WO2023032356A1 - Electronic device and method for manufacturing electronic device - Google Patents

Electronic device and method for manufacturing electronic device Download PDF

Info

Publication number
WO2023032356A1
WO2023032356A1 PCT/JP2022/019695 JP2022019695W WO2023032356A1 WO 2023032356 A1 WO2023032356 A1 WO 2023032356A1 JP 2022019695 W JP2022019695 W JP 2022019695W WO 2023032356 A1 WO2023032356 A1 WO 2023032356A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
insulating layer
meth
conductive layer
acrylate
Prior art date
Application number
PCT/JP2022/019695
Other languages
French (fr)
Japanese (ja)
Inventor
憲英 下原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023032356A1 publication Critical patent/WO2023032356A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present disclosure relates to electronic devices and methods of manufacturing electronic devices.
  • Shield cans have the problems of being thick and heavy and having a small degree of freedom in design, and there is a demand for a technology to replace the shield cans.
  • Japanese Patent Application Laid-Open No. 2017-179361 discloses a wiring board having a mounting surface, an electronic board including an electronic component mounted on the mounting surface of the wiring board, an insulating layer and a conductive layer, and an insulating layer is laminated on the electronic component side and includes an electromagnetic wave shielding layer covering the surface of the electronic component, and a ground member that is in contact with the conductive layer of the electromagnetic wave shielding layer to ground the conductive layer.
  • the present disclosure has been made in view of such circumstances, and according to one embodiment of the present invention, a method for manufacturing an electronic device with excellent electromagnetic shielding properties and durability is provided.
  • the present disclosure includes the following aspects. ⁇ 1> a wiring board; electronic components arranged on a wiring board; a ground electrode; an insulating layer provided on the electronic component; A conductive layer that is provided on the insulating layer and at least part of the ground electrode and is a cured film of the ink for forming the conductive layer,
  • the thickness of the insulating layer is 200 ⁇ m or more
  • T1 be the thickness of the conductive layer provided on the insulating layer provided on the surface of the electronic component that is positioned highest with respect to the surface of the wiring board on which the electronic component is arranged. 1.
  • T2 is thicker than T1, where T2 is the thickness of a conductive layer provided on a ground electrode.
  • ⁇ 2> The electronic device according to ⁇ 1>, wherein the insulating layer contains an acrylic resin or an epoxy resin.
  • T2 is at least twice as large as T1.
  • ⁇ 4> The electronic device according to any one of ⁇ 1> to ⁇ 3>, wherein the conductive layer forming ink contains a metal complex or a metal salt.
  • ⁇ 5> The electronic device according to any one of ⁇ 1> to ⁇ 4>, wherein the ground electrode has a height of 150 ⁇ m or less with respect to the surface of the wiring board on which the electronic components are arranged.
  • T1 is less than 10 ⁇ m.
  • ⁇ 7> preparing an electronic substrate including a wiring substrate, electronic components arranged on the wiring substrate, and a ground electrode; forming an insulating layer having a thickness of 200 ⁇ m or more on the electronic component; applying the conductive layer forming ink to at least part of the insulating layer and the ground electrode to form a conductive layer, which is a cured film of the conductive layer forming ink;
  • T1 be the thickness of the conductive layer provided on the insulating layer provided on the surface of the electronic component that is positioned highest with respect to the surface of the wiring board on which the electronic component is arranged. 3.
  • T2 is thicker than T1, where T2 is the thickness of the conductive layer provided on the ground electrode.
  • an electronic device with excellent electromagnetic shielding properties and durability and a method for manufacturing the electronic device are provided.
  • FIG. 1 is a schematic plan view of an electronic device.
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • FIG. 3A is a schematic plan view of an electronic substrate prepared in a preparation step.
  • FIG. 3B is a cross-sectional view taken along line BB of FIG. 3A.
  • FIG. 4A is a diagram showing an example of an application region of the insulating layer forming ink.
  • FIG. 4B is a cross-sectional view taken along line BB of FIG. 3A, showing a state in which an insulating layer is formed.
  • FIG. 5A is a diagram showing an example of a region where the conductive layer forming ink is applied.
  • FIG. 5B is a diagram showing an example of a region where the conductive layer forming ink is applied.
  • FIG. 5C is a cross-sectional view taken along line BB of FIG. 3A showing a state in which a conductive layer is formed.
  • the numerical range indicated using “to” means a range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
  • the amount of each component in the composition refers to the total amount of the multiple substances present in the composition when there are multiple substances corresponding to each component in the composition, unless otherwise specified. means In the present specification, a combination of two or more preferred aspects is a more preferred aspect.
  • the term "process” includes not only an independent process but also a process that cannot be clearly distinguished from other processes, as long as the intended purpose of the process is achieved. be
  • image means film in general, and “image recording” means formation of an image (that is, film).
  • image recording means formation of an image (that is, film).
  • image in this specification also includes a solid image.
  • the "upper surface” means the surface on which the electronic components are arranged on the wiring board.
  • the electronic device of the present disclosure includes a wiring board, an electronic component arranged on the wiring board, a ground electrode, an insulating layer provided on the electronic component, and at least one of the insulating layer and the ground electrode. and a conductive layer that is a cured film of the ink for forming a conductive layer, the thickness of the insulating layer is 200 ⁇ m or more, and the electronic component of the wiring board is arranged on the surface of the electronic component.
  • T1 is the thickness of the conductive layer provided on the insulating layer provided on the highest surface with respect to the surface on the side where the T2 is thicker than T1.
  • the electronic device of the present disclosure on the insulating layer provided on the surface of the electronic component that is the highest with respect to the surface of the wiring board on which the electronic component is arranged,
  • T1 the thickness of the conductive layer provided on the ground electrode
  • T2 is thicker than T1
  • the thickness of the insulating layer is 200 ⁇ m or more. Even so, the strength at the interface between the ground electrode and the conductive layer is increased, resulting in excellent durability. Therefore, both electromagnetic wave shielding properties and durability were achieved.
  • Japanese Patent Application Laid-Open No. 2017-179361 does not describe providing a conductive layer on at least part of the insulating layer and the ground electrode using a conductive layer forming ink.
  • the electronic element described in Japanese Patent Laying-Open No. 2017-179361 differs from the electronic device of the present disclosure in the lamination state of the insulating layer, the conductive layer, and the ground electrode, and durability has not been studied.
  • FIG. 1 is a schematic plan view of an electronic device.
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • the electronic board 100 includes a wiring board 11, electronic components 12 (12A and 12B) arranged on the wiring board 11, a ground electrode 13, and a and a conductive layer 32 provided on at least part of the insulating layer 31 and the ground electrode 13 .
  • a wiring board is a board with wiring on at least one of the board and the inside of the board.
  • Examples of substrates constituting the wiring substrate 11 include glass epoxy substrates, ceramic substrates, polyimide substrates, and polyethylene terephthalate substrates.
  • the substrate may have a single layer structure or a multilayer structure.
  • the wiring (not shown) provided on the wiring board 11 is preferably copper wiring.
  • one end of the wiring is connected to an external power supply and the other end is connected to a terminal of the electronic component 12 .
  • the electronic components 12 include, for example, semiconductor chips, capacitors, and transistors.
  • the number of electronic components 12 arranged on wiring board 11 is not particularly limited.
  • FIG. 1 shows an example in which four electronic components 12A and one electronic component 12B are arranged.
  • the ground electrode 13 is an electrode to which a ground (GND) potential is applied.
  • the ground electrode 13 surrounds the electronic components 12A and 12B and is formed in a discontinuous frame shape in plan view, but the position and shape of the ground electrode are not limited to this.
  • the ground electrode may be formed in a continuous frame shape in plan view, or may be formed between the electronic component 12A and the electronic component 12B.
  • the ground electrode 13 is formed such that a portion of the ground electrode 13 in the thickness direction is embedded in the wiring board 11, but the ground electrode in the present disclosure is limited to this example. not.
  • the ground electrode may be formed on the surface of the wiring board 11 instead of being embedded in the wiring board 11 .
  • the ground electrode may be formed as a pattern penetrating the wiring board 11 .
  • the height of the ground electrode 13 is preferably 150 ⁇ m or less, more preferably 120 ⁇ m or less, based on the surface of the wiring board on which the electronic components are arranged.
  • the lower limit of the height is not particularly limited, it is, for example, 30 ⁇ m.
  • the insulating layer 31 is preferably a cured film of the ink for forming the insulating layer, and from the viewpoint of curability and mechanical strength, contains a polymer of a radically polymerizable monomer, or a polymer or crosslinked body of a cyclic ether compound. is preferred, and it preferably contains an acrylic resin or an epoxy resin. The details of the insulating layer forming ink will be described later.
  • the conductive layer 32 is a cured film of ink for forming a conductive layer. The details of the conductive layer forming ink will be described later.
  • T1 and T2 the insulation provided on the surface of the electronic component that is the highest with respect to the surface of the wiring board on which the electronic component is arranged (that is, the upper surface of the wiring board)
  • T1 be the thickness of the conductive layer provided on the layer
  • T2 be the thickness of the conductive layer provided on the ground electrode.
  • T1 and T2 is thicker than T1. Since T2 is thicker than T1, the strength at the interface between the ground electrode and the conductive layer is increased, and the adhesion between the ground electrode and the conductive layer is excellent.
  • T1 is defined as follows. Among the surfaces of the electronic components arranged on the wiring board, the surface positioned highest with respect to the upper surface of the wiring board is specified. As shown in FIG. 2, in the electronic device 100, the surface of the electronic component 12B is positioned higher than the surface of the electronic component 12A with the upper surface of the wiring board 11 as a reference. Therefore, in the electronic device 100, T1 is the thickness of the conductive layer 32 provided on the insulating layer 31 provided on the electronic component 12B. Specifically, the thickness from the upper surface of the insulating layer 31 provided on the electronic component 12B to the upper surface of the conductive layer 32 is defined as T1. T2 is defined as follows. A position where the maximum thickness exists in the thickness of the conductive layer provided on the ground electrode is specified.
  • the conductive layer is formed thickest on the end of the ground electrode on the side where the electronic components are arranged. As shown in FIG. 2, in the electronic device 100, the thickness from the surface of the ground electrode 13 to the surface 321 of the conductive layer 32 is T2.
  • T1 and T2 are measured based on an optical micrograph or an electron micrograph taken of a cross section of the electronic device. Moreover, T1 and T2 can be measured using a laser microscope. As a laser microscope, for example, "VK-X1000" manufactured by Keyence Corporation can be used.
  • T2 is preferably at least twice as large as T1, more preferably at least 2.5 times.
  • the upper limit of the ratio of T2 to T1 is not particularly limited, and is, for example, 10 times.
  • T1 is preferably 20 ⁇ m or less, more preferably less than 10 ⁇ m. From the viewpoint of electromagnetic wave shielding properties, T1 is preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more.
  • T2 is preferably 100 ⁇ m or less, and preferably 50 ⁇ m or less. From the viewpoint of conductivity and durability, T2 is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more.
  • the insulating layer has a thickness of 200 ⁇ m or more. At least a portion of the insulating layer may have a thickness of 200 ⁇ m or more.
  • the upper limit of the thickness of the insulating layer is not particularly limited, and is, for example, 2000 ⁇ m.
  • the thickness of the insulating layer is preferably 600 ⁇ m or more.
  • the thickness of the insulating layer is the height (that is, the height of the highest point) when the mounting surface of the wiring board (for example, the mounting surface 11S in FIG. 3B) is used as a reference.
  • the thickness of the insulating layer is measured based on an optical micrograph or electron micrograph of a cross section of the electronic device.
  • the thickness of the insulating layer can also be measured by the following method.
  • the thickness of the insulating layer can be calculated. The maximum thickness among the calculated thicknesses of the insulating layer was taken as the thickness of the insulating layer.
  • a laser microscope for example, "VK-X1000" manufactured by Keyence Corporation can be used.
  • a method for manufacturing an electronic device includes a step of preparing an electronic substrate including a wiring board, electronic components arranged on the wiring board, and a ground electrode (hereinafter also referred to as a “preparing step”); A step of forming an insulating layer with a thickness of 200 ⁇ m or more on the electronic component (hereinafter also referred to as an “insulating layer forming step”), and forming a conductive layer on at least a portion of the insulating layer and the ground electrode and a step of applying an ink for forming a conductive layer to form a conductive layer, which is a cured film of the ink for forming a conductive layer (hereinafter also referred to as a “conductive layer forming step”).
  • T1 be the thickness of the conductive layer provided on the insulating layer provided on the surface of the electronic component that is positioned highest with respect to the surface of the wiring board on which the electronic component is arranged.
  • T2 is the thickness of the conductive layer provided on the ground electrode, T2 is thicker than T1.
  • FIG. 3A is a schematic plan view of an electronic substrate prepared in the preparation process.
  • FIG. 3B is a cross-sectional view taken along line BB of FIG. 3A.
  • an electronic substrate 10 including a wiring substrate 11, electronic components 12 (12A and 12B) arranged on the wiring substrate 11, and a ground electrode 13 is prepared. do.
  • the preparation process may be a process of simply preparing the prefabricated electronic board 10 or a process of manufacturing the electronic board 10 .
  • a known manufacturing method can be referred to for the manufacturing method of the electronic substrate 10 .
  • Examples of the electronic board 10 include flexible printed boards, rigid printed boards, and rigid flexible boards.
  • the details of the wiring board 11, the electronic component 12, and the ground electrode 13 are as described above.
  • FIG. 4A is a diagram showing an example of a region where the insulating layer forming ink is applied.
  • FIG. 4B is a cross-sectional view taken along line BB of FIG. 3A, showing a state in which an insulating layer is formed.
  • the insulating layer forming step is preferably a step of applying an insulating layer forming ink and irradiating an active energy ray to form an insulating layer, which is a cured film of the insulating layer forming ink. After applying the ink for forming the insulating layer, the insulating layer 31 covering the electronic components 12A and 12B is formed as shown in FIG. 3B by irradiating the active energy ray.
  • the steps of applying the ink for forming the insulating layer and irradiating the active energy ray are preferably repeated. By repeating the above steps, the thickness of the cured film of the ink for forming the insulating layer can be increased.
  • the region to which the insulating layer forming ink is applied is preferably set so that the insulating layer is in contact with the ground electrode.
  • the application area 21 of the insulating layer forming ink is the same as the area surrounded by the ground electrode 13 (hereinafter also referred to as "ground area") that does not include the ground electrode 13 top.
  • ground area the area surrounded by the ground electrode 13
  • FIG. 4B the wall surface of the ground electrode 13 on the side of the ground area is in contact with the insulating layer 31 .
  • the area 21 is set as the application area of the ink for forming the insulating layer, but it is not limited to this example.
  • the position and shape (planar shape and height) of the ground electrode 13 and the electronic component 12 arranged on the wiring board 11 are read in advance, and based on the read data, the application region of the ink for forming the insulating layer, It is preferable to set the number of times of application of the insulating layer forming ink.
  • the ink for forming an insulating layer means an ink for forming an insulating layer.
  • Insulating property means the property that the volume resistivity is 10 10 ⁇ cm or more.
  • the ink for forming the insulating layer is preferably active energy ray-curable ink.
  • the insulating layer forming ink preferably contains a polymerizable monomer and a polymerization initiator.
  • a polymerizable monomer is a monomer that has at least one polymerizable group in one molecule.
  • the polymerizable group in the polymerizable monomer may be a cationically polymerizable group or a radically polymerizable group.
  • the radically polymerizable group is preferably an ethylenically unsaturated group from the viewpoint of curability.
  • the cationic polymerizable group is preferably a group containing at least one of an oxirane ring and an oxetane ring.
  • a monomer refers to a compound having a molecular weight of 1000 or less.
  • the molecular weight can be calculated from the type and number of atoms that constitute the compound.
  • the polymerizable monomer may be a monofunctional polymerizable monomer having one polymerizable group, or may be a polyfunctional polymerizable monomer having two or more polymerizable groups.
  • the monofunctional polymerizable monomer is not particularly limited as long as it has one polymerizable group.
  • the radically polymerizable monomer is preferably a monofunctional ethylenically unsaturated monomer.
  • monofunctional ethylenically unsaturated monomers include monofunctional (meth)acrylates, monofunctional (meth)acrylamides, monofunctional aromatic vinyl compounds, monofunctional vinyl ethers and monofunctional N-vinyl compounds.
  • Examples of monofunctional (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, hexyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate.
  • tert-octyl (meth)acrylate isoamyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, cyclohexyl (meth)acrylate acrylates, 4-n-butylcyclohexyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, bornyl (meth)acrylate, isobornyl (meth)acrylate, 2-ethylhexyl diglycol (meth)acrylate, butoxyethyl ( meth) acrylate, 2-chloroethyl (meth) acrylate, 4-bromobutyl (meth) acrylate, cyanoethyl (meth) acrylate, benzyl (meth) acrylate,
  • the monofunctional (meth)acrylate is preferably a monofunctional (meth)acrylate having an aromatic ring or an aliphatic ring, such as isobornyl (meth)acrylate, 4-tert-butylcyclohexyl (Meth)acrylate, dicyclopentenyl (meth)acrylate, or dicyclopentanyl (meth)acrylate is more preferred.
  • Examples of monofunctional (meth)acrylamides include (meth)acrylamide, N-methyl(meth)acrylamide, N-ethyl(meth)acrylamide, N-propyl(meth)acrylamide, Nn-butyl(meth)acrylamide, Nt-butyl (meth)acrylamide, N-butoxymethyl (meth)acrylamide, N-isopropyl (meth)acrylamide, N-methylol (meth)acrylamide, N,N-dimethyl (meth)acrylamide, N,N-diethyl (meth)acrylamide and (meth)acryloylmorpholine.
  • monofunctional aromatic vinyl compounds include styrene, dimethylstyrene, trimethylstyrene, isopropylstyrene, chloromethylstyrene, methoxystyrene, acetoxystyrene, chlorostyrene, dichlorostyrene, bromostyrene, vinylbenzoic acid methyl ester, 3-methyl Styrene, 4-methylstyrene, 3-ethylstyrene, 4-ethylstyrene, 3-propylstyrene, 4-propylstyrene, 3-butylstyrene, 4-butylstyrene, 3-hexylstyrene, 4-hexylstyrene, 3-octyl Styrene, 4-octylstyrene, 3-(2-ethylhexyl)styrene, 4-(2-ethylhexyl)styrene
  • Monofunctional vinyl ethers include, for example, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, n-butyl vinyl ether, t-butyl vinyl ether, 2-ethylhexyl vinyl ether, n-nonyl vinyl ether, lauryl vinyl ether, cyclohexyl vinyl ether, cyclohexylmethyl vinyl ether, 4-methyl Cyclohexyl methyl vinyl ether, benzyl vinyl ether, dicyclopentenyl vinyl ether, 2-dicyclopentenoxyethyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, butoxyethyl vinyl ether, methoxyethoxyethyl vinyl ether, ethoxyethoxyethyl vinyl ether, methoxypolyethylene glycol vinyl ether, tetrahydro Furfuryl vinyl ether, 2-hydroxyethyl vinyl ether, 2-hydroxy
  • Examples of monofunctional N-vinyl compounds include N-vinyl- ⁇ -caprolactam and N-vinylpyrrolidone.
  • the polyfunctional polymerizable monomer is not particularly limited as long as it has two or more polymerizable groups.
  • the polyfunctional polymerizable monomer is preferably a polyfunctional radically polymerizable monomer, more preferably a polyfunctional ethylenically unsaturated monomer.
  • polyfunctional ethylenically unsaturated monomers examples include polyfunctional (meth)acrylate compounds and polyfunctional vinyl ethers.
  • polyfunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, and propylene glycol di(meth)acrylate.
  • Polyfunctional vinyl ethers include, for example, 1,4-butanediol divinyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, polyethylene glycol divinyl ether, propylene glycol divinyl ether, butylene glycol divinyl ether, hexanediol divinyl ether, Vinyl ether, 1,4-cyclohexanedimethanol divinyl ether, bisphenol A alkylene oxide divinyl ether, bisphenol F alkylene oxide divinyl ether, trimethylolethane trivinyl ether, trimethylolpropane trivinyl ether, ditrimethylolpropane tetravinyl ether, glycerin trivinyl ether, pentaerythritol Tetravinyl ether, dipentaerythritol pentavinyl ether, dipentaerythritol
  • the polyfunctional polymerizable monomer is preferably a monomer having 3 to 11 carbon atoms in the portion other than the (meth)acryloyl group.
  • Specific examples of the monomer having 3 to 11 carbon atoms in the portion other than the (meth)acryloyl group include 1,6-hexanediol di(meth)acrylate, dipropylene glycol di(meth)acrylate, and PO-modified neopentyl glycol.
  • cationic polymerizable monomer compounds having an oxirane ring (also referred to as an "epoxy ring") (also referred to as an "oxirane compound” or an “epoxy compound”) and compounds having an oxetane ring (also referred to as an "oxetane compound ”, and known cationic polymerizable monomers such as vinyl ether compounds can be used without particular limitation.
  • the cationic polymerizable monomer is not particularly limited as long as it is a compound that initiates a polymerization reaction by a cationic polymerization initiating species generated from a photocationic polymerization initiator described later and cures, and various known photocationic polymerizable monomers.
  • Cationically polymerizable monomers can be used.
  • Examples of cationic polymerizable monomers include JP-A-6-9714, JP-A-2001-31892, JP-A-2001-40068, JP-A-2001-55507, JP-A-2001-310938, JP-A-2001-310937, JP-A-2001- Epoxy compounds, vinyl ether compounds, oxetane compounds and the like described in publications such as No. 220526 can be mentioned.
  • cationic polymerizable monomers for example, cationic polymerization photocurable resins are known. For example, it is disclosed in Japanese Unexamined Patent Publication No. 6-43633 and Japanese Unexamined Patent Publication No. 8-324137.
  • Epoxy compounds include aromatic epoxides, alicyclic epoxides, aliphatic epoxides, and the like.
  • Aromatic epoxides include di- or polyglycidyl ethers prepared by reacting polyhydric phenols having at least one aromatic nucleus or their alkylene oxide adducts with epichlorohydrin.
  • aromatic epoxides include di- or polyglycidyl ethers of bisphenol A or its alkylene oxide adducts, di- or polyglycidyl ethers of hydrogenated bisphenol A or its alkylene oxide adducts, and novolac type epoxy resins.
  • the alkylene oxide include ethylene oxide and propylene oxide.
  • the alicyclic epoxide is cyclohexene, which is obtained by epoxidizing a compound having at least one cycloalkane ring such as cyclohexene ring or cyclopentene ring with a suitable oxidizing agent such as hydrogen peroxide or peracid. Oxide or cyclopentene oxide containing compounds are preferably mentioned.
  • Aliphatic epoxides include di- or polyglycidyl ethers of aliphatic polyhydric alcohols or their alkylene oxide adducts.
  • alkylene glycol such as diglycidyl ether of hexanediol, polyglycidyl ether of polyhydric alcohol such as di- or triglycidyl ether of glycerin or its alkylene oxide adduct, diglycidyl of polyethylene glycol or its alkylene oxide adduct Ethers, diglycidyl ethers of polyalkylene glycols represented by diglycidyl ethers of polypropylene glycol or its alkylene oxide adducts, and the like can be mentioned.
  • alkylene oxide include ethylene oxide and propylene oxide.
  • the monofunctional and polyfunctional epoxy compounds are exemplified in detail below.
  • Examples of monofunctional epoxy compounds include phenyl glycidyl ether, p-tert-butylphenyl glycidyl ether, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, allyl glycidyl ether, 1,2-butylene oxide, and 1,3-butadiene.
  • polyfunctional epoxy compounds include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether.
  • glycidyl ether epoxy novolak resin, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexane carboxylate, 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy)cyclohexane-meta-dioxane, bis(3,4-epoxycyclohexylmethyl)adipate, bis(3,4-epoxy-6- methylcyclohexylmethyl)adipate, 3,4-epoxy-6-methylcyclohexyl-3',4'-epoxy-6'-methylcyclohexanecarboxylate, methylenebis(3,4-epoxycyclohexane), dicyclopentadiene diepoxide, ethylene Di(3,4-epoxy
  • aromatic epoxides and alicyclic epoxides are preferred from the viewpoint of excellent curing speed, and alicyclic epoxides are particularly preferred.
  • the oxetane compound refers to a compound having at least one oxetane ring, and any known oxetane compound as described in JP-A-2001-220526, JP-A-2001-310937, and JP-A-2003-341217. You can choose to use it.
  • As the compound having an oxetane ring a compound having 1 to 4 oxetane rings in its structure is preferable. By using such a compound, it is possible to easily maintain the viscosity of the ink composition within a range of good handling properties, and to obtain high adhesion of the cured ink composition to the recording medium. can be done.
  • Examples of compounds having 1 to 2 oxetane rings in the molecule include compounds represented by the following formulas (1) to (3).
  • R a1 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group having 1 to 6 carbon atoms, an allyl group, an aryl group, a furyl group, or a thienyl group. .
  • R a1 When two R a1 are present in the molecule, they may be the same or different.
  • the alkyl group include methyl group, ethyl group, propyl group, and butyl group.
  • Preferred examples of the fluoroalkyl group include those in which one of the hydrogen atoms in these alkyl groups is substituted with a fluorine atom.
  • R a2 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a group having an aromatic ring, an alkylcarbonyl group having 2 to 6 carbon atoms, or 2 to 6 carbon atoms. represents an alkoxycarbonyl group and an N-alkylcarbamoyl group having 2 to 6 carbon atoms.
  • the alkyl group include methyl group, ethyl group, propyl group, butyl group, etc.
  • alkenyl group examples include 1-propenyl group, 2-propenyl group, 2-methyl-1-propenyl group, 2-methyl-2 -propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group and the like, and examples of groups having an aromatic ring include a phenyl group, a benzyl group, a fluorobenzyl group, a methoxybenzyl group, a phenoxyethyl group and the like. mentioned.
  • alkylcarbonyl group examples include an ethylcarbonyl group, a propylcarbonyl group and a butylcarbonyl group; examples of the alkoxycarbonyl group include an ethoxycarbonyl group, a propoxycarbonyl group and a butoxycarbonyl group; examples of the N-alkylcarbamoyl group include Ethylcarbamoyl group, propylcarbamoyl group, butylcarbamoyl group, pentylcarbamoyl group and the like.
  • R a2 may have a substituent, and examples of the substituent include 1 to 6 alkyl groups and fluorine atoms.
  • R a3 is a linear or branched alkylene group, a linear or branched poly(alkyleneoxy) group, a linear or branched unsaturated hydrocarbon group, a carbonyl group or an alkylene group containing a carbonyl group, a carboxy group represents an alkylene group containing, an alkylene group containing a carbamoyl group, or the groups shown below.
  • the alkylene group include an ethylene group, a propylene group and a butylene group
  • examples of the poly(alkyleneoxy) group include a poly(ethyleneoxy) group and a poly(propyleneoxy) group.
  • a propenylene group, a methylpropenylene group, a butenylene group etc. are mentioned as an unsaturated hydrocarbon group.
  • Examples of the compound represented by formula (1) include 3-ethyl-3-hydroxymethyloxetane (OXT-101: manufactured by Toagosei Co., Ltd.), 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane ( OXT-212: manufactured by Toagosei Co., Ltd.) and 3-ethyl-3-phenoxymethyloxetane (OXT-211: manufactured by Toagosei Co., Ltd.).
  • Examples of the compound represented by formula (2) include 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene (OXT-121: manufactured by Toagosei Co., Ltd.).
  • Examples of the compound represented by formula (3) include bis(3-ethyl-3-oxetanylmethyl)ether (OXT-221: manufactured by Toagosei Co., Ltd.).
  • paragraphs 0021 to 0084 of JP-A-2003-341217, JP-A-2004-91556, and paragraphs 0022-0058 of JP-A-2004-91556 may be referred to.
  • Examples of cationic polymerizable monomers include vinyl ether compounds. Specific examples of the vinyl ether compound are as described above.
  • a divinyl ether compound or a trivinyl ether compound is preferable from the viewpoint of curability, adhesion with a recording medium, surface hardness of a formed image, etc., and a divinyl ether compound is particularly preferable.
  • the content of the polymerizable monomer is preferably 10% by mass to 98% by mass, more preferably 50% by mass to 98% by mass, relative to the total amount of the insulating layer forming ink.
  • the insulating layer forming ink contains a polymerization initiator for the purpose of curing the polymerizable monomer.
  • a suitable polymerization initiator can be selected from radical polymerization initiators and cationic polymerization initiators depending on the type of polymerizable monomer. Examples of polymerization initiators include oxime compounds, alkylphenone compounds, acylphosphine compounds, aromatic onium salt compounds, organic peroxides, thio compounds, hexaarylbisimidazole compounds, borate compounds, azinium compounds, titanocene compounds, active esters. compounds, compounds with carbon-halogen bonds, and alkylamines.
  • the radical polymerization initiator contained in the insulating layer forming ink is at least one selected from the group consisting of an oxime compound, an alkylphenone compound, and a titanocene compound, from the viewpoint of further improving conductivity. More preferably an alkylphenone compound, and more preferably at least one selected from the group consisting of ⁇ -aminoalkylphenone compounds and benzylketal alkylphenones.
  • the cationic polymerization initiator is preferably a photoacid generator.
  • photoacid generators include chemically amplified photoresists and compounds used for photocationic polymerization (Organic Electronics Materials Research Group, "Organic Materials for Imaging", Bunshin Publishing (1993), 187- (see page 192).
  • the photoacid generator is preferably an aromatic onium salt compound, preferably an onium salt compound such as a diazonium salt, a phosphonium salt, a sulfonium salt or an iodonium salt, more preferably a sulfonium salt or an iodonium salt.
  • the content of the polymerization initiator is preferably 0.5% by mass to 20% by mass, more preferably 2% by mass to 10% by mass, relative to the total amount of the insulating layer forming ink.
  • the insulating layer forming ink may contain components other than the polymerization initiator and the polymerizable monomer.
  • Other ingredients include chain transfer agents, polymerization inhibitors, sensitizers, surfactants and additives.
  • the insulating protective layer forming ink may contain at least one chain transfer agent.
  • the chain transfer agent is preferably a polyfunctional thiol.
  • polyfunctional thiols include aliphatic thiols such as hexane-1,6-dithiol, decane-1,10-dithiol, dimercaptodiethyl ether, dimercaptodiethyl sulfide, xylylene dimercaptan, 4,4'- Aromatic thiols such as dimercaptodiphenyl sulfide and 1,4-benzenedithiol; Ethylene Glycol Bis (Mercaptoacetate), Polyethylene Glycol Bis (Mercaptoacetate), Propylene Glycol Bis (Mercaptoacetate), Glycerin Tris (Mercaptoacetate), Trimethylolethane Tris (Mercaptoacetate), Trimethylolpropane Tris (Mercaptoacetate), Penta poly(mercaptoacetate) of polyhydric alcohols such as erythritol tetrakis (mercaptoacetate), dipentaerythrito
  • the insulating layer forming ink may contain at least one polymerization inhibitor.
  • Polymerization inhibitors include p-methoxyphenol, quinones (e.g., hydroquinone, benzoquinone, methoxybenzoquinone, etc.), phenothiazine, catechols, alkylphenols (e.g., dibutylhydroxytoluene (BHT), etc.), alkylbisphenols, dimethyldithiocarbamine.
  • the polymerization inhibitor is preferably at least one selected from p-methoxyphenol, catechols, quinones, alkylphenols, TEMPO, TEMPOL, and tris(N-nitroso-N-phenylhydroxylamine) aluminum salt, and p -Methoxyphenol, hydroquinone, benzoquinone, BHT, TEMPO, TEMPOL, and tris(N-nitroso-N-phenylhydroxylamine) aluminum salt is more preferred.
  • the content of the polymerization inhibitor is preferably 0.01% by mass to 2.0% by mass, more preferably 0.02% by mass to 1.0% by mass, based on the total amount of the ink. 0 mass % is more preferred, and 0.03 mass % to 0.5 mass % is particularly preferred.
  • the insulating layer forming ink may contain at least one sensitizer.
  • sensitizers include polynuclear aromatic compounds (e.g., pyrene, perylene, triphenylene, and 2-ethyl-9,10-dimethoxyanthracene), xanthene compounds (e.g., fluorescein, eosin, erythrosine, rhodamine B, and Rose Bengal), cyanine compounds (e.g., thiacarbocyanine and oxacarbocyanine), merocyanine compounds (e.g., merocyanine and carbomerocyanine), thiazine compounds (e.g., thionine, methylene blue, and toluidine blue), acridine compounds compounds (e.g., acridine orange, chloroflavin, and acriflavin), anthraquinones (e.g., anthraquinone), squalium compounds (e.g., squalium), coumarin compounds (e.g.
  • the content of the sensitizer is not particularly limited, but is 1.0% by mass to 15.0% by mass with respect to the total amount of the insulating layer-forming ink. is preferred, and 1.5% by mass to 5.0% by mass is more preferred.
  • the insulating layer forming ink may contain at least one surfactant.
  • surfactants include those described in JP-A-62-173463 and JP-A-62-183457.
  • surfactants include anionic surfactants such as dialkylsulfosuccinates, alkylnaphthalenesulfonates, and fatty acid salts; polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, acetylene glycol, polyoxyethylene •
  • Nonionic surfactants such as polyoxypropylene block copolymers; and cationic surfactants such as alkylamine salts and quaternary ammonium salts.
  • the surfactant may be a fluorosurfactant or a silicone surfactant.
  • the insulating layer forming ink may contain at least one organic solvent.
  • organic solvents examples include (poly)alkylene glycols such as ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether (PGME), dipropylene glycol monomethyl ether, and tripropylene glycol monomethyl ether.
  • polyalkylene glycols such as ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether (PGME), dipropylene glycol monomethyl ether, and tripropylene glycol monomethyl ether.
  • (poly)alkylene glycol dialkyl ethers such as ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol diethyl ether, tetraethylene glycol dimethyl ether;
  • (poly)alkylene glycol acetates such as diethylene glycol acetate;
  • (poly)alkylene glycol diacetates such as ethylene glycol diacetate and propylene glycol diacetate;
  • (poly)alkylene glycol monoalkyl ether acetates such as ethylene glycol monobutyl ether acetate and propylene glycol monomethyl ether acetate; ketones such as methyl ethyl ketone and cyclohexanone; Lactones such as ⁇ -butyrolactone; Esters such as ethyl acetate, propyl acetate, butyl acetate, 3-methoxybutyl
  • the content of the organic solvent is preferably 70% by mass or less, more preferably 50% by mass or less, relative to the total amount of the insulating layer forming ink. preferable.
  • the lower limit of the content of the organic solvent is not particularly limited.
  • the content of the organic solvent may be 0% by mass.
  • the insulating layer-forming ink may contain additives such as a co-sensitizer, an ultraviolet absorber, an antioxidant, an anti-fading agent, and a basic compound, if necessary.
  • the pH of the insulating layer-forming ink is preferably 7 to 10, more preferably 7.5 to 9.5, from the viewpoint of improving ejection stability when applied by an inkjet recording method.
  • the pH is measured at 25° C. using a pH meter, for example, using a pH meter manufactured by DKK Toa (model number “HM-31”).
  • the viscosity of the insulating layer forming ink is preferably 0.5 mPa ⁇ s to 60 mPa ⁇ s, more preferably 2 mPa ⁇ s to 40 mPa ⁇ s. Viscosity is measured at 25° C. using a viscometer, for example, using a TV-22 viscometer manufactured by Toki Sangyo Co., Ltd.
  • the surface tension of the insulating layer forming ink is preferably 60 mN/m or less, more preferably 20 mN/m to 50 mN/m, even more preferably 25 mN/m to 45 mN/m.
  • the surface tension is measured at 25° C. using a surface tensiometer, for example, by a plate method using an automatic surface tensiometer manufactured by Kyowa Interface Science Co., Ltd. (product name “CBVP-Z”).
  • the method of applying the insulating layer forming ink is not particularly limited, and examples thereof include known methods such as a coating method and an inkjet recording method. Above all, it is preferable to apply the ink for forming the insulating layer using an ink jet recording method from the viewpoint of reducing the thickness of the insulating layer formed by applying a small amount of ink in one application.
  • Inkjet recording methods include a charge control method that uses electrostatic attraction to eject ink, a drop-on-demand method (pressure pulse method) that uses the vibration pressure of a piezo element, and an acoustic beam that converts an electrical signal into an acoustic beam that irradiates the ink.
  • a charge control method that uses electrostatic attraction to eject ink
  • a drop-on-demand method that uses the vibration pressure of a piezo element
  • an acoustic beam that converts an electrical signal into an acoustic beam that irradiates the ink.
  • Either an acoustic inkjet method in which ink is ejected using radiation pressure, or a thermal inkjet (bubble jet (registered trademark)) method in which ink is heated to form bubbles and the pressure generated is used.
  • the method described in Japanese Patent Laid-Open No. 59936/1989 causes a sudden change in volume of the ink under the action of thermal energy, and the acting force due to this change in state causes the ink to be ejected from the nozzle. It is possible to effectively use an ink jet recording method for discharging.
  • an inkjet head used in the inkjet recording method a short serial head is used, and a shuttle scan method in which recording is performed while scanning the head in the width direction of the electronic substrate, and a recording element corresponding to the entire side of the electronic substrate. and a line system using arrayed line heads.
  • the droplet volume of the insulating layer forming ink ejected from the inkjet head is preferably 1 pL (picoliter) to 100 pL, more preferably 3 pL to 80 pL, and even more preferably 3 pL to 20 pL.
  • the active energy ray is applied after applying the insulating layer forming ink.
  • UV ultraviolet rays
  • visible rays examples include visible rays, and electron beams, and among them, ultraviolet rays (hereinafter also referred to as "UV") are preferred.
  • the peak wavelength of ultraviolet rays is preferably 200 nm to 405 nm, more preferably 250 nm to 400 nm, even more preferably 300 nm to 400 nm.
  • the illuminance at the time of irradiation with the active energy ray is preferably 1 W/cm 2 or more, more preferably 10 W/cm 2 or more.
  • the upper limit of the illuminance is not particularly limited, it is, for example, 100 W/cm 2 .
  • the exposure amount in the irradiation of active energy rays is preferably 100 mJ/cm 2 to 10000 mJ/cm 2 , more preferably 300 mJ/cm 2 to 5000 mJ/cm 2 .
  • the amount of exposure here means the amount of exposure of the active energy ray in one cycle.
  • UV-LEDs light-emitting diodes
  • UV-LDs laser diodes
  • the light source for ultraviolet irradiation is preferably a metal halide lamp, a high-pressure mercury lamp, a medium-pressure mercury lamp, a low-pressure mercury lamp, or a UV-LED.
  • a conductive layer forming ink is applied onto the insulating layer and at least part of the ground electrode.
  • FIGS. 5A and 5B are diagrams showing an example of areas where the conductive layer forming ink is applied.
  • FIG. 5C is a cross-sectional view taken along line BB of FIG. 3A, showing a state in which a conductive layer is formed.
  • a conductive layer 32 is formed on the portion.
  • the step of applying the ink for forming the conductive layer is preferably repeated. By repeating the above steps, the thickness of the cured film of the ink for forming the conductive layer can be increased.
  • the region to which the conductive layer forming ink is applied (the conductive layer forming ink applying region) is set on the insulating layer 31 and at least part of the ground electrode 13 .
  • an electronic device in which T2 is thicker than T1 is obtained.
  • T2 is thicker than T1
  • the following methods are preferably mentioned.
  • the conductive layer forming ink is applied to the region 22A.
  • the area 22A is substantially the same as the area covering the ground electrode and the ground area.
  • a cured film of the conductive layer forming ink is formed on the insulating layer 31 .
  • the first step is preferably repeated. By repeating the first step, the thickness of the cured film of the conductive layer forming ink on the insulating layer 31 can be increased, and T1 can be adjusted.
  • a region 22B is a region where a ground electrode is arranged.
  • the area 22B is an area in which ground electrodes arranged discontinuously are regarded as a continuous frame.
  • a cured film of the conductive layer forming ink is formed on the ground electrode 13 .
  • the second step is preferably repeated. By repeating the second step, the thickness of the cured film of the conductive layer forming ink on the ground electrode 13 can be increased, and T2 can be adjusted.
  • T1 and T2 can be adjusted by appropriately adjusting the amount of application of the ink for forming the conductive layer and the number of times of application.
  • the regions 22A and 22B are set as the conductive layer forming ink application regions, but the present invention is not limited to this example.
  • the areas 22A and 22B can be appropriately set according to the positions and shapes of the electronic components 12 and the ground electrodes 13 arranged on the wiring board 11.
  • the method of applying the ink for forming the conductive layer is not particularly limited, and examples thereof include known methods such as a coating method and an inkjet recording method. Above all, it is preferable to apply the ink for forming the conductive layer by an inkjet recording method, from the viewpoint that the thickness of the conductive layer formed by ejecting a small amount of droplets in one application can be reduced.
  • Preferred aspects of the inkjet recording method are the same as the preferred aspects of the inkjet recording method in applying the ink for forming the insulating layer.
  • the temperature of the electronic substrate when applying the conductive layer forming ink is preferably 20°C to 120°C, more preferably 40°C to 100°C.
  • the ink for forming a conductive layer means an ink for forming a conductive layer.
  • Electrical conductivity means the property of having a volume resistivity of less than 10 8 ⁇ cm.
  • the ink for forming the conductive layer is an ink containing metal particles (hereinafter also referred to as “metal particle ink”), an ink containing a metal complex (hereinafter also referred to as “metal complex ink”), or an ink containing a metal salt (hereinafter also referred to as “metal complex ink”). , also referred to as “metal salt ink”), and more preferably metal complex ink or metal salt ink.
  • the ink for forming the conductive layer preferably contains silver, more preferably an ink containing a silver salt or an ink containing a silver complex.
  • Metal particle ink is, for example, an ink composition in which metal particles are dispersed in a dispersion medium.
  • the metal that constitutes the metal particles include particles of base metals and noble metals.
  • Base metals include, for example, nickel, titanium, cobalt, copper, chromium, manganese, iron, zirconium, tin, tungsten, molybdenum, and vanadium.
  • Noble metals include, for example, gold, silver, platinum, palladium, iridium, osmium, ruthenium, rhodium, rhenium, and alloys containing these metals.
  • the metal constituting the metal particles preferably contains at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper, and more preferably contains silver. .
  • the average particle size of the metal particles is not particularly limited, it is preferably 10 nm to 500 nm, more preferably 10 nm to 200 nm.
  • the firing temperature of the metal particles is lowered, and the process suitability for producing the conductive ink film is enhanced.
  • the metal particle ink is applied by a spray method or an inkjet recording method, there is a tendency that the ejection property is improved, and the pattern formability and the uniformity of the film thickness of the conductive ink film are improved.
  • the average particle diameter here means the average value of the primary particle diameters of the metal particles (average primary particle diameter).
  • the average particle size of metal particles is measured by a laser diffraction/scattering method.
  • the average particle size of the metal particles is, for example, a value calculated as the average value of the values obtained by measuring the 50% volume cumulative diameter (D50) three times and using a laser diffraction/scattering particle size distribution analyzer. (product name “LA-960”, manufactured by HORIBA, Ltd.).
  • the metal particle ink may contain metal particles having an average particle size of 500 nm or more, if necessary.
  • the conductive ink film can be bonded by melting point depression of the nanometer-sized metal particles around the micrometer-sized metal particles.
  • the content of the metal particles in the metal particle ink is preferably 10% by mass to 90% by mass, more preferably 20% by mass to 50% by mass, relative to the total amount of the metal particle ink.
  • the content of the metal particles is 10% by mass or more, the surface resistivity is further lowered.
  • the content of the metal particles is 90% by mass or less, the jettability is improved when the metal particle ink is applied by an inkjet recording method.
  • the metal particle ink may contain, for example, a dispersant, a resin, a dispersion medium, a thickener, and a surface tension adjuster.
  • the metal particle ink may contain a dispersant adhering to at least part of the surface of the metal particles.
  • the dispersant together with the metal particles, substantially constitutes the metal colloid particles.
  • the dispersant has the effect of coating the metal particles to improve the dispersibility of the metal particles and to prevent aggregation.
  • the dispersant is preferably an organic compound capable of forming colloidal metal particles. From the viewpoint of conductivity and dispersion stability, the dispersant is preferably an amine, carboxylic acid, alcohol, or resin dispersant.
  • the number of dispersants contained in the metal particle ink may be one, or two or more.
  • Amines include, for example, saturated or unsaturated aliphatic amines.
  • the amine is preferably an aliphatic amine having 4 to 8 carbon atoms.
  • the aliphatic amine having 4 to 8 carbon atoms may be linear or branched, and may have a ring structure.
  • aliphatic amines examples include butylamine, n-pentylamine, isopentylamine, hexylamine, 2-ethylhexylamine, and octylamine.
  • Amines having an alicyclic structure include cycloalkylamines such as cyclopentylamine and cyclohexylamine.
  • Aniline can be mentioned as an aromatic amine.
  • the amine may have functional groups other than amino groups.
  • Functional groups other than amino groups include, for example, hydroxy groups, carboxy groups, alkoxy groups, carbonyl groups, ester groups, and mercapto groups.
  • Carboxylic acids include, for example, formic acid, oxalic acid, acetic acid, hexanoic acid, acrylic acid, octylic acid, oleic acid, thianoic acid, ricinoleic acid, gallic acid, and salicylic acid.
  • a carboxy group that is part of a carboxylic acid may form a salt with a metal ion.
  • the number of metal ions that form a salt may be one, or two or more.
  • the carboxylic acid may have functional groups other than the carboxy group.
  • Functional groups other than carboxy groups include, for example, amino groups, hydroxy groups, alkoxy groups, carbonyl groups, ester groups, and mercapto groups.
  • Alcohol examples include terpene alcohol, allyl alcohol, and oleyl alcohol. Alcohol is easily coordinated to the surface of the metal particles and can suppress aggregation of the metal particles.
  • the resin dispersant includes, for example, a dispersant that has a nonionic group as a hydrophilic group and is uniformly soluble in a solvent.
  • resin dispersants include polyvinylpyrrolidone, polyethylene glycol, polyethylene glycol-polypropylene glycol copolymer, polyvinyl alcohol, polyallylamine, and polyvinyl alcohol-polyvinyl acetate copolymer.
  • the weight-average molecular weight of the resin dispersant is preferably 1,000 to 50,000, more preferably 1,000 to 30,000.
  • the content of the dispersant in the metal particle ink is preferably 0.5% by mass to 50% by mass, more preferably 1% by mass to 30% by mass, relative to the total amount of the metal particle ink. .
  • the metal particle ink preferably contains a dispersion medium.
  • the type of dispersion medium is not particularly limited, and examples thereof include hydrocarbons, alcohols, and water.
  • the dispersion medium contained in the metal particle ink may be of one type, or may be of two or more types.
  • the dispersion medium contained in the metal particle ink is preferably volatile.
  • the boiling point of the dispersion medium is preferably 50°C to 250°C, more preferably 70°C to 220°C, even more preferably 80°C to 200°C. When the boiling point of the dispersion medium is 50° C. to 250° C., there is a tendency that both the stability and the sinterability of the metal particle ink can be achieved.
  • Hydrocarbons include aliphatic hydrocarbons and aromatic hydrocarbons.
  • aliphatic hydrocarbons include saturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin and isoparaffin, or unsaturated hydrocarbons. Aliphatic hydrocarbons are mentioned.
  • Aromatic hydrocarbons include, for example, toluene and xylene.
  • Alcohols include aliphatic alcohols and alicyclic alcohols.
  • the dispersing agent is preferably an amine or carboxylic acid.
  • aliphatic alcohols examples include heptanol, octanol (eg, 1-octanol, 2-octanol, 3-octanol, etc.), decanol (eg, 1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, 2- C6-20 aliphatic alcohols which may contain an ether bond in the saturated or unsaturated chain, such as ethyl-1-hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol.
  • Alicyclic alcohols include, for example, cycloalkanols such as cyclohexanol; terpineol (including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof), terpene alcohols such as dihydroterpineol; dihydroterpineol, myrtenol, Sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, sobrerol, and verbenol.
  • cycloalkanols such as cyclohexanol
  • terpineol including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof
  • terpene alcohols such as dihydroterpineol; dihydroterpineol, myrtenol, Sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, sobrerol, and verbenol.
  • the dispersion medium may be water. From the viewpoint of adjusting physical properties such as viscosity, surface tension and volatility, the dispersion medium may be a mixed solvent of water and other solvents. Another solvent that is mixed with water is preferably an alcohol.
  • the alcohol used in combination with water is preferably an alcohol miscible with water and having a boiling point of 130° C. or less.
  • Alcohols include, for example, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 1-pentanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, and propylene. Glycol monomethyl ether is mentioned.
  • the content of the dispersion medium in the metal particle ink is preferably 1% by mass to 50% by mass with respect to the total amount of the metal particle ink. If the content of the dispersion medium is 1% by mass to 50% by mass, sufficient conductivity as a conductive ink can be obtained.
  • the content of the dispersion medium is more preferably 10% by mass to 45% by mass, and even more preferably 20% by mass to 40% by mass.
  • the metal particle ink may contain resin.
  • resins include polyesters, polyurethanes, melamine resins, acrylic resins, styrenic resins, polyethers, and terpene resins.
  • the number of resins contained in the metal particle ink may be one, or two or more.
  • the content of the resin in the metal particle ink is preferably 0.1% by mass to 5% by mass with respect to the total amount of the metal particle ink.
  • the metal particle ink may contain a thickening agent.
  • thickeners include clay minerals such as clay, bentonite and hectorite; cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxypropylmethylcellulose; and polysaccharides such as xanthan gum and guar gum. be done.
  • the number of thickeners contained in the metal particle ink may be one, or two or more.
  • the content of the thickener in the metal particle ink is preferably 0.1% by mass to 5% by mass with respect to the total amount of the metal particle ink.
  • the metal particle ink may contain a surfactant.
  • a uniform conductive ink film is easily formed.
  • the surfactant may be an anionic surfactant, a cationic surfactant, or a nonionic surfactant.
  • the surfactant is preferably a fluorosurfactant from the viewpoint that the surface tension can be adjusted with a small content.
  • the surfactant is preferably a compound having a boiling point of over 250°C.
  • the viscosity of the metal particle ink is not particularly limited, and may be from 0.01 Pa ⁇ s to 5000 Pa ⁇ s, preferably from 0.1 Pa ⁇ s to 100 Pa ⁇ s.
  • the viscosity of the metal particle ink is preferably 1 mPa ⁇ s to 100 mPa ⁇ s, more preferably 2 mPa ⁇ s to 50 mPa ⁇ s. , 3 mPa ⁇ s to 30 mPa ⁇ s.
  • the viscosity of the metal particle ink is a value measured at 25°C using a viscometer. Viscosity is measured using, for example, a VISCOMETER TV-22 viscometer (manufactured by Toki Sangyo Co., Ltd.).
  • the surface tension of the metal particle ink is not particularly limited, and is preferably 20 mN/m to 45 mN/m, more preferably 25 mN/m to 40 mN/m.
  • Surface tension is a value measured at 25°C using a surface tensiometer.
  • the surface tension of the metal particle ink is measured using, for example, DY-700 (manufactured by Kyowa Interface Science Co., Ltd.).
  • the metal particles may be commercially available products or may be produced by known methods.
  • Methods for producing metal particles include, for example, a wet reduction method, a vapor phase method, and a plasma method.
  • a wet reduction method capable of producing metal particles having an average particle size of 200 nm or less with a narrow particle size distribution.
  • a method for producing metal particles by a wet reduction method includes, for example, a step of mixing a metal salt and a reducing agent described in JP-A-2017-37761, WO-2014-57633, etc. to obtain a complexation reaction solution; heating the complexing reaction solution to reduce the metal ions in the complexing reaction solution to obtain a slurry of metal nanoparticles.
  • heat treatment may be performed in order to adjust the content of each component contained in the metal particle ink within a predetermined range.
  • the heat treatment may be performed under reduced pressure or under normal pressure.
  • you may carry out in air
  • a metal complex ink is, for example, an ink composition in which a metal complex is dissolved in a solvent.
  • metals constituting metal complexes include silver, copper, gold, aluminum, magnesium, tungsten, molybdenum, zinc, nickel, iron, platinum, tin, copper, and lead.
  • the metal constituting the metal complex preferably contains at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper, and more preferably contains silver. .
  • the content of the metal contained in the metal complex ink is preferably 1% by mass to 40% by mass, more preferably 5% by mass to 30% by mass, in terms of metal element, with respect to the total amount of the metal complex ink. Preferably, it is more preferably 7% by mass to 20% by mass.
  • a metal complex is obtained, for example, by reacting a metal salt with a complexing agent.
  • a method for producing a metal complex includes, for example, a method in which a metal salt and a complexing agent are added to a solvent and the mixture is stirred for a predetermined period of time.
  • the stirring method is not particularly limited, and can be appropriately selected from known methods such as a method of stirring using a stirrer, a stirring blade or a mixer, and a method of applying ultrasonic waves.
  • Metal salts include metal oxides, thiocyanates, sulfides, chlorides, cyanides, cyanates, carbonates, acetates, nitrates, nitrites, sulfates, phosphates, perchlorates, Tetrafluoroborates, acetylacetonate complexes, and carboxylates.
  • the metal salt is preferably a carboxylate.
  • the carboxylic acid forming the carboxylic acid salt is preferably at least one selected from the group consisting of carboxylic acids having 1 to 20 carbon atoms, more preferably carboxylic acids having 1 to 16 carbon atoms, and carbon Fatty acids with numbers 2 to 12 are more preferred.
  • the fatty acid may be linear or branched, and may have a substituent.
  • linear fatty acids examples include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, palmitoleic acid, Oleic acid, linoleic acid, and linolenic acid.
  • branched fatty acids examples include isobutyric acid, isovaleric acid, 2-ethylhexanoic acid, neodecanoic acid, pivalic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, and 2,2-dimethylbutane. acids, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, and 2-ethylbutanoic acid.
  • substituted carboxylic acids include hexafluoroacetylacetone acid, glycolic acid, lactic acid, 3-hydroxybutyric acid, 2-methyl-3-hydroxybutyric acid, 3-methoxybutyric acid, and acetoacetic acid.
  • Polyfunctional carboxylic acids include oxalic acid, succinic acid, glutaric acid, malonic acid, acetonedicarboxylic acid, 3-hydroxyglutaric acid, 2-methyl-3-hydroxyglutaric acid, and 2,2,4,4-hydroxyglutaric acid. , and citric acid.
  • the metal salt is preferably an alkyl carboxylate having 2 to 12 carbon atoms, an oxalate, or an acetoacetate, and more preferably an alkyl carboxylic acid having 2 to 12 carbon atoms.
  • Complexing agents include amines, ammonium carbamate compounds, ammonium carbonate compounds, and ammonium bicarbonate compounds. Above all, from the viewpoint of conductivity and stability of the metal complex, the complexing agent preferably contains at least one selected from the group consisting of amines, ammonium carbamate compounds, and ammonium carbonate compounds.
  • the metal complex has a structure derived from a complexing agent, and is a metal complex having a structure derived from at least one selected from the group consisting of amines, ammonium carbamate compounds, and ammonium carbonate compounds. is preferred.
  • Amines that are complexing agents include, for example, ammonia, primary amines, secondary amines, tertiary amines, and polyamines.
  • Examples of primary amines having linear alkyl groups include methylamine, ethylamine, n-propylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine and n-octylamine. , n-nonylamine, n-decylamine, undecylamine, n-dodecylamine, n-tridecylamine, n-tetradecylamine, n-pentadecylamine, n-hexadecylamine, n-heptadecylamine, and n - Octadecylamine.
  • Examples of primary amines having branched alkyl groups include isopropylamine, sec-butylamine, tert-butylamine, isopentylamine, 2-ethylhexylamine, and tert-octylamine.
  • Examples of primary amines having an alicyclic structure include cyclopentylamine, cyclohexylamine, and dicyclohexylamine.
  • Examples of primary amines having a hydroxyalkyl group include ethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, propanolamine, isopropanolamine, dipropanolamine, diisopropanolamine, tripropanolamine, and triisopropanol. Amines are mentioned.
  • Examples of primary amines having an aromatic ring include benzylamine, N,N-dimethylbenzylamine, phenylamine, diphenylamine, triphenylamine, aniline, N,N-dimethylaniline, N,N-dimethyl-p- Toluidine, 4-aminopyridine, and 4-dimethylaminopyridine.
  • secondary amines include dimethylamine, diethylamine, dipropylamine, dibutylamine, diphenylamine, dicyclopentylamine, methylbutylamine, diethanolamine, N-methylethanolamine, dipropanolamine, and diisopropanolamine.
  • Tertiary amines include, for example, trimethylamine, triethylamine, tripropylamine, triethanolamine, tripropanolamine and triisopropanolamine, triphenylamine, N,N-dimethylaniline, N,N-dimethyl-p-toluidine , and 4-dimethylaminopyridine.
  • polyamines examples include ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, diethylenetriamine, triethylenetetramine, tetramethylenepentamine, hexamethylenediamine, tetraethylenepentamine, and combinations thereof.
  • the amine is preferably an alkylamine, preferably an alkylamine having 2 to 12 carbon atoms, more preferably a primary alkylamine having 2 to 8 carbon atoms.
  • the number of amines constituting the metal complex may be one, or two or more.
  • the molar ratio of the amine to the metal salt is preferably 1 to 15 times, more preferably 1.5 to 6 times.
  • the complex formation reaction is completed and a transparent solution is obtained.
  • Ammonium carbamate compounds as complexing agents include ammonium carbamate, methylammonium methylcarbamate, ethylammonium ethylcarbamate, 1-propylammonium 1-propylcarbamate, isopropylammonium isopropylcarbamate, butylammonium butylcarbamate, isobutylammonium isobutylcarbamate, amyl ammonium amyl carbamate, hexylammonium hexyl carbamate, heptylammonium heptyl carbamate, octylammonium octyl carbamate, 2-ethylhexylammonium 2-ethylhexyl carbamate, nonyl ammonium nonyl carbamate, and decyl ammonium decyl carbamate.
  • Ammonium carbonate-based compounds as complexing agents include ammonium carbonate, methylammonium carbonate, ethylammonium carbonate, 1-propylammonium carbonate, isopropylammonium carbonate, butylammonium carbonate, isobutylammonium carbonate, amylammonium carbonate, hexylammonium carbonate, and heptyl. Ammonium carbonate, octylammonium carbonate, 2-ethylhexylammonium carbonate, nonyl ammonium carbonate, and decylammonium carbonate.
  • Ammonium bicarbonate-based compounds as complexing agents include ammonium bicarbonate, methylammonium bicarbonate, ethylammonium bicarbonate, 1-propylammonium bicarbonate, isopropylammonium bicarbonate, butylammonium bicarbonate, isobutylammonium bicarbonate, amyl Ammonium bicarbonate, hexylammonium bicarbonate, heptyl ammonium bicarbonate, octylammonium bicarbonate, 2-ethylhexylammonium bicarbonate, nonyl ammonium bicarbonate, and decylammonium bicarbonate.
  • the amount of the ammonium carbamate-based compound, the ammonium carbonate-based compound, or the ammonium bicarbonate-based compound relative to the molar amount of the metal salt is preferably 0.01 to 1, more preferably 0.05 to 0.6.
  • the content of the metal complex in the metal complex ink is preferably 10% by mass to 90% by mass, more preferably 10% by mass to 40% by mass, relative to the total amount of the metal complex ink.
  • the content of the metal complex is 10% by mass or more, the surface resistivity is further lowered.
  • the content of the metal complex is 90% by mass or less, the jettability is improved when the metal particle ink is applied by an inkjet recording method.
  • the metal complex ink preferably contains a solvent.
  • the solvent is not particularly limited as long as it can dissolve the components contained in the metal complex ink such as the metal complex. From the viewpoint of ease of production, the solvent preferably has a boiling point of 30°C to 300°C, more preferably 50°C to 200°C, and more preferably 50°C to 150°C.
  • the content of the solvent in the metal complex ink is such that the concentration of the metal ion relative to the metal complex (the amount of metal present as free ions per 1 g of the metal complex) is 0.01 mmol/g to 3.6 mmol/g. is preferred, and 0.05 mmol/g to 2 mmol/g is more preferred.
  • the metal ion concentration is within the above range, the metal complex ink has excellent fluidity and conductivity.
  • solvents examples include hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, carbamates, alkenes, amides, ethers, esters, alcohols, thiols, thioethers, phosphines, and water.
  • the number of solvents contained in the metal complex ink may be one, or two or more.
  • the hydrocarbon is preferably a linear or branched hydrocarbon having 6 to 20 carbon atoms.
  • Hydrocarbons include, for example, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane and icosane.
  • the cyclic hydrocarbon is preferably a cyclic hydrocarbon having 6 to 20 carbon atoms.
  • Cyclic hydrocarbons can include, for example, cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, and decalin.
  • Aromatic hydrocarbons include, for example, benzene, toluene, xylene, and tetralin.
  • the ether may be any of straight-chain ether, branched-chain ether, and cyclic ether.
  • Ethers include, for example, diethyl ether, dipropyl ether, dibutyl ether, methyl-t-butyl ether, tetrahydrofuran, tetrahydropyran, dihydropyran, and 1,4-dioxane.
  • the alcohol may be any of primary alcohol, secondary alcohol, and tertiary alcohol.
  • alcohols examples include ethanol, 1-propanol, 2-propanol, 1-methoxy-2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3-pentanol and 1-hexanol.
  • Ketones include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • esters include methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, methoxybutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol.
  • the metal complex ink may contain a reducing agent.
  • the metal complex ink contains a reducing agent, the reduction of the metal complex to the metal is promoted.
  • reducing agents include metal borohydride, aluminum hydride, amines, alcohols, aldehydes, organic acids, reducing sugars, sugar alcohols, sodium sulfite, hydrazine compounds, dextrin, hydroquinone, hydroxylamine, ethylene glycol, and glutathione. , and oxime compounds.
  • the reducing agent may be an oxime compound described in JP 2014-516463.
  • oxime compounds include acetone oxime, cyclohexanone oxime, 2-butanone oxime, 2,3-butanedione monoxime, dimethylglyoxime, methylacetoacetate monoxime, methylpyruvate monoxime, benzaldehyde oxime, and 1-indanone.
  • oximes 2-adamantanone oxime, 2-methylbenzamide oxime, 3-methylbenzamide oxime, 4-methylbenzamide oxime, 3-aminobenzamide oxime, 4-aminobenzamide oxime, acetophenone oxime, benzamide oxime, and pinacolone oxime .
  • the number of reducing agents contained in the metal complex ink may be one, or two or more.
  • the content of the reducing agent in the metal complex ink is not particularly limited. More preferably 1% by mass to 5% by mass.
  • the metal complex ink may contain resin.
  • the adhesion of the metal complex ink to the electronic substrate is improved.
  • resins include polyester, polyethylene, polypropylene, polyacetal, polyolefin, polycarbonate, polyamide, fluorine resin, silicone resin, ethyl cellulose, hydroxyethyl cellulose, rosin, acrylic resin, polyvinyl chloride, polysulfone, polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl-based Resins, polyacrylonitrile, polysulfides, polyamideimides, polyethers, polyarylates, polyetheretherketones, polyurethanes, epoxy resins, vinyl ester resins, phenolic resins, melamine resins, and urea resins.
  • the number of resins contained in the metal complex ink may be one, or two or more.
  • the metal complex ink further contains an inorganic salt, an organic salt, an inorganic oxide such as silica; Additives such as agents, surfactants, plasticizers, curing agents, thickeners, and silane coupling agents may be contained.
  • the total content of additives in the metal complex ink is preferably 20% by mass or less with respect to the total amount of the metal complex ink.
  • the viscosity of the metal complex ink is not particularly limited, and may be 0.001 Pa ⁇ s to 5000 Pa ⁇ s, preferably 0.001 Pa ⁇ s to 100 Pa ⁇ s.
  • the viscosity of the metal complex ink is preferably 1 mPa ⁇ s to 100 mPa ⁇ s, more preferably 2 mPa ⁇ s to 50 mPa ⁇ s. , 3 mPa ⁇ s to 30 mPa ⁇ s.
  • the viscosity of the metal complex ink is a value measured at 25°C using a viscometer. Viscosity is measured using, for example, a VISCOMETER TV-22 viscometer (manufactured by Toki Sangyo Co., Ltd.).
  • the surface tension of the metal complex ink is not particularly limited, and is preferably 20 mN/m to 45 mN/m, more preferably 25 mN/m to 35 mN/m.
  • Surface tension is a value measured at 25°C using a surface tensiometer.
  • the surface tension of the metal complex ink is measured using, for example, DY-700 (manufactured by Kyowa Interface Science Co., Ltd.).
  • a metal salt ink is, for example, an ink composition in which a metal salt is dissolved in a solvent.
  • metals constituting metal salts include silver, copper, gold, aluminum, magnesium, tungsten, molybdenum, zinc, nickel, iron, platinum, tin, copper, and lead.
  • the metal constituting the metal salt preferably contains at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper, and more preferably contains silver. .
  • the content of the metal contained in the metal salt ink is preferably 1% by mass to 40% by mass, more preferably 5% by mass to 30% by mass, in terms of metal element, relative to the total amount of the metal salt ink. Preferably, it is more preferably 7% by mass to 20% by mass.
  • the content of the metal salt in the metal salt ink is preferably 10% by mass to 90% by mass, more preferably 10% by mass to 60% by mass, relative to the total amount of the metal salt ink.
  • the content of the metal salt is 10% by mass or more, the surface resistivity is further lowered.
  • the content of the metal salt is 90% by mass or less, the jettability is improved when the metal particle ink is applied by a spray method or an inkjet recording method.
  • the metal salt a metal salt similar to the metal salt used in the metal complex ink can be used.
  • the metal salt is preferably a carboxylate.
  • the carboxylic acid forming the carboxylate an alkyl carboxylate having 6 to 12 carbon atoms or acetoacetic acid is preferable, and an alkyl carboxylate having 6 to 12 carbon atoms is more preferable.
  • Carboxylate may combine 2 or more types.
  • the metal salt may be a commercially available product or may be produced by a known method.
  • a silver salt is manufactured by the following method, for example.
  • a silver compound for example, silver acetate
  • formic acid or a fatty acid having 1 to 30 carbon atoms in an amount equivalent to the molar equivalent of the silver compound.
  • the mixture is stirred for a predetermined time using an ultrasonic stirrer, and the precipitate formed is washed with ethanol and decanted. All these steps can be performed at room temperature (25°C).
  • the mixing ratio of the silver compound to the formic acid or the fatty acid having 1 to 30 carbon atoms is preferably 1:2 to 2:1, more preferably 1:1 in terms of molar ratio.
  • the metal salt ink may contain solvents, reducing agents, resins, and additives. Preferred aspects of the reducing agent, resin, and additive are the same as the solvent, reducing agent, resin, and additive that may be contained in the metal complex ink.
  • the metal salt ink preferably contains a solvent.
  • the type of solvent is not particularly limited as long as it can dissolve the metal salt contained in the metal salt ink.
  • the boiling point of the solvent is preferably 30°C to 300°C, more preferably 50°C to 300°C, and even more preferably 50°C to 250°C, from the viewpoint of ease of production.
  • the content of the solvent in the metal salt ink is such that the concentration of metal ions relative to the metal salt (amount of metal present as free ions per 1 g of metal salt) is 0.01 mmol/g to 3.6 mmol/g. is preferred, and 0.05 mmol/g to 2.6 mmol/g is more preferred.
  • the metal salt ink has excellent fluidity and electromagnetic wave shielding properties can be obtained.
  • Solvents include, for example, hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, carbamates, alkenes, amides, ethers, esters, alcohols, thiols, thioethers, phosphines, and water.
  • the number of solvents contained in the metal salt ink may be one, or two or more.
  • the solvent preferably contains an aromatic hydrocarbon.
  • aromatic hydrocarbons include benzene, toluene, xylene, ethylbenzene, propylbenzene, isopropylbenzene, butylbenzene, isobutylbenzene, t-butylbenzene, trimethylbenzene, pentylbenzene, hexylbenzene, tetralin, benzyl alcohol, phenol, Cresol, methyl benzoate, ethyl benzoate, propyl benzoate, and butyl benzoate.
  • the number of aromatic rings in the aromatic hydrocarbon is preferably one or two, more preferably one.
  • the boiling point of the aromatic hydrocarbon is preferably 50°C to 300°C, more preferably 60°C to 250°C, even more preferably 80°C to 200°C, from the viewpoint of ease of production.
  • the solvent may contain aromatic hydrocarbons and hydrocarbons other than aromatic hydrocarbons.
  • Hydrocarbons other than aromatic hydrocarbons include linear hydrocarbons having 6 to 20 carbon atoms, branched hydrocarbons having 6 to 20 carbon atoms, and alicyclic hydrocarbons having 6 to 20 carbon atoms.
  • hydrocarbons other than aromatic hydrocarbons include pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane, decalin, cyclohexane, cycloheptane, and cyclooctane. , cyclononane, cyclodecane, decene, terpene compounds and icosane. Hydrocarbons other than aromatic hydrocarbons preferably contain unsaturated bonds.
  • Hydrocarbons other than aromatic hydrocarbons containing unsaturated bonds include terpene compounds.
  • Terpene compounds are classified into, for example, hemiterpenes, monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, sesqualterpenes, and tetraterpenes, depending on the number of isoprene units that constitute the terpene compounds.
  • the terpene compound as the solvent may be any of the above, but monoterpene is preferred.
  • monoterpenes examples include pinene ( ⁇ -pinene, ⁇ -pinene), terpineol ( ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol), myrcene, camphene, limonene (d-limonene, l-limonene, dipentene), Ocimene ( ⁇ -Ocimene, ⁇ -Ocimene), Alloocimene, Phellandrene ( ⁇ -Phellandrene, ⁇ -Phellandrene), Terpinene ( ⁇ -Terpinene, ⁇ -Terpinene), Terpinolene ( ⁇ -Terpinolene, ⁇ -Terpinolene, ⁇ - terpinolene, ⁇ -terpinolene), 1,8-cineole, 1,4-cineol, sabinene, paramentadiene, carene ( ⁇ -3-carene).
  • the ether may be any of straight-chain ether, branched-chain ether, and cyclic ether.
  • Ethers include, for example, diethyl ether, dipropyl ether, dibutyl ether, methyl-t-butyl ether, tetrahydrofuran, tetrahydropyran, dihydropyran, and 1,4-dioxane.
  • the alcohol may be any of primary alcohol, secondary alcohol, and tertiary alcohol.
  • alcohols examples include ethanol, 1-propanol, 2-propanol, 1-methoxy-2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3-pentanol and 1-hexanol.
  • Ketones include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • esters include methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, methoxybutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol.
  • the viscosity of the metal salt ink is not particularly limited, and may be 0.001 Pa ⁇ s to 5000 Pa ⁇ s, preferably 0.001 Pa ⁇ s to 100 Pa ⁇ s.
  • the viscosity of the metal salt ink is preferably 1 mPa ⁇ s to 100 mPa ⁇ s, more preferably 2 mPa ⁇ s to 50 mPa ⁇ s. , 3 mPa ⁇ s to 30 mPa ⁇ s.
  • the viscosity of the metal salt ink is a value measured at 25°C using a viscometer. Viscosity is measured using, for example, a VISCOMETER TV-22 viscometer (manufactured by Toki Sangyo Co., Ltd.).
  • the surface tension of the metal salt ink is not particularly limited, and is preferably 20 mN/m to 45 mN/m, more preferably 25 mN/m to 35 mN/m.
  • Surface tension is a value measured at 25°C using a surface tensiometer.
  • the surface tension of the metal salt ink is measured using, for example, DY-700 (manufactured by Kyowa Interface Science Co., Ltd.).
  • the baking temperature is preferably 250° C. or less and the baking time is preferably 1 to 120 minutes.
  • the firing temperature and firing time are within the above ranges, damage to the electronic substrate is suppressed.
  • the firing temperature is more preferably 80°C to 250°C, more preferably 100°C to 200°C. Further, the firing time is more preferably 1 minute to 60 minutes.
  • the firing method is not particularly limited, and can be carried out by a commonly known method.
  • the time from the end of application of the ink for forming the conductive layer to the start of firing is preferably 60 seconds or less.
  • the lower limit of the time is not particularly limited, it is, for example, 20 seconds.
  • Conductivity improves that the said time is 60 seconds or less.
  • the time at which the application of the conductive ink is completed refers to the time at which all the ink droplets of the conductive layer forming ink have landed on the insulating layer.
  • examples of light include ultraviolet rays and infrared rays.
  • the peak wavelength of ultraviolet rays is preferably 200 nm to 405 nm, more preferably 250 nm to 400 nm, even more preferably 300 nm to 400 nm.
  • the exposure amount in light irradiation is preferably 100 mJ/cm 2 to 10000 mJ/cm 2 , more preferably 500 mJ/cm 2 to 7500 mJ/cm 2 .
  • an insulating layer forming ink and a conductive layer forming ink were prepared.
  • ⁇ Preparation of conductive layer forming ink 1> 6.08 g of isobutylammonium carbonate and 15.0 g of isopropyl alcohol were added and dissolved in a 50 mL three-necked flask. Next, 2.0 g of silver oxide was added and reacted at room temperature for 2 hours to obtain a uniform solution. Furthermore, 0.3 g of 2-hydroxy-2-methylpropylamine was added and stirred to obtain a solution containing a silver complex. This solution was filtered using a PTFE (polytetrafluoroethylene) membrane filter with a pore size of 0.45 ⁇ m to obtain Ink 1 for forming a conductive layer.
  • PTFE polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • the insulating layer forming ink was filled in an ink cartridge (for 10 picoliters) for an inkjet recording apparatus (product name “DMP-2850”, manufactured by FUJIFILM DIMATIX). Image recording conditions were a resolution of 1270 dpi (dots per inch) and a droplet ejection volume of 10 picoliters per dot.
  • an electronic substrate B was obtained by repeating the cycle of applying the ink for forming an insulating layer to an outer region having a width of 200 ⁇ m and irradiating with ultraviolet rays twice.
  • the ultraviolet irradiation was performed using an ultraviolet irradiation device (product name “UV spot cure OmniCure S2000”, manufactured by Lumen Dynamics) installed next to the inkjet head.
  • an ultraviolet irradiation device product name “UV spot cure OmniCure S2000”, manufactured by Lumen Dynamics
  • the width of the ground electrode not covered with the insulating layer was 300 ⁇ m.
  • An electronic substrate C was prepared in the same manner as the electronic substrate B, except that the ink for forming an insulating layer was applied to the outer region of 300 ⁇ m in width on the ground electrode.
  • the width of the ground electrode not covered with the insulating layer was 200 ⁇ m.
  • Examples 1 to 10, Comparative Examples 1 and 3 -Formation of insulating layer-
  • the insulating layer forming ink 1 was filled in an ink cartridge (for 10 picoliters) of an inkjet recording apparatus (product name “DMP-2850”, manufactured by FUJIFILM DIMATIX).
  • Image recording conditions were a resolution of 1270 dpi (dots per inch) and a droplet ejection volume of 10 picoliters per dot.
  • Image data of the same area (25.5 mm ⁇ 21.5 mm) as the ground area surrounded by the ground electrodes on the electronic substrate was prepared.
  • the cycle of applying the ink for forming the insulating layer and irradiating with ultraviolet rays was repeated until the thickness of the insulating layer reached the value shown in Table 1.
  • the ultraviolet irradiation was performed using an ultraviolet irradiation device (product name “UV spot cure OmniCure S2000”, manufactured by Lumen Dynamics) installed next to the inkjet head.
  • the illuminance of the ultraviolet rays was set to 8 W/cm 2
  • the irradiation amount was set to 0.8 J/cm 2 per time by irradiating for 0.1 second per time.
  • the time from the application of the insulating layer forming ink to the start of irradiation with ultraviolet rays was set to 0.3 seconds.
  • the conductive layer forming ink 1 was filled in an ink cartridge (for 10 picoliters) of an inkjet recording apparatus (product name “DMP-2850”, manufactured by FUJIFILM DIMATIX). Image recording conditions were a resolution of 1270 dpi (dots per inch) and a droplet ejection volume of 10 picoliters per dot.
  • the electronic substrate on which the insulating layer was formed was preliminarily heated to 60°C. Image data of a region (26.5 mm ⁇ 22.5 mm) covering the ground electrode and the insulating layer on the electronic substrate was prepared. A cycle of applying the conductive layer forming ink using this image data and heating at 180° C.
  • Example 11 Image data of an area (25.4 mm ⁇ 21.4 mm) smaller than the ground area surrounded by the ground electrode on the electronic substrate was prepared so that a gap of 50 ⁇ m was formed between the ground electrode and the insulating layer. Using this image data, an electronic device was obtained in the same manner as in Example 4, except that the insulating layer forming ink was applied.
  • Example 12 An electronic device was obtained in the same manner as in Example 4, except that the following points were changed.
  • An electronic substrate B was used instead of the electronic substrate A.
  • Image data of a region (26.1 mm ⁇ 22.1 mm) covering the ground electrode and the insulating layer on the electronic substrate was prepared.
  • a cycle of applying the conductive layer forming ink using this image data and heating at 180° C. for 60 minutes using an oven was repeated until T1 reached the value shown in Table 2.
  • image data of a region (a frame having an outer dimension of 26.1 mm ⁇ 22.1 mm and a width of 300 ⁇ m) covering the ground electrode on the electronic substrate was prepared.
  • a cycle of applying the conductive layer forming ink using this image data and heating at 180° C. for 60 minutes using an oven was repeated until T2 reached the value shown in Table 2, thereby obtaining an electronic device. .
  • Example 13 An electronic device was obtained in the same manner as in Example 4, except that the following points were changed.
  • An electronic substrate C was used instead of the electronic substrate A.
  • Image data of a region (25.9 cm ⁇ 21.9 cm) covering the ground electrode and the insulating layer on the electronic substrate was prepared.
  • a cycle of applying the conductive layer forming ink using this image data and heating at 180° C. for 60 minutes using an oven was repeated until T1 reached the value shown in Table 2.
  • image data of a region (25.9 cm ⁇ 21.9 mm, 200 ⁇ m wide frame) covering the ground electrode on the electronic substrate was prepared.
  • a cycle of applying the conductive layer forming ink using this image data and heating at 180° C. for 60 minutes using an oven was repeated until T2 reached the value shown in Table 2, thereby obtaining an electronic device. .
  • Example 14 An electronic device was obtained in the same manner as in Example 6, except that the insulating layer forming ink 2 was used instead of the insulating layer forming ink 1 in forming the insulating layer.
  • Example 15 An electronic device was obtained in the same manner as in Example 6 except that the conductive layer forming ink 2 was used instead of the conductive layer forming ink 1 in forming the conductive layer.
  • Example 2 An electronic device was obtained in the same manner as in Example 1, except that the following points were changed.
  • Image data of a region (26.5 mm ⁇ 22.5 mm) covering the ground electrode and the insulating layer on the electronic substrate was prepared.
  • a cycle of applying the conductive layer forming ink using this image data and heating at 180° C. for 60 minutes using an oven was repeated until T2 reached the value shown in Table 2.
  • image data of the same area (25.5 mm ⁇ 21.5 mm) as the area surrounded by the ground electrode on the electronic substrate was prepared.
  • a cycle of applying the conductive layer forming ink using this image data and heating at 180° C. for 60 minutes using an oven was repeated until T1 reached the value shown in Table 2, thereby obtaining an electronic device. .
  • ⁇ Durability> Using the obtained electronic substrate, a cycle test between -30° C. and 90° C. was performed for 200 cycles. After the cycle test, changes in appearance of the conductive layer and the insulating layer were observed. Durability was evaluated based on appearance change. Evaluation criteria are as follows. 5: No change in appearance. 4: Deformation could not be confirmed visually, but was confirmed by microscopic observation. 3: No cracking or peeling, but deformation was visually observed. 2: Slight cracking and peeling were observed. 1: Significant cracking and peeling were observed.
  • ⁇ Electromagnetic shielding> Using the obtained electronic substrate, a cycle test between -30° C. and 90° C. was performed for 200 cycles. After the cycle test, the obtained electronic substrate was allowed to communicate with the LTE BAND 13, and near magnetic field measurement was performed at a frequency of 777 MHz using a near magnetic field measuring device (product name: "SmartScan550", manufactured by API).
  • the noise suppression level (unit: dB) was measured, and the electromagnetic wave shielding properties were evaluated based on the noise suppression level. Evaluation criteria are as follows. A: The noise suppression level is -40 dB or less. B: The noise suppression level is more than -40 dB and less than or equal to -30 dB. C: The noise suppression level is -30, more than B and -20 dB or less. D: The noise suppression level is greater than -20 dB. E: The electromagnetic wave shielding property could not be evaluated because cracking and peeling were remarkable after the cycle test.
  • the thickness of the wiring board, the electronic components arranged on the wiring board, the ground electrode, and the electronic components was 200 ⁇ m.
  • Comparative Example 3 since the thickness of the insulating layer was less than 200 ⁇ m, a short circuit occurred between the conductive layer and the components on the electronic substrate, and the electronic device did not function properly.
  • Example 4 since T2 is at least twice as large as T1, it was found to be superior to Example 2 in electromagnetic shielding properties.
  • Example 8 since T1 is less than 10 ⁇ m, compared to Example 9, it was found to be superior in durability and electromagnetic wave shielding properties.

Abstract

Provided are an electronic device and a method for manufacturing the electronic device, the electronic device comprising a wiring substrate, an electronic component disposed on the wiring substrate, a ground electrode, an insulating layer provided on the electronic component, and a conductive layer that is provided on at least a portion on the insulating layer and on the ground electrode and that is a cured film of an ink for forming a conductive layer, wherein: the thickness of the insulating layer is at least 200 μm; and when the thickness of the conductive layer provided on the insulating layer provided on the surface of the electronic component positioned highest from the surface of the wiring substrate on which the electronic component is disposed is defined as T1, and the thickness of the conductive layer provided on the ground electrode is defined as T2, T2 is greater than T1.

Description

電子デバイス及び電子デバイスの製造方法ELECTRONIC DEVICE AND ELECTRONIC DEVICE MANUFACTURING METHOD
 本開示は、電子デバイス及び電子デバイスの製造方法に関する。 The present disclosure relates to electronic devices and methods of manufacturing electronic devices.
 電子部品は、他の電子機器からの電磁波によって干渉されないように遮蔽されている必要があり、一般に、シールド缶で被覆されている。シールド缶は、膜厚が厚く、重く、かつ、設計の自由度が小さいといった問題があり、シールド缶に代わる技術が求められている。  Electronic components must be shielded so that they are not interfered with by electromagnetic waves from other electronic devices, and are generally covered with a shield can. Shield cans have the problems of being thick and heavy and having a small degree of freedom in design, and there is a demand for a technology to replace the shield cans.
 例えば、特開2017-179361号公報には、実装面を備える配線基板と、配線基板の実装面上に実装された電子部品とを備える電子基板と、絶縁層および導電層を有し、絶縁層を電子部品側にして積層され、電子部品の表面を覆う電磁波遮蔽層と、電磁波遮蔽層の導電層に接触させて導電層を接地するグランド部材とを備えた電子素子が記載されている。 For example, Japanese Patent Application Laid-Open No. 2017-179361 discloses a wiring board having a mounting surface, an electronic board including an electronic component mounted on the mounting surface of the wiring board, an insulating layer and a conductive layer, and an insulating layer is laminated on the electronic component side and includes an electromagnetic wave shielding layer covering the surface of the electronic component, and a ground member that is in contact with the conductive layer of the electromagnetic wave shielding layer to ground the conductive layer.
 電子基板上に、絶縁層と、導電層と、をこの順に設ける場合において、電磁波シールド性と耐久性との両立が求められる場合があった。 In some cases, when an insulating layer and a conductive layer are provided in this order on an electronic substrate, both electromagnetic wave shielding properties and durability are required.
 本開示はこのような事情に鑑みてなされたものであり、本発明の一実施形態によれば、電磁波シールド性及び耐久性に優れる電子デバイスの製造方法が提供される。 The present disclosure has been made in view of such circumstances, and according to one embodiment of the present invention, a method for manufacturing an electronic device with excellent electromagnetic shielding properties and durability is provided.
 本開示は以下の態様を含む。
<1>
 配線基板と、
 配線基板上に配置されている電子部品と、
 グランド電極と、
 電子部品上に設けられた絶縁層と、
 絶縁層上、及び、グランド電極上の少なくとも一部に対して設けられ、導電層形成用インクの硬化膜である導電層と、を備え、
 絶縁層の厚さが200μm以上であり、
 電子部品の表面のうち、配線基板の電子部品が配置されている側の面を基準として最も高くに位置する表面上に設けられた絶縁層上に設けられている導電層の厚さをT1とし、グランド電極上に設けられている導電層の厚さをT2としたとき、T2がT1よりも厚い、電子デバイス。
<2>
 絶縁層は、アクリル樹脂又はエポキシ樹脂を含む、<1>に記載の電子デバイス。
<3>
 T2は、T1に対して2倍以上である、<1>又は<2>に記載の電子デバイス。
<4>
 導電層形成用インクは、金属錯体又は金属塩を含む、<1>~<3>のいずれか1つに
記載の電子デバイス。
<5>
 グランド電極は、配線基板の電子部品が配置されている側の面を基準として、高さが150μm以下である、<1>~<4>のいずれか1つに記載の電子デバイス。
<6>
 T1が10μm未満である、<1>~<5>のいずれか1つに記載の電子デバイス。
<7>
 配線基板と、配線基板上に配置されている電子部品と、グランド電極と、を備える電子基板を準備する工程と、
 電子部品上に、厚さ200μm以上の絶縁層を形成する工程と、
 絶縁層上、及び、グランド電極上の少なくとも一部に対して導電層形成用インクを付与し、導電層形成用インクの硬化膜である導電層を形成する工程と、を含み、
 電子部品の表面のうち、配線基板の電子部品が配置されている側の面を基準として最も高くに位置する表面上に設けられた絶縁層上に設けられている導電層の厚さをT1とし、グランド電極上に設けられている導電層の厚さをT2としたとき、T2がT1よりも厚い、電子デバイスの製造方法。
The present disclosure includes the following aspects.
<1>
a wiring board;
electronic components arranged on a wiring board;
a ground electrode;
an insulating layer provided on the electronic component;
A conductive layer that is provided on the insulating layer and at least part of the ground electrode and is a cured film of the ink for forming the conductive layer,
The thickness of the insulating layer is 200 μm or more,
Let T1 be the thickness of the conductive layer provided on the insulating layer provided on the surface of the electronic component that is positioned highest with respect to the surface of the wiring board on which the electronic component is arranged. 1. An electronic device, wherein T2 is thicker than T1, where T2 is the thickness of a conductive layer provided on a ground electrode.
<2>
The electronic device according to <1>, wherein the insulating layer contains an acrylic resin or an epoxy resin.
<3>
The electronic device according to <1> or <2>, wherein T2 is at least twice as large as T1.
<4>
The electronic device according to any one of <1> to <3>, wherein the conductive layer forming ink contains a metal complex or a metal salt.
<5>
The electronic device according to any one of <1> to <4>, wherein the ground electrode has a height of 150 μm or less with respect to the surface of the wiring board on which the electronic components are arranged.
<6>
The electronic device according to any one of <1> to <5>, wherein T1 is less than 10 μm.
<7>
preparing an electronic substrate including a wiring substrate, electronic components arranged on the wiring substrate, and a ground electrode;
forming an insulating layer having a thickness of 200 μm or more on the electronic component;
applying the conductive layer forming ink to at least part of the insulating layer and the ground electrode to form a conductive layer, which is a cured film of the conductive layer forming ink;
Let T1 be the thickness of the conductive layer provided on the insulating layer provided on the surface of the electronic component that is positioned highest with respect to the surface of the wiring board on which the electronic component is arranged. 3. A method of manufacturing an electronic device, wherein T2 is thicker than T1, where T2 is the thickness of the conductive layer provided on the ground electrode.
 本発明の一実施形態によれば、電磁波シールド性及び耐久性に優れる電子デバイス及び電子デバイスの製造方法が提供される。 According to one embodiment of the present invention, an electronic device with excellent electromagnetic shielding properties and durability and a method for manufacturing the electronic device are provided.
図1は、電子デバイスの概略平面図である。FIG. 1 is a schematic plan view of an electronic device. 図2は、図1のA-A線断面図である。FIG. 2 is a cross-sectional view taken along line AA of FIG. 図3Aは、準備工程で準備する電子基板の概略平面図である。FIG. 3A is a schematic plan view of an electronic substrate prepared in a preparation step. 図3Bは、図3AのB-B線断面図である。FIG. 3B is a cross-sectional view taken along line BB of FIG. 3A. 図4Aは、絶縁層形成用インクの付与領域の一例を示す図である。FIG. 4A is a diagram showing an example of an application region of the insulating layer forming ink. 図4Bは、図3AのB-B線断面図において、絶縁層が形成された状態を示す図である。FIG. 4B is a cross-sectional view taken along line BB of FIG. 3A, showing a state in which an insulating layer is formed. 図5Aは、導電層形成インクの付与領域の一例を示す図である。FIG. 5A is a diagram showing an example of a region where the conductive layer forming ink is applied. 図5Bは、導電層形成インクの付与領域の一例を示す図である。FIG. 5B is a diagram showing an example of a region where the conductive layer forming ink is applied. 図5Cは、図3AのB-B線断面図において導電層が形成された状態を示す図である。FIG. 5C is a cross-sectional view taken along line BB of FIG. 3A showing a state in which a conductive layer is formed.
 以下、本開示の電子デバイス及び電子デバイスの製造方法について詳細に説明する。 The electronic device and the method for manufacturing the electronic device of the present disclosure will be described in detail below.
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
In this specification, the numerical range indicated using "to" means a range including the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described stepwise in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise. Moreover, in the numerical ranges described in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
 本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本明細書において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本明細書において、「工程」という語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば、本用語に含まれる。
As used herein, the amount of each component in the composition refers to the total amount of the multiple substances present in the composition when there are multiple substances corresponding to each component in the composition, unless otherwise specified. means
In the present specification, a combination of two or more preferred aspects is a more preferred aspect.
In this specification, the term "process" includes not only an independent process but also a process that cannot be clearly distinguished from other processes, as long as the intended purpose of the process is achieved. be
 本明細書において、「画像」とは、膜全般を意味し、「画像記録」とは、画像(すなわち、膜)の形成を意味する。また、本明細書における「画像」の概念には、ベタ画像(solid image)も包含される。 As used herein, "image" means film in general, and "image recording" means formation of an image (that is, film). The concept of "image" in this specification also includes a solid image.
 本明細書において、「上面」とは、配線基板上に、電子部品が配置されている側の面を意味する。 In this specification, the "upper surface" means the surface on which the electronic components are arranged on the wiring board.
[電子デバイス]
 本開示の電子デバイスは、配線基板と、配線基板上に配置されている電子部品と、グランド電極と、電子部品上に設けられた絶縁層と、絶縁層上、及び、グランド電極上の少なくとも一部に対して設けられ、導電層形成用インクの硬化膜である導電層と、を備え、絶縁層の厚さが200μm以上であり、電子部品の表面のうち、配線基板の電子部品が配置されている側の面を基準として最も高くに位置する表面上に設けられた絶縁層上に設けられている導電層の厚さをT1とし、グランド電極上に設けられている導電層の厚さをT2としたとき、T2がT1よりも厚い。
[Electronic device]
The electronic device of the present disclosure includes a wiring board, an electronic component arranged on the wiring board, a ground electrode, an insulating layer provided on the electronic component, and at least one of the insulating layer and the ground electrode. and a conductive layer that is a cured film of the ink for forming a conductive layer, the thickness of the insulating layer is 200 μm or more, and the electronic component of the wiring board is arranged on the surface of the electronic component. T1 is the thickness of the conductive layer provided on the insulating layer provided on the highest surface with respect to the surface on the side where the T2 is thicker than T1.
 従来、電子デバイスを高温環境下に曝した場合に、グランド電極と導電層との界面にて剥がれが生じる場合があった。これは、グランド電極を構成する金属と、導電層を構成する金属とが異なることによる密着性の低下によるものであると考えられる。 Conventionally, when an electronic device is exposed to a high-temperature environment, peeling may occur at the interface between the ground electrode and the conductive layer. It is considered that this is due to the deterioration of adhesion due to the difference between the metal forming the ground electrode and the metal forming the conductive layer.
 また、電磁波シールド性を向上させるために、絶縁層の厚さを厚くする方法がある。しかし、絶縁層の厚さが200μm以上と厚い場合には、密着性の低下によって耐久性が低下しやすい傾向にあった。 In addition, there is a method of increasing the thickness of the insulating layer in order to improve the electromagnetic wave shielding properties. However, when the thickness of the insulating layer is as thick as 200 μm or more, there is a tendency that durability tends to decrease due to a decrease in adhesion.
 これに対して、本開示の電子デバイスでは、電子部品の表面のうち、配線基板の電子部品が配置されている側の面を基準として最も高くに位置する表面上に設けられた絶縁層上に設けられている導電層の厚さをT1とし、グランド電極上に設けられている導電層の厚さをT2としたとき、T2がT1よりも厚いため、絶縁層の厚さが200μm以上であっても、グランド電極と導電層との界面における強度が高まり、耐久性に優れる。よって、電磁波シールド性と耐久性との両立が達成された。 On the other hand, in the electronic device of the present disclosure, on the insulating layer provided on the surface of the electronic component that is the highest with respect to the surface of the wiring board on which the electronic component is arranged, When the thickness of the conductive layer provided is T1 and the thickness of the conductive layer provided on the ground electrode is T2, T2 is thicker than T1, so the thickness of the insulating layer is 200 μm or more. Even so, the strength at the interface between the ground electrode and the conductive layer is increased, resulting in excellent durability. Therefore, both electromagnetic wave shielding properties and durability were achieved.
 一方、特開2017-179361号公報には、導電層を、絶縁層上、及び、グランド電極上の少なくとも一部に対して導電層形成用インクを用いて設けることについては記載されていない。特開2017-179361号公報に記載されている電子素子は、本開示の電子デバイスとは、絶縁層、導電層、及びグランド電極の積層状態が異なり、耐久性については検討されていない。 On the other hand, Japanese Patent Application Laid-Open No. 2017-179361 does not describe providing a conductive layer on at least part of the insulating layer and the ground electrode using a conductive layer forming ink. The electronic element described in Japanese Patent Laying-Open No. 2017-179361 differs from the electronic device of the present disclosure in the lamination state of the insulating layer, the conductive layer, and the ground electrode, and durability has not been studied.
 以下、本開示の実施形態に係る電子デバイスの一例について、図面を参照しながら説明する。但し、本開示の実施形態に係る電子デバイスは、以下の一例には限定されない。 An example of an electronic device according to an embodiment of the present disclosure will be described below with reference to the drawings. However, the electronic device according to the embodiment of the present disclosure is not limited to the following example.
 以下の説明において、実質的に同一の要素(例えば部品又は部分)については、同一の符号を付し、重複した説明を省略する場合がある。 In the following description, substantially the same elements (for example, parts or portions) may be given the same reference numerals and redundant descriptions may be omitted.
 図1は、電子デバイスの概略平面図である。図2は、図1のA-A線断面図である。 FIG. 1 is a schematic plan view of an electronic device. FIG. 2 is a cross-sectional view taken along line AA of FIG.
 図1及び図2に示すように、電子基板100は、配線基板11と、配線基板11上に配置されている電子部品12(12A、12B)と、グランド電極13と、電子部品12上に設けられた絶縁層31と、絶縁層31上、及び、グランド電極13上の少なくとも一部に対して設けられた導電層32と、を備える。 As shown in FIGS. 1 and 2, the electronic board 100 includes a wiring board 11, electronic components 12 (12A and 12B) arranged on the wiring board 11, a ground electrode 13, and a and a conductive layer 32 provided on at least part of the insulating layer 31 and the ground electrode 13 .
 配線基板とは、基板上及び基板内部の少なくとも一方に配線が施されたものをいう。 A wiring board is a board with wiring on at least one of the board and the inside of the board.
 配線基板11を構成する基板としては、例えば、ガラスエポキシ基板、セラミックス基板、ポリイミド基板、及びポリエチレンテレフタレート基板が挙げられる。基板は、単層構造であってもよく、多層構造であってもよい。 Examples of substrates constituting the wiring substrate 11 include glass epoxy substrates, ceramic substrates, polyimide substrates, and polyethylene terephthalate substrates. The substrate may have a single layer structure or a multilayer structure.
 配線基板11に設けられている配線(図示せず)は、銅配線であることが好ましい。例えば、配線の一端は、外部電源に接続され、他端は電子部品12の端子に接続されている。 The wiring (not shown) provided on the wiring board 11 is preferably copper wiring. For example, one end of the wiring is connected to an external power supply and the other end is connected to a terminal of the electronic component 12 .
 電子部品12としては、例えば、半導体チップ、コンデンサ、及びトランジスタが挙げられる。配線基板11上に配置される電子部品12の数は特に限定されない。図1では、電子部品12Aが4個、電子部品12Bが1個配置された例を示す。 The electronic components 12 include, for example, semiconductor chips, capacitors, and transistors. The number of electronic components 12 arranged on wiring board 11 is not particularly limited. FIG. 1 shows an example in which four electronic components 12A and one electronic component 12B are arranged.
 グランド電極13は、グランド(GND)電位が印加される電極である。図1において、グランド電極13は、電子部品12A、12Bを囲み、平面視において非連続的な枠状に形成されているが、グランド電極の位置及び形状はこれに限られない。例えば、グランド電極は、平面視において連続的な枠状に形成されていてもよく、電子部品12Aと電子部品12Bの間に形成されていてもよい。 The ground electrode 13 is an electrode to which a ground (GND) potential is applied. In FIG. 1, the ground electrode 13 surrounds the electronic components 12A and 12B and is formed in a discontinuous frame shape in plan view, but the position and shape of the ground electrode are not limited to this. For example, the ground electrode may be formed in a continuous frame shape in plan view, or may be formed between the electronic component 12A and the electronic component 12B.
 また、図1において、グランド電極13は、配線基板11に対し、グランド電極13の厚さ方向の一部が埋め込まれる形で形成されているが、本開示におけるグランド電極は、この一例には限定されない。例えば、グランド電極は、配線基板11に埋め込まれず、配線基板11の表面に形成されていてもよい。また、グランド電極は、配線基板11を貫通するパターンとして形成されていてもよい。 Further, in FIG. 1, the ground electrode 13 is formed such that a portion of the ground electrode 13 in the thickness direction is embedded in the wiring board 11, but the ground electrode in the present disclosure is limited to this example. not. For example, the ground electrode may be formed on the surface of the wiring board 11 instead of being embedded in the wiring board 11 . Also, the ground electrode may be formed as a pattern penetrating the wiring board 11 .
 グランド電極13は、配線基板の電子部品が配置されている側の面を基準として、高さが150μm以下であることが好ましく、120μm以下であることがより好ましい。高さの下限値は特に限定されないが、例えば、30μmである。 The height of the ground electrode 13 is preferably 150 μm or less, more preferably 120 μm or less, based on the surface of the wiring board on which the electronic components are arranged. Although the lower limit of the height is not particularly limited, it is, for example, 30 μm.
 絶縁層31は、絶縁層形成用インクの硬化膜であることが好ましく、硬化性及び力学強度の観点から、ラジカル重合性モノマーの重合体、又は、環状エーテル化合物の重合体若しくは架橋体を含むことが好ましく、アクリル樹脂又はエポキシ樹脂を含むことが好ましい。絶縁層形成用インクの詳細は後述する。 The insulating layer 31 is preferably a cured film of the ink for forming the insulating layer, and from the viewpoint of curability and mechanical strength, contains a polymer of a radically polymerizable monomer, or a polymer or crosslinked body of a cyclic ether compound. is preferred, and it preferably contains an acrylic resin or an epoxy resin. The details of the insulating layer forming ink will be described later.
 導電層32は、導電層形成用インクの硬化膜である。導電層形成用インクの詳細は後述する。 The conductive layer 32 is a cured film of ink for forming a conductive layer. The details of the conductive layer forming ink will be described later.
(T1とT2との関係)
 本開示の電子デバイスでは、電子部品の表面のうち、配線基板の電子部品が配置されている側の面(すなわち、配線基板の上面)を基準として最も高くに位置する表面上に設けられた絶縁層上に設けられている導電層の厚さをT1とし、グランド電極上に設けられている導電層の厚さをT2とする。T1とT2との関係は、T2がT1よりも厚い。T2がT1より厚いため、グランド電極と導電層との界面における強度が高まり、グランド電極と導電層との密着性に優れる。
(Relationship between T1 and T2)
In the electronic device of the present disclosure, the insulation provided on the surface of the electronic component that is the highest with respect to the surface of the wiring board on which the electronic component is arranged (that is, the upper surface of the wiring board) Let T1 be the thickness of the conductive layer provided on the layer, and T2 be the thickness of the conductive layer provided on the ground electrode. As for the relationship between T1 and T2, T2 is thicker than T1. Since T2 is thicker than T1, the strength at the interface between the ground electrode and the conductive layer is increased, and the adhesion between the ground electrode and the conductive layer is excellent.
 T1は、以下のように定義する。
 配線基板上に配置されている電子部品の表面の中で、配線基板の上面を基準として最も高くに位置する表面を特定する。図2に示すように、電子デバイス100では、電子部品12Bの表面は、配線基板11の上面を基準として、電子部品12Aの表面よりも高くに位置している。したがって、電子デバイス100では、電子部品12B上に設けられた絶縁層31上に設けられている導電層32の厚さをT1とする。具体的には、電子部品12B上に設けられた絶縁層31の上面を基準として、導電層32の上面までの厚さをT1とする。
 T2は、以下のように定義する。
 グランド電極上に設けられている導電層の厚さの中で、最大厚さが存在する位置を特定する。通常、グランド電極の電子部品が配置されている側の端部上に、導電層が最も厚く形成される。図2に示すように、電子デバイス100では、グランド電極13の表面を基準として、導電層32の表面321までの厚さをT2とする。
T1 is defined as follows.
Among the surfaces of the electronic components arranged on the wiring board, the surface positioned highest with respect to the upper surface of the wiring board is specified. As shown in FIG. 2, in the electronic device 100, the surface of the electronic component 12B is positioned higher than the surface of the electronic component 12A with the upper surface of the wiring board 11 as a reference. Therefore, in the electronic device 100, T1 is the thickness of the conductive layer 32 provided on the insulating layer 31 provided on the electronic component 12B. Specifically, the thickness from the upper surface of the insulating layer 31 provided on the electronic component 12B to the upper surface of the conductive layer 32 is defined as T1.
T2 is defined as follows.
A position where the maximum thickness exists in the thickness of the conductive layer provided on the ground electrode is specified. Normally, the conductive layer is formed thickest on the end of the ground electrode on the side where the electronic components are arranged. As shown in FIG. 2, in the electronic device 100, the thickness from the surface of the ground electrode 13 to the surface 321 of the conductive layer 32 is T2.
 T1及びT2は、電子デバイスの断面を撮影した光学顕微鏡写真又は電子顕微鏡写真に基づいて測定される。また、T1及びT2は、レーザー顕微鏡を用いて測定することができる。レーザー顕微鏡として、例えば、キーエンス社製の「VK-X1000」を用いることができる。 T1 and T2 are measured based on an optical micrograph or an electron micrograph taken of a cross section of the electronic device. Moreover, T1 and T2 can be measured using a laser microscope. As a laser microscope, for example, "VK-X1000" manufactured by Keyence Corporation can be used.
 グランド電極と導電層との密着性をより向上させる観点から、T2はT1の2倍以上であることが好ましく、2.5倍以上であることがより好ましい。T1に対するT2の比率の上限値は特に限定されず、例えば、10倍である。 From the viewpoint of further improving the adhesion between the ground electrode and the conductive layer, T2 is preferably at least twice as large as T1, more preferably at least 2.5 times. The upper limit of the ratio of T2 to T1 is not particularly limited, and is, for example, 10 times.
 T1は、コスト及び生産性の観点から、20μm以下であることが好ましく、10μm未満であることがより好ましい。また、T1は、電磁波シールド性の観点から、0.2μm以上であることが好ましく、0.5μm以上であることがより好ましい。 From the viewpoint of cost and productivity, T1 is preferably 20 μm or less, more preferably less than 10 μm. From the viewpoint of electromagnetic wave shielding properties, T1 is preferably 0.2 μm or more, more preferably 0.5 μm or more.
 T2は、生産性の観点から、100μm以下であることが好ましく、50μm以下であることが好ましい。また、T2は、導電性及び耐久性の観点から0.5μm以上であることが好ましく、1μm以上であることがより好ましい。 From the viewpoint of productivity, T2 is preferably 100 μm or less, and preferably 50 μm or less. From the viewpoint of conductivity and durability, T2 is preferably 0.5 μm or more, more preferably 1 μm or more.
 本開示の電子デバイスでは、絶縁層の厚さは200μm以上である。絶縁層の厚さは、少なくとも一部が200μm以上であればよい。絶縁層の厚さの上限値は特に限定されず、例えば、2000μmである。絶縁層が200μm以上であると、電子部品上においても十分な絶縁性を確保できることに加え、絶縁層上に導電層形成用インクを用いて導電層を形成しやすいため、電磁波シールド性が向上する。絶縁性、及び、導電層形成容易性の観点から、絶縁層の厚さは600μm以上であることが好ましい。 In the electronic device of the present disclosure, the insulating layer has a thickness of 200 μm or more. At least a portion of the insulating layer may have a thickness of 200 μm or more. The upper limit of the thickness of the insulating layer is not particularly limited, and is, for example, 2000 μm. When the insulating layer is 200 μm or more, in addition to ensuring sufficient insulation even on electronic components, it is easy to form a conductive layer on the insulating layer using the ink for forming a conductive layer, so the electromagnetic wave shielding property is improved. . From the viewpoint of insulation and ease of forming the conductive layer, the thickness of the insulating layer is preferably 600 μm or more.
 ここで、絶縁層の厚さとは、配線基板の実装面(例えば、図3B中の実装面11S)を基準とした場合の高さ(即ち、最高点の高さ)である。
 絶縁層の厚さは、電子デバイスの断面を撮影した光学顕微鏡写真又は電子顕微鏡写真に基づいて測定される。
Here, the thickness of the insulating layer is the height (that is, the height of the highest point) when the mounting surface of the wiring board (for example, the mounting surface 11S in FIG. 3B) is used as a reference.
The thickness of the insulating layer is measured based on an optical micrograph or electron micrograph of a cross section of the electronic device.
 絶縁層の厚さは、以下の方法でも測定できる。 The thickness of the insulating layer can also be measured by the following method.
 絶縁層が形成される前の電子基板の形状を、レーザー顕微鏡を用いて測定し、絶縁層が形成される前の配線基板及び実装されている電子部品の高さを測定する。続いて、絶縁層が形成された後の電子基板の形状をレーザー顕微鏡を用いて測定し、絶縁層が形成された後の配線基板及び電子部品の高さを測定する。絶縁層を形成する前と絶縁層を形成した後の高さを測定することで、絶縁層の厚さを算出することができる。算出した絶縁層の厚さの中で最大厚さを、絶縁層の厚さとした。レーザー顕微鏡として、例えば、キーエンス社製の「VK-X1000」を用いることができる。 Using a laser microscope, measure the shape of the electronic board before the insulating layer is formed, and measure the height of the wiring board and mounted electronic components before the insulating layer is formed. Subsequently, the shape of the electronic substrate after the insulating layer is formed is measured using a laser microscope, and the heights of the wiring substrate and the electronic component after the insulating layer is formed are measured. By measuring the height before forming the insulating layer and after forming the insulating layer, the thickness of the insulating layer can be calculated. The maximum thickness among the calculated thicknesses of the insulating layer was taken as the thickness of the insulating layer. As a laser microscope, for example, "VK-X1000" manufactured by Keyence Corporation can be used.
[電子デバイスの製造方法]
 本開示の電子デバイスの製造方法は、配線基板と、配線基板上に配置されている電子部品と、グランド電極と、を備える電子基板を準備する工程(以下、「準備工程」ともいう)と、電子部品上に、厚さが200μm以上の絶縁層を形成する工程(以下、「絶縁層形成工程」ともいう)と、絶縁層上、及び、グランド電極上の少なくとも一部に対して導電層形成用インクを付与し、導電層形成用インクの硬化膜である導電層を形成する工程(以下、「導電層形成工程」ともいう)と、を含む。
 電子部品の表面のうち、配線基板の電子部品が配置されている側の面を基準として最も高くに位置する表面上に設けられた絶縁層上に設けられている導電層の厚さをT1とし、グランド電極上に設けられている導電層の厚さをT2としたとき、T2がT1よりも厚い。
[Method for manufacturing electronic device]
A method for manufacturing an electronic device according to the present disclosure includes a step of preparing an electronic substrate including a wiring board, electronic components arranged on the wiring board, and a ground electrode (hereinafter also referred to as a “preparing step”); A step of forming an insulating layer with a thickness of 200 μm or more on the electronic component (hereinafter also referred to as an “insulating layer forming step”), and forming a conductive layer on at least a portion of the insulating layer and the ground electrode and a step of applying an ink for forming a conductive layer to form a conductive layer, which is a cured film of the ink for forming a conductive layer (hereinafter also referred to as a “conductive layer forming step”).
Let T1 be the thickness of the conductive layer provided on the insulating layer provided on the surface of the electronic component that is positioned highest with respect to the surface of the wiring board on which the electronic component is arranged. , where T2 is the thickness of the conductive layer provided on the ground electrode, T2 is thicker than T1.
 以下、本開示の実施形態に係る電子デバイスの製造方法の一例について、図面を参照しながら説明する。但し、本開示の実施形態に係る電子デバイスの製造方法は、以下の一例には限定されない。 An example of a method for manufacturing an electronic device according to an embodiment of the present disclosure will be described below with reference to the drawings. However, the method for manufacturing an electronic device according to an embodiment of the present disclosure is not limited to the following example.
<準備工程>
 以下、図3A及び図3Bを参照して、準備工程の一例について説明する。
<Preparation process>
An example of the preparation process will be described below with reference to FIGS. 3A and 3B.
 図3Aは、準備工程で準備する電子基板の概略平面図である。図3Bは、図3AのB-B線断面図である。 FIG. 3A is a schematic plan view of an electronic substrate prepared in the preparation process. FIG. 3B is a cross-sectional view taken along line BB of FIG. 3A.
 図3A及び図3Bに示すように、準備工程では、配線基板11と、配線基板11上に配置されている電子部品12(12A、12B)と、グランド電極13と、を備える電子基板10を準備する。 As shown in FIGS. 3A and 3B, in the preparation step, an electronic substrate 10 including a wiring substrate 11, electronic components 12 (12A and 12B) arranged on the wiring substrate 11, and a ground electrode 13 is prepared. do.
 準備工程は、予め製造された電子基板10を単に準備するだけの工程であってもよく、電子基板10を製造する工程であってもよい。 The preparation process may be a process of simply preparing the prefabricated electronic board 10 or a process of manufacturing the electronic board 10 .
 電子基板10の製造方法は、公知の製造方法を参照することができる。 A known manufacturing method can be referred to for the manufacturing method of the electronic substrate 10 .
 電子基板10としては、例えば、フレキシブルプリント基板、リジッドプリント基板、及びリジッドフレキシルブル基板が挙げられる。 Examples of the electronic board 10 include flexible printed boards, rigid printed boards, and rigid flexible boards.
 配線基板11、電子部品12、及びグランド電極13の詳細は、上記のとおりである。 The details of the wiring board 11, the electronic component 12, and the ground electrode 13 are as described above.
<絶縁層形成工程>
 以下、図4A及び図4Bを参照して、絶縁層形成工程の一例について説明する。
<Insulating layer forming process>
An example of the insulating layer forming process will be described below with reference to FIGS. 4A and 4B.
 図4Aは、絶縁層形成用インクの付与領域の一例を示す図である。図4Bは、図3AのB-B線断面図において、絶縁層が形成された状態を示す図である。 FIG. 4A is a diagram showing an example of a region where the insulating layer forming ink is applied. FIG. 4B is a cross-sectional view taken along line BB of FIG. 3A, showing a state in which an insulating layer is formed.
 絶縁層形成工程は、絶縁層形成用インクを付与し、活性エネルギー線を照射して、絶縁層形成用インクの硬化膜である絶縁層を形成する工程であることが好ましい。絶縁層形成用インクを付与した後、活性エネルギー線を照射することにより、図3Bに示すように、電子部品12A、12Bを被覆する絶縁層31が形成される。 The insulating layer forming step is preferably a step of applying an insulating layer forming ink and irradiating an active energy ray to form an insulating layer, which is a cured film of the insulating layer forming ink. After applying the ink for forming the insulating layer, the insulating layer 31 covering the electronic components 12A and 12B is formed as shown in FIG. 3B by irradiating the active energy ray.
 絶縁層形成用インクを付与し、活性エネルギー線を照射する工程は、繰り返し行われることが好ましい。上記工程を繰り返し行うことにより、絶縁層形成用インクの硬化膜の厚さを厚くすることができる。 The steps of applying the ink for forming the insulating layer and irradiating the active energy ray are preferably repeated. By repeating the above steps, the thickness of the cured film of the ink for forming the insulating layer can be increased.
 絶縁層形成用インクを付与する領域(絶縁層形成用インクの付与領域)は、絶縁層がグランド電極と接するように設定されることが好ましい。図4Aでは、絶縁層形成用インクの付与領域21は、グランド電極13上を含まないグランド電極13で囲まれる領域(以下、「グランド領域」ともいう)と同一である。これにより、図4Bに示すように、グランド電極13のグランド領域側の壁面は、絶縁層31と接する。 The region to which the insulating layer forming ink is applied (insulating layer forming ink applying region) is preferably set so that the insulating layer is in contact with the ground electrode. In FIG. 4A, the application area 21 of the insulating layer forming ink is the same as the area surrounded by the ground electrode 13 (hereinafter also referred to as "ground area") that does not include the ground electrode 13 top. Thereby, as shown in FIG. 4B, the wall surface of the ground electrode 13 on the side of the ground area is in contact with the insulating layer 31 .
 なお、本例では、絶縁層形成用インクの付与領域として、領域21を設定したが、この例に限られない。 In this example, the area 21 is set as the application area of the ink for forming the insulating layer, but it is not limited to this example.
 例えば、配線基板11上に配置されているグランド電極13及び電子部品12の位置、形状(平面形状及び高さ)をあらかじめ読み取り、読み取ったデータに基づいて、絶縁層形成用インクの付与領域と、絶縁層形成用インクの付与回数と、を設定することが好ましい。 For example, the position and shape (planar shape and height) of the ground electrode 13 and the electronic component 12 arranged on the wiring board 11 are read in advance, and based on the read data, the application region of the ink for forming the insulating layer, It is preferable to set the number of times of application of the insulating layer forming ink.
(絶縁層形成用インク)
 本開示において、絶縁層形成用インクとは、絶縁性を有する層を形成するためのインクを意味する。絶縁性とは、体積抵抗率が1010Ωcm以上である性質を意味する。
(Ink for forming insulating layer)
In the present disclosure, the ink for forming an insulating layer means an ink for forming an insulating layer. Insulating property means the property that the volume resistivity is 10 10 Ωcm or more.
 絶縁層形成用インクは、活性エネルギー線硬化型インクであることが好ましい。 The ink for forming the insulating layer is preferably active energy ray-curable ink.
 絶縁層形成用インクは、重合性モノマー及び重合開始剤を含むことが好ましい。 The insulating layer forming ink preferably contains a polymerizable monomer and a polymerization initiator.
-重合性モノマー- -Polymerizable Monomer-
 重合性モノマーとは、1分子中に少なくとも1つの重合性基を有するモノマーのことをいう。重合性モノマーにおける重合性基は、カチオン重合性基であっても、ラジカル重合性基であってもよい。また、ラジカル重合性基は、硬化性の観点から、エチレン性不飽和基であることが好ましい。カチオン重合性基は、硬化性の観点から、オキシラン環及びオキセタン環の少なくとも一方を含む基であることが好ましい。 A polymerizable monomer is a monomer that has at least one polymerizable group in one molecule. The polymerizable group in the polymerizable monomer may be a cationically polymerizable group or a radically polymerizable group. Moreover, the radically polymerizable group is preferably an ethylenically unsaturated group from the viewpoint of curability. From the viewpoint of curability, the cationic polymerizable group is preferably a group containing at least one of an oxirane ring and an oxetane ring.
 本開示において、モノマーとは、分子量が1000以下である化合物のことをいう。分子量は、化合物を構成する原子の種類及び数より算出することができる。 In the present disclosure, a monomer refers to a compound having a molecular weight of 1000 or less. The molecular weight can be calculated from the type and number of atoms that constitute the compound.
 重合性モノマーは、重合性基を1つ有する単官能重合性モノマーであってもよく、重合性基を2つ以上有する多官能重合性モノマーであってもよい。 The polymerizable monomer may be a monofunctional polymerizable monomer having one polymerizable group, or may be a polyfunctional polymerizable monomer having two or more polymerizable groups.
 単官能重合性モノマーは、重合性基を1つ有するモノマーであれば特に限定されない。 The monofunctional polymerizable monomer is not particularly limited as long as it has one polymerizable group.
-ラジカル重合性モノマー-
 ラジカル重合性モノマーは、硬化性の観点から単官能エチレン性不飽和モノマーであることが好ましい。
-Radical polymerizable monomer-
From the viewpoint of curability, the radically polymerizable monomer is preferably a monofunctional ethylenically unsaturated monomer.
 単官能エチレン性不飽和モノマーとしては、例えば、単官能(メタ)アクリレート、単官能(メタ)アクリルアミド、単官能芳香族ビニル化合物、単官能ビニルエーテル及び単官能N-ビニル化合物が挙げられる。 Examples of monofunctional ethylenically unsaturated monomers include monofunctional (meth)acrylates, monofunctional (meth)acrylamides, monofunctional aromatic vinyl compounds, monofunctional vinyl ethers and monofunctional N-vinyl compounds.
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、tert-オクチル(メタ)アクリレート、イソアミル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-n-ブチルシクロヘキシル(メタ)アクリレート、(メタ)アクリル酸4-tert-ブチルシクロヘキシル、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-エチルヘキシルジグリコール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2-クロロエチル(メタ)アクリレート、4-ブロモブチル(メタ)アクリレート、シアノエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ブトキシメチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-(2-メトキシエトキシ)エチル(メタ)アクリレート、2-(2-ブトキシエトキシ)エチル(メタ)アクリレート、2,2,2-テトラフルオロエチル(メタ)アクリレート、1H,1H,2H,2H-パーフルオロデシル(メタ)アクリレート、4-ブチルフェニル(メタ)アクリレート、フェニル(メタ)アクリレート、2,4,5-テトラメチルフェニル(メタ)アクリレート、4-クロロフェニル(メタ)アクリレート、2-フェノキシメチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、グリシジルオキシブチル(メタ)アクリレート、グリシジルオキシエチル(メタ)アクリレート、グリシジルオキシプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、環状トリメチロールプロパンホルマール(メタ)アクリレート、フェニルグリシジルエーテル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリレート、トリメトキシシリルプロピル(メタ)アクリレート、トリメチルシリルプロピル(メタ)アクリレート、ポリエチレンオキシドモノメチルエーテル(メタ)アクリレート、ポリエチレンオキシド(メタ)アクリレート、ポリエチレンオキシドモノアルキルエーテル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、ポリプロピレンオキシドモノアルキルエーテル(メタ)アクリレート、2-メタクリロイルオキシエチルコハク酸、2-メタクリロイルオキシヘキサヒドロフタル酸、2-メタクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、エトキシジエチレングリコール(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、エチレンオキシド(EO)変性フェノール(メタ)アクリレート、EO変性クレゾール(メタ)アクリレート、EO変性ノニルフェノール(メタ)アクリレート、プロピレンオキシド(PO)変性ノニルフェノール(メタ)アクリレート、EO変性-2-エチルヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、(3-エチル-3-オキセタニルメチル)(メタ)アクリレート、フェノキシエチレングリコール(メタ)アクリレート、2-カルボキシエチル(メタ)アクリレート、及び2-(メタ)アクリロイルオキシエチルサクシネートが挙げられる。 Examples of monofunctional (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, hexyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. , tert-octyl (meth)acrylate, isoamyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, cyclohexyl (meth)acrylate acrylates, 4-n-butylcyclohexyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, bornyl (meth)acrylate, isobornyl (meth)acrylate, 2-ethylhexyl diglycol (meth)acrylate, butoxyethyl ( meth) acrylate, 2-chloroethyl (meth) acrylate, 4-bromobutyl (meth) acrylate, cyanoethyl (meth) acrylate, benzyl (meth) acrylate, butoxymethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2- (2-Methoxyethoxy)ethyl (meth)acrylate, 2-(2-butoxyethoxy)ethyl (meth)acrylate, 2,2,2-tetrafluoroethyl (meth)acrylate, 1H,1H,2H,2H-perfluoro Decyl (meth)acrylate, 4-butylphenyl (meth)acrylate, phenyl (meth)acrylate, 2,4,5-tetramethylphenyl (meth)acrylate, 4-chlorophenyl (meth)acrylate, 2-phenoxymethyl (meth)acrylate acrylates, 2-phenoxyethyl (meth)acrylate, glycidyl (meth)acrylate, glycidyloxybutyl (meth)acrylate, glycidyloxyethyl (meth)acrylate, glycidyloxypropyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, 2 - hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate ) acrylate, cyclic trimethylolpropane formal (meth)acrylate, phenylglycidyl ether (meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, diethylaminopropyl (meth)acrylate, trimethoxysilylpropyl (meth)acrylate, trimethylsilylpropyl (meth)acrylate , polyethylene oxide monomethyl ether (meth)acrylate, polyethylene oxide (meth)acrylate, polyethylene oxide monoalkyl ether (meth)acrylate, dipropylene glycol (meth)acrylate, polypropylene oxide monoalkyl ether (meth)acrylate, 2-methacryloyloxyethyl Succinic acid, 2-methacryloyloxyhexahydrophthalic acid, 2-methacryloyloxyethyl-2-hydroxypropyl phthalate, ethoxydiethylene glycol (meth)acrylate, butoxydiethyleneglycol (meth)acrylate, trifluoroethyl (meth)acrylate, perfluorooctylethyl (Meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, ethylene oxide (EO) modified phenol (meth) acrylate, EO modified cresol (meth) acrylate, EO modified nonylphenol (meth) acrylate, propylene oxide (PO) Modified nonylphenol (meth) acrylate, EO-modified 2-ethylhexyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, (3-ethyl- 3-oxetanylmethyl) (meth)acrylate, phenoxyethylene glycol (meth)acrylate, 2-carboxyethyl (meth)acrylate, and 2-(meth)acryloyloxyethyl succinate.
 中でも、耐熱性を向上させる観点から、単官能(メタ)アクリレートは、芳香環又は脂肪族環を有する単官能(メタ)アクリレートであることが好ましく、イソボルニル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレ-ト、又はジシクロペンタニル(メタ)アクリレ-トであることがさらに好ましい。 Among them, from the viewpoint of improving heat resistance, the monofunctional (meth)acrylate is preferably a monofunctional (meth)acrylate having an aromatic ring or an aliphatic ring, such as isobornyl (meth)acrylate, 4-tert-butylcyclohexyl (Meth)acrylate, dicyclopentenyl (meth)acrylate, or dicyclopentanyl (meth)acrylate is more preferred.
 単官能(メタ)アクリルアミドとしては、例えば、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド及び(メタ)アクリロイルモルフォリンが挙げられる。 Examples of monofunctional (meth)acrylamides include (meth)acrylamide, N-methyl(meth)acrylamide, N-ethyl(meth)acrylamide, N-propyl(meth)acrylamide, Nn-butyl(meth)acrylamide, Nt-butyl (meth)acrylamide, N-butoxymethyl (meth)acrylamide, N-isopropyl (meth)acrylamide, N-methylol (meth)acrylamide, N,N-dimethyl (meth)acrylamide, N,N-diethyl (meth)acrylamide and (meth)acryloylmorpholine.
 単官能芳香族ビニル化合物としては、例えば、スチレン、ジメチルスチレン、トリメチルスチレン、イソプロピルスチレン、クロロメチルスチレン、メトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、ビニル安息香酸メチルエステル、3-メチルスチレン、4-メチルスチレン、3-エチルスチレン、4-エチルスチレン、3-プロピルスチレン、4-プロピルスチレン、3-ブチルスチレン、4-ブチルスチレン、3-ヘキシルスチレン、4-ヘキシルスチレン、3-オクチルスチレン、4-オクチルスチレン、3-(2-エチルヘキシル)スチレン、4-(2-エチルヘキシル)スチレン、アリルスチレン、イソプロペニルスチレン、ブテニルスチレン、オクテニルスチレン、4-t-ブトキシカルボニルスチレン及び4-t-ブトキシスチレンが挙げられる。 Examples of monofunctional aromatic vinyl compounds include styrene, dimethylstyrene, trimethylstyrene, isopropylstyrene, chloromethylstyrene, methoxystyrene, acetoxystyrene, chlorostyrene, dichlorostyrene, bromostyrene, vinylbenzoic acid methyl ester, 3-methyl Styrene, 4-methylstyrene, 3-ethylstyrene, 4-ethylstyrene, 3-propylstyrene, 4-propylstyrene, 3-butylstyrene, 4-butylstyrene, 3-hexylstyrene, 4-hexylstyrene, 3-octyl Styrene, 4-octylstyrene, 3-(2-ethylhexyl)styrene, 4-(2-ethylhexyl)styrene, allylstyrene, isopropenylstyrene, butenylstyrene, octenylstyrene, 4-t-butoxycarbonylstyrene and 4- t-butoxystyrene can be mentioned.
 単官能ビニルエーテルとしては、例えば、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、n-ブチルビニルエーテル、t-ブチルビニルエーテル、2-エチルヘキシルビニルエーテル、n-ノニルビニルエーテル、ラウリルビニルエーテル、シクロヘキシルビニルエーテル、シクロヘキシルメチルビニルエーテル、4-メチルシクロヘキシルメチルビニルエーテル、ベンジルビニルエーテル、ジシクロペンテニルビニルエーテル、2-ジシクロペンテノキシエチルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、ブトキシエチルビニルエーテル、メトキシエトキシエチルビニルエーテル、エトキシエトキシエチルビニルエーテル、メトキシポリエチレングリコールビニルエーテル、テトラヒドロフルフリルビニルエーテル、2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、4-ヒドロキシメチルシクロヘキシルメチルビニルエーテル、ジエチレングリコールモノビニルエーテル、ポリエチレングリコールビニルエーテル、クロルエチルビニルエーテル、クロルブチルビニルエーテル、クロルエトキシエチルビニルエーテル、フェニルエチルビニルエーテル及びフェノキシポリエチレングリコールビニルエーテルが挙げられる。 Monofunctional vinyl ethers include, for example, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, n-butyl vinyl ether, t-butyl vinyl ether, 2-ethylhexyl vinyl ether, n-nonyl vinyl ether, lauryl vinyl ether, cyclohexyl vinyl ether, cyclohexylmethyl vinyl ether, 4-methyl Cyclohexyl methyl vinyl ether, benzyl vinyl ether, dicyclopentenyl vinyl ether, 2-dicyclopentenoxyethyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, butoxyethyl vinyl ether, methoxyethoxyethyl vinyl ether, ethoxyethoxyethyl vinyl ether, methoxypolyethylene glycol vinyl ether, tetrahydro Furfuryl vinyl ether, 2-hydroxyethyl vinyl ether, 2-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether, 4-hydroxymethylcyclohexylmethyl vinyl ether, diethylene glycol monovinyl ether, polyethylene glycol vinyl ether, chloroethyl vinyl ether, chlorobutyl vinyl ether, chloroethoxyethyl vinyl ether , phenylethyl vinyl ether and phenoxypolyethylene glycol vinyl ether.
 単官能N-ビニル化合物としては、例えば、N-ビニル-ε-カプロラクタム及びN-ビニルピロリドンが挙げられる。 Examples of monofunctional N-vinyl compounds include N-vinyl-ε-caprolactam and N-vinylpyrrolidone.
 多官能重合性モノマーは、重合性基を2つ以上有するモノマーであれば特に限定されない。多官能重合性モノマーは、硬化性の観点から、多官能のラジカル重合性モノマーであることが好ましく、多官能エチレン性不飽和モノマーであることがより好ましい。 The polyfunctional polymerizable monomer is not particularly limited as long as it has two or more polymerizable groups. From the viewpoint of curability, the polyfunctional polymerizable monomer is preferably a polyfunctional radically polymerizable monomer, more preferably a polyfunctional ethylenically unsaturated monomer.
 多官能エチレン性不飽和モノマーとしては、例えば、多官能(メタ)アクリレート化合物及び多官能ビニルエーテルが挙げられる。 Examples of polyfunctional ethylenically unsaturated monomers include polyfunctional (meth)acrylate compounds and polyfunctional vinyl ethers.
 多官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ヘプタンジオールジ(メタ)アクリレート、EO変性ネオペンチルグリコールジ(メタ)アクリレート、PO変性ネオペンチルグリコールジ(メタ)アクリレート、EO変性ヘキサンジオールジ(メタ)アクリレート、PO変性ヘキサンジオールジ(メタ)アクリレート、オクタンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、デカンジオールジ(メタ)アクリレート、ドデカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO付加トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート及びトリス(2-アクリロイルオキシエチル)イソシアヌレートが挙げられる。 Examples of polyfunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, and propylene glycol di(meth)acrylate. , dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate ) acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, heptanediol di(meth)acrylate, EO-modified neopentyl glycol di(meth)acrylate, PO-modified neopentyl glycol di(meth)acrylate, EO-modified hexanediol di(meth)acrylate, PO-modified hexanediol di(meth)acrylate, octanediol di(meth)acrylate, nonanediol di(meth)acrylate, decanediol di(meth)acrylate (Meth)acrylate, dodecanediol di(meth)acrylate, glycerin di(meth)acrylate, pentaerythritol di(meth)acrylate, ethylene glycol diglycidyl ether di(meth)acrylate, diethylene glycol diglycidyl ether di(meth)acrylate, tri Cyclodecane dimethanol di(meth)acrylate, trimethylolethane tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, trimethylolpropane EO adduct tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra (meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, tri(meth)acryloyloxyethoxytrimethylolpropane, glycerin polyglycidyl ether poly(meth) ) acrylates and tris(2-acryloyloxyethyl) isocyanurate.
 多官能ビニルエーテルとしては、例えば、1,4-ブタンジオールジビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ブチレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル、ビスフェノールAアルキレンオキシドジビニルエーテル、ビスフェノールFアルキレンオキシドジビニルエーテル、トリメチロールエタントリビニルエーテル、トリメチロールプロパントリビニルエーテル、ジトリメチロールプロパンテトラビニルエーテル、グリセリントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ジペンタエリスリトールペンタビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル、EO付加トリメチロールプロパントリビニルエーテル、PO付加トリメチロールプロパントリビニルエーテル、EO付加ジトリメチロールプロパンテトラビニルエーテル、PO付加ジトリメチロールプロパンテトラビニルエーテル、EO付加ペンタエリスリトールテトラビニルエーテル、PO付加ペンタエリスリトールテトラビニルエーテル、EO付加ジペンタエリスリトールヘキサビニルエーテル及びPO付加ジペンタエリスリトールヘキサビニルエーテルが挙げられる。 Polyfunctional vinyl ethers include, for example, 1,4-butanediol divinyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, polyethylene glycol divinyl ether, propylene glycol divinyl ether, butylene glycol divinyl ether, hexanediol divinyl ether, Vinyl ether, 1,4-cyclohexanedimethanol divinyl ether, bisphenol A alkylene oxide divinyl ether, bisphenol F alkylene oxide divinyl ether, trimethylolethane trivinyl ether, trimethylolpropane trivinyl ether, ditrimethylolpropane tetravinyl ether, glycerin trivinyl ether, pentaerythritol Tetravinyl ether, dipentaerythritol pentavinyl ether, dipentaerythritol hexavinyl ether, EO-added trimethylolpropane trivinyl ether, PO-added trimethylolpropane trivinyl ether, EO-added ditrimethylolpropane tetravinyl ether, PO-added ditrimethylolpropane tetravinyl ether, EO-added penta Erythritol tetravinyl ether, PO-added pentaerythritol tetravinyl ether, EO-added dipentaerythritol hexavinyl ether and PO-added dipentaerythritol hexavinyl ether can be mentioned.
 中でも、硬化性の観点から、多官能重合性モノマーは、(メタ)アクリロイル基以外の部分の炭素数が3~11のモノマーであることが好ましい。(メタ)アクリロイル基以外の部分の炭素数が3~11のモノマーとして、具体的には、1,6-ヘキサンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、PO変性ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート(EO鎖n=4)、又は1,10-デカンジオールジ(メタ)アクリレートであることがより好ましい。 Above all, from the viewpoint of curability, the polyfunctional polymerizable monomer is preferably a monomer having 3 to 11 carbon atoms in the portion other than the (meth)acryloyl group. Specific examples of the monomer having 3 to 11 carbon atoms in the portion other than the (meth)acryloyl group include 1,6-hexanediol di(meth)acrylate, dipropylene glycol di(meth)acrylate, and PO-modified neopentyl glycol. di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate, polyethylene glycol di(meth)acrylate (EO chain n=4), or 1,10-Decanediol di(meth)acrylate is more preferred.
 カチオン重合性モノマーとしては、硬化性の観点でオキシラン環(「エポキシ環」ともいう。)を有する化合物(「オキシラン化合物」又は「エポキシ化合物」ともいう。)、オキセタン環を有する化合物(「オキセタン化合物」ともいう。)、ビニルエーテル化合物等の公知のカチオン重合性モノマーを特に制限なく用いることができる。
 カチオン重合性モノマーとしては、後述する光カチオン重合開始剤から発生するカチオン重合開始種により重合反応を開始し、硬化する化合物であれば特に制限はなく、光カチオン重合性モノマーとして知られる各種公知のカチオン重合性のモノマーを使用することができる。
 カチオン重合性モノマーとしては、例えば、特開平6-9714号、特開2001-31892号、同2001-40068号、同2001-55507号、同2001-310938号、同2001-310937号、同2001-220526号などの各公報に記載されているエポキシ化合物、ビニルエーテル化合物、オキセタン化合物などが挙げられる。
 また、カチオン重合性モノマーとしては、例えば、カチオン重合系の光硬化性樹脂が知られており、最近では400nm以上の可視光波長域に増感された光カチオン重合系の光硬化性樹脂も、例えば特開平6-43633号、特開平8-324137号の各公報等に公開されている。
As the cationic polymerizable monomer, compounds having an oxirane ring (also referred to as an "epoxy ring") (also referred to as an "oxirane compound" or an "epoxy compound") and compounds having an oxetane ring (also referred to as an "oxetane compound ”, and known cationic polymerizable monomers such as vinyl ether compounds can be used without particular limitation.
The cationic polymerizable monomer is not particularly limited as long as it is a compound that initiates a polymerization reaction by a cationic polymerization initiating species generated from a photocationic polymerization initiator described later and cures, and various known photocationic polymerizable monomers. Cationically polymerizable monomers can be used.
Examples of cationic polymerizable monomers include JP-A-6-9714, JP-A-2001-31892, JP-A-2001-40068, JP-A-2001-55507, JP-A-2001-310938, JP-A-2001-310937, JP-A-2001- Epoxy compounds, vinyl ether compounds, oxetane compounds and the like described in publications such as No. 220526 can be mentioned.
Further, as cationic polymerizable monomers, for example, cationic polymerization photocurable resins are known. For example, it is disclosed in Japanese Unexamined Patent Publication No. 6-43633 and Japanese Unexamined Patent Publication No. 8-324137.
 エポキシ化合物としては、芳香族エポキシド、脂環式エポキシド、脂肪族エポキシドなどが挙げられる。
 芳香族エポキシドとしては、少なくとも1個の芳香族核を有する多価フェノールあるいはそのアルキレンオキサイド付加体とエピクロロヒドリンとの反応によって製造されるジ又はポリグリシジルエーテルが挙げられる。
 芳香族エポキシドとしては、例えば、ビスフェノールAあるいはそのアルキレンオキサイド付加体のジ又はポリグリシジルエーテル、水素添加ビスフェノールAあるいはそのアルキレンオキサイド付加体のジ又はポリグリシジルエーテル、並びにノボラック型エポキシ樹脂等が挙げられる。ここでアルキレンオキサイドとしては、エチレンオキサイド及びプロピレンオキサイド等が挙げられる。 
Epoxy compounds include aromatic epoxides, alicyclic epoxides, aliphatic epoxides, and the like.
Aromatic epoxides include di- or polyglycidyl ethers prepared by reacting polyhydric phenols having at least one aromatic nucleus or their alkylene oxide adducts with epichlorohydrin.
Examples of aromatic epoxides include di- or polyglycidyl ethers of bisphenol A or its alkylene oxide adducts, di- or polyglycidyl ethers of hydrogenated bisphenol A or its alkylene oxide adducts, and novolac type epoxy resins. Examples of the alkylene oxide include ethylene oxide and propylene oxide.
 脂環式エポキシドとしては、少なくとも1個のシクロへキセン環又はシクロペンテン環等のシクロアルカン環を有する化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化することによって得られる、シクロヘキセンオキサイド又はシクロペンテンオキサイド含有化合物が好ましく挙げられる。
 脂肪族エポキシドとしては、脂肪族多価アルコールあるいはそのアルキレンオキサイド付加体のジ又はポリグリシジルエーテル等があり、その代表例としては、エチレングリコールのジグリシジルエーテル、プロピレングリコールのジグリシジルエーテル又は1,6-ヘキサンジオールのジグリシジルエーテル等のアルキレングリコールのジグリシジルエーテル、グリセリンあるいはそのアルキレンオキサイド付加体のジ又はトリグリシジルエーテル等の多価アルコールのポリグリシジルエーテル、ポリエチレングリコールあるいはそのアルキレンオキサイド付加体のジグリシジルエーテル、ポリプロピレングリコールあるいはそのアルキレンオキサイド付加体のジグリシジルエーテルに代表されるポリアルキレングリコールのジグリシジルエーテル等が挙げられる。
 ここでアルキレンオキサイドとしては、エチレンオキサイド及びプロピレンオキサイド等が挙げられる。
The alicyclic epoxide is cyclohexene, which is obtained by epoxidizing a compound having at least one cycloalkane ring such as cyclohexene ring or cyclopentene ring with a suitable oxidizing agent such as hydrogen peroxide or peracid. Oxide or cyclopentene oxide containing compounds are preferably mentioned.
Aliphatic epoxides include di- or polyglycidyl ethers of aliphatic polyhydric alcohols or their alkylene oxide adducts. - diglycidyl ether of alkylene glycol such as diglycidyl ether of hexanediol, polyglycidyl ether of polyhydric alcohol such as di- or triglycidyl ether of glycerin or its alkylene oxide adduct, diglycidyl of polyethylene glycol or its alkylene oxide adduct Ethers, diglycidyl ethers of polyalkylene glycols represented by diglycidyl ethers of polypropylene glycol or its alkylene oxide adducts, and the like can be mentioned.
Examples of the alkylene oxide include ethylene oxide and propylene oxide.
 以下、単官能及び多官能のエポキシ化合物を詳しく例示する。
 単官能エポキシ化合物の例としては、例えば、フェニルグリシジルエーテル、p-tert-ブチルフェニルグリシジルエーテル、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、アリルグリシジルエーテル、1,2-ブチレンオキサイド、1,3-ブタジエンモノオキサイド、1,2-エポキシドデカン、エピクロロヒドリン、1,2-エポキシデカン、スチレンオキサイド、シクロヘキセンオキサイド、3-メタクリロイルオキシメチルシクロヘキセンオキサイド、3-アクリロイルオキシメチルシクロヘキセンオキサイド、3-ビニルシクロヘキセンオキサイド、4-ビニルシクロヘキセンオキサイド等が挙げられる。
The monofunctional and polyfunctional epoxy compounds are exemplified in detail below.
Examples of monofunctional epoxy compounds include phenyl glycidyl ether, p-tert-butylphenyl glycidyl ether, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, allyl glycidyl ether, 1,2-butylene oxide, and 1,3-butadiene. monooxide, 1,2-epoxidedecane, epichlorohydrin, 1,2-epoxydecane, styrene oxide, cyclohexene oxide, 3-methacryloyloxymethylcyclohexene oxide, 3-acryloyloxymethylcyclohexene oxide, 3-vinylcyclohexene oxide, 4-vinylcyclohexene oxide and the like.
 多官能エポキシ化合物の例としては、例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、エポキシノボラック樹脂、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタ-ジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキシル-3’,4’-エポキシ-6’-メチルシクロヘキサンカルボキシレート、メチレンビス(3,4-エポキシシクロヘキサン)、ジシクロペンタジエンジエポキサイド、エチレングリコールのジ(3,4-エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、エポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタル酸ジ-2-エチルヘキシル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル類、1,13-テトラデカジエンジオキサイド、リモネンジオキサイド、1,2,7,8-ジエポキシオクタン、1,2,5,6-ジエポキシシクロオクタン等が挙げられる。 Examples of polyfunctional epoxy compounds include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether. glycidyl ether, epoxy novolak resin, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexane carboxylate, 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy)cyclohexane-meta-dioxane, bis(3,4-epoxycyclohexylmethyl)adipate, bis(3,4-epoxy-6- methylcyclohexylmethyl)adipate, 3,4-epoxy-6-methylcyclohexyl-3',4'-epoxy-6'-methylcyclohexanecarboxylate, methylenebis(3,4-epoxycyclohexane), dicyclopentadiene diepoxide, ethylene Di(3,4-epoxycyclohexylmethyl) ether of glycol, ethylenebis(3,4-epoxycyclohexanecarboxylate), dioctyl epoxyhexahydrophthalate, di-2-ethylhexyl epoxyhexahydrophthalate, 1,4-butane diol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ethers, 1,13-tetradecadiene dioxide, limonene dioxide, 1,2,7,8-diepoxyoctane, 1,2,5,6-diepoxycyclooctane and the like.
 エポキシ化合物の中でも、芳香族エポキシド及び脂環式エポキシドが、硬化速度に優れるという観点から好ましく、特に脂環式エポキシドが好ましい。 Among epoxy compounds, aromatic epoxides and alicyclic epoxides are preferred from the viewpoint of excellent curing speed, and alicyclic epoxides are particularly preferred.
 オキセタン化合物は、少なくとも1つのオキセタン環を有する化合物を指し、特開2001-220526号、同2001-310937号、同2003-341217号の各公報に記載されているような公知のオキセタン化合物を任意に選択して使用できる。
 オキセタン環を有する化合物としては、その構造内にオキセタン環を1~4個有する化合物が好ましい。このような化合物を使用することで、インク組成物の粘度をハンドリング性の良好な範囲に維持することが容易となり、また、硬化後のインク組成物の被記録媒体との高い密着性を得ることができる。 
The oxetane compound refers to a compound having at least one oxetane ring, and any known oxetane compound as described in JP-A-2001-220526, JP-A-2001-310937, and JP-A-2003-341217. You can choose to use it.
As the compound having an oxetane ring, a compound having 1 to 4 oxetane rings in its structure is preferable. By using such a compound, it is possible to easily maintain the viscosity of the ink composition within a range of good handling properties, and to obtain high adhesion of the cured ink composition to the recording medium. can be done.
 分子内に1~2個のオキセタン環を有する化合物としては、以下の式(1)~式(3)で示される化合物等が挙げられる。 Examples of compounds having 1 to 2 oxetane rings in the molecule include compounds represented by the following formulas (1) to (3).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)~式(3)中、Ra1は、水素原子、炭素数1~6のアルキル基、炭素数1~6のフルオロアルキル基、アリル基、アリール基、フリル基又はチエニル基を表す。
 分子内に2つのRa1が存在する場合、それらは同じであっても異なるものであってもよい。
 アルキル基としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、フルオロアルキル基としては、これらアルキル基の水素のいずれかがフッ素原子で置換されたものが好ましく挙げられる。
 Ra2は、水素原子、炭素数1~6個のアルキル基、炭素数2~6個のアルケニル基、芳香環を有する基、炭素数2~6個のアルキルカルボニル基、炭素数2~6個のアルコキシカルボニル基、炭素数2~6個のN-アルキルカルバモイル基を表す。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、アルケニル基としては、1-プロペニル基、2-プロペニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等が挙げられ、芳香環を有する基としては、フェニル基、ベンジル基、フルオロベンジル基、メトキシベンジル基、フェノキシエチル基等が挙げられる。アルキルカルボニル基としては、エチルカルボニル基、プロピルカルボニル基、ブチルカルボニル基等が、アルキコキシカルボニル基としては、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基等が、N-アルキルカルバモイル基としては、エチルカルバモイル基、プロピルカルバモイル基、ブチルカルバモイル基、ペンチルカルバモイル基等が挙げられる。
 Ra2は置換基を有していてもよく、置換基としては、1~6のアルキル基、フッ素原子が挙げられる。
In formulas (1) to (3), R a1 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group having 1 to 6 carbon atoms, an allyl group, an aryl group, a furyl group, or a thienyl group. .
When two R a1 are present in the molecule, they may be the same or different.
Examples of the alkyl group include methyl group, ethyl group, propyl group, and butyl group. Preferred examples of the fluoroalkyl group include those in which one of the hydrogen atoms in these alkyl groups is substituted with a fluorine atom.
R a2 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a group having an aromatic ring, an alkylcarbonyl group having 2 to 6 carbon atoms, or 2 to 6 carbon atoms. represents an alkoxycarbonyl group and an N-alkylcarbamoyl group having 2 to 6 carbon atoms. Examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, etc. Examples of the alkenyl group include 1-propenyl group, 2-propenyl group, 2-methyl-1-propenyl group, 2-methyl-2 -propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group and the like, and examples of groups having an aromatic ring include a phenyl group, a benzyl group, a fluorobenzyl group, a methoxybenzyl group, a phenoxyethyl group and the like. mentioned. Examples of the alkylcarbonyl group include an ethylcarbonyl group, a propylcarbonyl group and a butylcarbonyl group; examples of the alkoxycarbonyl group include an ethoxycarbonyl group, a propoxycarbonyl group and a butoxycarbonyl group; examples of the N-alkylcarbamoyl group include Ethylcarbamoyl group, propylcarbamoyl group, butylcarbamoyl group, pentylcarbamoyl group and the like.
R a2 may have a substituent, and examples of the substituent include 1 to 6 alkyl groups and fluorine atoms.
 Ra3は、線状又は分枝状アルキレン基、線状又は分枝状ポリ(アルキレンオキシ)基、線状又は分枝状不飽和炭化水素基、カルボニル基又はカルボニル基を含むアルキレン基、カルボキシ基を含むアルキレン基、カルバモイル基を含むアルキレン基、又は、以下に示す基を表す。アルキレン基としては、例えば、エチレン基、プロピレン基、ブチレン基が挙げられ、ポリ(アルキレンオキシ)基としては、ポリ(エチレンオキシ)基、ポリ(プロピレンオキシ)基等が挙げられる。不飽和炭化水素基としては、プロペニレン基、メチルプロペニレン基、ブテニレン基等が挙げられる。 R a3 is a linear or branched alkylene group, a linear or branched poly(alkyleneoxy) group, a linear or branched unsaturated hydrocarbon group, a carbonyl group or an alkylene group containing a carbonyl group, a carboxy group represents an alkylene group containing, an alkylene group containing a carbamoyl group, or the groups shown below. Examples of the alkylene group include an ethylene group, a propylene group and a butylene group, and examples of the poly(alkyleneoxy) group include a poly(ethyleneoxy) group and a poly(propyleneoxy) group. A propenylene group, a methylpropenylene group, a butenylene group etc. are mentioned as an unsaturated hydrocarbon group.
 式(1)で表される化合物としては、3-エチル-3-ヒドロキシメチルオキセタン(OXT-101:東亞合成(株)製)、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン(OXT-212:東亞合成(株)製)、3-エチル-3-フェノキシメチルオキセタン(OXT-211:東亞合成(株)製)が挙げられる。
 式(2)で表される化合物としては、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン(OXT-121:東亞合成(株)製)が挙げられる。
 式(3)で表される化合物としては、ビス(3-エチル-3-オキセタニルメチル)エーテル(OXT-221:東亞合成(株)製)が挙げられる。
Examples of the compound represented by formula (1) include 3-ethyl-3-hydroxymethyloxetane (OXT-101: manufactured by Toagosei Co., Ltd.), 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane ( OXT-212: manufactured by Toagosei Co., Ltd.) and 3-ethyl-3-phenoxymethyloxetane (OXT-211: manufactured by Toagosei Co., Ltd.).
Examples of the compound represented by formula (2) include 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene (OXT-121: manufactured by Toagosei Co., Ltd.).
Examples of the compound represented by formula (3) include bis(3-ethyl-3-oxetanylmethyl)ether (OXT-221: manufactured by Toagosei Co., Ltd.).
 オキセタン環を有する化合物については、特開2003-341217号公報の段落0021~0084、特開2004-91556号公報、及び、特開2004-91556号公報の段落0022~0058を参照してもよい。 For compounds having an oxetane ring, paragraphs 0021 to 0084 of JP-A-2003-341217, JP-A-2004-91556, and paragraphs 0022-0058 of JP-A-2004-91556 may be referred to.
 好ましいカチオン重合性モノマーの例を以下に列記する。 Examples of preferred cationic polymerizable monomers are listed below.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 カチオン重合性モノマーとしては、ビニルエーテル化合物も挙げられる。ビニルエーテル化合物の具体例は、上記のとおりである。 Examples of cationic polymerizable monomers include vinyl ether compounds. Specific examples of the vinyl ether compound are as described above.
 ビニルエーテル化合物としては、ジビニルエーテル化合物又はトリビニルエーテル化合物が、硬化性、被記録媒体との密着性、形成された画像の表面硬度などの観点から好ましく、特にジビニルエーテル化合物が好ましい。 As the vinyl ether compound, a divinyl ether compound or a trivinyl ether compound is preferable from the viewpoint of curability, adhesion with a recording medium, surface hardness of a formed image, etc., and a divinyl ether compound is particularly preferable.
 重合性モノマーの含有量は、絶縁層形成用インクの全量に対して、10質量%~98質量%であることが好ましく、50質量%~98質量%であることがより好ましい。 The content of the polymerizable monomer is preferably 10% by mass to 98% by mass, more preferably 50% by mass to 98% by mass, relative to the total amount of the insulating layer forming ink.
-重合開始剤-
 絶縁層形成用インクは、重合性モノマーを硬化させる目的で重合開始剤を含む。重合開始剤は、重合性モノマーの種類に応じて、ラジカル重合開始剤又はカチオン重合開始剤のうち適するものを選択することができる。重合開始剤としては、例えば、オキシム化合物、アルキルフェノン化合物、アシルホスフィン化合物、芳香族オニウム塩化合物、有機過酸化物、チオ化合物、ヘキサアリールビスイミダゾール化合物、ボレート化合物、アジニウム化合物、チタノセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物、及びアルキルアミンが挙げられる。
-Polymerization initiator-
The insulating layer forming ink contains a polymerization initiator for the purpose of curing the polymerizable monomer. A suitable polymerization initiator can be selected from radical polymerization initiators and cationic polymerization initiators depending on the type of polymerizable monomer. Examples of polymerization initiators include oxime compounds, alkylphenone compounds, acylphosphine compounds, aromatic onium salt compounds, organic peroxides, thio compounds, hexaarylbisimidazole compounds, borate compounds, azinium compounds, titanocene compounds, active esters. compounds, compounds with carbon-halogen bonds, and alkylamines.
 ラジカル重合開始剤は、導電性をより向上させる観点から、絶縁層形成用インクに含まれる重合開始剤は、オキシム化合物、アルキルフェノン化合物、及びチタノセン化合物からなる群より選択される少なくとも1種であることが好ましく、アルキルフェノン化合物であることがより好ましく、α-アミノアルキルフェノン化合物及びベンジルケタールアルキルフェノンからなる群より選択される少なくとも1種であることがさらに好ましい。 The radical polymerization initiator contained in the insulating layer forming ink is at least one selected from the group consisting of an oxime compound, an alkylphenone compound, and a titanocene compound, from the viewpoint of further improving conductivity. more preferably an alkylphenone compound, and more preferably at least one selected from the group consisting of α-aminoalkylphenone compounds and benzylketal alkylphenones.
 カチオン重合開始剤は、光酸発生剤であることが好ましい。
 光酸発生剤として、例えば、化学増幅型フォトレジスト又は光カチオン重合に利用される化合物が挙げられる(有機エレクトロニクス材料研究会編、「イメージング用有機材料」、ぶんしん出版(1993年)、187~192ページ参照)。中でも、光酸発生剤は、芳香族オニウム塩化合物が好ましく、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩等のオニウム塩化合物が好ましく、スルホニウム塩又はヨードニウム塩がより好ましい。
The cationic polymerization initiator is preferably a photoacid generator.
Examples of photoacid generators include chemically amplified photoresists and compounds used for photocationic polymerization (Organic Electronics Materials Research Group, "Organic Materials for Imaging", Bunshin Publishing (1993), 187- (see page 192). Among them, the photoacid generator is preferably an aromatic onium salt compound, preferably an onium salt compound such as a diazonium salt, a phosphonium salt, a sulfonium salt or an iodonium salt, more preferably a sulfonium salt or an iodonium salt.
 重合開始剤の含有量は、絶縁層形成用インクの全量に対して、0.5質量%~20質量%であることが好ましく、2質量%~10質量%であることがより好ましい。 The content of the polymerization initiator is preferably 0.5% by mass to 20% by mass, more preferably 2% by mass to 10% by mass, relative to the total amount of the insulating layer forming ink.
 本開示において、絶縁層形成用インクは、重合開始剤及び重合性モノマー以外の他の成分を含んでいてもよい。他の成分としては、連鎖移動剤、重合禁止剤、増感剤、界面活性剤及び添加剤が挙げられる。 In the present disclosure, the insulating layer forming ink may contain components other than the polymerization initiator and the polymerizable monomer. Other ingredients include chain transfer agents, polymerization inhibitors, sensitizers, surfactants and additives.
-連鎖移動剤-
 絶縁性保護層形成用インクは、少なくとも1種の連鎖移動剤を含有してもよい。
 連鎖移動剤は、光重合反応の反応性を向上させる観点から、多官能チオールであることが好ましい。
-Chain transfer agent-
The insulating protective layer forming ink may contain at least one chain transfer agent.
From the viewpoint of improving the reactivity of the photopolymerization reaction, the chain transfer agent is preferably a polyfunctional thiol.
 多官能性チオールとしては、例えば、ヘキサン-1,6-ジチオール、デカン-1,10-ジチオール、ジメルカプトジエチルエーテル、ジメルカプトジエチルスルフィド等の脂肪族チオール類、キシリレンジメルカプタン、4,4′-ジメルカプトジフェニルスルフィド、1,4-ベンゼンジチオール等の芳香族チオール類;
エチレングリコールビス(メルカプトアセテート)、ポリエチレングリコールビス(メルカプトアセテート)、プロピレングリコールビス(メルカプトアセテート)、グリセリントリス(メルカプトアセテート)、トリメチロールエタントリス(メルカプトアセテート)、トリメチロールプロパントリス(メルカプトアセテート)、ペンタエリスリトールテトラキス(メルカプトアセテート)、ジペンタエリスリトールヘキサキス(メルカプトアセテート)等の多価アルコールのポリ(メルカプトアセテート);
エチレングリコールビス(3-メルカプトプロピオネート)、ポリエチレングリコールビス(3-メルカプトプロピオネート)、プロピレングリコールビス(3-メルカプトプロピオネート)、グリセリントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)等の多価アルコールのポリ(3-メルカプトプロピオネート);及び、
1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)等のポリ(メルカプトブチレート)が挙げられる。
Examples of polyfunctional thiols include aliphatic thiols such as hexane-1,6-dithiol, decane-1,10-dithiol, dimercaptodiethyl ether, dimercaptodiethyl sulfide, xylylene dimercaptan, 4,4'- Aromatic thiols such as dimercaptodiphenyl sulfide and 1,4-benzenedithiol;
Ethylene Glycol Bis (Mercaptoacetate), Polyethylene Glycol Bis (Mercaptoacetate), Propylene Glycol Bis (Mercaptoacetate), Glycerin Tris (Mercaptoacetate), Trimethylolethane Tris (Mercaptoacetate), Trimethylolpropane Tris (Mercaptoacetate), Penta poly(mercaptoacetate) of polyhydric alcohols such as erythritol tetrakis (mercaptoacetate), dipentaerythritol hexakis (mercaptoacetate);
Ethylene glycol bis(3-mercaptopropionate), polyethylene glycol bis(3-mercaptopropionate), propylene glycol bis(3-mercaptopropionate), glycerol bis(3-mercaptopropionate), trimethylolethane Polyvalent tris (mercaptopropionate), trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), etc. alcohol poly(3-mercaptopropionate); and
1,4-bis(3-mercaptobutyryloxy)butane, 1,3,5-tris(3-mercaptobutyloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H )-trione, and poly(mercaptobutyrate) such as pentaerythritol tetrakis(3-mercaptobutyrate).
-重合禁止剤-
 絶縁層形成用インクは、少なくとも1種の重合禁止剤を含有してもよい。
 重合禁止剤としては、p-メトキシフェノール、キノン類(例えば、ハイドロキノン、ベンゾキノン、メトキシベンゾキノン等)、フェノチアジン、カテコール類、アルキルフェノール類(例えば、ジブチルヒドロキシトルエン(BHT)等)、アルキルビスフェノール類、ジメチルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅、サリチル酸銅、チオジプロピオン酸エステル類、メルカプトベンズイミダゾール、ホスファイト類、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)、2,2,6,6-テトラメチル-4-ヒドロキシピペリジン-1-オキシル(TEMPOL)、及びトリス(N-ニトロソ-N-フェニルヒドロキシルアミン)アルミニウム塩(別名:クペロンAl)が挙げられる。
-Polymerization inhibitor-
The insulating layer forming ink may contain at least one polymerization inhibitor.
Polymerization inhibitors include p-methoxyphenol, quinones (e.g., hydroquinone, benzoquinone, methoxybenzoquinone, etc.), phenothiazine, catechols, alkylphenols (e.g., dibutylhydroxytoluene (BHT), etc.), alkylbisphenols, dimethyldithiocarbamine. zinc acid, copper dimethyldithiocarbamate, copper dibutyldithiocarbamate, copper salicylate, thiodipropionates, mercaptobenzimidazole, phosphites, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl (TEMPOL), and tris(N-nitroso-N-phenylhydroxylamine) aluminum salt (also known as Cupferron Al).
 中でも、重合禁止剤は、p-メトキシフェノール、カテコール類、キノン類、アルキルフェノール類、TEMPO、TEMPOL、及びトリス(N-ニトロソ-N-フェニルヒドロキシルアミン)アルミニウム塩から選ばれる少なくとも1種が好ましく、p-メトキシフェノール、ハイドロキノン、ベンゾキノン、BHT、TEMPO、TEMPOL、及びトリス(N-ニトロソ-N-フェニルヒドロキシルアミン)アルミニウム塩から選ばれる少なくとも1種がより好ましい。 Among them, the polymerization inhibitor is preferably at least one selected from p-methoxyphenol, catechols, quinones, alkylphenols, TEMPO, TEMPOL, and tris(N-nitroso-N-phenylhydroxylamine) aluminum salt, and p -Methoxyphenol, hydroquinone, benzoquinone, BHT, TEMPO, TEMPOL, and tris(N-nitroso-N-phenylhydroxylamine) aluminum salt is more preferred.
 絶縁層形成用インクが重合禁止剤を含有する場合、重合禁止剤の含有量は、インクの全量に対し、0.01質量%~2.0質量%が好ましく、0.02質量%~1.0質量%がより好ましく、0.03質量%~0.5質量%が特に好ましい。 When the insulating layer forming ink contains a polymerization inhibitor, the content of the polymerization inhibitor is preferably 0.01% by mass to 2.0% by mass, more preferably 0.02% by mass to 1.0% by mass, based on the total amount of the ink. 0 mass % is more preferred, and 0.03 mass % to 0.5 mass % is particularly preferred.
-増感剤-
 絶縁層形成用インクは、少なくとも1種の増感剤を含有してもよい。
- Sensitizer -
The insulating layer forming ink may contain at least one sensitizer.
 増感剤として、例えば、多核芳香族化合物(例えば、ピレン、ペリレン、トリフェニレン、及び2-エチル-9,10-ジメトキシアントラセン)、キサンテン系化合物(例えば、フルオレッセイン、エオシン、エリスロシン、ローダミンB、及びローズベンガル)、シアニン系化合物(例えば、チアカルボシアニン及びオキサカルボシアニン)、メロシアニン系化合物(例えば、メロシアニン、及びカルボメロシアニン)、チアジン系化合物(例えば、チオニン、メチレンブルー、及びトルイジンブルー)、アクリジン系化合物(例えば、アクリジンオレンジ、クロロフラビン、及びアクリフラビン)、アントラキノン類(例えば、アントラキノン)、スクアリウム系化合物(例えば、スクアリウム)、クマリン系化合物(例えば、7-ジエチルアミノ-4-メチルクマリン)、チオキサントン系化合物(例えば、イソプロピルチオキサントン)、及びチオクロマノン系化合物(例えば、チオクロマノン)が挙げられる。中でも、増感剤は、チオキサントン系化合物であることが好ましい。 Examples of sensitizers include polynuclear aromatic compounds (e.g., pyrene, perylene, triphenylene, and 2-ethyl-9,10-dimethoxyanthracene), xanthene compounds (e.g., fluorescein, eosin, erythrosine, rhodamine B, and Rose Bengal), cyanine compounds (e.g., thiacarbocyanine and oxacarbocyanine), merocyanine compounds (e.g., merocyanine and carbomerocyanine), thiazine compounds (e.g., thionine, methylene blue, and toluidine blue), acridine compounds compounds (e.g., acridine orange, chloroflavin, and acriflavin), anthraquinones (e.g., anthraquinone), squalium compounds (e.g., squalium), coumarin compounds (e.g., 7-diethylamino-4-methylcoumarin), thioxanthone compounds (eg, isopropylthioxanthone), and thiochromanone-based compounds (eg, thiochromanone). Among them, the sensitizer is preferably a thioxanthone compound.
 絶縁層形成用インクが増感剤を含有する場合、増感剤の含有量は特に限定されないが、絶縁層形成用インクの全量に対して、1.0質量%~15.0質量%であることが好ましく、1.5質量%~5.0質量%であることがより好ましい。 When the insulating layer-forming ink contains a sensitizer, the content of the sensitizer is not particularly limited, but is 1.0% by mass to 15.0% by mass with respect to the total amount of the insulating layer-forming ink. is preferred, and 1.5% by mass to 5.0% by mass is more preferred.
-界面活性剤-
 絶縁層形成用インクは、少なくとも1種の界面活性剤を含有してもよい。
-Surfactant-
The insulating layer forming ink may contain at least one surfactant.
 界面活性剤としては、特開昭62-173463号公報、及び特開昭62-183457号公報に記載されたものが挙げられる。また、界面活性剤としては、例えば、ジアルキルスルホコハク酸塩、アルキルナフタレンスルホン酸塩、脂肪酸塩等のアニオン性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、アセチレングリコール、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー等のノニオン性界面活性剤;及び、アルキルアミン塩、第四級アンモニウム塩等のカチオン性界面活性剤が挙げられる。また、界面活性剤は、フッ素系界面活性剤又はシリコーン系界面活性剤であってもよい。 Examples of surfactants include those described in JP-A-62-173463 and JP-A-62-183457. Examples of surfactants include anionic surfactants such as dialkylsulfosuccinates, alkylnaphthalenesulfonates, and fatty acid salts; polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, acetylene glycol, polyoxyethylene • Nonionic surfactants such as polyoxypropylene block copolymers; and cationic surfactants such as alkylamine salts and quaternary ammonium salts. Further, the surfactant may be a fluorosurfactant or a silicone surfactant.
-有機溶剤-
 絶縁層形成用インクは、少なくとも1種の有機溶剤を含有してもよい。
-Organic solvent-
The insulating layer forming ink may contain at least one organic solvent.
 有機溶剤としては、例えば、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル類;
エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテル、テトラエチレングリコールジメチルエーテル等の(ポリ)アルキレングリコールジアルキルエーテル類;
ジエチレングリコールアセテート等の(ポリ)アルキレングリコールアセテート類;
エチレングリコールジアセテート、プロピレングリコールジアセテート等の(ポリ)アルキレングリコールジアセテート類;
エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等の(ポリ)アルキレングリコールモノアルキルエーテルアセテート類、メチルエチルケトン、シクロヘキサノン等のケトン類;
γ-ブチロラクトン等のラクトン類;
酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸3-メトキシブチル(MBA)、プロピオン酸メチル、プロピオン酸エチル等のエステル類;
テトラヒドロフラン、ジオキサン等の環状エーテル類;及び
ジメチルホルムアミド、ジメチルアセトアミド等のアミド類が挙げられる。
Examples of organic solvents include (poly)alkylene glycols such as ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether (PGME), dipropylene glycol monomethyl ether, and tripropylene glycol monomethyl ether. monoalkyl ethers;
(poly)alkylene glycol dialkyl ethers such as ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol diethyl ether, tetraethylene glycol dimethyl ether;
(poly)alkylene glycol acetates such as diethylene glycol acetate;
(poly)alkylene glycol diacetates such as ethylene glycol diacetate and propylene glycol diacetate;
(poly)alkylene glycol monoalkyl ether acetates such as ethylene glycol monobutyl ether acetate and propylene glycol monomethyl ether acetate; ketones such as methyl ethyl ketone and cyclohexanone;
Lactones such as γ-butyrolactone;
Esters such as ethyl acetate, propyl acetate, butyl acetate, 3-methoxybutyl acetate (MBA), methyl propionate, ethyl propionate;
cyclic ethers such as tetrahydrofuran and dioxane; and amides such as dimethylformamide and dimethylacetamide.
 絶縁層形成用インクが有機溶剤を含有する場合、有機溶剤の含有量は、絶縁層形成用インクの全量に対して、70質量%以下であることが好ましく、50質量%以下であることがより好ましい。有機溶剤の含有量の下限値は特に限定されない。有機溶剤の含有量は0質量%であってもよい。 When the insulating layer forming ink contains an organic solvent, the content of the organic solvent is preferably 70% by mass or less, more preferably 50% by mass or less, relative to the total amount of the insulating layer forming ink. preferable. The lower limit of the content of the organic solvent is not particularly limited. The content of the organic solvent may be 0% by mass.
(添加剤)
 絶縁層形成用インクは、必要に応じて、共増感剤、紫外線吸収剤、酸化防止剤、褪色防止剤、塩基性化合物等の添加剤を含有してもよい。
(Additive)
The insulating layer-forming ink may contain additives such as a co-sensitizer, an ultraviolet absorber, an antioxidant, an anti-fading agent, and a basic compound, if necessary.
(物性)
 絶縁層形成用インクのpHは、インクジェット記録方式で付与する場合に吐出安定性を向上させる観点から、7~10であることが好ましく、7.5~9.5であることがより好ましい。pHは、pH計を用いて25℃で測定され、例えば、東亜DKK社製のpHメーター(型番「HM-31」)を用いて測定される。
(physical properties)
The pH of the insulating layer-forming ink is preferably 7 to 10, more preferably 7.5 to 9.5, from the viewpoint of improving ejection stability when applied by an inkjet recording method. The pH is measured at 25° C. using a pH meter, for example, using a pH meter manufactured by DKK Toa (model number “HM-31”).
 絶縁層形成用インクの粘度は、0.5mPa・s~60mPa・sであることが好ましく、2mPa・s~40mPa・sであることがより好ましい。粘度は、粘度計を用いて25℃で測定され、例えば、東機産業社製のTV-22型粘度計を用いて測定される。 The viscosity of the insulating layer forming ink is preferably 0.5 mPa·s to 60 mPa·s, more preferably 2 mPa·s to 40 mPa·s. Viscosity is measured at 25° C. using a viscometer, for example, using a TV-22 viscometer manufactured by Toki Sangyo Co., Ltd.
 絶縁層形成用インクの表面張力は、60mN/m以下であることが好ましく、20mN/m~50mN/mであることがより好ましく、25mN/m~45mN/mであることがさらに好ましい。表面張力は、表面張力計を用いて25℃で測定され、例えば、協和界面科学社製の自動表面張力計(製品名「CBVP-Z」)を用いて、プレート法によって測定される。 The surface tension of the insulating layer forming ink is preferably 60 mN/m or less, more preferably 20 mN/m to 50 mN/m, even more preferably 25 mN/m to 45 mN/m. The surface tension is measured at 25° C. using a surface tensiometer, for example, by a plate method using an automatic surface tensiometer manufactured by Kyowa Interface Science Co., Ltd. (product name “CBVP-Z”).
(絶縁層形成用インクの付与)
 絶縁層形成用インクの付与方法は特に限定されず、例えば、塗布法、インクジェット記録方式等の公知の方法が挙げられる。中でも、少量を打滴して1回の付与によって形成される絶縁層の厚さを薄くできる観点から、絶縁層形成用インクをインクジェット記録方式を用いて付与することが好ましい。
(Applying Ink for Insulating Layer Formation)
The method of applying the insulating layer forming ink is not particularly limited, and examples thereof include known methods such as a coating method and an inkjet recording method. Above all, it is preferable to apply the ink for forming the insulating layer using an ink jet recording method from the viewpoint of reducing the thickness of the insulating layer formed by applying a small amount of ink in one application.
 インクジェット記録方式は、静電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインクに照射して放射圧を利用してインクを吐出させる音響インクジェット方式、及びインクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット(バブルジェット(登録商標))方式のいずれであってもよい。 Inkjet recording methods include a charge control method that uses electrostatic attraction to eject ink, a drop-on-demand method (pressure pulse method) that uses the vibration pressure of a piezo element, and an acoustic beam that converts an electrical signal into an acoustic beam that irradiates the ink. Either an acoustic inkjet method in which ink is ejected using radiation pressure, or a thermal inkjet (bubble jet (registered trademark)) method in which ink is heated to form bubbles and the pressure generated is used. .
 インクジェット記録方式としては、特に、特開昭54-59936号公報に記載の方法で、熱エネルギーの作用を受けたインクが急激な体積変化を生じ、この状態変化による作用力によって、インクをノズルから吐出させるインクジェット記録方式を有効に利用することができる。 As an ink jet recording method, in particular, the method described in Japanese Patent Laid-Open No. 59936/1989 causes a sudden change in volume of the ink under the action of thermal energy, and the acting force due to this change in state causes the ink to be ejected from the nozzle. It is possible to effectively use an ink jet recording method for discharging.
 また、インクジェット記録方式については、特開2003-306623号公報の段落0093~0105に記載の方法も参照できる。 As for the inkjet recording method, the method described in paragraphs 0093 to 0105 of JP-A-2003-306623 can also be referred to.
 インクジェット記録方式に用いるインクジェットヘッドとしては、短尺のシリアルヘッドを用い、ヘッドを電子基板の幅方向に走査させながら記録を行うシャトルスキャン方式と、電子基板の1辺の全域に対応して記録素子が配列されているラインヘッドを用いたライン方式とが挙げられる。 As an inkjet head used in the inkjet recording method, a short serial head is used, and a shuttle scan method in which recording is performed while scanning the head in the width direction of the electronic substrate, and a recording element corresponding to the entire side of the electronic substrate. and a line system using arrayed line heads.
 インクジェットヘッドから吐出される絶縁層形成用インクの打滴量は、1pL(ピコリットル)~100pLであることが好ましく、3pL~80pLであることがより好ましく、3pL~20pLであることがさらに好ましい。 The droplet volume of the insulating layer forming ink ejected from the inkjet head is preferably 1 pL (picoliter) to 100 pL, more preferably 3 pL to 80 pL, and even more preferably 3 pL to 20 pL.
(活性エネルギー線の照射)
 絶縁層形成工程では、絶縁層形成用インクを付与した後に、活性エネルギー線を照射する。
(Irradiation of active energy rays)
In the insulating layer forming step, the active energy ray is applied after applying the insulating layer forming ink.
 活性エネルギー線としては、例えば、紫外線、可視光線及び電子線が挙げられ、中でも紫外線(以下、「UV」ともいう)が好ましい。 Examples of active energy rays include ultraviolet rays, visible rays, and electron beams, and among them, ultraviolet rays (hereinafter also referred to as "UV") are preferred.
 紫外線のピーク波長は、200nm~405nmであることが好ましく、250nm~400nmであることがより好ましく、300nm~400nmであることがさらに好ましい。 The peak wavelength of ultraviolet rays is preferably 200 nm to 405 nm, more preferably 250 nm to 400 nm, even more preferably 300 nm to 400 nm.
 絶縁層形成用インクの流れ出しをより抑制する観点から、活性エネルギー線を照射する際の照度は、1W/cm以上であることが好ましく、10W/cm以上であることがより好ましい。照度の上限値は特に限定されないが、例えば、100W/cmである。 From the viewpoint of further suppressing the outflow of the insulating layer forming ink, the illuminance at the time of irradiation with the active energy ray is preferably 1 W/cm 2 or more, more preferably 10 W/cm 2 or more. Although the upper limit of the illuminance is not particularly limited, it is, for example, 100 W/cm 2 .
 活性エネルギー線の照射における露光量は、100mJ/cm~10000mJ/cmであることが好ましく、300mJ/cm~5000mJ/cmであることがより好ましい。なお、絶縁層形成用インクの付与と、活性エネルギー線の照射を1サイクルとしたとき、ここでいう露光量は、1サイクルにおける活性エネルギー線の露光量を意味する。 The exposure amount in the irradiation of active energy rays is preferably 100 mJ/cm 2 to 10000 mJ/cm 2 , more preferably 300 mJ/cm 2 to 5000 mJ/cm 2 . When the application of the ink for forming the insulating layer and the irradiation of the active energy ray are regarded as one cycle, the amount of exposure here means the amount of exposure of the active energy ray in one cycle.
 紫外線照射用の光源としては、水銀ランプ、ガスレーザー及び固体レーザーが主に利用されており、水銀ランプ、メタルハライドランプ及び紫外線蛍光灯が広く知られている。また、UV-LED(発光ダイオード)及びUV-LD(レーザダイオード)は小型、高寿命、高効率、かつ、低コストであり、紫外線照射用の光源として期待されている。中でも、紫外線照射用の光源は、メタルハライドランプ、高圧水銀ランプ、中圧水銀ランプ、低圧水銀ランプ又はUV-LEDであることが好ましい。 Mercury lamps, gas lasers, and solid-state lasers are mainly used as light sources for ultraviolet irradiation, and mercury lamps, metal halide lamps, and ultraviolet fluorescent lamps are widely known. UV-LEDs (light-emitting diodes) and UV-LDs (laser diodes) are small, have a long life, are highly efficient, and are low-cost, and are expected to serve as light sources for ultraviolet irradiation. Among them, the light source for ultraviolet irradiation is preferably a metal halide lamp, a high-pressure mercury lamp, a medium-pressure mercury lamp, a low-pressure mercury lamp, or a UV-LED.
<導電層形成工程>
 導電層形成工程では、絶縁層上、及び、グランド電極の少なくとも一部に対して、導電層形成用インクを付与する。
<Conductive layer forming step>
In the conductive layer forming step, a conductive layer forming ink is applied onto the insulating layer and at least part of the ground electrode.
 以下、図5A、図5B、及び図5Cを参照して、導電層形成工程の一例について説明する。 An example of the conductive layer forming process will be described below with reference to FIGS. 5A, 5B, and 5C.
 図5A及び図5Bは、導電層形成用インクの付与領域の一例を示す図である。図5Cは、図3AのB-B線断面図において、導電層が形成された状態を示す図である。 FIGS. 5A and 5B are diagrams showing an example of areas where the conductive layer forming ink is applied. FIG. 5C is a cross-sectional view taken along line BB of FIG. 3A, showing a state in which a conductive layer is formed.
 絶縁層31上、及び、グランド電極13の少なくとも一部に対して、導電層形成用インクを付与することにより、図5Cに示すように、絶縁層31上、及び、グランド電極13上の少なくとも一部に、導電層32が形成される。 By applying the conductive layer forming ink to the insulating layer 31 and at least part of the ground electrode 13, as shown in FIG. A conductive layer 32 is formed on the portion.
 導電層形成用インクを付与する工程は、繰り返し行われることが好ましい。上記工程を繰り返し行うことにより、導電層形成用インクの硬化膜の厚さを厚くすることができる。 The step of applying the ink for forming the conductive layer is preferably repeated. By repeating the above steps, the thickness of the cured film of the ink for forming the conductive layer can be increased.
 導電層形成用インクを付与する領域(導電層形成用インクの付与領域)は、絶縁層31上、及び、グランド電極13の少なくとも一部に設定される。 The region to which the conductive layer forming ink is applied (the conductive layer forming ink applying region) is set on the insulating layer 31 and at least part of the ground electrode 13 .
 本開示の電子デバイスの製造方法によれば、T2がT1よりも厚い電子デバイスが得られる。T2をT1より厚くする方法としては、以下の方法が好ましく挙げられる。 According to the electronic device manufacturing method of the present disclosure, an electronic device in which T2 is thicker than T1 is obtained. As a method for making T2 thicker than T1, the following methods are preferably mentioned.
 まず、第1工程として、図5Aに示すように、領域22Aに、導電層形成用インクを付
与する。領域22Aは、グランド電極とグランド領域を覆う領域と略同一である。
First, as a first step, as shown in FIG. 5A, the conductive layer forming ink is applied to the region 22A. The area 22A is substantially the same as the area covering the ground electrode and the ground area.
 導電層形成用インクを付与することにより、絶縁層31上に、導電層形成インクの硬化膜が形成される。 By applying the conductive layer forming ink, a cured film of the conductive layer forming ink is formed on the insulating layer 31 .
 第1工程は、繰り返し行われることが好ましい。第1工程を繰り返し行うことにより、絶縁層31上における、導電層形成インクの硬化膜の厚さを厚くすることができ、T1を調整することができる。 The first step is preferably repeated. By repeating the first step, the thickness of the cured film of the conductive layer forming ink on the insulating layer 31 can be increased, and T1 can be adjusted.
 次に、第2工程として、図5Bに示すように、領域22Bに、導電層形成用インクを付与する。領域22Bは、グランド電極が配置されている領域である。本例では、領域22Bは、非連続的に配置されているグランド電極を、連続的な枠とみなした領域である。 Next, as a second step, as shown in FIG. 5B, a conductive layer forming ink is applied to the region 22B. A region 22B is a region where a ground electrode is arranged. In this example, the area 22B is an area in which ground electrodes arranged discontinuously are regarded as a continuous frame.
 導電層形成用インクを付与することにより、グランド電極13上に、導電層形成インクの硬化膜が形成される。 By applying the conductive layer forming ink, a cured film of the conductive layer forming ink is formed on the ground electrode 13 .
 第2工程は、繰り返し行われることが好ましい。第2工程を繰り返し行うことにより、グランド電極13上における、導電層形成インクの硬化膜の厚さを厚くすることができ、T2を調整することができる。 The second step is preferably repeated. By repeating the second step, the thickness of the cured film of the conductive layer forming ink on the ground electrode 13 can be increased, and T2 can be adjusted.
 第1工程及び第2工程において、導電層形成用インクの付与量及び付与回数を適宜調整することにより、T1とT2を調整することができる。 In the first step and the second step, T1 and T2 can be adjusted by appropriately adjusting the amount of application of the ink for forming the conductive layer and the number of times of application.
 なお、本例では、導電層形成用インクの付与領域として、領域22A及び22Bを設定したが、この例に限られない。 In this example, the regions 22A and 22B are set as the conductive layer forming ink application regions, but the present invention is not limited to this example.
 領域22A及び22Bは、配線基板11上に配置されている電子部品12及びグランド電極13の位置と、形状と、により適宜設定することができる。 The areas 22A and 22B can be appropriately set according to the positions and shapes of the electronic components 12 and the ground electrodes 13 arranged on the wiring board 11.
(導電層形成用インクの付与)
 導電層形成用インクの付与方法は特に限定されず、例えば、塗布法、インクジェット記録方式等の公知の方法が挙げられる。中でも、少量を打滴して1回の付与によって形成される導電層の厚さを薄くできる観点から、導電層形成用インクを、インクジェット記録方式で付与することが好ましい。
(Applying ink for forming conductive layer)
The method of applying the ink for forming the conductive layer is not particularly limited, and examples thereof include known methods such as a coating method and an inkjet recording method. Above all, it is preferable to apply the ink for forming the conductive layer by an inkjet recording method, from the viewpoint that the thickness of the conductive layer formed by ejecting a small amount of droplets in one application can be reduced.
 インクジェット記録方式の好ましい態様は、絶縁層形成用インクの付与におけるインクジェット記録方式の好ましい態様と同様である。 Preferred aspects of the inkjet recording method are the same as the preferred aspects of the inkjet recording method in applying the ink for forming the insulating layer.
 導電層形成用インクを付与する前に、絶縁層が形成された電子基板をあらかじめ加温しておくことが好ましい。導電層形成用インクを付与する際の電子基板の温度は、20℃~120℃であることが好ましく、40℃~100℃であることがより好ましい。 It is preferable to preheat the electronic substrate on which the insulating layer is formed before applying the ink for forming the conductive layer. The temperature of the electronic substrate when applying the conductive layer forming ink is preferably 20°C to 120°C, more preferably 40°C to 100°C.
(導電層形成用インク)
 本開示において、導電層形成用インクとは、導電性を有する層を形成するためのインクを意味する。導電性とは、体積抵抗率が10Ωcm未満である性質を意味する。
(Ink for forming conductive layer)
In the present disclosure, the ink for forming a conductive layer means an ink for forming a conductive layer. Electrical conductivity means the property of having a volume resistivity of less than 10 8 Ωcm.
 導電層形成用インクは、金属粒子を含むインク(以下、「金属粒子インク」ともいう)、金属錯体を含むインク(以下、「金属錯体インク」ともいう)、又は、金属塩を含むインク(以下、「金属塩インク」ともいう)であることが好ましく、金属錯体インク又は金属塩インクであることがより好ましい。 The ink for forming the conductive layer is an ink containing metal particles (hereinafter also referred to as "metal particle ink"), an ink containing a metal complex (hereinafter also referred to as "metal complex ink"), or an ink containing a metal salt (hereinafter also referred to as "metal complex ink"). , also referred to as “metal salt ink”), and more preferably metal complex ink or metal salt ink.
 導電層形成用インクは、電磁波シールド性を向上させる観点から、銀を含むことが好ましく、銀塩を含むインク又は銀錯体を含むインクであることがより好ましい。 From the viewpoint of improving the electromagnetic wave shielding property, the ink for forming the conductive layer preferably contains silver, more preferably an ink containing a silver salt or an ink containing a silver complex.
<<金属粒子インク>>
 金属粒子インクは、例えば、金属粒子が分散媒中に分散したインク組成物である。
<<Metal particle ink>>
Metal particle ink is, for example, an ink composition in which metal particles are dispersed in a dispersion medium.
-金属粒子-
 金属粒子を構成する金属としては、例えば、卑金属及び貴金属の粒子が挙げられる。卑金属としては、例えば、ニッケル、チタン、コバルト、銅、クロム、マンガン、鉄、ジルコニウム、スズ、タングステン、モリブデン、及びバナジウムが挙げられる。貴金属としては、例えば、金、銀、白金、パラジウム、イリジウム、オスミウム、ルテニウム、ロジウム、レニウム及びこれらの金属を含む合金が挙げられる。中でも、導電性の観点から、金属粒子を構成する金属は、銀、金、白金、ニッケル、パラジウム及び銅からなる群より選択される少なくとも1種を含むことが好ましく、銀を含むことがより好ましい。
-metal particles-
Examples of the metal that constitutes the metal particles include particles of base metals and noble metals. Base metals include, for example, nickel, titanium, cobalt, copper, chromium, manganese, iron, zirconium, tin, tungsten, molybdenum, and vanadium. Noble metals include, for example, gold, silver, platinum, palladium, iridium, osmium, ruthenium, rhodium, rhenium, and alloys containing these metals. Among them, from the viewpoint of conductivity, the metal constituting the metal particles preferably contains at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper, and more preferably contains silver. .
 金属粒子の平均粒径は特に限定されないが、10nm~500nmであることが好ましく、10nm~200nmであることがより好ましい。平均粒径が上記範囲であると、金属粒子の焼成温度が低下し、導電性インク膜作製のプロセス適性が高まる。特に、スプレー方式、又はインクジェット記録方式で金属粒子インクを付与する場合に、吐出性が向上し、パターン形成性、及び、導電性インク膜の膜厚の均一性が向上する傾向にある。ここでいう平均粒径は、金属粒子の一次粒径の平均値(平均一次粒径)を意味する。 Although the average particle size of the metal particles is not particularly limited, it is preferably 10 nm to 500 nm, more preferably 10 nm to 200 nm. When the average particle size is within the above range, the firing temperature of the metal particles is lowered, and the process suitability for producing the conductive ink film is enhanced. In particular, when the metal particle ink is applied by a spray method or an inkjet recording method, there is a tendency that the ejection property is improved, and the pattern formability and the uniformity of the film thickness of the conductive ink film are improved. The average particle diameter here means the average value of the primary particle diameters of the metal particles (average primary particle diameter).
 金属粒子の平均粒径は、レーザー回折/散乱法により測定される。金属粒子の平均粒径は、例えば、50%体積累積径(D50)を3回測定して、3回測定した値の平均値として算出される値であり、レーザー回折/散乱式粒度分布測定装置(製品名「LA-960」、堀場製作所製)を用いて測定することができる。 The average particle size of metal particles is measured by a laser diffraction/scattering method. The average particle size of the metal particles is, for example, a value calculated as the average value of the values obtained by measuring the 50% volume cumulative diameter (D50) three times and using a laser diffraction/scattering particle size distribution analyzer. (product name “LA-960”, manufactured by HORIBA, Ltd.).
 また、金属粒子インクには、必要に応じて、平均粒径が500nm以上の金属粒子が含まれていてもよい。平均粒径が500nm以上の金属粒子が含まれている場合には、nmサイズの金属粒子がμmサイズの金属粒子の周囲で融点降下することにより、導電性インク膜を接合できる。 In addition, the metal particle ink may contain metal particles having an average particle size of 500 nm or more, if necessary. When metal particles having an average particle size of 500 nm or more are contained, the conductive ink film can be bonded by melting point depression of the nanometer-sized metal particles around the micrometer-sized metal particles.
 金属粒子インク中、金属粒子の含有量は、金属粒子インクの全量に対して、10質量%~90質量%であることが好ましく、20質量%~50質量%であることがより好ましい。金属粒子の含有量は10質量%以上であると、表面抵抗率がより低下する。金属粒子の含有量が90質量%以下であると、インクジェット記録方式で金属粒子インクを付与する場合に、吐出性が向上する。 The content of the metal particles in the metal particle ink is preferably 10% by mass to 90% by mass, more preferably 20% by mass to 50% by mass, relative to the total amount of the metal particle ink. When the content of the metal particles is 10% by mass or more, the surface resistivity is further lowered. When the content of the metal particles is 90% by mass or less, the jettability is improved when the metal particle ink is applied by an inkjet recording method.
 金属粒子インクには、金属粒子以外に、例えば、分散剤、樹脂、分散媒、増粘剤、及び表面張力調整剤が含まれていてもよい。 In addition to the metal particles, the metal particle ink may contain, for example, a dispersant, a resin, a dispersion medium, a thickener, and a surface tension adjuster.
-分散剤-
 金属粒子インクは、金属粒子の表面の少なくとも一部に付着する分散剤を含有していてもよい。分散剤は、金属粒子と共に、実質的に金属コロイド粒子を構成する。分散剤は、金属粒子を被覆して金属粒子の分散性を向上させ、凝集を防止する作用を有する。分散剤は、金属コロイド粒子を形成することが可能な有機化合物であることが好ましい。分散剤は、導電性及び分散安定性の観点から、アミン、カルボン酸、アルコール、又は樹脂分散剤であることが好ましい。
- Dispersant -
The metal particle ink may contain a dispersant adhering to at least part of the surface of the metal particles. The dispersant, together with the metal particles, substantially constitutes the metal colloid particles. The dispersant has the effect of coating the metal particles to improve the dispersibility of the metal particles and to prevent aggregation. The dispersant is preferably an organic compound capable of forming colloidal metal particles. From the viewpoint of conductivity and dispersion stability, the dispersant is preferably an amine, carboxylic acid, alcohol, or resin dispersant.
 金属粒子インクに含まれる分散剤は、1種であってもよく、2種以上であってもよい。 The number of dispersants contained in the metal particle ink may be one, or two or more.
 アミンとしては、例えば、飽和又は不飽和の脂肪族アミンが挙げられる。中でも、アミンは、炭素数4~8の脂肪族アミンであることが好ましい。炭素数が4~8の脂肪族アミンは、直鎖状であっても分岐鎖状であってもよく、環構造を有していてもよい。 Amines include, for example, saturated or unsaturated aliphatic amines. Among them, the amine is preferably an aliphatic amine having 4 to 8 carbon atoms. The aliphatic amine having 4 to 8 carbon atoms may be linear or branched, and may have a ring structure.
 脂肪族アミンとしては、例えば、ブチルアミン、ノルマルペンチルアミン、イソペンチルアミン、ヘキシルアミン、2-エチルヘキシルアミン、及びオクチルアミンが挙げられる。 Examples of aliphatic amines include butylamine, n-pentylamine, isopentylamine, hexylamine, 2-ethylhexylamine, and octylamine.
 脂環構造を有するアミンとしては、シクロペンチルアミン、シクロヘキシルアミン等のシクロアルキルアミンが挙げられる。 Amines having an alicyclic structure include cycloalkylamines such as cyclopentylamine and cyclohexylamine.
 芳香族アミンとしては、アニリンが挙げられる。 Aniline can be mentioned as an aromatic amine.
 アミンは、アミノ基以外の官能基を有していてもよい。アミノ基以外の官能基としては、例えば、ヒドロキシ基、カルボキシ基、アルコキシ基、カルボニル基、エステル基、及びメルカプト基が挙げられる。 The amine may have functional groups other than amino groups. Functional groups other than amino groups include, for example, hydroxy groups, carboxy groups, alkoxy groups, carbonyl groups, ester groups, and mercapto groups.
 カルボン酸としては、例えば、ギ酸、シュウ酸、酢酸、ヘキサン酸、アクリル酸、オクチル酸、オレイン酸、チアンシ酸、リシノール酸、没食子酸、及びサリチル酸が挙げられる。カルボン酸の一部であるカルボキシ基は、金属イオンと塩を形成していてもよい。塩を形成する金属イオンは、1種であってもよく、2種以上であってもよい。 Carboxylic acids include, for example, formic acid, oxalic acid, acetic acid, hexanoic acid, acrylic acid, octylic acid, oleic acid, thianoic acid, ricinoleic acid, gallic acid, and salicylic acid. A carboxy group that is part of a carboxylic acid may form a salt with a metal ion. The number of metal ions that form a salt may be one, or two or more.
 カルボン酸は、カルボキシ基以外の官能基を有していてもよい。カルボキシ基以外の官能基としては、例えば、アミノ基、ヒドロキシ基、アルコキシ基、カルボニル基、エステル基、及びメルカプト基が挙げられる。 The carboxylic acid may have functional groups other than the carboxy group. Functional groups other than carboxy groups include, for example, amino groups, hydroxy groups, alkoxy groups, carbonyl groups, ester groups, and mercapto groups.
 アルコールとしては、例えば、テルペン系アルコール、アリルアルコール、及びオレイルアルコールが挙げられる。アルコールは、金属粒子の表面に配位しやすく、金属粒子の凝集を抑制することができる。 Examples of alcohol include terpene alcohol, allyl alcohol, and oleyl alcohol. Alcohol is easily coordinated to the surface of the metal particles and can suppress aggregation of the metal particles.
 樹脂分散剤としては、例えば、親水性基としてノニオン性基を有し、溶媒に均一溶解可能な分散剤が挙げられる。樹脂分散剤としては、例えば、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、ポリビニルアルコール、ポリアリルアミン、及びポリビニルアルコール-ポリ酢酸ビニル共重合体が挙げられる。樹脂分散剤の分子量は、重量平均分子量が1000~50000であることが好ましく、1000~30000であることがより好ましい。 The resin dispersant includes, for example, a dispersant that has a nonionic group as a hydrophilic group and is uniformly soluble in a solvent. Examples of resin dispersants include polyvinylpyrrolidone, polyethylene glycol, polyethylene glycol-polypropylene glycol copolymer, polyvinyl alcohol, polyallylamine, and polyvinyl alcohol-polyvinyl acetate copolymer. The weight-average molecular weight of the resin dispersant is preferably 1,000 to 50,000, more preferably 1,000 to 30,000.
 金属粒子インク中、分散剤の含有量は、金属粒子インクの全量に対して、0.5質量%~50質量%でああることが好ましく、1質量%~30質量%であることがより好ましい。 The content of the dispersant in the metal particle ink is preferably 0.5% by mass to 50% by mass, more preferably 1% by mass to 30% by mass, relative to the total amount of the metal particle ink. .
-分散媒-
 金属粒子インクは、分散媒を含むことが好ましい。分散媒の種類は特に限定されず、例えば、炭化水素、アルコール、及び水が挙げられる。
-dispersion medium-
The metal particle ink preferably contains a dispersion medium. The type of dispersion medium is not particularly limited, and examples thereof include hydrocarbons, alcohols, and water.
 金属粒子インクに含まれる分散媒は、1種であってもよく、2種以上であってもよい。金属粒子インクに含まれる分散媒は、揮発性であることが好ましい。分散媒の沸点は50℃~250℃であることが好ましく、70℃~220℃であることがより好ましく、80℃~200℃であることがさらに好ましい。分散媒の沸点が50℃~250℃であると、金属粒子インクの安定性と焼成性を両立できる傾向にある。 The dispersion medium contained in the metal particle ink may be of one type, or may be of two or more types. The dispersion medium contained in the metal particle ink is preferably volatile. The boiling point of the dispersion medium is preferably 50°C to 250°C, more preferably 70°C to 220°C, even more preferably 80°C to 200°C. When the boiling point of the dispersion medium is 50° C. to 250° C., there is a tendency that both the stability and the sinterability of the metal particle ink can be achieved.
 炭化水素としては、脂肪族炭化水素、及び芳香族炭化水素が挙げられる。 Hydrocarbons include aliphatic hydrocarbons and aromatic hydrocarbons.
 脂肪族炭化水素としては、例えば、テトラデカン、オクタデカン、ヘプタメチルノナン、テトラメチルペンタデカン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、トリデカン、メチルペンタン、ノルマルパラフィン、イソパラフィン等の飽和脂肪族炭化水素又は不飽和脂肪族炭化水素が挙げられる。 Examples of aliphatic hydrocarbons include saturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin and isoparaffin, or unsaturated hydrocarbons. Aliphatic hydrocarbons are mentioned.
 芳香族炭化水素としては、例えば、トルエン、及びキシレンが挙げられる。 Aromatic hydrocarbons include, for example, toluene and xylene.
 アルコールとしては、脂肪族アルコール、及び脂環式アルコールが挙げられる。分散媒としてアルコールを使用する場合には、分散剤は、アミン又はカルボン酸であることが好ましい。 Alcohols include aliphatic alcohols and alicyclic alcohols. When alcohol is used as the dispersing medium, the dispersing agent is preferably an amine or carboxylic acid.
 脂肪族アルコールとしては、例えば、ヘプタノール、オクタノール(例えば、1-オクタノール、2-オクタノール、3-オクタノール等)、デカノール(例えば、1-デカノール等)、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、2-エチル-1-ヘキサノール、オクタデシルアルコール、ヘキサデセノール、オレイルアルコール等の飽和又は不飽和の鎖中にエーテル結合を含んでいてもよい炭素数6~20の脂肪族アルコールが挙げられる。 Examples of aliphatic alcohols include heptanol, octanol (eg, 1-octanol, 2-octanol, 3-octanol, etc.), decanol (eg, 1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, 2- C6-20 aliphatic alcohols which may contain an ether bond in the saturated or unsaturated chain, such as ethyl-1-hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol.
 脂環式アルコールとしては、例えば、シクロヘキサノール等のシクロアルカノール;テルピネオール(α、β、γ異性体、又はこれらの任意の混合物を含む。)、ジヒドロテルピネオール等のテルペンアルコール;ジヒドロターピネオール、ミルテノール、ソブレロール、メントール、カルベオール、ペリリルアルコール、ピノカルベオール、ソブレロール、及びベルベノールが挙げられる。 Alicyclic alcohols include, for example, cycloalkanols such as cyclohexanol; terpineol (including α, β, γ isomers, or any mixture thereof), terpene alcohols such as dihydroterpineol; dihydroterpineol, myrtenol, Sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, sobrerol, and verbenol.
 分散媒は水であってもよい。粘度、表面張力、揮発性等の物性を調整する観点から、分散媒は、水と、他の溶媒との混合溶媒であってもよい。水と混合させる他の溶媒は、アルコールであることが好ましい。水と併用して用いられるアルコールは、水と混和可能な沸点130℃以下のアルコールであることが好ましい。アルコールとしては、例えば、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、及びプロピレングリコールモノメチルエーテルが挙げられる。 The dispersion medium may be water. From the viewpoint of adjusting physical properties such as viscosity, surface tension and volatility, the dispersion medium may be a mixed solvent of water and other solvents. Another solvent that is mixed with water is preferably an alcohol. The alcohol used in combination with water is preferably an alcohol miscible with water and having a boiling point of 130° C. or less. Alcohols include, for example, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butanol, 1-pentanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, and propylene. Glycol monomethyl ether is mentioned.
 金属粒子インク中、分散媒の含有量は、金属粒子インクの全量に対して、1質量%~50質量%であることが好ましい。分散媒の含有量が1質量%~50質量%であれば、導電性インクとして十分な導電性を得ることができる。分散媒の含有量は10質量%~45質量%であることがより好ましく、20質量%~40質量%であることがさらに好ましい。 The content of the dispersion medium in the metal particle ink is preferably 1% by mass to 50% by mass with respect to the total amount of the metal particle ink. If the content of the dispersion medium is 1% by mass to 50% by mass, sufficient conductivity as a conductive ink can be obtained. The content of the dispersion medium is more preferably 10% by mass to 45% by mass, and even more preferably 20% by mass to 40% by mass.
-樹脂-
 金属粒子インクは、樹脂を含有していてもよい。樹脂としては、例えば、ポリエステル、ポリウレタン、メラミン樹脂、アクリル樹脂、スチレン系樹脂、ポリエーテル、及びテルペン樹脂が挙げられる。
-resin-
The metal particle ink may contain resin. Examples of resins include polyesters, polyurethanes, melamine resins, acrylic resins, styrenic resins, polyethers, and terpene resins.
 金属粒子インクに含まれる樹脂は、1種であってもよく、2種以上であってもよい。 The number of resins contained in the metal particle ink may be one, or two or more.
 金属粒子インク中、樹脂の含有量は、金属粒子インクの全量に対して、0.1質量%~5質量%であることが好ましい。 The content of the resin in the metal particle ink is preferably 0.1% by mass to 5% by mass with respect to the total amount of the metal particle ink.
-増粘剤-
 金属粒子インクは、増粘剤を含有していてもよい。増粘剤としては、例えば、クレイ、ベントナイト、ヘクトライト等の粘土鉱物;メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体;及び、キサンタンガム、グアーガム等の多糖類が挙げられる。
- Thickener -
The metal particle ink may contain a thickening agent. Examples of thickeners include clay minerals such as clay, bentonite and hectorite; cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxypropylmethylcellulose; and polysaccharides such as xanthan gum and guar gum. be done.
 金属粒子インクに含まれる増粘剤は、1種であってもよく、2種以上であってもよい。 The number of thickeners contained in the metal particle ink may be one, or two or more.
 金属粒子インク中、増粘剤の含有量は、金属粒子インクの全量に対して、0.1質量%~5質量%であることが好ましい。 The content of the thickener in the metal particle ink is preferably 0.1% by mass to 5% by mass with respect to the total amount of the metal particle ink.
-界面活性剤-
 金属粒子インクは、界面活性剤を含有していてもよい。金属粒子インクに界面活性剤が含まれていると、均一な導電性インク膜が形成されやすい。
-Surfactant-
The metal particle ink may contain a surfactant. When the metal particle ink contains a surfactant, a uniform conductive ink film is easily formed.
 界面活性剤は、アニオン性界面活性剤、カチオン性界面活性剤、及びノニオン性界面活性剤のいずれであってもよい。中でも、少量の含有量で表面張力を調整することができるという観点から、界面活性剤は、フッ素系界面活性剤であることが好ましい。また、界面活性剤は、沸点が250℃を超える化合物であることが好ましい。 The surfactant may be an anionic surfactant, a cationic surfactant, or a nonionic surfactant. Among them, the surfactant is preferably a fluorosurfactant from the viewpoint that the surface tension can be adjusted with a small content. Further, the surfactant is preferably a compound having a boiling point of over 250°C.
 金属粒子インクの粘度は特に限定されず、0.01Pa・s~5000Pa・sであればよく、0.1Pa・s~100Pa・sであることが好ましい。金属粒子インクをスプレー法又はインクジェット記録方式で付与する場合には、金属粒子インクの粘度は、1mPa・s~100mPa・sであることが好ましく、2mPa・s~50mPa・sであることがより好ましく、3mPa・s~30mPa・sであることがさらに好ましい。 The viscosity of the metal particle ink is not particularly limited, and may be from 0.01 Pa·s to 5000 Pa·s, preferably from 0.1 Pa·s to 100 Pa·s. When the metal particle ink is applied by a spray method or an inkjet recording method, the viscosity of the metal particle ink is preferably 1 mPa·s to 100 mPa·s, more preferably 2 mPa·s to 50 mPa·s. , 3 mPa·s to 30 mPa·s.
 金属粒子インクの粘度は、粘度計を用い、25℃で測定される値である。粘度は、例えば、VISCOMETER TV-22型粘度計(東機産業社製)を用いて測定される。 The viscosity of the metal particle ink is a value measured at 25°C using a viscometer. Viscosity is measured using, for example, a VISCOMETER TV-22 viscometer (manufactured by Toki Sangyo Co., Ltd.).
 金属粒子インクの表面張力は特に限定されず、20mN/m~45mN/mであることが好ましく、25mN/m~40mN/mであることがより好ましい。
表面張力は、表面張力計を用い、25℃で測定される値である。
The surface tension of the metal particle ink is not particularly limited, and is preferably 20 mN/m to 45 mN/m, more preferably 25 mN/m to 40 mN/m.
Surface tension is a value measured at 25°C using a surface tensiometer.
 金属粒子インクの表面張力は、例えば、DY-700(協和界面科学社製)を用いて測定される。  The surface tension of the metal particle ink is measured using, for example, DY-700 (manufactured by Kyowa Interface Science Co., Ltd.).
-金属粒子の製造方法-
 金属粒子は、市販品であってもよく、公知の方法により製造されたものであってもよい。金属粒子の製造方法としては、例えば、湿式還元法、気相法、及びプラズマ法が挙げられる。金属粒子の好ましい製造方法としては、平均粒径200nm以下の金属粒子を粒径分布が狭くなるように製造可能な湿式還元法が挙げられる。湿式還元法による金属粒子の製造方法は、例えば、特開2017-37761号公報、国際公開第2014-57633号等に記載の金属塩及び還元剤を混合して錯化反応液を得る工程と、錯化反応液を加熱して、錯化反応液中の金属イオンを還元し、金属ナノ粒子のスラリーを得る工程と、を含む方法が挙げられる。
-Method for producing metal particles-
The metal particles may be commercially available products or may be produced by known methods. Methods for producing metal particles include, for example, a wet reduction method, a vapor phase method, and a plasma method. As a preferred method for producing metal particles, there is a wet reduction method capable of producing metal particles having an average particle size of 200 nm or less with a narrow particle size distribution. A method for producing metal particles by a wet reduction method includes, for example, a step of mixing a metal salt and a reducing agent described in JP-A-2017-37761, WO-2014-57633, etc. to obtain a complexation reaction solution; heating the complexing reaction solution to reduce the metal ions in the complexing reaction solution to obtain a slurry of metal nanoparticles.
 金属粒子インクの製造において、金属粒子インクに含まれる各成分の含有量を所定の範囲に調整するために、加熱処理を行ってもよい。加熱処理は、減圧下で行ってもよく、常圧下で行ってもよい。また、常圧下で行う場合には、大気中で行ってもよく、不活性ガス雰囲気下で行ってもよい。 In the production of the metal particle ink, heat treatment may be performed in order to adjust the content of each component contained in the metal particle ink within a predetermined range. The heat treatment may be performed under reduced pressure or under normal pressure. Moreover, when performing under a normal pressure, you may carry out in air|atmosphere, and you may carry out in inert gas atmosphere.
<<金属錯体インク>>
 金属錯体インクは、例えば、金属錯体が溶媒中に溶解したインク組成物である。
<<Metal Complex Ink>>
A metal complex ink is, for example, an ink composition in which a metal complex is dissolved in a solvent.
-金属錯体-
 金属錯体を構成する金属としては、例えば、銀、銅、金、アルミニウム、マグネシウム、タングステン、モリブデン、亜鉛、ニッケル、鉄、白金、スズ、銅、及び鉛が挙げられる。中でも、導電性の観点から、金属錯体を構成する金属は、銀、金、白金、ニッケル、パラジウム及び銅からなる群より選択される少なくとも1種を含むことが好ましく、銀を含むことがより好ましい。
-Metal complex-
Examples of metals constituting metal complexes include silver, copper, gold, aluminum, magnesium, tungsten, molybdenum, zinc, nickel, iron, platinum, tin, copper, and lead. Among them, from the viewpoint of conductivity, the metal constituting the metal complex preferably contains at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper, and more preferably contains silver. .
 金属錯体インクに含まれる金属の含有量は、金属錯体インクの全量に対して、金属元素換算で1質量%~40質量%であることが好ましく、5質量%~30質量%であることがより好ましく、7質量%~20質量%であることがさらに好ましい。 The content of the metal contained in the metal complex ink is preferably 1% by mass to 40% by mass, more preferably 5% by mass to 30% by mass, in terms of metal element, with respect to the total amount of the metal complex ink. Preferably, it is more preferably 7% by mass to 20% by mass.
 金属錯体は、例えば、金属塩と、錯化剤とを反応させることにより得られる。金属錯体の製造方法としては、例えば、金属塩及び錯化剤を溶媒に加え、所定時間撹拌する方法が挙げられる。撹拌方法は特に限定されず、撹拌子、撹拌翼又はミキサーを用いて撹拌させる方法、超音波を加える方法等の公知の方法から適宜選択することができる。 A metal complex is obtained, for example, by reacting a metal salt with a complexing agent. A method for producing a metal complex includes, for example, a method in which a metal salt and a complexing agent are added to a solvent and the mixture is stirred for a predetermined period of time. The stirring method is not particularly limited, and can be appropriately selected from known methods such as a method of stirring using a stirrer, a stirring blade or a mixer, and a method of applying ultrasonic waves.
 金属塩としては、金属の酸化物、チオシアン酸塩、硫化物、塩化物、シアン化物、シアン酸塩、炭酸塩、酢酸塩、硝酸塩、亜硝酸塩、硫酸塩、リン酸塩、過塩素酸塩、テトラフルオロホウ酸塩、アセチルアセトナート錯塩、及びカルボン酸塩が挙げられる。 Metal salts include metal oxides, thiocyanates, sulfides, chlorides, cyanides, cyanates, carbonates, acetates, nitrates, nitrites, sulfates, phosphates, perchlorates, Tetrafluoroborates, acetylacetonate complexes, and carboxylates.
 金属塩は、導電性及び保存安定性の観点から、カルボン酸塩であることが好ましい。カルボン酸塩を形成するカルボン酸は、炭素数1~20のカルボン酸からなる群より選択される少なくとも1種であることが好ましく、炭素数1~16のカルボン酸であることがより好ましく、炭素数2~12の脂肪酸であることがさらに好ましい。脂肪酸は直鎖状であってもよく、分岐鎖状であってもよく、置換基を有していてもよい。 From the viewpoint of conductivity and storage stability, the metal salt is preferably a carboxylate. The carboxylic acid forming the carboxylic acid salt is preferably at least one selected from the group consisting of carboxylic acids having 1 to 20 carbon atoms, more preferably carboxylic acids having 1 to 16 carbon atoms, and carbon Fatty acids with numbers 2 to 12 are more preferred. The fatty acid may be linear or branched, and may have a substituent.
 直鎖脂肪酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、パルミトレイン酸、オレイン酸、リノール酸、及びリノレン酸が挙げられる。 Examples of linear fatty acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, palmitoleic acid, Oleic acid, linoleic acid, and linolenic acid.
 分岐脂肪酸としては、例えば、イソ酪酸、イソ吉草酸、2-エチルヘキサン酸、ネオデカン酸、ピバル酸、2-メチルペンタン酸、3-メチルペンタン酸、4-メチルペンタン酸、2,2-ジメチルブタン酸、2,3-ジメチルブタン酸、3,3-ジメチルブタン酸、及び2-エチルブタン酸が挙げられる。 Examples of branched fatty acids include isobutyric acid, isovaleric acid, 2-ethylhexanoic acid, neodecanoic acid, pivalic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, and 2,2-dimethylbutane. acids, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, and 2-ethylbutanoic acid.
 置換基を有するカルボン酸としては、例えば、ヘキサフルオロアセチルアセトン酸、グリコール酸、乳酸、3-ヒドロキシ酪酸、2-メチル-3-ヒドロキシ酪酸、3-メトキシ酪酸、及びアセト酢酸が挙げられる。 Examples of substituted carboxylic acids include hexafluoroacetylacetone acid, glycolic acid, lactic acid, 3-hydroxybutyric acid, 2-methyl-3-hydroxybutyric acid, 3-methoxybutyric acid, and acetoacetic acid.
 多官能カルボン酸としては、シュウ酸、コハク酸、グルタル酸、マロン酸、アセトンジカルボン酸、3-ヒドロキシグルタル酸、2-メチル-3-ヒドロキシグルタル酸、2,2,4,4-ヒドロキシグルタル酸、及びクエン酸が挙げられる。 Polyfunctional carboxylic acids include oxalic acid, succinic acid, glutaric acid, malonic acid, acetonedicarboxylic acid, 3-hydroxyglutaric acid, 2-methyl-3-hydroxyglutaric acid, and 2,2,4,4-hydroxyglutaric acid. , and citric acid.
 中でも、金属塩は、炭素数2から12のアルキルカルボン酸塩、シュウ酸塩、又はアセト酢酸塩が好ましく、炭素数2から12のアルキルカルボン酸がより好ましい。 Among them, the metal salt is preferably an alkyl carboxylate having 2 to 12 carbon atoms, an oxalate, or an acetoacetate, and more preferably an alkyl carboxylic acid having 2 to 12 carbon atoms.
 錯化剤としては、アミン、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、及びアンモニウムバイカーボネート化合物が挙げられる。中でも、導電性及び金属錯体の安定性の観点から、錯化剤は、アミン、アンモニウムカルバメート系化合物、及びアンモニウムカーボネート系化合物からなる群より選択される少なくとも1種を含むことが好ましい。 Complexing agents include amines, ammonium carbamate compounds, ammonium carbonate compounds, and ammonium bicarbonate compounds. Above all, from the viewpoint of conductivity and stability of the metal complex, the complexing agent preferably contains at least one selected from the group consisting of amines, ammonium carbamate compounds, and ammonium carbonate compounds.
 金属錯体は、錯化剤に由来する構造を有しており、アミン、アンモニウムカルバメート系化合物、及びアンモニウムカーボネート系化合物からなる群より選択される少なくとも1種に由来する構造を有する金属錯体であることが好ましい。 The metal complex has a structure derived from a complexing agent, and is a metal complex having a structure derived from at least one selected from the group consisting of amines, ammonium carbamate compounds, and ammonium carbonate compounds. is preferred.
 錯化剤であるアミンとしては、例えば、アンモニア、第1級アミン、第2級アミン、第3級アミン、及びポリアミンが挙げられる。 Amines that are complexing agents include, for example, ammonia, primary amines, secondary amines, tertiary amines, and polyamines.
 直鎖状のアルキル基を有する第1級アミンとしては、例えば、メチルアミン、エチルアミン、n-プロピルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン、ウンデシルアミン、n-ドデシルアミン、n-トリデシルアミン、n-テトラデシルアミン、n-ペンタデシルアミン、n-ヘキサデシルアミン、n-ヘプタデシルアミン、及びn-オクタデシルアミンが挙げられる。 Examples of primary amines having linear alkyl groups include methylamine, ethylamine, n-propylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine and n-octylamine. , n-nonylamine, n-decylamine, undecylamine, n-dodecylamine, n-tridecylamine, n-tetradecylamine, n-pentadecylamine, n-hexadecylamine, n-heptadecylamine, and n - Octadecylamine.
 分岐鎖状アルキル基を有する第1級アミンとしては、例えば、イソプロピルアミン、sec-ブチルアミン、tert-ブチルアミン、イソペンチルアミン、2-エチルヘキシルアミン、及びtert-オクチルアミンが挙げられる。 Examples of primary amines having branched alkyl groups include isopropylamine, sec-butylamine, tert-butylamine, isopentylamine, 2-ethylhexylamine, and tert-octylamine.
 脂環構造を有する第1級アミンとしては、例えば、シクロペンチルアミン、シクロヘキシルアミン、及びジシクロヘキシルアミンが挙げられる。 Examples of primary amines having an alicyclic structure include cyclopentylamine, cyclohexylamine, and dicyclohexylamine.
 ヒドロキシアルキル基を有する第1級アミンとしては、例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルエタノールアミン、プロパノールアミン、イソプロパノールアミン、ジプロパノールアミン、ジイソプロパノールアミン、トリプロパノールアミン、及びトリイソプロパノールアミンが挙げられる。 Examples of primary amines having a hydroxyalkyl group include ethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, propanolamine, isopropanolamine, dipropanolamine, diisopropanolamine, tripropanolamine, and triisopropanol. Amines are mentioned.
 芳香環を有する第1級アミンとしては、例えば、ベンジルアミン、N,N-ジメチルベンジルアミン、フェニルアミン、ジフェニルアミン、トリフェニルアミン、アニリン、N,N-ジメチルアニリン、N,N-ジメチル-p-トルイジン、4-アミノピリジン、及び4-ジメチルアミノピリジンが挙げられる。 Examples of primary amines having an aromatic ring include benzylamine, N,N-dimethylbenzylamine, phenylamine, diphenylamine, triphenylamine, aniline, N,N-dimethylaniline, N,N-dimethyl-p- Toluidine, 4-aminopyridine, and 4-dimethylaminopyridine.
 第2級アミンとしては、例えば、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジフェニルアミン、ジシクロペンチルアミン、メチルブチルアミン、ジエタノールアミン、N-メチルエタノールアミン、ジプロパノールアミン、及びジイソプロパノールアミンが挙げられる。 Examples of secondary amines include dimethylamine, diethylamine, dipropylamine, dibutylamine, diphenylamine, dicyclopentylamine, methylbutylamine, diethanolamine, N-methylethanolamine, dipropanolamine, and diisopropanolamine.
第3級アミンとしては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリエタノールアミン、トリプロパノールアミン、及びトリイソプロパノールアミン、トリフェニルアミン、N,N-ジメチルアニリン、N,N-ジメチル-p-トルイジン、及び4-ジメチルアミノピリジンが挙げられる。 Tertiary amines include, for example, trimethylamine, triethylamine, tripropylamine, triethanolamine, tripropanolamine and triisopropanolamine, triphenylamine, N,N-dimethylaniline, N,N-dimethyl-p-toluidine , and 4-dimethylaminopyridine.
 ポリアミンとしては、例えば、エチレンジアミン、1, 2-ジアミノプロパン、1,3-ジアミノプロパン、ジエチレントリアミン、トリエチレンテトラミン、テトラメチレンペンタミン、ヘキサメチレンジアミン、テトラエチレンペンタミン、及びこれらの組み合わせが挙げられる。 Examples of polyamines include ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, diethylenetriamine, triethylenetetramine, tetramethylenepentamine, hexamethylenediamine, tetraethylenepentamine, and combinations thereof.
  アミンは、アルキルアミンであることが好ましく、炭素原子数が2~12のアルキルアミンであることが好ましく、炭素原子数が2~8の第1級アルキルアミンであることがより好ましい。 The amine is preferably an alkylamine, preferably an alkylamine having 2 to 12 carbon atoms, more preferably a primary alkylamine having 2 to 8 carbon atoms.
 金属錯体を構成するアミンは1種であってもよく、2種以上であってもよい。 The number of amines constituting the metal complex may be one, or two or more.
 金属塩とアミンとを反応させる際、金属塩のモル量に対するアミンのモル量の比率は、1倍~15倍であることが好ましく、1.5倍~6倍であることがより好ましい。上記比率が上記範囲内であると、錯体形成反応が完結し、透明な溶液が得られる。 When the metal salt and the amine are reacted, the molar ratio of the amine to the metal salt is preferably 1 to 15 times, more preferably 1.5 to 6 times. When the above ratio is within the above range, the complex formation reaction is completed and a transparent solution is obtained.
 錯化剤であるアンモニウムカルバメート系化合物としては、アンモニウムカルバメート、メチルアンモニウムメチルカルバメート、エチルアンモニウムエチルカルバメート、1-プロピルアンモニウム1-プロピルカルバメート、イソプロピルアンモニウムイソプロピルカルバメート、ブチルアンモニウムブチルカルバメート、イソブチルアンモニウムイソブチルカルバメート、アミルアンモニウムアミルカルバメート、ヘキシルアンモニウムヘキシルカルバメート、ヘプチルアンモニウムヘプチルカルバメート、オクチルアンモニウムオクチルカルバメート、2-エチルヘキシルアンモニウム2-エチルヘキシルカルバメート、ノニルアンモニウムノニルカルバメート、及びデシルアンモニウムデシルカルバメートが挙げられる。 Ammonium carbamate compounds as complexing agents include ammonium carbamate, methylammonium methylcarbamate, ethylammonium ethylcarbamate, 1-propylammonium 1-propylcarbamate, isopropylammonium isopropylcarbamate, butylammonium butylcarbamate, isobutylammonium isobutylcarbamate, amyl ammonium amyl carbamate, hexylammonium hexyl carbamate, heptylammonium heptyl carbamate, octylammonium octyl carbamate, 2-ethylhexylammonium 2-ethylhexyl carbamate, nonyl ammonium nonyl carbamate, and decyl ammonium decyl carbamate.
 錯化剤であるアンモニウムカーボネート系化合物としては、アンモニウムカーボネート、メチルアンモニウムカーボネート、エチルアンモニウムカーボネート、1-プロピルアンモニウムカーボネート、イソプロピルアンモニウムカーボネート、ブチルアンモニウムカーボネート、イソブチルアンモニウムカーボネート、アミルアンモニウムカーボネート、ヘキシルアンモニウムカーボネート、ヘプチルアンモニウムカーボネート、オクチルアンモニウムカーボネート、2-エチルヘキシルアンモニウムカーボネート、ノニルアンモニウムカーボネート、及びデシルアンモニウムカーボネートが挙げられる。 Ammonium carbonate-based compounds as complexing agents include ammonium carbonate, methylammonium carbonate, ethylammonium carbonate, 1-propylammonium carbonate, isopropylammonium carbonate, butylammonium carbonate, isobutylammonium carbonate, amylammonium carbonate, hexylammonium carbonate, and heptyl. Ammonium carbonate, octylammonium carbonate, 2-ethylhexylammonium carbonate, nonyl ammonium carbonate, and decylammonium carbonate.
 錯化剤であるアンモニウムバイカーボネート系化合物としては、アンモニウムバイカーボネート、メチルアンモニウムバイカーボネート、エチルアンモニウムバイカーボネート、1-プロピルアンモニウムバイカーボネート、イソプロピルアンモニウムバイカーボネート、ブチルアンモニウムバイカーボネート、イソブチルアンモニウムバイカーボネート、アミルアンモニウムバイカーボネート、ヘキシルアンモニウムバイカーボネート、ヘプチルアンモニウムバイカーボネート、オクチルアンモニウムバイカーボネート、2-エチルヘキシルアンモニウムバイカーボネート、ノニルアンモニウムバイカーボネート、及びデシルアンモニウムバイカーボネートが挙げられる。 Ammonium bicarbonate-based compounds as complexing agents include ammonium bicarbonate, methylammonium bicarbonate, ethylammonium bicarbonate, 1-propylammonium bicarbonate, isopropylammonium bicarbonate, butylammonium bicarbonate, isobutylammonium bicarbonate, amyl Ammonium bicarbonate, hexylammonium bicarbonate, heptyl ammonium bicarbonate, octylammonium bicarbonate, 2-ethylhexylammonium bicarbonate, nonyl ammonium bicarbonate, and decylammonium bicarbonate.
 金属塩と、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、又はアンモニウムバイカーボネート系化合物とを反応させる際、金属塩のモル量に対する、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、又はアンモニウムバイカーボネート系化合物のモル量の比率は、0.01倍~1倍であることが好ましく、0.05倍~0.6倍であることがより好ましい。 When reacting a metal salt with an ammonium carbamate-based compound, an ammonium carbonate-based compound, or an ammonium bicarbonate-based compound, the amount of the ammonium carbamate-based compound, the ammonium carbonate-based compound, or the ammonium bicarbonate-based compound relative to the molar amount of the metal salt. The molar ratio is preferably 0.01 to 1, more preferably 0.05 to 0.6.
 金属錯体インク中、金属錯体の含有量は、金属錯体インクの全量に対して、10質量%~90質量%であることが好ましく、10質量%~40質量%であることがより好ましい。金属錯体の含有量は10質量%以上であると、表面抵抗率がより低下する。金属錯体の含有量が90質量%以下であると、インクジェット記録方式で金属粒子インクを付与する場合に、吐出性が向上する。 The content of the metal complex in the metal complex ink is preferably 10% by mass to 90% by mass, more preferably 10% by mass to 40% by mass, relative to the total amount of the metal complex ink. When the content of the metal complex is 10% by mass or more, the surface resistivity is further lowered. When the content of the metal complex is 90% by mass or less, the jettability is improved when the metal particle ink is applied by an inkjet recording method.
 -溶媒-
 金属錯体インクは、溶媒を含有することが好ましい。溶媒は、金属錯体等の金属錯体インクに含まれる成分を溶解することができれば特に限定されない。溶媒は、製造容易性の観点から、沸点が30℃~300℃であることが好ましく、50℃~200℃であることがより好ましく、50℃~150℃であることがより好ましい。
-solvent-
The metal complex ink preferably contains a solvent. The solvent is not particularly limited as long as it can dissolve the components contained in the metal complex ink such as the metal complex. From the viewpoint of ease of production, the solvent preferably has a boiling point of 30°C to 300°C, more preferably 50°C to 200°C, and more preferably 50°C to 150°C.
 金属錯体インク中、溶媒の含有量は、金属錯体に対する金属イオンの濃度(金属錯体1gに対して遊離イオンとして存在する金属の量)が、0.01mmol/g~3.6mmol/gであることが好ましく、0.05mmol/g~2mmol/gであることがより好ましい。金属イオンの濃度が上記範囲内であると、金属錯体インクが流動性に優れ、かつ、導電性を得ることができる。 The content of the solvent in the metal complex ink is such that the concentration of the metal ion relative to the metal complex (the amount of metal present as free ions per 1 g of the metal complex) is 0.01 mmol/g to 3.6 mmol/g. is preferred, and 0.05 mmol/g to 2 mmol/g is more preferred. When the metal ion concentration is within the above range, the metal complex ink has excellent fluidity and conductivity.
 溶媒としては、例えば、炭化水素、環状炭化水素、芳香族炭化水素、カルバメート、アルケン、アミド、エーテル、エステル、アルコール、チオール、チオエーテル、ホスフィン、及び水が挙げられる。金属錯体インクに含まれる溶媒は、1種のみであってもよく、2種以上であってもよい。 Examples of solvents include hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, carbamates, alkenes, amides, ethers, esters, alcohols, thiols, thioethers, phosphines, and water. The number of solvents contained in the metal complex ink may be one, or two or more.
 炭化水素は、炭素数6~20の直鎖状又は分枝状の炭化水素であることが好ましい。炭化水素としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、オクタデカン、ノナデカン及びイコサンが挙げられる。 The hydrocarbon is preferably a linear or branched hydrocarbon having 6 to 20 carbon atoms. Hydrocarbons include, for example, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane and icosane.
 環状炭化水素は、炭素数6~20の環状炭化水素であることが好ましい。環状炭化水素としては、例えば、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、及びデカリンを含むことができる。 The cyclic hydrocarbon is preferably a cyclic hydrocarbon having 6 to 20 carbon atoms. Cyclic hydrocarbons can include, for example, cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, and decalin.
 芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン、及びテトラリンが挙げられる。 Aromatic hydrocarbons include, for example, benzene, toluene, xylene, and tetralin.
 エーテルは、直鎖状エーテル、分枝鎖状エーテル、及び環状エーテルのいずれであってもよい。エーテルとしては、例えば、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、メチル-t-ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジヒドロピラン、及び1,4-ジオキサンが挙げられる。 The ether may be any of straight-chain ether, branched-chain ether, and cyclic ether. Ethers include, for example, diethyl ether, dipropyl ether, dibutyl ether, methyl-t-butyl ether, tetrahydrofuran, tetrahydropyran, dihydropyran, and 1,4-dioxane.
 アルコールは、第1級アルコール、第2級アルコール、及び第3級アルコールのいずれであってもよい。 The alcohol may be any of primary alcohol, secondary alcohol, and tertiary alcohol.
 アルコールとしては、例えば、エタノール、1-プロパノール、2-プロパノール、1-メトキシ-2-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、1-オクタノール、2-オクタノール、3-オクタノール、テトラヒドロフルフリルアルコール、シクロペンタノール、テルピネオール、デカノール、イソデシルアルコール、ラウリルアルコール、イソラウリルアルコール、ミリスチルアルコール、イソミリスチルアルコール、セチルアルコール(セタノール)、イソセチルアルコール、ステアリルアルコール、イソステアリルアルコール、オレイルアルコール、イソオレイルアルコール、リノリルアルコール、イソリノリルアルコール、パルミチルアルコール、イソパルミチルアルコール、アイコシルアルコール、及びイソアイコシルアルコールが挙げられる。 Examples of alcohols include ethanol, 1-propanol, 2-propanol, 1-methoxy-2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3-pentanol and 1-hexanol. , 2-hexanol, 3-hexanol, 1-octanol, 2-octanol, 3-octanol, tetrahydrofurfuryl alcohol, cyclopentanol, terpineol, decanol, isodecyl alcohol, lauryl alcohol, isolauryl alcohol, myristyl alcohol, isomyristyl alcohol, cetyl alcohol (cetanol), isocetyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, isoleyl alcohol, linolyl alcohol, isolinolyl alcohol, palmityl alcohol, isopalmityl alcohol, eicosyl alcohol, and iso Aicosyl alcohols can be mentioned.
 ケトンとしては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、及びシクロヘキサノンが挙げられる。 Ketones include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
 エステルとしては、例えば、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸メトキシブチル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、及び3-メトキシブチルアセテートが挙げられる。 Examples of esters include methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, methoxybutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol. monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene glycol monoethyl ether acetate, Propylene glycol monobutyl ether acetate, and 3-methoxybutyl acetate.
-還元剤-
 金属錯体インクは、還元剤を含有していてもよい。金属錯体インクに還元剤が含まれていると、金属錯体から金属への還元が促進される。
-Reducing agent-
The metal complex ink may contain a reducing agent. When the metal complex ink contains a reducing agent, the reduction of the metal complex to the metal is promoted.
 還元剤としては、例えば、水素化ホウ素金属塩、水素化アルミニウム塩、アミン、アルコール、アルデヒド、有機酸、還元糖、糖アルコール、亜硫酸ナトリウム、ヒドラジン化合物、デキストリン、ハイドロキノン、ヒドロキシルアミン、エチレングリコール、グルタチオン、及びオキシム化合物が挙げられる。 Examples of reducing agents include metal borohydride, aluminum hydride, amines, alcohols, aldehydes, organic acids, reducing sugars, sugar alcohols, sodium sulfite, hydrazine compounds, dextrin, hydroquinone, hydroxylamine, ethylene glycol, and glutathione. , and oxime compounds.
 還元剤は、特表2014-516463号公報に記載のオキシム化合物であってもよい。オキシム化合物としては、例えば、アセトンオキシム、シクロヘキサノンオキシム、2-ブタノンオキシム、2,3-ブタンジオンモノオキシム、ジメチルグリオキシム、メチルアセトアセテートモノオキシム、メチルピルベートモノオキシム、ベンズアルデヒドオキシム、1-インダノンオキシム、2-アダマンタノンオキシム、2-メチルベンズアミドオキシム、3-メチルベンズアミドオキシム、4-メチルベンズアミドオキシム、3-アミノベンズアミドオキシム、4-アミノベンズアミドオキシム、アセトフェノンオキシム、ベンズアミドオキシム、及びピナコロンオキシムが挙げられる。 The reducing agent may be an oxime compound described in JP 2014-516463. Examples of oxime compounds include acetone oxime, cyclohexanone oxime, 2-butanone oxime, 2,3-butanedione monoxime, dimethylglyoxime, methylacetoacetate monoxime, methylpyruvate monoxime, benzaldehyde oxime, and 1-indanone. oximes, 2-adamantanone oxime, 2-methylbenzamide oxime, 3-methylbenzamide oxime, 4-methylbenzamide oxime, 3-aminobenzamide oxime, 4-aminobenzamide oxime, acetophenone oxime, benzamide oxime, and pinacolone oxime .
 金属錯体インクに含まれる還元剤は、1種であってもよく、2種以上であってもよい。 The number of reducing agents contained in the metal complex ink may be one, or two or more.
 金属錯体インク中、還元剤の含有量は特に限定されないが、金属錯体インクの全量に対して、0.1質量%~20質量%であることが好ましく、0.3質量%~10質量%であることがより好ましく、1質量%~5質量%であることがさらに好ましい。 The content of the reducing agent in the metal complex ink is not particularly limited. more preferably 1% by mass to 5% by mass.
-樹脂-
 金属錯体インクは、樹脂を含有していてもよい。金属錯体インクに樹脂が含まれていると、金属錯体インクの電子基板への密着性が向上する。
-resin-
The metal complex ink may contain resin. When the metal complex ink contains a resin, the adhesion of the metal complex ink to the electronic substrate is improved.
 樹脂としては、例えば、ポリエステル、ポリエチレン、ポリプロピレン、ポリアセタール、ポリオレフィン、ポリカーボネート、ポリアミド、フッ素樹脂、シリコーン樹脂、エチルセルロース、ヒドロキシエチルセルロース、ロジン、アクリル樹脂、ポリ塩化ビニル、ポリスルホン、ポリビニルピロリドン、ポリビニルアルコール、ポリビニル系樹脂、ポリアクリロニトリル、ポリスルフィド、ポリアミドイミド、ポリエーテル、ポリアリレート、ポリエーテルエーテルケトン、ポリウレタン、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、メラミン樹脂、及び尿素樹脂が挙げられる。 Examples of resins include polyester, polyethylene, polypropylene, polyacetal, polyolefin, polycarbonate, polyamide, fluorine resin, silicone resin, ethyl cellulose, hydroxyethyl cellulose, rosin, acrylic resin, polyvinyl chloride, polysulfone, polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl-based Resins, polyacrylonitrile, polysulfides, polyamideimides, polyethers, polyarylates, polyetheretherketones, polyurethanes, epoxy resins, vinyl ester resins, phenolic resins, melamine resins, and urea resins.
 金属錯体インクに含まれる樹脂は、1種であってもよく、2種以上であってもよい。 The number of resins contained in the metal complex ink may be one, or two or more.
-添加剤-
 金属錯体インクは、本開示の効果を損なわない範囲で、さらに、無機塩、有機塩、シリカ等の無機酸化物;表面調整剤、湿潤剤、架橋剤、酸化防止剤、防錆剤、耐熱安定剤、界面活性剤、可塑剤、硬化剤、増粘剤、シランカップリング剤等の添加剤を含有してもよい。金属錯体インク中、添加剤の合計含有量は、金属錯体インクの全量に対して、20質量%以下であることが好ましい。
-Additive-
The metal complex ink further contains an inorganic salt, an organic salt, an inorganic oxide such as silica; Additives such as agents, surfactants, plasticizers, curing agents, thickeners, and silane coupling agents may be contained. The total content of additives in the metal complex ink is preferably 20% by mass or less with respect to the total amount of the metal complex ink.
 金属錯体インクの粘度は特に限定されず、0.001Pa・s~5000Pa・sであればよく、0.001Pa・s~100Pa・sであることが好ましい。金属錯体インクをスプレー法又はインクジェット記録方式で付与する場合には、金属錯体インクの粘度は、1mPa・s~100mPa・sであることが好ましく、2mPa・s~50mPa・sであることがより好ましく、3mPa・s~30mPa・sであることがさらに好ましい。 The viscosity of the metal complex ink is not particularly limited, and may be 0.001 Pa·s to 5000 Pa·s, preferably 0.001 Pa·s to 100 Pa·s. When the metal complex ink is applied by a spray method or an inkjet recording method, the viscosity of the metal complex ink is preferably 1 mPa·s to 100 mPa·s, more preferably 2 mPa·s to 50 mPa·s. , 3 mPa·s to 30 mPa·s.
 金属錯体インクの粘度は、粘度計を用い、25℃で測定される値である。粘度は、例えば、VISCOMETER TV-22型粘度計(東機産業社製)を用いて測定される。 The viscosity of the metal complex ink is a value measured at 25°C using a viscometer. Viscosity is measured using, for example, a VISCOMETER TV-22 viscometer (manufactured by Toki Sangyo Co., Ltd.).
 金属錯体インクの表面張力は特に限定されず、20mN/m~45mN/mであることが好ましく、25mN/m~35mN/mであることがより好ましい。表面張力は、表面張力計を用い、25℃で測定される値である。 The surface tension of the metal complex ink is not particularly limited, and is preferably 20 mN/m to 45 mN/m, more preferably 25 mN/m to 35 mN/m. Surface tension is a value measured at 25°C using a surface tensiometer.
 金属錯体インクの表面張力は、例えば、DY-700(協和界面科学社製)を用いて測定される。  The surface tension of the metal complex ink is measured using, for example, DY-700 (manufactured by Kyowa Interface Science Co., Ltd.).
<<金属塩インク>>
 金属塩インクは、例えば、金属塩が溶媒中に溶解したインク組成物である。
<<metal salt ink>>
A metal salt ink is, for example, an ink composition in which a metal salt is dissolved in a solvent.
-金属塩-
 金属塩を構成する金属としては、例えば、銀、銅、金、アルミニウム、マグネシウム、タングステン、モリブデン、亜鉛、ニッケル、鉄、白金、スズ、銅、及び鉛が挙げられる。中でも、導電性の観点から、金属塩を構成する金属は、銀、金、白金、ニッケル、パラジウム及び銅からなる群より選択される少なくとも1種を含むことが好ましく、銀を含むことがより好ましい。
-metal salt-
Examples of metals constituting metal salts include silver, copper, gold, aluminum, magnesium, tungsten, molybdenum, zinc, nickel, iron, platinum, tin, copper, and lead. Among them, from the viewpoint of conductivity, the metal constituting the metal salt preferably contains at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper, and more preferably contains silver. .
 金属塩インクに含まれる金属の含有量は、金属塩インクの全量に対して、金属元素換算で1質量%~40質量%であることが好ましく、5質量%~30質量%であることがより好ましく、7質量%~20質量%であることがさらに好ましい。 The content of the metal contained in the metal salt ink is preferably 1% by mass to 40% by mass, more preferably 5% by mass to 30% by mass, in terms of metal element, relative to the total amount of the metal salt ink. Preferably, it is more preferably 7% by mass to 20% by mass.
 金属塩インク中、金属塩の含有量は、金属塩インクの全量に対して、10質量%~90質量%であることが好ましく、10質量%~60質量%であることがより好ましい。金属塩の含有量は10質量%以上であると、表面抵抗率がより低下する。金属塩の含有量が90質量%以下であると、スプレー方式、又はインクジェット記録方式で金属粒子インクを付与する場合に、吐出性が向上する。 The content of the metal salt in the metal salt ink is preferably 10% by mass to 90% by mass, more preferably 10% by mass to 60% by mass, relative to the total amount of the metal salt ink. When the content of the metal salt is 10% by mass or more, the surface resistivity is further lowered. When the content of the metal salt is 90% by mass or less, the jettability is improved when the metal particle ink is applied by a spray method or an inkjet recording method.
 金属塩としては、上記金属錯体インクに使用される金属塩と同様の金属塩を用いることができる。中でも、金属塩は、カルボン酸塩が好ましい。カルボン酸塩を形成するカルボン酸としては、炭素数6~12のアルキルカルボン酸塩、又はアセト酢酸が好ましく、炭素数6~12のアルキルカルボン酸塩がより好ましい。カルボン酸塩は、2種以上を組み合わせてもよい。 As the metal salt, a metal salt similar to the metal salt used in the metal complex ink can be used. Among them, the metal salt is preferably a carboxylate. As the carboxylic acid forming the carboxylate, an alkyl carboxylate having 6 to 12 carbon atoms or acetoacetic acid is preferable, and an alkyl carboxylate having 6 to 12 carbon atoms is more preferable. Carboxylate may combine 2 or more types.
 金属塩は市販品であってもよく、公知の方法により製造されたものであってもよい。銀塩は、例えば、以下の方法で製造される。 The metal salt may be a commercially available product or may be produced by a known method. A silver salt is manufactured by the following method, for example.
 まず、エタノール等の有機溶媒中に、銀の供給源となる銀化合物(例えば酢酸銀)と、銀化合物のモル当量に対して等量のギ酸又は炭素数1~30の脂肪酸とを加える。所定時間、超音波撹拌機を用いて撹拌し、生成した沈殿物をエタノールで洗浄してデカンテーションする。これらの工程は全て室温(25℃)で行うことができる。銀化合物と、ギ酸又は炭素数1~30の脂肪酸との混合比は、モル比で1:2~2:1であることが好ましく、1:1であることがより好ましい。 First, in an organic solvent such as ethanol, add a silver compound (for example, silver acetate) as a source of silver, and formic acid or a fatty acid having 1 to 30 carbon atoms in an amount equivalent to the molar equivalent of the silver compound. The mixture is stirred for a predetermined time using an ultrasonic stirrer, and the precipitate formed is washed with ethanol and decanted. All these steps can be performed at room temperature (25°C). The mixing ratio of the silver compound to the formic acid or the fatty acid having 1 to 30 carbon atoms is preferably 1:2 to 2:1, more preferably 1:1 in terms of molar ratio.
 金属塩インクは、溶媒、還元剤、樹脂、及び添加剤を含有していてもよい。還元剤、樹脂、及び添加剤の好ましい態様は、金属錯体インクに含まれていてもよい溶媒、還元剤、樹脂、及び添加剤と同様である。 The metal salt ink may contain solvents, reducing agents, resins, and additives. Preferred aspects of the reducing agent, resin, and additive are the same as the solvent, reducing agent, resin, and additive that may be contained in the metal complex ink.
-溶媒-
 金属塩インクは、溶媒を含有することが好ましい。
 溶媒の種類は、金属塩インクに含まれる金属塩を溶解することができれば特に限定されない。
 溶媒の沸点は、製造容易性の観点から、30℃~300℃であることが好ましく、50℃~300℃であることがより好ましく、50℃~250℃であることがより好ましい。
-solvent-
The metal salt ink preferably contains a solvent.
The type of solvent is not particularly limited as long as it can dissolve the metal salt contained in the metal salt ink.
The boiling point of the solvent is preferably 30°C to 300°C, more preferably 50°C to 300°C, and even more preferably 50°C to 250°C, from the viewpoint of ease of production.
 金属塩インク中、溶媒の含有量は、金属塩に対する金属イオンの濃度(金属塩1gに対して遊離イオンとして存在する金属の量)が、0.01mmol/g~3.6mmol/gであることが好ましく、0.05mmol/g~2.6mmol/gであることがより好ましい。金属イオンの濃度が上記範囲内であると、金属塩インクが流動性に優れ、かつ、電磁波シールド性を得ることができる。 The content of the solvent in the metal salt ink is such that the concentration of metal ions relative to the metal salt (amount of metal present as free ions per 1 g of metal salt) is 0.01 mmol/g to 3.6 mmol/g. is preferred, and 0.05 mmol/g to 2.6 mmol/g is more preferred. When the metal ion concentration is within the above range, the metal salt ink has excellent fluidity and electromagnetic wave shielding properties can be obtained.
 溶媒としては、例えば、炭化水素、環状炭化水素、芳香族炭化水素、カルバメート、アルケン、アミド、エーテル、エステル、アルコール、チオール、チオエーテル、ホスフィン、及び水が挙げられる。
 金属塩インクに含まれる溶媒は、1種のみであってもよく、2種以上であってもよい。
Solvents include, for example, hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, carbamates, alkenes, amides, ethers, esters, alcohols, thiols, thioethers, phosphines, and water.
The number of solvents contained in the metal salt ink may be one, or two or more.
 溶媒は、芳香族炭化水素を含むことが好ましい。
 芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、プロピルベンゼン、イソプロピルベンゼン、ブチルベンゼン、イソブチルベンゼン、t-ブチルベンゼン、トリメチルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、テトラリン、ベンジルアルコール、フェノール、クレゾール、安息香酸メチル、安息香酸エチル、安息香酸プロピル、及び安息香酸ブチルが挙げられる。
 芳香族炭化水素における芳香族環の数は、他成分との相溶性の観点から、1つ又は2つが好ましく、1つがより好ましい。
 芳香族炭化水素の沸点は、製造容易性の観点から、50℃~300℃であることが好ましく、60℃~250℃であることがより好ましく、80℃~200℃であることがより好ましい。
The solvent preferably contains an aromatic hydrocarbon.
Examples of aromatic hydrocarbons include benzene, toluene, xylene, ethylbenzene, propylbenzene, isopropylbenzene, butylbenzene, isobutylbenzene, t-butylbenzene, trimethylbenzene, pentylbenzene, hexylbenzene, tetralin, benzyl alcohol, phenol, Cresol, methyl benzoate, ethyl benzoate, propyl benzoate, and butyl benzoate.
From the viewpoint of compatibility with other components, the number of aromatic rings in the aromatic hydrocarbon is preferably one or two, more preferably one.
The boiling point of the aromatic hydrocarbon is preferably 50°C to 300°C, more preferably 60°C to 250°C, even more preferably 80°C to 200°C, from the viewpoint of ease of production.
 溶剤は、芳香族炭化水素と、芳香族炭化水素以外の炭化水素と、を含んでもよい。
 芳香族炭化水素以外の炭化水素としては、炭素数6~20の直鎖状炭化水素、炭素数6~20の分枝状炭化水素、炭素数6~20の脂環式炭化水素が挙げられる。
 芳香族炭化水素以外の炭化水素としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、オクタデカン、ノナデカン、デカリン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、デセン、テルペン系化合物及びイコサンが挙げられる。
 芳香族炭化水素以外の炭化水素は不飽和結合を含むことが好ましい。
 不飽和結合を含む芳香族炭化水素以外の炭化水素としては、テルペン系化合物が挙げられる。
 テルペン系化合物は、テルペン系化合物を構成するイソプレン単位の数に応じ、例えば、ヘミテルペン、モノテルペン、セスキテルペン、ジテルペン、セステルテルペン、トリテルペン、セスクアルテルペン、及びテトラテルペンに分類される。
 溶媒としてのテルペン系化合物は、上記のいずれでもよいが、モノテルペンが好ましい。
 モノテルペンとしては、例えば、ピネン(α-ピネン、β-ピネン)、テルピネオール(α-テルピネオール、β-テルピネオール、γ-テルピネオール)、ミルセン、カンフェン、リモネン(d-リモネン、l-リモネン、ジペンテン)、オシメン(α-オシメン、β-オシメン)、アロオシメン、フェランドレン(α-フェランドレン、β-フェランドレン)、テルピネン(α-テルピネン、γ-テルピネン)、テルピノーレン(α-テルピノーレン、β-テルピノーレン、γ-テルピノーレン、δ-テルピノーレン)、1,8-シネオール、1,4-シネオール、サビネン、パラメンタジエン、カレン(δ-3-カレン)が挙げられる。
 モノテルペンとしては、環式モノテルペンが好ましく、ピネン、テルピネオール、又はカレンがより好ましい。
The solvent may contain aromatic hydrocarbons and hydrocarbons other than aromatic hydrocarbons.
Hydrocarbons other than aromatic hydrocarbons include linear hydrocarbons having 6 to 20 carbon atoms, branched hydrocarbons having 6 to 20 carbon atoms, and alicyclic hydrocarbons having 6 to 20 carbon atoms.
Examples of hydrocarbons other than aromatic hydrocarbons include pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane, decalin, cyclohexane, cycloheptane, and cyclooctane. , cyclononane, cyclodecane, decene, terpene compounds and icosane.
Hydrocarbons other than aromatic hydrocarbons preferably contain unsaturated bonds.
Hydrocarbons other than aromatic hydrocarbons containing unsaturated bonds include terpene compounds.
Terpene compounds are classified into, for example, hemiterpenes, monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, sesqualterpenes, and tetraterpenes, depending on the number of isoprene units that constitute the terpene compounds.
The terpene compound as the solvent may be any of the above, but monoterpene is preferred.
Examples of monoterpenes include pinene (α-pinene, β-pinene), terpineol (α-terpineol, β-terpineol, γ-terpineol), myrcene, camphene, limonene (d-limonene, l-limonene, dipentene), Ocimene (α-Ocimene, β-Ocimene), Alloocimene, Phellandrene (α-Phellandrene, β-Phellandrene), Terpinene (α-Terpinene, γ-Terpinene), Terpinolene (α-Terpinolene, β-Terpinolene, γ- terpinolene, δ-terpinolene), 1,8-cineole, 1,4-cineol, sabinene, paramentadiene, carene (δ-3-carene).
The monoterpene is preferably a cyclic monoterpene, more preferably pinene, terpineol, or carene.
 エーテルは、直鎖状エーテル、分枝鎖状エーテル、及び環状エーテルのいずれであってもよい。エーテルとしては、例えば、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、メチル-t-ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジヒドロピラン、及び1,4-ジオキサンが挙げられる。 The ether may be any of straight-chain ether, branched-chain ether, and cyclic ether. Ethers include, for example, diethyl ether, dipropyl ether, dibutyl ether, methyl-t-butyl ether, tetrahydrofuran, tetrahydropyran, dihydropyran, and 1,4-dioxane.
 アルコールは、第1級アルコール、第2級アルコール、及び第3級アルコールのいずれであってもよい。 The alcohol may be any of primary alcohol, secondary alcohol, and tertiary alcohol.
 アルコールとしては、例えば、エタノール、1-プロパノール、2-プロパノール、1-メトキシ-2-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、1-オクタノール、2-オクタノール、3-オクタノール、テトラヒドロフルフリルアルコール、シクロペンタノール、テルピネオール、デカノール、イソデシルアルコール、ラウリルアルコール、イソラウリルアルコール、ミリスチルアルコール、イソミリスチルアルコール、セチルアルコール(セタノール)、イソセチルアルコール、ステアリルアルコール、イソステアリルアルコール、オレイルアルコール、イソオレイルアルコール、リノリルアルコール、イソリノリルアルコール、パルミチルアルコール、イソパルミチルアルコール、アイコシルアルコール、及びイソアイコシルアルコールが挙げられる。 Examples of alcohols include ethanol, 1-propanol, 2-propanol, 1-methoxy-2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3-pentanol and 1-hexanol. , 2-hexanol, 3-hexanol, 1-octanol, 2-octanol, 3-octanol, tetrahydrofurfuryl alcohol, cyclopentanol, terpineol, decanol, isodecyl alcohol, lauryl alcohol, isolauryl alcohol, myristyl alcohol, isomyristyl alcohol, cetyl alcohol (cetanol), isocetyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, isoleyl alcohol, linolyl alcohol, isolinolyl alcohol, palmityl alcohol, isopalmityl alcohol, eicosyl alcohol, and iso Aicosyl alcohols can be mentioned.
 ケトンとしては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、及びシクロヘキサノンが挙げられる。 Ketones include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
 エステルとしては、例えば、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸メトキシブチル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、及び3-メトキシブチルアセテートが挙げられる。 Examples of esters include methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, methoxybutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol. monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene glycol monoethyl ether acetate, Propylene glycol monobutyl ether acetate, and 3-methoxybutyl acetate.
 金属塩インクの粘度は特に限定されず、0.001Pa・s~5000Pa・sであればよく、0.001Pa・s~100Pa・sであることが好ましい。金属塩インクをスプレー法又はインクジェット記録方式で付与する場合には、金属塩インクの粘度は、1mPa・s~100mPa・sであることが好ましく、2mPa・s~50mPa・sであることがより好ましく、3mPa・s~30mPa・sであることがさらに好ましい。 The viscosity of the metal salt ink is not particularly limited, and may be 0.001 Pa·s to 5000 Pa·s, preferably 0.001 Pa·s to 100 Pa·s. When the metal salt ink is applied by a spray method or an inkjet recording method, the viscosity of the metal salt ink is preferably 1 mPa·s to 100 mPa·s, more preferably 2 mPa·s to 50 mPa·s. , 3 mPa·s to 30 mPa·s.
 金属塩インクの粘度は、粘度計を用い、25℃で測定される値である。粘度は、例えば、VISCOMETER TV-22型粘度計(東機産業社製)を用いて測定される。 The viscosity of the metal salt ink is a value measured at 25°C using a viscometer. Viscosity is measured using, for example, a VISCOMETER TV-22 viscometer (manufactured by Toki Sangyo Co., Ltd.).
 金属塩インクの表面張力は特に限定されず、20mN/m~45mN/mであることが好ましく、25mN/m~35mN/mであることがより好ましい。表面張力は、表面張力計を用い、25℃で測定される値である。 The surface tension of the metal salt ink is not particularly limited, and is preferably 20 mN/m to 45 mN/m, more preferably 25 mN/m to 35 mN/m. Surface tension is a value measured at 25°C using a surface tensiometer.
 金属塩インクの表面張力は、例えば、DY-700(協和界面科学社製)を用いて測定される。  The surface tension of the metal salt ink is measured using, for example, DY-700 (manufactured by Kyowa Interface Science Co., Ltd.).
(導電層の形成)
 絶縁層上に、導電層形成用インクを付与した後、熱又は光を用いて、導電層形成用インクを硬化させることが好ましい。
(Formation of conductive layer)
After applying the conductive layer forming ink onto the insulating layer, it is preferable to cure the conductive layer forming ink using heat or light.
 熱を用いて硬化させる場合に、焼成温度は250℃以下であり、かつ、焼成時間は1分~120分であることが好ましい。焼成温度及び焼成時間が上記範囲であると、電子基板へのダメージが抑制される。 When curing with heat, the baking temperature is preferably 250° C. or less and the baking time is preferably 1 to 120 minutes. When the firing temperature and firing time are within the above ranges, damage to the electronic substrate is suppressed.
 焼成温度は、80℃~250℃であることがより好ましく、100℃~200℃であることがさらに好ましい。また、焼成時間は、1分~60分であることがより好ましい。 The firing temperature is more preferably 80°C to 250°C, more preferably 100°C to 200°C. Further, the firing time is more preferably 1 minute to 60 minutes.
 焼成方法は特に限定されず、通常公知の方法により行うことができる。 The firing method is not particularly limited, and can be carried out by a commonly known method.
 導電層形成用インクの付与が終了した時点から、焼成を開始する時点までの時間は60秒以下であることが好ましい。上記時間の下限値は特に限定されないが、例えば、20秒である。上記時間が60秒以下であると、導電性が向上する。 The time from the end of application of the ink for forming the conductive layer to the start of firing is preferably 60 seconds or less. Although the lower limit of the time is not particularly limited, it is, for example, 20 seconds. Conductivity improves that the said time is 60 seconds or less.
 なお、「導電インクの付与が終了した時点」とは、導電層形成用インクの全てのインク滴が絶縁層上に着弾した時点をいう。 It should be noted that "the time at which the application of the conductive ink is completed" refers to the time at which all the ink droplets of the conductive layer forming ink have landed on the insulating layer.
 光を用いて硬化させる場合に、光としては、例えば、紫外線及び赤外線が挙げられる。 When curing with light, examples of light include ultraviolet rays and infrared rays.
 紫外線のピーク波長は、200nm~405nmであることが好ましく、250nm~400nmであることがより好ましく、300nm~400nmであることがさらに好ましい。 The peak wavelength of ultraviolet rays is preferably 200 nm to 405 nm, more preferably 250 nm to 400 nm, even more preferably 300 nm to 400 nm.
 光の照射における露光量は、100mJ/cm~10000mJ/cmであることが好ましく、500mJ/cm~7500mJ/cmであることがより好ましい。 The exposure amount in light irradiation is preferably 100 mJ/cm 2 to 10000 mJ/cm 2 , more preferably 500 mJ/cm 2 to 7500 mJ/cm 2 .
 以下、本開示を実施例によりさらに具体的に説明するが、本開示はその主旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described more specifically with reference to examples, but the present disclosure is not limited to the following examples as long as it does not exceed the gist thereof.
 まず、絶縁層形成用インク及び導電層形成用インクを調製した。 First, an insulating layer forming ink and a conductive layer forming ink were prepared.
<絶縁層形成用インク1の調製>
 300mLの樹脂製ビーカーに、2-(ジメチルアミノ)-2-(4-メチルベンジル)-1-(4-モルホリノフェニル)-ブタン-1-オン(製品名「Omnirad 379」、IGM Resins B.V.社製)4.0g、2-イソプロピルチオキサントン(製品名「SPEEDCURE ITX」、LAMBSON社製)2.0g、フェノキシエチルアクリレート(富士フイルム和光純薬社製)34.0g、N-ビニルカプロラクタム22.0g、1,6-ヘキサンジオールジアクリレート30.0g、及びトリメチロールプロパントリアクリレート(富士フイルム和光純薬社製)8.0gを加え、ミキサー(製品名「L4R」、シルバーソン社製)を用いて、25℃で5000回転/分の条件で20分間撹拌し、絶縁層形成用インクを得た。
<Preparation of insulating layer forming ink 1>
2-(dimethylamino)-2-(4-methylbenzyl)-1-(4-morpholinophenyl)-butan-1-one (product name "Omnirad 379", IGM Resins B.V.) was added to a 300 mL resin beaker. company) 4.0 g, 2-isopropylthioxanthone (product name "SPEEDCURE ITX", LAMBSON) 2.0 g, phenoxyethyl acrylate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) 34.0 g, N-vinylcaprolactam 22. 0 g, 30.0 g of 1,6-hexanediol diacrylate, and 8.0 g of trimethylolpropane triacrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were added, and a mixer (product name "L4R", manufactured by Silverson) was used. and stirred at 25° C. and 5000 rpm for 20 minutes to obtain an insulating layer forming ink.
<絶縁層形成用インク2の調製>
 300mLの樹脂製ビーカーに、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(製品名「OXT-221」、東亞合成社製)50.0g、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(製品名「セロキサイド2021P」、ダイセル社製)15.0g、リモネンジオキシド(製品名「セロキサイド3000」、ダイセル社製)28.0g、トリアリールスルホニウムヘキサフルオロリン酸塩,混合物(シグマアルドリッチ社製)7.0gを加え、ミキサー(製品名「L4R」、シルバーソン社製)を用いて、25℃で5000回転/分の条件で20分間撹拌し、絶縁層形成用インク2を得た。
<Preparation of insulating layer forming ink 2>
In a 300 mL resin beaker, 3-ethyl-3 {[(3-ethyloxetan-3-yl) methoxy] methyl} oxetane (product name "OXT-221", manufactured by Toagosei Co., Ltd.) 50.0 g, 3', 4′-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate (product name “Celoxide 2021P”, manufactured by Daicel) 15.0 g, limonene dioxide (product name “Celoxide 3000”, manufactured by Daicel) 28.0 g, 7.0 g of a triarylsulfonium hexafluorophosphate mixture (manufactured by Sigma-Aldrich) was added, and a mixer (product name "L4R", manufactured by Silverson) was used at 25° C. and 5000 rpm for 20 minutes. After stirring for 1 minute, Ink 2 for forming an insulating layer was obtained.
<導電層形成用インク1の調製>
 50mLの3口フラスコに、イソブチルアンモニウムカーボネート6.08g、及びイソプロピルアルコール15.0gを加え、溶解させた。次に、酸化銀2.0gを加え、常温で2時間反応させ、均一な溶液を得た。さらに、2-ヒドロキシ-2-メチルプロピルアミン0.3gを加え、撹拌し、銀錯体を含む溶液を得た。この溶液を、孔径0.45μmのPTFE(ポリテトラフルオロエチレン)製メンブレンフィルターを使用してろ過し、導電層形成用インク1を得た。
<Preparation of conductive layer forming ink 1>
6.08 g of isobutylammonium carbonate and 15.0 g of isopropyl alcohol were added and dissolved in a 50 mL three-necked flask. Next, 2.0 g of silver oxide was added and reacted at room temperature for 2 hours to obtain a uniform solution. Furthermore, 0.3 g of 2-hydroxy-2-methylpropylamine was added and stirred to obtain a solution containing a silver complex. This solution was filtered using a PTFE (polytetrafluoroethylene) membrane filter with a pore size of 0.45 μm to obtain Ink 1 for forming a conductive layer.
<導電層形成用インク2の調製>
 200mLの3口フラスコに、ネオデカン酸銀40gを加えた。ここに、トリメチルベンゼン30.0g、及びテルピネオール30.0gを加え、撹拌し、銀塩を含む溶液を得た。得られた溶液を、孔径0.45μmのPTFE(ポリテトラフルオロエチレン)製メンブレンフィルターを使用してろ過し、導電層形成用インク2を得た。
<Preparation of conductive layer forming ink 2>
40 g of silver neodecanoate was added to a 200 mL three-necked flask. 30.0 g of trimethylbenzene and 30.0 g of terpineol were added thereto and stirred to obtain a solution containing a silver salt. The resulting solution was filtered using a PTFE (polytetrafluoroethylene) membrane filter with a pore size of 0.45 μm to obtain Ink 2 for forming a conductive layer.
<電子基板の準備>
(電子基板A)
 Quectel社製LTEモジュールのシールド缶とフレームを取り外した。シールド缶とフレームが接合していた基板上の金属配線の半田を取り除いた後、プリント基板用フラックス洗浄剤(製品名「goot BS-W20B」を用いてフラックスを除去し、基板Aを得た。電子基板Aには、複数の電子部品と、複数の電子部品を取り囲むように、非連続な枠状のグランド電極と、が形成されている。
 電子基板Aにおいて、グランド電極の幅は0.5mmであり、グランド電極で囲まれる領域は25.5mm×21.5mmであった。
 また、グランド電極は、配線基板の電子部品が配置されている側の面を基準として、高さが100μmであった。
<Preparation of electronic board>
(Electronic board A)
The shield can and frame of the Quectel LTE module were removed. After removing the solder of the metal wiring on the substrate where the shield can and the frame were joined, the flux was removed using a printed circuit board flux cleaning agent (product name “goot BS-W20B”) to obtain a substrate A. A plurality of electronic components and a discontinuous frame-shaped ground electrode are formed on the electronic substrate A so as to surround the plurality of electronic components.
In the electronic substrate A, the width of the ground electrode was 0.5 mm, and the area surrounded by the ground electrode was 25.5 mm×21.5 mm.
The height of the ground electrode was 100 μm with respect to the surface of the wiring board on which the electronic components were arranged.
(電子基板B)
 絶縁層形成用インクを、インクジェット記録装置(製品名「DMP-2850」、FUJIFILM DIMATIX社製)用インクカートリッジ(10ピコリットル用)に充填した。画像記録条件は、解像度を1270dpi(dots per inch)、打滴量を1ドット当たり10ピコリットルとした。電子基板Aのグランド電極上において、外側の幅200μmの領域に、絶縁層形成用インクを付与し、紫外線を照射するというサイクルを2回繰り返し、電子基板Bを得た。
 紫外線の照射は、インクジェットヘッドの横に設置した、紫外線照射装置(製品名「UVスポットキュア OmniCure S2000」、LumenDynamics社製)を用いて行った。
 電子基板Bにおいて、絶縁層で被覆されていないグランド電極の幅は300μmであった。
(Electronic board B)
The insulating layer forming ink was filled in an ink cartridge (for 10 picoliters) for an inkjet recording apparatus (product name “DMP-2850”, manufactured by FUJIFILM DIMATIX). Image recording conditions were a resolution of 1270 dpi (dots per inch) and a droplet ejection volume of 10 picoliters per dot. On the ground electrode of the electronic substrate A, an electronic substrate B was obtained by repeating the cycle of applying the ink for forming an insulating layer to an outer region having a width of 200 μm and irradiating with ultraviolet rays twice.
The ultraviolet irradiation was performed using an ultraviolet irradiation device (product name “UV spot cure OmniCure S2000”, manufactured by Lumen Dynamics) installed next to the inkjet head.
In the electronic substrate B, the width of the ground electrode not covered with the insulating layer was 300 μm.
(電子基板C)
 グランド電極上において、外側の幅300μmの領域に、絶縁層形成用インクを付与したこと以外は、電子基板Bと同様の方法で、電子基板Cを準備した。
 電子基板Cにおいて、絶縁層で被覆されていないグランド電極の幅は200μmであった。
(Electronic board C)
An electronic substrate C was prepared in the same manner as the electronic substrate B, except that the ink for forming an insulating layer was applied to the outer region of 300 μm in width on the ground electrode.
In the electronic substrate C, the width of the ground electrode not covered with the insulating layer was 200 μm.
[実施例1~実施例10、比較例1及び比較例3]
-絶縁層の形成-
 絶縁層形成用インク1を、インクジェット記録装置(製品名「DMP-2850」、FUJIFILM DIMATIX社製)のインクカートリッジ(10ピコリットル用)に充填した。画像記録条件は、解像度を1270dpi(dots per inch)、打滴量を1ドット当たり10ピコリットルとした。
 電子基板におけるグランド電極で囲まれるグランド領域と同一の領域(25.5mm×21.5mm)の画像データを準備した。この画像データを用いて、絶縁層形成用インクを付与し、紫外線を照射するというサイクルを、絶縁層の厚さが表1に記載されている値となるまで繰り返した。
 紫外線の照射は、インクジェットヘッドの横に設置した、紫外線照射装置(製品名「UVスポットキュア OmniCure S2000」、LumenDynamics社製)を用いて行った。紫外線の照度は8W/cmとし、1回当たり0.1秒間照射することで、1回当たりの露光量は0.8J/cmとした。また、絶縁層形成用インクが付与された時点から紫外線の照射開始までの時間を0.3秒とした。
[Examples 1 to 10, Comparative Examples 1 and 3]
-Formation of insulating layer-
The insulating layer forming ink 1 was filled in an ink cartridge (for 10 picoliters) of an inkjet recording apparatus (product name “DMP-2850”, manufactured by FUJIFILM DIMATIX). Image recording conditions were a resolution of 1270 dpi (dots per inch) and a droplet ejection volume of 10 picoliters per dot.
Image data of the same area (25.5 mm×21.5 mm) as the ground area surrounded by the ground electrodes on the electronic substrate was prepared. Using this image data, the cycle of applying the ink for forming the insulating layer and irradiating with ultraviolet rays was repeated until the thickness of the insulating layer reached the value shown in Table 1.
The ultraviolet irradiation was performed using an ultraviolet irradiation device (product name “UV spot cure OmniCure S2000”, manufactured by Lumen Dynamics) installed next to the inkjet head. The illuminance of the ultraviolet rays was set to 8 W/cm 2 , and the irradiation amount was set to 0.8 J/cm 2 per time by irradiating for 0.1 second per time. In addition, the time from the application of the insulating layer forming ink to the start of irradiation with ultraviolet rays was set to 0.3 seconds.
-導電層の形成-
 導電層形成用インク1を、インクジェット記録装置(製品名「DMP-2850」、FUJIFILM DIMATIX社製)のインクカートリッジ(10ピコリットル用)に充填した。画像記録条件は、解像度を1270dpi(dots per inch)、打滴量を1ドット当たり10ピコリットルとした。絶縁層が形成された電子基板をあらかじめ60℃まで加温した。
 電子基板におけるグランド電極上と、絶縁層とを覆う領域(26.5mm×22.5mm)の画像データを準備した。この画像データを用いて導電層形成用インクを付与し、オーブンを用いて180℃で60分間加熱するというサイクルを、T1が表1及び表2に記載されている値となるまで繰り返した。
 また、電子基板におけるグランド電極上を覆う領域(外形26.5mm×22.5mm、幅0.5mmの枠)の画像データを準備した。この画像データを用いて導電層形成用インクを付与し、オーブンを用いて180℃で60分間加熱するというサイクルを、T2が表1及び表2に記載されている値となるまで繰り返し、電子デバイスを得た。
-Formation of conductive layer-
The conductive layer forming ink 1 was filled in an ink cartridge (for 10 picoliters) of an inkjet recording apparatus (product name “DMP-2850”, manufactured by FUJIFILM DIMATIX). Image recording conditions were a resolution of 1270 dpi (dots per inch) and a droplet ejection volume of 10 picoliters per dot. The electronic substrate on which the insulating layer was formed was preliminarily heated to 60°C.
Image data of a region (26.5 mm×22.5 mm) covering the ground electrode and the insulating layer on the electronic substrate was prepared. A cycle of applying the conductive layer forming ink using this image data and heating at 180° C. for 60 minutes using an oven was repeated until T1 reached the values shown in Tables 1 and 2.
Further, image data of a region (a frame with an outer size of 26.5 mm×22.5 mm and a width of 0.5 mm) covering the ground electrode on the electronic substrate was prepared. The cycle of applying the conductive layer forming ink using this image data and heating at 180 ° C. for 60 minutes using an oven is repeated until T2 reaches the values shown in Tables 1 and 2, and the electronic device got
[実施例11]
 グランド電極と絶縁層との間に50μmの隙間が形成されるように、電子基板におけるグランド電極で囲まれるグランド領域よりも小さい領域(25.4mm×21.4mm)の画像データを準備した。この画像データを用いて、絶縁層形成用インクを付与したこと以外は、実施例4と同様の方法で、電子デバイスを得た。
[Example 11]
Image data of an area (25.4 mm×21.4 mm) smaller than the ground area surrounded by the ground electrode on the electronic substrate was prepared so that a gap of 50 μm was formed between the ground electrode and the insulating layer. Using this image data, an electronic device was obtained in the same manner as in Example 4, except that the insulating layer forming ink was applied.
[実施例12]
 以下の点を変更したこと以外は、実施例4と同様の方法で、電子デバイスを得た。
 電子基板Aの代わりに電子基板Bを用いた。
 電子基板におけるグランド電極上と、絶縁層とを覆う領域(26.1mm×22.1mm)の画像データを準備した。この画像データを用いて導電層形成用インクを付与し、オーブンを用いて180℃で60分間加熱するというサイクルを、T1が表2に記載されている値となるまで繰り返した。
 また、電子基板におけるグランド電極上を覆う領域(外形26.1mm×22.1mm、幅300μmの枠)の画像データを準備した。この画像データを用いて導電層形成用インクを付与し、オーブンを用いて180℃で60分間加熱するというサイクルを、T2が表2に記載されている値となるまで繰り返し、電子デバイスを得た。
[Example 12]
An electronic device was obtained in the same manner as in Example 4, except that the following points were changed.
An electronic substrate B was used instead of the electronic substrate A.
Image data of a region (26.1 mm×22.1 mm) covering the ground electrode and the insulating layer on the electronic substrate was prepared. A cycle of applying the conductive layer forming ink using this image data and heating at 180° C. for 60 minutes using an oven was repeated until T1 reached the value shown in Table 2.
In addition, image data of a region (a frame having an outer dimension of 26.1 mm×22.1 mm and a width of 300 μm) covering the ground electrode on the electronic substrate was prepared. A cycle of applying the conductive layer forming ink using this image data and heating at 180° C. for 60 minutes using an oven was repeated until T2 reached the value shown in Table 2, thereby obtaining an electronic device. .
[実施例13]
 以下の点を変更したこと以外は、実施例4と同様の方法で、電子デバイスを得た。
 電子基板Aの代わりに電子基板Cを用いた。
 電子基板におけるグランド電極上と、絶縁層とを覆う領域(25.9cm×21.9cm)の画像データを準備した。この画像データを用いて導電層形成用インクを付与し、オーブンを用いて180℃で60分間加熱するというサイクルを、T1が表2に記載されている値となるまで繰り返した。
 また、電子基板におけるグランド電極上を覆う領域(外形25.9cm×21.9mm、幅200μmの枠)の画像データを準備した。この画像データを用いて導電層形成用インクを付与し、オーブンを用いて180℃で60分間加熱するというサイクルを、T2が表2に記載されている値となるまで繰り返し、電子デバイスを得た。
[Example 13]
An electronic device was obtained in the same manner as in Example 4, except that the following points were changed.
An electronic substrate C was used instead of the electronic substrate A.
Image data of a region (25.9 cm×21.9 cm) covering the ground electrode and the insulating layer on the electronic substrate was prepared. A cycle of applying the conductive layer forming ink using this image data and heating at 180° C. for 60 minutes using an oven was repeated until T1 reached the value shown in Table 2.
In addition, image data of a region (25.9 cm×21.9 mm, 200 μm wide frame) covering the ground electrode on the electronic substrate was prepared. A cycle of applying the conductive layer forming ink using this image data and heating at 180° C. for 60 minutes using an oven was repeated until T2 reached the value shown in Table 2, thereby obtaining an electronic device. .
[実施例14]
 絶縁層の形成において、絶縁層形成用インク1の代わりに絶縁層形成用インク2を用いたこと以外は、実施例6と同様の方法で、電子デバイスを得た。
[Example 14]
An electronic device was obtained in the same manner as in Example 6, except that the insulating layer forming ink 2 was used instead of the insulating layer forming ink 1 in forming the insulating layer.
[実施例15]
 導電層の形成において、導電層形成用インク1の代わりに導電層形成インク2を用いたこと以外は、実施例6と同様の方法で、電子デバイスを得た。
[Example 15]
An electronic device was obtained in the same manner as in Example 6 except that the conductive layer forming ink 2 was used instead of the conductive layer forming ink 1 in forming the conductive layer.
[比較例2]
 以下の点を変更したこと以外は、実施例1と同様の方法で、電子デバイスを得た。
 電子基板におけるグランド電極上と、絶縁層とを覆う領域(26.5mm×22.5mm)の画像データを準備した。この画像データを用いて導電層形成用インクを付与し、オーブンを用いて180℃で60分間加熱するというサイクルを、T2が表2に記載されている値となるまで繰り返した。
 また、電子基板におけるグランド電極で囲まれる領域と同一の領域(25.5mm×21.5mm)の画像データを準備した。この画像データを用いて導電層形成用インクを付与し、オーブンを用いて180℃で60分間加熱するというサイクルを、T1が表2に記載されている値となるまで繰り返し、電子デバイスを得た。
[Comparative Example 2]
An electronic device was obtained in the same manner as in Example 1, except that the following points were changed.
Image data of a region (26.5 mm×22.5 mm) covering the ground electrode and the insulating layer on the electronic substrate was prepared. A cycle of applying the conductive layer forming ink using this image data and heating at 180° C. for 60 minutes using an oven was repeated until T2 reached the value shown in Table 2.
Also, image data of the same area (25.5 mm×21.5 mm) as the area surrounded by the ground electrode on the electronic substrate was prepared. A cycle of applying the conductive layer forming ink using this image data and heating at 180° C. for 60 minutes using an oven was repeated until T1 reached the value shown in Table 2, thereby obtaining an electronic device. .
 作製した電子デバイスを用いて、耐久性、及び、耐熱試験後の電磁波シールド性の評価を行った。 Using the fabricated electronic device, the durability and electromagnetic wave shielding properties after the heat resistance test were evaluated.
<耐久性>
 得られた電子基板を用いて、-30℃~90℃の温度間でのサイクル試験を200サイクル行った。サイクル試験後に、導電層及び絶縁層の外観変化を観察した。外観変化に基づいて、耐久性を評価した。評価基準は、以下のとおりである。
 5:外観に変化がなかった。
 4:変形が目視では確認できないが、顕微鏡観察により確認された。
 3:割れ及び剥がれはないが、変形が目視で確認された。
 2:割れ及び剥がれがわずかにあった。
 1:割れ及び剥がれが著しくあった。
<Durability>
Using the obtained electronic substrate, a cycle test between -30° C. and 90° C. was performed for 200 cycles. After the cycle test, changes in appearance of the conductive layer and the insulating layer were observed. Durability was evaluated based on appearance change. Evaluation criteria are as follows.
5: No change in appearance.
4: Deformation could not be confirmed visually, but was confirmed by microscopic observation.
3: No cracking or peeling, but deformation was visually observed.
2: Slight cracking and peeling were observed.
1: Significant cracking and peeling were observed.
<電磁波シールド性>
 得られた電子基板を用いて、-30℃~90℃の温度間でのサイクル試験を200サイクル行った。サイクル試験後に、得られた電子基板をLTE BAND13で通信させ、近傍磁界測定装置(製品名「SmartScan550」、API社製)を用いて、周波数777MHzで近傍磁界測定を実施した。ノイズ抑制レベル(単位:dB)を測定し、ノイズ抑制レベルに基づいて、電磁波シールド性を評価した。評価基準は、以下のとおりである。
 A:ノイズ抑制レベルが、-40dB以下である。
 B:ノイズ抑制レベルが、-40dB超-30dB以下である。
 C:ノイズ抑制レベルが、-30でB超-20dB以下である。
 D:ノイズ抑制レベルが、-20dB超である。
 E:サイクル試験後に割れ及び剥がれが著しくあったため、電磁波シールド性の評価を行うことができなかった。
<Electromagnetic shielding>
Using the obtained electronic substrate, a cycle test between -30° C. and 90° C. was performed for 200 cycles. After the cycle test, the obtained electronic substrate was allowed to communicate with the LTE BAND 13, and near magnetic field measurement was performed at a frequency of 777 MHz using a near magnetic field measuring device (product name: "SmartScan550", manufactured by API). The noise suppression level (unit: dB) was measured, and the electromagnetic wave shielding properties were evaluated based on the noise suppression level. Evaluation criteria are as follows.
A: The noise suppression level is -40 dB or less.
B: The noise suppression level is more than -40 dB and less than or equal to -30 dB.
C: The noise suppression level is -30, more than B and -20 dB or less.
D: The noise suppression level is greater than -20 dB.
E: The electromagnetic wave shielding property could not be evaluated because cracking and peeling were remarkable after the cycle test.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1及び表2に示すように、実施例1~実施例15では、配線基板と、配線基板上に配置されている電子部品と、グランド電極と、電子部品上に設けられた厚さが200μm以上の絶縁層と、絶縁層上、及び、グランド電極上の少なくとも一部に対して設けられ、導電層形成用インクの硬化膜である導電層と、を備え、T2がT1よりも厚いため、耐久性に優れることが分かった。 As shown in Tables 1 and 2, in Examples 1 to 15, the thickness of the wiring board, the electronic components arranged on the wiring board, the ground electrode, and the electronic components was 200 μm. The above insulating layer and a conductive layer that is provided on at least a part of the insulating layer and the ground electrode and is a cured film of the conductive layer forming ink, and T2 is thicker than T1, It was found to be excellent in durability.
 一方、比較例1では、T1とT2が同じ厚さであり、比較例2では、T1がT2より厚いため、電磁波シールド性に劣ることが分かった On the other hand, in Comparative Example 1, T1 and T2 have the same thickness, and in Comparative Example 2, T1 is thicker than T2, so it was found that the electromagnetic wave shielding property was inferior.
 比較例3では、絶縁層の厚さが200μm未満であるため、導電層と電子基板上の部品との間に短絡が発生し、電子デバイスが正常に機能しないことが分かった。 In Comparative Example 3, since the thickness of the insulating layer was less than 200 μm, a short circuit occurred between the conductive layer and the components on the electronic substrate, and the electronic device did not function properly.
 実施例4では、T2がT1の2倍以上であるため、実施例2と比較して、電磁波シールド性に優れることが分かった。 In Example 4, since T2 is at least twice as large as T1, it was found to be superior to Example 2 in electromagnetic shielding properties.
 実施例8では、T1が10μm未満であるため、実施例9と比較して、耐久性及び電磁波シールド性に優れることが分かった。 In Example 8, since T1 is less than 10 μm, compared to Example 9, it was found to be superior in durability and electromagnetic wave shielding properties.
 なお、2021年9月2日に出願された日本国特許出願2021-143243号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2021-143243 filed on September 2, 2021 is incorporated herein by reference in its entirety. In addition, all publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. , incorporated herein by reference.

Claims (7)

  1.  配線基板と、
     前記配線基板上に配置されている電子部品と、
     グランド電極と、
     前記電子部品上に設けられた絶縁層と、
     前記絶縁層上、及び、前記グランド電極上の少なくとも一部に対して設けられ、導電層形成用インクの硬化膜である導電層と、を備え、
     前記絶縁層の厚さが200μm以上であり、
     前記電子部品の表面のうち、前記配線基板の前記電子部品が配置されている側の面を基準として最も高くに位置する表面上に設けられた絶縁層上に設けられている導電層の厚さをT1とし、前記グランド電極上に設けられている導電層の厚さをT2としたとき、T2がT1よりも厚い、電子デバイス。
    a wiring board;
    an electronic component arranged on the wiring board;
    a ground electrode;
    an insulating layer provided on the electronic component;
    A conductive layer provided on the insulating layer and on at least a part of the ground electrode and being a cured film of a conductive layer forming ink,
    The insulating layer has a thickness of 200 μm or more,
    The thickness of the conductive layer provided on the insulating layer provided on the surface of the electronic component that is positioned highest with respect to the surface of the wiring board on which the electronic component is arranged, among the surfaces of the electronic component is T1, and the thickness of the conductive layer provided on the ground electrode is T2, T2 is thicker than T1.
  2.  前記絶縁層は、アクリル樹脂又はエポキシ樹脂を含む、請求項1に記載の電子デバイス。 The electronic device according to claim 1, wherein the insulating layer contains acrylic resin or epoxy resin.
  3.  前記T2は、前記T1に対して2倍以上である、請求項1又は請求項2に記載の電子デバイス。 The electronic device according to claim 1 or claim 2, wherein the T2 is twice or more the T1.
  4.  前記導電層形成用インクは、金属錯体又は金属塩を含む、請求項1~請求項3のいずれか1項に記載の電子デバイス。 The electronic device according to any one of claims 1 to 3, wherein the conductive layer forming ink contains a metal complex or a metal salt.
  5.  前記グランド電極は、前記配線基板の前記電子部品が配置されている側の面を基準として、高さが150μm以下である、請求項1~請求項4のいずれか1項に記載の電子デバイス。 The electronic device according to any one of claims 1 to 4, wherein the ground electrode has a height of 150 µm or less with respect to the surface of the wiring board on which the electronic component is arranged.
  6.  前記T1が10μm未満である、請求項1~請求項5のいずれか1項に記載の電子デバイス。 The electronic device according to any one of claims 1 to 5, wherein said T1 is less than 10 µm.
  7.  配線基板と、前記配線基板上に配置されている電子部品と、グランド電極と、を備える電子基板を準備する工程と、
     前記電子部品上に、厚さ200μm以上の絶縁層を形成する工程と、
     前記絶縁層上、及び、前記グランド電極上の少なくとも一部に対して導電層形成用インクを付与し、前記導電層形成用インクの硬化膜である導電層を形成する工程と、を含み、
     前記電子部品の表面のうち、前記配線基板の前記電子部品が配置されている側の面を基準として最も高くに位置する表面上に設けられた絶縁層上に設けられている導電層の厚さをT1とし、前記グランド電極上に設けられている導電層の厚さをT2としたとき、T2がT1よりも厚い、電子デバイスの製造方法。
    preparing an electronic substrate comprising a wiring substrate, electronic components arranged on the wiring substrate, and a ground electrode;
    forming an insulating layer having a thickness of 200 μm or more on the electronic component;
    applying a conductive layer forming ink to at least part of the insulating layer and the ground electrode to form a conductive layer that is a cured film of the conductive layer forming ink;
    The thickness of the conductive layer provided on the insulating layer provided on the surface of the electronic component that is the highest with respect to the surface of the wiring board on which the electronic component is arranged. is T1, and the thickness of the conductive layer provided on the ground electrode is T2, T2 is thicker than T1.
PCT/JP2022/019695 2021-09-02 2022-05-09 Electronic device and method for manufacturing electronic device WO2023032356A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021143243 2021-09-02
JP2021-143243 2021-09-02

Publications (1)

Publication Number Publication Date
WO2023032356A1 true WO2023032356A1 (en) 2023-03-09

Family

ID=85411150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019695 WO2023032356A1 (en) 2021-09-02 2022-05-09 Electronic device and method for manufacturing electronic device

Country Status (2)

Country Link
TW (1) TW202315509A (en)
WO (1) WO2023032356A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205430A (en) * 2007-01-26 2008-09-04 Konica Minolta Holdings Inc Method of forming metallic pattern and metal salt mixture
US20170179041A1 (en) * 2015-12-22 2017-06-22 Intel Corporation Semiconductor package with trenched molding-based electromagnetic interference shielding
JP3216100U (en) * 2015-03-26 2018-05-17 アップル インコーポレイテッド Vertical shields and interconnects for SIP modules

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205430A (en) * 2007-01-26 2008-09-04 Konica Minolta Holdings Inc Method of forming metallic pattern and metal salt mixture
JP3216100U (en) * 2015-03-26 2018-05-17 アップル インコーポレイテッド Vertical shields and interconnects for SIP modules
US20170179041A1 (en) * 2015-12-22 2017-06-22 Intel Corporation Semiconductor package with trenched molding-based electromagnetic interference shielding

Also Published As

Publication number Publication date
TW202315509A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
JP4535797B2 (en) Method for forming metal fine-particle sintered body type thin film conductor layer, metal wiring using the method, and method for forming metal thin film
JP5773671B2 (en) Active energy ray-curable inkjet ink composition and resin-coated metal plate
WO2023032356A1 (en) Electronic device and method for manufacturing electronic device
WO2023032355A1 (en) Electronic device production method
WO2023017678A1 (en) Electronic device and method for producing same
WO2013065683A1 (en) Base material for forming electroconductive pattern, circuit board, and method for producing each
WO2023074507A1 (en) Method for producing electronic device
WO2023033007A1 (en) Electronic device and manufacturing method therefor
WO2023286747A1 (en) Electronic device and method for manufacturing electronic device
WO2023007987A1 (en) Electronic device and method for manufacturing same
WO2023286748A1 (en) Electronic device and method for manufacturing electronic device
WO2023058612A1 (en) Film formation method and method for producing electronic device
WO2023058613A1 (en) Film formation method, electronic device production method, and film formation device
WO2023189291A1 (en) Method for manufacturing printed circuit board
JP2023070947A (en) Manufacturing method of electronic device, electronic device ink, and ink set
WO2022091883A1 (en) Image recording method
WO2023189594A1 (en) Method for producing conductor, method for producing electromagnetic shielding body, and conductor
TW202346085A (en) Method for producing laminate
US20230250307A1 (en) Ink set, laminate, and manufacturing method of laminate
WO2018143299A1 (en) Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article
JP6488583B2 (en) Manufacturing method of three-dimensional structure and three-dimensional structure
WO2023119883A1 (en) Inspection device, printing system, inspection system, curing system, substrate manufacturing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE