WO2023032373A1 - Optical film, polarizing plate, and liquid crystal display device - Google Patents

Optical film, polarizing plate, and liquid crystal display device Download PDF

Info

Publication number
WO2023032373A1
WO2023032373A1 PCT/JP2022/022084 JP2022022084W WO2023032373A1 WO 2023032373 A1 WO2023032373 A1 WO 2023032373A1 JP 2022022084 W JP2022022084 W JP 2022022084W WO 2023032373 A1 WO2023032373 A1 WO 2023032373A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
coating material
mass
parts
polyurethane
Prior art date
Application number
PCT/JP2022/022084
Other languages
French (fr)
Japanese (ja)
Inventor
卓哉 小出
公志 田坂
崇 南條
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2023545086A priority Critical patent/JPWO2023032373A1/ja
Publication of WO2023032373A1 publication Critical patent/WO2023032373A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to an optical film, a polarizing plate, and a liquid crystal display device, and more particularly to an optical film and the like that can improve adhesion to a polarizer layer and suppress light leakage in a high-temperature and high-humidity environment.
  • a polarizing plate used in an image display device such as a TV or a smart phone has an optical film laminated on both sides of a polarizer layer via an easy-adhesion layer.
  • image display devices due to the increase in the size of image display devices, there has been a demand for large-sized polarizing plates as members, and there has also been a demand for large-sized optical films.
  • image display devices it is common for image display devices to be transported overseas by sea from the time they are manufactured to the time they are sold. Light leakage (white unevenness) caused by misalignment and adhesion failure due to the increase in size of the film have become apparent, and improvements have been required.
  • Patent Document 1 a technique for preventing peeling of an optical film, for example, as disclosed in Patent Document 1, a urethane composition containing polyurethane having a weight average molecular weight of 30,000 to 100,000 is applied to the surface of an optical film made of an acrylic resin. Techniques have been proposed for improving the adhesiveness between a polarizer and an acrylic resin film by providing a layer. In Patent Document 1, since an acrylic resin film is used, retardation is less likely to occur, and problems such as peeling of the film and light leakage are less likely to occur.
  • the present invention has been made in view of the above problems and circumstances, and the problem to be solved is to improve the adhesiveness with the polarizer layer in a high-temperature and high-humidity environment and to suppress light leakage. It is to provide a film, a polarizing plate and a liquid crystal display device.
  • the present inventors have found that by reducing the nanoindentation hardness of the easy-adhesion layer, a thin optical film made of a cycloolefin resin can be obtained. Also, the inventors have found that the adhesiveness to the polarizer layer is good in a high-temperature and high-humidity environment and that light leakage can be suppressed, leading to the present invention. That is, the above problems related to the present invention are solved by the following means.
  • An optical film having an easy-adhesion layer on at least one surface of a substrate The base material contains a cycloolefin resin, The thickness of the base material is 49 ⁇ m or less, The easy-adhesion layer contains a polyurethane-based resin, An optical film, wherein the nanoindentation hardness of the easy-adhesion layer on the substrate is less than 0.52 GPa under environmental conditions of 23°C and 50% RH.
  • the easy-adhesion layer contains silica fine particles,
  • the average primary particle size of the silica fine particles is in the range of 50 to 150 nm, and 3.
  • the optical film according to item 1 or item 2, wherein the standard deviation of the average primary particle diameter is in the range of 5 to 30 nm.
  • a polarizing plate comprising the optical film according to any one of items 1 to 3.
  • a liquid crystal display device comprising the polarizing plate according to item 4.
  • the means of the present invention it is possible to provide an optical film, a polarizing plate, and a liquid crystal display device that have improved adhesiveness to a polarizer layer and can suppress light leakage in a high-temperature and high-humidity environment.
  • the thickness of the substrate is 49 ⁇ m or less, and the nanoindentation hardness of the easy-adhesion layer on the substrate is less than 0.52 GPa.
  • the hardness of the film can be kept constant, and by lowering the hardness of the easy-adhesion layer, the stress applied to the optical film in the polarizing plate can be relaxed, and the It is possible to reduce the stress strain under wet conditions. Therefore, by thinning the substrate and reducing the hardness of the easy-adhesion layer, it is possible to suppress the displacement between the polarizer layer and the optical film. As a result, the adhesion between the polarizer layer and the optical film is improved, and light leakage can be suppressed.
  • the optical film of the present invention is an optical film having an easy-adhesion layer on at least one surface of a substrate, the substrate contains a cycloolefin resin, and the thickness of the substrate is 49 ⁇ m or less.
  • the easy-adhesion layer contains a polyurethane-based resin, and the easy-adhesion layer has a nanoindentation hardness of less than 0.52 GPa on the substrate under environmental conditions of 23° C. and 50% RH. This feature is a technical feature common to or corresponding to each of the following embodiments.
  • the polyurethane-based resin consists of either one of a polyester polyol component and a polyether polyol component. That is, by using a polyester polyol component or a polyether polyol component with a higher polarity than a polycarbonate component with a low polarity, the nanoindentation hardness of the easy adhesion layer can be lowered. Therefore, the difference in dimensional variation between the optical film and the polarizer layer can be reduced, the stress applied to the film can be reduced, and it is effective in improving adhesion and suppressing light leakage.
  • the easy-adhesion layer contains silica fine particles, the average primary particle size of the silica fine particles is in the range of 50 to 150 nm, and the standard deviation of the average primary particle size is in the range of 5 to 30 nm.
  • the average primary particle size and the standard deviation within the above ranges, the density and surface area of the silica fine particles are increased, and when it becomes hygroscopic due to durability, the entire easy-adhesion layer It is preferable in that it uniformly absorbs water and makes it possible to obtain hardness of the easy-adhesion layer, that is, a stress-relaxable state.
  • the optical film of the present invention is suitably used as a polarizing plate, and the polarizing plate is suitably used as a liquid crystal display device.
  • the optical film of the present invention is an optical film having an easy-adhesion layer on at least one surface of a substrate, the substrate contains a cycloolefin resin, and the thickness of the substrate is 49 ⁇ m or less.
  • the easy-adhesion layer contains a polyurethane-based resin, and the easy-adhesion layer has a nanoindentation hardness of less than 0.52 GPa on the substrate under environmental conditions of 23° C. and 50% RH.
  • ⁇ Nanoindentation hardness> The nanoindentation hardness of the easy-adhesion layer on the substrate according to the present invention was measured using a Triboscope (manufactured by Bruker). For the measurement, an indenter having a tip edge angle of 90° and a tip curvature radius of 35 to 50 nm was used. As a measurement sample, an optical film is cut into 2 cm squares, and the base material side is attached on a metal plate using an adhesive. I performed the return operation. A value P/A obtained by dividing the maximum load P at this time by the area A of the indenter contact portion was calculated as the nanoindentation hardness. The maximum load was set to 20 ⁇ N.
  • the nanoindentation hardness of the easy-adhesion layer on the substrate at 23° C. and 50% RH measured as described above is less than 0.52 GPa and is within the range of 0.36 to 0.50 GPa. Preferably, it is particularly preferably in the range of 0.36 to 0.40 GPa.
  • the polyurethane-based resin preferably comprises either one of a polyester polyol component and a polyether polyol component. It is preferable that the standard deviation is within the range of 5 to 30 nm.
  • the optical film of the present invention has an easy-adhesion layer on at least one surface of the substrate.
  • the optical film 100 easily contains a polyurethane-based resin on one side of a substrate 101 containing a cycloolefin-based resin, that is, on the surface of the substrate 101 on the polarizer layer 400 side. It has an adhesive layer 102 .
  • Such an optical film 100 is suitably used for a polarizing plate 200 as described later.
  • the polarizing plate 200 includes, for example, at least a polarizing plate protective film 300, a polarizer layer 400, an optical film 100, and an adhesive sheet 500, which are laminated in this order. It is preferable that the adhesive sheet 500 is arranged on the surface of the optical film 100 opposite to the easily adhesive layer 102 .
  • the thickness of the substrate is 49 ⁇ m or less, preferably in the range of 15 to 40 ⁇ m.
  • the reason why the thickness is set to 49 ⁇ m or less is that there is a need to reduce the thickness of the film due to the recent trend toward larger displays.
  • the “substrate” refers to the casting film after stretching and drying the casting film on which the easy-adhesion layer is formed in the method for producing an optical film, which will be described later. Therefore, the "thickness of the base material” means the thickness of the base material which is the cast film after stretching and drying, and refers to the thickness of the base material in the state of the optical film.
  • the easy-adhesion layer according to the present invention is provided on at least the surface on which the polarizer layer is provided, of the two surfaces of the substrate.
  • the easy-adhesion layer according to the present invention contains a polyurethane-based resin.
  • the easy-adhesion layer contains microparticles
  • Polyurethane-Based Resins are reaction products of one or more polyol components and one or more diisocyanate components.
  • the one or more polyol components are selected from polyester polyols, polyether polyols, polycarbonate polyols, polycaprolactone polyols, and the like, and preferably at least one of polyester polyols and polyether polyols.
  • the one or more diisocyanate components it is desirable to use a mixture of one or more diisocyanates and one or more triisocyanates. Desirably, no more than about 10 weight percent triisocyanate component is used with the diisocyanate, based on the total weight of the reaction components.
  • polyester polyol The polyester polyol used in the present invention usually has two or more ester bonds and two or more hydroxy groups in the molecule.
  • polyester polyols include polyester polyols obtained by a condensation reaction between a polyhydric alcohol and a polybasic acid.
  • the polyhydric alcohols include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, and 1,6-hexane.
  • polybasic acids examples include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, cyclopentanedicarboxylic acid, cyclohexanedicarboxylic acid, orthophthalic acid, isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid. These may be used singly or in combination of two or more.
  • polyester polyols such as polyethylene adipate diol, polybutylene adipate diol, and polyethylene succinate diol.
  • the number average molecular weight (Mn) is preferably 400-2000, more preferably 500-1500, most preferably 600-1200.
  • Number average molecular weight (Mn) can be measured by conventional gel permeation chromatography (GPC).
  • polyester polyols are commercially available as reagents or industrially.
  • Examples of commercially available products include the "Polylight (registered trademark)” series manufactured by DIC Corporation, and the “Nipporan (registered trademark)” manufactured by Tosoh Corporation. series, “Maximol (registered trademark)” series manufactured by Kawasaki Kasei Co., Ltd., and the like.
  • the polyether polyol used in the present invention is generally a hydroxy compound having one or more ether bonds in the main skeleton in the molecule.
  • the repeating unit in the main skeleton may be either a saturated hydrocarbon or an unsaturated hydrocarbon, and may be linear, branched or cyclic.
  • repeating units examples include 1,2-ethylene glycol units, 1,2-propylene glycol units, 1,3-propanediol (trimethylene glycol) units, 2-methyl-1,3-propanediol units, 2 , 2-dimethyl-1,3-propanediol units, 1,4-butanediol (tetramethyl glycol) units, 2-methyl-1,4-butanediol units, 3-methyl-1,4-butanediol units , 3-methyl-1,5-pentanediol units, neopentyl glycol units, 1,6-hexanediol units, 1,7-heptanediol units, 1,8-octanediol units, 1,9-nonanediol units, Examples include 1,10-decanediol units and 1,4-cyclohexanedimethanol units.
  • polytetramethylene ether glycol polytrimethylene ether glycol
  • copolymerized polyether polyols obtained by reacting 1 to 20 mol % of 3-methyltetrahydrofuran with tetrahydrofuran (For example, "PTG-L1000", “PTG-L2000” and “PTG-L3500” manufactured by Hodogaya Chemical Industry Co., Ltd.)
  • copolymerized polyether glycol obtained by the reaction of neopentyl glycol and tetrahydrofuran, poly(oxy Propylene ether) polyol and the like are preferred.
  • polyether polyols can be used alone or in combination of two or more, and can be selected according to the desired physical properties of the polyurethane.
  • the number average molecular weight (Mn) of the polyether polyol used in the present invention is preferably 500 or more, more preferably 1000 or more, and even more preferably 1500 or more. Also, it is preferably 5,000 or less, more preferably 4,000 or less, and even more preferably 3,500 or less.
  • the polycarbonate polyol used in the present invention is preferably a polycarbonate diol.
  • a polycarbonate diol is a polycarbonate diol having two hydroxy groups in its molecule, and can be obtained, for example, by reacting a diol compound with a carbonate compound.
  • Examples of the carbonate compound include dimethyl carbonate and diphenyl carbonate.
  • the alkylene group-containing polycarbonate diol is a polycarbonate diol having two hydroxy groups in its molecule, and can be obtained, for example, by reacting a diol compound with ethylene carbonate.
  • Diol compounds include 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2-methyl-1,3-propanediol, 3-methyl-1, Linear or branched chain alkanediols such as 5-pentanediol, 2-ethyl-1,6-hexanediol, and 2,4-dimethyl-1,5-pentanediol and the like can be mentioned.
  • the alkylene groups may be a diol compound containing an alicyclic structure, an aromatic ring structure, or both in its skeleton.
  • the diol compound-derived portion in the urethane portion of the copolymer may be any one of the above diol compounds, or two or more thereof may be used in combination.
  • polycaprolactone polyol A polyol having a lactone in the molecule can be produced by ring-opening polymerization of the following lactones, and the content ratio of the polylactone unit can be easily changed by changing the amount of lactone used relative to the polyol.
  • Lactones include, for example, ⁇ -caprolactone, 4-methylcaprolactone, 3,5,5-trimethylcaprolactone, 3,3,5-trimethylcaprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ - valerolactone, enantholactone, and the like. These may be used alone or in combination of two or more. ⁇ -Caprolactone is most preferred due to its availability and high reactivity.
  • aliphatic diisocyanate compounds In the present invention, aliphatic diisocyanate compounds, alicyclic diisocyanate compounds, aromatic diisocyanate compounds, and mixtures thereof are used as the diisocyanate component. Among these, it is preferable to use an aliphatic diisocyanate compound and/or an alicyclic diisocyanate compound from the viewpoint of weather resistance. For the same reason, 30 to 100% by mass, particularly 50 to 100% by mass of the diisocyanate compound is preferably an aliphatic diisocyanate compound.
  • the diisocyanate compound is an aliphatic diisocyanate compound, and an alicyclic It is preferably at least one diisocyanate compound selected from the group consisting of diisocyanate compounds.
  • suitable compounds include tetramethylene-1,4-diisocyanate, hexamethylene-1,6-diisocyanate, octamethylene-1,8-diisocyanate, 2,2,4-trimethylhexane-1,6- diisocyanate, cyclobutane-1,3-diisocyanate, cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate, 2,4-methylcyclohexyl diisocyanate, 2,6-methylcyclohexyl diisocyanate, isophorone diisocyanate, norbornane diisocyanate, 4, Isomer mixture of 4′-methylenebis(cyclohexyl isocyanate), hexahydrotoluene-2,4-diisocyanate, hexahydrotoluene-2,6-diisocyanate, hexahydrophene
  • a part of the NCO group of the diisocyanate compound may be modified to urethane, urea, buret, allophanate, carbodiimide, oxazolidone, amide, imide, etc.
  • the polynuclear compound contains isomers other than the above. It also includes those that are
  • the amount of these diisocyanate compounds to be used is preferably 0.1 to 5 equivalents with respect to 1 equivalent of the total hydroxy groups of the polyol and the hydroxy groups and/or amino groups of the chain extender described later. , more preferably 0.8 to 2 equivalents, still more preferably 0.9 to 1.5 equivalents, most preferably 0.95 to 1.2 equivalents, and 0.98 to 1.5 equivalents.
  • One equivalent is particularly preferred.
  • the amount of the diisocyanate compound used By setting the amount of the diisocyanate compound used to 5 equivalents or less, unreacted isocyanate groups are prevented from causing unfavorable reactions, making it easier to obtain desired physical properties. Moreover, by setting the equivalent weight to 0.1 equivalent or more, the molecular weight of the polyurethane can be sufficiently increased, and the desired performance can be easily exhibited.
  • Chain extenders used in the production of the polyurethane according to the present invention are mainly classified into compounds having two or more hydroxy groups, compounds having two or more amino groups, and water. Among these, short-chain polyols, specifically compounds having two or more hydroxy groups, are preferred for polyurethane production. These chain extenders may be used alone or in combination of two or more.
  • Examples of the compound having two or more hydroxy groups include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 2-methyl-1,3- propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-butyl-2-hexyl-1,3-propanediol, 1, 2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, 3-methyl-1, 5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, neopentyl glycol, 1,6-hexanedi
  • Examples of compounds having two or more amino groups include aromatic diamines such as 2,4- or 2,6-tolylenediamine, xylylenediamine and 4,4'-diphenylmethanediamine, ethylenediamine, 1, 2-propylenediamine, 2,2-dimethyl-1,3-propanediamine, 1,3-pentanediamine, 2-methyl-1,5-pentanediamine, 2-butyl-2-ethyl-1,5-pentanediamine , 1,6-hexanediamine, 2,2,4- or 2,4,4-trimethylhexanediamine, 1,8-octanediamine, 1,9-nonanediamine and 1,10-decanediamine, such as aliphatic diamines, and 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane (IPDA), 4,4'-dicyclohexylmethanediamine (hydrogenated MDA), isopropylidenecyclohexyl-4,4'-
  • the amount of these chain extenders to be used is usually 0.1 to 5.0 equivalents, preferably 0.8 to 2, when the equivalent weight obtained by subtracting the equivalent weight of the isocyanate compound from the hydroxyl group equivalent weight of the polyol is 1. 0.0 equivalent is more preferred, and 0.9 to 1.5 equivalent is even more preferred.
  • the amount of the chain extender By setting the amount of the chain extender to the above upper limit or less, it is possible to prevent the obtained polyurethane from becoming too hard and obtain desired properties, and it is easily soluble in a solvent and easy to process.
  • the above lower limit or more By setting the above lower limit or more, sufficient strength, elastic recovery performance, and elastic retention performance can be obtained without being too soft, and good high-temperature characteristics can be obtained.
  • the polyol, the isocyanate compound, and the chain extender are used as the main raw materials for the production of the polyurethane in the amounts described above. Depending on the method, it can be carried out in the absence of a solvent or in the presence of a solvent.
  • the solvent used at that time is not particularly limited, but from the viewpoint of versatility and solubility, N,N-dimethylacetamide and N,N-dimethylformamide, mixtures of two or more thereof, etc.
  • Amide solvent A solvent selected from the group consisting of N-methylpyrrolidone, N-ethylpyrrolidone and dimethylsulfoxide is preferably used, and among these, N,N-dimethylformamide and N,N-dimethylacetamide are particularly preferred.
  • the content of the polyurethane-based resin is preferably in the range of 65-95% by mass with respect to the easy-adhesion layer.
  • the easy-adhesion layer according to the present invention preferably contains fine particles.
  • the microparticles can be inorganic microparticles or organic microparticles.
  • inorganic fine particles include fine particles of inorganic oxides such as silica, titania, alumina, and zirconia; fine particles such as Examples of organic fine particles include fine particles of silicone resin, fluororesin, (meth)acrylic resin, and the like.
  • silica particles are preferable because they hardly cause haze and are less colored.
  • the average primary particle size of the silica fine particles is preferably in the range of 50-150 nm, more preferably in the range of 80-120 nm. Also, the standard deviation of the average primary particle size is preferably within the range of 5 to 30 nm, more preferably within the range of 5 to 10 nm.
  • the average primary particle size and standard deviation are calculated as follows. After trimming the cross-section of the optical film of the present invention with a microtome or the like, an ultra-thin section of the cross-section is prepared, and the cross-section is photographed with a transmission electron microscope (TEM) or a scanning electron microscope (SEM). Bright-field image observation is performed by the method of direct photography. In a bright-field image taken with an electron microscope, the scattering intensity of incident electrons in a substance to be observed is proportional to the atomic number (atomic weight) of the substance.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • silica particles in the optical film can be confirmed.
  • a TEM JEM2010F, manufactured by JEOL Ltd.
  • the content of silica fine particles is preferably in the range of 5 to 10% by mass with respect to the easy-adhesion layer.
  • the easy-adhesion layer according to the present invention preferably further contains additives.
  • a cross-linking agent is preferable in order to improve adhesiveness.
  • various acids and bases may be contained in order to adjust the pH of the easy-adhesion layer.
  • the cross-linking agent used in the present invention is not particularly limited as long as it can form an easy-adhesion layer with excellent reworkability.
  • compounds, water-based amino compounds, water-based carbodiimide compounds, and water-based aldehyde compounds are preferred.
  • Oxazoline-based additives and nitrogen-containing heterocyclic compounds are also suitable for adjusting the pH of water-based adhesives.
  • nitrogen-containing heterocyclic compounds are highly alkaline, so they are useful for adjusting the pH of the water-based adhesive to an appropriate range, and are effective in increasing the durability of the easy-adhesion layer through a cross-linking reaction.
  • These cross-linking agents may be used alone or in combination.
  • the isocyanate-based additive according to the present invention is preferably a water-soluble or emulsified compound having two or more unblocked isocyanate groups or blocked isocyanate groups.
  • non-blocked isocyanate compounds include compounds obtained by reacting polyfunctional isocyanate compounds with monovalent or polyvalent nonionic polyalkylene ether alcohols.
  • blocked isocyanate compounds include 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), 4,4′-diphenylmethane diisocyanate (MDI), xylylene diisocyanate isocyanate (XDI), isophorone diisocyanate (IPDI), methylcyclohexyl diisocyanate (H6TDI), 4,4'-dicyclohexylmethane diisocyanate (H12MDI), 1,3-bis(isocyanatomethyl)cyclohexane (H6XDI), tetramethylxylylene diisocyanate (TMXDI), 2,2,4-trimethylhexamethylene diisocyanate (TMHDI), hexamethylene diis
  • the oxazoline additive according to the present invention is preferably an oxazoline group-containing polymer.
  • the oxazoline group-containing polymer is a polymer having an oxazoline group in its molecule, preferably a polymer having an oxazoline group in its side chain.
  • the main chain of the polymer is not particularly limited, and is composed of, for example, one or more skeletons selected from (meth)acrylic skeletons, styrene skeletons, and the like.
  • a preferable example of the oxazoline group-containing polymer is an oxazoline group-containing (meth)acrylic polymer containing a main chain composed of a (meth)acrylic skeleton and having an oxazoline group in the side chain of the main chain.
  • a linking group may be interposed between the main chain and the oxazoline group, but the main chain and the oxazoline group are preferably directly bonded.
  • the oxazoline group includes, for example, 2-oxazoline group, 3-oxazoline group, 4-oxazoline group and the like, and 2-oxazoline group and the like are preferable.
  • the number average molecular weight of the oxazoline group-containing polymer is preferably 5,000 or more, more preferably 10,000 or more. When the number average molecular weight is within the above range, good adhesion is exhibited.
  • the number average molecular weight of the oxazoline group-containing polymer is usually 100,000 or less.
  • the number average molecular weight of the oxazoline group-containing polymer can be measured as a standard polystyrene conversion value by gel permeation chromatography (GPC).
  • the oxazoline group content of the oxazoline group-containing polymer (the number of moles of oxazoline groups per gram of solid content of the oxazoline group-containing polymer (A)) is preferably 0.4 mmol/g ⁇ solid or more and 10 mmol/g ⁇ solid or less. If the oxazoline group content is excessively high, it is difficult to obtain good adhesion, and if the oxazoline group content is less than the above range, the water resistance of the easy-adhesion layer may decrease. From such a viewpoint, the oxazoline group content of the oxazoline group-containing polymer (A) is more preferably 3 mmol/g ⁇ solid or more and 9 mmol/g ⁇ solid or less.
  • the oxazoline group-containing polymer is preferably a water-based polymer, that is, a water-soluble polymer, or a water-dispersible polymer. From the viewpoint of the optical properties of the easy adhesion layer, the oxazoline group-containing polymer is preferably a water-soluble polymer.
  • a commercially available product may be used as the oxazoline group-containing polymer.
  • Oxazoline group-containing acrylic polymers such as Epocross WS-300 and Epocross WS-700 are preferred from the viewpoint of adhesion, optical properties and water resistance.
  • a nitrogen-containing heterocyclic compound is a compound having a cyclic structure (nitrogen-containing heterocyclic structure) in which at least one of the carbon atoms constituting the ring of a cyclic hydrocarbon structure is replaced with a nitrogen atom.
  • the nitrogen-containing heterocyclic structure may be monocyclic or polycyclic such as condensed ring.
  • a nitrogen-containing heterocyclic compound functions as a cross-linking agent, and can also be used for the purpose of adjusting the pH value.
  • the nitrogen-containing heterocyclic compound may have only one nitrogen-containing heterocyclic structure in the molecule, or may have two or three or more nitrogen-containing heterocyclic structures.
  • the nitrogen-containing heterocyclic compounds may have the same structure or different structures.
  • the cross-linking reaction strengthens the water-based adhesive layer, making it possible to improve the durability.
  • the nitrogen-containing heterocyclic compound has multiple nitrogen-containing heterocyclic structures in its molecule, the nitrogen-containing heterocyclic structures preferably have the same structure.
  • Nitrogen-containing heterocyclic structures include, for example, aziridine structure, azirine structure, azetidine structure, 1,2-oxazetidine structure, 1,3-oxazetidine structure, 1,2-thiazetidine structure, 1,3-thiazetidine structure, 1,2 -Dihydroazate structure, 1,3-diazate structure, pyrrolidine structure, pyrroline structure, imidazolidine structure, imidazoline structure, pyrazolidine structure, pyrazoline structure, oxazoline structure, thiazoline structure, pyrrole structure, pyrazole structure, imidazole structure, oxazole structure, isoxazole structure, thiazole structure, thiadiazole structure, isothiazole structure, 1,2,3-triazole structure, 1,2,4-triazole structure, tetrazole structure, 1,3,4-oxadiazole structure, furazane structure, pyridine structure, monocyclic structures such as pyrida
  • the nitrogen-containing heterocyclic structure can have one or more substituents bonded to the ring structure.
  • substituents include hydrocarbon groups having about 1 to 12 carbon atoms (for example, alkyl groups).
  • the nitrogen-containing heterocyclic compound is preferably a compound having a structure capable of forming a crosslinked structure with an oxazoline group-containing polymer or an optical film as a protective layer. If the nitrogen-containing heterocyclic compound can form a crosslinked structure with the oxazoline group-containing polymer or optical film, it exhibits good adhesion.
  • crosslinkable structure (1) The structure capable of forming a crosslinked structure with the oxazoline group-containing polymer or optical film (hereinafter sometimes referred to as "crosslinkable structure (1)") is not particularly limited.
  • the crosslinkable structure (1) may be any structure capable of forming a crosslinked structure with a functional group such as a hydroxy group or a carboxyl group, and may be the nitrogen-containing heterocyclic structure itself.
  • nitrogen-containing heterocyclic structure examples include an oxazoline ring and an aziridine ring, and from the viewpoint of adhesion, an aziridine ring is preferred.
  • the nitrogen-containing heterocyclic compound preferably has two or more crosslinkable structures (1), more preferably two or more nitrogen-containing heterocyclic structures as the crosslinkable structures (1), and has two aziridine rings. It is more preferable to have one or more.
  • Nitrogen-containing heterocyclic compounds are usually non-polymers.
  • the molecular weight of the nitrogen-containing heterocyclic compound is generally within the range of 41-2,000.
  • the molecular weight of the nitrogen-containing heterocyclic compound may be 1,500 or less, or 1,000 or less.
  • the content of the nitrogen-containing heterocyclic compound in the aqueous resin composition is usually in the range of 0.1 to 50 parts by mass, preferably 0.2 to 100 parts by mass, relative to 100 parts by mass of the oxazoline group-containing polymer (A). 30 parts by mass, more preferably 0.5 to 20 or less. When the content of the nitrogen-containing heterocyclic compound is within this range, good adhesion tends to be exhibited.
  • the nitrogen-containing heterocyclic compound preferably has a crosslinkable structure (1) at its terminal, and more preferably has an aziridine ring at its terminal.
  • Nitrogen-containing heterocyclic compounds include diphenylmethane-4,4′-bis(1-aziridinecarboxamide), toluene-2,4-bis(1-aziridinecarboxamide), triethylenemelamine, isophthaloylbis-1-(2 -methylaziridine), tris-1-aziridinylphosphine oxide, hexamethylene-1,6-bis(1-aziridinecarboxamide), trimethylolpropane tris- ⁇ -aziridinylpropionate, tetramethylolmethane tris- ⁇ -aziridinyl propionate, piperidine, 4-picoline, 3,5-diethylpyridine, 1,4-bis(3-aminopropyl)piperazine, and formula (B1) described in JP-A-2018-199756
  • Nitrogen-containing heterocyclic compounds may be commercially available products, specifically, Chemitite PZ-33 and Chemitite DZ-22E (both trade names) manufactured by Nippon Shokubai Co., Ltd.; Crosslinker CL-422 and Crosslinker CL manufactured by Menadiona. -427, CROSSLINKER CL-467 (both trade names) and other aziridine compounds.
  • CROSSLINKER CL-427 and CROSSLINKER CL-467 are preferable from the viewpoint of adhesion.
  • the water-based epoxy compound may be a compound having two or more epoxy groups that are soluble in water or emulsified.
  • glycols such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexane glycol and neopentyl glycol and 2 mol of epichlorohydrin Diepoxy compounds obtained by etherification; polyepoxy compounds obtained by etherification of 1 mol of polyhydric alcohols such as glycerin, polyglycerin, trimethylolpropane, pentaerythritol and sorbitol with 2 mol or more of epichlorohydrin; phthalic acid, terephthalic acid , a diepoxy compound obtained by esterifying 1 mol of a dicarboxylic acid such as oxalic acid and adipic acid with
  • ethylene glycol diglycidyl ether polyethylene glycol diglycidyl ether, glycerin or triglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidylaniline and diglycidylamine.
  • water-based epoxy compounds include Deconal EX-521 (manufactured by Nagase ChemteX Corporation).
  • the water-based amino compound may be a compound having two or more amino groups that are soluble in water or emulsified.
  • amines such as ethylenediamine, triethylenediamine, hexamethylenediamine, carbodihydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide , glycolic acid dihydrazide, polyacrylic acid dihydrazide, etc.; resin, urea resin, guanamine resin, and the like.
  • the polyisocyanate and carbodiimidation catalyst used when synthesizing a compound having two or more carbodiimide bonds are not particularly limited, and conventionally known ones can be used.
  • Examples of the compound having an aldehyde group include monoaldehydes such as formaldehyde, acetaldehyde, propionaldehyde, crotonaldehyde, benzaldehyde and formaldehyde, dialdehydes such as glyoxal, malondialdehyde, glutaraldehyde and terephthalaldehyde, dialdehyde starch, and acrolein.
  • a copolymerized acrylic resin and the like can be mentioned.
  • the easy adhesion layer according to the present invention is formed by mixing the polyurethane-based resin and fine particles, and optionally the additive (for example, a water-based epoxy compound, a water-based amino compound, etc.) and a water-soluble solvent to obtain a liquid water-based resin. It is preferable to apply the composition to at least one surface of the optical film.
  • the water-soluble solvent include methanol, ethanol, isopropyl alcohol, acetone, tetrahydrofuran, N-methylpyrrolidone, dimethylsulfoxide, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether and the like. Among them, it is preferable to use water as the water-soluble solvent.
  • one type of water-soluble solvent may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the amount of the water-soluble solvent is preferably set so that the viscosity of the uncured urethane resin is within a range suitable for coating.
  • the content of the polyurethane resin in the aqueous resin composition is preferably in the range of 65 to 95% by mass, and the content of the silica fine particles in the aqueous resin composition is 5 to 10% by mass. is preferably within the range of
  • the content of the additive in the aqueous resin composition is preferably within the range of 0.1 to 10% by mass.
  • the thickness of the easy-adhesion layer is preferably in the range of 20-2000 nm.
  • the "thickness of the easy-adhesion layer” is the thickness of the easy-adhesion layer after stretching and drying the casting film coated with the coating material of the easy-adhesion layer, and is the thickness of the easy-adhesion layer in the state of the optical film. It refers to the thickness of the easy-adhesion layer.
  • substrate contains a cycloolefin resin. Moreover, the substrate may contain an ultraviolet absorber, an antioxidant, and other components described later.
  • the cycloolefin resin is a polymer of a cycloolefin monomer or a copolymer of a cycloolefin monomer and another copolymerizable monomer.
  • the cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton.
  • a cycloolefin monomer having a structure represented by general formula (A-1) or (A-2) below is more preferred.
  • R 1 to R 4 in general formula (A-1) each independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group. However, except when all of R 1 to R 4 are hydrogen atoms, there is no case where R 1 and R 2 are hydrogen atoms at the same time, or R 3 and R 4 are hydrogen atoms at the same time.
  • the hydrocarbon group having 1 to 30 carbon atoms is preferably a hydrocarbon group having 1 to 10 carbon atoms, more preferably a hydrocarbon group having 1 to 5 carbon atoms.
  • the hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing a halogen atom, oxygen atom, nitrogen atom, sulfur atom or silicon atom.
  • linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds and thioether bonds.
  • Examples of hydrocarbon groups having 1 to 30 carbon atoms include methyl group, ethyl group, propyl group, butyl group and the like.
  • polar groups include carboxy groups, hydroxy groups, alkoxy groups, alkoxycarbonyl groups, allyloxycarbonyl groups, amino groups, amido groups and cyano groups.
  • a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferred, and an alkoxycarbonyl group and an aryloxycarbonyl group are preferred from the viewpoint of ensuring solubility during solution film formation.
  • p in general formula (A-1) represents an integer of 0 to 2.
  • p is 1 or 2.
  • R 5 in general formula (A-2) represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms. Among them, a hydrocarbon group having 1 to 5 carbon atoms is preferable, and a hydrocarbon group having 1 to 3 carbon atoms is more preferable.
  • R 6 in general formula (A-2) is a hydrogen atom, a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amido group, a cyano group, or a halogeno group (fluoro, chloro, bromo group, or iodine group).
  • a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferred, and an alkoxycarbonyl group and an aryloxycarbonyl group are more preferred from the viewpoint of ensuring solubility during solution film formation.
  • p in general formula (A-2) represents an integer of 0 to 2.
  • p is 1 or 2.
  • the cycloolefin monomer represented by general formula (A-2) has an asymmetric structure. That is, since the substituents R 5 and R 6 of the cycloolefin monomer represented by general formula (A-2) are substituted only on one ring-constituting carbon atom with respect to the symmetry axis of the molecule, low symmetry.
  • Such cycloolefin monomers can promote the diffusion and transfer of ultraviolet absorbers and antioxidants when drying the cast dope in the method for producing an optical film, which will be described later. It is thought that the distribution state can be easily adjusted.
  • cycloolefin monomer represented by the general formula (A-1) are shown in Exemplary Compounds 1 to 14, and specific examples of the cycloolefin monomer represented by the general formula (A-2) are exemplary compounds. 15-34.
  • copolymerizable monomers copolymerizable with cycloolefin monomers examples include copolymerizable monomers capable of ring-opening copolymerization with cycloolefin monomers and copolymerizable monomers capable of addition copolymerization with cycloolefin monomers.
  • a copolymerizable monomer is included.
  • copolymerizable monomers capable of ring-opening copolymerization include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene and dicyclopentadiene.
  • Examples of addition-copolymerizable copolymerizable monomers include unsaturated double bond-containing compounds, vinyl-based cyclic hydrocarbon monomers, and (meth)acrylates.
  • Examples of unsaturated double bond-containing compounds are olefinic compounds having 2 to 12 (preferably 2 to 8) carbon atoms, examples of which include ethylene, propylene, butenes.
  • Examples of vinyl-based cyclic hydrocarbon monomers include vinylcyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene.
  • (meth)acrylates examples include alkyl (meth)acrylates having 1 to 20 carbon atoms such as methyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and cyclohexyl (meth)acrylate.
  • the cycloolefin resin is a cycloolefin monomer having a norbornene skeleton, preferably a cycloolefin monomer having a structure represented by general formula (A-1) or (A-2), polymerized or Polymers obtained by copolymerization, examples of which include the following.
  • a ring-opening polymer of a cycloolefin monomer (2) A ring-opening copolymer of a cycloolefin monomer and a copolymerizable monomer capable of ring-opening copolymerization thereof (3) Above (1) or (2) Hydrogenated product of the ring-opening (co)polymer (4) The ring-opening (co)polymer of (1) or (2) above was cyclized by the Friedel-Crafts reaction and then hydrogenated (co- ) Polymers (5) Saturated copolymers of cycloolefin monomers and unsaturated double bond-containing compounds (6) Addition copolymers of cycloolefin monomers and vinyl cyclic hydrocarbon monomers, and Hydrogenated product thereof (7) Alternating copolymer of cycloolefin-based monomer and (meth)acrylate
  • the cycloolefin-based resin can increase the glass transition temperature and light transmittance of the obtained cycloolefin-based resin with a structural unit represented by the following general formula (B-1). It preferably contains at least one structural unit represented by the following general formula (B-2).
  • the structural unit represented by general formula (B-1) is a structural unit derived from the cycloolefin monomer represented by general formula (A-1) described above, and is represented by general formula (B-2). is a structural unit derived from the cycloolefin monomer represented by the general formula (A-2) described above.
  • R 1 to R 4 and p in general formula (B-1) are synonymous with R 1 to R 4 and p in general formula (A-1), respectively.
  • R 5 to R 6 and p in general formula (B-2) are synonymous with R 5 to R 6 and p in general formula (A-2), respectively.
  • cycloolefin-based resin As the cycloolefin-based resin described above, commercially available products can be preferably used, and examples of commercially available products include JSR Corporation's Arton (registered trademark) G series, It is marketed under the trade name of the RX series, and Zeonor (registered trademark) ZF14, ZF16, 1420R, 1020R, 1060R, etc., and Zeonex (registered trademark) 250, 280, 480, 480R from Nippon Zeon Co., Ltd. , E48R, F52R, 330R, RS420, etc., and these can be appropriately selected and used depending on the application.
  • the cycloolefin-based resins can all be obtained by known methods, for example, the methods described in JP-A-2008-107534, JP-A-2005-227606 and JP-A-4466272.
  • the intrinsic viscosity [ ⁇ ]inh of the cycloolefin resin is preferably in the range of 0.2 to 5 cm 3 /g, more preferably in the range of 0.3 to 3 cm 3 /g, and 0.3 cm 3 /g. More preferably, it is in the range of 4 to 1.5 cm 3 /g.
  • the number average molecular weight (Mn) of the cycloolefin resin is preferably 8,000 to 100,000, more preferably 10,000 to 80,000, even more preferably 12,000 to 50,000.
  • the weight average molecular weight (Mw) of the cycloolefin resin is preferably from 20,000 to 300,000, more preferably from 30,000 to 250,000, even more preferably from 40,000 to 200,000.
  • the number average molecular weight and weight average molecular weight of the cycloolefin resin can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • the cycloolefin resin has good heat resistance, water resistance, chemical resistance, mechanical properties, and moldability as a film. .
  • the glass transition temperature (Tg) of the cycloolefin resin is usually 110°C or higher, preferably in the range of 110 to 350°C, more preferably 120 to 250°C, and 120 to 220°C. It is more preferable to be within the range.
  • Tg is 110°C or higher, deformation under high temperature conditions is easily suppressed.
  • the Tg is 350° C. or less, the molding process becomes easy, and deterioration of the resin due to heat during the molding process can be easily suppressed.
  • the content of the cycloolefin resin is preferably 70% by mass or more, more preferably 80% by mass or more, relative to the optical film.
  • the ultraviolet absorber is added for the purpose of improving the durability of the optical film.
  • Such an ultraviolet absorber is preferably a compound that absorbs ultraviolet rays of 400 nm or less.
  • the transmittance of light having a wavelength of 370 nm is 10% or less, preferably 5% or less, more preferably 2%. It is the following compound.
  • UV absorbers examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders, and polymeric UV absorbers. drug is included.
  • One type of ultraviolet absorber may be used, or two or more types may be used in combination.
  • benzotriazole-based compounds benzophenone-based compounds, and triazine-based compounds are preferable, and benzotriazole-based compounds and benzophenone-based compounds are more preferable, because they have good ultraviolet absorption ability.
  • benzotriazole compounds include 5-chloro-2-(3,5-di-sec-butyl-2-hydroxylphenyl)-2H-benzotriazole, (2-2H-benzotriazol-2-yl)- 6-(Linear and side chain dodecyl)-4-methylphenol is included.
  • benzophenone compounds include 2-hydroxy-4-benzyloxybenzophenone and 2,4-benzyloxybenzophenone.
  • Tinuvin series such as Tinuvin109, Tinuvin171, Tinuvin234, Tinuvin326, Tinuvin327, Tinuvin328, and Tinuvin928, all of which are commercially available products manufactured by BASF.
  • the content of the ultraviolet absorber (total content in the optical film) is preferably, for example, 0.1 to 10% by mass relative to the cycloolefin resin. If the content of the ultraviolet absorber is 0.1% by mass or more, the durability (particularly weather resistance) of the optical film can be sufficiently enhanced. If the content of the ultraviolet absorber is 10% by mass or less, the transparency of the optical film is less likely to be impaired. More preferably, the content of the ultraviolet absorber is 0.5 to 5% by mass.
  • antioxidant antioxidant
  • antioxidants include hindered phenolic compounds.
  • hindered phenolic compounds include 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] , triethylene glycol-bis[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5-di-t-butyl- 4-hydroxyphenyl)propionate], 2,4-bis-(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, 2,2- thio-diethylenebis[3-(3,5
  • antioxidants may be used, or two or more types may be used in combination.
  • triethylene glycol-bis [3 -(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate] is preferred.
  • Antioxidants include hydrazine-based metal deactivators such as N,N'-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyl]hydrazine and tris(2,4- It may be used in combination with a phosphorus-based processing stabilizer such as di-t-butylphenyl)phosphite.
  • hydrazine-based metal deactivators such as N,N'-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyl]hydrazine and tris(2,4- It may be used in combination with a phosphorus-based processing stabilizer such as di-t-butylphenyl)phosphite.
  • the content of the antioxidant is preferably, for example, within the range of 0.1 to 10% by mass relative to the cycloolefin resin.
  • the durability (especially weather resistance) of the optical film can be sufficiently enhanced.
  • the content of the antioxidant is 10% by mass or less, the transparency of the optical film is less likely to be impaired. More preferably, the antioxidant content is in the range of 0.5 to 5% by mass.
  • At least one of the ultraviolet absorber and the antioxidant is preferably unevenly distributed on the surface of the optical film roughened by solvent treatment.
  • the optical film may further contain other additives as long as the effects of the present invention are not impaired.
  • additives include plasticizers, heat stabilizers, fine particles (matting agents), surfactants, fluorosurfactants, release aids, and the like.
  • the fine particles can make the surface of the optical film uneven and improve the slipperiness.
  • the microparticles can be inorganic microparticles or organic microparticles.
  • the inorganic fine particles or organic fine particles the same inorganic fine particles or organic fine particles as those contained in the easy-adhesion layer can be used.
  • the average particle size of the fine particles is preferably in the range of 1 to 500 nm, more preferably in the range of 5 to 300 nm.
  • the average particle size of the fine particles is determined by measuring the particle size distribution by a laser diffraction method. .
  • the content of fine particles can be 10% by mass or less with respect to the optical film.
  • Optical films can have various retardation values (also referred to as “retardation values”) depending on their uses.
  • retardation values also referred to as “retardation values”
  • the in-plane direction retardation Ro and the thickness direction retardation Rth can satisfy, for example, the following relationship. 0 nm ⁇ Ro ⁇ 300 nm ⁇ 200 nm ⁇ Rth ⁇ 200 nm
  • the in-plane retardation Ro of the optical film more preferably satisfies 50 ⁇ Ro ⁇ 250 nm, and more preferably satisfies 50 nm ⁇ Ro ⁇ 200 nm.
  • the thickness direction retardation Rth of the optical film more preferably satisfies ⁇ 150 nm ⁇ Rth ⁇ 150 nm, and more preferably ⁇ 120 nm ⁇ Rth ⁇ 120 nm.
  • Ro and Rth of the optical film are defined by the following formulas.
  • Formula (2a): Ro (n x -n y ) x d
  • Formula (2b): Rth ((n x +n y )/2 ⁇ n z ) ⁇ d
  • nx represents the refractive index in the in-plane slow axis direction of the optical film.
  • ny represents the refractive index in the direction perpendicular to the in-plane slow axis of the optical film.
  • nz represents the optical film represents the refractive index in the thickness direction of d represents the thickness (nm) of the optical film.
  • Ro and Rth of the optical film can be measured by the following methods. (1) The optical film is conditioned at 23° C. and 55% RH for 24 hours. The average refractive index of this optical film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer. (2) Retardation Ro and Rth of the optical film after humidity control at a measurement wavelength of 590 nm are measured using an automatic birefringence meter AxoScanMuellerMatrixPolarimeter (manufactured by Axometrics), respectively, in an environment of 23°C and 55% RH. Measure below.
  • Axoscan calculates n x , ny and nz , and based on the above formula (2b), the measurement wavelength is 590 nm Calculate the Rth at
  • the thickness of the optical film depends on the range of Ro and Rth required, but is preferably in the range of 15 to 60 ⁇ m, more preferably in the range of 15 to 40 ⁇ m. is more preferable.
  • the optical film of the present invention can be produced by, for example, 1) preparing a dope containing the above cycloolefin resin and solvent, 2) casting the obtained dope on a support, drying and peeling, and casting. 3) applying a coating material for an easy-adhesion layer made of a polyurethane-based resin to the obtained cast film; and 4) stretching the cast film coated with the coating material. 5) It can be produced through a step of drying the stretched casting film and the coating material. As described above, the coating material is applied to the casting film, stretched, and dried to form the casting film as the base material of the present invention and the coating material as the easy adhesion layer of the present invention.
  • an optical film having an easy-adhesion layer on the substrate is produced.
  • the step of 5) of drying the cast film the step of 6) cutting both ends of the obtained optical film and embossing them, 7) the step of forming a roughened surface on the optical film, and 8) It is preferable to go through a winding process.
  • step 1) (dope preparation step) A dope is prepared by dissolving or dispersing a cycloolefin resin in a solvent.
  • the solvent used for the dope contains at least an organic solvent (good solvent) capable of dissolving the cycloolefin resin.
  • good solvents include chlorinated organic solvents such as methylene chloride; and non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran. Among them, methylene chloride is preferred.
  • the solvent used for the dope may further contain a poor solvent.
  • poor solvents include linear or branched aliphatic alcohols having 1 to 4 carbon atoms. When the ratio of alcohol in the dope becomes high, the film-like material tends to gel and is easily peeled off from the metal support.
  • linear or branched aliphatic alcohols having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol. Of these, ethanol is preferred because of its dope stability, relatively low boiling point, and good drying properties.
  • the obtained dope is cast on a support. Casting of the dope can be performed by discharging from a casting die.
  • the solvent is evaporated until the dope cast on the support can be peeled off from the support with a peel roll.
  • Methods for evaporating the solvent include a method of exposing the cast dope to air, a method of transferring heat from the back surface of the support by a liquid, and a method of transferring heat from the front and back surfaces by radiant heat.
  • the casting film obtained by evaporating the solvent is peeled off with a peeling roll.
  • the amount of solvent remaining in the cast film on the support after peeling depends on the drying conditions and the length of the support, but can be, for example, 50 to 120% by mass. If the film is peeled with a large amount of residual solvent, the cast film will be too soft, and the flatness of the film will be easily lost when peeled. is determined.
  • the residual solvent amount is defined by the following formula.
  • the heat treatment for measuring the residual solvent amount is a heat treatment at 115° C. for 1 hour.
  • step 3 After the casting step and before the stretching step (that is, before stretching the cast film obtained by peeling from the support), the surface on which the easy-adhesion layer is formed is subjected to discharge treatment, and a coating material made of a polyurethane-based resin is applied to the surface of the discharge-treated side. It is preferable to mix the polyurethane-based resin, optionally fine particles (silica fine particles), and an aqueous solvent, and apply the mixture as a liquid aqueous resin composition (coating material). Moreover, the content of the polyurethane resin in the aqueous resin composition is preferably within the range of 65 to 95% by mass.
  • step 4 (stretching step) The casting film coated with the easy-adhesion layer is stretched.
  • the stretching may be performed according to the required optical properties, and it is preferable to stretch in one or more of the width direction (TD direction), the transport direction (MD direction), and the oblique direction.
  • TD direction width direction
  • MD direction transport direction
  • oblique direction oblique direction
  • the draw ratio depends on the desired optical properties, but for example, when used as a ⁇ /4 retardation film, it is preferably in the range of 1.05 to 4.0 times, and 1.5 to 3.0 times. It is more preferable to be within the range.
  • the stretch ratio is defined as the size in the stretching direction of the film after stretching/the size in the stretching direction of the film before stretching.
  • the stretching temperature (drying temperature during stretching) is preferably (Tg+2) to (Tg+50)° C., where Tg is the glass transition temperature of the cycloolefin resin, and (Tg+5) to (Tg+30). ) °C.
  • Tg glass transition temperature of the cycloolefin resin
  • Tg+5 glass transition temperature of the cycloolefin resin
  • Tg+5 glass transition temperature of the cycloolefin resin
  • the amount of residual solvent in the filmy material at the start of stretching is preferably about the same as the amount of residual solvent in the filmy material at the time of peeling, for example, preferably 20 to 30% by mass, preferably 25 to 30% by mass. % range is more preferred.
  • Stretching in the TD direction (width direction) of the film can be performed, for example, by fixing both ends of the film with clips or pins and widening the distance between the clips or pins in the direction of travel (tenter method).
  • the film-like material can be stretched in the MD direction, for example, by a method (roll method) in which a plurality of rolls are provided with different peripheral speeds and the difference in peripheral speeds of the rolls is utilized.
  • a tenter method in which both ends of the casting film are held with clips and stretched is preferable in order to improve the flatness and dimensional stability of the film.
  • By stretching the cast film in both the MD and TD directions it is preferable to stretch in a direction that obliquely intersects the MD and TD directions (diagonal stretching).
  • Step 5 (Drying Step)
  • the stretched casting film and coating material are further dried to obtain an optical film having an easy-adhesion layer on the substrate.
  • the casting film and the coating material can be dried, for example, while the casting film is being transported by a plurality of transport rolls (for example, a plurality of transport rolls arranged in a zigzag pattern when viewed from the side).
  • the drying means is not particularly limited, and hot air, infrared rays, heating rolls or microwaves are used. Hot air drying is preferred because of its simplicity.
  • Step 6 (Cutting/Embossing Step) Both ends in the width direction of the obtained optical film are cut. Both ends of the optical film can be cut by a slitter.
  • embossing is applied to both ends of the optical film in the width direction.
  • Embossing can be performed by pressing a heated embossing roller against both ends of the optical film. Fine irregularities are formed on the surface of the embossing roller, and by pressing the embossing roller against both ends of the optical film, irregularities are formed on both ends.
  • Such embossing can minimize winding misalignment and blocking (sticking of films together) in the next winding process.
  • a roughened surface is formed on the cut optical film.
  • the roughened surface can be formed by embossing using a mold, plasma etching, sandblasting, sandpaper treatment, casting film formation under high humidity conditions, or the like, and embossing using a mold is most preferred.
  • the roll-shaped mold is rotated to run the optical film in the direction of rotation along the outer peripheral surface of the mold with a predetermined pressure and time, and then the optical film is peeled off from the mold. to form a roughened surface.
  • the single-sided external haze can be adjusted by changing the mold pressure and pressing time, and the single-sided external haze value increases by lengthening the pressing time or increasing the pressure.
  • a roll body is formed by winding the optical film around the core while transporting it.
  • the method of winding the optical film may be any method using a generally used winder, and a method of controlling tension such as a constant torque method, a constant tension method, a taper tension method, or a program tension control method with constant internal stress.
  • the polarizing plate of the present invention is a polarizing plate in which at least a polarizing plate protective film, a polarizer layer, an optical film and an adhesive sheet are laminated in this order, and the optical film is the optical film of the present invention.
  • the adhesive sheet has an adhesive layer formed from an adhesive composition.
  • the pressure-sensitive adhesive sheet for example, a double-sided pressure-sensitive adhesive sheet having only a pressure-sensitive adhesive layer, a substrate, and pressure-sensitive adhesive layers formed on both sides of the substrate, at least one pressure-sensitive adhesive layer being formed from the pressure-sensitive adhesive composition.
  • a double-sided pressure-sensitive adhesive sheet that is a pressure-sensitive adhesive layer formed on a substrate, a single-sided pressure-sensitive adhesive sheet that has the above-mentioned pressure-sensitive adhesive layer formed on one side of the substrate, and the pressure-sensitive adhesive layer of these pressure-sensitive adhesive sheets that are not in contact with the substrate A pressure-sensitive adhesive sheet having a separator attached to the surface can be used.
  • the pressure-sensitive adhesive composition preferably comprises, for example, an acrylic pressure-sensitive adhesive main agent, a cross-linking agent, an antioxidant, and the like.
  • acrylic pressure-sensitive adhesive base include 4-hydroxybutyl acrylate units (4-HBA), butyl acrylate units, and methyl acrylate units.
  • cross-linking agent include tolylene diisocyanate-based compounds and xylylene diisocyanate.
  • antioxidants examples include hindered phenolic antioxidants such as pentaerythritol-tetrakis(3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate) (manufactured by BASF Japan, IRGANOX1010), Phosphorus antioxidants such as tris(2,4-di-t-butylphenyl)phosphite (IRGAFOS168, manufactured by BASF Japan).
  • hindered phenolic antioxidants such as pentaerythritol-tetrakis(3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate) (manufactured by BASF Japan, IRGANOX1010)
  • Phosphorus antioxidants such as tris(2,4-di-t-butylphenyl)phosphite (IRGAFOS168, manufactured by BASF Japan).
  • the acrylic pressure-sensitive adhesive main agent in the pressure-sensitive adhesive composition is preferably contained in the range of 10 to 90% by mass, and the cross-linking agent is contained in the range of 0.01 to 5.00% by mass.
  • the content of the antioxidant is preferably within the range of 0.01 to 5.00% by mass.
  • the pressure-sensitive adhesive sheet preferably has a low water content in order to suppress the occurrence of high-humidity shock. . Therefore, the moisture content of the pressure-sensitive adhesive sheet is preferably in the range of 3.0 to 10.0%, particularly preferably in the range of 3.5 to 5.5%.
  • the moisture content of the adhesive sheet is determined by forming an adhesive layer on a polyester film with a thickness of 50 ⁇ m, cutting it to 60 mm ⁇ 130 mm, and then pasting the adhesive sheet on a polycarbonate having a thickness of 1 mm cut to 70 mm ⁇ 150 mm. It is obtained by standing in an environment of 40° C. and 95% RH for 48 hours and measuring the mass increase of the adhesive.
  • the content of 4-hydroxybutyl acrylate units (4-HBA) in the pressure-sensitive adhesive composition is The content may be within the range of 4.0 to 25% by mass.
  • the term "polarizer layer” refers to an optical layer having a property of transmitting linearly polarized light having a vibration plane perpendicular to the absorption axis when unpolarized light is incident. In other words, it refers to an optical layer that transmits only light with a plane of polarization in a certain direction.
  • a polarizing film (also referred to as a “polarizer film” and a “polarizer film”) constituting a typical polarizer layer known at present is a polyvinyl alcohol-based polarizing film.
  • the polyvinyl alcohol-based polarizing film includes a polyvinyl alcohol-based film dyed with iodine and a polyvinyl alcohol-based film dyed with a dichroic dye.
  • the polyvinyl alcohol-based polarizing film may be a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing it with iodine or a dichroic dye (preferably a film further subjected to durability treatment with a boron compound); A film obtained by dyeing an alcohol-based film with iodine or a dichroic dye and then uniaxially stretching the film (preferably, a film further subjected to a durability treatment with a boron compound) may be used.
  • the absorption axis of the polarizing film (polarizer layer) is generally parallel to the maximum stretching direction.
  • JP 2003-248123, JP 2003-342322, etc. ethylene unit content 1 to 4 mol%, degree of polymerization 2000 to 4000, degree of saponification 99.0 to 99.99 mol% Ethylene modified polyvinyl alcohol is used.
  • an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73° C. is preferably used.
  • the thickness of the polarizer layer is preferably in the range of 5 to 30 ⁇ m, and more preferably in the range of 5 to 20 ⁇ m for thinning the polarizing plate.
  • the angle formed by the in-plane slow axis of the optical film of the present invention and the absorption axis of the polarizer layer is in the range of 20 to 70°. It is preferably in the range of 30 to 60°, more preferably in the range of 40 to 50°.
  • the in-plane slow axis of the optical film of the present invention and the absorption axis of the polarizer layer can be substantially orthogonal.
  • the polarizer layer and the easy-adhesion layer of the optical film are bonded together via an adhesive or a pressure-sensitive adhesive.
  • the adhesive may be a water-based adhesive containing polyvinyl alcohol resin or urethane resin as a main component, or a photocurable adhesive containing photocurable resin such as epoxy resin as a main component.
  • the adhesive may contain acrylic polymers, silicone polymers, polyesters, polyurethanes, polyethers, etc. as base polymers. Among them, water-based adhesives are preferable because they have good affinity with the optical film of the present invention and are less likely to be distorted due to water absorption.
  • the bonding of the polarizer layer and the optical film of the present invention can usually be carried out by roll-to-roll.
  • a polarizing plate protective film is arranged on the surface of the polarizer layer opposite to the optical film.
  • polarizing plate protective films include commercially available cellulose acylate films (e.g., Konica Minolta Tack KC6UA, KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1 , KC8UY-HA, KC8UX-RHA, KC8UE, KC4UE, KC4UE, KC4HR-1, KC4KR-1, KC4UA, KC6UA (manufactured by Konica Minolta Opto Co., Ltd.) and the like.
  • the thickness of the polarizing plate protective film is not particularly limited, but is preferably in the range of 10 to 100 ⁇ m, more preferably in the range of 10 to 60 ⁇ m, and preferably in the range of 20 to 60 ⁇ m. Especially preferred.
  • the polarizing plate protective film and the polarizer layer are preferably bonded together via an adhesive or pressure-sensitive adhesive, and the adhesive or pressure-sensitive adhesive is the adhesive or pressure-sensitive adhesive used for bonding the polarizer layer and the optical film. A similar adhesive can be used.
  • the liquid crystal display device according to the present invention is preferably a liquid crystal display device in which the polarizing plate is attached to at least one surface of a liquid crystal cell, and the adhesive sheet is more preferably adjacent to the liquid crystal cell. .
  • FIG. 2 is a schematic diagram showing an example of the basic configuration of a liquid crystal display device.
  • the liquid crystal display device 20 of the present invention includes a liquid crystal cell 30, a first polarizing plate 40 and a second polarizing plate 50 sandwiching it, and a backlight 60.
  • FIG. 1 is a schematic diagram showing an example of the basic configuration of a liquid crystal display device.
  • the liquid crystal display device 20 of the present invention includes a liquid crystal cell 30, a first polarizing plate 40 and a second polarizing plate 50 sandwiching it, and a backlight 60.
  • FIG. 1 is a schematic diagram showing an example of the basic configuration of a liquid crystal display device.
  • the liquid crystal display device 20 of the present invention includes a liquid crystal cell 30, a first polarizing plate 40 and a second polarizing plate 50 sandwiching it, and a backlight 60.
  • FIG. 1 is a schematic diagram showing an example of the basic configuration of a liquid crystal display device.
  • the liquid crystal display device 20 of the present invention includes a
  • the display mode of the liquid crystal cell 30 may be any display mode such as TN (Twisted Nematic), VA (Visual Alignment), or IPS (InPlane Switching).
  • TN Transmission Nematic
  • VA Visual Alignment
  • IPS InPlane Switching
  • liquid crystal cells for mobile devices for example, IPS mode is preferable.
  • the VA mode is preferable.
  • the first polarizing plate 40 is arranged on the surface of the liquid crystal cell 30 on the viewing side, and the first polarizer layer 41 and the surface of the first polarizer layer 41 opposite to the liquid crystal cell 30 are arranged. and a protective film 45 (F2) disposed on the surface of the first polarizer layer 41 facing the liquid crystal cell.
  • the second polarizing plate 50 is arranged on the backlight side surface of the liquid crystal cell 30 , the second polarizer layer 51 and the protective layer 51 arranged on the liquid crystal cell side surface of the second polarizer layer 51 . It includes a film 53 (F3) and a protective film 55 (F4) disposed on the side of the second polarizer layer 51 opposite to the liquid crystal cell.
  • the absorption axis of the first polarizer layer 41 and the absorption axis of the second polarizer layer 51 are preferably orthogonal.
  • the protective film 45 (F2) can be the optical film of the present invention.
  • the optical film (the easy-adhesion layer 47 of the protective film 45 (F2) and the first polarizer layer 41 are laminated via an adhesive or a pressure-sensitive adhesive.
  • the protective films 43 (F1), 53 (F3) and 55 (F4) can be, for example, the polarizing plate protective films described above. is the substrate.
  • FIG. 2 shows an example in which the protective film 45 (F2) is the optical film of the present invention
  • 53 (F3) may be the optical film of the present invention.
  • the protective film 53 (F3) is the optical film of the present invention
  • the surface of the substrate of the protective film 53 (F3) opposite to the liquid crystal cell 30 that is, the surface on the polarizer layer 51 side
  • a layer (not shown) may be formed.
  • optical film 101 A commercially available e-ZB12 (manufactured by Nippon Zeon Co., Ltd.) (film a in which an easy-adhesion layer is formed on a substrate) was used as the optical film 101 .
  • ⁇ Preparation of coating material (water-based resin composition) A> Take 100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane (“Superflex 210” manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., an ester-based polyurethane resin containing a carboxy group), and add an epoxy compound ( Product name “Denacol EX-521” manufactured by Nagase ChemteX Corporation) 15 parts by mass, 6 parts by mass of adipic acid dihydrazide, 5 parts by mass of silica particles (average primary particle size 100 nm, standard deviation 20 nm), and water. Then, coating material A was obtained as a liquid water-based resin composition having a solid content of 8%.
  • the unstretched optical film b1 prepared above (commercially available “ZEONOR1420R” (Nippon Zeon Co., Ltd.)) was subjected to discharge treatment on one surface.
  • the coating material A was applied to the discharge-treated surface of the unstretched optical film b1 using a roll coater so that the dry film thickness was 2.0 ⁇ m.
  • optical film 102 ⁇ Production of optical film 102> Then, using a tenter-type transverse stretching machine, both ends of the unstretched optical film b1 are gripped with clips, and continuously transversely uniaxially stretched at a stretching temperature of 155° C. and a stretching ratio of 2.6 times. A section was cut out and removed. As a result, the step of drying and curing the coating material A and the step of stretching the unstretched optical film b1 are carried out simultaneously, and a coating layer (made of polyurethane resin) is formed on the surface of the stretched optical film b1 (substrate). An optical film 102 laminated with an adhesive layer) was obtained. The optical film 102 had a substrate with a thickness of 39 ⁇ m, a width of 1300 mm, and an easily adhesive layer with a thickness of 50 nm.
  • Example 1 ⁇ Production of unstretched optical film b2> Pellets of a resin containing a cycloolefin polymer (glass transition temperature: 137° C.; “ZEONOR1420R” manufactured by Zeon Corporation) were dried at 100° C. for 5 hours. The dried resin pellets were then fed into a single screw extruder. After being melted in the extruder, the resin was passed through a polymer pipe and a polymer filter, extruded into a sheet from a T-die onto a casting drum, and cooled. As a result, an unstretched optical film b2 having a thickness of 100 ⁇ m and a width of 500 mm was obtained.
  • a resin containing a cycloolefin polymer glass transition temperature: 137° C.; “ZEONOR1420R” manufactured by Zeon Corporation
  • a coating material B was obtained as a liquid water-based resin composition having a solid content of 8%.
  • optical film 103 ⁇ Production of optical film 103> Thereafter, using a tenter-type transverse stretching machine, both ends of the unstretched optical film b2 are gripped with clips, and continuously transversely uniaxially stretched at a stretching temperature of 155° C. and a stretching ratio of 2.6 times. A section was cut out and removed. As a result, the step of drying and curing the coating material B and the step of stretching the unstretched optical film b2 are carried out simultaneously, and a coating layer (made of polyurethane resin) is formed on the surface of the stretched optical film b2 (substrate). An optical film 103 laminated with an adhesive layer) was obtained. The optical film 103 had a substrate with a thickness of 39 ⁇ m, a width of 1300 mm, and an easily adhesive layer with a thickness of 50 nm.
  • Example 2 ⁇ Production of optical film 104>
  • the coating material B is applied in the same manner, and then using a tenter-type lateral stretching machine, the film is continuously laterally uniaxially stretched at a stretching temperature of 155°C and a stretching ratio of 3.0 times. The left and right ends were cut off and removed.
  • the step of drying and curing the coating material B and the step of stretching the unstretched optical film b2 are carried out simultaneously, and a coating layer (made of polyurethane resin) is formed on the surface of the stretched optical film b2 (substrate).
  • An optical film 104 laminated with an adhesive layer) was obtained.
  • the optical film 104 had a substrate with a thickness of 30 ⁇ m, a width of 1500 mm, and an easily adhesive layer with a thickness of 50 nm.
  • Example 3 ⁇ Preparation of Coating Material C> 100 parts by mass of a water dispersion of polyurethane (polyurethane composed of polyester polyol and aliphatic polyisocyanate; see Table I for details) is taken (the amount of polyurethane in the water dispersion), and an epoxy compound (product Name “Denacol EX-521” manufactured by Nagase ChemteX Corporation) 15 parts by weight, 6 parts by weight of adipic acid dihydrazide, 5 parts by weight of silica particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water.
  • a coating material C was obtained as a liquid water-based resin composition having a solid content of 8%.
  • Example 4 ⁇ Production of coating material D> Take 100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous polyurethane dispersion (polyether polyol and aliphatic polyisocyanate-based polyurethane; see Table I for details), and add an epoxy compound ( Product name “Denacol EX-521” manufactured by Nagase ChemteX Corporation) 15 parts by mass, 6 parts by mass of adipic acid dihydrazide, 5 parts by mass of silica particles (average primary particle size 100 nm, standard deviation 20 nm), and water are blended. Thus, a coating material D was obtained as a liquid water-based resin composition having a solid content of 8%.
  • optical film 106 ⁇ Production of optical film 106> Thereafter, using a tenter-type transverse stretching machine, both ends of the unstretched optical film b2 are gripped with clips, and continuously transversely uniaxially stretched at a stretching temperature of 155° C. and a stretching ratio of 2.6 times. A section was cut out and removed. As a result, the step of drying and curing the coating material D and the step of stretching the unstretched optical film b2 are carried out simultaneously, and a coating layer (made of polyurethane resin) is formed on the surface of the stretched optical film b2 (substrate). An optical film 106 laminated with an adhesive layer) was obtained. The optical film 106 had a substrate with a thickness of 39 ⁇ m, a width of 1300 mm, and an easily adhesive layer with a thickness of 50 nm.
  • a coating material E was obtained as a liquid water-based resin composition having a solid content of 8%.
  • ⁇ Production of coating material F > 100 parts by mass of an aqueous dispersion of polyurethane (polyurethane composed of a polyester polyol and an aromatic polyisocyanate; see Table I for details), and an epoxy compound (product Name “Denacol EX-521” manufactured by Nagase ChemteX Corporation) 15 parts by weight, 6 parts by weight of adipic acid dihydrazide, 5 parts by weight of silica particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water.
  • a coating material F was obtained as a liquid water-based resin composition having a solid content of 8%.
  • Coating material G was prepared in the same manner as in preparation of coating material B, except that the average primary particle size of the silica particles was 200 nm.
  • optical film 109 was obtained in the same manner as in Example 1, except that the coating material G was cured.
  • Coating material H was prepared in the same manner as in preparation of coating material B, except that the average primary particle size of the silica particles was 140 nm.
  • Coating material I was prepared in the same manner as in preparation of coating material B, except that the average primary particle size of the silica particles was 60 nm.
  • Coating material J was prepared in the same manner as in preparation of coating material B, except that the standard deviation of the primary particle size of the silica particles was set to 30 nm.
  • Coating material K was prepared in the same manner as in preparation of coating material B, except that the standard deviation of the primary particle size of the silica particles was set to 10 nm.
  • Coating material L was prepared in the same manner as in preparation of coating material B, except that the standard deviation of the primary particle size of the silica particles was set to 5 nm.
  • Coating material M was prepared in the same manner as in preparation of coating material C, except that the standard deviation of the primary particle size of the silica particles was set to 5 nm.
  • optical film 115 was obtained in the same manner as in Example 1, except that the coating material M was cured.
  • ⁇ Production of coating material N1> Take 100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane (“Superflex 210” manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., an ester-based polyurethane resin containing a carboxy group), and add an epoxy compound ( Product name “Denacol EX-521” manufactured by Nagase ChemteX Corporation) 20 parts by mass, 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica particles (average primary particle size 100 nm, standard deviation 20 nm), and water. 5% solids obtained as a liquid coating material N1.
  • optical film 117 was obtained in the same manner as in Comparative Example 4, except that the coating material N2 was used instead of the coating material N1.
  • a certain Carbodilite SV-02 (manufactured by Nisshinbo Chemical Co., Ltd.) 20 parts by mass, 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica fine particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water are blended to form a solid. It was obtained as a 5% liquid coating material N3.
  • optical film 118 was obtained in the same manner as in Comparative Example 4, except that the coating material N3 was used instead of the coating material N1.
  • optical film 119 was obtained in the same manner as in Comparative Example 4, except that the coating material N4 was used instead of the coating material N1.
  • optical film 120 was obtained in the same manner as in Comparative Example 4, except that the coating material O1 was used instead of the coating material N1.
  • optical film 121 was obtained in the same manner as in Comparative Example 4, except that the coating material O2 was used instead of the coating material N1.
  • a certain Carbodilite SV-02 (manufactured by Nisshinbo Chemical Co., Ltd.) 20 parts by mass, 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica fine particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water are blended to form a solid. It was obtained as a 5% liquid coating material O3.
  • optical film 122 was obtained in the same manner as in Comparative Example 4, except that the coating material O3 was used instead of the coating material N1.
  • optical film 123 was obtained in the same manner as in Comparative Example 4, except that the coating material O4 was used instead of the coating material N1.
  • Superflex 150HS manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., a carboxy group-containing ester/ether polyurethane resin
  • optical film 124 was obtained in the same manner as in Comparative Example 4, except that the coating material P1 was used instead of the coating material N1.
  • optical film 125 was obtained in the same manner as in Comparative Example 4, except that the coating material P2 was used instead of the coating material N1.
  • optical film 126 was obtained in the same manner as in Comparative Example 4, except that the coating material P3 was used instead of the coating material N1.
  • Superflex 150HS manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., a carboxy group-containing ester/ether polyurethane resin
  • optical film 127 was obtained in the same manner as in Comparative Example 4, except that the coating material P4 was used instead of the coating material N1.
  • optical film 128 was obtained in the same manner as in Comparative Example 4, except that the coating material Q1 was used instead of the coating material N1.
  • optical film 129 was obtained in the same manner as in Comparative Example 4, except that the coating material Q2 was used instead of the coating material N1.
  • a certain Carbodilite SV-02 (manufactured by Nisshinbo Chemical Co., Ltd.) 20 parts by mass, 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica fine particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water are blended to form a solid. It was obtained as a 5% liquid coating material Q3.
  • optical film 131 was obtained in the same manner as in Comparative Example 4, except that the coating material Q4 was used instead of the coating material N1.
  • Hydran WLS201 manufactured by DIC, a carboxyl group-containing ether-based polyurethane resin
  • Denacol EX- an epoxy compound
  • optical film 132 was obtained in the same manner as in Comparative Example 4, except that the coating material R1 was used instead of the coating material N1.
  • optical film 133 was obtained in the same manner as in Comparative Example 4, except that the coating material R2 was used instead of the coating material N1.
  • optical film 134 was obtained in the same manner as in Comparative Example 4, except that the coating material R3 was used instead of the coating material N1.
  • optical film 135 was obtained in the same manner as in Comparative Example 4, except that the coating material R4 was used instead of the coating material N1.
  • optical film 136 was obtained in the same manner as in Comparative Example 4, except that the coating material S1 was used instead of the coating material N1.
  • optical film 137 was obtained in the same manner as in Comparative Example 4, except that the coating material S2 was used instead of the coating material N1.
  • optical film 138 was obtained in the same manner as in Comparative Example 4, except that the coating material S3 was used instead of the coating material N1.
  • optical film 139 was obtained in the same manner as in Comparative Example 4, except that the coating material S4 was used instead of the coating material N1.
  • Pesresin A-684G manufactured by Takamatsu Yushi Co., Ltd., a carboxyl group-containing polyester resin acrylic resin composite
  • optical film 140 was obtained in the same manner as in Comparative Example 4, except that the coating material T1 was used instead of the coating material N1.
  • a polyurethane aqueous dispersion (“Pesresin A-684G” manufactured by Takamatsu Yushi Co., Ltd., a carboxy group-containing polyester resin acrylic resin composite) (the amount of polyester in the
  • optical film 141 was obtained in the same manner as in Comparative Example 4, except that the coating material T2 was used instead of the coating material N1.
  • optical film 142 was obtained in the same manner as in Comparative Example 4, except that the coating material T3 was used instead of the coating material N1.
  • optical film 143 was obtained in the same manner as in Comparative Example 4, except that the coating material T4 was used instead of the coating material N1.
  • a polyurethane water dispersion (“Pesresin A-695GE” manufactured by Takamatsu Yushi Co., Ltd., a carboxyl group-containing polyester resin acrylic resin composite) (the amount of polyester in the water dispersion) is taken, and an epoxy compound
  • optical film 144 was obtained in the same manner as in Comparative Example 4, except that the coating material U1 was used instead of the coating material N1.
  • optical film 145 was obtained in the same manner as in Comparative Example 4, except that the coating material U2 was used instead of the coating material N1.
  • optical film 146 was obtained in the same manner as in Comparative Example 4, except that the coating material U3 was used instead of the coating material N1.
  • optical film 147 was obtained in the same manner as in Comparative Example 4, except that the coating material U4 was used instead of the coating material N1.
  • the nanoindentation hardness of the easily adhesive layer was measured as follows. Measurement was performed using a Triboscope (manufactured by Bruker) as a measuring device. For the measurement, an indenter having a tip edge angle of 90° and a tip curvature radius of 35 to 50 nm was used. Then, the obtained optical film was cut into a size of 2 cm ⁇ 2 cm to prepare a measurement sample. Then, the sample to be measured was attached to a metal plate with the substrate side down using an adhesive, and the metal plate with the sample attached was attached to the measuring device, a load was applied, and an operation was performed to return it to 0. .
  • Triboscope manufactured by Bruker
  • a value P/A obtained by dividing the maximum load P at this time by the area A of the indenter contact portion was calculated as the nanoindentation hardness.
  • the maximum load was set to 20 ⁇ N. Ten points were randomly measured for each sample, and the average value was taken as the nanoindentation hardness.
  • COP means cycloolefin resin.
  • Hexamethylene diisocyanate is hexamethylene-1,6-diisocyanate.
  • a polyvinyl alcohol film having a thickness of 120 ⁇ m was uniaxially stretched (at a temperature of 110° C. and a stretching ratio of 5 times), immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, then 6 g of potassium iodide, It was immersed in an aqueous solution of 7.5 g of boric acid and 100 g of water at 68°C. The immersed film was washed with water and dried to obtain a polarizer layer. Subsequently, the easily adhesive layer side of the optical film 101 was attached to one surface of the polarizer layer using an adhesive.
  • a Konica Minolta Tack film KC4UAH (manufactured by Konica Minolta, Inc.) saponified with an alkali was adhered to the other surface of the polarizer layer using an adhesive in the same manner to produce a polarizing plate 201 .
  • the polarizing plates 202 to 247 were similarly produced using the optical films 102 to 147, respectively.
  • the pressure-sensitive adhesive composition (A) prepared above is applied to a release-treated PET film so that the thickness after drying is 25 ⁇ m, and dried at 90° C. for 3 minutes to form a pressure-sensitive adhesive layer. was made.
  • the adhesiveness in a high-temperature and high-humidity environment is better than that of the optical film of the comparative example, and that light leakage can be prevented.
  • the present invention can be used for optical films, polarizing plates, and liquid crystal display devices that can improve adhesion to a polarizer layer and suppress light leakage in a high-temperature, high-humidity environment.
  • liquid crystal display device 30 liquid crystal cell 40 first polarizing plate 41 first polarizer layer 43 protective film (F1) 45 protective film (F2) 46 base material 47 easy adhesion layer 50 second polarizing plate 51 second polarizer layer 53 protective film (F3) 55 protective film (F4) 60 backlight 100 optical film 101 base material 102 easy adhesion layer 200 polarizing plate 300 polarizing plate protective film 400 polarizer layer 500 adhesive sheet

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polarising Elements (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

This optical film has an easily adhesive layer on at least one side of a substrate, the substrate containing a cycloolefin-based resin, the thickness of the substrate being 49 µm or less, the easily adhesive layer containing a polyurethane-based resin, and the nanoindentation hardness of the easily adhesive layer on the substrate being less than 0.52 GPa in a 23°C/50% RH environment.

Description

光学フィルム、偏光板及び液晶表示装置Optical films, polarizing plates and liquid crystal displays
 本発明は、光学フィルム、偏光板及び液晶表示装置に関し、特に、高温高湿環境下において偏光子層との接着性が向上し、かつ、光漏れを抑制することができる光学フィルム等に関する。 The present invention relates to an optical film, a polarizing plate, and a liquid crystal display device, and more particularly to an optical film and the like that can improve adhesion to a polarizer layer and suppress light leakage in a high-temperature and high-humidity environment.
 TVやスマートフォンなどの画像表示装置に用いられる偏光板は、偏光子層の両面に易接着層を介して光学フィルムが貼り合わされている。
 近年、画像表示装置の大型化のために、部材として偏光板の大型化が求められており、光学フィルムの大型化も求められている。
 また、画像表示装置は製造してから販売するまでに海外への船便での輸送が一般的であり、船便での長期の高温高湿環境等の影響に伴い、偏光子層とフィルムの層間のズレに起因する光漏れ(白ムラ)と、フィルムの大型化に伴う接着不良が顕在化してきており、改善が求められていた。
A polarizing plate used in an image display device such as a TV or a smart phone has an optical film laminated on both sides of a polarizer layer via an easy-adhesion layer.
In recent years, due to the increase in the size of image display devices, there has been a demand for large-sized polarizing plates as members, and there has also been a demand for large-sized optical films.
In addition, it is common for image display devices to be transported overseas by sea from the time they are manufactured to the time they are sold. Light leakage (white unevenness) caused by misalignment and adhesion failure due to the increase in size of the film have become apparent, and improvements have been required.
 そこで、光学フィルムの剥離を防止する技術として、例えば特許文献1に開示されているように、アクリル樹脂からなる光学フィルムの表面に、重量平均分子量が3万~10万のポリウレタンを含むウレタン組成物層を設けることによって、偏光子とアクリル樹脂フィルムとの接着性を向上させる技術が提案されている。当該特許文献1では、アクリル樹脂フィルムを用いているため、位相差を生じにくく、フィルムの剥離や前記光漏れについての問題は生じにくかった。 Therefore, as a technique for preventing peeling of an optical film, for example, as disclosed in Patent Document 1, a urethane composition containing polyurethane having a weight average molecular weight of 30,000 to 100,000 is applied to the surface of an optical film made of an acrylic resin. Techniques have been proposed for improving the adhesiveness between a polarizer and an acrylic resin film by providing a layer. In Patent Document 1, since an acrylic resin film is used, retardation is less likely to occur, and problems such as peeling of the film and light leakage are less likely to occur.
 一方、透明性、光学特性及び耐久性に優れているとして、シクロオレフィン樹脂を用いた光学フィルムの場合、応力が加わることによって位相差が生じやすいことから、高温高湿下においてフィルムの剥離が生じる接着不良や、光漏れについての問題が解決されていなかった。 On the other hand, in the case of an optical film using a cycloolefin resin, which is said to be excellent in transparency, optical properties and durability, retardation is likely to occur due to the application of stress, so the film will peel off under high temperature and high humidity. Problems with poor adhesion and light leakage remained unresolved.
特開2016-79210号公報JP 2016-79210 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、高温高湿環境下において偏光子層との接着性が向上し、かつ、光漏れを抑制することができる光学フィルム、偏光板及び液晶表示装置を提供することである。 The present invention has been made in view of the above problems and circumstances, and the problem to be solved is to improve the adhesiveness with the polarizer layer in a high-temperature and high-humidity environment and to suppress light leakage. It is to provide a film, a polarizing plate and a liquid crystal display device.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、易接着層のナノインデンテーション硬度を低くすることにより、薄型のシクロオレフィン系樹脂からなる光学フィルムであっても、高温高湿環境下における偏光子層との接着性が良好で、かつ、光漏れを抑制することができることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In order to solve the above problems, in the process of studying the causes of the above problems, the present inventors have found that by reducing the nanoindentation hardness of the easy-adhesion layer, a thin optical film made of a cycloolefin resin can be obtained. Also, the inventors have found that the adhesiveness to the polarizer layer is good in a high-temperature and high-humidity environment and that light leakage can be suppressed, leading to the present invention.
That is, the above problems related to the present invention are solved by the following means.
 1.基材の少なくとも一方の面に易接着層を有する光学フィルムであって、
 前記基材が、シクロオレフィン系樹脂を含有し、
 前記基材の厚さが、49μm以下であり、
 前記易接着層が、ポリウレタン系樹脂を含有し、
 23℃・50%RH環境条件下において、前記基材上における前記易接着層のナノインデンテーション硬度が、0.52GPa未満である光学フィルム。
1. An optical film having an easy-adhesion layer on at least one surface of a substrate,
The base material contains a cycloolefin resin,
The thickness of the base material is 49 μm or less,
The easy-adhesion layer contains a polyurethane-based resin,
An optical film, wherein the nanoindentation hardness of the easy-adhesion layer on the substrate is less than 0.52 GPa under environmental conditions of 23°C and 50% RH.
 2.前記ポリウレタン系樹脂が、ポリエステルポリオール成分及びポリエーテルポリオール成分のいずれか一種からなる第1項に記載の光学フィルム。 2. 2. The optical film according to item 1, wherein the polyurethane-based resin comprises either one of a polyester polyol component and a polyether polyol component.
 3.前記易接着層にシリカ微粒子が含有され、
 前記シリカ微粒子の平均一次粒径が、50~150nmの範囲内であり、かつ、
 前記平均一次粒径の標準偏差が、5~30nmの範囲内である第1項又は第2項に記載の光学フィルム。
3. The easy-adhesion layer contains silica fine particles,
The average primary particle size of the silica fine particles is in the range of 50 to 150 nm, and
3. The optical film according to item 1 or item 2, wherein the standard deviation of the average primary particle diameter is in the range of 5 to 30 nm.
 4.第1項から第3項までのいずれか一項に記載の光学フィルムを具備する偏光板。 4. A polarizing plate comprising the optical film according to any one of items 1 to 3.
 5.第4項に記載の偏光板を具備する液晶表示装置。 5. A liquid crystal display device comprising the polarizing plate according to item 4.
 本発明の上記手段により、高温高湿環境下において偏光子層との接着性が向上し、かつ、光漏れを抑制することができる光学フィルム、偏光板及び液晶表示装置を提供することができる。
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 基材の厚さが49μm以下であり、かつ基材上における易接着層のナノインデンテーション硬度を、0.52GPa未満とすること、すなわち、基材の薄膜化により、高温高湿下での総含水量を減らすことができるため、フィルムの硬度を一定に保つことができ、かつ易接着層の硬度を低くすることにより、偏光板中の光学フィルムに加わる応力を緩和することができ、高温高湿下における応力歪みを低減することができる。したがって、基材の薄膜化かつ易接着層の低硬度化により、偏光子層と光学フィルムの層間のズレを抑制でき、その結果、偏光子層と光学フィルムとの接着性が向上し、光漏れを抑制することができると推察される。
By the means of the present invention, it is possible to provide an optical film, a polarizing plate, and a liquid crystal display device that have improved adhesiveness to a polarizer layer and can suppress light leakage in a high-temperature and high-humidity environment.
Although the expression mechanism or action mechanism of the effects of the present invention has not been clarified, it is speculated as follows.
The thickness of the substrate is 49 μm or less, and the nanoindentation hardness of the easy-adhesion layer on the substrate is less than 0.52 GPa. Since the water content can be reduced, the hardness of the film can be kept constant, and by lowering the hardness of the easy-adhesion layer, the stress applied to the optical film in the polarizing plate can be relaxed, and the It is possible to reduce the stress strain under wet conditions. Therefore, by thinning the substrate and reducing the hardness of the easy-adhesion layer, it is possible to suppress the displacement between the polarizer layer and the optical film. As a result, the adhesion between the polarizer layer and the optical film is improved, and light leakage can be suppressed.
本発明の偏光板の構成の一例を示した模式図Schematic diagram showing an example of the configuration of the polarizing plate of the present invention 本発明の液晶表示装置の構成の一例を示した模式図Schematic diagram showing an example of the configuration of the liquid crystal display device of the present invention
 本発明の光学フィルムは、基材の少なくとも一方の面に易接着層を有する光学フィルムであって、前記基材が、シクロオレフィン系樹脂を含有し、前記基材の厚さが、49μm以下であり、前記易接着層が、ポリウレタン系樹脂を含有し、23℃・50%RH環境条件下において、前記基材上における前記易接着層のナノインデンテーション硬度が、0.52GPa未満である。
 この特徴は、下記各実施形態に共通又は対応する技術的特徴である。
The optical film of the present invention is an optical film having an easy-adhesion layer on at least one surface of a substrate, the substrate contains a cycloolefin resin, and the thickness of the substrate is 49 μm or less. The easy-adhesion layer contains a polyurethane-based resin, and the easy-adhesion layer has a nanoindentation hardness of less than 0.52 GPa on the substrate under environmental conditions of 23° C. and 50% RH.
This feature is a technical feature common to or corresponding to each of the following embodiments.
 本発明の実施態様としては、前記ポリウレタン系樹脂が、ポリエステルポリオール成分及びポリエーテルポリオール成分のいずれか一種からなることが好ましい。すなわち、極性の低いポリカーボネート成分よりも極性の高いポリエステルポリオール成分やポリエーテルポリオール成分を用いることにより、易接着層のナノインデンテーション硬度を低くすることができる。そのため、光学フィルムと偏光子層の寸法変動の差異を減らして、フィルムに加わる応力を低減でき、接着性の向上及び光漏れ抑制に効果的となる。 As an embodiment of the present invention, it is preferable that the polyurethane-based resin consists of either one of a polyester polyol component and a polyether polyol component. That is, by using a polyester polyol component or a polyether polyol component with a higher polarity than a polycarbonate component with a low polarity, the nanoindentation hardness of the easy adhesion layer can be lowered. Therefore, the difference in dimensional variation between the optical film and the polarizer layer can be reduced, the stress applied to the film can be reduced, and it is effective in improving adhesion and suppressing light leakage.
 また、前記易接着層にシリカ微粒子が含有され、前記シリカ微粒子の平均一次粒径が、50~150nmの範囲内であり、かつ、前記平均一次粒径の標準偏差が、5~30nmの範囲内であることが、前記平均一次粒径及び前記標準偏差を前記範囲内とすることにより、シリカ微粒子の密度及び表面積が大きくなり、耐久化にて吸湿状態になった際に、易接着層全体で均一に水を吸水し、易接着層の硬度、すなわち応力緩和可能な状態にすることができる点で好ましい。 Further, the easy-adhesion layer contains silica fine particles, the average primary particle size of the silica fine particles is in the range of 50 to 150 nm, and the standard deviation of the average primary particle size is in the range of 5 to 30 nm. By setting the average primary particle size and the standard deviation within the above ranges, the density and surface area of the silica fine particles are increased, and when it becomes hygroscopic due to durability, the entire easy-adhesion layer It is preferable in that it uniformly absorbs water and makes it possible to obtain hardness of the easy-adhesion layer, that is, a stress-relaxable state.
 本発明の光学フィルムは、偏光板に好適に用いられ、また、当該偏光板は液晶表示装置に好適に用いられる。 The optical film of the present invention is suitably used as a polarizing plate, and the polarizing plate is suitably used as a liquid crystal display device.
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 The following describes the present invention, its constituent elements, and the forms and modes for carrying out the present invention. In the present application, "-" is used to mean that the numerical values before and after it are included as the lower limit and the upper limit.
[本発明の光学フィルムの概要]
 本発明の光学フィルムは、基材の少なくとも一方の面に易接着層を有する光学フィルムであって、前記基材が、シクロオレフィン系樹脂を含有し、前記基材の厚さが、49μm以下であり、前記易接着層が、ポリウレタン系樹脂を含有し、23℃・50%RH環境条件下において、前記基材上における前記易接着層のナノインデンテーション硬度が、0.52GPa未満である。
[Overview of the optical film of the present invention]
The optical film of the present invention is an optical film having an easy-adhesion layer on at least one surface of a substrate, the substrate contains a cycloolefin resin, and the thickness of the substrate is 49 μm or less. The easy-adhesion layer contains a polyurethane-based resin, and the easy-adhesion layer has a nanoindentation hardness of less than 0.52 GPa on the substrate under environmental conditions of 23° C. and 50% RH.
<ナノインデンテーション硬度>
 本発明に係る基材上における易接着層のナノインデンテーション硬度は、Triboscope(Bruker社製)を用いて測定した。測定には圧子として先端稜角90°、先端曲率半径35~50nmのものを用いた。
 測定試料として、光学フィルムを2cm角に切り出し、基材側を下にして金属板上に接着剤を用いて貼りつけ、試料を取り付けた金属板を測定装置に取り付けて荷重を印加し、0まで戻す操作を行った。このときの最大荷重Pを圧子接触部の面積Aで除した値P/Aをナノインデンテーション硬度として算出した。最大荷重は20μNとした。
 なお、測定は各試料ともに無作為に10点測定し、その平均値をナノインデンテーション硬度とした。上記のようにして測定した23℃・50%RHでの基材上における易接着層のナノインデンテーション硬度は、0.52GPa未満であり、0.36~0.50GPaの範囲内であることが好ましく、0.36~0.40GPaの範囲内であることが特に好ましい。
<Nanoindentation hardness>
The nanoindentation hardness of the easy-adhesion layer on the substrate according to the present invention was measured using a Triboscope (manufactured by Bruker). For the measurement, an indenter having a tip edge angle of 90° and a tip curvature radius of 35 to 50 nm was used.
As a measurement sample, an optical film is cut into 2 cm squares, and the base material side is attached on a metal plate using an adhesive. I performed the return operation. A value P/A obtained by dividing the maximum load P at this time by the area A of the indenter contact portion was calculated as the nanoindentation hardness. The maximum load was set to 20 μN.
Ten points were randomly measured for each sample, and the average value was taken as the nanoindentation hardness. The nanoindentation hardness of the easy-adhesion layer on the substrate at 23° C. and 50% RH measured as described above is less than 0.52 GPa and is within the range of 0.36 to 0.50 GPa. Preferably, it is particularly preferably in the range of 0.36 to 0.40 GPa.
 また、前記易接着層のナノインデンテーション硬度を0.52GPa未満とするための手段としては、例えば、易接着層に含有されるポリウレタン系樹脂の成分組成や、易接着層に含有されるシリカ微粒子の平均一次粒径や平均一次粒径の標準偏差等を制御することが挙げられる。
 具体的には、前記ポリウレタン系樹脂が、ポリエステルポリオール成分及びポリエーテルポリオール成分のいずれか一種からなることが好ましく、また、シリカ微粒子の平均一次粒径が50~150nmの範囲内で、かつ、その標準偏差が5~30nmの範囲内とすることが好ましい。
Further, as means for making the nanoindentation hardness of the easy-adhesion layer less than 0.52 GPa, for example, the component composition of the polyurethane-based resin contained in the easy-adhesion layer, or the silica fine particles contained in the easy-adhesion layer control of the average primary particle size and the standard deviation of the average primary particle size.
Specifically, the polyurethane-based resin preferably comprises either one of a polyester polyol component and a polyether polyol component. It is preferable that the standard deviation is within the range of 5 to 30 nm.
[光学フィルムの構成]
 本発明の光学フィルムは、基材の少なくとも一方の面に易接着層を有する。
 具体的に図1に示すように、光学フィルム100は、シクロオレフィン系樹脂を含有する基材101の片面に、すなわち、基材101の偏光子層400側の面にポリウレタン系樹脂を含有する易接着層102を有する。
 このような光学フィルム100は、後述するように偏光板200に好適に用いられる。当該偏光板200は、例えば、少なくとも偏光板保護フィルム300、偏光子層400、光学フィルム100及び粘着シート500がこの順に積層され、前記光学フィルム100の易接着層102に偏光子層400の一方の面が配置され、光学フィルム100の易接着層102と反対側の面には、粘着シート500が配置されることが好ましい。
[Configuration of optical film]
The optical film of the present invention has an easy-adhesion layer on at least one surface of the substrate.
Specifically, as shown in FIG. 1, the optical film 100 easily contains a polyurethane-based resin on one side of a substrate 101 containing a cycloolefin-based resin, that is, on the surface of the substrate 101 on the polarizer layer 400 side. It has an adhesive layer 102 .
Such an optical film 100 is suitably used for a polarizing plate 200 as described later. The polarizing plate 200 includes, for example, at least a polarizing plate protective film 300, a polarizer layer 400, an optical film 100, and an adhesive sheet 500, which are laminated in this order. It is preferable that the adhesive sheet 500 is arranged on the surface of the optical film 100 opposite to the easily adhesive layer 102 .
 前記基材の厚さは、49μm以下であり、15~40μmの範囲内であることが好ましい。49μm以下としたのは、近年のディスプレイの大型化が求められる傾向により、フィルムの厚さをより薄くする必要性があるためである。
 なお、本発明において「基材」とは、後述する光学フィルムの製造方法において、易接着層が形成された流延膜を延伸して乾燥した後の、流延膜のことをいう。したがって、前記「基材の厚さ」とは、延伸・乾燥後の流延膜である基材の厚さであって、光学フィルムの状態における基材の厚さをいう。
The thickness of the substrate is 49 μm or less, preferably in the range of 15 to 40 μm. The reason why the thickness is set to 49 μm or less is that there is a need to reduce the thickness of the film due to the recent trend toward larger displays.
In the present invention, the “substrate” refers to the casting film after stretching and drying the casting film on which the easy-adhesion layer is formed in the method for producing an optical film, which will be described later. Therefore, the "thickness of the base material" means the thickness of the base material which is the cast film after stretching and drying, and refers to the thickness of the base material in the state of the optical film.
1.易接着層
 本発明に係る易接着層は、前記基材の両面のうち、少なくとも偏光子層を設ける側の面に設けられる。光学フィルムが易接着層を有することにより、光学フィルムと後述する偏光子層との密着性を向上させることができる。
 本発明に係る易接着層は、ポリウレタン系樹脂を含有する。また、易接着層は、微粒子を含有することが好ましい。
1. Easy-Adhesion Layer The easy-adhesion layer according to the present invention is provided on at least the surface on which the polarizer layer is provided, of the two surfaces of the substrate. When the optical film has the easy-adhesion layer, it is possible to improve the adhesion between the optical film and the polarizer layer described below.
The easy-adhesion layer according to the present invention contains a polyurethane-based resin. Moreover, it is preferable that the easy-adhesion layer contains microparticles|fine-particles.
1-1.ポリウレタン系樹脂
 ポリウレタン系樹脂は、一つ以上のポリオール成分と一つ以上のジイソシアネート成分の反応生成物である。
 前記一つ以上のポリオール成分は、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール及びポリカプロラクトンポリオール等から選択され、特に、ポリエステルポリオール及びポリエーテルポリオールの少なくとも一種であることが好ましい。
1-1. Polyurethane-Based Resins Polyurethane-based resins are reaction products of one or more polyol components and one or more diisocyanate components.
The one or more polyol components are selected from polyester polyols, polyether polyols, polycarbonate polyols, polycaprolactone polyols, and the like, and preferably at least one of polyester polyols and polyether polyols.
 前記一つ以上のジイソシアネート成分は、好ましくは、一つ以上のジイソシアネートと一つ以上のトリイソシアネートの混合を使用するのが望ましい。反応構成成分の総質量を基準にして、ジイソシアネートとともに使用するトリイソシアネート成分が約10質量%以下であることが望ましい。 For the one or more diisocyanate components, it is desirable to use a mixture of one or more diisocyanates and one or more triisocyanates. Desirably, no more than about 10 weight percent triisocyanate component is used with the diisocyanate, based on the total weight of the reaction components.
 (ポリエステルポリオール)
 本発明において用いられるポリエステルポリオールは、通常、分子内に2個以上のエステル結合と2個以上のヒドロキシ基を有するものである。
 ポリエステルポリオールとしては、多価アルコールと多塩基酸との縮合反応により得られるポリエステルポリオールなどを挙げることができる。ここで、前記多価アルコールとしては、エチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、3,3′-ジメチロールヘプタン、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、3,3-ビス(ヒドロキシメチル)ヘプタン、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパンなどが挙げられ、これらは単独で使用しても、2種類以上を混合して使用しても構わない。また、前記多塩基酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、シクロペンタンジカルボン酸、シクロヘキサンジカルボン酸、オルトフタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸などが挙げられ、これらは単独で使用しても、2種類以上を混合して使用しても構わない。
(polyester polyol)
The polyester polyol used in the present invention usually has two or more ester bonds and two or more hydroxy groups in the molecule.
Examples of polyester polyols include polyester polyols obtained by a condensation reaction between a polyhydric alcohol and a polybasic acid. Here, the polyhydric alcohols include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, and 1,6-hexane. Diol, 3,3′-dimethylolheptane, 1,4-cyclohexanedimethanol, neopentyl glycol, 3,3-bis(hydroxymethyl)heptane, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, etc. These may be used alone or in combination of two or more. Examples of polybasic acids include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, cyclopentanedicarboxylic acid, cyclohexanedicarboxylic acid, orthophthalic acid, isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid. These may be used singly or in combination of two or more.
 具体的には、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリエチレンサクシネートジオール等のポリエステルポリオールを挙げることができる。
 ポリエステルポリオールにおいては、数平均分子量(Mn)は好ましくは400~2000、より好ましくは500~1500、最も好ましくは600~1200である。数平均分子量(Mn)は、一般的なゲル浸透クロマトグラフィー(GPC)によって測定することができる。
Specific examples include polyester polyols such as polyethylene adipate diol, polybutylene adipate diol, and polyethylene succinate diol.
For polyester polyols, the number average molecular weight (Mn) is preferably 400-2000, more preferably 500-1500, most preferably 600-1200. Number average molecular weight (Mn) can be measured by conventional gel permeation chromatography (GPC).
 これらポリエステルポリオールは、試薬として又は工業的に入手可能であり、市販されているものを例示すれば、DIC株式会社製「ポリライト(登録商標)」シリーズ、東ソー株式会社製「ニッポラン(登録商標)」シリーズ、川崎化成工業株式会社製「マキシモール(登録商標)」シリーズなどを挙げることができる。 These polyester polyols are commercially available as reagents or industrially. Examples of commercially available products include the "Polylight (registered trademark)" series manufactured by DIC Corporation, and the "Nipporan (registered trademark)" manufactured by Tosoh Corporation. series, "Maximol (registered trademark)" series manufactured by Kawasaki Kasei Co., Ltd., and the like.
 (ポリエーテルポリオール)
 本発明において用いられるポリエーテルポリオールは、通常、分子内の主骨格中に一つ以上のエーテル結合を有するヒドロキシ化合物である。主骨格中の繰り返し単位としては、飽和炭化水素又は不飽和炭化水素のどちらでもよく、また、直鎖状、分岐状又は環状のいずれでもよい。
(polyether polyol)
The polyether polyol used in the present invention is generally a hydroxy compound having one or more ether bonds in the main skeleton in the molecule. The repeating unit in the main skeleton may be either a saturated hydrocarbon or an unsaturated hydrocarbon, and may be linear, branched or cyclic.
 前記繰り返し単位としては、例えば、1,2-エチレングリコール単位、1,2-プロピレングリコール単位、1,3-プロパンジオール(トリメチレングリコール)単位、2-メチル-1,3-プロパンジオール単位、2,2-ジメチル-1,3-プロパンジオール単位、1,4-ブタンジオール(テトラメチルングリコール)単位、2-メチル-1,4-ブタンジオール単位、3-メチル-1,4-ブタンジオール単位、3-メチル-1,5-ペンタンジオール単位、ネオペンチルグリコール単位、1,6-ヘキサンジオール単位、1,7-ヘプタンジオール単位、1,8-オクタンジオール単位、1,9-ノナンジオール単位、1,10-デカンジオール単位及び1,4-シクロヘキサンジメタノール単位等が挙げられる。 Examples of the repeating units include 1,2-ethylene glycol units, 1,2-propylene glycol units, 1,3-propanediol (trimethylene glycol) units, 2-methyl-1,3-propanediol units, 2 , 2-dimethyl-1,3-propanediol units, 1,4-butanediol (tetramethyl glycol) units, 2-methyl-1,4-butanediol units, 3-methyl-1,4-butanediol units , 3-methyl-1,5-pentanediol units, neopentyl glycol units, 1,6-hexanediol units, 1,7-heptanediol units, 1,8-octanediol units, 1,9-nonanediol units, Examples include 1,10-decanediol units and 1,4-cyclohexanedimethanol units.
 これらの繰り返し単位を主骨格中に有するポリエーテルポリオールのうち、ポリテトラメチレンエーテルグリコール、ポリトリメチレンエーテルグリコール、1~20モル%の3-メチルテトラヒドロフランとテトラヒドロフランの反応により得られる共重合ポリエーテルポリオール(例えば、保土谷化学工業社製「PTG-L1000」、「PTG-L2000」及び「PTG-L3500」等)、及びネオペンチルグリコールとテトラヒドロフランとの反応により得られる共重合ポリエーテルグリコール、ポリ(オキシプロピレンエーテル)ポリオール等が好ましい。 Among the polyether polyols having these repeating units in the main skeleton, polytetramethylene ether glycol, polytrimethylene ether glycol, copolymerized polyether polyols obtained by reacting 1 to 20 mol % of 3-methyltetrahydrofuran with tetrahydrofuran (For example, "PTG-L1000", "PTG-L2000" and "PTG-L3500" manufactured by Hodogaya Chemical Industry Co., Ltd.), and copolymerized polyether glycol obtained by the reaction of neopentyl glycol and tetrahydrofuran, poly(oxy Propylene ether) polyol and the like are preferred.
 また、これらのポリエーテルポリオールは、単独で用いても2種以上を混合して使用することもでき、求めるポリウレタンの物性に応じて種々選択すればよい。 In addition, these polyether polyols can be used alone or in combination of two or more, and can be selected according to the desired physical properties of the polyurethane.
 本発明において用いられるポリエーテルポリオールの分子量は、数平均分子量(Mn)で、500以上であることが好ましく、1000以上であることがより好ましく、1500以上であることが更に好ましい。また、5000以下であることが好ましく、4000以下であることがより好ましく、3500以下であることが更に好ましい。 The number average molecular weight (Mn) of the polyether polyol used in the present invention is preferably 500 or more, more preferably 1000 or more, and even more preferably 1500 or more. Also, it is preferably 5,000 or less, more preferably 4,000 or less, and even more preferably 3,500 or less.
 (ポリカーボネートポリオール)
 本発明において用いられるポリカーボネートポリオールは、ポリカーボネートジオールであることが好ましい。
 ポリカーボネートジオールは、その分子中にヒドロキシ基を二つ有するポリカーボネートジオールであって、例えば、ジオール化合物とカーボネート化合物との反応により得ることができる。
 前記カーボネート化合物としては、例えば、ジメチルカーボネート、ジフェニルカーボネート等が挙げられる。
(polycarbonate polyol)
The polycarbonate polyol used in the present invention is preferably a polycarbonate diol.
A polycarbonate diol is a polycarbonate diol having two hydroxy groups in its molecule, and can be obtained, for example, by reacting a diol compound with a carbonate compound.
Examples of the carbonate compound include dimethyl carbonate and diphenyl carbonate.
 アルキレン基含有ポリカーボネートジオールは、その分子中にヒドロキシ基を二つ有するポリカーボネートジオールであって、例えば、ジオール化合物とエチレンカーボネートとの反応により得ることができる。
 ジオール化合物としては、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2-メチル-1,3-プロパンジオール、3-メチル-1,5ペンタンジオール、2-エチル-1,6-ヘキサンジオール、及び2,4-ジメチル-1,5-ペンタンジオール等の、直鎖又は分岐鎖アルカンジオール等を挙げることができる。また、これらのアルキレン基とともに、脂環構造、芳香環構造及びその両者をその骨格内に含むジオール化合物であってもよい。共重合体のウレタン部中のジオール化合物由来部は、上記ジオール化合物のいずれか1種類であっても、2種以上が併用されたものであってもよい。
The alkylene group-containing polycarbonate diol is a polycarbonate diol having two hydroxy groups in its molecule, and can be obtained, for example, by reacting a diol compound with ethylene carbonate.
Diol compounds include 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2-methyl-1,3-propanediol, 3-methyl-1, Linear or branched chain alkanediols such as 5-pentanediol, 2-ethyl-1,6-hexanediol, and 2,4-dimethyl-1,5-pentanediol and the like can be mentioned. In addition to these alkylene groups, it may be a diol compound containing an alicyclic structure, an aromatic ring structure, or both in its skeleton. The diol compound-derived portion in the urethane portion of the copolymer may be any one of the above diol compounds, or two or more thereof may be used in combination.
 (ポリカプロラクトンポリオール)
 ラクトンを分子内に有するポリオールを、下記ラクトン類を開環重合することで製造することができ、ポリオールに対するラクトン使用量を変更することにより、ポリラクトンユニットの含有比率を変えることが容易にできる。
(polycaprolactone polyol)
A polyol having a lactone in the molecule can be produced by ring-opening polymerization of the following lactones, and the content ratio of the polylactone unit can be easily changed by changing the amount of lactone used relative to the polyol.
 ラクトンとしては、例えば、ε-カプロラクトン、4-メチルカプロラクトン、3,5,5-トリメチルカプロラクトン、3,3,5-トリメチルカプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン及びエナントラクトン等が挙げられる。これらは、単独で用いても2種以上混合して使用することもできる。入手しやすく反応性が高いことから、ε-カプロラクトンが最も好ましい。 Lactones include, for example, ε-caprolactone, 4-methylcaprolactone, 3,5,5-trimethylcaprolactone, 3,3,5-trimethylcaprolactone, β-propiolactone, γ-butyrolactone, δ-valerolactone, γ- valerolactone, enantholactone, and the like. These may be used alone or in combination of two or more. ε-Caprolactone is most preferred due to its availability and high reactivity.
 (ジイソシアネート成分)
 本発明において、前記ジイソシアネート成分としては、脂肪族ジイソシアネート化合物、脂環式ジイソシアネート化合物、芳香族ジイソシアネート化合物、及びこれらの混合物が使用される。これらの中でも、耐候性の観点から脂肪族ジイソシアネート化合物及び/又は脂環式ジイソシアネート化合物を使用することが好ましい。また、同様の理由から当該ジイソシアネート化合物の30~100質量%、特に50~100質量%が脂肪族ジイソシアネート化合物であることが好ましい。
(Diisocyanate component)
In the present invention, aliphatic diisocyanate compounds, alicyclic diisocyanate compounds, aromatic diisocyanate compounds, and mixtures thereof are used as the diisocyanate component. Among these, it is preferable to use an aliphatic diisocyanate compound and/or an alicyclic diisocyanate compound from the viewpoint of weather resistance. For the same reason, 30 to 100% by mass, particularly 50 to 100% by mass of the diisocyanate compound is preferably an aliphatic diisocyanate compound.
 本発明に好適に使用できるジイソシアネート化合物を例示すれば、テトラメチレン-1,4-ジイソシアネート、ヘキサメチレン-1,6-ジイソシアネート、オクタメチレン-1,8-ジイソシアネート、2,2,4-トリメチルヘキサン-1,6-ジイソシアネートなどの脂肪族ジイソシアネート化合物;
 シクロブタン-1,3-ジイソシアネート、シクロヘキサン-1,3-ジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、2,4-メチルシクロヘキシルジイソシアネート、2,6-メチルシクロヘキシルジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、4,4′-メチレンビス(シクロヘキシルイソシアネート)の異性体混合物、ヘキサヒドロトルエン-2,4-ジイソシアネート、ヘキサヒドロトルエン-2,6-ジイソシアネート、ヘキサヒドロフェニレン-1,3-ジイソシアネート、ヘキサヒドロフェニレン-1,4-ジイソシアネート、1,9-ジイソシアナト-5-メチルノナン、1,1-ビス(イソシアナトメチル)シクロヘキサン、2-イソシアナト-4-[(4-イソシアナトシクロヘキシル)メチル]-1-メチルシクロヘキサン、2-(3-イソシアナトプロピル)シクロヘキシルイソシアネート、ノルボルナンジイソシアネートなどの脂環式ジイソシアネート化合物;
 フェニルシクロヘキシルメタンジイソシアネート、4,4′-メチレンビス(フェニルイソシアネート)の異性体混合物、トルエン-2,3-ジイソシアネート、トルエン-2,4-ジイソシアネート、トルエン-2,6-ジイソシアネート(TDI)、フェニレン-1,3-ジイソシアネート、フェニレン-1,4-ジイソシアネート、1,3-ビス(イソシアナトメチル)ベンゼン、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ナフタレンジイソシアネート、ジフェニルエーテルジイソシアネート、1,3-ジイソシアナトメチルベンゼン、4,4′-ジイソシアナト-3,3′-ジメトキシ(1,1′-ビフェニル)、4,4′-ジイソシアナト-3,3′-ジメチルビフェニル、1,2-ジイソシアナトベンゼン、1,4-ビス(イソシアナトメチル)-2,3,5,6-テトラクロロベンゼン、2-ドデシル-1,3-ジイソシアナトベンゼン、1-イソシアナト-4-[(2-イソシアナトシクロヘキシル)メチル]2-メチルベンゼン、1-イソシアナト-3-[(4-イソシアナトフェニル)メチル)-2-メチルベンゼン、4-[(2-イソシアナトフェニル)オキシ]フェニルイソシアネート、ジフェニルメタンジイソシアネートなどの芳香族ジイソシアネート化合物などを挙げることができる。
Examples of diisocyanate compounds that can be suitably used in the present invention include tetramethylene-1,4-diisocyanate, hexamethylene-1,6-diisocyanate, octamethylene-1,8-diisocyanate, 2,2,4-trimethylhexane- Aliphatic diisocyanate compounds such as 1,6-diisocyanate;
cyclobutane-1,3-diisocyanate, cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate, 2,4-methylcyclohexyl diisocyanate, 2,6-methylcyclohexyl diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 4,4' - isomeric mixture of methylenebis(cyclohexyl isocyanate), hexahydrotoluene-2,4-diisocyanate, hexahydrotoluene-2,6-diisocyanate, hexahydrophenylene-1,3-diisocyanate, hexahydrophenylene-1,4-diisocyanate , 1,9-diisocyanato-5-methylnonane, 1,1-bis(isocyanatomethyl)cyclohexane, 2-isocyanato-4-[(4-isocyanatocyclohexyl)methyl]-1-methylcyclohexane, 2-(3- alicyclic diisocyanate compounds such as isocyanatopropyl)cyclohexyl isocyanate and norbornane diisocyanate;
Phenylcyclohexylmethane diisocyanate, isomeric mixture of 4,4'-methylenebis(phenylisocyanate), toluene-2,3-diisocyanate, toluene-2,4-diisocyanate, toluene-2,6-diisocyanate (TDI), phenylene-1 ,3-diisocyanate, phenylene-1,4-diisocyanate, 1,3-bis(isocyanatomethyl)benzene, xylylene diisocyanate, tetramethylxylylene diisocyanate, naphthalene diisocyanate, diphenyl ether diisocyanate, 1,3-diisocyanatomethylbenzene , 4,4′-diisocyanato-3,3′-dimethoxy(1,1′-biphenyl), 4,4′-diisocyanato-3,3′-dimethylbiphenyl, 1,2-diisocyanatobenzene, 1,4 -bis(isocyanatomethyl)-2,3,5,6-tetrachlorobenzene, 2-dodecyl-1,3-diisocyanatobenzene, 1-isocyanato-4-[(2-isocyanatocyclohexyl)methyl]2- Aromatic diisocyanate compounds such as methylbenzene, 1-isocyanato-3-[(4-isocyanatophenyl)methyl)-2-methylbenzene, 4-[(2-isocyanatophenyl)oxy]phenylisocyanate, diphenylmethane diisocyanate, etc. can be mentioned.
 これらの中でも、良好な接着力、耐熱性、及び塗工性の観点から、上記のとおり、ジイソシアネート化合物の30~100質量%、特に50~100質量%が、脂肪族ジイソシアネート化合物、及び脂環式ジイソシアネート化合物よりなる群から選ばれる少なくとも1種のジイソシアネート化合物であることが好ましい。好適な化合物を具体的に例示すると、テトラメチレン-1,4-ジイソシアネート、ヘキサメチレン-1,6-ジイソシアネート、オクタメチレン-1,8-ジイソシアネート、2,2,4-トリメチルヘキサン-1,6-ジイソシアネート、シクロブタン-1,3-ジイソシアネート、シクロヘキサン-1,3-ジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、2,4-メチルシクロヘキシルジイソシアネート、2,6-メチルシクロヘキシルジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、4,4′-メチレンビス(シクロヘキシルイソシアネート)の異性体混合物、ヘキサヒドロトルエン-2,4-ジイソシアネート、ヘキサヒドロトルエン-2,6-ジイソシアネート、ヘキサヒドロフェニレン-1,3-ジイソシアネート、ヘキサヒドロフェニレン-1,4-ジイソシアネートが挙げられる。これらのイソシアネート化合物は、単独で使用してもよく、2種類以上を併用しても構わない。 Among these, from the viewpoint of good adhesive strength, heat resistance, and coatability, as described above, 30 to 100% by mass of the diisocyanate compound, particularly 50 to 100% by mass, is an aliphatic diisocyanate compound, and an alicyclic It is preferably at least one diisocyanate compound selected from the group consisting of diisocyanate compounds. Specific examples of suitable compounds include tetramethylene-1,4-diisocyanate, hexamethylene-1,6-diisocyanate, octamethylene-1,8-diisocyanate, 2,2,4-trimethylhexane-1,6- diisocyanate, cyclobutane-1,3-diisocyanate, cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate, 2,4-methylcyclohexyl diisocyanate, 2,6-methylcyclohexyl diisocyanate, isophorone diisocyanate, norbornane diisocyanate, 4, Isomer mixture of 4′-methylenebis(cyclohexyl isocyanate), hexahydrotoluene-2,4-diisocyanate, hexahydrotoluene-2,6-diisocyanate, hexahydrophenylene-1,3-diisocyanate, hexahydrophenylene-1,4 - include diisocyanates. These isocyanate compounds may be used alone or in combination of two or more.
 また、ジイソシアネート化合物のNCO基の一部を、ウレタン、ウレア、ビュレット、アロファネート、カルボジイミド、オキサゾリドン、アミド及びイミド等に変成したものであってもよく、更に多核体には前記以外の異性体を含有しているものも含まれる。 In addition, a part of the NCO group of the diisocyanate compound may be modified to urethane, urea, buret, allophanate, carbodiimide, oxazolidone, amide, imide, etc. Further, the polynuclear compound contains isomers other than the above. It also includes those that are
 これらのジイソシアネート化合物の使用量は、ポリオールのヒドロキシ基の合計、並びに後述する鎖延長剤のヒドロキシ基及び/又はアミノ基を合計した1当量に対し、通常0.1~5当量であることが好ましく、0.8~2当量であることがより好ましく、0.9~1.5当量であることが更に好ましく、0.95~1.2当量であることが最も好ましく、0.98~1.1当量であることが特に好ましい。 The amount of these diisocyanate compounds to be used is preferably 0.1 to 5 equivalents with respect to 1 equivalent of the total hydroxy groups of the polyol and the hydroxy groups and/or amino groups of the chain extender described later. , more preferably 0.8 to 2 equivalents, still more preferably 0.9 to 1.5 equivalents, most preferably 0.95 to 1.2 equivalents, and 0.98 to 1.5 equivalents. One equivalent is particularly preferred.
 ジイソシアネート化合物の使用量を5当量以下とすることにより、未反応のイソシアネート基が好ましくない反応を起こすのを防ぎ、所望の物性を得やすくなる。また、0.1当量以上とすることにより、ポリウレタンの分子量を十分に大きくすることができ、所望の性能を発現しやすくなる。 By setting the amount of the diisocyanate compound used to 5 equivalents or less, unreacted isocyanate groups are prevented from causing unfavorable reactions, making it easier to obtain desired physical properties. Moreover, by setting the equivalent weight to 0.1 equivalent or more, the molecular weight of the polyurethane can be sufficiently increased, and the desired performance can be easily exhibited.
 (鎖延長剤)
 本発明に係るポリウレタンの製造において用いられる鎖延長剤は、主として、2個以上のヒドロキシ基を有する化合物、2個以上のアミノ基を有する化合物、及び水に分類される。この中でも、ポリウレタン製造には短鎖ポリオール、具体的には2個以上のヒドロキシ基を有する化合物を有する化合物が好ましい。なお、これらの鎖延長剤は単独使用でも2種以上の併用でもよい。
(chain extender)
Chain extenders used in the production of the polyurethane according to the present invention are mainly classified into compounds having two or more hydroxy groups, compounds having two or more amino groups, and water. Among these, short-chain polyols, specifically compounds having two or more hydroxy groups, are preferred for polyurethane production. These chain extenders may be used alone or in combination of two or more.
 前記2個以上のヒドロキシ基を有する化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-ブチル-2-ヘキシル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール及び1,9-ノナンジオール等の脂肪族グリコール、ビスヒドロキシメチルシクロヘキサン等の脂環族グリコール、並びにキシリレングリコール及びビスヒドロキシエトキシベンゼン等の芳香環を有するグリコール等が挙げられる。 Examples of the compound having two or more hydroxy groups include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 2-methyl-1,3- propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-butyl-2-hexyl-1,3-propanediol, 1, 2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, 3-methyl-1, 5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, neopentyl glycol, 1,6-hexanediol, 2-ethyl-1,3-hexanediol, 2,5-dimethyl-2, Aliphatic glycols such as 5-hexanediol, 1,8-octanediol, 2-methyl-1,8-octanediol and 1,9-nonanediol, alicyclic glycols such as bishydroxymethylcyclohexane, and xylylene glycol and glycols having an aromatic ring such as bishydroxyethoxybenzene.
 また、2個以上のアミノ基を有する化合物としては、例えば、2,4-又は2,6-トリレンジアミン、キシリレンジアミン及び4,4′-ジフェニルメタンジアミン等の芳香族ジアミン、エチレンジアミン、1,2-プロピレンジアミン、2,2-ジメチル-1,3-プロパンジアミン、1,3-ペンタンジアミン、2-メチル-1,5-ペンタンジアミン、2-ブチル-2-エチル-1,5-ペンタンジアミン、1,6-ヘキサンジアミン、2,2,4-又は2,4,4-トリメチルヘキサンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン及び1,10-デカンジアミン等の脂肪族ジアミン、並びに1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン(IPDA)、4,4′-ジシクロヘキシルメタンジアミン(水添MDA)、イソプロピリデンシクロヘキシル-4,4′-ジアミン、1,4-ジアミノシクロヘキサン及び1,3-ビスアミノメチルシクロヘキサン等の脂環族ジアミン等が挙げられる。これらの中でも、エチレンジアミン、プロピレンジアミン、1,3-ペンタンジアミン及び2-メチル-1,5-ペンタンジアミンが好ましい。 Examples of compounds having two or more amino groups include aromatic diamines such as 2,4- or 2,6-tolylenediamine, xylylenediamine and 4,4'-diphenylmethanediamine, ethylenediamine, 1, 2-propylenediamine, 2,2-dimethyl-1,3-propanediamine, 1,3-pentanediamine, 2-methyl-1,5-pentanediamine, 2-butyl-2-ethyl-1,5-pentanediamine , 1,6-hexanediamine, 2,2,4- or 2,4,4-trimethylhexanediamine, 1,8-octanediamine, 1,9-nonanediamine and 1,10-decanediamine, such as aliphatic diamines, and 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane (IPDA), 4,4'-dicyclohexylmethanediamine (hydrogenated MDA), isopropylidenecyclohexyl-4,4'-diamine, 1,4 cycloaliphatic diamines such as -diaminocyclohexane and 1,3-bisaminomethylcyclohexane. Among these, ethylenediamine, propylenediamine, 1,3-pentanediamine and 2-methyl-1,5-pentanediamine are preferred.
 これらの鎖延長剤の使用量は、ポリオールのヒドロキシ基当量からイソシアネート化合物の当量を引いた当量を1とした場合、通常0.1~5.0当量であることが好ましく、0.8~2.0当量であることがより好ましい、0.9~1.5当量であることが更に好ましい。 The amount of these chain extenders to be used is usually 0.1 to 5.0 equivalents, preferably 0.8 to 2, when the equivalent weight obtained by subtracting the equivalent weight of the isocyanate compound from the hydroxyl group equivalent weight of the polyol is 1. 0.0 equivalent is more preferred, and 0.9 to 1.5 equivalent is even more preferred.
 鎖延長剤の使用量を前記上限以下とすることにより、得られるポリウレタンが硬くなりすぎるのを防いで所望の特性を得ることができ、溶媒に溶け易く加工しやすい。また、前記下限以上とすることにより、軟らかすぎることなく、十分な強度や弾性回復性能や弾性保持性能が得られ、良好な高温特性が得られる。 By setting the amount of the chain extender to the above upper limit or less, it is possible to prevent the obtained polyurethane from becoming too hard and obtain desired properties, and it is easily soluble in a solvent and easy to process. In addition, by setting the above lower limit or more, sufficient strength, elastic recovery performance, and elastic retention performance can be obtained without being too soft, and good high-temperature characteristics can be obtained.
 (ポリウレタンの製造)
 本発明において、ポリウレタンを製造するには、前記ポリオール、イソシアネート化合物、及び鎖延長剤を主製造用原料として、上記記載の各使用量で用い、一般的に実験/工業的に用いられる全ての製造方法により、無溶媒又は溶媒共存下で実施することができる。
(manufacturing of polyurethane)
In the present invention, the polyol, the isocyanate compound, and the chain extender are used as the main raw materials for the production of the polyurethane in the amounts described above. Depending on the method, it can be carried out in the absence of a solvent or in the presence of a solvent.
 その際使用する溶媒としては、特に限定されるものではないが、汎用性や溶解性等の観点から、N,N-ジメチルアセトアミド及びN,N-ジメチルホルムアミド並びにそれらの2種以上の混合物等のアミド系溶媒;N-メチルピロリドン、N-エチルピロリドン及びジメチルスルホキシドからなる群より選ばれる溶媒が好ましく用いられ、これらの中でも、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが特に好ましい。 The solvent used at that time is not particularly limited, but from the viewpoint of versatility and solubility, N,N-dimethylacetamide and N,N-dimethylformamide, mixtures of two or more thereof, etc. Amide solvent: A solvent selected from the group consisting of N-methylpyrrolidone, N-ethylpyrrolidone and dimethylsulfoxide is preferably used, and among these, N,N-dimethylformamide and N,N-dimethylacetamide are particularly preferred.
 ポリウレタン系樹脂の含有量は、易接着層に対して65~95質量%の範囲内とすることが好ましい。 The content of the polyurethane-based resin is preferably in the range of 65-95% by mass with respect to the easy-adhesion layer.
1-2.微粒子
 本発明に係る易接着層は、微粒子を含有することが好ましい。微粒子は、無機微粒子又は有機微粒子でありうる。
 無機微粒子の例には、シリカ、チタニア、アルミナ、ジルコニア等の無機酸化物の微粒子や;炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、燐酸カルシウム等の微粒子が含まれる。
 有機微粒子の例には、シリコーン樹脂、フッ素樹脂、(メタ)アクリル系樹脂等の微粒子が含まれる。
 これらの中でも、ヘイズを生じ難く、着色も少ないことから、シリカ粒子が好ましい。
1-2. Fine Particles The easy-adhesion layer according to the present invention preferably contains fine particles. The microparticles can be inorganic microparticles or organic microparticles.
Examples of inorganic fine particles include fine particles of inorganic oxides such as silica, titania, alumina, and zirconia; fine particles such as
Examples of organic fine particles include fine particles of silicone resin, fluororesin, (meth)acrylic resin, and the like.
Among these, silica particles are preferable because they hardly cause haze and are less colored.
 シリカ微粒子の平均一次粒径は、50~150nmの範囲内であることが好ましく、80~120nmの範囲内であることがより好ましい。
 また、前記平均一次粒径の標準偏差は、5~30nmの範囲内であることが好ましく、5~10nmの範囲内であることがより好ましい。
The average primary particle size of the silica fine particles is preferably in the range of 50-150 nm, more preferably in the range of 80-120 nm.
Also, the standard deviation of the average primary particle size is preferably within the range of 5 to 30 nm, more preferably within the range of 5 to 10 nm.
 前記平均一次粒径及び標準偏差は、以下のとおりに算出する。
 本発明の光学フィルムの断面部をミクロトーム等でトリミングした後、その断面の超薄切片を作製した後、透過型電子顕微鏡(TEM)で撮影する方法、又は走査型電子顕微鏡(SEM)で断面を直接撮影する方法により、明視野像観察を行う。
 電子顕微鏡で撮影した明視野画像においては、観察対象となる物質が持つ入射電子の散乱強度は、物質を構成している原子番号(原子量)に比例する。本発明においては、原子番号の大きい原子、例えば、Si原子で構成されている無機粒子は、暗いコントラストを示し、原子番号の小さい原子、例えば、C原子等で構成されているゴム粒子は明るいコントラストを示す。これにより、光学フィルム中のシリカ粒子を確認することができる。
 得られた画像から少なくとも100個のシリカ微粒子の面積円相当径(Di;i=1~100)を求め、数平均値をもって、シリカ微粒子の平均一次粒径D及びその標準偏差sを下記式により算出する。
 なお、電子顕微鏡としては、例えば、TEM(JEM2010F 日本電子社製)を用いることができる。
The average primary particle size and standard deviation are calculated as follows.
After trimming the cross-section of the optical film of the present invention with a microtome or the like, an ultra-thin section of the cross-section is prepared, and the cross-section is photographed with a transmission electron microscope (TEM) or a scanning electron microscope (SEM). Bright-field image observation is performed by the method of direct photography.
In a bright-field image taken with an electron microscope, the scattering intensity of incident electrons in a substance to be observed is proportional to the atomic number (atomic weight) of the substance. In the present invention, inorganic particles composed of atoms with a large atomic number, such as Si atoms, exhibit a dark contrast, and rubber particles composed of atoms with a small atomic number, such as C atoms, exhibit a bright contrast. indicates Thereby, silica particles in the optical film can be confirmed.
From the obtained image, the area equivalent circle diameter (Di; i = 1 to 100) of at least 100 silica fine particles was obtained, and the average primary particle diameter D of the silica fine particles and its standard deviation s were calculated by the following formula using the number average value. calculate.
As an electron microscope, for example, a TEM (JEM2010F, manufactured by JEOL Ltd.) can be used.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 シリカ微粒子の含有量は、易接着層に対して5~10質量%の範囲内とすることが好ましい。 The content of silica fine particles is preferably in the range of 5 to 10% by mass with respect to the easy-adhesion layer.
1-3.添加剤
 本発明に係る易接着層は、さらに添加剤を含有することが好ましい。添加剤としては、接着性を向上させるために、架橋剤が好ましい。また、易接着層のpHを調整するために各種の酸・塩基を含有してもよい。
1-3. Additives The easy-adhesion layer according to the present invention preferably further contains additives. As the additive, a cross-linking agent is preferable in order to improve adhesiveness. Moreover, various acids and bases may be contained in order to adjust the pH of the easy-adhesion layer.
 本発明で使用される架橋剤としては、リワーク性に優れる易接着層を形成できるものであれば特に限定はないが、イソシアナート系添加剤、オキサゾリン系添加剤、含窒素複素環化合物、水系エポキシ化合物、水系アミノ化合物、水系カルボジイミド化合物、水系アルデヒド化合物のいずれかから選択されるものが好ましい。特に、水系エポキシ化合物又は水系アミノ化合物を用いることが好ましい。 The cross-linking agent used in the present invention is not particularly limited as long as it can form an easy-adhesion layer with excellent reworkability. compounds, water-based amino compounds, water-based carbodiimide compounds, and water-based aldehyde compounds are preferred. In particular, it is preferable to use a water-based epoxy compound or a water-based amino compound.
 また、オキサゾリン系添加剤及び含窒素複素環化合物は、水系接着剤のpHの調整にも用いることができ、好適である。中でも含窒素複素環化合物はアルカリ性が強いため、水系接着剤のpHを適切な範囲に調整する上で有用であるし、また架橋反応によって易接着層の耐久性を高める効果があるため好ましい。
 これらの架橋剤は、単独で使用してもよいし、組み合わせて使用してもよい。
Oxazoline-based additives and nitrogen-containing heterocyclic compounds are also suitable for adjusting the pH of water-based adhesives. Among them, nitrogen-containing heterocyclic compounds are highly alkaline, so they are useful for adjusting the pH of the water-based adhesive to an appropriate range, and are effective in increasing the durability of the easy-adhesion layer through a cross-linking reaction.
These cross-linking agents may be used alone or in combination.
 (イソシアナート系添加剤)
 本発明に係るイソシアナート系添加剤は、水に溶解性があるか、又はエマルジョン化した2個以上の非ブロック型のイソシアネート基、ブロック型のイソシアネート基を有する化合物であることが好ましい。
(Isocyanate additive)
The isocyanate-based additive according to the present invention is preferably a water-soluble or emulsified compound having two or more unblocked isocyanate groups or blocked isocyanate groups.
 非ブロック型のイソシアネート化合物としては、多官能イソシアネート化合物と一価又は多価のノニオン性ポリアルキレンエーテルアルコールと反応させて得られる化合物が挙げられる。ブロック型イソシアネート化合物としては、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、4,4´-ジフェニルメタンジイソシアネート(MDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、メチルシクロヘキシルジイソシアネート(H6TDI)、4,4´-ジシクロヘキシルメタンジイソシアネート(H12MDI)、1,3-ビス(イソシアナトメチル)シクロヘキサン(H6XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、2,2,4-トリメチルヘキサメチレンジイソシアネート(TMHDI)、ヘキサメチレンジイソシアネート(HDI)、ノルボルネンジイソシアネート(NBDI)、2,4,6-トリイソプロピルフェニルジイソシアネート(TIDI)、1,12-ジイソシアネートドデカン(DDI)、2,4,-ビス-(8-イソシアネートオクチル)-1,3-ジオクチルシクロブタン(OCDI)、n-ペンタン-1,4-ジイソシアネート及びこれらのイソシアヌレート変性体、アダクト変性体、ビュレット変性体、アロファネート変性体、これらの重合体で1個以上のイソシアネート基を有するものをポリオキシアルキレン基、カルボキシ基等で変性し、水溶性及び又は水分散性にし、イソシアネート基をブロック剤(フェノール、ε-カプロラクタム等)でマスクすることにより得られる化合物が挙げられる。 Examples of non-blocked isocyanate compounds include compounds obtained by reacting polyfunctional isocyanate compounds with monovalent or polyvalent nonionic polyalkylene ether alcohols. Examples of blocked isocyanate compounds include 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), 4,4′-diphenylmethane diisocyanate (MDI), xylylene diisocyanate isocyanate (XDI), isophorone diisocyanate (IPDI), methylcyclohexyl diisocyanate (H6TDI), 4,4'-dicyclohexylmethane diisocyanate (H12MDI), 1,3-bis(isocyanatomethyl)cyclohexane (H6XDI), tetramethylxylylene diisocyanate (TMXDI), 2,2,4-trimethylhexamethylene diisocyanate (TMHDI), hexamethylene diisocyanate (HDI), norbornene diisocyanate (NBDI), 2,4,6-triisopropylphenyl diisocyanate (TIDI), 1,12-diisocyanate dodecane (DDI), 2,4,-bis-(8-isocyanatooctyl)-1,3-dioctylcyclobutane (OCDI), n-pentane-1,4-diisocyanate and their isocyanurate modified products, adduct modified products, Burette-modified products, allophanate-modified products, these polymers having one or more isocyanate groups are modified with polyoxyalkylene groups, carboxy groups, etc. to make them water-soluble and/or water-dispersible, and isocyanate groups are blocked with blocking agents ( phenol, ε-caprolactam, etc.).
 (オキサゾリン系添加剤)
 本発明に係るオキサゾリン系添加剤は、オキサゾリン基含有重合体であることが好ましい。オキサゾリン基含有重合体は、分子内にオキサゾリン基を有する重合体であり、側鎖にオキサゾリン基を有する重合体であることが好ましい。重合体の主鎖は特に制限されず、例えば、(メタ)アクリル骨格、スチレン骨格等から選択される1種以上の骨格からなる。
(Oxazoline additive)
The oxazoline additive according to the present invention is preferably an oxazoline group-containing polymer. The oxazoline group-containing polymer is a polymer having an oxazoline group in its molecule, preferably a polymer having an oxazoline group in its side chain. The main chain of the polymer is not particularly limited, and is composed of, for example, one or more skeletons selected from (meth)acrylic skeletons, styrene skeletons, and the like.
 オキサゾリン基含有重合体の好ましい例としては、(メタ)アクリル骨格からなる主鎖を含み、その主鎖の側鎖にオキサゾリン基を有するオキサゾリン基含有(メタ)アクリル系重合体が挙げられる。 A preferable example of the oxazoline group-containing polymer is an oxazoline group-containing (meth)acrylic polymer containing a main chain composed of a (meth)acrylic skeleton and having an oxazoline group in the side chain of the main chain.
 オキサゾリン基含有重合体が側鎖にオキサゾリン基を有する場合、主鎖とオキサゾリン基との間に連結基を介してもよいが、主鎖とオキサゾリン基とが直接結合していることが好ましい。 When the oxazoline group-containing polymer has an oxazoline group in a side chain, a linking group may be interposed between the main chain and the oxazoline group, but the main chain and the oxazoline group are preferably directly bonded.
 オキサゾリン基としては、例えば、2-オキサゾリン基、3-オキサゾリン基、4-オキサゾリン基等が挙げられるが、2-オキサゾリン基等であることが好ましい。 The oxazoline group includes, for example, 2-oxazoline group, 3-oxazoline group, 4-oxazoline group and the like, and 2-oxazoline group and the like are preferable.
 オキサゾリン基含有重合体の数平均分子量は、5000以上であることが好ましく、10000以上であることがより好ましい。数平均分子量が上記範囲内であると、良好な密着性を示す。オキサゾリン基含有重合体の数平均分子量は、通常100000以下である。
 オキサゾリン基含有重合体の数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)による標準ポリスチレン換算値として測定することができる。
The number average molecular weight of the oxazoline group-containing polymer is preferably 5,000 or more, more preferably 10,000 or more. When the number average molecular weight is within the above range, good adhesion is exhibited. The number average molecular weight of the oxazoline group-containing polymer is usually 100,000 or less.
The number average molecular weight of the oxazoline group-containing polymer can be measured as a standard polystyrene conversion value by gel permeation chromatography (GPC).
 オキサゾリン基含有重合体のオキサゾリン基量(オキサゾリン基含有重合体(A)固形分1gあたりのオキサゾリン基のモル数)は、好ましくは0.4mmol/g・solid以上10mmol/g・solid以下である。オキサゾリン基量が過度に高いと良好な密着性が得られにくく、オキサゾリン基量が上記の範囲より小さいと、易接着層の耐水性が低下するおそれがある。このような観点から、オキサゾリン基含有重合体(A)のオキサゾリン基量は、より好ましくは3mmol/g・solid以上9mmol/g・solid以下である。 The oxazoline group content of the oxazoline group-containing polymer (the number of moles of oxazoline groups per gram of solid content of the oxazoline group-containing polymer (A)) is preferably 0.4 mmol/g·solid or more and 10 mmol/g·solid or less. If the oxazoline group content is excessively high, it is difficult to obtain good adhesion, and if the oxazoline group content is less than the above range, the water resistance of the easy-adhesion layer may decrease. From such a viewpoint, the oxazoline group content of the oxazoline group-containing polymer (A) is more preferably 3 mmol/g·solid or more and 9 mmol/g·solid or less.
 オキサゾリン基含有重合体は、水系、すなわち水溶性の重合体であるか、又は水分散性の重合体であることが好ましい。易接着層の光学特性の観点から、オキサゾリン基含有重合体は、好ましくは水溶性の重合体である。 The oxazoline group-containing polymer is preferably a water-based polymer, that is, a water-soluble polymer, or a water-dispersible polymer. From the viewpoint of the optical properties of the easy adhesion layer, the oxazoline group-containing polymer is preferably a water-soluble polymer.
 オキサゾリン基含有重合体は、市販品を用いてもよい。具体的には、株式会社日本触媒製 エポクロスWS-300、エポクロスWS-500、エポクロスWS-700(いずれも商品名)等のオキサゾリン基含有アクリルポリマー;株式会社日本触媒製 エポクロスK-1000シリーズ、エポクロスK-2000シリーズ、エポクロスRPSシリーズ(いずれも商品名)等のオキサゾリン基含有アクリル/スチレンポリマーが挙げられる。 A commercially available product may be used as the oxazoline group-containing polymer. Specifically, Nippon Shokubai Co., Ltd. Epocross WS-300, Epocross WS-500, Epocross WS-700 (all trade names) and other oxazoline group-containing acrylic polymers; Nippon Shokubai Co., Ltd. Epocross K-1000 series, Epocross Examples include oxazoline group-containing acrylic/styrene polymers such as K-2000 series and Epocross RPS series (both trade names).
 オキサゾリン基含有重合体は、2種以上併用して使用することができる。
 密着性、光学特性、耐水性の観点より、エポクロスWS-300、エポクロスWS-700等のオキサゾリン基含有アクリルポリマーが好ましい。
Two or more kinds of oxazoline group-containing polymers can be used in combination.
Oxazoline group-containing acrylic polymers such as Epocross WS-300 and Epocross WS-700 are preferred from the viewpoint of adhesion, optical properties and water resistance.
 (含窒素複素環化合物)
 含窒素複素環化合物は、環状炭化水素構造の環を構成する炭素原子の少なくとも1つが窒素原子に置き換わった環状構造(含窒素複素環構造)を有する化合物である。含窒素複素環構造は、単環であってもよいし、縮合環等の多環であってもよい。含窒素複素環化合物は架橋剤として機能する一方、pH値を調整する目的にも使用することができる。
(Nitrogen-containing heterocyclic compound)
A nitrogen-containing heterocyclic compound is a compound having a cyclic structure (nitrogen-containing heterocyclic structure) in which at least one of the carbon atoms constituting the ring of a cyclic hydrocarbon structure is replaced with a nitrogen atom. The nitrogen-containing heterocyclic structure may be monocyclic or polycyclic such as condensed ring. A nitrogen-containing heterocyclic compound functions as a cross-linking agent, and can also be used for the purpose of adjusting the pH value.
 含窒素複素環化合物は、分子内に含窒素複素環構造を1個のみ有していてもよいし、2個又は3個以上有していてもよい。含窒素複素環化合物が分子内に複数の含窒素複素環構造を有する場合において、それらの含窒素複素環構造は、同じ構造であってもよいし、異なる構造であってもよい。複数の含窒素複素環を有する化合物を用いると、架橋反応によって水系接着剤層が強固になり、耐久性を向上させることが可能となる。
 含窒素複素環化合物が分子内に複数の含窒素複素環構造を有する場合、含窒素複素環構造は、同じ構造であることが好ましい。
The nitrogen-containing heterocyclic compound may have only one nitrogen-containing heterocyclic structure in the molecule, or may have two or three or more nitrogen-containing heterocyclic structures. When the nitrogen-containing heterocyclic compound has a plurality of nitrogen-containing heterocyclic structures in its molecule, the nitrogen-containing heterocyclic structures may have the same structure or different structures. When a compound having a plurality of nitrogen-containing heterocycles is used, the cross-linking reaction strengthens the water-based adhesive layer, making it possible to improve the durability.
When the nitrogen-containing heterocyclic compound has multiple nitrogen-containing heterocyclic structures in its molecule, the nitrogen-containing heterocyclic structures preferably have the same structure.
 含窒素複素環構造としては、例えば、アジリジン構造、アジリン構造、アゼチジン構造、1,2-オキサゼチジン構造、1,3-オキサゼチジン構造、1,2-チアゼチジン構造、1,3-チアゼチジン構造、1,2-ジヒドロアゼート構造、1,3-ジアゼート構造、ピロリジン構造、ピロリン構造、イミダゾリジン構造、イミダゾリン構造、ピラゾリジン構造、ピラゾリン構造、オキサゾリン構造、チアゾリン構造、ピロール構造、ピラゾール構造、イミダゾール構造、オキサゾール構造、イソオキサゾール構造、チアゾール構造、チアジアゾール構造、イソチアゾール構造、1,2,3-トリアゾール構造、1,2,4-トリアゾール構造、テトラゾール構造、1,3,4-オキサジアゾール構造、フラザン構造、ピリジン構造、ピリダジン構造、ピリミジン構造、ピラジン構造、ピペラジン構造、ピペリジン構造、モルホリン構造、チアジン構造、ピペリドン構造、トリアジン構造、オキサジン構造、テトラジン構造等の単環構造;
 ベンゾイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、キノリジン、インドリジン、インドール、キノリン、イソキノリン、ベンゾトリアジン、テトラザインデン、プリン等の多環構造;が挙げられる。
Nitrogen-containing heterocyclic structures include, for example, aziridine structure, azirine structure, azetidine structure, 1,2-oxazetidine structure, 1,3-oxazetidine structure, 1,2-thiazetidine structure, 1,3-thiazetidine structure, 1,2 -Dihydroazate structure, 1,3-diazate structure, pyrrolidine structure, pyrroline structure, imidazolidine structure, imidazoline structure, pyrazolidine structure, pyrazoline structure, oxazoline structure, thiazoline structure, pyrrole structure, pyrazole structure, imidazole structure, oxazole structure, isoxazole structure, thiazole structure, thiadiazole structure, isothiazole structure, 1,2,3-triazole structure, 1,2,4-triazole structure, tetrazole structure, 1,3,4-oxadiazole structure, furazane structure, pyridine structure, monocyclic structures such as pyridazine structure, pyrimidine structure, pyrazine structure, piperazine structure, piperidine structure, morpholine structure, thiazine structure, piperidone structure, triazine structure, oxazine structure, tetrazine structure;
polycyclic structures such as benzimidazole, benzotriazole, benzoxazole, benzothiazole, quinolidine, indolizine, indole, quinoline, isoquinoline, benzotriazine, tetrazaindene, and purine;
 含窒素複素環構造は、該環構造に結合する置換基を1個以上有することができる。置換基としては、炭素数1以上12以下程度の炭化水素基(例えばアルキル基)が挙げられる。 The nitrogen-containing heterocyclic structure can have one or more substituents bonded to the ring structure. Examples of substituents include hydrocarbon groups having about 1 to 12 carbon atoms (for example, alkyl groups).
 含窒素複素環化合物は、オキサゾリン基含有重合体又は保護層としての光学フィルムと架橋構造を形成することができる構造を有する化合物であることが好ましい。含窒素複素環化合物が、オキサゾリン基含有重合体又は光学フィルムと架橋構造を形成可能であると、良好な密着性を示す。 The nitrogen-containing heterocyclic compound is preferably a compound having a structure capable of forming a crosslinked structure with an oxazoline group-containing polymer or an optical film as a protective layer. If the nitrogen-containing heterocyclic compound can form a crosslinked structure with the oxazoline group-containing polymer or optical film, it exhibits good adhesion.
 オキサゾリン基含有重合体又は光学フィルムと架橋構造を形成することができる構造(以下、「架橋性構造(1)」という場合がある)としては、特に限定されない。架橋性構造(1)としては、ヒドロキシ基、カルボキシ基等の官能基と架橋構造を形成できる構造であればよく、含窒素複素環構造それ自体であってもよい。 The structure capable of forming a crosslinked structure with the oxazoline group-containing polymer or optical film (hereinafter sometimes referred to as "crosslinkable structure (1)") is not particularly limited. The crosslinkable structure (1) may be any structure capable of forming a crosslinked structure with a functional group such as a hydroxy group or a carboxyl group, and may be the nitrogen-containing heterocyclic structure itself.
 このような含窒素複素環構造としては、オキサゾリン環、アジリジン環等が挙げられ、密着性の観点から、アジリジン環であることが好ましい。
 含窒素複素環化合物は、架橋性構造(1)を2個以上有することが好ましく、架橋性構造(1)としての含窒素複素環構造を2個以上含有することがより好ましく、アジリジン環を2個以上有することがさらに好ましい。
Examples of such a nitrogen-containing heterocyclic structure include an oxazoline ring and an aziridine ring, and from the viewpoint of adhesion, an aziridine ring is preferred.
The nitrogen-containing heterocyclic compound preferably has two or more crosslinkable structures (1), more preferably two or more nitrogen-containing heterocyclic structures as the crosslinkable structures (1), and has two aziridine rings. It is more preferable to have one or more.
 含窒素複素環化合物は通常、非重合体である。含窒素複素環化合物の分子量は、通常41~2000の範囲内である。含窒素複素環化合物の分子量は、1500以下であってもよく、1000以下であってもよい。 Nitrogen-containing heterocyclic compounds are usually non-polymers. The molecular weight of the nitrogen-containing heterocyclic compound is generally within the range of 41-2,000. The molecular weight of the nitrogen-containing heterocyclic compound may be 1,500 or less, or 1,000 or less.
 水系樹脂組成物における含窒素複素環化合物の含有量は、オキサゾリン基含有重合体(A)100質量部に対して、通常0.1~50質量部の範囲内であり、好ましくは0.2~30質量部であり、より好ましくは0.5~20以下である。含窒素複素環化合物の含有量がこの範囲であると良好な密着性を示しやすい傾向にある。 The content of the nitrogen-containing heterocyclic compound in the aqueous resin composition is usually in the range of 0.1 to 50 parts by mass, preferably 0.2 to 100 parts by mass, relative to 100 parts by mass of the oxazoline group-containing polymer (A). 30 parts by mass, more preferably 0.5 to 20 or less. When the content of the nitrogen-containing heterocyclic compound is within this range, good adhesion tends to be exhibited.
 含窒素複素環化合物は、架橋性構造(1)を末端に有することが好ましく、アジリジン環を末端に有することがより好ましい。
 含窒素複素環化合物としては、ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキサミド)、トルエン-2,4-ビス(1-アジリジンカルボキサミド)、トリエチレンメラミン、イソフタロイルビス-1-(2-メチルアジリジン)、トリス-1-アジリジニルホスフィンオキサイド、ヘキサメチレン-1,6-ビス(1-アジリジンカルボキサミド)、トリメチロールプロパン トリス-β-アジリジニルプロピオネート、テトラメチロールメタン トリス-β-アジリジニルプロピオネート、ピペリジン、4-ピコリン、3,5-ジエチルピリジン、1,4-ビス(3-アミノプロピル)ピペラジン、及び特開2018-199756号公報に記載されている式(B1-1)で表される化合物~式(B1-4)で表される化合物等が挙げられる。
The nitrogen-containing heterocyclic compound preferably has a crosslinkable structure (1) at its terminal, and more preferably has an aziridine ring at its terminal.
Nitrogen-containing heterocyclic compounds include diphenylmethane-4,4′-bis(1-aziridinecarboxamide), toluene-2,4-bis(1-aziridinecarboxamide), triethylenemelamine, isophthaloylbis-1-(2 -methylaziridine), tris-1-aziridinylphosphine oxide, hexamethylene-1,6-bis(1-aziridinecarboxamide), trimethylolpropane tris-β-aziridinylpropionate, tetramethylolmethane tris-β -aziridinyl propionate, piperidine, 4-picoline, 3,5-diethylpyridine, 1,4-bis(3-aminopropyl)piperazine, and formula (B1) described in JP-A-2018-199756 -1) to the compound represented by formula (B1-4).
 含窒素複素環化合物は市販品であってもよく、具体的には、株式会社日本触媒製 ケミタイトPZ-33、ケミタイトDZ-22E(いずれも商品名);MENADIONA社製 CROSSLINKER CL-422、CROSSLINKER CL-427、CROSSLINKER CL-467(いずれも商品名)等のアジリジン系化合物が挙げられる。特に、密着性の観点から、CROSSLINKER CL-427、CROSSLINKER CL-467が好ましい。 Nitrogen-containing heterocyclic compounds may be commercially available products, specifically, Chemitite PZ-33 and Chemitite DZ-22E (both trade names) manufactured by Nippon Shokubai Co., Ltd.; Crosslinker CL-422 and Crosslinker CL manufactured by Menadiona. -427, CROSSLINKER CL-467 (both trade names) and other aziridine compounds. In particular, CROSSLINKER CL-427 and CROSSLINKER CL-467 are preferable from the viewpoint of adhesion.
 (水系エポキシ化合物)
 前記水系エポキシ化合物としては、水に溶解性があるか、又はエマルジョン化した2個以上のエポキシ基を有する化合物であればよい。例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,6-ヘキサングリコール、ネオペンチルグリコール等のグリコール類1モルとエピクロルヒドリン2モルとのエーテル化によって得られるジエポキシ化合物;グリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の多価アルコール類1モルとエピクロルヒドリン2モル以上とのエーテル化によって得られるポリエポキシ化合物;フタル酸、テレフタル酸、シュウ酸、アジピン酸等のジカルボン酸1モルとエピクロルヒドリン2モルとのエステル化によって得られるジエポキシ化合物;等のエポキシ化合物が挙げられる。
(Water-based epoxy compound)
The water-based epoxy compound may be a compound having two or more epoxy groups that are soluble in water or emulsified. For example, 1 mol of glycols such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexane glycol and neopentyl glycol and 2 mol of epichlorohydrin Diepoxy compounds obtained by etherification; polyepoxy compounds obtained by etherification of 1 mol of polyhydric alcohols such as glycerin, polyglycerin, trimethylolpropane, pentaerythritol and sorbitol with 2 mol or more of epichlorohydrin; phthalic acid, terephthalic acid , a diepoxy compound obtained by esterifying 1 mol of a dicarboxylic acid such as oxalic acid and adipic acid with 2 mol of epichlorohydrin; and the like.
 具体的にはエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンまたはトリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジグリシジルアミン等である。
 前記水系エポキシ化合物の市販品としては、デコナールEX-521(ナガセケムテックス社製)が挙げられる。
Specific examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin or triglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidylaniline and diglycidylamine.
Examples of commercially available water-based epoxy compounds include Deconal EX-521 (manufactured by Nagase ChemteX Corporation).
 (水系アミノ化合物)
 前記水系アミノ化合物としては、水に溶解性があるか、又はエマルジョン化した2個以上のアミノ基を有する化合物であればよい。例えば、エチレンジアミン、トリエチレンジアミン、ヘキサメチレンジアミン等のアミン類、カルボジヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン二酸ジヒドラジド、イソフタール酸ジヒドラジド、テレフタル酸ジヒドラジド、グリコリック酸ジヒドラジド、ポリアクリル酸ジヒドラジド等のヒドラジド化合物、メチロール尿素、メチロールメラミン、アルキル化メチロール尿素、アルキル化メチロール化メラミン、アセトグアナミン、ベンゾグアナミンとホルムアルデヒドとの縮合物等のアミノ-ホルムアルデヒド樹脂、メラミン樹脂、ユリア樹脂、グアナミン樹脂等が挙げられる。
(Aqueous amino compound)
The water-based amino compound may be a compound having two or more amino groups that are soluble in water or emulsified. For example, amines such as ethylenediamine, triethylenediamine, hexamethylenediamine, carbodihydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, dodecanedioic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide , glycolic acid dihydrazide, polyacrylic acid dihydrazide, etc.; resin, urea resin, guanamine resin, and the like.
 (水系カルボジイミド化合物)
 前記水系カルボジイミド化合物としては、水に溶解性があるか、又はエマルジョン化した2個以上のカルボジイミド結合(-N=C=N-)を有する化合物であればよい。2個以上のカルボジイミド結合を有する化合物は、2分子以上のポリイソシアネートとカルボジイミド化触媒とを用いて、2個のイソシアネート基を脱炭酸反応させて-N=C=N-を形成させる方法によって得ることができる。2個以上のカルボジイミド結合を有する化合物を合成する際に使用されるポリイソシアネート及びカルボジイミド化触媒は特に制限されず、従来公知のものを使用することができる。
(Aqueous carbodiimide compound)
The aqueous carbodiimide compound may be a compound that is soluble in water or has two or more emulsified carbodiimide bonds (-N=C=N-). A compound having two or more carbodiimide bonds is obtained by a method of forming -N=C=N- by decarboxylating two isocyanate groups using two or more molecules of polyisocyanate and a carbodiimidation catalyst. be able to. The polyisocyanate and carbodiimidation catalyst used when synthesizing a compound having two or more carbodiimide bonds are not particularly limited, and conventionally known ones can be used.
 (アルデヒド基を有する化合物)
 前記アルデヒド基を有する化合物としては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、クロトンアルデヒド、ベンズアルデヒド、ホルムアルデヒドなどのモノアルデヒド類、グリオキザール、マロンジアルデヒド、グルタルアルデヒド、テレフタルアルデヒドなどのジアルデヒド類、ジアルデヒドデンプン、アクロレイン共重合アクリル樹脂等が挙げられる。
(Compound having an aldehyde group)
Examples of the compound having an aldehyde group include monoaldehydes such as formaldehyde, acetaldehyde, propionaldehyde, crotonaldehyde, benzaldehyde and formaldehyde, dialdehydes such as glyoxal, malondialdehyde, glutaraldehyde and terephthalaldehyde, dialdehyde starch, and acrolein. A copolymerized acrylic resin and the like can be mentioned.
 本発明に係る易接着層は、前記ポリウレタン系樹脂及び微粒子と、必要に応じて前記添加剤(例えば、水系エポキシ化合物や水系アミノ化合物等)と、水溶性溶媒を混合して、液状の水系樹脂組成物として光学フィルムの少なくとも一方の面に塗布することが好ましい。
 前記水溶性溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、アセトン、テトラヒドロフラン、N-メチルピロリドン、ジメチルスルホキシド、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテルなどが挙げられる。中でも、水溶性溶媒としては、水を用いることが好ましい。なお、水溶性溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 水溶性溶媒の量は、未硬化状態のウレタン樹脂の粘度が、塗布に適した範囲になるように設定することが好ましい。
 また、水系樹脂組成物中の前記ポリウレタン系樹脂の含有量は、65~95質量%の範囲内であることが好ましく、水系樹脂組成物中の前記シリカ微粒子の含有量は、5~10質量%の範囲内であることが好ましい。また、水系樹脂組成物中の前記添加剤の含有量は、0.1~10質量%の範囲内であることが好ましい。
The easy adhesion layer according to the present invention is formed by mixing the polyurethane-based resin and fine particles, and optionally the additive (for example, a water-based epoxy compound, a water-based amino compound, etc.) and a water-soluble solvent to obtain a liquid water-based resin. It is preferable to apply the composition to at least one surface of the optical film.
Examples of the water-soluble solvent include methanol, ethanol, isopropyl alcohol, acetone, tetrahydrofuran, N-methylpyrrolidone, dimethylsulfoxide, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether and the like. Among them, it is preferable to use water as the water-soluble solvent. In addition, one type of water-soluble solvent may be used alone, or two or more types may be used in combination at an arbitrary ratio.
The amount of the water-soluble solvent is preferably set so that the viscosity of the uncured urethane resin is within a range suitable for coating.
Further, the content of the polyurethane resin in the aqueous resin composition is preferably in the range of 65 to 95% by mass, and the content of the silica fine particles in the aqueous resin composition is 5 to 10% by mass. is preferably within the range of Moreover, the content of the additive in the aqueous resin composition is preferably within the range of 0.1 to 10% by mass.
 易接着層の厚さは、20~2000nmの範囲内であることが好ましい。
 なお、前記「易接着層の厚さ」とは、易接着層の塗布材料が塗布された流延膜を、延伸し乾燥した後の易接着層の厚さであって、光学フィルムの状態における易接着層の厚さをいう。
The thickness of the easy-adhesion layer is preferably in the range of 20-2000 nm.
The "thickness of the easy-adhesion layer" is the thickness of the easy-adhesion layer after stretching and drying the casting film coated with the coating material of the easy-adhesion layer, and is the thickness of the easy-adhesion layer in the state of the optical film. It refers to the thickness of the easy-adhesion layer.
2.基材
 本発明に係る基材は、シクロオレフィン系樹脂を含有する。また、基材は、紫外線吸収剤、酸化防止剤及び後述するその他の成分を含有してもよい。
2. Substrate The substrate according to the present invention contains a cycloolefin resin. Moreover, the substrate may contain an ultraviolet absorber, an antioxidant, and other components described later.
2-1.シクロオレフィン系樹脂
 前記シクロオレフィン系樹脂は、シクロオレフィン単量体の重合体、又はシクロオレフィン単量体とそれ以外の共重合性単量体との共重合体である。
2-1. Cycloolefin Resin The cycloolefin resin is a polymer of a cycloolefin monomer or a copolymer of a cycloolefin monomer and another copolymerizable monomer.
 シクロオレフィン単量体は、ノルボルネン骨格を有するシクロオレフィン単量体であることが好ましい。
 特に、下記一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体であることがより好ましい。
The cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton.
In particular, a cycloolefin monomer having a structure represented by general formula (A-1) or (A-2) below is more preferred.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(A-1)のR~Rは、独立して水素原子、炭素原子数1~30の炭化水素基、又は極性基を表す。ただし、R~Rの全てが水素原子となる場合を除き、RとRが同時に水素原子となるか、又はRとRが同時に水素原子となる場合はないものとする。 R 1 to R 4 in general formula (A-1) each independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group. However, except when all of R 1 to R 4 are hydrogen atoms, there is no case where R 1 and R 2 are hydrogen atoms at the same time, or R 3 and R 4 are hydrogen atoms at the same time.
 炭素原子数1~30の炭化水素基は、炭素原子数1~10の炭化水素基であることが好ましく、炭素原子数1~5の炭化水素基であることがより好ましい。炭素原子数1~30の炭化水素基は、ハロゲン原子、酸素原子、窒素原子、硫黄原子又はケイ素原子を含む連結基をさらに有していてもよい。そのような連結基の例には、カルボニル基、イミノ基、エーテル結合、シリルエーテル結合、チオエーテル結合等の2価の極性基が含まれる。炭素原子数1~30の炭化水素基の例には、メチル基、エチル基、プロピル基、ブチル基等が含まれる。 The hydrocarbon group having 1 to 30 carbon atoms is preferably a hydrocarbon group having 1 to 10 carbon atoms, more preferably a hydrocarbon group having 1 to 5 carbon atoms. The hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing a halogen atom, oxygen atom, nitrogen atom, sulfur atom or silicon atom. Examples of such linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds and thioether bonds. Examples of hydrocarbon groups having 1 to 30 carbon atoms include methyl group, ethyl group, propyl group, butyl group and the like.
 極性基の例には、カルボキシ基、ヒドロキシ基、アルコキシ基、アルコキシカルボニル基、アリロキシカルボニル基、アミノ基、アミド基及びシアノ基が含まれる。中でも、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリロキシカルボニル基が好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリロキシカルボニル基が好ましい。 Examples of polar groups include carboxy groups, hydroxy groups, alkoxy groups, alkoxycarbonyl groups, allyloxycarbonyl groups, amino groups, amido groups and cyano groups. Among them, a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferred, and an alkoxycarbonyl group and an aryloxycarbonyl group are preferred from the viewpoint of ensuring solubility during solution film formation.
 一般式(A-1)のpは、0~2の整数を示す。pは、1又は2であることが好ましい。 p in general formula (A-1) represents an integer of 0 to 2. Preferably, p is 1 or 2.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(A-2)のRは、水素原子、炭素数1~5の炭化水素基、又は炭素数1~5のアルキル基を有するアルキルシリル基を表す。中でも、炭素数1~5の炭化水素基が好ましく、炭素数1~3の炭化水素基がより好ましい。 R 5 in general formula (A-2) represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms. Among them, a hydrocarbon group having 1 to 5 carbon atoms is preferable, and a hydrocarbon group having 1 to 3 carbon atoms is more preferable.
 一般式(A-2)のRは、水素原子、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリロキシカルボニル基、アミノ基、アミド基、シアノ基、又はハロゲノ基(フルオロ基、クロロ基、ブロモ基、若しくはヨード基)を表す。中でも、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリロキシカルボニル基が好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリロキシカルボニル基がより好ましい。 R 6 in general formula (A-2) is a hydrogen atom, a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amido group, a cyano group, or a halogeno group (fluoro, chloro, bromo group, or iodine group). Among them, a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferred, and an alkoxycarbonyl group and an aryloxycarbonyl group are more preferred from the viewpoint of ensuring solubility during solution film formation.
 一般式(A-2)のpは、0~2の整数を表す。pは、1又は2であることが好ましい。 p in general formula (A-2) represents an integer of 0 to 2. Preferably, p is 1 or 2.
 一般式(A-2)で表されるシクロオレフィン単量体は、非対称な構造を有する。すなわち、一般式(A-2)で表されるシクロオレフィン単量体の置換基R及びRが、分子の対称軸に対して片側の環構成炭素原子のみに置換されているので、分子の対称性が低い。そのようなシクロオレフィン単量体は、後述する光学フィルムの製造方法において、流延されたドープを乾燥させる際に、紫外線吸収剤や酸化防止剤の拡散移動を促進しうるので、これらの成分の分布状態を調整しやすくしうると考えられる。 The cycloolefin monomer represented by general formula (A-2) has an asymmetric structure. That is, since the substituents R 5 and R 6 of the cycloolefin monomer represented by general formula (A-2) are substituted only on one ring-constituting carbon atom with respect to the symmetry axis of the molecule, low symmetry. Such cycloolefin monomers can promote the diffusion and transfer of ultraviolet absorbers and antioxidants when drying the cast dope in the method for producing an optical film, which will be described later. It is thought that the distribution state can be easily adjusted.
 一般式(A-1)で表されるシクロオレフィン単量体の具体例を例示化合物1~14に示し、一般式(A-2)で表されるシクロオレフィン単量体の具体例を例示化合物15~34に示す。 Specific examples of the cycloolefin monomer represented by the general formula (A-1) are shown in Exemplary Compounds 1 to 14, and specific examples of the cycloolefin monomer represented by the general formula (A-2) are exemplary compounds. 15-34.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 シクロオレフィン単量体と共重合可能な共重合性単量体の例には、シクロオレフィン単量体と開環共重合可能な共重合性単量体、シクロオレフィン単量体と付加共重合可能な共重合性単量体が含まれる。 Examples of copolymerizable monomers copolymerizable with cycloolefin monomers include copolymerizable monomers capable of ring-opening copolymerization with cycloolefin monomers and copolymerizable monomers capable of addition copolymerization with cycloolefin monomers. A copolymerizable monomer is included.
 開環共重合可能な共重合性単量体の例には、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン、ジシクロペンタジエン等のシクロオレフィンが含まれる。 Examples of copolymerizable monomers capable of ring-opening copolymerization include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene and dicyclopentadiene.
 付加共重合可能な共重合性単量体の例には、不飽和二重結合含有化合物、ビニル系環状炭化水素単量体、(メタ)アクリレートが含まれる。
 不飽和二重結合含有化合物の例には、炭素原子数2~12(好ましくは2~8)のオレフィン系化合物であり、その例には、エチレン、プロピレン、ブテンが含まれる。
 ビニル系環状炭化水素単量体の例には、4-ビニルシクロペンテン、2-メチル-4-イソプロペニルシクロペンテン等のビニルシクロペンテン系単量体が含まれる。(メタ)アクリレートの例には、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の炭素原子数1~20のアルキル(メタ)アクリレートが含まれる。
Examples of addition-copolymerizable copolymerizable monomers include unsaturated double bond-containing compounds, vinyl-based cyclic hydrocarbon monomers, and (meth)acrylates.
Examples of unsaturated double bond-containing compounds are olefinic compounds having 2 to 12 (preferably 2 to 8) carbon atoms, examples of which include ethylene, propylene, butenes.
Examples of vinyl-based cyclic hydrocarbon monomers include vinylcyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene. Examples of (meth)acrylates include alkyl (meth)acrylates having 1 to 20 carbon atoms such as methyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and cyclohexyl (meth)acrylate.
 シクロオレフィン系樹脂は、前述の通り、ノルボルネン骨格を有するシクロオレフィン単量体、好ましくは一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体を重合又は共重合して得られる重合体であり、その例には、以下のものが含まれる。
 (1)シクロオレフィン単量体の開環重合体
 (2)シクロオレフィン単量体とそれと開環共重合可能な共重合性単量体との開環共重合体
 (3)上記(1)又は(2)の開環(共)重合体の水素添加物
 (4)上記(1)又は(2)の開環(共)重合体をフリーデルクラフツ反応により環化した後、水素添加した(共)重合体
 (5)シクロオレフィン単量体と不飽和二重結合含有化合物との飽和共重合体
 (6)シクロオレフィン系単量体のビニル系環状炭化水素単量体との付加共重合体及びその水素添加物
 (7)シクロオレフィン系単量体と(メタ)アクリレートとの交互共重合体
As described above, the cycloolefin resin is a cycloolefin monomer having a norbornene skeleton, preferably a cycloolefin monomer having a structure represented by general formula (A-1) or (A-2), polymerized or Polymers obtained by copolymerization, examples of which include the following.
(1) A ring-opening polymer of a cycloolefin monomer (2) A ring-opening copolymer of a cycloolefin monomer and a copolymerizable monomer capable of ring-opening copolymerization thereof (3) Above (1) or (2) Hydrogenated product of the ring-opening (co)polymer (4) The ring-opening (co)polymer of (1) or (2) above was cyclized by the Friedel-Crafts reaction and then hydrogenated (co- ) Polymers (5) Saturated copolymers of cycloolefin monomers and unsaturated double bond-containing compounds (6) Addition copolymers of cycloolefin monomers and vinyl cyclic hydrocarbon monomers, and Hydrogenated product thereof (7) Alternating copolymer of cycloolefin-based monomer and (meth)acrylate
 中でも、(1)~(3)が好ましく、(3)がより好ましい。即ち、シクロオレフィン系樹脂は、得られるシクロオレフィン系樹脂のガラス転移温度を高くし、且つ光透過率を高くすることができる点で、下記一般式(B-1)で表される構造単位と下記一般式(B-2)で表される構造単位の少なくとも一方を含むことが好ましい。一般式(B-1)で表される構造単位は、前述の一般式(A-1)で表されるシクロオレフィン単量体由来の構造単位であり、一般式(B-2)で表される構造単位は、前述の一般式(A-2)で表されるシクロオレフィン単量体由来の構造単位である。 Among them, (1) to (3) are preferable, and (3) is more preferable. That is, the cycloolefin-based resin can increase the glass transition temperature and light transmittance of the obtained cycloolefin-based resin with a structural unit represented by the following general formula (B-1). It preferably contains at least one structural unit represented by the following general formula (B-2). The structural unit represented by general formula (B-1) is a structural unit derived from the cycloolefin monomer represented by general formula (A-1) described above, and is represented by general formula (B-2). is a structural unit derived from the cycloolefin monomer represented by the general formula (A-2) described above.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(B-1)のXは、-CH=CH-又は-CHCH-である。 X in general formula (B-1) is -CH=CH- or -CH 2 CH 2 -.
 一般式(B-1)のR~R及びpは、一般式(A-1)のR~R及びpとそれぞれ同義である。 R 1 to R 4 and p in general formula (B-1) are synonymous with R 1 to R 4 and p in general formula (A-1), respectively.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(B-2)のXは、-CH=CH-又は-CHCH-である。 X in general formula (B-2) is -CH=CH- or -CH 2 CH 2 -.
 一般式(B-2)のR~R及びpは、一般式(A-2)のR~R及びpとそれぞれ同義である。 R 5 to R 6 and p in general formula (B-2) are synonymous with R 5 to R 6 and p in general formula (A-2), respectively.
 以上説明したシクロオレフィン系樹脂は、市販品を好ましく用いることができ、市販品の例としては、JSR(株)からアートン(Arton:登録商標)Gシリーズ、アートンFシリーズ、アートンRシリーズ、及びアートンRXシリーズという商品名で発売されており、また日本ゼオン(株)からゼオノア(Zeonor:登録商標)ZF14、ZF16、1420R、1020R、1060R等、ゼオネックス(Zeonex:登録商標)250、280、480、480R、E48R、F52R、330R、RS420等の商品名で市販されており、これらを用途に応じて適宜選択し使用することもできる。 As the cycloolefin-based resin described above, commercially available products can be preferably used, and examples of commercially available products include JSR Corporation's Arton (registered trademark) G series, It is marketed under the trade name of the RX series, and Zeonor (registered trademark) ZF14, ZF16, 1420R, 1020R, 1060R, etc., and Zeonex (registered trademark) 250, 280, 480, 480R from Nippon Zeon Co., Ltd. , E48R, F52R, 330R, RS420, etc., and these can be appropriately selected and used depending on the application.
 シクロオレフィン系樹脂は、いずれも公知の方法、例えば特開2008-107534号公報、特開2005-227606号公報及び特許第4466272号公報に記載の方法で得ることができる。 The cycloolefin-based resins can all be obtained by known methods, for example, the methods described in JP-A-2008-107534, JP-A-2005-227606 and JP-A-4466272.
 シクロオレフィン系樹脂の固有粘度〔η〕inhは、0.2~5cm/gの範囲内であることが好ましく、0.3~3cm/gの範囲内であることがより好ましく、0.4~1.5cm/gの範囲内であることがさらに好ましい。 The intrinsic viscosity [η]inh of the cycloolefin resin is preferably in the range of 0.2 to 5 cm 3 /g, more preferably in the range of 0.3 to 3 cm 3 /g, and 0.3 cm 3 /g. More preferably, it is in the range of 4 to 1.5 cm 3 /g.
 シクロオレフィン系樹脂の数平均分子量(Mn)は、8000~100000であることが好ましく、10000~80000であることがより好ましく、12000~50000であることがさらに好ましい。シクロオレフィン系樹脂の重量平均分子量(Mw)は、20000~300000であることが好ましく、30000~250000であることがより好ましく、40000~200000であることがさらに好ましい。シクロオレフィン系樹脂の数平均分子量や重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)にてポリスチレン換算にて測定することができる。 The number average molecular weight (Mn) of the cycloolefin resin is preferably 8,000 to 100,000, more preferably 10,000 to 80,000, even more preferably 12,000 to 50,000. The weight average molecular weight (Mw) of the cycloolefin resin is preferably from 20,000 to 300,000, more preferably from 30,000 to 250,000, even more preferably from 40,000 to 200,000. The number average molecular weight and weight average molecular weight of the cycloolefin resin can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
 固有粘度〔η〕inh、数平均分子量及び重量平均分子量が上記範囲にあると、シクロオレフィン系樹脂の耐熱性、耐水性、耐薬品性、機械的特性とフィルムとしての成形加工性が良好となる。 When the intrinsic viscosity [η] inh, the number average molecular weight and the weight average molecular weight are within the above ranges, the cycloolefin resin has good heat resistance, water resistance, chemical resistance, mechanical properties, and moldability as a film. .
 シクロオレフィン系樹脂のガラス転移温度(Tg)は、通常、110℃以上であり、110~350℃の範囲内であることが好ましく、120~250℃であることがより好ましく、120~220℃の範囲内であることがさらに好ましい。Tgが110℃以上であると、高温条件下での変形を抑制しやすい。一方、Tgが350℃以下であると、成形加工が容易となり、成形加工時の熱による樹脂の劣化も抑制しやすい。 The glass transition temperature (Tg) of the cycloolefin resin is usually 110°C or higher, preferably in the range of 110 to 350°C, more preferably 120 to 250°C, and 120 to 220°C. It is more preferable to be within the range. When Tg is 110°C or higher, deformation under high temperature conditions is easily suppressed. On the other hand, when the Tg is 350° C. or less, the molding process becomes easy, and deterioration of the resin due to heat during the molding process can be easily suppressed.
 シクロオレフィン系樹脂の含有量は、光学フィルムに対して70質量%以上であることが好ましく、80質量%以上であることがより好ましい。 The content of the cycloolefin resin is preferably 70% by mass or more, more preferably 80% by mass or more, relative to the optical film.
2-2.紫外線吸収剤
 紫外線吸収剤は、光学フィルムの耐久性を向上させる目的で添加される。そのような紫外線吸収剤は、400nm以下の紫外線を吸収する化合物であることが好ましく、具体的には、波長370nmの光の透過率が10%以下、好ましくは5%以下、より好ましくは2%以下の化合物である。
2-2. Ultraviolet Absorber The ultraviolet absorber is added for the purpose of improving the durability of the optical film. Such an ultraviolet absorber is preferably a compound that absorbs ultraviolet rays of 400 nm or less. Specifically, the transmittance of light having a wavelength of 370 nm is 10% or less, preferably 5% or less, more preferably 2%. It is the following compound.
 紫外線吸収剤の例には、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体、及び高分子紫外線吸収剤が含まれる。紫外線吸収剤は、1種類であってもよいし、2種以上を組み合わせてもよい。 Examples of UV absorbers include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders, and polymeric UV absorbers. drug is included. One type of ultraviolet absorber may be used, or two or more types may be used in combination.
 中でも、良好な紫外線吸収能を有することから、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物及びトリアジン系化合物が好ましく、ベンゾトリアゾール系化合物及びベンゾフェノン系化合物がより好ましい。 Among them, benzotriazole-based compounds, benzophenone-based compounds, and triazine-based compounds are preferable, and benzotriazole-based compounds and benzophenone-based compounds are more preferable, because they have good ultraviolet absorption ability.
 ベンゾトリアゾール系化合物の例には、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシルフェニル)-2H-ベンゾトリアゾール、(2-2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノールが含まれる。ベンゾフェノン系化合物の例には、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,4-ベンジルオキシベンゾフェノンが含まれる。 Examples of benzotriazole compounds include 5-chloro-2-(3,5-di-sec-butyl-2-hydroxylphenyl)-2H-benzotriazole, (2-2H-benzotriazol-2-yl)- 6-(Linear and side chain dodecyl)-4-methylphenol is included. Examples of benzophenone compounds include 2-hydroxy-4-benzyloxybenzophenone and 2,4-benzyloxybenzophenone.
 市販品の例には、Tinuvin109、Tinuvin171、Tinuvin234、Tinuvin326、Tinuvin327、Tinuvin328、Tinuvin928等のTinuvinシリーズがあり、これらはいずれもBASF社製の市販品である。 Examples of commercially available products include Tinuvin series such as Tinuvin109, Tinuvin171, Tinuvin234, Tinuvin326, Tinuvin327, Tinuvin328, and Tinuvin928, all of which are commercially available products manufactured by BASF.
 紫外線吸収剤の含有量(光学フィルムにおける総含有量)は、例えばシクロオレフィン系樹脂に対して0.1~10質量%であることが好ましい。紫外線吸収剤の含有量が0.1質量%以上であれば、光学フィルムの耐久性(特に耐候性)を十分に高めうる。紫外線吸収剤の含有量が10質量%以下であれば、光学フィルムの透明性が損なわれ難い。紫外線吸収剤の含有量は、0.5~5質量%であることがより好ましい。 The content of the ultraviolet absorber (total content in the optical film) is preferably, for example, 0.1 to 10% by mass relative to the cycloolefin resin. If the content of the ultraviolet absorber is 0.1% by mass or more, the durability (particularly weather resistance) of the optical film can be sufficiently enhanced. If the content of the ultraviolet absorber is 10% by mass or less, the transparency of the optical film is less likely to be impaired. More preferably, the content of the ultraviolet absorber is 0.5 to 5% by mass.
2-3.酸化防止剤(劣化防止剤)
 酸化防止剤は、高温高湿下における光学フィルムの劣化を抑制する目的で添加され得る。
 酸化防止剤の例には、ヒンダードフェノール系化合物が含まれる。ヒンダードフェノール系化合物の例には、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N′-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアネート等が含まれる。酸化防止剤は、1種類であってもよいし、2種以上を組み合わせてもよい。
 中でも、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕が好ましい。
2-3. Antioxidant (anti-degradation agent)
The antioxidant may be added for the purpose of suppressing deterioration of the optical film under high temperature and high humidity.
Examples of antioxidants include hindered phenolic compounds. Examples of hindered phenolic compounds include 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] , triethylene glycol-bis[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5-di-t-butyl- 4-hydroxyphenyl)propionate], 2,4-bis-(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, 2,2- thio-diethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, N, N′-Hexamethylenebis(3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), 1,3,5-trimethyl-2,4,6-tris(3,5-di-t -butyl-4-hydroxybenzyl)benzene, tris-(3,5-di-t-butyl-4-hydroxybenzyl)-isocyanate, and the like. One type of antioxidant may be used, or two or more types may be used in combination.
Among them, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis [3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], triethylene glycol-bis [3 -(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate] is preferred.
 酸化防止剤は、例えばN,N′-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4-ジ-t-ブチルフェニル)フォスファイト等のリン系加工安定剤と併用されてもよい。 Antioxidants include hydrazine-based metal deactivators such as N,N'-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyl]hydrazine and tris(2,4- It may be used in combination with a phosphorus-based processing stabilizer such as di-t-butylphenyl)phosphite.
 酸化防止剤の含有量(光学フィルムにおける総含有量)は、例えばシクロオレフィン系樹脂に対して0.1~10質量%の範囲内であることが好ましい。酸化防止剤の含有量が0.1質量%以上であれば、光学フィルムの耐久性(特に耐候性)を十分に高めうる。酸化防止剤の含有量が10質量%以下であれば、光学フィルムの透明性が損なわれ難い。酸化防止剤の含有量は、0.5~5質量%の範囲内であることがより好ましい。 The content of the antioxidant (total content in the optical film) is preferably, for example, within the range of 0.1 to 10% by mass relative to the cycloolefin resin. When the antioxidant content is 0.1% by mass or more, the durability (especially weather resistance) of the optical film can be sufficiently enhanced. If the content of the antioxidant is 10% by mass or less, the transparency of the optical film is less likely to be impaired. More preferably, the antioxidant content is in the range of 0.5 to 5% by mass.
 紫外線吸収剤及び酸化防止剤の少なくとも一方は、光学フィルムの溶媒処理によって粗化された表面に偏在していることが好ましい。 At least one of the ultraviolet absorber and the antioxidant is preferably unevenly distributed on the surface of the optical film roughened by solvent treatment.
2-4.その他の成分
 光学フィルムは、本発明の効果を損なわない範囲で、他の添加剤をさらに含んでいてもよい。他の添加剤の例には、可塑剤、熱安定剤、微粒子(マット剤)、界面活性剤、フッ素系界面活性剤及び剥離助剤等が含まれる。
2-4. Other Components The optical film may further contain other additives as long as the effects of the present invention are not impaired. Examples of other additives include plasticizers, heat stabilizers, fine particles (matting agents), surfactants, fluorosurfactants, release aids, and the like.
 (微粒子)
 微粒子は、光学フィルムの表面に凹凸を付与し、滑り性を向上させうる。微粒子は、無機微粒子又は有機微粒子でありうる。
 無機微粒子又は有機微粒子は、前記した易接着層に含有される無機微粒子又は有機微粒子と同様のものを用いることができる。
(fine particles)
The fine particles can make the surface of the optical film uneven and improve the slipperiness. The microparticles can be inorganic microparticles or organic microparticles.
As the inorganic fine particles or organic fine particles, the same inorganic fine particles or organic fine particles as those contained in the easy-adhesion layer can be used.
 微粒子の平均粒径は、1~500nmの範囲内であることが好ましく、5~300nmの範囲内であることがより好ましい。平均粒径を1nm以上とすることで、易接着層の滑り性を効果的に高めることができ、500nm以下とすることで、ヘイズを低く抑えることができる。微粒子の平均粒径は、レーザー回折法によって粒径分布を測定し、測定された粒径分布において小径側から計算した累積体積が50%となる粒径(50%体積累積径D50)とする。
 微粒子の含有量は、光学フィルムに対して10質量%以下としうる。
The average particle size of the fine particles is preferably in the range of 1 to 500 nm, more preferably in the range of 5 to 300 nm. By setting the average particle size to 1 nm or more, the lubricating property of the easy-adhesion layer can be effectively improved, and by setting the average particle size to 500 nm or less, the haze can be kept low. The average particle size of the fine particles is determined by measuring the particle size distribution by a laser diffraction method. .
The content of fine particles can be 10% by mass or less with respect to the optical film.
[光学フィルムの物性]
 (位相差値)
 光学フィルムは、その用途に応じて種々の位相差値(「リターデンション値」ともいう。)をとり得る。例えば、光学フィルムが、VAモードやIPSモードの液晶表示装置の光学フィルムとして用いられる場合、光学フィルムの測定波長590nm、23℃、55%RHの環境下で測定される面内方向の位相差Ro及び厚さ方向の位相差Rthは、例えば下記関係を満たし得る。
 0nm≦Ro≦300nm
 -200nm≦Rth≦200nm
[Physical properties of optical film]
(Phase difference value)
Optical films can have various retardation values (also referred to as “retardation values”) depending on their uses. For example, when the optical film is used as an optical film for a VA mode or IPS mode liquid crystal display device, the in-plane direction retardation Ro and the thickness direction retardation Rth can satisfy, for example, the following relationship.
0 nm≦Ro≦300 nm
−200 nm≦Rth≦200 nm
 光学フィルムの面内方向の位相差Roは、50≦Ro≦250nmを満たすことがより好ましく、50nm≦Ro≦200nmを満たすことがさらに好ましい。光学フィルムの厚さ方向の位相差Rthは、-150nm≦Rth≦150nmを満たすことがより好ましく、-120nm≦Rth≦120nmを満たすことがさらに好ましい。 The in-plane retardation Ro of the optical film more preferably satisfies 50≦Ro≦250 nm, and more preferably satisfies 50 nm≦Ro≦200 nm. The thickness direction retardation Rth of the optical film more preferably satisfies −150 nm≦Rth≦150 nm, and more preferably −120 nm≦Rth≦120 nm.
 光学フィルムのRo及びRthは、それぞれ下記式で定義される。
 式(2a):Ro=(n-n)×d
 式(2b):Rth=((n+n)/2-n)×d
(式中、nxは、光学フィルムの面内遅相軸方向の屈折率を表す。nは、光学フィルムの面内遅相軸に直交する方向の屈折率を表す。nは、光学フィルムの厚さ方向の屈折率を表す。dは、光学フィルムの厚さ(nm)を表す。)
Ro and Rth of the optical film are defined by the following formulas.
Formula (2a): Ro = (n x -n y ) x d
Formula (2b): Rth=((n x +n y )/2−n z )×d
(In the formula, nx represents the refractive index in the in-plane slow axis direction of the optical film. ny represents the refractive index in the direction perpendicular to the in-plane slow axis of the optical film. nz represents the optical film represents the refractive index in the thickness direction of d represents the thickness (nm) of the optical film.)
 光学フィルムのRo及びRthの測定は、以下の方法で行うことができる。
 (1)光学フィルムを23℃、55%RHの環境下で24時間調湿する。この光学フィルムの平均屈折率をアッベ屈折計で測定し、厚さdを市販のマイクロメーターを用いて測定する。
 (2)調湿後の光学フィルムの、測定波長590nmにおける位相差Ro及びRthを、それぞれ自動複屈折率計アクソスキャン(AxoScanMuellerMatrixPolarimeter:アクソメトリックス社製)を用いて、23℃、55%RHの環境下で測定する。具体的には、
 (i)フィルム面の法線方向に平行に測定波長590nmの光を入射させたときのRoを、アクソスキャンにて測定する。
 (ii)さらに、アクソスキャンにより、試料片の面内遅相軸を傾斜軸(回転軸)として、試料片の表面の法線に対してθの角度(入射角(θ))から測定波長590nmの光を入射させたときの位相差R(θ)を測定した。位相差R(θ)の測定は、θが0°~50°の範囲で10°毎に6点行う。試料片の面内遅相軸は、アクソスキャンにより確認する。
 (iii)測定されたRo及びR(θ)と、前述の平均屈折率と厚とから、アクソスキャンがn、n及びnを算出し、上記式(2b)に基づいて測定波長590nmでのRthを算出する。
Ro and Rth of the optical film can be measured by the following methods.
(1) The optical film is conditioned at 23° C. and 55% RH for 24 hours. The average refractive index of this optical film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer.
(2) Retardation Ro and Rth of the optical film after humidity control at a measurement wavelength of 590 nm are measured using an automatic birefringence meter AxoScanMuellerMatrixPolarimeter (manufactured by Axometrics), respectively, in an environment of 23°C and 55% RH. Measure below. in particular,
(i) Ro is measured by Axoscan when light with a measurement wavelength of 590 nm is incident parallel to the normal direction of the film surface.
(ii) Furthermore, by Axoscan, the in-plane slow axis of the sample piece is used as the tilt axis (rotation axis), and the angle θ with respect to the normal line of the surface of the sample piece (incident angle (θ)) from the measurement wavelength 590 nm A phase difference R(.theta.) was measured when the light of .theta. The phase difference R(θ) is measured at 6 points every 10° within the range of 0° to 50°. The in-plane slow axis of the sample piece is confirmed by Axoscan.
(iii) From the measured Ro and R (θ) and the average refractive index and thickness described above, Axoscan calculates n x , ny and nz , and based on the above formula (2b), the measurement wavelength is 590 nm Calculate the Rth at
 (厚さ)
 光学フィルムの厚さ(基材と易接着層の総厚さ)は、求められるRoとRthの範囲にもよるが、例えば15~60μmの範囲内であることが好ましく、15~40μmの範囲内であることがより好ましい。
(thickness)
The thickness of the optical film (the total thickness of the substrate and the easy-adhesion layer) depends on the range of Ro and Rth required, but is preferably in the range of 15 to 60 μm, more preferably in the range of 15 to 40 μm. is more preferable.
[光学フィルムの製造方法]
 本発明の光学フィルムは、例えば、1)上記シクロオレフィン系樹脂及び溶媒を含むドープを準備する工程、2)得られたドープを支持体上に流延した後、乾燥及び剥離して、流延膜を得る工程、3)得られた流延膜にポリウレタン系樹脂からなる易接着層の塗布材料を塗布する工程、及び4)前記塗布材料を塗布した流延膜を延伸する工程を経て、さらに、5)延伸された流延膜及び塗布材料を乾燥させる工程を経て製造することができる。
 上記のように流延膜に塗布材料が塗布されて、延伸、乾燥することにより、流延膜が本発明に係る基材とされ、塗布材料が本発明に係る易接着層とされる。このようにして基材上に易接着層を有する光学フィルムが製造される。
 なお、前記5)流延膜を乾燥させる工程後、さらに、6)得られた光学フィルムの両端部を切断し、エンボス加工を施す工程、7)光学フィルムに粗化面を形成する工程、及び8)巻き取り工程を経ることが好ましい。
[Method for producing optical film]
The optical film of the present invention can be produced by, for example, 1) preparing a dope containing the above cycloolefin resin and solvent, 2) casting the obtained dope on a support, drying and peeling, and casting. 3) applying a coating material for an easy-adhesion layer made of a polyurethane-based resin to the obtained cast film; and 4) stretching the cast film coated with the coating material. 5) It can be produced through a step of drying the stretched casting film and the coating material.
As described above, the coating material is applied to the casting film, stretched, and dried to form the casting film as the base material of the present invention and the coating material as the easy adhesion layer of the present invention. Thus, an optical film having an easy-adhesion layer on the substrate is produced.
After the step 5) of drying the cast film, the step of 6) cutting both ends of the obtained optical film and embossing them, 7) the step of forming a roughened surface on the optical film, and 8) It is preferable to go through a winding process.
 1)の工程(ドープ調製工程)について
 シクロオレフィン系樹脂を、溶媒に溶解又は分散させて、ドープを調製する。
Regarding step 1) (dope preparation step) A dope is prepared by dissolving or dispersing a cycloolefin resin in a solvent.
 ドープに用いられる溶媒は、少なくともシクロオレフィン系樹脂を溶解させうる有機溶媒(良溶媒)を含む。良溶媒の例には、メチレンクロライドなどの塩素系有機溶媒や;酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどの非塩素系有機溶媒が含まれる。中でも、メチレンクロライドが好ましい。 The solvent used for the dope contains at least an organic solvent (good solvent) capable of dissolving the cycloolefin resin. Examples of good solvents include chlorinated organic solvents such as methylene chloride; and non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran. Among them, methylene chloride is preferred.
 ドープに用いられる溶媒は、貧溶媒をさらに含んでいてもよい。貧溶媒の例には、炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールが含まれる。ドープ中のアルコールの比率が高くなると、膜状物がゲル化しやすく、金属支持体からの剥離が容易になりやすい。炭素原子数1~4の直鎖又は岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらのうちドープの安定性、沸点も比較的低く、乾燥性もよいことなどからエタノールが好ましい。 The solvent used for the dope may further contain a poor solvent. Examples of poor solvents include linear or branched aliphatic alcohols having 1 to 4 carbon atoms. When the ratio of alcohol in the dope becomes high, the film-like material tends to gel and is easily peeled off from the metal support. Examples of linear or branched aliphatic alcohols having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol. Of these, ethanol is preferred because of its dope stability, relatively low boiling point, and good drying properties.
 2)の工程(流延工程)について
 得られたドープを、支持体上に流延する。ドープの流延は、流延ダイから吐出させて行うことができる。
About the process of 2) (casting process) The obtained dope is cast on a support. Casting of the dope can be performed by discharging from a casting die.
 支持体上に流延されたドープを、支持体から剥離ロールによって剥離可能になるまで、溶媒を蒸発させる。溶媒を蒸発させる方法としては、流延されたドープに風を当てる方法や、支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法などがある。 The solvent is evaporated until the dope cast on the support can be peeled off from the support with a peel roll. Methods for evaporating the solvent include a method of exposing the cast dope to air, a method of transferring heat from the back surface of the support by a liquid, and a method of transferring heat from the front and back surfaces by radiant heat.
 その後、溶媒を蒸発させて得られた流延膜を、剥離ロールによって剥離する。 After that, the casting film obtained by evaporating the solvent is peeled off with a peeling roll.
 剥離時の支持体上の流延膜の残留溶媒量は、乾燥条件や支持体の長さなどにもよるが、例えば50~120質量%でありうる。残留溶媒量が多い状態で剥離すると、流延膜が柔らか過ぎて、剥離時平面性が損なわれやすく、剥離張力によるシワや縦スジが発生しやすいため、これらの点を考慮して、剥離時の残留溶媒量が決められる。残留溶媒量は、下記式で定義される。 The amount of solvent remaining in the cast film on the support after peeling depends on the drying conditions and the length of the support, but can be, for example, 50 to 120% by mass. If the film is peeled with a large amount of residual solvent, the cast film will be too soft, and the flatness of the film will be easily lost when peeled. is determined. The residual solvent amount is defined by the following formula.
 残留溶媒量(質量%)=(流延膜の加熱処理前質量-流延膜の加熱処理後質量)/(流延膜の加熱処理後質量)×100
 残留溶媒量を測定する際の加熱処理は、115℃で1時間の加熱処理である。
Residual solvent amount (% by mass)=(mass of casting film before heat treatment−mass of casting film after heat treatment)/(mass of casting film after heat treatment)×100
The heat treatment for measuring the residual solvent amount is a heat treatment at 115° C. for 1 hour.
 3)の工程(易接着層形成工程)について
 流延工程後、延伸工程前に(すなわち、支持体から剥離して得られた流延膜を延伸する前に)、易接着層を形成する面に放電処理を施し、放電処理を施した側の表面にポリウレタン系樹脂からなる塗布材料を塗布する。
 前記ポリウレタン系樹脂と、必要に応じて微粒子(シリカ微粒子)と、水系溶媒とを混合して、液状の水系樹脂組成物(塗布材料)として、塗布することが好ましい。また、水系樹脂組成物中のポリウレタン系樹脂の含有量は、65~95質量%の範囲内であることが好ましい。
Regarding step 3) (easy-adhesion layer forming step) After the casting step and before the stretching step (that is, before stretching the cast film obtained by peeling from the support), the surface on which the easy-adhesion layer is formed is subjected to discharge treatment, and a coating material made of a polyurethane-based resin is applied to the surface of the discharge-treated side.
It is preferable to mix the polyurethane-based resin, optionally fine particles (silica fine particles), and an aqueous solvent, and apply the mixture as a liquid aqueous resin composition (coating material). Moreover, the content of the polyurethane resin in the aqueous resin composition is preferably within the range of 65 to 95% by mass.
 4)の工程(延伸工程)について
 易接着層が塗布された流延膜を、延伸する。
About step 4) (stretching step) The casting film coated with the easy-adhesion layer is stretched.
 延伸は、求められる光学特性に応じて行えばよく、幅方向(TD方向)、搬送方向(MD方向)、斜め方向のうち一以上の方向に延伸することが好ましい。例えば、λ/4位相差フィルムとして機能する光学フィルムを製造する場合は、斜め方向に延伸することが好ましい。 The stretching may be performed according to the required optical properties, and it is preferable to stretch in one or more of the width direction (TD direction), the transport direction (MD direction), and the oblique direction. For example, when producing an optical film that functions as a λ/4 retardation film, stretching in an oblique direction is preferred.
 延伸倍率は、求められる光学特性にもよるが、例えばλ/4位相差フィルムとして用いる場合、1.05~4.0倍の範囲内であることが好ましく、1.5~3.0倍の範囲内であることがより好ましい。 The draw ratio depends on the desired optical properties, but for example, when used as a λ/4 retardation film, it is preferably in the range of 1.05 to 4.0 times, and 1.5 to 3.0 times. It is more preferable to be within the range.
 延伸倍率(倍)は、延伸後のフィルムの延伸方向大きさ/延伸前のフィルムの延伸方向大きさとして定義される。なお、二軸延伸を行う場合は、TD方向とMD方向のそれぞれについて、上記延伸倍率とすることが好ましい。 The stretch ratio (times) is defined as the size in the stretching direction of the film after stretching/the size in the stretching direction of the film before stretching. In addition, when biaxially stretching, it is preferable to set it as the said draw ratio about each of TD direction and MD direction.
 延伸温度(延伸時の乾燥温度)は、前述と同様に、シクロオレフィン系樹脂のガラス転移温度をTgとしたとき、(Tg+2)~(Tg+50)℃であることが好ましく、(Tg+5)~(Tg+30)℃であることがより好ましい。延伸温度が(Tg+2)℃以上であると、溶媒を適度に揮発させやすいため、延伸張力を適切な範囲に調整しやすく、(Tg+50)℃以下であると、溶媒が揮発しすぎないため、延伸性が損なわれにくい。延伸温度は、前述と同様に、(a)延伸機内温度などの雰囲気温度を測定することが好ましい。 As described above, the stretching temperature (drying temperature during stretching) is preferably (Tg+2) to (Tg+50)° C., where Tg is the glass transition temperature of the cycloolefin resin, and (Tg+5) to (Tg+30). ) °C. When the stretching temperature is (Tg + 2) ° C. or higher, the solvent is easily volatilized appropriately, so it is easy to adjust the stretching tension to an appropriate range. It is difficult to lose sex. As for the stretching temperature, it is preferable to measure (a) the ambient temperature such as the temperature inside the stretching machine, as described above.
 延伸開始時の膜状物中の残留溶媒量は、剥離時の膜状物中の残留溶媒量と同程度であることが好ましく、例えば20~30質量%であることが好ましく、25~30質量%の範囲内であることがより好ましい。 The amount of residual solvent in the filmy material at the start of stretching is preferably about the same as the amount of residual solvent in the filmy material at the time of peeling, for example, preferably 20 to 30% by mass, preferably 25 to 30% by mass. % range is more preferred.
 膜状物のTD方向(幅方向)の延伸は、例えば膜状物の両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げる方法(テンター法)で行うことができる。膜状物のMD方向の延伸は、例えば複数のロールに周速差をつけ、その間でロール周速差を利用する方法(ロール法)で行うことができる。特に、流延膜の両端部をクリップなどで把持して延伸するテンター方式が、フィルムの平面性や寸法安定性を向上させるために好ましい。流延膜をMD方向及びTD方向の両方向に延伸することにより、MD方向及びTD方向に対して斜めに交差する方向に延伸(斜め延伸)することが好ましい。 Stretching in the TD direction (width direction) of the film can be performed, for example, by fixing both ends of the film with clips or pins and widening the distance between the clips or pins in the direction of travel (tenter method). The film-like material can be stretched in the MD direction, for example, by a method (roll method) in which a plurality of rolls are provided with different peripheral speeds and the difference in peripheral speeds of the rolls is utilized. In particular, a tenter method in which both ends of the casting film are held with clips and stretched is preferable in order to improve the flatness and dimensional stability of the film. By stretching the cast film in both the MD and TD directions, it is preferable to stretch in a direction that obliquely intersects the MD and TD directions (diagonal stretching).
 5)の工程(乾燥工程)について
 延伸された流延膜及び塗布材料をさらに乾燥させて、基材上に易接着層を有する光学フィルムを得る。
Step 5) (Drying Step) The stretched casting film and coating material are further dried to obtain an optical film having an easy-adhesion layer on the substrate.
 流延膜及び塗布材料の乾燥は、例えば、複数の搬送ロール(例えば側面から見て千鳥状に配置された複数の搬送ロール)によって流延膜を搬送しながら行うことができる。乾燥手段は、特に制限されず、熱風、赤外線、加熱ロール又はマイクロ波が用いられる。簡便である点から、熱風乾燥が好ましい。 The casting film and the coating material can be dried, for example, while the casting film is being transported by a plurality of transport rolls (for example, a plurality of transport rolls arranged in a zigzag pattern when viewed from the side). The drying means is not particularly limited, and hot air, infrared rays, heating rolls or microwaves are used. Hot air drying is preferred because of its simplicity.
 6)の工程(切断・エンボス加工工程)について
 得られた光学フィルムの幅方向の両端部を切断する。光学フィルムの両端部の切断は、スリッターによって行うことができる。
Regarding Step 6) (Cutting/Embossing Step) Both ends in the width direction of the obtained optical film are cut. Both ends of the optical film can be cut by a slitter.
 次いで、光学フィルムの幅方向の両端部に、エンボス加工(ナーリング加工)を施す。エンボス加工は、加熱されたエンボスローラーを光学フィルムの両端部に押し当てることにより行うことができる。エンボスローラーの表面には細かな凹凸が形成されており、エンボスローラーを光学フィルムの両端部に押し当てることで、両端部に凹凸が形成される。このようなエンボス加工により、次の巻取工程での巻きズレやブロッキング(フィルム同士の貼り付き)を極力抑えることができる。 Next, embossing (knurling) is applied to both ends of the optical film in the width direction. Embossing can be performed by pressing a heated embossing roller against both ends of the optical film. Fine irregularities are formed on the surface of the embossing roller, and by pressing the embossing roller against both ends of the optical film, irregularities are formed on both ends. Such embossing can minimize winding misalignment and blocking (sticking of films together) in the next winding process.
 7)の工程(粗化面形成工程)について
 切断した光学フィルムに粗化面を形成する。粗化面は、モールドを用いた型押し、プラズマエッチング、サンドブラスト法、サンドペーパー処理、高湿度条件での流延製膜等で形成することができ、モールドを用いた型押しが最も好ましい。
 モールドにより型押しする手法においては、ロール状のモールドを回転させて、モールドの外周面に沿って回転方向に光学フィルムを所定の圧力と時間で走行させ、その後、モールドから光学フィルムを剥離することによって、粗化面を形成する。
 ここで、モールドによる圧力やプレス時間を変化させることで、片面外部ヘイズを調整することができ、プレス時間を長くする、又は圧力を高くすることで、片面外部ヘイズ値が大きくなる。
About the step of 7) (roughened surface forming step) A roughened surface is formed on the cut optical film. The roughened surface can be formed by embossing using a mold, plasma etching, sandblasting, sandpaper treatment, casting film formation under high humidity conditions, or the like, and embossing using a mold is most preferred.
In the method of embossing with a mold, the roll-shaped mold is rotated to run the optical film in the direction of rotation along the outer peripheral surface of the mold with a predetermined pressure and time, and then the optical film is peeled off from the mold. to form a roughened surface.
Here, the single-sided external haze can be adjusted by changing the mold pressure and pressing time, and the single-sided external haze value increases by lengthening the pressing time or increasing the pressure.
 8)の工程(巻き取り工程)について
 そして、得られた光学フィルムを巻き取り、ロール体を得る。
About the process of 8) (winding process) Then, the obtained optical film is wound up to obtain a roll body.
 すなわち、光学フィルムを搬送しながら巻芯に巻き取ることにより、ロール体とする。光学フィルムの巻き取り方法は、一般に使用されているワインダーを用いた方法であればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法などの張力をコントロールする方法がある。 That is, a roll body is formed by winding the optical film around the core while transporting it. The method of winding the optical film may be any method using a generally used winder, and a method of controlling tension such as a constant torque method, a constant tension method, a taper tension method, or a program tension control method with constant internal stress. There is
 ロール体における光学フィルムの巻長は、1000~7200mの範囲内であることが好ましい。光学フィルムの幅は、1000~3000mmの範囲内であることが好ましい。 The winding length of the optical film in the roll body is preferably within the range of 1000 to 7200 m. The width of the optical film is preferably in the range of 1000-3000 mm.
[偏光板]
 本発明の偏光板は、少なくとも、偏光板保護フィルム、偏光子層、光学フィルム及び粘着シートがこの順に積層されてなる偏光板であって、前記光学フィルムが本発明の光学フィルムである。
[Polarizer]
The polarizing plate of the present invention is a polarizing plate in which at least a polarizing plate protective film, a polarizer layer, an optical film and an adhesive sheet are laminated in this order, and the optical film is the optical film of the present invention.
<粘着シート>
 粘着シートは、粘着剤組成物より形成された粘着剤層を有する。
 粘着シートとしては、例えば、粘着剤層のみを有する両面粘着シート、基材と、基材の両面に形成された粘着剤層とを有し、少なくとも一方の粘着剤層が粘着剤組成物より形成された粘着剤層である両面粘着シート、基材と、基材の一方の面に形成された上記粘着剤層を有する片面粘着シート、及びそれら粘着シートの粘着剤層における基材と接していない面にセパレーターが貼付された粘着シートが挙げられる。
<Adhesive sheet>
The adhesive sheet has an adhesive layer formed from an adhesive composition.
As the pressure-sensitive adhesive sheet, for example, a double-sided pressure-sensitive adhesive sheet having only a pressure-sensitive adhesive layer, a substrate, and pressure-sensitive adhesive layers formed on both sides of the substrate, at least one pressure-sensitive adhesive layer being formed from the pressure-sensitive adhesive composition. A double-sided pressure-sensitive adhesive sheet that is a pressure-sensitive adhesive layer formed on a substrate, a single-sided pressure-sensitive adhesive sheet that has the above-mentioned pressure-sensitive adhesive layer formed on one side of the substrate, and the pressure-sensitive adhesive layer of these pressure-sensitive adhesive sheets that are not in contact with the substrate A pressure-sensitive adhesive sheet having a separator attached to the surface can be used.
 前記粘着剤組成物としては、例えば、アクリル系粘着剤主剤と、架橋剤と、酸化防止剤等からなることが好ましい。
 前記アクリル系粘着剤主剤としては、例えば、アクリル酸4-ヒドロキシブチル単位(4-HBA)、アクリル酸ブチル単位、アクリル酸メチル単位等が挙げられる。
 前記架橋剤としては、トリレンジイソシアネート系化合物、キシリレンジイソシアネート等が挙げられる。
 前記酸化防止剤としては、ペンタエリスリトール-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)(BASFジャパン社製、IRGANOX1010)等のヒンダードフェノール系酸化防止剤、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASFジャパン社製、IRGAFOS168)等のリン系酸化防止剤が挙げられる。
The pressure-sensitive adhesive composition preferably comprises, for example, an acrylic pressure-sensitive adhesive main agent, a cross-linking agent, an antioxidant, and the like.
Examples of the acrylic pressure-sensitive adhesive base include 4-hydroxybutyl acrylate units (4-HBA), butyl acrylate units, and methyl acrylate units.
Examples of the cross-linking agent include tolylene diisocyanate-based compounds and xylylene diisocyanate.
Examples of the antioxidant include hindered phenolic antioxidants such as pentaerythritol-tetrakis(3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate) (manufactured by BASF Japan, IRGANOX1010), Phosphorus antioxidants such as tris(2,4-di-t-butylphenyl)phosphite (IRGAFOS168, manufactured by BASF Japan).
 粘着剤組成物中の、アクリル系粘着剤主剤は、10~90質量%の範囲内で含有していることが好ましく、架橋剤は0.01~5.00質量%の範囲内で含有していることが好ましく、酸化防止剤は、0.01~5.00質量%の範囲内で含有していることが好ましい。 The acrylic pressure-sensitive adhesive main agent in the pressure-sensitive adhesive composition is preferably contained in the range of 10 to 90% by mass, and the cross-linking agent is contained in the range of 0.01 to 5.00% by mass. The content of the antioxidant is preferably within the range of 0.01 to 5.00% by mass.
 (含水率)
 前記粘着シートは、高湿ショックの発生を抑制するために含水量は少ないことが好ましく、一方で、含水量が少ないと接着不良を起こすことから、少なからず粘着シートは含水していることが好ましい。そのため、粘着シートの含水率は、3.0~10.0%の範囲内であることが好ましく、3.5~5.5%の範囲内であることが特に好ましい。
(moisture content)
The pressure-sensitive adhesive sheet preferably has a low water content in order to suppress the occurrence of high-humidity shock. . Therefore, the moisture content of the pressure-sensitive adhesive sheet is preferably in the range of 3.0 to 10.0%, particularly preferably in the range of 3.5 to 5.5%.
 粘着シートの含水率は、厚さ50μmのポリエステルフィルム上に粘着剤層を形成し、60mm×130mmに裁断した後に、その粘着シートを70mm×150mmに裁断された厚さ1mmのポリカーボネートに貼り付け、40℃、95%RH環境下に48時間静置し、粘着剤の質量増加を測定することにより求める。 The moisture content of the adhesive sheet is determined by forming an adhesive layer on a polyester film with a thickness of 50 μm, cutting it to 60 mm × 130 mm, and then pasting the adhesive sheet on a polycarbonate having a thickness of 1 mm cut to 70 mm × 150 mm. It is obtained by standing in an environment of 40° C. and 95% RH for 48 hours and measuring the mass increase of the adhesive.
 前記粘着シートの含水率を、3.0~10.0%の範囲内とするためには、例えば、前記粘着剤組成物中のアクリル酸4-ヒドロキシブチル単位(4-HBA)の含有量を4.0~25質量%の範囲内とすることが挙げられる。 In order to make the water content of the pressure-sensitive adhesive sheet within the range of 3.0 to 10.0%, for example, the content of 4-hydroxybutyl acrylate units (4-HBA) in the pressure-sensitive adhesive composition is The content may be within the range of 4.0 to 25% by mass.
<偏光子層>
 本発明において、「偏光子層」とは、無偏光の光を入射させたとき、吸収軸に直交する振動面をもつ直線偏光を透過させる性質を有する光学層をいう。すなわち、一定方向の偏波面の光だけを通す光学層をいう。
 現在知られている代表的な偏光子層を構成する偏光フィルム(「偏光子フィルム」及び「偏光子膜」ともいう。)は、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
<Polarizer layer>
In the present invention, the term "polarizer layer" refers to an optical layer having a property of transmitting linearly polarized light having a vibration plane perpendicular to the absorption axis when unpolarized light is incident. In other words, it refers to an optical layer that transmits only light with a plane of polarization in a certain direction.
A polarizing film (also referred to as a “polarizer film” and a “polarizer film”) constituting a typical polarizer layer known at present is a polyvinyl alcohol-based polarizing film. The polyvinyl alcohol-based polarizing film includes a polyvinyl alcohol-based film dyed with iodine and a polyvinyl alcohol-based film dyed with a dichroic dye.
 ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素又は二色性染料で染色したフィルム(好ましくはさらにホウ素化合物で耐久性処理を施したフィルム)であってもよいし;ポリビニルアルコール系フィルムをヨウ素又は二色性染料で染色した後、一軸延伸したフィルム(好ましくは、さらにホウ素化合物で耐久性処理を施したフィルム)であってもよい。偏光フィルム(偏光子層)の吸収軸は、通常、最大延伸方向と平行である。 The polyvinyl alcohol-based polarizing film may be a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing it with iodine or a dichroic dye (preferably a film further subjected to durability treatment with a boron compound); A film obtained by dyeing an alcohol-based film with iodine or a dichroic dye and then uniaxially stretching the film (preferably, a film further subjected to a durability treatment with a boron compound) may be used. The absorption axis of the polarizing film (polarizer layer) is generally parallel to the maximum stretching direction.
 例えば、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量1~4モル%、重合度2000~4000、けん化度99.0~99.99モル%のエチレン変性ポリビニルアルコールが用いられる。中でも、熱水切断温度が66~73℃であるエチレン変性ポリビニルアルコールフィルムが好ましく用いられる。 For example, JP 2003-248123, JP 2003-342322, etc. ethylene unit content 1 to 4 mol%, degree of polymerization 2000 to 4000, degree of saponification 99.0 to 99.99 mol% Ethylene modified polyvinyl alcohol is used. Among them, an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73° C. is preferably used.
 偏光子層の厚さは、5~30μmの範囲内であることが好ましく、偏光板を薄型化するため等から、5~20μmの範囲内であることがより好ましい。 The thickness of the polarizer layer is preferably in the range of 5 to 30 μm, and more preferably in the range of 5 to 20 μm for thinning the polarizing plate.
 本発明の光学フィルムがλ/4フィルムとして用いられる場合、本発明の光学フィルムの面内遅相軸と偏光子層の吸収軸とのなす角度は、20~70°の範囲内であることが好ましく、30~60°であることがより好ましく、40~50°の範囲内であることがさらに好ましい。本発明の光学フィルムが、VA用の位相差フィルムとして用いられる場合、本発明の光学フィルムの面内遅相軸と偏光子層の吸収軸とは略直交し得る。 When the optical film of the present invention is used as a λ/4 film, the angle formed by the in-plane slow axis of the optical film of the present invention and the absorption axis of the polarizer layer is in the range of 20 to 70°. It is preferably in the range of 30 to 60°, more preferably in the range of 40 to 50°. When the optical film of the present invention is used as a retardation film for VA, the in-plane slow axis of the optical film of the present invention and the absorption axis of the polarizer layer can be substantially orthogonal.
 また、偏光子層と光学フィルムの易接着層とは、接着剤又は粘着剤を介して貼り合わせることが好ましい。
 接着剤は、ポリビニルアルコール系樹脂やウレタン樹脂を主成分として含む水系接着剤や、エポキシ系樹脂等の光硬化性樹脂を主成分として含む光硬化型接着剤でありうる。粘着剤は、アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン及びポリエーテル等をベースポリマーとして含むものでありうる。中でも、本発明の光学フィルムとの親和性が良く、吸水による歪みも生じにくいことから、水系接着剤が好ましい。
 偏光子層と本発明の光学フィルムの貼り合わせは、通常、ロール・トゥ・ロールで行うことができる。
Moreover, it is preferable that the polarizer layer and the easy-adhesion layer of the optical film are bonded together via an adhesive or a pressure-sensitive adhesive.
The adhesive may be a water-based adhesive containing polyvinyl alcohol resin or urethane resin as a main component, or a photocurable adhesive containing photocurable resin such as epoxy resin as a main component. The adhesive may contain acrylic polymers, silicone polymers, polyesters, polyurethanes, polyethers, etc. as base polymers. Among them, water-based adhesives are preferable because they have good affinity with the optical film of the present invention and are less likely to be distorted due to water absorption.
The bonding of the polarizer layer and the optical film of the present invention can usually be carried out by roll-to-roll.
<偏光板保護フィルム>
 偏光子層の光学フィルムと反対側の面には、偏光板保護フィルムが配置されている。
 偏光板保護フィルムの例には、市販のセルロースアシレートフィルム(例えば、コニカミノルタタック KC6UA、KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC4FR-1、KC8UY-HA、KC8UX-RHA、KC8UE、KC4UE、KC4HR-1、KC4KR-1、KC4UA、KC6UA以上コニカミノルタオプト(株)製)等が含まれる。
<Protective film for polarizing plate>
A polarizing plate protective film is arranged on the surface of the polarizer layer opposite to the optical film.
Examples of polarizing plate protective films include commercially available cellulose acylate films (e.g., Konica Minolta Tack KC6UA, KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC4FR-1 , KC8UY-HA, KC8UX-RHA, KC8UE, KC4UE, KC4HR-1, KC4KR-1, KC4UA, KC6UA (manufactured by Konica Minolta Opto Co., Ltd.) and the like.
 偏光板保護フィルムの厚さは、特に限定はないが、10~100μmの範囲内であることが好ましく、10~60μmの範囲内であることがより好ましく、20~60μmの範囲内であることが特に好ましい。
 偏光板保護フィルムと偏光子層とは、接着剤又は粘着剤を介して貼り合わせることが好ましく、当該接着剤又は粘着剤は、前記した偏光子層と光学フィルムとの接着に用いた接着剤又は粘着剤と同様のものを使用することができる。
The thickness of the polarizing plate protective film is not particularly limited, but is preferably in the range of 10 to 100 μm, more preferably in the range of 10 to 60 μm, and preferably in the range of 20 to 60 μm. Especially preferred.
The polarizing plate protective film and the polarizer layer are preferably bonded together via an adhesive or pressure-sensitive adhesive, and the adhesive or pressure-sensitive adhesive is the adhesive or pressure-sensitive adhesive used for bonding the polarizer layer and the optical film. A similar adhesive can be used.
[液晶表示装置]
 本発明に係る液晶表示装置は、液晶セルに、前記偏光板が少なくとも片側の面に貼合された液晶表示装置であることが好ましく、前記粘着シートが、前記液晶セルに隣接することがより好ましい。
[Liquid crystal display device]
The liquid crystal display device according to the present invention is preferably a liquid crystal display device in which the polarizing plate is attached to at least one surface of a liquid crystal cell, and the adhesive sheet is more preferably adjacent to the liquid crystal cell. .
 図2は、液晶表示装置の基本的な構成の一例を示す模式図である。図2に示されるように、本発明の液晶表示装置20は、液晶セル30と、それを挟持する第1の偏光板40及び第2の偏光板50と、バックライト60とを含む。 FIG. 2 is a schematic diagram showing an example of the basic configuration of a liquid crystal display device. As shown in FIG. 2, the liquid crystal display device 20 of the present invention includes a liquid crystal cell 30, a first polarizing plate 40 and a second polarizing plate 50 sandwiching it, and a backlight 60. FIG.
 液晶セル30の表示モードは、例えばTN(Twisted Nematic)、VA(Vistical Alignment)、又はIPS(InPlaneSwitching)等のいずれの表示モードであってよい。モバイル機器向けの液晶セルは、例えばIPSモードが好ましい。中・大型用途の液晶セルは、例えばVAモードが好ましい。 The display mode of the liquid crystal cell 30 may be any display mode such as TN (Twisted Nematic), VA (Visual Alignment), or IPS (InPlane Switching). For liquid crystal cells for mobile devices, for example, IPS mode is preferable. For liquid crystal cells for medium-sized and large-sized applications, for example, the VA mode is preferable.
 第1の偏光板40は、液晶セル30の視認側の面に配置されており、第1の偏光子層41と、第1の偏光子層41の液晶セル30とは反対側の面に配置された保護フィルム43(F1)と、第1の偏光子層41の液晶セル側の面に配置された保護フィルム45(F2)とを含む。 The first polarizing plate 40 is arranged on the surface of the liquid crystal cell 30 on the viewing side, and the first polarizer layer 41 and the surface of the first polarizer layer 41 opposite to the liquid crystal cell 30 are arranged. and a protective film 45 (F2) disposed on the surface of the first polarizer layer 41 facing the liquid crystal cell.
 第2の偏光板50は、液晶セル30のバックライト側の面に配置されており、第2の偏光子層51と、第2の偏光子層51の液晶セル側の面に配置された保護フィルム53(F3)と、第2の偏光子層51の液晶セルとは反対側の面に配置された保護フィルム55(F4)とを含む。 The second polarizing plate 50 is arranged on the backlight side surface of the liquid crystal cell 30 , the second polarizer layer 51 and the protective layer 51 arranged on the liquid crystal cell side surface of the second polarizer layer 51 . It includes a film 53 (F3) and a protective film 55 (F4) disposed on the side of the second polarizer layer 51 opposite to the liquid crystal cell.
 第1の偏光子層41の吸収軸と第2の偏光子層51の吸収軸とは直交していることが好ましい。 The absorption axis of the first polarizer layer 41 and the absorption axis of the second polarizer layer 51 are preferably orthogonal.
 保護フィルム45(F2)は、本発明の光学フィルムとし得る。光学フィルム(保護フィルム45(F2)の易接着層47と第1の偏光子層41とは、接着剤又は粘着剤を介して積層されている。保護フィルム45(F2)の面内遅相軸と第1の偏光子層41の吸収軸とは略直交し得る。保護フィルム43(F1)、53(F3)及び55(F4)は、例えば前述した偏光板保護フィルムとし得る。なお、符号46は、基材である。 The protective film 45 (F2) can be the optical film of the present invention. The optical film (the easy-adhesion layer 47 of the protective film 45 (F2) and the first polarizer layer 41 are laminated via an adhesive or a pressure-sensitive adhesive. The in-plane slow axis of the protective film 45 (F2) and the absorption axis of the first polarizer layer 41. The protective films 43 (F1), 53 (F3) and 55 (F4) can be, for example, the polarizing plate protective films described above. is the substrate.
 図2では、保護フィルム45(F2)を本発明の光学フィルムとした例を示したが、これに限定されず、53(F3)を本発明の光学フィルムとしてもよい。例えば、保護フィルム53(F3)を本発明の光学フィルムとした場合、保護フィルム53(F3)の基材の液晶セル30と反対側の面(すなわち、偏光子層51側の面)に易接着層(図示しない)を形成すればよい。 Although FIG. 2 shows an example in which the protective film 45 (F2) is the optical film of the present invention, it is not limited to this, and 53 (F3) may be the optical film of the present invention. For example, when the protective film 53 (F3) is the optical film of the present invention, the surface of the substrate of the protective film 53 (F3) opposite to the liquid crystal cell 30 (that is, the surface on the polarizer layer 51 side) is easily adhered. A layer (not shown) may be formed.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」及び「部」は、それぞれ、「質量%」及び「質量部」を意味する。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these. In the following examples, unless otherwise specified, operations were performed at room temperature (25°C). Moreover, unless otherwise specified, "%" and "parts" mean "% by mass" and "parts by mass" respectively.
[比較例1]
<光学フィルム101>
 市販品のe-ZB12(日本ゼオン社製)(基材に易接着層が形成されたフィルムa)を光学フィルム101として用いた。
[Comparative Example 1]
<Optical film 101>
A commercially available e-ZB12 (manufactured by Nippon Zeon Co., Ltd.) (film a in which an easy-adhesion layer is formed on a substrate) was used as the optical film 101 .
[比較例2]
<未延伸光学フィルムb1>
 市販品の「ZEONOR1420R」(日本ゼオン社製)を未延伸光学フィルムb1として使用した。
[Comparative Example 2]
<Unstretched optical film b1>
A commercially available product "ZEONOR1420R" (manufactured by Nippon Zeon Co., Ltd.) was used as the unstretched optical film b1.
<塗布材料(水系樹脂組成物)Aの作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス210」、カルボキシ基含有エステル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにエポキシ化合物(商品名「デナコールEX-521」、ナガセケムテックス社製)15質量部と、アジピン酸ジヒドラジド6質量部と、シリカ粒子(平均一次粒径100nm、標準偏差20nm)5質量部と、水とを配合して、塗布材料A
を、固形分8%の液状の水系樹脂組成物として得た。
<Preparation of coating material (water-based resin composition) A>
Take 100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane (“Superflex 210” manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., an ester-based polyurethane resin containing a carboxy group), and add an epoxy compound ( Product name “Denacol EX-521” manufactured by Nagase ChemteX Corporation) 15 parts by mass, 6 parts by mass of adipic acid dihydrazide, 5 parts by mass of silica particles (average primary particle size 100 nm, standard deviation 20 nm), and water. Then, coating material A
was obtained as a liquid water-based resin composition having a solid content of 8%.
<塗布材料の塗布>
 コロナ処理装置(春日電機社製)を用いて、出力500W、電極長1.35m、搬送速度15m/minの条件で、前記で準備した未延伸光学フィルムb1(市販品の「ZEONOR1420R」(日本ゼオン社製))の一方の表面に放電処理を施した。未延伸光学フィルムb1の放電処理を施した側の表面に、塗布材料Aを、乾燥膜厚が2.0μmになるようにロールコーターを用いて塗布した。
<Application of coating material>
Using a corona treatment device (manufactured by Kasuga Denki Co., Ltd.), the unstretched optical film b1 prepared above (commercially available “ZEONOR1420R” (Nippon Zeon Co., Ltd.)) was subjected to discharge treatment on one surface. The coating material A was applied to the discharge-treated surface of the unstretched optical film b1 using a roll coater so that the dry film thickness was 2.0 μm.
<光学フィルム102の製造>
 その後、テンター式横延伸機を用いて、未延伸光学フィルムb1の両端部をクリップで把持して、延伸温度155℃、延伸倍率2.6倍で連続的に横一軸延伸し、さらに左右両端の部分を裁断して除去した。これにより、塗布材料Aを乾燥させ硬化させる工程と、未延伸光学フィルムb1を延伸する工程とが同時に実施され、延伸後の光学フィルムb1(基材)の表面に塗布層(ポリウレタン樹脂からなる易接着層)が積層された光学フィルム102を得た。当該光学フィルム102は、基材の厚さが39μm、幅1300mmで、易接着層の厚さが50nmであった。
<Production of optical film 102>
Then, using a tenter-type transverse stretching machine, both ends of the unstretched optical film b1 are gripped with clips, and continuously transversely uniaxially stretched at a stretching temperature of 155° C. and a stretching ratio of 2.6 times. A section was cut out and removed. As a result, the step of drying and curing the coating material A and the step of stretching the unstretched optical film b1 are carried out simultaneously, and a coating layer (made of polyurethane resin) is formed on the surface of the stretched optical film b1 (substrate). An optical film 102 laminated with an adhesive layer) was obtained. The optical film 102 had a substrate with a thickness of 39 μm, a width of 1300 mm, and an easily adhesive layer with a thickness of 50 nm.
[実施例1]
<未延伸光学フィルムb2の製造>
 シクロオレフィン系重合体を含む樹脂(ガラス転移温度137℃;日本ゼオン社製「ZEONOR1420R」)のペレットを100℃で5時間乾燥した。その後、乾燥した樹脂のペレットを、単軸の押出し機に供給した。樹脂は押出し機内で溶融された後、ポリマーパイプ及びポリマーフィルターを経て、Tダイからキャスティングドラム上にシート状に押出されて、冷却された。これにより、厚さ100μm、幅500mmの未延伸光学フィルムb2を得た。
[Example 1]
<Production of unstretched optical film b2>
Pellets of a resin containing a cycloolefin polymer (glass transition temperature: 137° C.; “ZEONOR1420R” manufactured by Zeon Corporation) were dried at 100° C. for 5 hours. The dried resin pellets were then fed into a single screw extruder. After being melted in the extruder, the resin was passed through a polymer pipe and a polymer filter, extruded into a sheet from a T-die onto a casting drum, and cooled. As a result, an unstretched optical film b2 having a thickness of 100 μm and a width of 500 mm was obtained.
<塗布材料Bの作製>
 ポリウレタンの水分散体(ポリカーボネートポリオール及び脂肪族ポリイソシアネート系からなるポリウレタン。詳細は表I参照。)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにエポキシ化合物(商品名「デナコールEX-521」、ナガセケムテックス社製)15質量部と、アジピン酸ジヒドラジド6質量部と、シリカ粒子(平均一次粒径100nm、標準偏差20nm)5質量部と、水とを配合して、塗布材料Bを、固形分8%の液状の水系樹脂組成物として得た。
<Preparation of coating material B>
100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane (polyurethane composed of polycarbonate polyol and aliphatic polyisocyanate; see Table I for details), and an epoxy compound (product Name “Denacol EX-521” manufactured by Nagase ChemteX Corporation) 15 parts by weight, 6 parts by weight of adipic acid dihydrazide, 5 parts by weight of silica particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water. Thus, a coating material B was obtained as a liquid water-based resin composition having a solid content of 8%.
<塗布材料の塗布>
 コロナ処理装置(春日電機社製)を用いて、出力500W、電極長1.35m、搬送速度15m/minの条件で、前記で作製した未延伸光学フィルムb2の一方の表面に放電処理を施した。未延伸光学フィルムb2の放電処理を施した側の表面に、塗布材料Bを、乾燥膜厚が2.0μmになるようにロールコーターを用いて塗布した。
<Application of coating material>
Using a corona treatment apparatus (manufactured by Kasuga Denki Co., Ltd.), discharge treatment was performed on one surface of the unstretched optical film b2 prepared above under the conditions of an output of 500 W, an electrode length of 1.35 m, and a transport speed of 15 m/min. . The coating material B was applied to the discharge-treated surface of the unstretched optical film b2 using a roll coater so that the dry film thickness was 2.0 μm.
<光学フィルム103の製造>
 その後、テンター式横延伸機を用いて、未延伸光学フィルムb2の両端部をクリップで把持して、延伸温度155℃、延伸倍率2.6倍で連続的に横一軸延伸し、さらに左右両端の部分を裁断して除去した。これにより、塗布材料Bを乾燥させ硬化させる工程と、未延伸光学フィルムb2を延伸する工程とが同時に実施され、延伸後の光学フィルムb2(基材)の表面に塗布層(ポリウレタン樹脂からなる易接着層)が積層された光学フィルム103を得た。当該光学フィルム103は、基材の厚さが39μm、幅1300mmで、易接着層の厚さが50nmであった。
<Production of optical film 103>
Thereafter, using a tenter-type transverse stretching machine, both ends of the unstretched optical film b2 are gripped with clips, and continuously transversely uniaxially stretched at a stretching temperature of 155° C. and a stretching ratio of 2.6 times. A section was cut out and removed. As a result, the step of drying and curing the coating material B and the step of stretching the unstretched optical film b2 are carried out simultaneously, and a coating layer (made of polyurethane resin) is formed on the surface of the stretched optical film b2 (substrate). An optical film 103 laminated with an adhesive layer) was obtained. The optical film 103 had a substrate with a thickness of 39 μm, a width of 1300 mm, and an easily adhesive layer with a thickness of 50 nm.
[実施例2]
<光学フィルム104の製造>
 前記光学フィルム103の製造において、塗布材料Bの塗布まで同様に行い、その後、テンター式横延伸機を用いて、延伸温度155℃、延伸倍率3.0倍で連続的に横一軸延伸し、さらに左右両端の部分を裁断して除去した。これにより、塗布材料Bを乾燥させ硬化させる工程と、未延伸光学フィルムb2を延伸する工程とが同時に実施され、延伸後の光学フィルムb2(基材)の表面に塗布層(ポリウレタン樹脂からなる易接着層)が積層された光学フィルム104を得た。当該光学フィルム104は、基材の厚さが30μm、幅1500mmで、易接着層の厚さが50nmであった。
[Example 2]
<Production of optical film 104>
In the production of the optical film 103, the coating material B is applied in the same manner, and then using a tenter-type lateral stretching machine, the film is continuously laterally uniaxially stretched at a stretching temperature of 155°C and a stretching ratio of 3.0 times. The left and right ends were cut off and removed. As a result, the step of drying and curing the coating material B and the step of stretching the unstretched optical film b2 are carried out simultaneously, and a coating layer (made of polyurethane resin) is formed on the surface of the stretched optical film b2 (substrate). An optical film 104 laminated with an adhesive layer) was obtained. The optical film 104 had a substrate with a thickness of 30 μm, a width of 1500 mm, and an easily adhesive layer with a thickness of 50 nm.
[実施例3]
<塗布材料Cの作製>
 ポリウレタンの水分散体(ポリエステルポリオール及び脂肪族ポリイソシアネート系からなるポリウレタン。詳細は表I参照。)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにエポキシ化合物(商品名「デナコールEX-521」、ナガセケムテックス社製)15質量部と、アジピン酸ジヒドラジド6質量部と、シリカ粒子(平均一次粒径100nm、標準偏差20nm)5質量部と、水とを配合して、塗布材料Cを、固形分8%の液状の水系樹脂組成物として得た。
[Example 3]
<Preparation of Coating Material C>
100 parts by mass of a water dispersion of polyurethane (polyurethane composed of polyester polyol and aliphatic polyisocyanate; see Table I for details) is taken (the amount of polyurethane in the water dispersion), and an epoxy compound (product Name “Denacol EX-521” manufactured by Nagase ChemteX Corporation) 15 parts by weight, 6 parts by weight of adipic acid dihydrazide, 5 parts by weight of silica particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water. Thus, a coating material C was obtained as a liquid water-based resin composition having a solid content of 8%.
<塗布材料の塗布>
 コロナ処理装置(春日電機社製)を用いて、出力500W、電極長1.35m、搬送速度15m/minの条件で、前記で作製した未延伸光学フィルムb2の一方の表面に放電処理を施した。未延伸光学フィルムb2の放電処理を施した側の表面に、塗布材料Cを、乾燥膜厚が2.0μmになるようにロールコーターを用いて塗布した。
<Application of coating material>
Using a corona treatment apparatus (manufactured by Kasuga Denki Co., Ltd.), discharge treatment was performed on one surface of the unstretched optical film b2 prepared above under the conditions of an output of 500 W, an electrode length of 1.35 m, and a transport speed of 15 m/min. . The coating material C was applied to the discharge-treated surface of the unstretched optical film b2 using a roll coater so that the dry film thickness was 2.0 μm.
<光学フィルム105の製造>
 その後、テンター式横延伸機を用いて、未延伸光学フィルムb2の両端部をクリップで把持して、延伸温度155℃、延伸倍率2.6倍で連続的に横一軸延伸し、さらに左右両端の部分を裁断して除去した。これにより、塗布材料Cを乾燥させ硬化させる工程と、未延伸光学フィルムb2を延伸する工程とが同時に実施され、延伸後の光学フィルムb2(基材)の表面に塗布層(ポリウレタン樹脂からなる易接着層)が積層された光学フィルム105を得た。当該光学フィルム105は、基材の厚さが39μm、幅1300mmで、易接着層の厚さが50nmであった。
<Manufacture of optical film 105>
Thereafter, using a tenter-type transverse stretching machine, both ends of the unstretched optical film b2 are gripped with clips, and continuously transversely uniaxially stretched at a stretching temperature of 155° C. and a stretching ratio of 2.6 times. A section was cut out and removed. As a result, the step of drying and curing the coating material C and the step of stretching the unstretched optical film b2 are carried out simultaneously, and a coating layer (made of polyurethane resin) is formed on the surface of the stretched optical film b2 (substrate). An optical film 105 laminated with an adhesive layer) was obtained. The optical film 105 had a substrate with a thickness of 39 μm, a width of 1300 mm, and an easily adhesive layer with a thickness of 50 nm.
[実施例4]
<塗布材料Dの作製>
 ポリウレタンの水分散体(ポリエーテルポリオール及び脂肪族ポリイソシアネート系からなるポリウレタン。詳細は表I参照。)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにエポキシ化合物(商品名「デナコールEX-521」、ナガセケムテックス社製)15質量部と、アジピン酸ジヒドラジド6質量部と、シリカ粒子(平均一次粒径100nm、標準偏差20nm)5質量部と、水とを配合して、塗布材料Dを、固形分8%の液状の水系樹脂組成物として得た。
[Example 4]
<Production of coating material D>
Take 100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous polyurethane dispersion (polyether polyol and aliphatic polyisocyanate-based polyurethane; see Table I for details), and add an epoxy compound ( Product name “Denacol EX-521” manufactured by Nagase ChemteX Corporation) 15 parts by mass, 6 parts by mass of adipic acid dihydrazide, 5 parts by mass of silica particles (average primary particle size 100 nm, standard deviation 20 nm), and water are blended. Thus, a coating material D was obtained as a liquid water-based resin composition having a solid content of 8%.
<塗布材料の塗布>
 コロナ処理装置(春日電機社製)を用いて、出力500W、電極長1.35m、搬送速度15m/minの条件で、前記で作製した未延伸光学フィルムb2の一方の表面に放電処理を施した。未延伸光学フィルムb2の放電処理を施した側の表面に、塗布材料Dを、乾燥膜厚が2.0μmになるようにロールコーターを用いて塗布した。
<Application of coating material>
Using a corona treatment apparatus (manufactured by Kasuga Denki Co., Ltd.), discharge treatment was performed on one surface of the unstretched optical film b2 prepared above under the conditions of an output of 500 W, an electrode length of 1.35 m, and a transport speed of 15 m/min. . The coating material D was applied to the discharge-treated surface of the unstretched optical film b2 using a roll coater so that the dry film thickness was 2.0 μm.
<光学フィルム106の製造>
 その後、テンター式横延伸機を用いて、未延伸光学フィルムb2の両端部をクリップで把持して、延伸温度155℃、延伸倍率2.6倍で連続的に横一軸延伸し、さらに左右両端の部分を裁断して除去した。これにより、塗布材料Dを乾燥させ硬化させる工程と、未延伸光学フィルムb2を延伸する工程とが同時に実施され、延伸後の光学フィルムb2(基材)の表面に塗布層(ポリウレタン樹脂からなる易接着層)が積層された光学フィルム106を得た。当該光学フィルム106は、基材の厚さが39μm、幅1300mmで、易接着層の厚さが50nmであった。
<Production of optical film 106>
Thereafter, using a tenter-type transverse stretching machine, both ends of the unstretched optical film b2 are gripped with clips, and continuously transversely uniaxially stretched at a stretching temperature of 155° C. and a stretching ratio of 2.6 times. A section was cut out and removed. As a result, the step of drying and curing the coating material D and the step of stretching the unstretched optical film b2 are carried out simultaneously, and a coating layer (made of polyurethane resin) is formed on the surface of the stretched optical film b2 (substrate). An optical film 106 laminated with an adhesive layer) was obtained. The optical film 106 had a substrate with a thickness of 39 μm, a width of 1300 mm, and an easily adhesive layer with a thickness of 50 nm.
[実施例5]
<塗布材料Eの作製>
 ポリウレタンの水分散体(ポリエステルポリオール及び脂環族ポリイソシアネート系からなるポリウレタン。詳細は表I参照。)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにエポキシ化合物(商品名「デナコールEX-521」、ナガセケムテックス社製)15質量部と、アジピン酸ジヒドラジド6質量部と、シリカ粒子(平均一次粒径100nm、標準偏差20nm)5質量部と、水とを配合して、塗布材料Eを、固形分8%の液状の水系樹脂組成物として得た。
[Example 5]
<Production of coating material E>
100 parts by mass of a water dispersion of polyurethane (polyurethane composed of polyester polyol and alicyclic polyisocyanate; see Table I for details) (the amount of polyurethane in the water dispersion), and an epoxy compound ( Product name “Denacol EX-521” manufactured by Nagase ChemteX Corporation) 15 parts by mass, 6 parts by mass of adipic acid dihydrazide, 5 parts by mass of silica particles (average primary particle size 100 nm, standard deviation 20 nm), and water are blended. Thus, a coating material E was obtained as a liquid water-based resin composition having a solid content of 8%.
<塗布材料の塗布>
 コロナ処理装置(春日電機社製)を用いて、出力500W、電極長1.35m、搬送速度15m/minの条件で、前記で作製した未延伸光学フィルムb2の一方の表面に放電処理を施した。未延伸光学フィルムb2の放電処理を施した側の表面に、塗布材料Eを、乾燥膜厚が2.0μmになるようにロールコーターを用いて塗布した。
<Application of coating material>
Using a corona treatment apparatus (manufactured by Kasuga Denki Co., Ltd.), discharge treatment was performed on one surface of the unstretched optical film b2 prepared above under the conditions of an output of 500 W, an electrode length of 1.35 m, and a transport speed of 15 m/min. . The coating material E was applied to the discharge-treated surface of the unstretched optical film b2 using a roll coater so that the dry film thickness was 2.0 μm.
<光学フィルム107の製造>
 その後、テンター式横延伸機を用いて、未延伸光学フィルムb2の両端部をクリップで把持して、延伸温度155℃、延伸倍率2.6倍で連続的に横一軸延伸し、さらに左右両端の部分を裁断して除去した。これにより、塗布材料Eを乾燥させ硬化させる工程と、未延伸光学フィルムb2を延伸する工程とが同時に実施され、延伸後の光学フィルムb2(基材)の表面に塗布層(ポリウレタン樹脂からなる易接着層)が積層された光学フィルム107を得た。当該光学フィルム107は、基材の厚さが39μm、幅1300mmで、易接着層の厚さが50nmであった。
<Manufacture of optical film 107>
Thereafter, using a tenter-type transverse stretching machine, both ends of the unstretched optical film b2 are gripped with clips, and continuously transversely uniaxially stretched at a stretching temperature of 155° C. and a stretching ratio of 2.6 times. A section was cut out and removed. As a result, the step of drying and curing the coating material E and the step of stretching the unstretched optical film b2 are carried out simultaneously, and a coating layer (made of polyurethane resin) is formed on the surface of the stretched optical film b2 (substrate). An optical film 107 laminated with an adhesive layer) was obtained. The optical film 107 had a substrate with a thickness of 39 μm, a width of 1300 mm, and an easily adhesive layer with a thickness of 50 nm.
[実施例6]
<塗布材料Fの作製>
 ポリウレタンの水分散体(ポリエステルポリオール及び芳香族ポリイソシアネート系からなるポリウレタン。詳細は表I参照。)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにエポキシ化合物(商品名「デナコールEX-521」、ナガセケムテックス社製)15質量部と、アジピン酸ジヒドラジド6質量部と、シリカ粒子(平均一次粒径100nm、標準偏差20nm)5質量部と、水とを配合して、塗布材料Fを、固形分8%の液状の水系樹脂組成物として得た。
[Example 6]
<Production of coating material F>
100 parts by mass of an aqueous dispersion of polyurethane (polyurethane composed of a polyester polyol and an aromatic polyisocyanate; see Table I for details), and an epoxy compound (product Name “Denacol EX-521” manufactured by Nagase ChemteX Corporation) 15 parts by weight, 6 parts by weight of adipic acid dihydrazide, 5 parts by weight of silica particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water. Thus, a coating material F was obtained as a liquid water-based resin composition having a solid content of 8%.
<塗布材料の塗布>
 コロナ処理装置(春日電機社製)を用いて、出力500W、電極長1.35m、搬送速度15m/minの条件で、前記で作製した未延伸光学フィルムb2の一方の表面に放電処理を施した。未延伸光学フィルムb2の放電処理を施した側の表面に、塗布材料Fを、乾燥膜厚が2.0μmになるようにロールコーターを用いて塗布した。
<Application of coating material>
Using a corona treatment apparatus (manufactured by Kasuga Denki Co., Ltd.), discharge treatment was performed on one surface of the unstretched optical film b2 prepared above under the conditions of an output of 500 W, an electrode length of 1.35 m, and a transport speed of 15 m/min. . The coating material F was applied to the discharge-treated surface of the unstretched optical film b2 using a roll coater so that the dry film thickness was 2.0 μm.
<光学フィルム108の製造>
 その後、テンター式横延伸機を用いて、未延伸光学フィルムb2の両端部をクリップで把持して、延伸温度155℃、延伸倍率2.6倍で連続的に横一軸延伸し、さらに左右両端の部分を裁断して除去した。これにより、塗布材料Fを乾燥させ硬化させる工程と、未延伸光学フィルムb2を延伸する工程とが同時に実施され、延伸後の光学フィルムb2(基材)の表面に塗布層(ポリウレタン樹脂からなる易接着層)が積層された光学フィルム108を得た。当該光学フィルム108は、基材の厚さが39μm、幅1300mmで、易接着層の厚さが50nmであった。
<Manufacture of optical film 108>
Thereafter, using a tenter-type transverse stretching machine, both ends of the unstretched optical film b2 are gripped with clips, and continuously transversely uniaxially stretched at a stretching temperature of 155° C. and a stretching ratio of 2.6 times. A section was cut out and removed. As a result, the step of drying and curing the coating material F and the step of stretching the unstretched optical film b2 are carried out simultaneously, and a coating layer (made of polyurethane resin) is formed on the surface of the stretched optical film b2 (substrate). An optical film 108 laminated with an adhesive layer) was obtained. The optical film 108 had a substrate with a thickness of 39 μm, a width of 1300 mm, and an easily adhesive layer with a thickness of 50 nm.
[実施例7]
<塗布材料Gの作製>
 前記塗布材料Bの作製において、シリカ粒子の平均一次粒径が200nmとしたこと以外は同様にして塗布材料Gを作製した。
[Example 7]
<Preparation of Coating Material G>
Coating material G was prepared in the same manner as in preparation of coating material B, except that the average primary particle size of the silica particles was 200 nm.
<塗布材料の塗布>
 未延伸光学フィルムb2の放電処理を施した側の表面に、塗布材料Gを塗布したこと以外は実施例1と同様にした。
<Application of coating material>
The procedure was the same as in Example 1, except that the coating material G was applied to the discharge-treated surface of the unstretched optical film b2.
<光学フィルム109の製造>
 塗布材料Gを硬化させた以外は実施例1と同様にして光学フィルム109を得た。
<Production of optical film 109>
An optical film 109 was obtained in the same manner as in Example 1, except that the coating material G was cured.
[実施例8]
<塗布材料Hの作製>
 前記塗布材料Bの作製において、シリカ粒子の平均一次粒径を140nmとしたこと以外は同様にして塗布材料Hを作製した。
[Example 8]
<Production of Coating Material H>
Coating material H was prepared in the same manner as in preparation of coating material B, except that the average primary particle size of the silica particles was 140 nm.
<塗布材料の塗布>
 未延伸光学フィルムb2の放電処理を施した側の表面に、塗布材料Hを塗布したこと以外は実施例1と同様にした。
<Application of coating material>
The procedure was the same as in Example 1, except that the coating material H was applied to the discharge-treated surface of the unstretched optical film b2.
<光学フィルム110の製造>
 塗布材料Hを硬化させた以外は実施例1と同様にして光学フィルム110を得た。
<Manufacture of optical film 110>
An optical film 110 was obtained in the same manner as in Example 1, except that the coating material H was cured.
[実施例9]
<塗布材料Iの作製>
 前記塗布材料Bの作製において、シリカ粒子の平均一次粒径が60nmとしたこと以外は同様にして塗布材料Iを作製した。
[Example 9]
<Preparation of coating material I>
Coating material I was prepared in the same manner as in preparation of coating material B, except that the average primary particle size of the silica particles was 60 nm.
<塗布材料の塗布>
 未延伸光学フィルムb2の放電処理を施した側の表面に、塗布材料Iを塗布したこと以外は実施例1と同様にした。
<Application of coating material>
The procedure was the same as in Example 1, except that the coating material I was applied to the discharge-treated surface of the unstretched optical film b2.
<光学フィルム111の製造>
 塗布材料Iを硬化させた以外は実施例1と同様にして光学フィルム111を得た。
<Manufacture of optical film 111>
An optical film 111 was obtained in the same manner as in Example 1, except that the coating material I was cured.
[実施例10]
<塗布材料Jの作製>
 前記塗布材料Bの作製において、シリカ粒子の一次粒径の標準偏差を30nmとしたこと以外は同様にして塗布材料Jを作製した。
[Example 10]
<Production of Coating Material J>
Coating material J was prepared in the same manner as in preparation of coating material B, except that the standard deviation of the primary particle size of the silica particles was set to 30 nm.
<塗布材料の塗布>
 未延伸光学フィルムb2の放電処理を施した側の表面に、塗布材料Jを塗布したこと以外は実施例1と同様にした。
<Application of coating material>
The procedure was the same as in Example 1, except that the coating material J was applied to the discharge-treated surface of the unstretched optical film b2.
<光学フィルム112の製造>
 塗布材料Jを硬化させた以外は実施例1と同様にして光学フィルム112を得た。
<Manufacture of optical film 112>
An optical film 112 was obtained in the same manner as in Example 1, except that the coating material J was cured.
[実施例11]
<塗布材料Kの作製>
 前記塗布材料Bの作製において、シリカ粒子の一次粒径の標準偏差を10nmとしたこと以外は同様にして塗布材料Kを作製した。
[Example 11]
<Production of Coating Material K>
Coating material K was prepared in the same manner as in preparation of coating material B, except that the standard deviation of the primary particle size of the silica particles was set to 10 nm.
<塗布材料の塗布>
 未延伸光学フィルムb2の放電処理を施した側の表面に、塗布材料Kを塗布したこと以外は実施例1と同様にした。
<Application of coating material>
The procedure was the same as in Example 1, except that the coating material K was applied to the discharge-treated surface of the unstretched optical film b2.
<光学フィルム113の製造>
 塗布材料Kを硬化させた以外は実施例1と同様にして光学フィルム113を得た。
<Manufacture of optical film 113>
An optical film 113 was obtained in the same manner as in Example 1, except that the coating material K was cured.
[実施例12]
<塗布材料Lの作製>
 前記塗布材料Bの作製において、シリカ粒子の一次粒径の標準偏差を5nmとしたこと以外は同様にして塗布材料Lを作製した。
[Example 12]
<Production of coating material L>
Coating material L was prepared in the same manner as in preparation of coating material B, except that the standard deviation of the primary particle size of the silica particles was set to 5 nm.
<塗布材料の塗布>
 未延伸光学フィルムb2の放電処理を施した側の表面に、塗布材料Lを塗布したこと以外は実施例1と同様にした。
<Application of coating material>
The procedure was the same as in Example 1, except that the coating material L was applied to the discharge-treated surface of the unstretched optical film b2.
<光学フィルム114の製造>
 塗布材料Lを硬化させた以外は実施例1同様にして光学フィルム114を得た。
<Manufacture of optical film 114>
An optical film 114 was obtained in the same manner as in Example 1 except that the coating material L was cured.
[比較例3]
<塗布材料Mの作製>
 前記塗布材料Cの作製において、シリカ粒子の一次粒径の標準偏差を5nmとしたこと以外は同様にして塗布材料Mを作製した。
[Comparative Example 3]
<Production of Coating Material M>
Coating material M was prepared in the same manner as in preparation of coating material C, except that the standard deviation of the primary particle size of the silica particles was set to 5 nm.
<塗布材料の塗布>
 未延伸光学フィルムb2の放電処理を施した側の表面に、塗布材料Mを塗布したこと以外は実施例1と同様にした。
<Application of coating material>
The procedure was the same as in Example 1, except that the coating material M was applied to the discharge-treated surface of the unstretched optical film b2.
<光学フィルム115の製造>
 塗布材料Mを硬化させた以外は実施例1と同様にして光学フィルム115を得た。
<Production of optical film 115>
An optical film 115 was obtained in the same manner as in Example 1, except that the coating material M was cured.
[比較例4]
<未延伸光学フィルムb3の製造>
 シクロオレフィン系重合体を含む樹脂(ガラス転移温度135℃;日本ゼオン社製「ZEONOR1430」)のペレットを、空気を流通させた熱風乾燥器を用いて70℃で2時間乾燥した。その後、65mm径のスクリューを備えた樹脂溶融混練機を有するTダイ式のフィルム溶融押出し成形機を使用し、溶融樹脂温度270℃、Tダイの幅500mmの成形条件で、厚み100μm、長さ1000mの未延伸光学フィルムb3を得た。
[Comparative Example 4]
<Production of unstretched optical film b3>
Pellets of a resin containing a cycloolefin polymer (glass transition temperature: 135° C.; “ZEONOR1430” manufactured by Nippon Zeon Co., Ltd.) were dried at 70° C. for 2 hours using a hot air dryer through which air was passed. After that, using a T-die type film melt extruder having a resin melt kneader equipped with a screw with a diameter of 65 mm, the molten resin temperature is 270 ° C., the width of the T die is 500 mm, the thickness is 100 μm, and the length is 1000 m. to obtain an unstretched optical film b3.
<塗布材料N1の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス210」、カルボキシ基含有エステル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにエポキシ化合物(商品名「デナコールEX-521」、ナガセケムテックス社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%
の液状の塗布材料N1として得た。
<Production of coating material N1>
Take 100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane (“Superflex 210” manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., an ester-based polyurethane resin containing a carboxy group), and add an epoxy compound ( Product name “Denacol EX-521” manufactured by Nagase ChemteX Corporation) 20 parts by mass, 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica particles (average primary particle size 100 nm, standard deviation 20 nm), and water. 5% solids
obtained as a liquid coating material N1.
<複層フィルムの製造>
 コロナ処理装置(春日電機社製)を用いて、出力300W、電極長240mm、ワーク電極間3.0mm、搬送速度4m/minの条件で、前記で準備した未延伸光学フィルムb3の一方の表面に放電処理を施した。未延伸光学フィルムb3の放電処理を施した側の表面に、塗布材料N1を乾燥膜厚は0.5μmになるようにロールコーターを用いて塗布した。
<Production of multilayer film>
Using a corona treatment apparatus (manufactured by Kasuga Denki Co., Ltd.), under the conditions of an output of 300 W, an electrode length of 240 mm, a work electrode distance of 3.0 mm, and a conveying speed of 4 m/min, one surface of the unstretched optical film b3 prepared above. Discharge treatment was performed. The surface of the unstretched optical film b3 on the discharge-treated side was coated with the coating material N1 using a roll coater so that the dry film thickness was 0.5 μm.
<光学フィルム116の製造>
 その後、テンター式横延伸機を用いて、未延伸光学フィルムb3の両端部をクリップで把持して、延伸温度140℃で40秒かけて、延伸倍率2.0倍で連続的に横一軸延伸し、さらに左右両端の部分を裁断して除去した。これにより、塗布材料N1を乾燥する工程と、フィルムを延伸する工程とが同時に実施され、基材フィルムの表面に易接着層が形成されて、配向軸が幅方向に一致した光学フィルム116を得た。当該光学フィルム116は、基材の厚さが50μm、幅1000mmで、易接着層の厚さが50nmであった。
<Manufacture of optical film 116>
Thereafter, using a tenter-type transverse stretching machine, both ends of the unstretched optical film b3 are gripped with clips, and continuously transversely uniaxially stretched at a stretching temperature of 140° C. for 40 seconds at a stretching ratio of 2.0. Furthermore, the left and right ends were cut and removed. As a result, the step of drying the coating material N1 and the step of stretching the film are performed simultaneously, forming an easy-adhesion layer on the surface of the base film, and obtaining the optical film 116 whose orientation axis is aligned in the width direction. rice field. The optical film 116 had a substrate with a thickness of 50 μm, a width of 1000 mm, and an easily adhesive layer with a thickness of 50 nm.
[比較例5]
<塗布材料N2の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス210」、カルボキシ基含有エステル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトV-02-L2(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料N2として得た。
[Comparative Example 5]
<Production of coating material N2>
100 parts by mass of a water dispersion of polyurethane ("Superflex 210" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., an ester-based polyurethane resin containing a carboxyl group) (the amount of polyurethane in the water dispersion) is taken, and a carbodiimide compound is added thereto. 20 parts by mass of Carbodilite V-02-L2 (manufactured by Nisshinbo Chemical Co., Ltd.), 5 parts by mass of dihydrazide sebacic acid, 8 parts by mass of fine silica particles (average primary particle diameter: 100 nm, standard deviation: 20 nm), and water are blended. , obtained as a liquid coating material N2 having a solid content of 5%.
<光学フィルム117の製造>
 塗布材料N1の代わりに前記塗布材料N2を用いた以外は、比較例4と同様にして、光学フィルム117を得た。
<Manufacture of optical film 117>
An optical film 117 was obtained in the same manner as in Comparative Example 4, except that the coating material N2 was used instead of the coating material N1.
[比較例6]
<塗布材料N3の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス210」、カルボキシ基含有エステル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトSV-02(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料N3として得た。
[Comparative Example 6]
<Production of coating material N3>
100 parts by mass of a water dispersion of polyurethane ("Superflex 210" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., an ester-based polyurethane resin containing a carboxyl group) (the amount of polyurethane in the water dispersion) is taken, and a carbodiimide compound is added thereto. A certain Carbodilite SV-02 (manufactured by Nisshinbo Chemical Co., Ltd.) 20 parts by mass, 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica fine particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water are blended to form a solid. It was obtained as a 5% liquid coating material N3.
<光学フィルム118の製造>
 塗布材料N1の代わりに前記塗布材料N3を用いた以外は、比較例4と同様にして、光学フィルム118を得た。
<Manufacture of optical film 118>
An optical film 118 was obtained in the same manner as in Comparative Example 4, except that the coating material N3 was used instead of the coating material N1.
[比較例7]
<塗布材料N4の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス210」、カルボキシ基含有エステル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにオキサゾリン化合物であるエポクロスWS-700(日本触媒社製)20部と、セバシン酸ジヒドラジド5部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8部と、水とを配合して、固形分5%の液状の塗布材料N4として得た。
[Comparative Example 7]
<Production of coating material N4>
100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane (“Superflex 210” manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., a carboxyl group-containing ester polyurethane resin) is taken, and an oxazoline compound is added thereto. 20 parts of certain Epocross WS-700 (manufactured by Nippon Shokubai Co., Ltd.), 5 parts of dihydrazide sebacate, 8 parts of fine silica particles (average primary particle size: 100 nm, standard deviation: 20 nm), and water were blended to give a solid content of 5%. obtained as a liquid coating material N4.
<光学フィルム119の製造>
 塗布材料N1の代わりに前記塗布材料N4を用いた以外は、比較例4と同様にして、光学フィルム119を得た。
<Production of optical film 119>
An optical film 119 was obtained in the same manner as in Comparative Example 4, except that the coating material N4 was used instead of the coating material N1.
[比較例8]
<塗布材料O1の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス130」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにエポキシ化合物であるデナコールEX-521(ナガセケムテックス社製)20部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料O1として得た。
[Comparative Example 8]
<Production of coating material O1>
Take 100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane ("Superflex 130" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., an ether-based polyurethane resin containing a carboxy group), and add an epoxy compound thereto. 20 parts of Denacol EX-521 (manufactured by Nagase ChemteX Corporation), 5 parts by weight of dihydrazide sebacate, 8 parts by weight of fine silica particles (average primary particle diameter: 100 nm, standard deviation: 20 nm), and water are blended to form a solid. It was obtained as a 5% liquid coating material O1.
<光学フィルム120の製造>
 塗布材料N1の代わりに前記塗布材料O1を用いた以外は、比較例4と同様にして、光学フィルム120を得た。
<Manufacture of optical film 120>
An optical film 120 was obtained in the same manner as in Comparative Example 4, except that the coating material O1 was used instead of the coating material N1.
[比較例9]
<塗布材料O2の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス130」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトV-02-L2(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料O2として得た。
[Comparative Example 9]
<Production of coating material O2>
Take 100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane ("Superflex 130", a carboxy group-containing ether-based polyurethane resin manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.), and add a carbodiimide compound thereto. 20 parts by mass of Carbodilite V-02-L2 (manufactured by Nisshinbo Chemical Co., Ltd.), 5 parts by mass of dihydrazide sebacic acid, 8 parts by mass of fine silica particles (average primary particle diameter: 100 nm, standard deviation: 20 nm), and water are blended. , obtained as a liquid coating material O2 having a solid content of 5%.
<光学フィルム121の製造>
 塗布材料N1の代わりに前記塗布材料O2を用いた以外は、比較例4と同様にして、光学フィルム121を得た。
<Manufacture of optical film 121>
An optical film 121 was obtained in the same manner as in Comparative Example 4, except that the coating material O2 was used instead of the coating material N1.
[比較例10]
<塗布材料O3の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス130」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトSV-02(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料O3として得た。
[Comparative Example 10]
<Production of coating material O3>
Take 100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane ("Superflex 130", a carboxy group-containing ether-based polyurethane resin manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.), and add a carbodiimide compound thereto. A certain Carbodilite SV-02 (manufactured by Nisshinbo Chemical Co., Ltd.) 20 parts by mass, 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica fine particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water are blended to form a solid. It was obtained as a 5% liquid coating material O3.
<光学フィルム122の製造>
 塗布材料N1の代わりに前記塗布材料O3を用いた以外は、比較例4と同様にして、光学フィルム122を得た。
<Manufacture of optical film 122>
An optical film 122 was obtained in the same manner as in Comparative Example 4, except that the coating material O3 was used instead of the coating material N1.
[比較例11]
<塗布材料O4の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス130」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにオキサゾリン化合物であるエポクロスWS-700(日本触媒社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料O4として得た。
[Comparative Example 11]
<Production of coating material O4>
100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane ("Superflex 130" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., an ether-based polyurethane resin containing a carboxy group) is taken, and an oxazoline compound is added thereto. 20 parts by mass of Epocross WS-700 (manufactured by Nippon Shokubai Co., Ltd.), 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica fine particles (average primary particle size 100 nm, standard deviation 20 nm), and water are mixed to form a solid. It was obtained as a 5% liquid coating material O4.
<光学フィルム123の製造>
 塗布材料N1の代わりに前記塗布材料O4を用いた以外は、比較例4と同様にして、光学フィルム123を得た。
<Manufacture of optical film 123>
An optical film 123 was obtained in the same manner as in Comparative Example 4, except that the coating material O4 was used instead of the coating material N1.
[比較例12]
<塗布材料P1の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス150HS」、カルボキシ基含有エステル・エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにエポキシ化合物であるデナコールEX-521(ナガセケムテックス社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料P1として得た。
[Comparative Example 12]
<Production of coating material P1>
100 parts by mass of a polyurethane water dispersion ("Superflex 150HS" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., a carboxy group-containing ester/ether polyurethane resin) is taken (the amount of polyurethane in the water dispersion), and epoxy is added here. 20 parts by mass of the compound Denacol EX-521 (manufactured by Nagase ChemteX Corporation), 5 parts by mass of dihydrazide sebacic acid, 8 parts by mass of fine silica particles (average primary particle diameter: 100 nm, standard deviation: 20 nm), and water were blended. to obtain a liquid coating material P1 having a solid content of 5%.
<光学フィルム124の製造>
 塗布材料N1の代わりに前記塗布材料P1を用いた以外は、比較例4と同様にして、光学フィルム124を得た。
<Manufacture of optical film 124>
An optical film 124 was obtained in the same manner as in Comparative Example 4, except that the coating material P1 was used instead of the coating material N1.
[比較例13]
<塗布材料P2の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス150HS」、カルボキシ基含有エステル・エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトV-02-L2(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料P2として得た。
[Comparative Example 13]
<Production of Coating Material P2>
100 parts by mass of a water dispersion of polyurethane (“Superflex 150HS” manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., a carboxy group-containing ester/ether polyurethane resin) (the amount of polyurethane in the water dispersion) is taken, and carbodiimide is added thereto. Compound Carbodilite V-02-L2 (manufactured by Nisshinbo Chemical Co., Ltd.) 20 parts by mass, 5 parts by mass of dihydrazide sebacic acid, 8 parts by mass of fine silica particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water. Then, a liquid coating material P2 having a solid content of 5% was obtained.
<光学フィルム125の製造>
 塗布材料N1の代わりに前記塗布材料P2を用いた以外は、比較例4と同様にして、光学フィルム125を得た。
<Manufacture of optical film 125>
An optical film 125 was obtained in the same manner as in Comparative Example 4, except that the coating material P2 was used instead of the coating material N1.
[比較例14]
<塗布材料P3の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス150HS」、カルボキシ基含有エステル・エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトSV-02(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料P3として得た。
[Comparative Example 14]
<Production of coating material P3>
100 parts by mass of a water dispersion of polyurethane (“Superflex 150HS” manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., a carboxy group-containing ester/ether polyurethane resin) (the amount of polyurethane in the water dispersion) is taken, and carbodiimide is added thereto. Compound Carbodilite SV-02 (manufactured by Nisshinbo Chemical Co., Ltd.) 20 parts by mass, sebacate dihydrazide 5 parts by mass, silica fine particles (average primary particle diameter 100 nm, standard deviation 20 nm) 8 parts by mass, and water are blended. , obtained as a liquid coating material P3 having a solid content of 5%.
<光学フィルム126の製造>
 塗布材料N1の代わりに前記塗布材料P3を用いた以外は、比較例4と同様にして、光学フィルム126を得た。
<Production of optical film 126>
An optical film 126 was obtained in the same manner as in Comparative Example 4, except that the coating material P3 was used instead of the coating material N1.
[比較例15]
<塗布材料P4の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス150HS」、カルボキシ基含有エステル・エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにオキサゾリン化合物であるエポクロスWS-700(日本触媒社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料P4として得た。
[Comparative Example 15]
<Production of coating material P4>
100 parts by mass of a water dispersion of polyurethane (“Superflex 150HS” manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., a carboxy group-containing ester/ether polyurethane resin) (the amount of polyurethane in the water dispersion) was taken, and oxazoline was added thereto. 20 parts by mass of the compound Epocross WS-700 (manufactured by Nippon Shokubai Co., Ltd.), 5 parts by mass of dihydrazide sebacate, 8 parts by mass of fine silica particles (average primary particle diameter: 100 nm, standard deviation: 20 nm), and water are blended. , obtained as a liquid coating material P4 having a solid content of 5%.
<光学フィルム127の製造>
 塗布材料N1の代わりに前記塗布材料P4を用いた以外は、比較例4と同様にして、光学フィルム127を得た。
<Manufacture of optical film 127>
An optical film 127 was obtained in the same manner as in Comparative Example 4, except that the coating material P4 was used instead of the coating material N1.
[比較例16]
<塗布材料Q1の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス870」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにエポキシ化合物であるデナコールEX-521(ナガセケムテックス社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料Q1として得た。
[Comparative Example 16]
<Production of Coating Material Q1>
Take 100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane ("Superflex 870" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., an ether-based polyurethane resin containing a carboxy group), and add an epoxy compound thereto. 20 parts by mass of Denacol EX-521 (manufactured by Nagase ChemteX Corporation), 5 parts by mass of dihydrazide sebacic acid, 8 parts by mass of fine silica particles (average primary particle diameter: 100 nm, standard deviation: 20 nm), and water are blended. It was obtained as a liquid coating material Q1 having a solid content of 5%.
<光学フィルム128の製造>
 塗布材料N1の代わりに前記塗布材料Q1を用いた以外は、比較例4と同様にして、光学フィルム128を得た。
<Manufacture of optical film 128>
An optical film 128 was obtained in the same manner as in Comparative Example 4, except that the coating material Q1 was used instead of the coating material N1.
[比較例17]
<塗布材料Q2の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス870」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトV-02-L2(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料Q2として得た。
[Comparative Example 17]
<Production of Coating Material Q2>
100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane ("Superflex 870" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., a carboxy group-containing ether-based polyurethane resin) is taken, and a carbodiimide compound is added thereto. 20 parts by mass of Carbodilite V-02-L2 (manufactured by Nisshinbo Chemical Co., Ltd.), 5 parts by mass of dihydrazide sebacic acid, 8 parts by mass of fine silica particles (average primary particle diameter: 100 nm, standard deviation: 20 nm), and water are blended. , obtained as a liquid coating material Q2 having a solid content of 5%.
<光学フィルム129の製造>
 塗布材料N1の代わりに前記塗布材料Q2を用いた以外は、比較例4と同様にして、光学フィルム129を得た。
<Production of optical film 129>
An optical film 129 was obtained in the same manner as in Comparative Example 4, except that the coating material Q2 was used instead of the coating material N1.
[比較例18]
<塗布材料Q3の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス870」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトSV-02(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料Q3として得た。
[Comparative Example 18]
<Production of coating material Q3>
100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane ("Superflex 870" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., a carboxy group-containing ether-based polyurethane resin) is taken, and a carbodiimide compound is added thereto. A certain Carbodilite SV-02 (manufactured by Nisshinbo Chemical Co., Ltd.) 20 parts by mass, 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica fine particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water are blended to form a solid. It was obtained as a 5% liquid coating material Q3.
<光学フィルム130の製造>
 塗布材料N1の代わりに前記塗布材料Q3を用いた以外は、比較例4と同様にして、光学フィルム130を得た。
<Manufacture of optical film 130>
An optical film 130 was obtained in the same manner as in Comparative Example 4, except that the coating material Q3 was used instead of the coating material N1.
[比較例19]
<塗布材料Q4の作製>
 ポリウレタンの水分散体(第一工業製薬社製「スーパーフレックス870」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにオキサゾリン化合物であるエポクロスWS-700(日本触媒社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料Q4として得た。
[Comparative Example 19]
<Production of coating material Q4>
Take 100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane ("Superflex 870" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., an ether-based polyurethane resin containing a carboxy group), and add an oxazoline compound. 20 parts by mass of Epocross WS-700 (manufactured by Nippon Shokubai Co., Ltd.), 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica fine particles (average primary particle size 100 nm, standard deviation 20 nm), and water are mixed to form a solid. It was obtained as a 5% liquid coating material Q4.
<光学フィルム131の製造>
 塗布材料N1の代わりに前記塗布材料Q4を用いた以外は、比較例4と同様にして、光学フィルム131を得た。
<Manufacture of optical film 131>
An optical film 131 was obtained in the same manner as in Comparative Example 4, except that the coating material Q4 was used instead of the coating material N1.
[比較例20]
<塗布材料R1の作製>
 ポリウレタンの水分散体(DIC社製「ハイドランWLS201」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにエポキシ化合物であるデナコールEX-521(ナガセケムテックス社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料R1として得た。
[Comparative Example 20]
<Production of coating material R1>
100 parts by mass of an aqueous dispersion of polyurethane ("Hydran WLS201" manufactured by DIC, a carboxyl group-containing ether-based polyurethane resin) (the amount of polyurethane in the aqueous dispersion) was taken, and Denacol EX-, an epoxy compound, was added thereto. 521 (manufactured by Nagase ChemteX Corporation), 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica fine particles (average primary particle diameter: 100 nm, standard deviation: 20 nm), and water to give a solid content of 5%. obtained as a liquid coating material R1.
<光学フィルム132の製造>
 塗布材料N1の代わりに前記塗布材料R1を用いた以外は、比較例4と同様にして、光学フィルム132を得た。
<Manufacture of optical film 132>
An optical film 132 was obtained in the same manner as in Comparative Example 4, except that the coating material R1 was used instead of the coating material N1.
[比較例21]
<塗布材料R2の作製>
 ポリウレタンの水分散体(DIC社製「ハイドランWLS201」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトV-02-L2(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料R2として得た。
[Comparative Example 21]
<Production of coating material R2>
100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane ("Hydran WLS201" manufactured by DIC, a carboxy group-containing ether-based polyurethane resin) was taken, and carbodiimide V-, a carbodiimide compound, was added thereto. 02-L2 (manufactured by Nisshinbo Chemical Co., Ltd.) 20 parts by mass, 5 parts by mass of dihydrazide sebacate, 8 parts by mass of fine silica particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water were mixed to obtain a solid content of 5. % liquid coating material R2.
<光学フィルム133の製造>
 塗布材料N1の代わりに前記塗布材料R2を用いた以外は、比較例4と同様にして、光学フィルム133を得た。
<Production of optical film 133>
An optical film 133 was obtained in the same manner as in Comparative Example 4, except that the coating material R2 was used instead of the coating material N1.
[比較例22]
<塗布材料R3の作製>
 ポリウレタンの水分散体(DIC社製「ハイドランWLS201」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトSV-02(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料R3として得た。
[Comparative Example 22]
<Production of coating material R3>
100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane ("Hydran WLS201" manufactured by DIC Corporation, a carboxyl group-containing ether-based polyurethane resin) was taken, and carbodiimide compound carbodilite SV- was added thereto. 02 (manufactured by Nisshinbo Chemical Co., Ltd.), 5 parts by mass of dihydrazide sebacate, 8 parts by mass of fine silica particles (average primary particle size: 100 nm, standard deviation: 20 nm), and water to obtain a solid content of 5%. It was obtained as a liquid coating material R3.
<光学フィルム134の製造>
 塗布材料N1の代わりに前記塗布材料R3を用いた以外は、比較例4と同様にして、光学フィルム134を得た。
<Production of optical film 134>
An optical film 134 was obtained in the same manner as in Comparative Example 4, except that the coating material R3 was used instead of the coating material N1.
[比較例23]
<塗布材料R4の作製>
 ポリウレタンの水分散体(DIC社製「ハイドランWLS201」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにオキサゾリン化合物であるエポクロスWS-700(日本触媒社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料R4として得た。
[Comparative Example 23]
<Production of coating material R4>
100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane ("Hydran WLS201" manufactured by DIC, a carboxyl group-containing ether-based polyurethane resin) was taken, and Epocross WS-, which is an oxazoline compound, was added thereto. 700 (manufactured by Nippon Shokubai Co., Ltd.) 20 parts by mass, 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica fine particles (average primary particle size 100 nm, standard deviation 20 nm), and water to obtain a solid content of 5%. It was obtained as a liquid coating material R4.
<光学フィルム135の製造>
 塗布材料N1の代わりに前記塗布材料R4を用いた以外は、比較例4と同様にして、光学フィルム135を得た。
<Manufacture of optical film 135>
An optical film 135 was obtained in the same manner as in Comparative Example 4, except that the coating material R4 was used instead of the coating material N1.
[比較例24]
<塗布材料S1の作製>
 ポリウレタンの水分散体(DIC社製「ハイドランWLS202」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにエポキシ化合物であるデナコールEX-521(ナガセケムテックス社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料S1として得た。
[Comparative Example 24]
<Production of coating material S1>
100 parts by mass of an aqueous dispersion of polyurethane ("Hydran WLS202", carboxy group-containing ether-based polyurethane resin manufactured by DIC Corporation) (the amount of polyurethane in the aqueous dispersion) was taken, and Denacol EX-, an epoxy compound, was added thereto. 521 (manufactured by Nagase ChemteX Corporation), 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica fine particles (average primary particle diameter: 100 nm, standard deviation: 20 nm), and water to give a solid content of 5%. obtained as a liquid coating material S1.
<光学フィルム136の製造>
 塗布材料N1の代わりに前記塗布材料S1を用いた以外は、比較例4と同様にして、光学フィルム136を得た。
<Manufacture of optical film 136>
An optical film 136 was obtained in the same manner as in Comparative Example 4, except that the coating material S1 was used instead of the coating material N1.
[比較例25]
<塗布材料S2の作製>
 ポリウレタンの水分散体(DIC社製「ハイドランWLS202」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトV-02-L2(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料S2として得た。
[Comparative Example 25]
<Production of Coating Material S2>
100 parts by mass of an aqueous dispersion of polyurethane ("Hydran WLS202", carboxy group-containing ether-based polyurethane resin manufactured by DIC Corporation) (the amount of polyurethane in the aqueous dispersion) was taken, and Carbodilite V-, which is a carbodiimide compound, was added thereto. 02-L2 (manufactured by Nisshinbo Chemical Co., Ltd.) 20 parts by mass, 5 parts by mass of dihydrazide sebacate, 8 parts by mass of fine silica particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water were mixed to obtain a solid content of 5. % liquid coating material S2.
<光学フィルム137の製造>
 塗布材料N1の代わりに前記塗布材料S2を用いた以外は、比較例4と同様にして、光学フィルム137を得た。
<Manufacture of optical film 137>
An optical film 137 was obtained in the same manner as in Comparative Example 4, except that the coating material S2 was used instead of the coating material N1.
[比較例26]
<塗布材料S3の作製>
 ポリウレタンの水分散体(DIC社製「ハイドランWLS202」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトSV-02(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料S3として得た。
[Comparative Example 26]
<Production of coating material S3>
100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane ("Hydran WLS202" manufactured by DIC, a carboxyl group-containing ether-based polyurethane resin) was taken, and carbodiimide compound Carbodilite SV- was added thereto. 02 (manufactured by Nisshinbo Chemical Co., Ltd.), 5 parts by mass of dihydrazide sebacate, 8 parts by mass of fine silica particles (average primary particle size: 100 nm, standard deviation: 20 nm), and water to obtain a solid content of 5%. It was obtained as a liquid coating material S3.
<光学フィルム138の製造>
 塗布材料N1の代わりに前記塗布材料S3を用いた以外は、比較例4と同様にして、光学フィルム138を得た。
<Production of optical film 138>
An optical film 138 was obtained in the same manner as in Comparative Example 4, except that the coating material S3 was used instead of the coating material N1.
[比較例27]
<塗布材料S4の作製>
 ポリウレタンの水分散体(DIC社製「ハイドランWLS202」、カルボキシ基含有エーテル系ポリウレタン樹脂)を100質量部(水分散体中のポリウレタンの質量としての量)取り、ここにオキサゾリン化合物であるエポクロスWS-700(日本触媒社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料S4として得た。
[Comparative Example 27]
<Production of coating material S4>
100 parts by mass (the amount of polyurethane in the aqueous dispersion) of an aqueous dispersion of polyurethane ("Hydran WLS202" manufactured by DIC, a carboxy group-containing ether-based polyurethane resin) was taken, and Epocross WS-, which is an oxazoline compound, was added thereto. 700 (manufactured by Nippon Shokubai Co., Ltd.) 20 parts by mass, 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica fine particles (average primary particle size 100 nm, standard deviation 20 nm), and water to obtain a solid content of 5%. It was obtained as a liquid coating material S4.
<光学フィルム139の製造>
 塗布材料N1の代わりに前記塗布材料S4を用いた以外は、比較例4と同様にして、光学フィルム139を得た。
<Production of optical film 139>
An optical film 139 was obtained in the same manner as in Comparative Example 4, except that the coating material S4 was used instead of the coating material N1.
[比較例28]
<塗布材料T1の作製>
 ポリウレタンの水分散体(高松油脂社製「ペスレジンA-684G」、カルボキシ基含有ポリエステル樹脂アクリル樹脂複合物)を100質量部(水分散体中のポリエステルの質量としての量)取り、ここにエポキシ化合物であるデナコールEX-521(ナガセケムテックス社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料T1として得た。
[Comparative Example 28]
<Production of coating material T1>
100 parts by mass of a water dispersion of polyurethane (“Pesresin A-684G” manufactured by Takamatsu Yushi Co., Ltd., a carboxyl group-containing polyester resin acrylic resin composite) (the amount of polyester in the water dispersion) is taken, and an epoxy compound is added thereto. 20 parts by mass of Denacol EX-521 (manufactured by Nagase ChemteX Corporation), 5 parts by mass of dihydrazide sebacic acid, 8 parts by mass of fine silica particles (average primary particle diameter: 100 nm, standard deviation: 20 nm), and water. , obtained as a liquid coating material T1 having a solid content of 5%.
<光学フィルム140の製造>
 塗布材料N1の代わりに前記塗布材料T1を用いた以外は、比較例4と同様にして、光学フィルム140を得た。
<Production of optical film 140>
An optical film 140 was obtained in the same manner as in Comparative Example 4, except that the coating material T1 was used instead of the coating material N1.
[比較例29]
<塗布材料T2の作製>
 ポリウレタンの水分散体(高松油脂社製「ペスレジンA-684G」、カルボキシ基含有ポリエステル樹脂アクリル樹脂複合物)を100質量部(水分散体中のポリエステルの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトV-02-L2(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料T2として得た。
[Comparative Example 29]
<Production of coating material T2>
100 parts by mass of a polyurethane aqueous dispersion (“Pesresin A-684G” manufactured by Takamatsu Yushi Co., Ltd., a carboxy group-containing polyester resin acrylic resin composite) (the amount of polyester in the aqueous dispersion) is taken, and a carbodiimide compound is added thereto. 20 parts by mass of Carbodilite V-02-L2 (manufactured by Nisshinbo Chemical Co., Ltd.), 5 parts by mass of sebacate dihydrazide, 8 parts by mass of fine silica particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water. to obtain a liquid coating material T2 having a solid content of 5%.
<光学フィルム141の製造>
 塗布材料N1の代わりに前記塗布材料T2を用いた以外は、比較例4と同様にして、光学フィルム141を得た。
<Production of optical film 141>
An optical film 141 was obtained in the same manner as in Comparative Example 4, except that the coating material T2 was used instead of the coating material N1.
[比較例30]
<塗布材料T3の作製>
 ポリウレタンの水分散体(高松油脂社製「ペスレジンA-684G」、カルボキシ基含有ポリエステル樹脂アクリル樹脂複合物)を100質量部(水分散体中のポリエステルの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトSV-02(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料T3として得た。
[Comparative Example 30]
<Production of coating material T3>
100 parts by mass of a polyurethane aqueous dispersion (“Pesresin A-684G” manufactured by Takamatsu Yushi Co., Ltd., a carboxy group-containing polyester resin acrylic resin composite) (the amount of polyester in the aqueous dispersion) is taken, and a carbodiimide compound is added thereto. 20 parts by mass of Carbodilite SV-02 (manufactured by Nisshinbo Chemical Co., Ltd.), 5 parts by mass of dihydrazide sebacate, 8 parts by mass of fine silica particles (average primary particle size: 100 nm, standard deviation: 20 nm), and water, It was obtained as a liquid coating material T3 having a solid content of 5%.
<光学フィルム142の製造>
 塗布材料N1の代わりに前記塗布材料T3を用いた以外は、比較例4と同様にして、光学フィルム142を得た。
<Production of optical film 142>
An optical film 142 was obtained in the same manner as in Comparative Example 4, except that the coating material T3 was used instead of the coating material N1.
[比較例31]
<塗布材料T4の作製>
 ポリウレタンの水分散体(高松油脂社製「ペスレジンA-684G」、カルボキシ基含有ポリエステル樹脂アクリル樹脂複合物)を100質量部(水分散体中のポリエステルの質量としての量)取り、ここにオキサゾリン化合物であるエポクロスWS-700(日本触媒社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料T4として得た。
[Comparative Example 31]
<Production of coating material T4>
100 parts by mass of a water dispersion of polyurethane ("Pesresin A-684G" manufactured by Takamatsu Yushi Co., Ltd., a carboxyl group-containing polyester resin acrylic resin composite) (the amount of polyester in the water dispersion) is taken, and an oxazoline compound is added thereto. 20 parts by mass of Epocross WS-700 (manufactured by Nippon Shokubai Co., Ltd.), 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica fine particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water, It was obtained as a liquid coating material T4 having a solid content of 5%.
<光学フィルム143の製造>
 塗布材料N1の代わりに前記塗布材料T4を用いた以外は、比較例4と同様にして、光学フィルム143を得た。
<Production of optical film 143>
An optical film 143 was obtained in the same manner as in Comparative Example 4, except that the coating material T4 was used instead of the coating material N1.
[比較例32]
<塗布材料U1の作製>
 ポリウレタンの水分散体(高松油脂社製「ペスレジンA-695GE」、カルボキシ基含有ポリエステル樹脂アクリル樹脂複合物)を100質量部(水分散体中のポリエステルの質量としての量)取り、ここにエポキシ化合物であるデナコールEX-521(ナガセケムテックス社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料U1として得た。
[Comparative Example 32]
<Production of coating material U1>
100 parts by mass of a polyurethane water dispersion (“Pesresin A-695GE” manufactured by Takamatsu Yushi Co., Ltd., a carboxyl group-containing polyester resin acrylic resin composite) (the amount of polyester in the water dispersion) is taken, and an epoxy compound is added thereto. 20 parts by mass of Denacol EX-521 (manufactured by Nagase ChemteX Corporation), 5 parts by mass of dihydrazide sebacic acid, 8 parts by mass of fine silica particles (average primary particle diameter: 100 nm, standard deviation: 20 nm), and water. , obtained as a liquid coating material U1 having a solid content of 5%.
<光学フィルム144の製造>
 塗布材料N1の代わりに前記塗布材料U1を用いた以外は、比較例4と同様にして、光学フィルム144を得た。
<Production of optical film 144>
An optical film 144 was obtained in the same manner as in Comparative Example 4, except that the coating material U1 was used instead of the coating material N1.
[比較例33]
<塗布材料U2の作製>
 ポリウレタンの水分散体(高松油脂社製「ペスレジンA-695GE」、カルボキシ基含有ポリエステル樹脂アクリル樹脂複合物)を100質量部(水分散体中のポリエステルの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトV-02-L2(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料U2として得た。
[Comparative Example 33]
<Production of coating material U2>
100 parts by mass of a water dispersion of polyurethane ("Pesresin A-695GE" manufactured by Takamatsu Yushi Co., Ltd., a carboxy group-containing polyester resin acrylic resin composite) (the amount of polyester in the water dispersion) is taken, and a carbodiimide compound is added thereto. 20 parts by mass of Carbodilite V-02-L2 (manufactured by Nisshinbo Chemical Co., Ltd.), 5 parts by mass of sebacate dihydrazide, 8 parts by mass of fine silica particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water. to obtain a liquid coating material U2 having a solid content of 5%.
<光学フィルム145の製造>
 塗布材料N1の代わりに前記塗布材料U2を用いた以外は、比較例4と同様にして、光学フィルム145を得た。
<Production of optical film 145>
An optical film 145 was obtained in the same manner as in Comparative Example 4, except that the coating material U2 was used instead of the coating material N1.
[比較例34]
<塗布材料U3の作製>
 ポリウレタンの水分散体(高松油脂社製「ペスレジンA-695GE」、カルボキシ基含有ポリエステル樹脂アクリル樹脂複合物)を100質量部(水分散体中のポリエステルの質量としての量)取り、ここにカルボジイミド化合物であるカルボジライトSV-02(日清紡ケミカル社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料U3として得た。
[Comparative Example 34]
<Production of coating material U3>
100 parts by mass of a water dispersion of polyurethane ("Pesresin A-695GE" manufactured by Takamatsu Yushi Co., Ltd., a carboxy group-containing polyester resin acrylic resin composite) (the amount of polyester in the water dispersion) is taken, and a carbodiimide compound is added thereto. 20 parts by mass of Carbodilite SV-02 (manufactured by Nisshinbo Chemical Co., Ltd.), 5 parts by mass of dihydrazide sebacate, 8 parts by mass of fine silica particles (average primary particle size: 100 nm, standard deviation: 20 nm), and water, It was obtained as a liquid coating material U3 with a solid content of 5%.
<光学フィルム146の製造>
 塗布材料N1の代わりに前記塗布材料U3を用いた以外は、比較例4と同様にして、光学フィルム146を得た。
<Manufacture of optical film 146>
An optical film 146 was obtained in the same manner as in Comparative Example 4, except that the coating material U3 was used instead of the coating material N1.
[比較例35]
<塗布材料U4の作製>
 ポリウレタンの水分散体(高松油脂社製「ペスレジンA-695GE」、カルボキシ基含有ポリエステル樹脂アクリル樹脂複合物)を100質量部(水分散体中のポリエステルの質量としての量)取り、ここにオキサゾリン化合物であるエポクロスWS-700(日本触媒社製)20質量部と、セバシン酸ジヒドラジド5質量部と、シリカ微粒子(平均一次粒径100nm、標準偏差20nm)8質量部と、水とを配合して、固形分5%の液状の塗布材料U4として得た。
[Comparative Example 35]
<Production of coating material U4>
100 parts by mass of a water dispersion of polyurethane (“Pesresin A-695GE” manufactured by Takamatsu Yushi Co., Ltd., a carboxy group-containing polyester resin acrylic resin composite) (the amount of polyester in the water dispersion) is taken, and an oxazoline compound is added thereto. 20 parts by mass of Epocross WS-700 (manufactured by Nippon Shokubai Co., Ltd.), 5 parts by mass of dihydrazide sebacate, 8 parts by mass of silica fine particles (average primary particle diameter 100 nm, standard deviation 20 nm), and water, It was obtained as a liquid coating material U4 having a solid content of 5%.
<光学フィルム147の製造>
 塗布材料N1の代わりに前記塗布材料U4を用いた以外は、比較例4と同様にして、光学フィルム147を得た。
<Manufacture of optical film 147>
An optical film 147 was obtained in the same manner as in Comparative Example 4, except that the coating material U4 was used instead of the coating material N1.
 得られた各光学フィルムについて、易接着層のナノインデンテーション硬度を下記のとおり測定した。
 測定装置としては、Triboscope(Bruker社製)を用いて測定した。測定には圧子として先端稜角90°、先端曲率半径35~50nmのものを用いた。
 そして、得られた前記光学フィルムを、2cm×2cmの大きさに切断して測定試料を作製した。次いで、当該測定試料を基材側を下にして、金属板上に接着剤を用いて貼りつけ、試料を取り付けた金属板を測定装置に取り付けて荷重を印加し、0まで戻す操作を行った。このときの最大荷重Pを圧子接触部の面積Aで除した値P/Aをナノインデンテーション硬度として算出した。最大荷重は20μNとした。
 なお、測定は各試料ともに無作為に10点測定し、その平均値をナノインデンテーション硬度とした。
For each optical film obtained, the nanoindentation hardness of the easily adhesive layer was measured as follows.
Measurement was performed using a Triboscope (manufactured by Bruker) as a measuring device. For the measurement, an indenter having a tip edge angle of 90° and a tip curvature radius of 35 to 50 nm was used.
Then, the obtained optical film was cut into a size of 2 cm×2 cm to prepare a measurement sample. Then, the sample to be measured was attached to a metal plate with the substrate side down using an adhesive, and the metal plate with the sample attached was attached to the measuring device, a load was applied, and an operation was performed to return it to 0. . A value P/A obtained by dividing the maximum load P at this time by the area A of the indenter contact portion was calculated as the nanoindentation hardness. The maximum load was set to 20 μN.
Ten points were randomly measured for each sample, and the average value was taken as the nanoindentation hardness.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 前記表I~表VIにおいて、「COP」とはシクロオレフィン系樹脂をいう。
 また、「ヘキサメチレンジイソシアネート」は、ヘキサメチレン-1,6-ジイソシアネートのことである。
In Tables I to VI, "COP" means cycloolefin resin.
"Hexamethylene diisocyanate" is hexamethylene-1,6-diisocyanate.
[偏光板の作製]
 厚さ120μmのポリビニルアルコールフィルムを、一軸延伸し(温度110℃、延伸倍率5倍)、ヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。浸漬後のフィルムを水洗、乾燥し、偏光子層を得た。
 続いて、前記光学フィルム101の易接着層側を上記偏光子層の片面に接着剤を用いて貼合した。その際、偏光子層の透過軸と光学フィルム101の遅相軸とが45°の向きになるように貼合した。そして、偏光子層のもう一方の面に、アルカリケン化処理をしたコニカミノルタタックフィルムKC4UAH(コニカミノルタ(株)製)を、接着剤を用いて同様に貼り合わせて偏光板201を作製した。偏光板202~247においても、各光学フィルム102~147を用いて同様にして作製した。
[Preparation of polarizing plate]
A polyvinyl alcohol film having a thickness of 120 μm was uniaxially stretched (at a temperature of 110° C. and a stretching ratio of 5 times), immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, then 6 g of potassium iodide, It was immersed in an aqueous solution of 7.5 g of boric acid and 100 g of water at 68°C. The immersed film was washed with water and dried to obtain a polarizer layer.
Subsequently, the easily adhesive layer side of the optical film 101 was attached to one surface of the polarizer layer using an adhesive. At that time, they were laminated so that the transmission axis of the polarizer layer and the slow axis of the optical film 101 were oriented at 45°. A Konica Minolta Tack film KC4UAH (manufactured by Konica Minolta, Inc.) saponified with an alkali was adhered to the other surface of the polarizer layer using an adhesive in the same manner to produce a polarizing plate 201 . The polarizing plates 202 to 247 were similarly produced using the optical films 102 to 147, respectively.
[粘着剤組成物(A)の調製]
 アクリル酸4-ヒドロキシブチル単位(4-HBA)4.5質量%とアクリル酸ブチル単位60質量%及びアクリル酸メチル単位35.5質量%を有するアクリル系粘着剤主剤100質量部に、架橋剤としてトリレンジイソシアネート系化合物(コロネートL、日本ポリウレタン工業社製)を0.3質量部、ヒンダードフェノール系酸化防止剤としてペンタエリスリトール-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)(IRGANOX1010、BASFジャパン社製)を0.7質量部、リン系酸化防止剤としてトリス(2,4-ジ-t-ブチルフェニル)ホスファイト(IRGAFOS168、BASFジャパン社製、)を0.5質量部を配合して、粘着剤組成物(A)を得た。
[Preparation of adhesive composition (A)]
To 100 parts by mass of an acrylic pressure-sensitive adhesive main agent having 4.5% by mass of 4-hydroxybutyl acrylate units (4-HBA), 60% by mass of butyl acrylate units and 35.5% by mass of methyl acrylate units, as a cross-linking agent 0.3 parts by mass of tolylene diisocyanate compound (Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.), pentaerythritol-tetrakis (3-(3,5-di-t-butyl-4- 0.7 parts by mass of hydroxyphenyl) propionate) (IRGANOX1010, manufactured by BASF Japan), and tris (2,4-di-t-butylphenyl) phosphite (IRGAFOS168, manufactured by BASF Japan) as a phosphorus antioxidant. was blended with 0.5 parts by mass to obtain a pressure-sensitive adhesive composition (A).
[粘着シートの作製]
 前記で調製した粘着剤組成物(A)を、剥離処理されたPETフィルムに乾燥後の厚さが25μmとなるように塗工し、90℃で3分間乾燥し粘着剤層を形成し粘着シートを作製した。
[Production of adhesive sheet]
The pressure-sensitive adhesive composition (A) prepared above is applied to a release-treated PET film so that the thickness after drying is 25 μm, and dried at 90° C. for 3 minutes to form a pressure-sensitive adhesive layer. was made.
[液晶表示装置の作製]
 前記で作製した偏光板において、光学フィルムの易接着層と反対側の面に、前記粘着シート(粘着剤層)を設けた。
 次いで、液晶表示装置として、シャープ製液晶テレビ「AQ-32AD5」を準備した。この装置から視認側の偏光板を剥離し、偏光板として前記粘着シートを設けた各偏光板を、粘着シートが液晶セルに隣接するように貼合し、液晶表示装置301~347を得た。
[Fabrication of liquid crystal display device]
In the polarizing plate produced above, the pressure-sensitive adhesive sheet (pressure-sensitive adhesive layer) was provided on the surface of the optical film opposite to the easy-adhesion layer.
Next, as a liquid crystal display device, a Sharp liquid crystal television "AQ-32AD5" was prepared. The polarizing plate on the viewing side was peeled off from this device, and the polarizing plates provided with the adhesive sheet as the polarizing plate were attached so that the adhesive sheet was adjacent to the liquid crystal cell, thereby obtaining liquid crystal display devices 301 to 347.
[評価]
<高温高湿環境下における接着性>
 前記で得られた偏光板を25mm幅に裁断し、試験片を作製した。試験片から剥離処理されたPETフィルムを剥がし、露出した粘着剤層をガラス版に1cmずらして貼合し、ずらした分を掴み白とした。貼合後、50℃/5atmに調整されたオートクレーブ中に20分間保持し、圧着した。圧着後、60℃、95%RH環境下で1時間放置後、偏光板をガラスに対して180℃の角度で、300mm/minの速度で引っ張り、テンシロンで接着力を測定した。接着強度は下記の基準に基づいて評価した。
 (基準)
 ◎:光学フィルム又は粘着剤層が破断して剥離できず、23℃50%RH環境下でも接着性が良好である。
 〇:光学フィルム又は粘着剤層が破断して剥離できず、接着性が良好である。
 〇△:光学フィルムと粘着剤層との間で一部剥離したが、接着性が良好である。
 △:光学フィルムと粘着剤層との間で一部剥離したが、問題のない範囲である。
 ×:光学フィルムと粘着剤層との間で全部剥離し、接着性が不良である。
[evaluation]
<Adhesion under high temperature and high humidity environment>
The polarizing plate obtained above was cut into a width of 25 mm to prepare a test piece. The peel-treated PET film was peeled off from the test piece, and the exposed pressure-sensitive adhesive layer was shifted to a glass plate by 1 cm. After lamination, it was kept in an autoclave adjusted to 50° C./5 atm for 20 minutes and pressure-bonded. After pressure-bonding, the polarizing plate was left in an environment of 60° C. and 95% RH for 1 hour, then pulled against the glass at an angle of 180° C. at a speed of 300 mm/min, and the adhesive strength was measured with a Tensilon. Adhesion strength was evaluated based on the following criteria.
(standard)
⊚: The optical film or adhesive layer was broken and could not be peeled off, and the adhesiveness was good even in an environment of 23°C and 50% RH.
◯: The optical film or adhesive layer was broken and could not be peeled off, and the adhesiveness was good.
◯△: Some peeling occurred between the optical film and the pressure-sensitive adhesive layer, but the adhesion was good.
Δ: Some peeling occurred between the optical film and the pressure-sensitive adhesive layer, but within the range of no problem.
x: The optical film and the pressure-sensitive adhesive layer are completely peeled off, and the adhesion is poor.
<高温高湿環境下における光漏れ(白ムラ)>
 前記で得られた液晶表示装置を暗室で黒表示し、画面の色(黒)の均一性を下記基準にしたがって官能評価した。
 (基準)
 ◎:白ムラ(光漏れ)が全く見られない 。
 ○:やや白ムラがあるが実用上許容内である。
 〇△:一部白ムラが見られ気になる。
 △:白ムラが見られ気になる
 ×:白ムラが明らかに観察される。
<Light leakage (white unevenness) in a high temperature and high humidity environment>
The liquid crystal display device obtained above was displayed in black in a dark room, and the uniformity of the color (black) of the screen was sensory evaluated according to the following criteria.
(standard)
A: White unevenness (light leakage) is not observed at all.
◯: Slight white unevenness, but acceptable for practical use.
◯△: Partial white unevenness is observed, which is worrisome.
Δ: Unpleasant white unevenness is observed ×: White unevenness is clearly observed.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 前記結果に示されるように、本発明の光学フィルムを用いた場合、比較例の光学フィルムに比べて、高温高湿環境下における接着性が良好で、かつ、光漏れを防止できることが認められる。 As shown in the above results, when the optical film of the present invention is used, it is recognized that the adhesiveness in a high-temperature and high-humidity environment is better than that of the optical film of the comparative example, and that light leakage can be prevented.
 本発明は、高温高湿環境下において偏光子層との接着性が向上し、かつ、光漏れを抑制することができる光学フィルム、偏光板及び液晶表示装置に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used for optical films, polarizing plates, and liquid crystal display devices that can improve adhesion to a polarizer layer and suppress light leakage in a high-temperature, high-humidity environment.
 20 液晶表示装置
 30 液晶セル
 40 第1の偏光板
 41 第1の偏光子層
 43 保護フィルム(F1)
 45 保護フィルム(F2)
 46 基材
 47 易接着層
 50 第2の偏光板
 51 第2の偏光子層
 53 保護フィルム(F3)
 55 保護フィルム(F4)
 60 バックライト
 100 光学フィルム
 101 基材
 102 易接着層
 200 偏光板
 300 偏光板保護フィルム
 400 偏光子層
 500 粘着シート
20 liquid crystal display device 30 liquid crystal cell 40 first polarizing plate 41 first polarizer layer 43 protective film (F1)
45 protective film (F2)
46 base material 47 easy adhesion layer 50 second polarizing plate 51 second polarizer layer 53 protective film (F3)
55 protective film (F4)
60 backlight 100 optical film 101 base material 102 easy adhesion layer 200 polarizing plate 300 polarizing plate protective film 400 polarizer layer 500 adhesive sheet

Claims (5)

  1.  基材の少なくとも一方の面に易接着層を有する光学フィルムであって、
     前記基材が、シクロオレフィン系樹脂を含有し、
     前記基材の厚さが、49μm以下であり、
     前記易接着層が、ポリウレタン系樹脂を含有し、
     23℃・50%RH環境条件下において、前記基材上における前記易接着層のナノインデンテーション硬度が、0.52GPa未満である光学フィルム。
    An optical film having an easy-adhesion layer on at least one surface of a substrate,
    The base material contains a cycloolefin resin,
    The thickness of the base material is 49 μm or less,
    The easy-adhesion layer contains a polyurethane-based resin,
    An optical film, wherein the nanoindentation hardness of the easy-adhesion layer on the substrate is less than 0.52 GPa under environmental conditions of 23°C and 50% RH.
  2.  前記ポリウレタン系樹脂が、ポリエステルポリオール成分及びポリエーテルポリオール成分のいずれか一種からなる請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the polyurethane resin comprises either one of a polyester polyol component and a polyether polyol component.
  3.  前記易接着層にシリカ微粒子が含有され、
     前記シリカ微粒子の平均一次粒径が、50~150nmの範囲内であり、かつ、
     前記平均一次粒径の標準偏差が、5~30nmの範囲内である請求項1又は請求項2に記載の光学フィルム。
    The easy-adhesion layer contains silica fine particles,
    The average primary particle size of the silica fine particles is in the range of 50 to 150 nm, and
    3. The optical film according to claim 1, wherein the standard deviation of the average primary particle size is in the range of 5 to 30 nm.
  4.  請求項1から請求項3までのいずれか一項に記載の光学フィルムを具備する偏光板。 A polarizing plate comprising the optical film according to any one of claims 1 to 3.
  5.  請求項4に記載の偏光板を具備する液晶表示装置。 A liquid crystal display device comprising the polarizing plate according to claim 4.
PCT/JP2022/022084 2021-09-01 2022-05-31 Optical film, polarizing plate, and liquid crystal display device WO2023032373A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023545086A JPWO2023032373A1 (en) 2021-09-01 2022-05-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-142159 2021-09-01
JP2021142159 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023032373A1 true WO2023032373A1 (en) 2023-03-09

Family

ID=85411173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022084 WO2023032373A1 (en) 2021-09-01 2022-05-31 Optical film, polarizing plate, and liquid crystal display device

Country Status (3)

Country Link
JP (1) JPWO2023032373A1 (en)
TW (1) TWI825774B (en)
WO (1) WO2023032373A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118238A (en) * 2010-11-30 2012-06-21 Nippon Zeon Co Ltd Optical film, optical film roll, and method for manufacturing optical film
JP2012159666A (en) * 2011-01-31 2012-08-23 Nippon Zeon Co Ltd Method for manufacturing optical film
WO2013125243A1 (en) * 2012-02-22 2013-08-29 コニカミノルタ株式会社 Liquid crystal display device
WO2015098750A1 (en) * 2013-12-26 2015-07-02 日本ゼオン株式会社 Multilayered film and method for manufacturing same
WO2015170560A1 (en) * 2014-05-08 2015-11-12 Dic株式会社 Laminate and optical film
WO2017145718A1 (en) * 2016-02-26 2017-08-31 日本ゼオン株式会社 Long film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118238A (en) * 2010-11-30 2012-06-21 Nippon Zeon Co Ltd Optical film, optical film roll, and method for manufacturing optical film
JP2012159666A (en) * 2011-01-31 2012-08-23 Nippon Zeon Co Ltd Method for manufacturing optical film
WO2013125243A1 (en) * 2012-02-22 2013-08-29 コニカミノルタ株式会社 Liquid crystal display device
WO2015098750A1 (en) * 2013-12-26 2015-07-02 日本ゼオン株式会社 Multilayered film and method for manufacturing same
WO2015170560A1 (en) * 2014-05-08 2015-11-12 Dic株式会社 Laminate and optical film
WO2017145718A1 (en) * 2016-02-26 2017-08-31 日本ゼオン株式会社 Long film

Also Published As

Publication number Publication date
JPWO2023032373A1 (en) 2023-03-09
TW202311047A (en) 2023-03-16
TWI825774B (en) 2023-12-11

Similar Documents

Publication Publication Date Title
JP5399082B2 (en) Polarizing plate and image display device using polarizing plate
JP5354733B2 (en) Polarizer protective film and polarizing plate and image display device using polarizer protective film
KR101560033B1 (en) Polarizer having protection films in two sides and optical device comprising the same
TWI635155B (en) Multilayer film and manufacturing method thereof
JP5009690B2 (en) Polarizing plate, image display device, and manufacturing method of polarizing plate
JP5243343B2 (en) Polarizer outer surface protective film, polarizing plate, and liquid crystal display element
US20110043733A1 (en) Adhesive polarization plate, image display and methods for manufacturing adhesive polarization plate and image display
KR101588167B1 (en) Protective film and polarizing plate comprising the same
JP6983510B2 (en) An optical film laminate, an optical display device using the optical film laminate, and a transparent protective film.
JP5845891B2 (en) Multi-layer film and method for producing the same
TWI498610B (en) A polarizing plate protective film, a polarizing plate and a liquid crystal display element
TWI798397B (en) Circular polarizer
JP2011221424A (en) Polarizing plate and image display device
JP5716571B2 (en) Multilayer film, method for producing multilayer film, polarizing plate protective film and polarizing plate
KR101514129B1 (en) Acrylic Optical Film, Method for Preparing thereof and Polarizing Plate comprising the same
CN110229366B (en) Multilayer film and method for producing same
WO2023032373A1 (en) Optical film, polarizing plate, and liquid crystal display device
KR20140146391A (en) Aqueous primer composition, optical film and polarizing plate comprising the same
TW201934341A (en) Polarizing plate and image display device
TWI814019B (en) Optical film, polarizing plate and liquid crystal display device
WO2024071233A1 (en) Optical film
JP2018159784A (en) Polarizer protective film, polarizing film, and image display device
KR20150091829A (en) Adhesive composition for polarizing plate and polarizing plate comprising the same
JP2024027295A (en) Polarizing plate and image display device using the same
KR20140146920A (en) Adhesive composition for polarizing plate and polarizing plate comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863961

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545086

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE