pin 1281 (not shown). Yes. Thus, by making the magnetic pin into a prismatic shape, it is possible to increase the magnetic path cross-sectional area of the magnetic pin, reduce its magnetic resistance, and increase the amount of magnetic flux of the field coil. Further, the magnetic pin may have a prismatic shape at a portion where the magnetic pin is inserted into the rotor core 1210 and a cylindrical shape at a portion where the magnetic pin is inserted into the rotor yoke 1270. Further, as shown in FIG. 9, by providing openings 1253 and 1254 communicating with the magnet insertion hole 1211 and the magnetic pin insertion hole 1214 on the inner peripheral surface of the rotor core 1210, it is easy to mount the magnet and the magnetic pin. . Further, by providing the openings 1253 and 1254, the residual stress with the plastic deformation press-fitting of the electromagnetic steel sheet can be relieved and the magnetic characteristics can be improved.
[0060]
[Example 3]
Another embodiment of a synchronous machine with a magnet according to the present invention will be described with reference to FIG.
[0061]
The magnet combined type synchronous machine of this embodiment is characterized in that the long side of the magnet insertion hole 1211 of the rotor core 1210 has a predetermined inclination angle with respect to the normal extending radially from the axis of the rotor core 1210.
[0062]
The electromagnetic steel plate constituting the rotor core 1210 has a long strip shape, and the long side direction of the magnet insertion hole 1211 has an inclination angle θ with respect to the normal extending radially from the axis of the rotor core 1210. An opening 1253 communicating with the inner peripheral surface is provided. A second hole (corresponding to the round hole in the first embodiment) 1212 into which the magnetic pin 1281 is press-fitted also has an opening 1252 communicating with the inner peripheral surface of the rotor core 1210. Further, when the core is unfolded, the openings 1252 and 1253 are widened toward the inner periphery so that a desired opening width is obtained when the openings are wound in an annular shape. Reference numeral 1261 denotes a protrusion that prevents the magnet from separating in the inner circumferential direction.
[0063]
In this embodiment, since the magnet is inclined as described above, if the magnetic convex portion 1250 of the rotor is made wider than the magnetic concave portion 1251 so that the magnetic flux from the field yoke 1232 can easily pass, Can concentrate better. In addition, although a magnet may be magnetized after mounting | wearing with the magnet insertion hole 1211, and may be magnetized before it, productivity of the former improves.
[0064]
Further, since the magnet can be divided and disposed in the first half of the rotor core 1210 and the second half in the axial direction, the circumferential pitch in the portion outside the diameter of the magnet insertion hole 1211 is set to the first half and the second half in the axial direction. Thus, the spatial distribution waveform of the composite magnetic flux can be adjusted so that the torque ripple or the like becomes small.
[0065]
In the embodiment described above, the field winding for controlling the effective magnetic flux is provided in the empty space inside the diameter of the embedded magnet type rotor, so that the control that maximizes the efficiency in the entire rotational speed region of the rotating machine can be performed. It becomes possible. Moreover, since it is comprised with the magnetic steel plate which wound the magnetic pole spirally, it is excellent in centrifugal force resistance and can also reduce an iron loss.
[Brief description of the drawings]
FIG. 1 is an axial sectional view of a synchronous motor with a magnet according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line EE in FIG.
3 is a side view of the rotor of FIG. 1 as viewed in the direction of arrow P. FIG.
4 is an equivalent magnetic circuit diagram of the synchronous machine of FIG. 1;
5 is a BH characteristic diagram showing a relationship between a magnetic flux density and a magnetic field of a magnetic material used in the synchronous machine shown in FIG.
FIG. 6 is a characteristic diagram showing the relationship between torque and rotational speed of a conventional permanent magnet type synchronous machine.
7 is a characteristic diagram showing the relationship between torque and rotational speed of the synchronous machine with a magnet shown in FIG. 1. FIG.
FIGS. 8A and 8B are diagrams showing a rotor core shape according to the first embodiment, where FIG. 8A is a development view, and FIG. 8B is a partial side view after spiral winding.
FIGS. 9A and 9B are diagrams showing a rotor core shape of Example 2, wherein FIG. 9A is a development view, and FIG. 9B is a partial side view after spiral winding.
10A and 10B are views showing a rotor core shape of Example 3, wherein FIG. 10A is a development view, and FIG. 10B is a partial side view after spiral winding.
[Explanation of symbols]
1000 Rotating electric machine
1100 Stator
1120 Stator core
1200 rotor
1230 Field winding
1211 Magnet insertion hole (through hole for accommodating magnet)
1212 round hole (through hole for short circuit member accommodation)
1270 Rotor yoke (magnetic member)
1280 magnet (permanent magnet)
1281 Soft magnetic pin (magnetic short-circuit member)
1910 Front frame (housing)
1911 End frame (housing)
1110 Armature winding
1232 Field yoke (magnetic member)
1274 Field core (magnetic member)

Claims (6)

ハウジングと、
前記ハウジングの内周面に固定されたステータコアと、
前記ステータコアに巻装された電機子巻線と、
前記ステータコアの内周面に所定ギャップを隔てて前記ハウジングに相対回転自在に支承される円筒状のロータコアと、
前記ロータコアに固定されて前記ロータコアの外周面に界磁極を形成する永久磁石と、
前記ロータコアに軸方向に挿通されて前記永久磁石により形成される磁石磁界を磁気的に短絡する磁気短絡部材と、
前記ロータコアの径内側に配置されて前記界磁ヨーク及び前記ロータコアを通じて前記磁気短絡部材に磁束を流す界磁コイルと、
前記ロータコアの径内側に配置されて前記ロータコア及び磁気短絡部材とともに前記界磁コイルが形成する磁束を貫流させる磁気部材と、
を備え、
前記ロータコアは、螺旋巻きされて軸方向に積層された軟磁性板により形成されて前記界磁コイルの外周面と前記ステータコアの内周面との間に介設され、
前記短絡部材は、前記ロータコアに軸方向に貫設された短絡部材収容用貫通孔に挿通され、
前記ロータコアの内周部は、前記界磁コイルの両側に位置して前記磁気部材の外周面に向けて径内側へ突設された磁気的凸部と、前記界磁ヨークとの間の磁気抵抗が前記磁気的凸部よりも大きい磁気的凹部とを前記ロータコアの周方向磁極ピッチで交互に有し、
前記ロータコアの軸方向一端側は、他端側に対して前記磁気的凸部及び磁気的凹部を周方向逆位置に有し、
前記磁石収容用貫通孔は、長辺が径方向に対して45度未満の傾斜角を有する径方向断面形状を有し、
隣接する2つの前記永久磁石の前記傾斜角は、前記ロータコアの前記磁気的凸部が前記磁気的凹部より幅広かつ径方向を基準に逆向きに形成されていることを特徴とする磁石併用同期機。
A housing;
A stator core fixed to the inner peripheral surface of the housing;
An armature winding wound around the stator core;
A cylindrical rotor core that is rotatably supported by the housing with a predetermined gap on the inner peripheral surface of the stator core;
A permanent magnet fixed to the rotor core and forming a field pole on the outer peripheral surface of the rotor core;
A magnetic short-circuit member that is magnetically short-circuited with a magnetic field formed by the permanent magnet inserted in the rotor core in the axial direction;
A field coil disposed inside the rotor core and flowing a magnetic flux to the magnetic short-circuit member through the field yoke and the rotor core;
A magnetic member disposed inside the rotor core and allowing the magnetic flux formed by the field coil together with the rotor core and the magnetic short-circuit member to flow through;
With
The rotor core is formed of a soft magnetic plate that is spirally wound and laminated in the axial direction, and is interposed between an outer peripheral surface of the field coil and an inner peripheral surface of the stator core,
The short-circuit member is inserted through a through-hole for accommodating a short-circuit member that is provided in the rotor core in an axial direction ,
The inner peripheral portion of the rotor core is located between both sides of the field coil, and has a magnetic resistance between the magnetic projections projecting inwardly toward the outer peripheral surface of the magnetic member and the field yoke. Alternately having magnetic recesses larger than the magnetic protrusions at the circumferential magnetic pole pitch of the rotor core,
One end side in the axial direction of the rotor core has the magnetic convex portion and the magnetic concave portion in the circumferentially opposite position with respect to the other end side,
The magnet housing through-hole has a radial cross-sectional shape with a long side having an inclination angle of less than 45 degrees with respect to the radial direction,
The combined magnet synchronous machine characterized in that the inclination angle of the two adjacent permanent magnets is such that the magnetic convex portion of the rotor core is wider than the magnetic concave portion and is opposite to the radial direction. .
請求項1記載の磁石併用式同期機において、
前記ロータコアは、前記短絡部材収容用貫通孔と前記ロータコアの内周面とを連通するスリットを有することを特徴とする磁石併用同期機。
In the synchronous machine with a magnet according to claim 1,
The said rotor core has a slit which connects the said through-hole for accommodating a short circuit member, and the internal peripheral surface of the said rotor core, The combined magnet synchronous machine characterized by the above-mentioned.
請求項1又は2記載の磁石併用式同期機において、
前記ロータコアは、軸方向に貫設された磁石収容用貫通孔と、前記磁石収容用貫通孔を前記ロータコアの内周面に連通するスリットとを有することを特徴とする磁石併用同期機。
In the magnet combined type synchronous machine according to claim 1 or 2,
The rotor core has a magnet housing through-hole penetrating in the axial direction, and a slit that communicates the magnet housing through-hole with the inner peripheral surface of the rotor core.
請求項1乃至3のいずれか記載の磁石併用同期機において、
前記磁石収容用貫通孔は、一対の辺が前記ロータコアの略径方向に伸びる矩形断面形状を有し、
前記永久磁石の磁極面は、周方向両端面に形成され、
周方向に隣接する2つの前記永久磁石の互いに対面する端面は、同一極性の磁極面となっていることを特徴とする磁石併用式同期機。
The synchronous magnet synchronous machine according to any one of claims 1 to 3,
The magnet housing through-hole has a rectangular cross-sectional shape with a pair of sides extending in a substantially radial direction of the rotor core,
The magnetic pole surface of the permanent magnet is formed on both circumferential end surfaces,
2. A combined magnet synchronous machine characterized in that end surfaces facing each other of two permanent magnets adjacent in the circumferential direction are magnetic pole surfaces of the same polarity.
請求項1〜4のいずれか記載の磁石併用同期機において、
前記ロータコアの外周面は、前記磁石挿入孔の径外側の部位に位置して径内側に凹設され、かつ、前記軟磁性板の積層方向に隣接する薄板部同士が溶接されている接続部を有することを特徴とする磁石併用同期機。
In the synchronous magnet synchronous machine according to any one of claims 1 to 4,
The outer peripheral surface of the rotor core is located at a portion on the outer diameter side of the magnet insertion hole, and is recessed on the inner diameter side. A magnet combined use synchronous machine characterized by having .
請求項1乃至のいずれか記載の磁石併用式同期機において、
前記磁気部材は、前記ハウジングの内端壁に固定されて外周面が前記ロータコアの内周面に所定ギャップを隔てて対面する界磁ヨークを有することを特徴とする磁石併用式同期機。
In the magnet combined type synchronous machine according to any one of claims 1 to 5 ,
The magnetic synchronous machine according to claim 1, wherein the magnetic member has a field yoke fixed to the inner end wall of the housing and having an outer peripheral surface facing the inner peripheral surface of the rotor core with a predetermined gap therebetween.
JP2000175273A 2000-06-12 2000-06-12 Synchronous machine with magnet Expired - Fee Related JP4211200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000175273A JP4211200B2 (en) 2000-06-12 2000-06-12 Synchronous machine with magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000175273A JP4211200B2 (en) 2000-06-12 2000-06-12 Synchronous machine with magnet

Publications (2)

Publication Number Publication Date
JP2001359263A JP2001359263A (en) 2001-12-26
JP4211200B2 true JP4211200B2 (en) 2009-01-21

Family

ID=18677173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000175273A Expired - Fee Related JP4211200B2 (en) 2000-06-12 2000-06-12 Synchronous machine with magnet

Country Status (1)

Country Link
JP (1) JP4211200B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4369377B2 (en) * 2005-02-04 2009-11-18 三菱電機株式会社 Rotating electric machine
JP4291298B2 (en) * 2005-05-13 2009-07-08 三菱電機株式会社 Rotating electric machine
JP6432430B2 (en) 2015-04-15 2018-12-05 株式会社デンソー Rotating electrical machine rotor
JP6634960B2 (en) 2016-06-03 2020-01-22 株式会社デンソー Rotating electric machine rotor
JP6711148B2 (en) 2016-06-03 2020-06-17 株式会社デンソー Rotating machine rotor
JP6641600B2 (en) 2016-06-03 2020-02-05 株式会社デンソー Rotating electric machine rotor
DE102022203126A1 (en) * 2022-03-30 2023-10-05 Robert Bosch Gesellschaft mit beschränkter Haftung Rotor of an electric machine

Also Published As

Publication number Publication date
JP2001359263A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
JP6597705B2 (en) Rotating electric machine
JP4729551B2 (en) Axial gap type motor
JP5259927B2 (en) Permanent magnet rotating electric machine
JPH10126985A (en) Permanent magnet dynamo-electric machine and motor-driven vehicle using the same
JP3790774B2 (en) Permanent magnet rotating electric machine and automobile
JP6592525B2 (en) Magnet rotor, rotating electric machine including magnet rotor, and electric vehicle including rotating electric machine
JP4211200B2 (en) Synchronous machine with magnet
JP3704881B2 (en) Synchronous rotating machine with permanent magnet and driving method thereof
JP4066219B2 (en) Synchronous machine with stationary field coil magnet
JP3790665B2 (en) Permanent magnet rotating electric machine and electric vehicle using permanent magnet rotating electric machine
JP2002191157A (en) Synchronous rotating electric machine with combined use of permanent magnet
JP2000184640A (en) Permanent-magnet rotor
JP4960749B2 (en) Axial gap type motor
JP3790773B2 (en) Permanent magnet rotating electric machine and automobile
JP3829888B2 (en) Synchronous rotating machine with permanent magnet
US20050116581A1 (en) Rotor for dynamo-electric machine
JP3790765B2 (en) Permanent magnet rotating electric machine and electric vehicle using permanent magnet rotating electric machine
JP5679695B2 (en) Permanent magnet rotating electric machine
JP2010068605A (en) Permanent magnet rotary electric machine
JP2010093929A (en) Axial gap-type motor
WO2017209246A1 (en) Rotating electrical machine
JP3837851B2 (en) Synchronous rotating machine
JP2003204661A (en) Rotating-electric machine
WO2023032403A1 (en) Dynamo-electric machine
JP7141249B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees