WO2018143299A1 - Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article - Google Patents

Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article Download PDF

Info

Publication number
WO2018143299A1
WO2018143299A1 PCT/JP2018/003290 JP2018003290W WO2018143299A1 WO 2018143299 A1 WO2018143299 A1 WO 2018143299A1 JP 2018003290 W JP2018003290 W JP 2018003290W WO 2018143299 A1 WO2018143299 A1 WO 2018143299A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
material composition
support material
ink set
Prior art date
Application number
PCT/JP2018/003290
Other languages
French (fr)
Japanese (ja)
Inventor
克幸 鬼頭
妥江子 出雲
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Priority to JP2018565622A priority Critical patent/JPWO2018143299A1/en
Publication of WO2018143299A1 publication Critical patent/WO2018143299A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present invention relates to an optical modeling ink set used in an ink jet optical modeling method, an optical modeling product modeled using the optical modeling ink set, and a method of manufacturing an optical modeling product using the optical modeling ink set. About.
  • a modeling method using a photocurable composition that is cured by irradiating ultraviolet rays or the like is widely known as a method of creating a three-dimensional modeled object.
  • the cured layer having a predetermined shape is formed by irradiating the photocurable composition with ultraviolet rays or the like to cure.
  • a photocurable composition is further supplied onto the cured layer and cured to form a new cured layer.
  • a three-dimensional model is produced by repeating the above steps.
  • Ink jet stereolithography does not require the installation of a large resin bath and a dark room for storing the photocurable composition. Therefore, the modeling apparatus can be reduced in size compared with the conventional method.
  • Inkjet stereolithography is attracting attention as a modeling method realized by a 3D printer that can freely create a three-dimensional model based on CAD (Computer Aided Design) data.
  • Patent Documents 1 and 2). And 4 when modeling a stereolithography product having a complicated shape such as a hollow shape, the model material and the support material are formed in combination to support the model material (Patent Documents 1 and 2). And 4).
  • the support material is created by irradiating the photocurable composition with ultraviolet rays or the like and curing the same as the model material. After the model material is created, the support material can be removed by physically peeling the support material or dissolving the support material in an organic solvent or water.
  • Patent Document 4 discloses a composition for a support material containing a large amount of non-polymerizable components such as polyoxypropylene glycol and water in order to improve the solubility of the support material in water.
  • a photopolymerizable composition contains a radical polymerizable compound that is cured by a radical polymerization reaction (Patent Documents 2 to 4).
  • the photocurable composition containing a radical polymerizable compound has a problem that the cured shrinkage of a cured product obtained by curing the photocurable composition is large.
  • cationically polymerizable compounds are more susceptible to water than radically polymerizable compounds. Therefore, the cationically polymerizable compound has a problem that the polymerization reaction is difficult to proceed in an environment where water is present, and as a result, insufficient curing tends to occur.
  • the composition for a model material containing a cationic polymerizable compound and the conventional composition for a support material containing a large amount of non-polymerizable components are used, the composition for a model material is Insufficient curing of the model material obtained by photocuring tends to occur. As a result, there has been a problem that an optically shaped article that is shaped using the model material composition and the support material composition has poor dimensional accuracy.
  • the present invention has been made in view of the above situation, and an optical modeling ink set for obtaining an optical modeling product with good dimensional accuracy, an optical modeling product modeled using the optical modeling ink set, and An object of the present invention is to provide a method for producing an optical modeling product using the optical modeling ink set.
  • the present inventors define a content of the non-polymerized component and the water-soluble monofunctional ethylenically unsaturated monomer of the support material composition within a predetermined range, thereby providing a model material containing a cationically polymerizable compound. It has been found that insufficient curing of the model material obtained by photocuring the composition is suppressed. That is, the present inventors can form an optically shaped article with good dimensional accuracy by using the support material composition, even when a model material composition containing a cationically polymerizable compound is used. I found it possible.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • the model material composition is: A radically polymerizable compound (A) having at least one ethylenic double bond; A cationically polymerizable compound (B) having one or more ethylenic double bonds; A radical polymerization initiator (C); A cationic polymerization initiator (D); Wherein the cationically polymerizable compound (B) is a cyclic hetero compound or a vinyl ether compound,
  • the support material composition is based on 100 parts by weight of the entire support material composition.
  • the radical polymerizable compound (A) includes a radical polymerizable compound having a hydroxyl group, a radical polymerizable compound having one or more cyclic structures, and an alkyl (meth) acrylate.
  • the cationically polymerizable compound (B) contains a hydroxyl group-containing compound and / or an oxirane compound, and the optical modeling ink set according to (1) or (2). .
  • the content of the radical polymerizable compound (A) is 10 to 90 parts by weight with respect to 100 parts by weight as a whole of the composition for a model material.
  • the ink set for stereolithography according to any one of (5) to (5).
  • the content of the cationic polymerizable compound (B) is 10 to 90 parts by weight with respect to 100 parts by weight of the entire composition for the model material.
  • the content of the radical polymerization initiator (C) is 0.5 to 10 parts by weight with respect to 100 parts by weight of the entire model material composition (1)
  • the content of the cationic polymerization initiator (D) is 0.5 to 10 parts by weight with respect to 100 parts by weight of the entire model material composition.
  • the optical modeling ink set according to any one of 1) to (8).
  • the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is 25 to 45 parts by weight with respect to 100 parts by weight of the entire support material composition.
  • the content of the polyalkylene glycol (b) is 25 to 45 parts by weight with respect to 100 parts by weight of the whole composition for support material.
  • the content of the water-soluble organic solvent (c) is 5 parts by weight or more with respect to 100 parts by weight as a whole of the composition for a support material.
  • the content of the photopolymerization initiator (d) is 5 to 20 parts by weight with respect to 100 parts by weight of the entire support material composition.
  • the support material composition further comprises 0.05 to 3.0 parts by weight of a storage stabilizer (e) with respect to 100 parts by weight of the entire support material composition.
  • the optical modeling ink set according to any one of 1) to (14).
  • an optical modeling ink set for obtaining an optical modeling product with good dimensional accuracy, an optical modeling product modeled using the optical modeling ink set, and the optical modeling ink set are used. It is possible to provide a method for manufacturing an optically shaped article.
  • FIG. 1 is a figure showing typically process (I) in a manufacturing method of an optical modeling article concerning this embodiment.
  • FIG. 2 is a diagram schematically showing step (II) in the method for manufacturing an optically shaped product according to the present embodiment.
  • FIG. 3A is a top view of a cured product obtained by using each model material composition and each support material composition shown in Table 6.
  • FIG. 3B is a cross-sectional view taken along the line AA in FIG.
  • (meth) acrylate is a general term for acrylate and methacrylate, and means one or both of acrylate and methacrylate.
  • composition for model material ⁇ Radically polymerizable compound (A)>
  • the composition for model materials contained in the optical modeling ink set according to the present embodiment contains a radical polymerizable compound (A) having one or more ethylenic double bonds.
  • the radical polymerizable compound (A) is one or more functional groups selected from an alkoxy group, an ether group, a hydroxyl group and a keto group (excluding a carbonyl group directly bonded to an ethylenic double bond group).
  • the radically polymerizable compound (A1) having a group is preferable. Among these, it is more preferable that the radical polymerizable compound (A1) has a hydroxyl group.
  • examples of the compound having an alkoxy group include alkoxy group-containing (meth) acrylic acid such as 2-methoxyethyl (meth) acrylate and 2-ethoxyethyl (meth) acrylate.
  • esters (meth) acrylic acid-polyethylene glycols obtained by dehydration condensation of (meth) acrylic acid with methoxypolyethylene glycol; alkoxysilyl group-containing radical polymerization such as (meth) allylchlorosilane and (meth) allyltrimethoxysilane Compounds such as N-alkoxy group-containing (meth) acrylamides such as N-methoxymethyl (meth) acrylamide and N-methoxyethyl (meth) acrylamide. These may be used alone or in combination of two or more.
  • examples of the compound having an ether group include alkylene oxide-containing (meth) acrylic acid derivatives such as alkylene oxide adducts of (meth) acrylic acid; (meth) acrylic acid Examples thereof include compounds obtained by dehydration condensation with alkyl-terminated polyethylene glycols such as lauroxy-polyethylene glycol, octoxypolyethylene glycol and stearoxy. These may be used alone or in combination of two or more.
  • examples of the compound having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 1-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • Acrylic acid compounds having a hydroxyl group such as: (meth) acrylic acid glycidyl lauric acid ester, (meth) acrylic acid glycidyl oleic acid ester, (meth) acrylic acid glycidyl stearic acid ester and the like (meth) acrylic acid ester
  • examples of the compound having a keto group include one carbonyl group such as (meth) acrylic acid (methoxycarbonyl) methyl and (meth) acrylic acid (methoxycarbonyl) ethyl.
  • Aliphatic (meth) acrylic esters aliphatic (meth) having two carbonyl groups such as 2-oxobutanoylethyl (meth) acrylate and 2-oxobutanoylpropyl (meth) acrylate Acrylates; (meth) acrylamides having a carbonyl group such as N- (2-oxobutanoylethyl) (meth) acrylamide, N- (2-oxobutanoylpropyl) (meth) acrylamide; acetic acid (meth) (Meth) allyl esters of saturated carboxylic acids such as allyl and propionic acid (meth) allyl; cis-succinic acid ⁇ , ⁇ -unsaturated double bond group-containing compounds containing polyfunctional unsaturated bonds such as allyl and 2-methylidene succinate; vinyl esters of carboxylic acids such as vinyl formate, vinyl acetate and vinyl propionate; Aliphatic vinyl compounds having an
  • the radical polymerizable compound (A1) may be an oligomer having a weight average molecular weight (Mw) of 300 to 30,000.
  • the oligomer is preferably at least one selected from polyester oligomers, polyurethane oligomers, polyepoxy oligomers, and polyacrylic oligomers.
  • the polyester-based oligomer includes 1 at the end of the polyester obtained by polycondensation of a polybasic acid and a polyhydric alcohol on the main chain skeleton or a hydroxyl group in the polyester chain, and a molecule such as (meth) acrylic acid or maleic acid.
  • a compound obtained by esterification with an ⁇ , ⁇ -ethylenically unsaturated double bond group-containing compound having one or more carboxyl groups, a carboxyl group in the terminal or polyester chain of polyester, and 2-hydroxy (meth) acrylate Obtained from a compound obtained by esterification with a compound having a hydroxyl group such as ethyl or 2-hydroxypropyl (meth) acrylate, an acid anhydride, glycidyl (meth) acrylate and a compound having at least one hydroxyl group And polyester oligomers. These may be used alone or in combination of two or more.
  • Examples of the polyurethane oligomer include a compound obtained by reacting a compound having one or more isocyanate groups with the compound having a hydroxyl group; reacting a compound having one or more isocyanate groups and the polyhydric alcohol.
  • the polyepoxy oligomer includes an ⁇ , ⁇ -unsaturated compound having a glycidyl group and one or more hydroxyl groups or carboxyl groups in a molecule such as hydroxyethyl (meth) acrylate, (meth) acrylic acid, and maleic acid.
  • a compound obtained by a reaction with a double bond group-containing compound that is, a compound having substantially no glycidyl group and having an ⁇ , ⁇ -unsaturated double bond group-containing compound.
  • polyepoxy oligomer examples include bisphenol type polyepoxy oligomer, epoxidized oil type polyepoxy oligomer, phenol novolac type polyepoxy oligomer, and alicyclic polyepoxy oligomer. These may be used alone or in combination of two or more.
  • polyacrylic oligomer examples include a modified polyether having an ⁇ , ⁇ -unsaturated double bond group; an amine-modified ⁇ , ⁇ -unsaturated double bond group-containing compound; an alkyd resin, a spiroacetal resin,
  • the radical polymerizable compound (A) may be a radical polymerizable compound (A2) having one or more cyclic structures.
  • the radical polymerizable compound (A2) include a radical polymerizable compound (A2-1) having a ring structure containing no hetero atom in the molecule, and a radical polymerizable compound having a ring structure containing a hetero atom in the molecule.
  • examples thereof include compound (A2-2), a radically polymerizable compound (A2-3) having one or more cyclic structures and a hydroxyl group.
  • radical polymerizable compound (A2-1) examples include (meth) acrylic acid cyclic esters such as cyclohexyl (meth) acrylate, 1-methyl-1-cyclopentyl (meth) acrylate, and isobornyl (meth) acrylate.
  • (meth) acrylic acid cyclic esters such as cyclohexyl (meth) acrylate, 1-methyl-1-cyclopentyl (meth) acrylate, and isobornyl (meth) acrylate.
  • (meth) acrylic acid cyclic esters such as cyclohexyl (meth) acrylate, 1-methyl-1-cyclopentyl (meth) acrylate, and isobornyl (meth) acrylate.
  • (meth) acrylic acid cyclic esters such as cyclohexyl (meth) acrylate, 1-methyl-1-cyclopentyl (meth) acrylate, and isobornyl (meth) acrylate.
  • Aromatic vinyl monomers such as styrene and ⁇ -methylstyrene; Etc. These may be used alone or in combination of two or more.
  • radical polymerizable compound (A2-2) examples include pentamethylpiperidinyl (meth) acrylate, tetramethylpiperidinyl (meth) acrylate, 4- (pyrimidin-2-yl) piperazin-1-yl ( Heterocyclic (meth) acrylic acid esters containing a nitrogen atom such as (meth) acrylate;
  • Vinyl group-containing compounds having a nitrogen atom-containing heterocycle such as 1-vinylpyrrole and 1-vinyl-2-imidazoline;
  • Heterocyclic acrylamides such as 4-acryloylmorpholine, N- [2- (1H-imidazol-5-yl) ethyl] (meth) acrylamide;
  • Maleimide derivatives having both nitrogen and oxygen atoms such as maleimide and methylmaleimide
  • Vinyl group-containing compounds having a heterocyclic structure containing an oxygen atom in addition to a nitrogen atom such as 2-vinyloxazole and 2-phenyl-4-vinyloxazole;
  • Heterocycle-containing (meth) acrylic acid esters having an oxygen atom such as (meth) acrylic acid glycidyl, (meth) acrylic acid (3,4-epoxycyclohexyl) methyl;
  • Glycidyl group-containing vinyl esters such as glycidyl cinnamate, allyl glycidyl ether, 1,3-butadiene monooxirane;
  • Examples thereof include ethenyl group-containing compounds having a heterocyclic structure containing a sulfur atom in addition to a nitrogen atom, such as 2-vinylthiazol and 4-methyl-5-vinylthiazole. These may be used alone or in combination of two or more.
  • radical polymerizable compound (A2-3) examples include cyclic structures other than hydroxyl groups and heterocycles such as 1,2-cyclohexanedimethanol (meth) acrylic acid and 1,3-cyclohexanedimethanol (meth) acrylic acid.
  • Hydroxyl-containing benzophenone-based (meth) acrylic esters such as 2-hydroxy-4- ⁇ 2- (meth) acryloyloxy ⁇ ethoxybenzophenone and 2-hydroxy-4- ⁇ 2- (meth) acryloyloxy ⁇ butoxybenzophenone;
  • the radical polymerizable compound (A) may be a radical polymerizable compound (A3) other than the radical polymerizable compound (A1) and the radical polymerizable compound (A2).
  • examples of the radical polymerizable compound (A3) include (meth) acrylic acid-mono or di-alkylamino esters such as monomethylaminoethyl (meth) acrylate and monoethylaminoethyl (meth) acrylate;
  • (Meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, isobutyl (meth) acrylate;
  • (meth) acrylic acid esters containing (meth) acrylic acid (meth) allyl, (meth) acrylic acid 1-butenyl and the like and further containing unsaturated groups. These may be used alone or in combination of two or more.
  • the radical polymerizable compound (A) is selected from a radical polymerizable compound having a hydroxyl group, a radical polymerizable compound having one or more cyclic structures, and a radical polymerizable compound of (meth) acrylic acid alkyl esters. It is preferable to contain 1 or more types.
  • the content of the radical polymerizable compound (A) is preferably 10 to 90 parts by weight with respect to 100 parts by weight of the entire model material composition.
  • the content of the radical polymerizable compound (A) is more preferably 50 parts by weight or more.
  • the said content is the sum total of content of each (A) component.
  • the model material composition contained in the optical modeling ink set according to the present embodiment contains a cationically polymerizable compound (B) having one or more ethylenic double bonds.
  • the cationically polymerizable compound (B) is preferably a cyclic hetero compound or a vinyl ether compound, and more preferably an oxirane compound that is a 3-membered ring ether.
  • oxirane compound examples include aliphatic cyclic ether groups such as oxirane and methyloxirane; 3,4-oxiranecyclohexylmethyl 3,4-oxiranecyclohexanecarboxylate, 3,4-oxirane-6-methylcyclohexylmethyl3,4 A group in which one or a plurality of hydrogen atoms are removed from a compound containing a three-membered cyclic ether group bonded to an alicyclic ring such as oxirane-6-methylcyclohexanecarboxylate, A compound bonded to a chemical structure.
  • aliphatic cyclic ether groups such as oxirane and methyloxirane
  • 3,4-oxiranecyclohexylmethyl 3,4-oxiranecyclohexanecarboxylate 3,4-oxirane-6-methylcyclohexylmethyl3,4
  • a group in which one or a plurality of hydrogen atoms are removed from a compound containing a
  • the oxirane compound is preferably an oxirane compound having an aromatic ring.
  • substituent having an aromatic ring include phenyl and phenylene.
  • An oxirane compound having an aromatic ring is, for example, a compound in which a group in which one or more hydrogen atoms in a benzene derivative such as benzene or toluene are removed is bonded to another chemical structure.
  • examples of the oxirane compound having an aromatic ring include cycloalkenes such as cyclopropene and cyclobutene;
  • Aromatic polycyclic compounds such as biphenyl and triphenylmethane
  • Carbon-fused bicyclic systems such as pentalene and indene
  • Carbon-fused tricyclic systems such as as-indacene and s-indacene;
  • Carbon-fused tetracyclic systems such as Trindene and Trindane;
  • Carbon-fused pentacyclic systems such as picene and perylene
  • the cyclic hetero compound other than the oxirane compound includes a 4-membered ether oxetanyl group-containing compound (oxetane compound), a 5-membered or higher cyclic ether compound, two or more oxygen or a compound having a hetero group other than oxygen. , Cyclic ester compounds, cyclic formal compounds, cyclic carbonate compounds, fluorine-containing cyclic compounds, and the like.
  • the cationically polymerizable compound (B) may be a compound having a hydroxyl group.
  • the compound having a hydroxyl group include bisphenol type epoxy resin, glycerin monoglycidyl ether, glycerin diglycidyl ether, 3-ethyl-3-hydroxymethyloxetane, 4- (hydroxymethyl) -1,3-dioxolane-2- ON, 2-hydroxyethyl vinyl ether, diethylene glycol monovinyl ether, 4-hydroxybutyl vinyl ether and the like.
  • the cationic polymerizable compound (B) may contain one kind or a combination of two or more kinds.
  • the cationically polymerizable compound (B) preferably contains at least one selected from an oxirane compound that is a 3-membered ring ether and an oxetane compound that is a 4-membered ring ether.
  • the content of the cationic polymerizable compound (B) is preferably 10 to 90 parts by weight with respect to 100 parts by weight of the entire model material composition.
  • the content of the cationic polymerizable compound (B) is more preferably 50 parts by weight or more.
  • the said content is the sum total of content of each (B) component.
  • the model material composition contained in the optical modeling ink set according to the present embodiment contains a radical polymerization initiator (C).
  • radical polymerization initiator (C) examples include acylphosphine oxide compounds, acetophenone compounds, ⁇ -aminoalkylphenone compounds, ⁇ -hydroxyketone compounds, benzophenone compounds, xanthofluorenone compounds, benzaldehyde.
  • anthraquinone compounds benzoinpropyl ether, benzoin ethyl ether, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1 -Phenylpropan-1-one, 4-thioxanthone, camphorquinone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one and the like. These may be used alone or in combination of two or more.
  • radical polymerization initiator (C) examples include Irgacure 184,907,651,1700,1800,819,369,261 (manufactured by IGM Resins), DAROCUR-TPO (manufactured by IGM Resins), 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide), Darocur-1173 (IGM Resins), Ezacure KIP150, TZT (Nihon Shibel Hegner), Kayacure BMS, Kayacure DMBI (Nippon Kayaku) Can be mentioned.
  • the radical polymerization initiator (C) may be a compound having at least one (meth) acryloyl group in the molecule.
  • the content of the radical polymerization initiator (C) is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the entire model material composition. When the content of the radical polymerization initiator (C) is in the above range, the curability of the model material becomes good.
  • the content of the radical polymerization initiator (C) is more preferably 0.8 parts by weight or more, and more preferably 5 parts by weight or less.
  • the said content is the sum total of content of each (C) component.
  • the model material composition contained in the optical modeling ink set according to the present embodiment contains a cationic polymerization initiator (D).
  • a cationic polymerization initiator (D) examples include sulfonium salt compounds such as UVACURE1590 (manufactured by Daicel-Cytec) and CPI-100P (manufactured by San Apro); IRGACURE250 (manufactured by Ciba Specialty Chemicals), WPI- 113 (manufactured by Wako Pure Chemical Industries, Ltd.) and iodonium salt compounds such as Rp-2074 (manufactured by Rhodia Japan). These may be used alone or in combination of two or more.
  • the content of the cationic polymerization initiator (D) is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the entire model material composition. When the content of the cationic polymerization initiator (D) is in the above range, the curability of the model material becomes good.
  • the content of the cationic polymerization initiator (D) is more preferably 1 part by weight or more, and more preferably 7 parts by weight or less.
  • the said (D) component is contained 2 or more types, the said content is the sum total of content of each (D) component.
  • the composition for a model material included in the optical modeling ink set according to the present embodiment can contain other additives as necessary within a range that does not impair the effects of the present invention.
  • other additives include an antioxidant, a colorant, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, a chain transfer agent, and a filler. These may be used alone or in combination of two or more.
  • the method for producing the model material composition included in the optical modeling ink set according to the present embodiment is not particularly limited.
  • the components (A) to (D) and, if necessary, the other additives can be produced by uniformly mixing them using a mixing and stirring device or the like.
  • the composition for a model material thus produced preferably has a viscosity at 25 ° C. of 70 mPa ⁇ s or less from the viewpoint of improving dischargeability from an inkjet head.
  • the measurement of the viscosity of the composition for model materials is performed using R100 type
  • composition for support material contains a water-soluble monofunctional ethylenically unsaturated monomer (a).
  • the water-soluble monofunctional ethylenically unsaturated monomer (a) is a component that is polymerized by light irradiation to cure the support material composition. Moreover, it is a component which dissolves the support material obtained by photocuring the composition for support material quickly in water.
  • the water-soluble monofunctional ethylenically unsaturated monomer (a) is a water-soluble polymerizable monomer having one ethylenic double bond in a molecule having a property of being cured by energy rays.
  • Examples of the water-soluble monofunctional ethylenically unsaturated monomer (a) include a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms [for example, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4 -Hydroxybutyl (meth) acrylate, etc.], Mn 200-1,000 alkylene oxide adduct-containing (meth) acrylate [polyethylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polyethylene glycol mono (meth) acrylate , Polypropylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms)
  • N, N′-dimethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, (meth) acryloylmorpholine and the like are preferable from the viewpoint of improving the curability of the support material composition.
  • N-hydroxyethyl (meth) acrylamide and (meth) acryloylmorpholine are more preferable from the viewpoint of low skin irritation to the human body.
  • the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is 20 to 50 parts by weight with respect to 100 parts by weight of the entire support material composition.
  • the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is less than 20 parts by weight, the self-supporting property in the support material is not sufficient. Therefore, when the support material is disposed below the model material, the model material cannot be sufficiently supported. As a result, the dimensional accuracy of the model material is deteriorated.
  • the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) exceeds 50 parts by weight, the support material has poor solubility in water.
  • the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is preferably 25 parts by weight or more, and preferably 45 parts by weight or less.
  • the said content is the sum total of content of each (a) component.
  • composition for support materials contained in the optical modeling ink set according to this embodiment contains a polyalkylene glycol (b) containing an oxyethylene group and / or an oxypropylene group.
  • the polyalkylene glycol (b) can enhance the solubility of the support material in water.
  • the polyalkylene glycol (b) is obtained by adding at least ethylene oxide and / or propylene oxide to an active hydrogen compound.
  • examples of the polyalkylene glycol (b) include polyethylene glycol and polypropylene glycol. These may be used alone or in combination of two or more.
  • Examples of the active hydrogen compound include monohydric to tetrahydric alcohols and amine compounds. Among these, dihydric alcohol or water is preferable.
  • the number average molecular weight Mn of the polyalkylene glycol (b) is preferably 100 to 5,000.
  • Mn of the polyalkylene glycol (b) is within the above range, it is compatible with the water-soluble monofunctional ethylenically unsaturated monomer (a) before photocuring and the water-solubility after photocuring It is not compatible with the monofunctional ethylenically unsaturated monomer (a).
  • the Mn of the polyalkylene glycol (b) is more preferably 200 to 3,000, and further preferably 400 to 2,000.
  • the content of the polyalkylene glycol (b) is 20 to 49 parts by weight with respect to 100 parts by weight of the entire support material composition.
  • the content of the polyalkylene glycol (b) is less than 20 parts by weight, the support material is poor in solubility in water. If the immersion time in water until the support material is completely removed becomes longer, the model material expands slightly. As a result, the dimensional accuracy may deteriorate in the microstructure portion of the model material.
  • the content of the polyalkylene glycol (b) exceeds 49 parts by weight, the polyalkylene glycol (b) may ooze out when the support material composition is photocured.
  • the content of the polyalkylene glycol (b) is preferably 25 parts by weight or more, and preferably 45 parts by weight or less.
  • the said content is the sum total of content of each (b) component.
  • the composition for support material contained in the optical modeling ink set according to the present embodiment contains a water-soluble organic solvent (c).
  • the water-soluble organic solvent (c) is a component that improves the solubility of the support material in water. Moreover, it is a component which adjusts the composition for support materials to low viscosity.
  • water-soluble organic solvent (c) examples include ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol monoacetate, tripropylene glycol monoacetate, and tetraethylene glycol monoacetate.
  • the support material may be triethylene glycol monomethyl ether or dipropylene glycol monomethyl ether acetate. More preferred.
  • the content of the water-soluble organic solvent (c) is 35 parts by weight or less with respect to 100 parts by weight of the entire support material composition. When the content of the water-soluble organic solvent (c) exceeds 35 parts by weight, the water-soluble organic solvent (c) oozes when the support composition is photocured. When leaching of the water-soluble organic solvent (c) occurs, the polymerization reaction of the cationic polymerizable compound contained in the model material composition becomes difficult to proceed, resulting in insufficient curing of the model material. It becomes easy.
  • the content of the water-soluble organic solvent (c) is 5 parts by weight or more from the viewpoint of improving the solubility of the support material in water and adjusting the composition for support material to a low viscosity.
  • content of the said water-soluble organic solvent (c) is 30 weight part or less.
  • the said content is the sum total of content of each (c) component.
  • the composition for support material contained in the optical modeling ink set according to the present embodiment contains a photopolymerization initiator (d).
  • the photopolymerization initiator (d) is not particularly limited as long as it is a compound that promotes a radical reaction when irradiated with light having a wavelength in the ultraviolet, near ultraviolet, or visible light region.
  • Examples of the photopolymerization initiator (d) include benzoin compounds having 14 to 18 carbon atoms (eg, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether), and those having 8 to 18 carbon atoms.
  • Acetophenone compounds for example, acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one Diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, etc.], an anthraquinone compound having 14 to 19 carbon atoms [for example, 2 - Thioanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone, etc.], thioxanthone compounds having 13 to 17 carbon atoms [for example, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone
  • Ketal compounds having 16 to 17 carbon atoms [for example, acetophenone dimethyl ketal, benzyl dimethyl ketal, etc.], benzophenone compounds having 13 to 21 carbon atoms [for example, benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4 '-Bismethylaminobenzophenone, etc.], acylphosphine oxide compounds having 22 to 28 carbon atoms [eg 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis- (2,6-dioxy) Tokishibenzoiru) -2,4,4-trimethyl pentyl phosphine oxide, bis (2,4,6-trimethylbenzoyl) - phenyl phosphine oxide, etc.], a mixture of these compounds.
  • acylphosphine oxide compounds having 22 to 28 carbon atoms eg 2,4,6-trimethylbenzoyl-diphenyl-phosphin
  • 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide is preferable from the viewpoint of improving the light resistance of the model material obtained by photocuring the composition for model material.
  • examples of the available acyl phosphine oxide compound include DAROCURE TPO manufactured by BASF.
  • the content of the photopolymerization initiator (d) is preferably 1 to 20 parts by weight, and more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the entire support material composition.
  • the content of the photopolymerization initiator (d) is more preferably 7 parts by weight or more, and more preferably 18 parts by weight or less.
  • the said content is the sum total of content of each (d) component.
  • the composition for a support material included in the optical modeling ink set according to the present embodiment preferably contains a surface conditioner (e).
  • a surface conditioner e
  • the content of the surface conditioning agent (e) is preferably 0.005 to 3.0 parts by weight with respect to 100 parts by weight of the entire support material composition.
  • Examples of the surface conditioner (e) include silicone compounds.
  • Examples of the silicone compound include a silicone compound having a polydimethylsiloxane structure. Specific examples include polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane.
  • the composition for support material contained in the optical modeling ink set according to the present embodiment further contains a storage stabilizer (f).
  • the storage stabilizer (f) can enhance the storage stability of the composition. Further, clogging of the head caused by polymerization of the polymerizable compound by thermal energy can be prevented.
  • the content of the storage stabilizer (f) is preferably 0.05 to 3.0 parts by weight with respect to 100 parts by weight of the entire support material composition.
  • Examples of the storage stabilizer (f) include hindered amine compounds (HALS), phenolic antioxidants, phosphorus antioxidants, and the like. Specifically, hydroquinone, methoquinone, benzoquinone, p-methoxyphenol, hydroquinone monomethyl ether, hydroquinone monobutyl ether, TEMPO, 4-hydroxy-TEMPO, TEMPOL, cuperon Al, IRGASTAB UV-10, IRGASTAB UV-22, FIRSTCURE ST- 1 (manufactured by ALBEMARLE), t-butylcatechol, pyrogallol, TINUVIN 111 FDL, TINUVIN 144, TINUVIN 292, TINUVIN XP40, TINUVIN XP60, TINUVIN 400, etc. manufactured by BASF. These may be used alone or in combination of two or more. In addition, when the said (f) component is contained 2 or more types, the said content is the sum total of content of each (f) component.
  • the support material composition included in the optical modeling ink set according to the present embodiment may contain other additives as necessary within a range that does not impair the effects of the present invention.
  • other additives include an antioxidant, a colorant, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, a chain transfer agent, and a filler.
  • the method for producing the composition for support material included in the optical modeling ink set according to the present embodiment is not particularly limited.
  • the components (a) to (d) and, if necessary, the components (e) and (f) and other additives are uniformly mixed using a mixing and stirring device or the like. Can do.
  • the composition for a support material thus produced preferably has a viscosity at 25 ° C. of 70 mPa ⁇ s or less from the viewpoint of improving the dischargeability from the inkjet head.
  • the viscosity of the support material composition is measured according to JIS Z 8803 using an R100 viscometer.
  • optical modeling product and its manufacturing method The optical modeling product concerning this embodiment is modeled using the ink set for optical modeling concerning this embodiment. Specifically, a process of obtaining a support material by photocuring the above-described composition for support material (I) by photocuring the above-mentioned composition for model material by ink-jet stereolithography (I ) And the step (II) of removing the support material.
  • the said process (I) and the said process (II) are not specifically limited, For example, it is performed with the following method.
  • Drawing 1 is a figure showing typically process (I) in a manufacturing method of an optical modeling article concerning this embodiment.
  • the three-dimensional modeling apparatus 1 includes an inkjet head module 2 and a modeling table 3.
  • the ink jet head module 2 includes a model material ink jet head 21 filled with a model material composition, a support material ink jet head 22 filled with a support material composition, a roller 23, and a light source 24.
  • the inkjet head module 2 is scanned in the X direction and the Y direction with respect to the modeling table 3 in FIG. 1, the model material composition is discharged from the model material inkjet head 21, and the support material inkjet is performed.
  • the support material composition is discharged from the model material inkjet head 21, and the support material inkjet is performed.
  • a composition layer composed of the model material composition and the support material composition is formed.
  • the roller 23 is used and the excess composition for model materials and the composition for support materials are removed.
  • these compositions are irradiated with light using a light source 24 to form a hardened layer made of the model material 4 and the support material 5 on the modeling table 3.
  • the modeling table 3 is lowered in the Z direction in FIG. 1 by the thickness of the hardened layer.
  • a hardened layer made of the model material 4 and the support material 5 is further formed on the hardened layer by the same method as described above.
  • a cured product 6 composed of the model material 4 and the support material 5 is produced.
  • Examples of the light for curing the composition include far infrared rays, infrared rays, visible rays, near ultraviolet rays, and ultraviolet rays.
  • near ultraviolet rays or ultraviolet rays are preferable from the viewpoint of easy and efficient curing work.
  • Examples of the light source 24 include a mercury lamp, a metal halide lamp, an ultraviolet LED, and an ultraviolet laser. Among these, an ultraviolet LED is preferable from the viewpoint of miniaturization of equipment and power saving. In addition, when ultraviolet LED is used as the light source 24, it is preferable that the integrated light quantity of an ultraviolet-ray is about 500 mJ / cm ⁇ 2 >.
  • FIG. 2 is a diagram schematically showing step (II) in the method for manufacturing an optically shaped product according to the present embodiment.
  • the cured product 6 made of the model material 4 and the support material 5 produced in step (I) is immersed in a solvent 8 placed in a container 7. Thereby, the support material 5 can be dissolved in the solvent 8 and removed.
  • Examples of the solvent 8 for dissolving the support material include ion exchange water, distilled water, tap water, and well water. Among these, ion-exchanged water is preferable from the viewpoint of relatively few impurities and being available at low cost.
  • the stereolithographic product according to the present embodiment is obtained through the above steps.
  • a model material having elongation and elasticity can be obtained by photocuring the model material composition contained in the optical modeling ink set.
  • a support material excellent in self-supporting property can be obtained by photocuring the support material composition contained in the optical modeling ink set.
  • the stereolithographic product manufactured using such a model material and support material has good dimensional accuracy.
  • composition for support material (Manufacture of composition for support material)
  • the components (a) to (f) were uniformly mixed using a mixing and stirring device to produce compositions for support materials of Examples S1 to S17 and Comparative Examples s1 to s6. . And the following evaluation was performed using these compositions for support materials.
  • the composition for a support material was cured using an ultraviolet LED as an irradiation means.
  • the composition for support materials of Example S17 reference example
  • the content of the photopolymerization initiator (d) exceeds 20 parts by weight
  • the photopolymerization initiator (d) is not sufficiently dissolved and dissolved. The rest has occurred. Thereby, even if it irradiated with ultraviolet LED to the composition for support materials of Example S17, it did not harden
  • the support material composition of Example S17 was cured even when the content of the photopolymerization initiator (d) was 25 parts by weight when a mercury lamp or a metal halide lamp was used as the irradiation means.
  • HEAA N-hydroxyethylacrylamide [HEAA (ethylenic double bond / one molecule: 1), manufactured by KJ Chemicals]
  • ACMO acryloyl morpholine [ACMO (ethylenic double bond / one molecule: one), manufactured by KJ Chemicals]
  • DMAA N, N′-dimethylacrylamide [DMAA (ethylenic double bond / one molecule: 1), manufactured by KJ Chemicals]
  • PPG-400 Polypropylene glycol [Uniol D400 (molecular weight 400), manufactured by NOF Corporation]
  • PPG-1000 Polypropylene glycol [Uniol D1000 (molecular weight 1000), manufactured by NOF Corporation]
  • PEG-400 Polyethylene glycol [PEG # 400 (molecular weight 400), manufactured by NOF Corporation]
  • PEG-1000 Polyethylene glycol [PEG # 1000 (molecular weight 1000), manufactured by NOF Corporation]
  • MTG Triethylene glycol monomethyl ether [MTG,
  • a glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm ⁇ 200 mm ⁇ thickness 5 mm) used for evaluation is a quadrangle in plan view. Spacers with a thickness of 1 mm were arranged on the four sides of the upper surface of the glass plate to form a 10 cm ⁇ 10 cm square region. After casting the composition for each support material in the region, another glass plate was placed on top of each other. Then, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) was used as an irradiating means, and cured by irradiating with ultraviolet rays so that the total irradiation light amount was 500 mJ / cm 2 , thereby obtaining a support material.
  • NCCU001E manufactured by Nichia Corporation
  • the support material was released from the glass plate and cut into a shape of 10 mm length and 10 mm width by a cutter to obtain a test piece.
  • 10 test pieces were stacked to obtain a test piece group having a height of 10 mm.
  • the test piece group was placed in an oven set at 30 ° C. with a weight of 100 g from the top, and left for 1 hour. Thereafter, the shape of the test piece was observed, and the independence was evaluated according to the following criteria.
  • the evaluation results are shown in Tables 4 and 5. ⁇ : No change in shape. ⁇ : The shape changed slightly and the weight was inclined. X: The shape changed greatly.
  • the compositions for the support materials of Examples S1 to S16 that satisfy all the requirements of the present invention had a viscosity suitable for ejection from an inkjet head.
  • the support materials obtained by photocuring the support material compositions of Examples S1 to S16 were highly soluble in water and suppressed oil leaching.
  • the support materials obtained by photocuring the support material compositions of Examples S1 to S15 had sufficient self-supporting properties.
  • the composition for a support material of Example S16 (reference example) contains less than 5 parts by weight of the photopolymerization initiator (d), the radical reaction is promoted even when irradiated with an ultraviolet LED. However, the support material obtained was not sufficiently self-supporting.
  • the mercury lamp or metal halide lamp is used as the irradiation means, the support material composition of Example S16 has sufficient support material even when the content of the photopolymerization initiator (d) is 3 parts by weight. Independent.
  • the support material composition of Comparative Example s1 was not sufficient for the support material to be self-supporting. .
  • the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) exceeds 50 parts by weight, and thus the solubility of the support material in water was low.
  • the composition for the support material of Comparative Example s3 had a polyalkylene glycol (b) content exceeding 49 parts by weight, the viscosity was high and oily oozing occurred in the support material.
  • the support material composition of Comparative Example s4 since the content of the water-soluble organic solvent (c) exceeded 35 parts by weight, oily oozing occurred in the support material.
  • the composition for support material of Comparative Example s5 had a low solubility of the support material in water because the polyalkylene glycol (b) content was less than 20 parts by weight. Further, in the support material composition of Comparative Example s5, since the content of the water-soluble organic solvent (c) exceeded 35 parts by weight, oily oozing occurred in the support material. Since the composition for the support material of Comparative Example s6 had a polyalkylene glycol (b) content exceeding 49 parts by weight, the viscosity was high and oily oozing occurred in the support material.
  • ⁇ Optical modeling products> evaluation of dimensional accuracy of stereolithography products
  • a cured product was prepared using an optical modeling ink set obtained by combining each of the model material compositions shown in Table 1 and each of the support material compositions shown in Tables 2 and 3.
  • the shape and target dimensions of the cured product are shown in FIGS. 3 (a) and 3 (b).
  • the process of discharging each model material composition and each support material composition from the inkjet head was performed so that the resolution was 600 ⁇ 600 dpi and the thickness of one layer of the composition layer was about 13 to 14 ⁇ m. .
  • each composition for model materials and each composition for support materials uses an LED light source with a wavelength of 385 nm installed on the back side of the inkjet head with respect to the scanning direction, and an illuminance of 250 mW / cm. 2.
  • the measurement was performed under the condition of an integrated light amount of 300 mJ / cm 2 per composition layer.
  • the support material was removed by immersing the cured product in ion-exchanged water to obtain a stereolithographic product. Thereafter, the obtained stereolithography product was allowed to stand in a desiccator for 24 hours and sufficiently dried. Through the above-described steps, the test No. Five to three stereolithographic products were manufactured.
  • test No. manufactured using the optical modeling ink set that satisfies all the requirements of the present invention.
  • the optically shaped products 1 and 2 had good dimensional accuracy.
  • the ink set for optical modeling according to the present invention can be suitably used when an optical modeling product with good dimensional accuracy is manufactured using an inkjet optical modeling method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention addresses the problem of providing: an ink set for stereolithography which is for obtaining a stereolithographic article exhibiting excellent dimensional accuracy; a stereolithographic article formed using the ink set for stereolithography; and a method for producing the stereolithographic article using the ink set for stereolithography. An ink set for stereolithography according to the present invention is provided with a model material composition and a support material composition. The model material composition includes: a radically polymerizable compound (A); a cationically polymerizable compound (B); a radical polymerization initiator (C); and a cationic polymerization initiator (D). The support material composition includes: 20-50 parts by weight of water-soluble monofunctional ethylenically unsaturated monomers (a); 20-49 parts by weight of polyalkylene glycol (b) including oxyethylene groups and/or oxypropylene groups; 35 or fewer parts by weight of a water-soluble organic solvent (c); and 1-20 parts by weight of a photopolymerization initiator (d).

Description

光造形用インクセット、光造形品、及び、光造形品の製造方法Optical modeling ink set, optical modeling product, and manufacturing method of optical modeling product
 本特許出願は日本国特許出願第2017-016123号(出願日:2017年1月31日)についてパリ条約上の優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本発明は、インクジェット光造形法に用いられる光造形用インクセット、該光造形用インクセットを用いて造形された光造形品、及び、前記光造形用インクセットを用いた光造形品の製造方法に関する。
This patent application claims priority under the Paris Convention for Japanese Patent Application No. 2017-016123 (filing date: January 31, 2017), which is hereby incorporated by reference in its entirety. It shall be incorporated into the book.
The present invention relates to an optical modeling ink set used in an ink jet optical modeling method, an optical modeling product modeled using the optical modeling ink set, and a method of manufacturing an optical modeling product using the optical modeling ink set. About.
 従来、立体造形物を作成する方法として、紫外線等を照射することにより硬化する光硬化性組成物を用いた造形法が広く知られている。具体的に、このような造形法では、光硬化性組成物に紫外線等を照射して硬化させることにより、所定の形状を有する硬化層を形成する。その後、該硬化層の上にさらに光硬化性組成物を供給して硬化させることにより、新たな硬化層を形成する。前記工程を繰り返し行うことにより、立体造形物を作製する。 Conventionally, a modeling method using a photocurable composition that is cured by irradiating ultraviolet rays or the like is widely known as a method of creating a three-dimensional modeled object. Specifically, in such a modeling method, the cured layer having a predetermined shape is formed by irradiating the photocurable composition with ultraviolet rays or the like to cure. Thereafter, a photocurable composition is further supplied onto the cured layer and cured to form a new cured layer. A three-dimensional model is produced by repeating the above steps.
 前記造形法の中でも、近年、ノズルから光硬化性組成物を吐出させ、その直後に紫外線等を照射して硬化させることにより、所定の形状を有する硬化層を形成するインクジェット方式による光造形法(以下、インクジェット光造形法という)が報告されている(特許文献1~4)。インクジェット光造形法は、光硬化性組成物を貯留する大型の樹脂液槽及び暗室の設置が不要である。そのため、従来法に比べて、造形装置を小型化することができる。インクジェット光造形法は、CAD(Computer Aided Design)データに基づいて、自由に立体造形物を作成可能な3Dプリンターによって実現される造形法として、注目されている。 Among the modeling methods, in recent years, an optical modeling method by an ink jet method for forming a cured layer having a predetermined shape by discharging a photocurable composition from a nozzle and immediately irradiating it with ultraviolet rays or the like to cure. Hereinafter, ink jet stereolithography is reported (Patent Documents 1 to 4). Inkjet stereolithography does not require the installation of a large resin bath and a dark room for storing the photocurable composition. Therefore, the modeling apparatus can be reduced in size compared with the conventional method. Inkjet stereolithography is attracting attention as a modeling method realized by a 3D printer that can freely create a three-dimensional model based on CAD (Computer Aided Design) data.
 インクジェット光造形法において、中空形状等の複雑な形状を有する光造形品を造形する場合には、モデル材を支えるために、該モデル材とサポート材とを組み合わせて形成する(特許文献1、2及び4)。サポート材は、モデル材と同様に、光硬化性組成物に紫外線等を照射して硬化させることにより作成される。モデル材を作成した後は、サポート材を、物理的に剥離する、又は、有機溶媒もしくは水に溶解させることにより、前記サポート材を除去することができる。例えば、特許文献4には、サポート材の水への溶解性を向上させるため、ポリオキシプロピレングリコール、水等の非重合性成分を多く含有するサポート材用組成物が開示されている。 In the ink jet stereolithography method, when modeling a stereolithography product having a complicated shape such as a hollow shape, the model material and the support material are formed in combination to support the model material (Patent Documents 1 and 2). And 4). The support material is created by irradiating the photocurable composition with ultraviolet rays or the like and curing the same as the model material. After the model material is created, the support material can be removed by physically peeling the support material or dissolving the support material in an organic solvent or water. For example, Patent Document 4 discloses a composition for a support material containing a large amount of non-polymerizable components such as polyoxypropylene glycol and water in order to improve the solubility of the support material in water.
 従来、光硬化性組成物には、ラジカル重合反応により硬化するラジカル重合性化合物が含有されている(特許文献2~4)。 Conventionally, a photopolymerizable composition contains a radical polymerizable compound that is cured by a radical polymerization reaction (Patent Documents 2 to 4).
特開2004-255839号公報JP 2004-255839 A 特開2010-155889号公報JP 2010-155889 A 特開2010-155926号公報JP 2010-155926 A 特開2012-111226号公報JP 2012-111226 A
 しかしながら、ラジカル重合性化合物を含有する光硬化性組成物は、該光硬化性組成物を硬化することにより得られる硬化物の硬化収縮が大きいという問題があった。一方、ラジカル重合性化合物に比べて、カチオン重合性化合物は、水の影響を受けやすい。そのため、前記カチオン重合性化合物は、水が存在する環境下において、重合反応が進みにくくなり、その結果、硬化不足が生じやすくなるという問題があった。したがって、インクジェット光造形法において、カチオン重合性化合物を含有するモデル材用組成物と、従来の非重合性成分を多く含有するサポート材用組成物とを用いた場合、前記モデル材用組成物を光硬化させることにより得られるモデル材の硬化不足が生じやすくなる。その結果、前記モデル材用組成物と前記サポート材用組成物とを用いて造形される光造形品は、寸法精度が劣るという問題があった。 However, the photocurable composition containing a radical polymerizable compound has a problem that the cured shrinkage of a cured product obtained by curing the photocurable composition is large. On the other hand, cationically polymerizable compounds are more susceptible to water than radically polymerizable compounds. Therefore, the cationically polymerizable compound has a problem that the polymerization reaction is difficult to proceed in an environment where water is present, and as a result, insufficient curing tends to occur. Therefore, in the ink jet stereolithography method, when the composition for a model material containing a cationic polymerizable compound and the conventional composition for a support material containing a large amount of non-polymerizable components are used, the composition for a model material is Insufficient curing of the model material obtained by photocuring tends to occur. As a result, there has been a problem that an optically shaped article that is shaped using the model material composition and the support material composition has poor dimensional accuracy.
 本発明は、前記現状に鑑みてなされたものであり、寸法精度が良好な光造形品を得るための光造形用インクセット、該光造形用インクセットを用いて造形された光造形品、及び、前記光造形用インクセットを用いた光造形品の製造方法を提供することを目的とする。 The present invention has been made in view of the above situation, and an optical modeling ink set for obtaining an optical modeling product with good dimensional accuracy, an optical modeling product modeled using the optical modeling ink set, and An object of the present invention is to provide a method for producing an optical modeling product using the optical modeling ink set.
 本発明者らは、サポート材用組成物の非重合成分及び水溶性単官能エチレン性不飽和単量体の含有量を所定の範囲に規定することにより、カチオン重合性化合物を含有するモデル材用組成物を光硬化させることにより得られるモデル材の硬化不足が抑制されることを見出した。すなわち、本発明者らは、カチオン重合性化合物を含有するモデル材用組成物を用いた場合でも、前記サポート材用組成物を用いることにより、寸法精度が良好な光造形品を造形することが可能であることを見出した。 The present inventors define a content of the non-polymerized component and the water-soluble monofunctional ethylenically unsaturated monomer of the support material composition within a predetermined range, thereby providing a model material containing a cationically polymerizable compound. It has been found that insufficient curing of the model material obtained by photocuring the composition is suppressed. That is, the present inventors can form an optically shaped article with good dimensional accuracy by using the support material composition, even when a model material composition containing a cationically polymerizable compound is used. I found it possible.
 本発明は、前記知見に基づいてなされたものであり、その要旨は、以下の通りである。 The present invention has been made based on the above findings, and the gist thereof is as follows.
 (1)インクジェット光造形法に用いられ、かつ、モデル材を造形するために使用されるモデル材用組成物と、サポート材を造形するために使用されるサポート材用組成物とを組み合わせてなる光造形用インクセットであって、
 前記モデル材用組成物は、
 エチレン性二重結合を1個以上有するラジカル重合性化合物(A)と、
 エチレン性二重結合を1個以上有するカチオン重合性化合物(B)と、
 ラジカル重合開始剤(C)と、
 カチオン重合開始剤(D)と、
 を含有し、ここで、前記カチオン重合性化合物(B)は環状ヘテロ化合物又はビニルエーテル化合物であり、
 前記サポート材用組成物は、該サポート材用組成物全体100重量部に対して、
 20~50重量部の水溶性単官能エチレン性不飽和単量体(a)と、
 20~49重量部のオキシエチレン基及び/又はオキシプロピレン基を含むポリアルキレングリコール(b)と、
 35重量部以下の水溶性有機溶剤(c)と、
 1~20重量部の光重合開始剤(d)と、
 を含有する、光造形用インクセット。
(1) A combination of a composition for a model material that is used in an ink jet optical modeling method and is used for modeling a model material, and a composition for a support material used for modeling a support material. An ink set for stereolithography,
The model material composition is:
A radically polymerizable compound (A) having at least one ethylenic double bond;
A cationically polymerizable compound (B) having one or more ethylenic double bonds;
A radical polymerization initiator (C);
A cationic polymerization initiator (D);
Wherein the cationically polymerizable compound (B) is a cyclic hetero compound or a vinyl ether compound,
The support material composition is based on 100 parts by weight of the entire support material composition.
20 to 50 parts by weight of a water-soluble monofunctional ethylenically unsaturated monomer (a),
A polyalkylene glycol (b) containing 20 to 49 parts by weight of an oxyethylene group and / or an oxypropylene group;
35 parts by weight or less of a water-soluble organic solvent (c),
1 to 20 parts by weight of a photopolymerization initiator (d),
An ink set for stereolithography, containing
 (2)前記モデル材用組成物において、前記ラジカル重合性化合物(A)は、ヒドロキシル基を有するラジカル重合性化合物、1以上の環状構造を有するラジカル重合性化合物、及び、(メタ)アクリル酸アルキルエステル類のラジカル重合性化合物から選択される1種以上を含有する、前記(1)に記載の光造形用インクセット。 (2) In the composition for model material, the radical polymerizable compound (A) includes a radical polymerizable compound having a hydroxyl group, a radical polymerizable compound having one or more cyclic structures, and an alkyl (meth) acrylate. The optical modeling ink set according to (1) above, which contains at least one selected from radically polymerizable compounds of esters.
 (3)前記モデル材用組成物において、前記カチオン重合性化合物(B)は、水酸基を有する化合物及び/又はオキシラン化合物を含有する、前記(1)又は(2)に記載の光造形用インクセット。 (3) In the model material composition, the cationically polymerizable compound (B) contains a hydroxyl group-containing compound and / or an oxirane compound, and the optical modeling ink set according to (1) or (2). .
 (4)前記モデル材用組成物において、前記ラジカル重合開始剤(C)はアシルフォスフィンオキサイド系化合物を含有する、前記(1)~(3)のいずれか一つに記載の光造形用インクセット。 (4) The optical modeling ink according to any one of (1) to (3), wherein in the model material composition, the radical polymerization initiator (C) contains an acylphosphine oxide compound. set.
 (5)前記モデル材用組成物において、前記カチオン重合開始剤(D)は、スルホニウム塩系化合物を含有する、前記(1)~(4)のいずれか一つに記載の光造形用インクセット。 (5) The optical modeling ink set according to any one of (1) to (4), wherein in the model material composition, the cationic polymerization initiator (D) contains a sulfonium salt compound. .
 (6)前記モデル材用組成物において、前記ラジカル重合性化合物(A)の含有量は、該モデル材用組成物全体100重量部に対して、10~90重量部である、前記(1)~(5)のいずれか一つに記載の光造形用インクセット。 (6) In the composition for a model material, the content of the radical polymerizable compound (A) is 10 to 90 parts by weight with respect to 100 parts by weight as a whole of the composition for a model material. The ink set for stereolithography according to any one of (5) to (5).
 (7)前記モデル材用組成物において、前記カチオン重合性化合物(B)の含有量は、該モデル材用組成物全体100重量部に対して、10~90重量部である、前記(1)~(6)のいずれか一つに記載の光造形用インクセット。 (7) In the composition for a model material, the content of the cationic polymerizable compound (B) is 10 to 90 parts by weight with respect to 100 parts by weight of the entire composition for the model material. The optical modeling ink set according to any one of (6) to (6).
 (8)前記モデル材用組成物において、前記ラジカル重合開始剤(C)の含有量は該モデル材用組成物全体100重量部に対して、0.5~10重量部である、前記(1)~(7)のいずれか一つに記載の光造形用インクセット。 (8) In the model material composition, the content of the radical polymerization initiator (C) is 0.5 to 10 parts by weight with respect to 100 parts by weight of the entire model material composition (1) The optical modeling ink set according to any one of (1) to (7).
 (9)前記モデル材用組成物において、前記カチオン重合開始剤(D)の含有量は、該モデル材用組成物全体100重量部に対して、0.5~10重量部である、前記(1)~(8)のいずれか一つに記載の光造形用インクセット。 (9) In the model material composition, the content of the cationic polymerization initiator (D) is 0.5 to 10 parts by weight with respect to 100 parts by weight of the entire model material composition. The optical modeling ink set according to any one of 1) to (8).
 (10)前記モデル材用組成物において、前記カチオン重合性化合物(B)は、オキシラン化合物、及びオキセタン化合物から選択される少なくとも1種類を含有する、前記(1)~(9)のいずれか一つに記載の光造形用インクセット。 (10) In the composition for model material, any one of the above (1) to (9), wherein the cationic polymerizable compound (B) contains at least one selected from an oxirane compound and an oxetane compound. The ink set for stereolithography described in 1.
 (11)前記サポート材用組成物において、前記水溶性単官能エチレン性不飽和単量体(a)の含有量は、該サポート材用組成物全体100重量部に対して、25~45重量部である、前記(1)~(10)のいずれか一つに記載の光造形用インクセット。 (11) In the support material composition, the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is 25 to 45 parts by weight with respect to 100 parts by weight of the entire support material composition. The ink set for stereolithography according to any one of (1) to (10), wherein
 (12)前記サポート材用組成物において、前記ポリアルキレングリコール(b)の含有量は、該サポート材用組成物全体100重量部に対して、25~45重量部である、前記(1)~(11)のいずれか一つに記載の光造形用インクセット。 (12) In the composition for support material, the content of the polyalkylene glycol (b) is 25 to 45 parts by weight with respect to 100 parts by weight of the whole composition for support material. The ink set for stereolithography according to any one of (11).
 (13)前記サポート材用組成物において、前記水溶性有機溶剤(c)の含有量は、該サポート材用組成物全体100重量部に対して、5重量部以上である、前記(1)~(12)のいずれか一つに記載の光造形用インクセット。 (13) In the composition for a support material, the content of the water-soluble organic solvent (c) is 5 parts by weight or more with respect to 100 parts by weight as a whole of the composition for a support material. The ink set for stereolithography according to any one of (12).
 (14)前記サポート材用組成物において、光重合開始剤(d)の含有量は、該サポート材用組成物全体100重量部に対して、5~20重量部である、前記(1)~(13)のいずれか一つに記載の光造形用インクセット。 (14) In the support material composition, the content of the photopolymerization initiator (d) is 5 to 20 parts by weight with respect to 100 parts by weight of the entire support material composition. The ink set for stereolithography according to any one of (13).
 (15)前記サポート材用組成物は、さらに、該サポート材用組成物全体100重量部に対して、0.05~3.0重量部の保存安定化剤(e)を含有する、前記(1)~(14)のいずれか一つに記載の光造形用インクセット。 (15) The support material composition further comprises 0.05 to 3.0 parts by weight of a storage stabilizer (e) with respect to 100 parts by weight of the entire support material composition. The optical modeling ink set according to any one of 1) to (14).
 (16)インクジェット光造形法により、前記(1)~(15)のいずれか一つに記載の光造形用インクセットを用いて造形された、光造形品。 (16) An optically modeled product modeled by using the optical modeling ink set according to any one of (1) to (15) above by an inkjet stereolithography method.
 (17)インクジェット光造形法により、前記(1)~(15)のいずれか一つに記載の光造形用インクセットを用いて光造形品を製造する方法であって、
 前記モデル材用組成物を光硬化させることによりモデル材を得るとともに、前記サポート材用組成物を光硬化させることによりサポート材を得る工程(I)と、
 前記サポート材を除去する工程(II)と、
 を有する、光造形品の製造方法。
(17) A method for producing an optically shaped article by an ink jet optical modeling method using the optical modeling ink set according to any one of (1) to (15),
Step (I) of obtaining a model material by photocuring the composition for model material, and obtaining a support material by photocuring the composition for support material;
Removing the support material (II);
A method for manufacturing an optically shaped article.
 本発明によれば、寸法精度が良好な光造形品を得るための光造形用インクセット、該光造形用インクセットを用いて造形された光造形品、及び、前記光造形用インクセットを用いた光造形品の製造方法を提供することができる。 According to the present invention, an optical modeling ink set for obtaining an optical modeling product with good dimensional accuracy, an optical modeling product modeled using the optical modeling ink set, and the optical modeling ink set are used. It is possible to provide a method for manufacturing an optically shaped article.
図1は、本実施形態に係る光造形品の製造方法における工程(I)を模式的に示す図である。Drawing 1 is a figure showing typically process (I) in a manufacturing method of an optical modeling article concerning this embodiment. 図2は、本実施形態に係る光造形品の製造方法における工程(II)を模式的に示す図である。FIG. 2 is a diagram schematically showing step (II) in the method for manufacturing an optically shaped product according to the present embodiment. 図3(a)は、表6に示す各モデル材用組成物および各サポート材用組成物を用いて得られる硬化物の上面図である。図3(b)は、図3(a)のA-A線断面図である。FIG. 3A is a top view of a cured product obtained by using each model material composition and each support material composition shown in Table 6. FIG. FIG. 3B is a cross-sectional view taken along the line AA in FIG.
 以下、本発明の一実施形態(以下、本実施形態ともいう)について詳しく説明する。本発明は、以下の内容に限定されるものではない。なお、以下の説明において「(メタ)アクリレート」とは、アクリレート及びメタクリレートの総称であり、アクリレート及びメタクリレートの一方又は両方を意味するものである。「(メタ)アクリロイル」、「(メタ)アクリル」についても同様である。 Hereinafter, an embodiment of the present invention (hereinafter also referred to as the present embodiment) will be described in detail. The present invention is not limited to the following contents. In the following description, “(meth) acrylate” is a general term for acrylate and methacrylate, and means one or both of acrylate and methacrylate. The same applies to “(meth) acryloyl” and “(meth) acryl”.
 1.モデル材用組成物
 <ラジカル重合性化合物(A)>
 本実施形態に係る光造形用インクセットに含まれるモデル材用組成物は、エチレン性二重結合を1個以上有するラジカル重合性化合物(A)を含有する。
1. Composition for model material <Radically polymerizable compound (A)>
The composition for model materials contained in the optical modeling ink set according to the present embodiment contains a radical polymerizable compound (A) having one or more ethylenic double bonds.
 前記ラジカル重合性化合物(A)は、アルコキシ基、エーテル基、ヒドロキシル基及びケト基(ただし、エチレン性二重結合基に直接結合しているカルボニル基を除く)から選択される1種以上の官能基を有するラジカル重合性化合物(A1)であることが好ましい。これらの中でも、前記ラジカル重合性化合物(A1)は、ヒドロキシル基を有することがより好ましい。 The radical polymerizable compound (A) is one or more functional groups selected from an alkoxy group, an ether group, a hydroxyl group and a keto group (excluding a carbonyl group directly bonded to an ethylenic double bond group). The radically polymerizable compound (A1) having a group is preferable. Among these, it is more preferable that the radical polymerizable compound (A1) has a hydroxyl group.
 前記ラジカル重合性化合物(A1)のうち、アルコキシ基を有する化合物としては、例えば、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル等のアルコキシ基含有(メタ)アクリル酸エステル類;(メタ)アクリル酸をメトキシポリエチレングリコールで脱水縮合して得られる(メタ)アクリル酸-ポリエチレングリコール類;(メタ)アリルクロロシラン、(メタ)アリルトリメトキシシラン等のアルコキシシリル基含有ラジカル重合性化合物類;N-メトキシメチル(メタ)アクリルアミド、N-メトキシエチル(メタ)アクリルアミド等のN-アルコキシ基含有の(メタ)アクリルアミド類等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Among the radical polymerizable compounds (A1), examples of the compound having an alkoxy group include alkoxy group-containing (meth) acrylic acid such as 2-methoxyethyl (meth) acrylate and 2-ethoxyethyl (meth) acrylate. Esters; (meth) acrylic acid-polyethylene glycols obtained by dehydration condensation of (meth) acrylic acid with methoxypolyethylene glycol; alkoxysilyl group-containing radical polymerization such as (meth) allylchlorosilane and (meth) allyltrimethoxysilane Compounds such as N-alkoxy group-containing (meth) acrylamides such as N-methoxymethyl (meth) acrylamide and N-methoxyethyl (meth) acrylamide. These may be used alone or in combination of two or more.
 前記ラジカル重合性化合物(A1)のうち、エーテル基を有する化合物としては、例えば、(メタ)アクリル酸のアルキレンオキサイド付加物等のアルキレンオキサイド含有(メタ)アクリル酸誘導体類;(メタ)アクリル酸のラウロキシ-ポリエチレングリコール、オクトキシポリエチレングリコール、ステアロキシ等のアルキル末端ポリエチレングリコール類との脱水縮合で得られる化合物等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Among the radical polymerizable compounds (A1), examples of the compound having an ether group include alkylene oxide-containing (meth) acrylic acid derivatives such as alkylene oxide adducts of (meth) acrylic acid; (meth) acrylic acid Examples thereof include compounds obtained by dehydration condensation with alkyl-terminated polyethylene glycols such as lauroxy-polyethylene glycol, octoxypolyethylene glycol and stearoxy. These may be used alone or in combination of two or more.
 前記ラジカル重合性化合物(A1)のうち、ヒドロキシル基を有する化合物としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸1-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル等のヒドロキシル基を有するアクリル酸化合物;(メタ)アクリル酸グリシジルラウリン酸エステル、(メタ)アクリル酸グリシジルオレイン酸エステル、(メタ)アクリル酸グリシジルステアリン酸エステル等の脂肪酸エステル系(メタ)アクリル酸エステル;2-(アクリロイルオキシ)エチル6-ヒドロキシヘキサノネート等の水酸基含有α,β-エチレン性不飽和二重結合基含有化合物に対してε-カプロラクトンラクトンの開環付加により末端に水酸基を有する(メタ)アクリル酸エステル;前記水酸基含有α,β-エチレン性不飽和二重結合基含有化合物に対してエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のアルキレンオキサイドを繰り返し付加したアルキレンオキサイド付加(メタ)アクリル酸エステル等の水酸基含有の脂肪族(メタ)アクリル酸エステル類;(メタ)アリルアルコール、イソプロペニルアルコール等のアルキレンオキサイドの繰り返し付加した末端に水酸基を有するアルキレンオキサイド付加系(メタ)アリルエーテル等の水酸基含有の脂肪族(メタ)アリルアルコール類又は(メタ)アリルエーテル類;プロペンジオール、ブテンジオール、ヘプテンジオール、オクテンジオール、ジ(メタ)アクリル酸グルセロール等の複数の水酸基を有するα,β-エチレン性不飽和二重結合基含有化合物類;N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド等の水酸基含有の(メタ)アクリルアミド類;ビニルアルコール等の水酸基とエテニル基とを有する単量体類等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Among the radical polymerizable compounds (A1), examples of the compound having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 1-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Acrylic acid compounds having a hydroxyl group such as: (meth) acrylic acid glycidyl lauric acid ester, (meth) acrylic acid glycidyl oleic acid ester, (meth) acrylic acid glycidyl stearic acid ester and the like (meth) acrylic acid ester A hydroxyl group at the terminal by ring-opening addition of ε-caprolactone lactone to a hydroxyl group-containing α, β-ethylenically unsaturated double bond group-containing compound such as 2- (acryloyloxy) ethyl 6-hydroxyhexanonate ( (Meth) acrylic acid ester; the hydroxy acid Hydroxyl-containing aliphatic compounds such as alkylene oxide-added (meth) acrylic acid esters in which alkylene oxides such as ethylene oxide, propylene oxide, and butylene oxide are repeatedly added to compounds containing α, β-ethylenically unsaturated double bonds (Meth) acrylic acid esters; hydroxyl-containing aliphatic (meth) allyl such as alkylene oxide addition system (meth) allyl ether having a hydroxyl group at the terminal to which alkylene oxide such as (meth) allyl alcohol and isopropenyl alcohol is repeatedly added Alcohols or (meth) allyl ethers; propenediol, butenediol, heptenediol, octenediol, α, β-ethylenically unsaturated double bond group-containing compounds having a plurality of hydroxyl groups such as diglycol (meth) acrylate A hydroxyl group-containing (meth) acrylamide such as N-hydroxyethyl (meth) acrylamide and N-hydroxypropyl (meth) acrylamide; and monomers having a hydroxyl group and an ethenyl group such as vinyl alcohol. These may be used alone or in combination of two or more.
 前記ラジカル重合性化合物(A1)のうち、ケト基を有する化合物としては、例えば、(メタ)アクリル酸(メトキシカルボニル)メチル、(メタ)アクリル酸(メトキシカルボニル)エチル等のカルボニル基を1つ有する脂肪族系の(メタ)アクリル酸エステル類;(メタ)アクリル酸2-オキソブタノイルエチル、(メタ)アクリル酸2-オキソブタノイルプロピル等のカルボニル基を2つ有する脂肪族系の(メタ)アクリル酸エステル類;N-(2-オキソブタノイルエチル)(メタ)アクリルアミド、N-(2-オキソブタノイルプロピル)(メタ)アクリルアミド等のカルボニル基を有する(メタ)アクリルアミド類;酢酸(メタ)アリル、プロピオン酸(メタ)アリル等の飽和カルボン酸の(メタ)アリルエステル類;cis-コハク酸ジアリル、2-メチリデンコハク酸ジアリル等の多官能の不飽和結合を含有するα,β-不飽和二重結合基含有化合物類;ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル等のカルボン酸のビニルエステル類;アセト酢酸ビニル、アセトプロピオン酸ビニル等のアシル基を有する脂肪族系のビニル化合物類;アセト酢酸(メタ)アリル、アセトプロピオン酸(メタ)アリル等のアシル基を有する脂肪族系の(メタ)アリル化合物類等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Among the radical polymerizable compounds (A1), examples of the compound having a keto group include one carbonyl group such as (meth) acrylic acid (methoxycarbonyl) methyl and (meth) acrylic acid (methoxycarbonyl) ethyl. Aliphatic (meth) acrylic esters; aliphatic (meth) having two carbonyl groups such as 2-oxobutanoylethyl (meth) acrylate and 2-oxobutanoylpropyl (meth) acrylate Acrylates; (meth) acrylamides having a carbonyl group such as N- (2-oxobutanoylethyl) (meth) acrylamide, N- (2-oxobutanoylpropyl) (meth) acrylamide; acetic acid (meth) (Meth) allyl esters of saturated carboxylic acids such as allyl and propionic acid (meth) allyl; cis-succinic acid Α, β-unsaturated double bond group-containing compounds containing polyfunctional unsaturated bonds such as allyl and 2-methylidene succinate; vinyl esters of carboxylic acids such as vinyl formate, vinyl acetate and vinyl propionate; Aliphatic vinyl compounds having an acyl group such as vinyl acetoacetate and vinyl acetopropionate; aliphatic (meth) allyl having an acyl group such as (meth) allyl acetoacetate and (meth) allyl acetopropionate Examples thereof include compounds. These may be used alone or in combination of two or more.
 前記ラジカル重合性化合物(A1)は、重量平均分子量(Mw)が300~30,000のオリゴマーであってもよい。前記オリゴマーは、ポリエステル系オリゴマー、ポリウレタン系オリゴマー、ポリエポキシ系オリゴマー、及び、ポリアクリル系オリゴマーから選択される1種以上であることが好ましい。 The radical polymerizable compound (A1) may be an oligomer having a weight average molecular weight (Mw) of 300 to 30,000. The oligomer is preferably at least one selected from polyester oligomers, polyurethane oligomers, polyepoxy oligomers, and polyacrylic oligomers.
 前記ポリエステル系オリゴマーとしては、主鎖骨格に多塩基酸及び多価アルコールを重縮合して得られるポリエステルの末端又はポリエステル鎖中の水酸基と、(メタ)アクリル酸、マレイン酸等の分子内に1個以上のカルボキシル基を有するα,β-エチレン性不飽和二重結合基含有化合物とのエステル化によって得られる化合物、ポリエステルの末端又はポリエステル鎖中のカルボキシル基と、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル等の前記ヒドロキシル基を有する化合物とのエステル化によって得られる化合物、酸無水物と(メタ)アクリル酸グリシジルと少なくとも1個の水酸基を有する化合物とから得られるポリエステルオリゴマー等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 The polyester-based oligomer includes 1 at the end of the polyester obtained by polycondensation of a polybasic acid and a polyhydric alcohol on the main chain skeleton or a hydroxyl group in the polyester chain, and a molecule such as (meth) acrylic acid or maleic acid. A compound obtained by esterification with an α, β-ethylenically unsaturated double bond group-containing compound having one or more carboxyl groups, a carboxyl group in the terminal or polyester chain of polyester, and 2-hydroxy (meth) acrylate Obtained from a compound obtained by esterification with a compound having a hydroxyl group such as ethyl or 2-hydroxypropyl (meth) acrylate, an acid anhydride, glycidyl (meth) acrylate and a compound having at least one hydroxyl group And polyester oligomers. These may be used alone or in combination of two or more.
 前記ポリウレタン系オリゴマーとしては、例えば、1個以上のイソシアネート基を有する化合物と前記ヒドロキシル基を有する化合物とを反応させて得られる化合物;1個以上のイソシアネート基を有する化合物及び前記多価アルコールを反応させて得られる末端イソシアネート基のウレタンプレポリマーと、前記ラジカル重合性化合物(A1)とを反応させて得られる化合物;1個以上のイソシアネート基を有する化合物及び多価アルコールを反応させて得られる末端イソシアネート基のウレタンプレポリマー、並びに、1個以上のアミノ基を有する化合物を反応させて得られる末端イソシアネート基のウレタンプレポリマーと、前記ヒドロキシル基を有する化合物とを反応させて得られる化合物;イソシアネート基とアミノ基とを反応させて得られるウレア結合基を含有した化合物等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples of the polyurethane oligomer include a compound obtained by reacting a compound having one or more isocyanate groups with the compound having a hydroxyl group; reacting a compound having one or more isocyanate groups and the polyhydric alcohol. A compound obtained by reacting a urethane prepolymer of a terminal isocyanate group obtained by reaction with the radical polymerizable compound (A1); a terminal obtained by reacting a compound having one or more isocyanate groups and a polyhydric alcohol Isocyanate group urethane prepolymer, and compound obtained by reacting a terminal isocyanate group urethane prepolymer obtained by reacting a compound having one or more amino groups with the hydroxyl group compound; isocyanate group Reacts with amino groups Were compounds containing a urea bond group obtained by the like. These may be used alone or in combination of two or more.
 前記ポリエポキシ系オリゴマーは、グリシジル基を有する化合物と、ヒドロキシエチル(メタ)アクリレート、(メタ)アクリル酸、マレイン酸等の分子内に1個以上の水酸基又はカルボキシル基を有するα,β-不飽和二重結合基含有化合物との反応により得られる化合物、すなわち、実質的にグリシジル基を有さず、かつ、α,β-不飽和二重結合基含有化合物を有する化合物である。 The polyepoxy oligomer includes an α, β-unsaturated compound having a glycidyl group and one or more hydroxyl groups or carboxyl groups in a molecule such as hydroxyethyl (meth) acrylate, (meth) acrylic acid, and maleic acid. A compound obtained by a reaction with a double bond group-containing compound, that is, a compound having substantially no glycidyl group and having an α, β-unsaturated double bond group-containing compound.
 前記ポリエポキシ系オリゴマーとしては、例えば、ビスフェノール型ポリエポキシ系オリゴマー、エポキシ化油型ポリエポキシ系オリゴマー、フェノールノボラック型ポリエポキシ系オリゴマー、脂環型ポリエポキシ系オリゴマー等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples of the polyepoxy oligomer include bisphenol type polyepoxy oligomer, epoxidized oil type polyepoxy oligomer, phenol novolac type polyepoxy oligomer, and alicyclic polyepoxy oligomer. These may be used alone or in combination of two or more.
 前記ポリアクリル系オリゴマーとしては、例えば、α,β-不飽和二重結合基を有する変性ポリエーテル;アミン変性されたα,β-不飽和二重結合基含有化合物;アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の各種化合物にα,β-不飽和二重結合基を付加させた変性α,β-不飽和二重結合基含有化合物等のオリゴマー又はプレポリマーが挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples of the polyacrylic oligomer include a modified polyether having an α, β-unsaturated double bond group; an amine-modified α, β-unsaturated double bond group-containing compound; an alkyd resin, a spiroacetal resin, Examples include oligomers or prepolymers such as modified α, β-unsaturated double bond group-containing compounds obtained by adding α, β-unsaturated double bond groups to various compounds such as polybutadiene resins, polythiol polyene resins, polyhydric alcohols, and the like. It is done. These may be used alone or in combination of two or more.
 前記ラジカル重合性化合物(A)は、1以上の環状構造を有するラジカル重合性化合物(A2)であってもよい。前記ラジカル重合性化合物(A2)としては、例えば、分子内にヘテロ原子を含有しない環構造を有するラジカル重合性化合物(A2-1)、分子内にヘテロ原子を含有する環構造を有するラジカル重合性化合物(A2-2)、1以上の環状構造及びヒドロキシル基を有するラジカル重合性化合物(A2-3)等が挙げられる。 The radical polymerizable compound (A) may be a radical polymerizable compound (A2) having one or more cyclic structures. Examples of the radical polymerizable compound (A2) include a radical polymerizable compound (A2-1) having a ring structure containing no hetero atom in the molecule, and a radical polymerizable compound having a ring structure containing a hetero atom in the molecule. Examples thereof include compound (A2-2), a radically polymerizable compound (A2-3) having one or more cyclic structures and a hydroxyl group.
 前記ラジカル重合性化合物(A2-1)としては、例えば、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸1-メチル-1-シクロペンチル、(メタ)アクリル酸イソボルニル等の(メタ)アクリル酸環状エステル類; Examples of the radical polymerizable compound (A2-1) include (meth) acrylic acid cyclic esters such as cyclohexyl (meth) acrylate, 1-methyl-1-cyclopentyl (meth) acrylate, and isobornyl (meth) acrylate. Kind;
 N-(4-カルバモイルフェニル)(メタ)アクリルアミド、β-(2-フリル)(メタ)アクリルアミド等の環状構造含有の(メタ)アクリルアミド類; (Meth) acrylamides containing a cyclic structure such as N- (4-carbamoylphenyl) (meth) acrylamide and β- (2-furyl) (meth) acrylamide;
 スチレン、α-メチルスチレン等の芳香族ビニル系単量体類;
等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
Aromatic vinyl monomers such as styrene and α-methylstyrene;
Etc. These may be used alone or in combination of two or more.
 前記ラジカル重合性化合物(A2-2)としては、例えば、ペンタメチルピペリジニル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレート、4-(ピリミジン-2-イル)ピペラジン-1-イル(メタ)アクリレート等の窒素原子含有のヘテロ環状(メタ)アクリル酸エステル類; Examples of the radical polymerizable compound (A2-2) include pentamethylpiperidinyl (meth) acrylate, tetramethylpiperidinyl (meth) acrylate, 4- (pyrimidin-2-yl) piperazin-1-yl ( Heterocyclic (meth) acrylic acid esters containing a nitrogen atom such as (meth) acrylate;
 1-ビニルピロール、1-ビニル-2-イミダゾリン等の窒素原子含有のヘテロ環を有するビニル基含有化合物類; Vinyl group-containing compounds having a nitrogen atom-containing heterocycle such as 1-vinylpyrrole and 1-vinyl-2-imidazoline;
 4-アクリロイルモルホリン、N-[2-(1H-イミダゾール-5-イル)エチル](メタ)アクリルアミド等のヘテロ環状アクリルアミド類; Heterocyclic acrylamides such as 4-acryloylmorpholine, N- [2- (1H-imidazol-5-yl) ethyl] (meth) acrylamide;
 マレイミド、メチルマレイミド等の窒素原子及び酸素原子の双方を有するマレイミド誘導体類; Maleimide derivatives having both nitrogen and oxygen atoms such as maleimide and methylmaleimide;
 2-ビニルオキサゾール、2-フェニル-4-ビニルオキサゾール等の窒素原子以外に酸素原子を含むヘテロ環状構造を有するビニル基含有化合物類; Vinyl group-containing compounds having a heterocyclic structure containing an oxygen atom in addition to a nitrogen atom, such as 2-vinyloxazole and 2-phenyl-4-vinyloxazole;
 (メタ)アクリル酸グリシジル、(メタ)アクリル酸(3,4-エポキシシクロヘキシル)メチル等の酸素原子を有するヘテロ環含有(メタ)アクリル酸エステル類; Heterocycle-containing (meth) acrylic acid esters having an oxygen atom such as (meth) acrylic acid glycidyl, (meth) acrylic acid (3,4-epoxycyclohexyl) methyl;
 グリシジルシンナマート、アリルグリシジルエーテル、1,3-ブタジエンモノオキシラン等のグリシジル基含有ビニルエステル類; Glycidyl group-containing vinyl esters such as glycidyl cinnamate, allyl glycidyl ether, 1,3-butadiene monooxirane;
 2-ビニルチアゾ-ル、4-メチル-5-ビニルチアゾール等の窒素原子以外に硫黄原子を含むヘテロ環状構造を有するエテニル基含有化合物類等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Examples thereof include ethenyl group-containing compounds having a heterocyclic structure containing a sulfur atom in addition to a nitrogen atom, such as 2-vinylthiazol and 4-methyl-5-vinylthiazole. These may be used alone or in combination of two or more.
 前記ラジカル重合性化合物(A2-3)としては、例えば、(メタ)アクリル酸1,2-シクロヘキサンジメタノール、(メタ)アクリル酸1,3-シクロヘキサンジメタノール等の水酸基及びヘテロ環以外の環状構造を有する(メタ)アクリル酸エステル類; Examples of the radical polymerizable compound (A2-3) include cyclic structures other than hydroxyl groups and heterocycles such as 1,2-cyclohexanedimethanol (meth) acrylic acid and 1,3-cyclohexanedimethanol (meth) acrylic acid. (Meth) acrylic acid esters having
 2-ヒドロキシ-4-{2-(メタ)アクリロイルオキシ}エトキシベンゾフェノン、2-ヒドロキシ-4-{2-(メタ)アクリロイルオキシ}ブトキシベンゾフェノン等の水酸基含有ベンゾフェノン系(メタ)アクリル酸エステル類; Hydroxyl-containing benzophenone-based (meth) acrylic esters such as 2-hydroxy-4- {2- (meth) acryloyloxy} ethoxybenzophenone and 2-hydroxy-4- {2- (meth) acryloyloxy} butoxybenzophenone;
 2-(2'-ヒドロキシ-5'-(メタ)アクリロイルオキシエチルフェニル)-2H-ベンゾトリアゾール、2-(2'-ヒドロキシ-5'-(メタ)アクリロイルオキシエチルフェニル)-5-クロロ-2H-ベンゾトリアゾール等の水酸基含有ベンゾトリアゾール系(メタ)アクリル酸エステル類; 2- (2′-hydroxy-5 ′-(meth) acryloyloxyethylphenyl) -2H-benzotriazole, 2- (2′-hydroxy-5 ′-(meth) acryloyloxyethylphenyl) -5-chloro-2H -Hydroxyl-containing benzotriazole-based (meth) acrylic acid esters such as benzotriazole;
 2,4-ジフェニル-6-[2-ヒドロキシ-4-{2-(メタ)アクリロイルオキシエトキシ}]-S-トリアジン、2,4-ビス(2-メチルフェニル)-6-[2-ヒドロキシ-4-{2-(メタ)アクリロイルオキシエトキシ}]-S-トリアジン等の水酸基含有トリアジン系(メタ)アクリル酸エステル類等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 2,4-diphenyl-6- [2-hydroxy-4- {2- (meth) acryloyloxyethoxy}]-S-triazine, 2,4-bis (2-methylphenyl) -6- [2-hydroxy- And hydroxyl group-containing triazine-based (meth) acrylic acid esters such as 4- {2- (meth) acryloyloxyethoxy}]-S-triazine. These may be used alone or in combination of two or more.
 前記ラジカル重合性化合物(A)は、前記ラジカル重合性化合物(A1)及び前記ラジカル重合性化合物(A2)以外のラジカル重合性化合物(A3)であってもよい。前記ラジカル重合性化合物(A3)としては、例えば、(メタ)アクリル酸モノメチルアミノエチル、(メタ)アクリル酸モノエチルアミノエチル等の(メタ)アクリル酸-モノ又はジ-アルキルアミノエステル類; The radical polymerizable compound (A) may be a radical polymerizable compound (A3) other than the radical polymerizable compound (A1) and the radical polymerizable compound (A2). Examples of the radical polymerizable compound (A3) include (meth) acrylic acid-mono or di-alkylamino esters such as monomethylaminoethyl (meth) acrylate and monoethylaminoethyl (meth) acrylate;
 (メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソブチル等の(メタ)アクリル酸アルキルエステル類; (Meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, isobutyl (meth) acrylate;
 (メタ)アクリル酸(メタ)アリル、(メタ)アクリル酸1-ブテニル等のさらに不飽和基を含有する(メタ)アクリル酸エステル類等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 And (meth) acrylic acid esters containing (meth) acrylic acid (meth) allyl, (meth) acrylic acid 1-butenyl and the like and further containing unsaturated groups. These may be used alone or in combination of two or more.
 上述の前記ラジカル重合性化合物(A)は、ヒドロキシル基を有するラジカル重合性化合物、1以上の環状構造を有するラジカル重合性化合物、及び、(メタ)アクリル酸アルキルエステル類のラジカル重合性化合物から選択される1種以上を含有することが好ましい。 The radical polymerizable compound (A) is selected from a radical polymerizable compound having a hydroxyl group, a radical polymerizable compound having one or more cyclic structures, and a radical polymerizable compound of (meth) acrylic acid alkyl esters. It is preferable to contain 1 or more types.
 前記ラジカル重合性化合物(A)の含有量は、前記モデル材用組成物全体100重量部に対して、10~90重量部であることが好ましい。前記ラジカル重合性化合物(A)の含有量は、50重量部以上であることがより好ましい。なお、前記(A)成分が2種以上含まれる場合、前記含有量は、各(A)成分の含有量の合計である。 The content of the radical polymerizable compound (A) is preferably 10 to 90 parts by weight with respect to 100 parts by weight of the entire model material composition. The content of the radical polymerizable compound (A) is more preferably 50 parts by weight or more. In addition, when the said (A) component is contained 2 or more types, the said content is the sum total of content of each (A) component.
 <カチオン重合性化合物(B)>
 本実施形態に係る光造形用インクセットに含まれるモデル材用組成物は、エチレン性二重結合を1個以上有するカチオン重合性化合物(B)を含有する。前記カチオン重合性化合物(B)は、反応性の観点から、環状ヘテロ化合物又はビニルエーテル化合物であることが好ましく、3員環エーテルであるオキシラン化合物であることがより好ましい。
<Cationically polymerizable compound (B)>
The model material composition contained in the optical modeling ink set according to the present embodiment contains a cationically polymerizable compound (B) having one or more ethylenic double bonds. From the viewpoint of reactivity, the cationically polymerizable compound (B) is preferably a cyclic hetero compound or a vinyl ether compound, and more preferably an oxirane compound that is a 3-membered ring ether.
 前記オキシラン化合物は、例えば、オキシラン、メチルオキシラン等の脂肪族系環状エーテル基;3,4-オキシランシクロヘキシルメチル3,4-オキシランシクロヘキサンカルボキシレート、3,4-オキシラン-6-メチルシクロヘキシルメチル3,4-オキシラン-6-メチルシクロヘキサンカルボキシレート等の脂環式環に結合した三員環状の環状エーテル基等が含有される化合物中の水素原子を1個又は複数個取り除いた形の基が、他の化学構造に結合した化合物である。 Examples of the oxirane compound include aliphatic cyclic ether groups such as oxirane and methyloxirane; 3,4-oxiranecyclohexylmethyl 3,4-oxiranecyclohexanecarboxylate, 3,4-oxirane-6-methylcyclohexylmethyl3,4 A group in which one or a plurality of hydrogen atoms are removed from a compound containing a three-membered cyclic ether group bonded to an alicyclic ring such as oxirane-6-methylcyclohexanecarboxylate, A compound bonded to a chemical structure.
 前記オキシラン化合物は、芳香環を有するオキシラン化合物であることが好ましい。前記芳香環を有する置換基としては、例えば、フェニル、フェニレン等が挙げられる。 The oxirane compound is preferably an oxirane compound having an aromatic ring. Examples of the substituent having an aromatic ring include phenyl and phenylene.
 芳香環を有するオキシラン化合物とは、例えば、ベンゼン、トルエン等のベンゼン誘導体中の水素原子を1個又は複数個取り除いた形の基が、他の化学構造に結合した化合物である。 An oxirane compound having an aromatic ring is, for example, a compound in which a group in which one or more hydrogen atoms in a benzene derivative such as benzene or toluene are removed is bonded to another chemical structure.
 また、芳香環を有するオキシラン化合物とは、例えば、シクロプロペン、シクロブテン等のシクロアルケン類; Also, examples of the oxirane compound having an aromatic ring include cycloalkenes such as cyclopropene and cyclobutene;
 ベンゼン以外の炭素数を有し、かつ、環を構成する炭素数が3以上の[4n+2]アヌレン; [4n + 2] annulene having a carbon number other than benzene and having 3 or more carbon atoms constituting the ring;
 ビフェニル、トリフェニルメタン等の芳香族多環化合物; Aromatic polycyclic compounds such as biphenyl and triphenylmethane;
 ペンタレン、インデン等の炭素縮合二環系; Carbon-fused bicyclic systems such as pentalene and indene;
 as-インダセン、s-インダセン等の炭素縮合三環系; Carbon-fused tricyclic systems such as as-indacene and s-indacene;
 トリンデン、トリンダン等の炭素縮合四環系; Carbon-fused tetracyclic systems such as Trindene and Trindane;
 ピセン、ペリレン等の炭素縮合五環系; Carbon-fused pentacyclic systems such as picene and perylene;
 コランヌレン、フルミネン等の環数6以上の炭素縮合環系;等の環状化合物中の水素原子を1個又は複数個取り除いた形の基が、他の化学構造に結合した化合物である。 A group in which one or more hydrogen atoms in a cyclic compound such as corannulene, fluorene and the like having 6 or more rings are removed and bonded to another chemical structure.
 前記オキシラン化合物以外の前記環状ヘテロ化合物としては、4員環エーテルであるオキセタニル基含有化合物(オキセタン化合物)、5員環以上の環状エーテル化合物、2個以上の酸素又は酸素以外のヘテロ基を有する化合物、環状エステル化合物、環状ホルマール化合物、環状カーボネート化合物、含フッ素環状化合物等が挙げられる。 The cyclic hetero compound other than the oxirane compound includes a 4-membered ether oxetanyl group-containing compound (oxetane compound), a 5-membered or higher cyclic ether compound, two or more oxygen or a compound having a hetero group other than oxygen. , Cyclic ester compounds, cyclic formal compounds, cyclic carbonate compounds, fluorine-containing cyclic compounds, and the like.
 前記カチオン重合性化合物(B)は、水酸基を有する化合物であってもよい。前記水酸基を有する化合物としては、例えば、ビスフェノール型エポキシ樹脂、グリセリンモノグリシジルエーテル、グリセリンジグリシジルエーテル、3-エチル-3-ヒドロキシメチルオキセタン、4-(ヒドロキシメチル)-1,3-ジオキソラン-2-オン、2-ヒドロキシエチルビニルエーテル、ジエチレングリコールモノビニルエーテル、4-ヒドロキシブチルビニルエーテル等が挙げられる。 The cationically polymerizable compound (B) may be a compound having a hydroxyl group. Examples of the compound having a hydroxyl group include bisphenol type epoxy resin, glycerin monoglycidyl ether, glycerin diglycidyl ether, 3-ethyl-3-hydroxymethyloxetane, 4- (hydroxymethyl) -1,3-dioxolane-2- ON, 2-hydroxyethyl vinyl ether, diethylene glycol monovinyl ether, 4-hydroxybutyl vinyl ether and the like.
 前記カチオン重合性化合物(B)は、1種類又は2種類以上を組み合わせて含有してよい。特に、前記カチオン重合性化合物(B)は、3員環エーテルであるオキシラン化合物、及び4員環エーテルであるオキセタン化合物から選択される少なくとも1種類を含有することが好ましい。 The cationic polymerizable compound (B) may contain one kind or a combination of two or more kinds. In particular, the cationically polymerizable compound (B) preferably contains at least one selected from an oxirane compound that is a 3-membered ring ether and an oxetane compound that is a 4-membered ring ether.
 前記カチオン重合性化合物(B)の含有量は、前記モデル材用組成物全体100重量部に対して、10~90重量部であることが好ましい。前記カチオン重合性化合物(B)の含有量は、50重量部以上であることがより好ましい。なお、前記(B)成分が2種以上含まれる場合、前記含有量は、各(B)成分の含有量の合計である。 The content of the cationic polymerizable compound (B) is preferably 10 to 90 parts by weight with respect to 100 parts by weight of the entire model material composition. The content of the cationic polymerizable compound (B) is more preferably 50 parts by weight or more. In addition, when the said (B) component is contained 2 or more types, the said content is the sum total of content of each (B) component.
 <ラジカル重合開始剤(C)>
 本実施形態に係る光造形用インクセットに含まれるモデル材用組成物は、ラジカル重合開始剤(C)を含有する。
<Radical polymerization initiator (C)>
The model material composition contained in the optical modeling ink set according to the present embodiment contains a radical polymerization initiator (C).
 前記ラジカル重合開始剤(C)としては、例えば、アシルフォスフィンオキサイド系化合物、アセトフェノン系化合物、α―アミノアルキルフェノン系化合物、α―ヒドロキシケトン系化合物、ベンゾフェノン系化合物、キサントフルオレノン系化合物、ベンズアルデヒド系化合物、アントラキノン系化合物、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、4-チオキサントン、カンファーキノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。前記ラジカル重合開始剤(C)の市販品としては、例えば、イルガキュアー184,907,651,1700,1800,819,369,261(IGM Resins社製)、DAROCUR-TPO(IGM Resins社製)、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド)、ダロキュア-1173(IGM Resins社製)、エザキュアーKIP150,TZT(日本シイベルヘグナー社製)、カヤキュアBMS,カヤキュアDMBI(日本化薬社製)等が挙げられる。また、前記ラジカル重合開始剤(C)は、分子内に少なくとも1個の(メタ)アクリロイル基を有する化合物であってもよい。 Examples of the radical polymerization initiator (C) include acylphosphine oxide compounds, acetophenone compounds, α-aminoalkylphenone compounds, α-hydroxyketone compounds, benzophenone compounds, xanthofluorenone compounds, benzaldehyde. Compounds, anthraquinone compounds, benzoinpropyl ether, benzoin ethyl ether, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1 -Phenylpropan-1-one, 4-thioxanthone, camphorquinone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one and the like. These may be used alone or in combination of two or more. Examples of commercially available radical polymerization initiator (C) include Irgacure 184,907,651,1700,1800,819,369,261 (manufactured by IGM Resins), DAROCUR-TPO (manufactured by IGM Resins), 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide), Darocur-1173 (IGM Resins), Ezacure KIP150, TZT (Nihon Shibel Hegner), Kayacure BMS, Kayacure DMBI (Nippon Kayaku) Can be mentioned. The radical polymerization initiator (C) may be a compound having at least one (meth) acryloyl group in the molecule.
 前記ラジカル重合開始剤(C)の含有量は、前記モデル材用組成物全体100重量部に対して、0.5~10重量部であることが好ましい。前記ラジカル重合開始剤(C)の含有量が前記範囲であると、前記モデル材の硬化性が良好となる。前記ラジカル重合開始剤(C)の含有量は、0.8重量部以上であることがより好ましく、5重量部以下であることがより好ましい。なお、前記(C)成分が2種以上含まれる場合、前記含有量は、各(C)成分の含有量の合計である。 The content of the radical polymerization initiator (C) is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the entire model material composition. When the content of the radical polymerization initiator (C) is in the above range, the curability of the model material becomes good. The content of the radical polymerization initiator (C) is more preferably 0.8 parts by weight or more, and more preferably 5 parts by weight or less. In addition, when the said (C) component is contained 2 or more types, the said content is the sum total of content of each (C) component.
 <カチオン重合開始剤(D)>
 本実施形態に係る光造形用インクセットに含まれるモデル材用組成物は、カチオン重合開始剤(D)を含有する。前記カチオン重合開始剤(D)としては、例えば、UVACURE1590(ダイセル・サイテック社製)、CPI-100P(サンアプロ社製)等のスルホニウム塩系化合物;IRGACURE250(チバ・スペシャルティ・ケミカルズ社製)、WPI-113(和光純薬社製)、Rp-2074(ローディア・ジャパン社製)等のヨードニウム塩系化合物等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
<Cationic polymerization initiator (D)>
The model material composition contained in the optical modeling ink set according to the present embodiment contains a cationic polymerization initiator (D). Examples of the cationic polymerization initiator (D) include sulfonium salt compounds such as UVACURE1590 (manufactured by Daicel-Cytec) and CPI-100P (manufactured by San Apro); IRGACURE250 (manufactured by Ciba Specialty Chemicals), WPI- 113 (manufactured by Wako Pure Chemical Industries, Ltd.) and iodonium salt compounds such as Rp-2074 (manufactured by Rhodia Japan). These may be used alone or in combination of two or more.
 前記カチオン重合開始剤(D)の含有量は、前記モデル材用組成物全体100重量部に対して、0.5~10重量部であることが好ましい。前記カチオン重合開始剤(D)の含有量が前記範囲であると、前記モデル材の硬化性が良好となる。前記カチオン重合開始剤(D)の含有量は、1重量部以上であることがより好ましく、7重量部以下であることがより好ましい。なお、前記(D)成分が2種以上含まれる場合、前記含有量は、各(D)成分の含有量の合計である。 The content of the cationic polymerization initiator (D) is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the entire model material composition. When the content of the cationic polymerization initiator (D) is in the above range, the curability of the model material becomes good. The content of the cationic polymerization initiator (D) is more preferably 1 part by weight or more, and more preferably 7 parts by weight or less. In addition, when the said (D) component is contained 2 or more types, the said content is the sum total of content of each (D) component.
 <その他の添加剤>
 本実施形態に係る光造形用インクセットに含まれるモデル材用組成物は、本発明の効果を阻害しない範囲で、必要により、その他の添加剤を含有させることができる。その他の添加剤としては、例えば、酸化防止剤、着色剤、紫外線吸収剤、光安定剤、重合禁止剤、連鎖移動剤、充填剤等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。
<Other additives>
The composition for a model material included in the optical modeling ink set according to the present embodiment can contain other additives as necessary within a range that does not impair the effects of the present invention. Examples of other additives include an antioxidant, a colorant, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, a chain transfer agent, and a filler. These may be used alone or in combination of two or more.
 本実施形態に係る光造形用インクセットに含まれるモデル材用組成物の製造方法は、特に限定されるものではない。例えば、前記(A)~(D)成分、並びに、必要により、前記その他の添加剤を、混合攪拌装置等を用いて均一に混合することにより、製造することができる。 The method for producing the model material composition included in the optical modeling ink set according to the present embodiment is not particularly limited. For example, the components (A) to (D) and, if necessary, the other additives can be produced by uniformly mixing them using a mixing and stirring device or the like.
 このようにして製造された前記モデル材用組成物は、インクジェットヘッドからの吐出性を良好にする観点から、25℃における粘度が、70mPa・s以下であることが好ましい。なお、モデル材用組成物の粘度の測定は、JIS Z 8803に準拠し、R100型粘度計を用いて行われる。 The composition for a model material thus produced preferably has a viscosity at 25 ° C. of 70 mPa · s or less from the viewpoint of improving dischargeability from an inkjet head. In addition, the measurement of the viscosity of the composition for model materials is performed using R100 type | mold viscosity meter based on JISZ8803.
 2.サポート材用組成物
 <水溶性単官能エチレン性不飽和単量体(a)>
 本実施形態に係る光造形用インクセットに含まれるサポート材用組成物は、水溶性単官能エチレン性不飽和単量体(a)を含有する。前記水溶性単官能エチレン性不飽和単量体(a)は、光照射により重合して、サポート材用組成物を硬化させる成分である。また、サポート材用組成物を光硬化させることにより得られるサポート材をすばやく水に溶解させる成分である。
2. Composition for Support Material <Water-soluble monofunctional ethylenically unsaturated monomer (a)>
The composition for support materials contained in the optical modeling ink set according to this embodiment contains a water-soluble monofunctional ethylenically unsaturated monomer (a). The water-soluble monofunctional ethylenically unsaturated monomer (a) is a component that is polymerized by light irradiation to cure the support material composition. Moreover, it is a component which dissolves the support material obtained by photocuring the composition for support material quickly in water.
 前記水溶性単官能エチレン性不飽和単量体(a)は、エネルギー線により硬化する特性を有する分子内にエチレン性二重結合を1個有する水溶性の重合性モノマーである。前記水溶性単官能エチレン性不飽和単量体(a)としては、例えば、炭素数5~15の水酸基含有(メタ)アクリレート〔例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等〕、Mn200~1,000のアルキレンオキサイド付加物含有(メタ)アクリレート〔ポリエチレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、モノアルコキシ(炭素数1~4)ポリプロピレングリコールモノ(メタ)アクリレート、PEA-PPAブロックポリマーのモノ(メタ)アクリレート等〕、炭素数3~15の(メタ)アクリルアミド誘導体〔(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、N,N’-ジエチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N-ヒドロキシブチル(メタ)アクリルアミド等〕、(メタ)アクリロイルモルフォリン等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 The water-soluble monofunctional ethylenically unsaturated monomer (a) is a water-soluble polymerizable monomer having one ethylenic double bond in a molecule having a property of being cured by energy rays. Examples of the water-soluble monofunctional ethylenically unsaturated monomer (a) include a hydroxyl group-containing (meth) acrylate having 5 to 15 carbon atoms [for example, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4 -Hydroxybutyl (meth) acrylate, etc.], Mn 200-1,000 alkylene oxide adduct-containing (meth) acrylate [polyethylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polyethylene glycol mono (meth) acrylate , Polypropylene glycol mono (meth) acrylate, monoalkoxy (1 to 4 carbon atoms) polypropylene glycol mono (meth) acrylate, mono (meth) acrylate of PEA-PPA block polymer], (meth) acrylic having 3 to 15 carbon atoms Mido derivatives [(meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N′-dimethyl (meth) acrylamide] N, N'-diethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide, N-hydroxybutyl (meth) acrylamide, etc.], (meth) acryloylmorpholine, etc. It is done. These may be used alone or in combination of two or more.
 これらの中でも、サポート材用組成物の硬化性を向上させる観点から、N,N’-ジメチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、(メタ)アクリロイルモルフォリン等であることが好ましい。さらに、人体への皮膚低刺激性の観点から、N-ヒドロキシエチル(メタ)アクリルアミド、(メタ)アクリロイルモルフォリンであることがより好ましい。 Among these, N, N′-dimethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, (meth) acryloylmorpholine and the like are preferable from the viewpoint of improving the curability of the support material composition. . Furthermore, N-hydroxyethyl (meth) acrylamide and (meth) acryloylmorpholine are more preferable from the viewpoint of low skin irritation to the human body.
 前記水溶性単官能エチレン性不飽和単量体(a)の含有量は、前記サポート材用組成物全体100重量部に対して、20~50重量部とする。前記水溶性単官能エチレン性不飽和単量体(a)の含有量が20重量部未満であると、前記サポート材における自立性が充分ではない。そのため、該サポート材をモデル材の下層に配置した際、前記モデル材を充分に支えることができない。その結果、前記モデル材の寸法精度が悪化する。一方、前記水溶性単官能エチレン性不飽和単量体(a)の含有量が50重量部を超えると、前記サポート材は、水への溶解性が劣る。前記サポート材を完全に除去するまでの水への浸漬時間が長くなると、モデル材がわずかに膨張する。その結果、前記モデル材の微細構造部分において、寸法精度が悪化する場合がある。前記水溶性単官能エチレン性不飽和単量体(a)の含有量は、25重量部以上であることが好ましく、45重量部以下であることが好ましい。なお、前記(a)成分が2種以上含まれる場合、前記含有量は、各(a)成分の含有量の合計である。 The content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is 20 to 50 parts by weight with respect to 100 parts by weight of the entire support material composition. When the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is less than 20 parts by weight, the self-supporting property in the support material is not sufficient. Therefore, when the support material is disposed below the model material, the model material cannot be sufficiently supported. As a result, the dimensional accuracy of the model material is deteriorated. On the other hand, when the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) exceeds 50 parts by weight, the support material has poor solubility in water. If the immersion time in water until the support material is completely removed becomes long, the model material expands slightly. As a result, the dimensional accuracy may deteriorate in the microstructure portion of the model material. The content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is preferably 25 parts by weight or more, and preferably 45 parts by weight or less. In addition, when the said (a) component is contained 2 or more types, the said content is the sum total of content of each (a) component.
 <オキシエチレン基及び/又はオキシプロピレン基を含むポリアルキレングリコール(b)>
 本実施形態に係る光造形用インクセットに含まれるサポート材用組成物は、オキシエチレン基及び/又はオキシプロピレン基を含むポリアルキレングリコール(b)を含有する。前記ポリアルキレングリコール(b)は、前記サポート材の水への溶解性を高めることができる。
<Polyalkylene glycol (b) containing oxyethylene group and / or oxypropylene group>
The composition for support materials contained in the optical modeling ink set according to this embodiment contains a polyalkylene glycol (b) containing an oxyethylene group and / or an oxypropylene group. The polyalkylene glycol (b) can enhance the solubility of the support material in water.
 前記ポリアルキレングリコール(b)とは、活性水素化合物に少なくともエチレンオキサイド及び/又はプロピレンオキサイドが付加したものである。前記ポリアルキレングリコール(b)としては、例えば、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。活性水素化合物としては、1~4価アルコール、アミン化合物等が挙げられる。これらの中でも、2価アルコール又は水であることが好ましい。 The polyalkylene glycol (b) is obtained by adding at least ethylene oxide and / or propylene oxide to an active hydrogen compound. Examples of the polyalkylene glycol (b) include polyethylene glycol and polypropylene glycol. These may be used alone or in combination of two or more. Examples of the active hydrogen compound include monohydric to tetrahydric alcohols and amine compounds. Among these, dihydric alcohol or water is preferable.
 前記ポリアルキレングリコール(b)の数平均分子量Mnは、100~5,000であることが好ましい。前記ポリアルキレングリコール(b)のMnが前記範囲内であると、光硬化前の前記水溶性単官能エチレン性不飽和単量体(a)と相溶し、かつ、光硬化後の前記水溶性単官能エチレン性不飽和単量体(a)と相溶しない。その結果、前記サポート材の自立性を高め、かつ、該サポート材の水への溶解性を高めることができる。前記ポリアルキレングリコール(b)のMnは、200~3,000であることがより好ましく、400~2,000であることがさらに好ましい。 The number average molecular weight Mn of the polyalkylene glycol (b) is preferably 100 to 5,000. When the Mn of the polyalkylene glycol (b) is within the above range, it is compatible with the water-soluble monofunctional ethylenically unsaturated monomer (a) before photocuring and the water-solubility after photocuring It is not compatible with the monofunctional ethylenically unsaturated monomer (a). As a result, the self-supporting property of the support material can be enhanced and the solubility of the support material in water can be enhanced. The Mn of the polyalkylene glycol (b) is more preferably 200 to 3,000, and further preferably 400 to 2,000.
 前記ポリアルキレングリコール(b)の含有量は、前記サポート材用組成物全体100重量部に対して、20~49重量部とする。前記ポリアルキレングリコール(b)の含有量が20重量部未満であると、前記サポート材は、水への溶解性が劣る。サポート材を完全に除去するまでの水への浸漬時間が長くなると、モデル材がわずかに膨張する。その結果、前記モデル材の微細構造部分において、寸法精度が悪化する場合がある。一方、前記ポリアルキレングリコール(b)の含有量が49重量部を超えると、サポート材用組成物を光硬化させる際、前記ポリアルキレングリコール(b)の浸み出しが生じる場合がある。前記ポリアルキレングリコール(b)の浸み出しが生じると、前記モデル材用組成物に含有される前記カチオン重合性化合物の重合反応が進みにくくなり、その結果、前記モデル材の硬化不足が生じやすくなる。また、前記ポリアルキレングリコール(b)の含有量が49重量部を超えると、サポート材用組成物の粘度が高くなる。そのため、前記サポート材用組成物をインクジェットヘッドから吐出させる際、ジェッティング特性が悪化して、飛行曲がりを起こす可能性がある。その結果、前記サポート材の寸法精度が悪化する。よって、該サポート材の上層に成形されたモデル材の寸法精度も悪化する。前記ポリアルキレングリコール(b)の含有量は、25重量部以上であることが好ましく、45重量部以下であることが好ましい。なお、前記(b)成分が2種以上含まれる場合、前記含有量は、各(b)成分の含有量の合計である。 The content of the polyalkylene glycol (b) is 20 to 49 parts by weight with respect to 100 parts by weight of the entire support material composition. When the content of the polyalkylene glycol (b) is less than 20 parts by weight, the support material is poor in solubility in water. If the immersion time in water until the support material is completely removed becomes longer, the model material expands slightly. As a result, the dimensional accuracy may deteriorate in the microstructure portion of the model material. On the other hand, when the content of the polyalkylene glycol (b) exceeds 49 parts by weight, the polyalkylene glycol (b) may ooze out when the support material composition is photocured. When leaching of the polyalkylene glycol (b) occurs, the polymerization reaction of the cationic polymerizable compound contained in the model material composition is difficult to proceed, and as a result, the model material is likely to be insufficiently cured. Become. Moreover, when content of the said polyalkylene glycol (b) exceeds 49 weight part, the viscosity of the composition for support materials will become high. Therefore, when the composition for a support material is ejected from the inkjet head, the jetting characteristics may be deteriorated and flight bending may occur. As a result, the dimensional accuracy of the support material is deteriorated. Therefore, the dimensional accuracy of the model material molded on the upper layer of the support material also deteriorates. The content of the polyalkylene glycol (b) is preferably 25 parts by weight or more, and preferably 45 parts by weight or less. In addition, when the said (b) component is contained 2 or more types, the said content is the sum total of content of each (b) component.
 <水溶性有機溶剤(c)>
 本実施形態に係る光造形用インクセットに含まれるサポート材用組成物は、水溶性有機溶剤(c)を含有する。前記水溶性有機溶剤(c)は、前記サポート材の水への溶解性を向上させる成分である。また、サポート材用組成物を低粘度に調整する成分である。
<Water-soluble organic solvent (c)>
The composition for support material contained in the optical modeling ink set according to the present embodiment contains a water-soluble organic solvent (c). The water-soluble organic solvent (c) is a component that improves the solubility of the support material in water. Moreover, it is a component which adjusts the composition for support materials to low viscosity.
 前記水溶性有機溶剤(c)としては、例えば、エチレングリコールモノアセテート、プロピレングリコールモノアセテート、ジエチレングリコールモノアセテート、ジプロピレングリコールモノアセテート、トリエチレングリコールモノアセテート、トリプロピレングリコールモノアセテート、テトラエチレングリコールモノアセテート、テトラプロピレングリコールモノアセテート、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、テトラプロピレングリコールモノブチルエーテル、エチレングリコールジアセテート、プロピレングリコールジアセテート、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジブチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。これらの中でも、サポート材の水への溶解性を向上させ、かつ、サポート材用組成物を低粘度に調整する観点から、トリエチレングリコールモノメチルエーテル、又は、ジプロピレングリコールモノメチルエーテルアセテートであることがより好ましい。 Examples of the water-soluble organic solvent (c) include ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, dipropylene glycol monoacetate, triethylene glycol monoacetate, tripropylene glycol monoacetate, and tetraethylene glycol monoacetate. , Tetrapropylene glycol monoacetate, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, triethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether, ethylene glycol monopropyl ether, propylene glycol monopropyl ether, ethylene glycol mono Butyl ether, Lopylene glycol monobutyl ether, tetrapropylene glycol monobutyl ether, ethylene glycol diacetate, propylene glycol diacetate, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether, ethylene glycol dipropyl ether, propylene glycol dipropyl ether , Ethylene glycol dibutyl ether, propylene glycol dibutyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol Monoethyl ether acetate, ethylene glycol monopropyl ether acetate, propylene glycol monopropyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monobutyl ether acetate, and the like. These may be used alone or in combination of two or more. Among these, from the viewpoint of improving the solubility of the support material in water and adjusting the composition for the support material to low viscosity, it may be triethylene glycol monomethyl ether or dipropylene glycol monomethyl ether acetate. More preferred.
 前記水溶性有機溶剤(c)の含有量は、前記サポート材用組成物全体100重量部に対して、35重量部以下とする。前記水溶性有機溶剤(c)の含有量が35重量部を超えると、前記サポート材用組成物を光硬化させる際、前記水溶性有機溶剤(c)の浸み出しが生じる。前記水溶性有機溶剤(c)の浸み出しが生じると、前記モデル材用組成物に含有される前記カチオン重合性化合物の重合反応が進みにくくなり、その結果、前記モデル材の硬化不足が生じやすくなる。前記水溶性有機溶剤(c)の含有量は、前記サポート材の水への溶解性を向上させ、かつ、前記サポート材用組成物を低粘度に調整する観点から、5重量部以上であることが好ましく、10重量部以上であることがより好ましい。また、前記水溶性有機溶剤(c)の含有量は、30重量部以下であることが好ましい。なお、前記(c)成分が2種以上含まれる場合、前記含有量は、各(c)成分の含有量の合計である。 The content of the water-soluble organic solvent (c) is 35 parts by weight or less with respect to 100 parts by weight of the entire support material composition. When the content of the water-soluble organic solvent (c) exceeds 35 parts by weight, the water-soluble organic solvent (c) oozes when the support composition is photocured. When leaching of the water-soluble organic solvent (c) occurs, the polymerization reaction of the cationic polymerizable compound contained in the model material composition becomes difficult to proceed, resulting in insufficient curing of the model material. It becomes easy. The content of the water-soluble organic solvent (c) is 5 parts by weight or more from the viewpoint of improving the solubility of the support material in water and adjusting the composition for support material to a low viscosity. Is preferred, and more preferably 10 parts by weight or more. Moreover, it is preferable that content of the said water-soluble organic solvent (c) is 30 weight part or less. In addition, when the said (c) component is contained 2 or more types, the said content is the sum total of content of each (c) component.
 <光重合開始剤(d)>
 本実施形態に係る光造形用インクセットに含まれるサポート材用組成物は、光重合開始剤(d)を含有する。前記光重合開始剤(d)は、紫外線、近紫外線又は可視光領域の波長の光を照射するとラジカル反応を促進する化合物であれば、特に限定されない。
<Photopolymerization initiator (d)>
The composition for support material contained in the optical modeling ink set according to the present embodiment contains a photopolymerization initiator (d). The photopolymerization initiator (d) is not particularly limited as long as it is a compound that promotes a radical reaction when irradiated with light having a wavelength in the ultraviolet, near ultraviolet, or visible light region.
 前記光重合開始剤(d)としては、例えば、炭素数14~18のベンゾイン化合物〔例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等〕、炭素数8~18のアセトフェノン化合物〔例えば、アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン等〕、炭素数14~19のアントラキノン化合物〔例えば、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノン等〕、炭素数13~17のチオキサントン化合物〔例えば、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン等〕、炭素数16~17のケタール化合物〔例えば、アセトフェノンジメチルケタール、ベンジルジメチルケタール等〕、炭素数13~21のベンゾフェノン化合物〔例えば、ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノン等〕、炭素数22~28のアシルフォスフィンオキサイド化合物〔例えば、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス-(2、6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等〕、これらの化合物の混合物等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。これらの中でも、モデル材用組成物を光硬化させることにより得られるモデル材の耐光性を向上させる観点から、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイドであることが好ましい。また、入手可能なアシルフォスフィンオキサイド化合物としては、例えば、BASF社製のDAROCURE TPO等が挙げられる。 Examples of the photopolymerization initiator (d) include benzoin compounds having 14 to 18 carbon atoms (eg, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether), and those having 8 to 18 carbon atoms. Acetophenone compounds [for example, acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one Diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, etc.], an anthraquinone compound having 14 to 19 carbon atoms [for example, 2 - Thioanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone, etc.], thioxanthone compounds having 13 to 17 carbon atoms [for example, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, etc. ] Ketal compounds having 16 to 17 carbon atoms [for example, acetophenone dimethyl ketal, benzyl dimethyl ketal, etc.], benzophenone compounds having 13 to 21 carbon atoms [for example, benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4 '-Bismethylaminobenzophenone, etc.], acylphosphine oxide compounds having 22 to 28 carbon atoms [ eg 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis- (2,6-dioxy) Tokishibenzoiru) -2,4,4-trimethyl pentyl phosphine oxide, bis (2,4,6-trimethylbenzoyl) - phenyl phosphine oxide, etc.], a mixture of these compounds. These may be used alone or in combination of two or more. Among these, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide is preferable from the viewpoint of improving the light resistance of the model material obtained by photocuring the composition for model material. Examples of the available acyl phosphine oxide compound include DAROCURE TPO manufactured by BASF.
 前記光重合開始剤(d)の含有量は、前記サポート材用組成物全体100重量部に対して、1~20重量部であることが好ましく、5~20重量部であることがより好ましい。前記光重合開始剤(d)の含有量が前記範囲であると、サポート材用組成物の自立性が良好となる。そのため、該サポート材の上層に成形されたモデル材は、寸法精度が向上する。前記光重合開始剤(d)の含有量は、7重量部以上であることがより好ましく、18重量部以下であることがより好ましい。なお、前記(d)成分が2種以上含まれる場合、前記含有量は、各(d)成分の含有量の合計である。 The content of the photopolymerization initiator (d) is preferably 1 to 20 parts by weight, and more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the entire support material composition. When the content of the photopolymerization initiator (d) is in the above range, the self-supporting property of the support material composition becomes good. Therefore, the dimensional accuracy of the model material molded on the upper layer of the support material is improved. The content of the photopolymerization initiator (d) is more preferably 7 parts by weight or more, and more preferably 18 parts by weight or less. In addition, when the said (d) component is contained 2 or more types, the said content is the sum total of content of each (d) component.
 <表面調整剤(e)>
 本実施形態に係る光造形用インクセットに含まれるサポート材用組成物は、組成物の表面張力を適切な範囲に調整するため、表面調整剤(e)を含有することが好ましい。組成物の表面張力を適切な範囲に調整することにより、モデル材用組成物とサポート材用組成物とが界面で混ざり合うことを抑制することができる。その結果、これらの組成物を用いて、寸法精度が良好な光造形品を得ることができる。この効果を得るため、前記表面調整剤(e)の含有量は、前記サポート材用組成物全体100重量部に対して、0.005~3.0重量部であることが好ましい。
<Surface conditioner (e)>
In order to adjust the surface tension of the composition to an appropriate range, the composition for a support material included in the optical modeling ink set according to the present embodiment preferably contains a surface conditioner (e). By adjusting the surface tension of the composition to an appropriate range, the model material composition and the support material composition can be prevented from being mixed at the interface. As a result, it is possible to obtain an optically shaped product with good dimensional accuracy using these compositions. In order to obtain this effect, the content of the surface conditioning agent (e) is preferably 0.005 to 3.0 parts by weight with respect to 100 parts by weight of the entire support material composition.
 前記表面調整剤(e)としては、例えば、シリコーン系化合物等が挙げられる。シリコーン系化合物としては、例えば、ポリジメチルシロキサン構造を有するシリコーン系化合物等が挙げられる。具体的には、ポリエーテル変性ポリジメチルシロキサン、ポリエステル変性ポリジメチルシロキサン、ポリアラルキル変性ポリジメチルシロキサン等が挙げられる。これらとして、商品名でBYK-300、BYK-302、BYK-306、BYK-307、BYK-310、BYK-315、BYK-320、BYK-322、BYK-323、BYK-325、BYK-330、BYK-331、BYK-333、BYK-337、BYK-344、BYK-370、BYK-375、BYK-377、BYK-UV3500、BYK-UV3510、BYK-UV3570(以上、ビックケミー社製)、TEGO-Rad2100、TEGO-Rad2200N、TEGO-Rad2250、TEGO-Rad2300、TEGO-Rad2500、TEGO-Rad2600、TEGO-Rad2700(以上、デグサ社製)、グラノール100、グラノール115、グラノール400、グラノール410、グラノール435、グラノール440、グラノール450、B-1484、ポリフローATF-2、KL-600、UCR-L72、UCR-L93(共栄社化学社製)等を用いてもよい。これらは単独で用いてもよいし、2種以上を併用してもよい。なお、前記(e)成分が2種以上含まれる場合、前記含有量は、各(e)成分の含有量の合計である。 Examples of the surface conditioner (e) include silicone compounds. Examples of the silicone compound include a silicone compound having a polydimethylsiloxane structure. Specific examples include polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane. These include BYK-300, BYK-302, BYK-306, BYK-307, BYK-310, BYK-315, BYK-320, BYK-322, BYK-323, BYK-325, BYK-330, BYK-331, BYK-333, BYK-337, BYK-344, BYK-370, BYK-375, BYK-377, BYK-UV3500, BYK-UV3510, BYK-UV3570 (above, manufactured by BYK Chemie), TEGO-Rad2100 , TEGO-Rad2200N, TEGO-Rad2250, TEGO-Rad2300, TEGO-Rad2500, TEGO-Rad2600, TEGO-Rad2700 (manufactured by Degussa), Granol 100, Granol 115, Granol 400, Grano Le 410, Granol 435, Granol 440, Granol 450, B-1484, Polyflow ATF-2, KL-600, UCR-L72, UCR-L93 (manufactured by Kyoeisha Chemical Co., Ltd.) and the like may be used. These may be used alone or in combination of two or more. In addition, when the said (e) component is contained 2 or more types, the said content is the sum total of content of each (e) component.
 <保存安定化剤(f)>
 本実施形態に係る光造形用インクセットに含まれるサポート材用組成物は、さらに、保存安定化剤(f)を含有することが好ましい。保存安定化剤(f)は、組成物の保存安定性を高めることができる。また、熱エネルギーにより重合性化合物が重合することで生じるヘッド詰まりを防止することができる。これらの効果を得るため、前記保存安定化剤(f)の含有量は、前記サポート材用組成物全体100重量部に対して、0.05~3.0重量部であることが好ましい。
<Storage stabilizer (f)>
It is preferable that the composition for support material contained in the optical modeling ink set according to the present embodiment further contains a storage stabilizer (f). The storage stabilizer (f) can enhance the storage stability of the composition. Further, clogging of the head caused by polymerization of the polymerizable compound by thermal energy can be prevented. In order to obtain these effects, the content of the storage stabilizer (f) is preferably 0.05 to 3.0 parts by weight with respect to 100 parts by weight of the entire support material composition.
 前記保存安定化剤(f)としては、例えば、ヒンダードアミン系化合物(HALS)、フェノール系酸化防止剤、リン系酸化防止剤等が挙げられる。具体的には、ハイドロキノン、メトキノン、ベンゾキノン、p-メトキシフェノール、ハイドロキノンモノメチルエーテル、ハイドロキノンモノブチルエーテル、TEMPO、4-ヒドロキシ-TEMPO、TEMPOL、クペロンAl、IRGASTAB UV-10、IRGASTAB UV-22、FIRSTCURE ST-1(ALBEMARLE社製)、t-ブチルカテコール、ピロガロール、BASF社製のTINUVIN 111 FDL、TINUVIN 144、TINUVIN 292、TINUVIN XP40、TINUVIN XP60、TINUVIN 400等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。なお、前記(f)成分が2種以上含まれる場合、前記含有量は、各(f)成分の含有量の合計である。 Examples of the storage stabilizer (f) include hindered amine compounds (HALS), phenolic antioxidants, phosphorus antioxidants, and the like. Specifically, hydroquinone, methoquinone, benzoquinone, p-methoxyphenol, hydroquinone monomethyl ether, hydroquinone monobutyl ether, TEMPO, 4-hydroxy-TEMPO, TEMPOL, cuperon Al, IRGASTAB UV-10, IRGASTAB UV-22, FIRSTCURE ST- 1 (manufactured by ALBEMARLE), t-butylcatechol, pyrogallol, TINUVIN 111 FDL, TINUVIN 144, TINUVIN 292, TINUVIN XP40, TINUVIN XP60, TINUVIN 400, etc. manufactured by BASF. These may be used alone or in combination of two or more. In addition, when the said (f) component is contained 2 or more types, the said content is the sum total of content of each (f) component.
 本実施形態に係る光造形用インクセットに含まれるサポート材用組成物には、本発明の効果を阻害しない範囲で、必要により、その他の添加剤を含有させることができる。その他の添加剤としては、例えば、酸化防止剤、着色剤、紫外線吸収剤、光安定剤、重合禁止剤、連鎖移動剤、充填剤等が挙げられる。 The support material composition included in the optical modeling ink set according to the present embodiment may contain other additives as necessary within a range that does not impair the effects of the present invention. Examples of other additives include an antioxidant, a colorant, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, a chain transfer agent, and a filler.
 本実施形態に係る光造形用インクセットに含まれるサポート材用組成物の製造方法は、特に限定されるものではない。例えば、前記(a)~(d)成分、及び、必要により、前記(e)、(f)成分、その他の添加剤を、混合攪拌装置等を用いて均一に混合することにより、製造することができる。 The method for producing the composition for support material included in the optical modeling ink set according to the present embodiment is not particularly limited. For example, the components (a) to (d) and, if necessary, the components (e) and (f) and other additives are uniformly mixed using a mixing and stirring device or the like. Can do.
 このようにして製造された前記サポート材用組成物は、インクジェットヘッドからの吐出性を良好にする観点から、25℃における粘度が、70mPa・s以下であることが好ましい。なお、サポート材用組成物の粘度の測定は、JIS Z 8803に準拠し、R100型粘度計を用いて行われる。 The composition for a support material thus produced preferably has a viscosity at 25 ° C. of 70 mPa · s or less from the viewpoint of improving the dischargeability from the inkjet head. The viscosity of the support material composition is measured according to JIS Z 8803 using an R100 viscometer.
 3.光造形品及びその製造方法
 本実施形態に係る光造形品は、本実施形態に係る光造形用インクセットを用いて造形される。具体的には、インクジェット光造形法により、上述のモデル材用組成物を光硬化させることによりモデル材を得るとともに、上述のサポート材用組成物を光硬化させることによりサポート材を得る工程(I)と、前記サポート材を除去する工程(II)とを経て製造される。前記工程(I)及び前記工程(II)は、特に限定されないが、例えば、以下の方法により行われる。
3. Optical modeling product and its manufacturing method The optical modeling product concerning this embodiment is modeled using the ink set for optical modeling concerning this embodiment. Specifically, a process of obtaining a support material by photocuring the above-described composition for support material (I) by photocuring the above-mentioned composition for model material by ink-jet stereolithography (I ) And the step (II) of removing the support material. Although the said process (I) and the said process (II) are not specifically limited, For example, it is performed with the following method.
 <工程(I)>
 図1は、本実施形態に係る光造形品の製造方法における工程(I)を模式的に示す図である。図1に示すように、三次元造形装置1は、インクジェットヘッドモジュール2及び造形テーブル3を含む。インクジェットヘッドモジュール2は、モデル材用組成物を充填したモデル材用インクジェットヘッド21と、サポート材用組成物を充填したサポート材用インクジェットヘッド22と、ローラー23と、光源24とを有する。
<Process (I)>
Drawing 1 is a figure showing typically process (I) in a manufacturing method of an optical modeling article concerning this embodiment. As shown in FIG. 1, the three-dimensional modeling apparatus 1 includes an inkjet head module 2 and a modeling table 3. The ink jet head module 2 includes a model material ink jet head 21 filled with a model material composition, a support material ink jet head 22 filled with a support material composition, a roller 23, and a light source 24.
 まず、インクジェットヘッドモジュール2を図1中の造形テーブル3に対して、X方向及びY方向に走査させるとともに、モデル材用インクジェットヘッド21からモデル材用組成物を吐出させ、かつ、サポート材用インクジェットヘッド22からサポート材用組成物を吐出させることにより、モデル材用組成物とサポート材用組成物とからなる組成物層を形成する。そして、前記組成物層の上面を平滑にするために、ローラー23を用いて、余分なモデル材用組成物及びサポート材用組成物を除去する。そして、これらの組成物に、光源24を用いて光を照射することにより、造形テーブル3上に、モデル材4及びサポート材5からなる硬化層を形成する。 First, the inkjet head module 2 is scanned in the X direction and the Y direction with respect to the modeling table 3 in FIG. 1, the model material composition is discharged from the model material inkjet head 21, and the support material inkjet is performed. By discharging the support material composition from the head 22, a composition layer composed of the model material composition and the support material composition is formed. And in order to make the upper surface of the said composition layer smooth, the roller 23 is used and the excess composition for model materials and the composition for support materials are removed. Then, these compositions are irradiated with light using a light source 24 to form a hardened layer made of the model material 4 and the support material 5 on the modeling table 3.
 次に、造形テーブル3を、前記硬化層の厚み分だけ、図1中のZ方向に降下させる。その後、上述と同様の方法で、前記硬化層の上にさらにモデル材4及びサポート材5からなる硬化層を形成する。これらの工程を繰返し行うことにより、モデル材4及びサポート材5からなる硬化物6を作製する。 Next, the modeling table 3 is lowered in the Z direction in FIG. 1 by the thickness of the hardened layer. Thereafter, a hardened layer made of the model material 4 and the support material 5 is further formed on the hardened layer by the same method as described above. By repeatedly performing these steps, a cured product 6 composed of the model material 4 and the support material 5 is produced.
 組成物を硬化させる光としては、例えば、遠赤外線、赤外線、可視光線、近紫外線、紫外線等が挙げられる。これらの中でも、硬化作業の容易性及び効率性の観点から、近紫外線又は紫外線であることが好ましい。 Examples of the light for curing the composition include far infrared rays, infrared rays, visible rays, near ultraviolet rays, and ultraviolet rays. Among these, near ultraviolet rays or ultraviolet rays are preferable from the viewpoint of easy and efficient curing work.
 光源24としては、水銀灯、メタルハライドランプ、紫外線LED、紫外線レーザー等が挙げられる。これらの中でも、設備の小型化及び省電力の観点から、紫外線LEDであることが好ましい。なお、光源24として紫外線LEDを用いた場合、紫外線の積算光量は、500mJ/cm程度であることが好ましい。 Examples of the light source 24 include a mercury lamp, a metal halide lamp, an ultraviolet LED, and an ultraviolet laser. Among these, an ultraviolet LED is preferable from the viewpoint of miniaturization of equipment and power saving. In addition, when ultraviolet LED is used as the light source 24, it is preferable that the integrated light quantity of an ultraviolet-ray is about 500 mJ / cm < 2 >.
 <工程(II)>
 図2は、本実施形態に係る光造形品の製造方法における工程(II)を模式的に示す図である。図2に示すように、工程(I)で作製したモデル材4及びサポート材5からなる硬化物6は、容器7に入れた溶媒8中に浸漬させる。これにより、サポート材5を溶媒8に溶解させて、除去することができる。
<Process (II)>
FIG. 2 is a diagram schematically showing step (II) in the method for manufacturing an optically shaped product according to the present embodiment. As shown in FIG. 2, the cured product 6 made of the model material 4 and the support material 5 produced in step (I) is immersed in a solvent 8 placed in a container 7. Thereby, the support material 5 can be dissolved in the solvent 8 and removed.
 サポート材を溶解させる溶媒8としては、例えば、イオン交換水、蒸留水、水道水、井戸水等が挙げられる。これらの中でも、不純物が比較的少なく、かつ、安価に入手できるという観点から、イオン交換水であることが好ましい。 Examples of the solvent 8 for dissolving the support material include ion exchange water, distilled water, tap water, and well water. Among these, ion-exchanged water is preferable from the viewpoint of relatively few impurities and being available at low cost.
 以上の工程により本実施形態に係る光造形品が得られる。上述のように、本実施形態に係る光造形用インクセットでは、該光造形用インクセットに含まれるモデル材用組成物を光硬化させることにより、伸び及び弾性を有するモデル材を得ることができる。また、本実施形態に係る光造形用インクセットでは、該光造形用インクセットに含まれるサポート材用組成物を光硬化させることにより、自立性に優れたサポート材を得ることができる。このようなモデル材及びサポート材を用いて製造された光造形品は、寸法精度が良好である。 The stereolithographic product according to the present embodiment is obtained through the above steps. As described above, in the optical modeling ink set according to the present embodiment, a model material having elongation and elasticity can be obtained by photocuring the model material composition contained in the optical modeling ink set. . Moreover, in the optical modeling ink set according to the present embodiment, a support material excellent in self-supporting property can be obtained by photocuring the support material composition contained in the optical modeling ink set. The stereolithographic product manufactured using such a model material and support material has good dimensional accuracy.
 以下、本実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, examples that more specifically disclose the present embodiment will be shown. In addition, this invention is not limited only to these Examples.
 <モデル材用組成物>
 (モデル材用組成物の製造)
 表1に示す配合で、(A)~(D)成分を、混合攪拌装置を用いて均一に混合し、実施例M1及びM2のモデル材用組成物を製造した。
<Model material composition>
(Manufacture of compositions for model materials)
In the formulation shown in Table 1, the components (A) to (D) were uniformly mixed using a mixing and stirring device to produce the compositions for model materials of Examples M1 and M2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 4HBA:アクリル酸4-ヒドロキシブチル[大阪有機化学工業社製]
 AIB:アクリル酸イソブチル[大阪有機化学工業社製]
 IBXA:アクリル酸イソボルニル[大阪有機化学工業社製]
 GCDG:グリセリンジグリシジルエーテル[共栄社化学社製]
 2021P:3,4-オキシランシクロへキシルメチル-3,4-オキシランシクロヘキサンカルボキシレート[ダイセル社製]
 DAROCURE TPO:2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド[DAROCURE TPO、BASF社製]
 CPI-100P:トリアリールスルホニウム[サンアプロ社製]
4HBA: 4-hydroxybutyl acrylate [manufactured by Osaka Organic Chemical Industry Co., Ltd.]
AIB: Isobutyl acrylate [manufactured by Osaka Organic Chemical Industry Co., Ltd.]
IBXA: Isobornyl acrylate [manufactured by Osaka Organic Chemical Industry Co., Ltd.]
GCDG: glycerin diglycidyl ether [manufactured by Kyoeisha Chemical Co., Ltd.]
2021P: 3,4-oxiranecyclohexylmethyl-3,4-oxiranecyclohexanecarboxylate [manufactured by Daicel]
DAROCURE TPO: 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide [DAROCURE TPO, manufactured by BASF]
CPI-100P: Triarylsulfonium [manufactured by San Apro]
 <サポート材用組成物>
 (サポート材用組成物の製造)
 表2及び3に示す配合で、(a)~(f)成分を、混合攪拌装置を用いて均一に混合し、実施例S1~S17及び比較例s1~s6のサポート材用組成物を製造した。そして、これらのサポート材用組成物を用いて、以下の評価を行った。
<Composition for support material>
(Manufacture of composition for support material)
In the formulations shown in Tables 2 and 3, the components (a) to (f) were uniformly mixed using a mixing and stirring device to produce compositions for support materials of Examples S1 to S17 and Comparative Examples s1 to s6. . And the following evaluation was performed using these compositions for support materials.
 なお、本実施例では、後述するように、照射手段として紫外線LEDを用いて、サポート材用組成物を硬化させた。実施例S17(参考例)のサポート材用組成物については、光重合開始剤(d)の含有量が20重量部を超えることから、光重合開始剤(d)が充分に溶解せず、溶け残りが生じた。これにより、実施例S17のサポート材用組成物に紫外線LEDを照射しても、満足に硬化しなかった。したがって、実施例S17のサポート材用組成物については、以下の評価をすべて行わなかった。なお、実施例S17のサポート材用組成物は、照射手段として水銀灯またはメタルハライドランプを用いた場合には、光重合開始剤(d)の含有量が25重量部であっても硬化した。 In this example, as described later, the composition for a support material was cured using an ultraviolet LED as an irradiation means. About the composition for support materials of Example S17 (reference example), since the content of the photopolymerization initiator (d) exceeds 20 parts by weight, the photopolymerization initiator (d) is not sufficiently dissolved and dissolved. The rest has occurred. Thereby, even if it irradiated with ultraviolet LED to the composition for support materials of Example S17, it did not harden | cure satisfactorily. Therefore, all the following evaluations were not performed about the composition for support materials of Example S17. The support material composition of Example S17 was cured even when the content of the photopolymerization initiator (d) was 25 parts by weight when a mercury lamp or a metal halide lamp was used as the irradiation means.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 HEAA:N-ヒドロキシエチルアクリルアミド[HEAA(エチレン性二重結合/1分子:1個)、KJケミカルズ社製]
 ACMO:アクリロイルモルフォリン[ACMO(エチレン性二重結合/1分子:1個)、KJケミカルズ社製]
 DMAA:N,N’-ジメチルアクリルアミド[DMAA(エチレン性二重結合/1分子:1個)、KJケミカルズ社製]
 PPG-400:ポリプロピレングリコール[ユニオールD400(分子量400)、日油社製]
 PPG-1000:ポリプロピレングリコール[ユニオールD1000(分子量1000)、日油社製]
 PEG-400:ポリエチレングリコール[PEG#400(分子量400)、日油社製]
 PEG-1000:ポリエチレングリコール[PEG#1000(分子量1000)、日油社製]
 MTG:トリエチレングリコールモノメチルエーテル[MTG、日本乳化剤社製]
 DPMA:ジプロピレングリコールモノメチルエーテルアセテート[ダワノールDPMA、ダウケミカル社製]
 DAROCURE TPO:2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド[DAROCURE TPO、BASF社製]
 TEGO-Rad2100:ポリジメチルシロキサン構造を有するシリコンアクリレート[TEGO-Rad2100、エボニック デグサ ジャパン社製]
 H-TEMPO:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル[HYDROXY-TEMPO、エボニック デグサ ジャパン社製]
HEAA: N-hydroxyethylacrylamide [HEAA (ethylenic double bond / one molecule: 1), manufactured by KJ Chemicals]
ACMO: acryloyl morpholine [ACMO (ethylenic double bond / one molecule: one), manufactured by KJ Chemicals]
DMAA: N, N′-dimethylacrylamide [DMAA (ethylenic double bond / one molecule: 1), manufactured by KJ Chemicals]
PPG-400: Polypropylene glycol [Uniol D400 (molecular weight 400), manufactured by NOF Corporation]
PPG-1000: Polypropylene glycol [Uniol D1000 (molecular weight 1000), manufactured by NOF Corporation]
PEG-400: Polyethylene glycol [PEG # 400 (molecular weight 400), manufactured by NOF Corporation]
PEG-1000: Polyethylene glycol [PEG # 1000 (molecular weight 1000), manufactured by NOF Corporation]
MTG: Triethylene glycol monomethyl ether [MTG, manufactured by Nippon Emulsifier Co., Ltd.]
DPMA: Dipropylene glycol monomethyl ether acetate [Dawanol DPMA, manufactured by Dow Chemical Company]
DAROCURE TPO: 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide [DAROCURE TPO, manufactured by BASF]
TEGO-Rad2100: Silicon acrylate having a polydimethylsiloxane structure [TEGO-Rad2100, manufactured by Evonik Degussa Japan Co., Ltd.]
H-TEMPO: 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl [HYDROXY-TEMPO, manufactured by Evonik Degussa Japan Ltd.]
 (粘度の測定)
 各サポート材用組成物の粘度は、R100型粘度計(東機産業社製)を用いて、25℃、コーン回転数5rpmの条件下で測定し、下記の基準において評価した。評価結果を表4及び5に示す。
 ○:粘度 ≦ 70mPa・s
 ×:粘度 > 70mPa・s
(Measurement of viscosity)
The viscosity of each support material composition was measured using an R100 viscometer (manufactured by Toki Sangyo Co., Ltd.) under the conditions of 25 ° C. and cone rotation speed of 5 rpm, and evaluated according to the following criteria. The evaluation results are shown in Tables 4 and 5.
○: Viscosity ≦ 70 mPa · s
×: Viscosity> 70 mPa · s
 (水への溶解性)
 直径50mmのアルミカップに、各サポート材用組成物2.0gを採取した。次に、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cmとなるように紫外線を照射して硬化させ、サポート材を得た。その後、サポート材をアルミカップから離型した。続いて、ビーカーに入れたイオン交換水500ml中に、前記サポート材を浸漬した。10分毎にサポート材を目視で観察し、浸漬開始から完全溶解又は元の形状が無くなるまでに要した時間(以下、水溶解時間という)を計測し、下記の基準において溶解性を評価した。評価結果を表4及び5に示す。
 ○:水溶解時間 ≦ 1時間
 △:1時間 < 水溶解時間 <1.5時間
 ×:水溶解時間 ≧ 1.5時間
(Solubility in water)
2.0 g of each support material composition was collected in an aluminum cup having a diameter of 50 mm. Next, ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) was used as the irradiation means, and ultraviolet rays were irradiated and cured so that the total irradiation light amount was 500 mJ / cm 2 to obtain a support material. Thereafter, the support material was released from the aluminum cup. Subsequently, the support material was immersed in 500 ml of ion-exchanged water placed in a beaker. The support material was visually observed every 10 minutes, and the time required from the start of immersion until complete dissolution or disappearance of the original shape (hereinafter referred to as water dissolution time) was measured, and the solubility was evaluated according to the following criteria. The evaluation results are shown in Tables 4 and 5.
○: Water dissolution time ≦ 1 hour Δ: 1 hour <Water dissolution time <1.5 hours ×: Water dissolution time ≧ 1.5 hours
 (油状浸み出しの評価)
 100mm×100mmのアルミ箔に、各サポート材用組成物1.0gを採取した。次に、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cmとなるように紫外線を照射して硬化させ、サポート材を得た。なお、この時点でサポート材は固体状態である。このサポート材を2時間放置し、サポート材表面における油状浸み出しの有無を目視で観察し、下記の基準において評価した。評価結果を表4及び5に示す。
 ○:油状浸み出しが全く観察されなかった。
 △:わずかに油状浸み出しが観察された。
 ×:油状浸み出しが多く観察された。
(Evaluation of oil seepage)
1.0 g of each composition for support material was extract | collected to 100 mm x 100 mm aluminum foil. Next, ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) was used as the irradiation means, and ultraviolet rays were irradiated and cured so that the total irradiation light amount was 500 mJ / cm 2 to obtain a support material. At this point, the support material is in a solid state. The support material was allowed to stand for 2 hours, and the presence or absence of oily oozing on the surface of the support material was visually observed and evaluated according to the following criteria. The evaluation results are shown in Tables 4 and 5.
○: No oily leaching was observed.
Δ: Slight oily oozing was observed.
X: Many oily leachings were observed.
 (自立性の評価)
 評価に用いるガラス板(商品名「GLASS PLATE」、アズワン社製、200mm×200mm×厚さ5mm)は、平面視で四角形である。前記ガラス板の上面の四辺に厚さ1mmのスペーサーを配置して、10cm×10cmの正方形の領域を形成した。その領域内に各サポート材用組成物を注型した後、別の前記ガラス板を重ねて載せた。そして、照射手段として紫外線LED(NCCU001E、日亜化学工業株式会社製)を用い、全照射光量が500mJ/cmとなるように紫外線を照射して硬化させ、サポート材を得た。その後、サポート材をガラス板から離型し、カッターで縦10mm、横10mmの形状に切り出して、試験片を得た。次に、該試験片を10枚重ねて、高さ10mmの試験片群を得た。該試験片群は、上から100gの重しを載せた状態で、そのまま30℃に設定したオーブンの中に入れて、1時間放置した。その後、試験片の形状を観察し、下記の基準において自立性を評価した。評価結果を表4及び5に示す。
 ○:形状に変化がなかった。
 △:形状がわずかに変化し、重しが傾いた状態になった。
 ×:形状が大きく変化した。
(Evaluation of independence)
A glass plate (trade name “GLASS PLATE”, manufactured by ASONE, 200 mm × 200 mm × thickness 5 mm) used for evaluation is a quadrangle in plan view. Spacers with a thickness of 1 mm were arranged on the four sides of the upper surface of the glass plate to form a 10 cm × 10 cm square region. After casting the composition for each support material in the region, another glass plate was placed on top of each other. Then, an ultraviolet LED (NCCU001E, manufactured by Nichia Corporation) was used as an irradiating means, and cured by irradiating with ultraviolet rays so that the total irradiation light amount was 500 mJ / cm 2 , thereby obtaining a support material. Thereafter, the support material was released from the glass plate and cut into a shape of 10 mm length and 10 mm width by a cutter to obtain a test piece. Next, 10 test pieces were stacked to obtain a test piece group having a height of 10 mm. The test piece group was placed in an oven set at 30 ° C. with a weight of 100 g from the top, and left for 1 hour. Thereafter, the shape of the test piece was observed, and the independence was evaluated according to the following criteria. The evaluation results are shown in Tables 4 and 5.
○: No change in shape.
Δ: The shape changed slightly and the weight was inclined.
X: The shape changed greatly.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4及び5の結果から分かるように、本発明の要件を全て満たす実施例S1~S16のサポート材用組成物は、インクジェットヘッドからの吐出に適した粘度であった。また、実施例S1~S16のサポート材用組成物を光硬化させることにより得られるサポート材は、水への溶解性が高く、かつ、油状浸み出しが抑制された。さらに、実施例S1~S15のサポート材用組成物を光硬化させることにより得られるサポート材は、充分な自立性を有していた。なお、実施例S16(参考例)のサポート材用組成物は、光重合開始剤(d)の含有量が5重量部未満であることから、紫外線LEDを照射しても、ラジカル反応が促進せず、得られるサポート材の自立性が充分ではなかった。実施例S16のサポート材用組成物は、照射手段として水銀灯またはメタルハライドランプを用いた場合には、光重合開始剤(d)の含有量が3重量部であっても、得られるサポート材が充分な自立性を有する。 As can be seen from the results in Tables 4 and 5, the compositions for the support materials of Examples S1 to S16 that satisfy all the requirements of the present invention had a viscosity suitable for ejection from an inkjet head. In addition, the support materials obtained by photocuring the support material compositions of Examples S1 to S16 were highly soluble in water and suppressed oil leaching. Furthermore, the support materials obtained by photocuring the support material compositions of Examples S1 to S15 had sufficient self-supporting properties. In addition, since the composition for a support material of Example S16 (reference example) contains less than 5 parts by weight of the photopolymerization initiator (d), the radical reaction is promoted even when irradiated with an ultraviolet LED. However, the support material obtained was not sufficiently self-supporting. When the mercury lamp or metal halide lamp is used as the irradiation means, the support material composition of Example S16 has sufficient support material even when the content of the photopolymerization initiator (d) is 3 parts by weight. Independent.
 さらに、水溶性単官能エチレン性不飽和単量体(a)の含有量が45重量部以下、かつ、ポリアルキレングリコール(b)の含有量が25重量部以上である実施例S1~S8、S10、S11、S13~S16のサポート材用組成物から得られるサポート材は、水への溶解性がより高かった。ポリアルキレングリコール(b)の含有量が45重量部以下、かつ、水溶性有機溶剤(c)の含有量が30重量部以下である実施例S1~S10、S12、S14~S16のサポート材用組成物から得られるサポート材は、油状浸み出しがより抑制された。水溶性単官能エチレン性不飽和単量体(a)の含有量が25重量部以上である実施例S1~S7、S9~S12、S14、S15のサポート材用組成物から得られるサポート材は、より充分な自立性を有していた。 Further, Examples S1 to S8, S10 in which the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is 45 parts by weight or less and the content of the polyalkylene glycol (b) is 25 parts by weight or more. , S11 and S13 to S16, the support material obtained from the support material composition had higher solubility in water. Examples S1 to S10, S12, and S14 to S16 for support materials, wherein the polyalkylene glycol (b) content is 45 parts by weight or less and the water-soluble organic solvent (c) content is 30 parts by weight or less. In the support material obtained from the product, the oil seepage was further suppressed. The support material obtained from the composition for a support material of Examples S1 to S7, S9 to S12, S14, and S15, in which the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is 25 parts by weight or more, It had more sufficient independence.
 一方、比較例s1のサポート材用組成物は、水溶性単官能エチレン性不飽和単量体(a)の含有量が20重量部未満であることから、サポート材の自立性が充分ではなかった。比較例s2のサポート材用組成物は、水溶性単官能エチレン性不飽和単量体(a)の含有量が50重量部を超えることから、サポート材の水への溶解性が低かった。比較例s3のサポート材用組成物は、ポリアルキレングリコール(b)の含有量が49重量部を超えることから、粘度が高く、かつ、サポート材において油状浸み出しが生じた。比較例s4のサポート材用組成物は、水溶性有機溶剤(c)の含有量が35重量部を超えることから、サポート材において油状浸み出しが生じた。比較例s5のサポート材用組成物は、ポリアルキレングリコール(b)の含有量が20重量部未満であることから、サポート材の水への溶解性が低かった。また、比較例s5のサポート材用組成物は、水溶性有機溶剤(c)の含有量が35重量部を超えることから、サポート材において油状浸み出しが生じた。比較例s6のサポート材用組成物は、ポリアルキレングリコール(b)の含有量が49重量部を超えることから、粘度が高く、かつ、サポート材において油状浸み出しが生じた。 On the other hand, since the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is less than 20 parts by weight, the support material composition of Comparative Example s1 was not sufficient for the support material to be self-supporting. . In the composition for support material of Comparative Example s2, the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) exceeds 50 parts by weight, and thus the solubility of the support material in water was low. Since the composition for the support material of Comparative Example s3 had a polyalkylene glycol (b) content exceeding 49 parts by weight, the viscosity was high and oily oozing occurred in the support material. In the support material composition of Comparative Example s4, since the content of the water-soluble organic solvent (c) exceeded 35 parts by weight, oily oozing occurred in the support material. The composition for support material of Comparative Example s5 had a low solubility of the support material in water because the polyalkylene glycol (b) content was less than 20 parts by weight. Further, in the support material composition of Comparative Example s5, since the content of the water-soluble organic solvent (c) exceeded 35 parts by weight, oily oozing occurred in the support material. Since the composition for the support material of Comparative Example s6 had a polyalkylene glycol (b) content exceeding 49 parts by weight, the viscosity was high and oily oozing occurred in the support material.
 <光造形品>
 (光造形品の寸法精度の評価)
 表1に示す各モデル材用組成物と、表2及び3に示す各サポート材用組成物とを組み合わせてなる光造形用インクセットを用いて、硬化物を作成した。該硬化物の形状及び目標とする寸法を、図3(a)及び(b)に示す。なお、インクジェットヘッドから各モデル材用組成物及び各サポート材用組成物を吐出させる工程は、解像度が600×600dpi、組成物層の1層の厚さが約13~14μmとなるように行った。また、各モデル材用組成物及び各サポート材用組成物をそれぞれ光硬化させる工程は、スキャン方向に対してインクジェットヘッドの後ろ側に設置された波長385nmのLED光源を用いて、照度250mW/cm、組成物層の1層当りの積算光量300mJ/cmの条件で行った。次に、前記硬化物をイオン交換水に浸漬することにより、サポート材を除去して、光造形品を得た。その後、得られた光造形品をデシケーター内に24時間静置し、充分に乾燥させた。上述の工程により、試験No.1~3の光造形品を、それぞれ5個ずつ製造した。乾燥後の光造形品について、図3(a)中のx方向及びy方向の寸法を、ノギスを用いて測定し、目標とする寸法からの変化率を算出した。寸法精度は、試験No.1~3の各光造形品における寸法変化率の平均値を求め、該平均値を用いて下記の基準により評価を行った。評価結果を表6に示す。
 ○:平均寸法変化率が±1.0%未満
 ×:平均寸法変化率が±1.0%以上
<Optical modeling products>
(Evaluation of dimensional accuracy of stereolithography products)
A cured product was prepared using an optical modeling ink set obtained by combining each of the model material compositions shown in Table 1 and each of the support material compositions shown in Tables 2 and 3. The shape and target dimensions of the cured product are shown in FIGS. 3 (a) and 3 (b). The process of discharging each model material composition and each support material composition from the inkjet head was performed so that the resolution was 600 × 600 dpi and the thickness of one layer of the composition layer was about 13 to 14 μm. . In addition, the process of photocuring each composition for model materials and each composition for support materials uses an LED light source with a wavelength of 385 nm installed on the back side of the inkjet head with respect to the scanning direction, and an illuminance of 250 mW / cm. 2. The measurement was performed under the condition of an integrated light amount of 300 mJ / cm 2 per composition layer. Next, the support material was removed by immersing the cured product in ion-exchanged water to obtain a stereolithographic product. Thereafter, the obtained stereolithography product was allowed to stand in a desiccator for 24 hours and sufficiently dried. Through the above-described steps, the test No. Five to three stereolithographic products were manufactured. About the stereolithography goods after drying, the dimension of the x direction in FIG. 3A and the y direction was measured using calipers, and the rate of change from the target dimension was calculated. The dimensional accuracy is determined according to test no. An average value of the dimensional change rate in each of the optically shaped products 1 to 3 was obtained, and evaluation was performed according to the following criteria using the average value. The evaluation results are shown in Table 6.
○: Average dimensional change rate is less than ± 1.0% ×: Average dimensional change rate is ± 1.0% or more
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6の結果から分かるように、本発明の要件を全て満たす光造形用インクセットを用いて製造された試験No.1及び2の光造形品は、寸法精度が良好であった。 As can be seen from the results in Table 6, test No. manufactured using the optical modeling ink set that satisfies all the requirements of the present invention. The optically shaped products 1 and 2 had good dimensional accuracy.
 本発明の光造形用インクセットは、インクジェット光造形法を用いて、寸法精度が良好な光造形品を製造する際に好適に用いることができる。 The ink set for optical modeling according to the present invention can be suitably used when an optical modeling product with good dimensional accuracy is manufactured using an inkjet optical modeling method.
 1 三次元造形装置
 2 インクジェットヘッドモジュール
 21 モデル材用インクジェットヘッド
 22 サポート材用インクジェットヘッド
 23 ローラー
 24 光源
 3 造形テーブル
 4 モデル材
 5 サポート材
 6 硬化物
 7 容器
 8 溶媒
DESCRIPTION OF SYMBOLS 1 3D modeling apparatus 2 Inkjet head module 21 Inkjet head for model material 22 Inkjet head for support material 23 Roller 24 Light source 3 Modeling table 4 Model material 5 Support material 6 Hardened material 7 Container 8 Solvent

Claims (17)

  1.  インクジェット光造形法に用いられ、かつ、モデル材を造形するために使用されるモデル材用組成物と、サポート材を造形するために使用されるサポート材用組成物とを組み合わせてなる光造形用インクセットであって、
     前記モデル材用組成物は、
     エチレン性二重結合を1個以上有するラジカル重合性化合物(A)と、
     エチレン性二重結合を1個以上有するカチオン重合性化合物(B)と、
     ラジカル重合開始剤(C)と、
     カチオン重合開始剤(D)と、
     を含有し、ここで、前記カチオン重合性化合物(B)は環状ヘテロ化合物又はビニルエーテル化合物であり、
     前記サポート材用組成物は、該サポート材用組成物全体100重量部に対して、
     20~50重量部の水溶性単官能エチレン性不飽和単量体(a)と、
     20~49重量部のオキシエチレン基及び/又はオキシプロピレン基を含むポリアルキレングリコール(b)と、
     35重量部以下の水溶性有機溶剤(c)と、
     1~20重量部の光重合開始剤(d)と、
     を含有する、光造形用インクセット。
    For optical modeling, which is a combination of a composition for a model material that is used in an inkjet optical modeling method and is used for modeling a model material, and a composition for a support material that is used to model a support material An ink set,
    The model material composition is:
    A radically polymerizable compound (A) having at least one ethylenic double bond;
    A cationically polymerizable compound (B) having one or more ethylenic double bonds;
    A radical polymerization initiator (C);
    A cationic polymerization initiator (D);
    Wherein the cationically polymerizable compound (B) is a cyclic hetero compound or a vinyl ether compound,
    The support material composition is based on 100 parts by weight of the entire support material composition.
    20 to 50 parts by weight of a water-soluble monofunctional ethylenically unsaturated monomer (a),
    A polyalkylene glycol (b) containing 20 to 49 parts by weight of an oxyethylene group and / or an oxypropylene group;
    35 parts by weight or less of a water-soluble organic solvent (c),
    1 to 20 parts by weight of a photopolymerization initiator (d),
    An ink set for stereolithography, containing
  2.  前記モデル材用組成物において、前記ラジカル重合性化合物(A)は、ヒドロキシル基を有するラジカル重合性化合物、1以上の環状構造を有するラジカル重合性化合物、及び、(メタ)アクリル酸アルキルエステル類のラジカル重合性化合物から選択される1種以上を含有する、請求項1に記載の光造形用インクセット。 In the model material composition, the radical polymerizable compound (A) is a radical polymerizable compound having a hydroxyl group, a radical polymerizable compound having one or more cyclic structures, and (meth) acrylic acid alkyl esters. The ink set for stereolithography according to claim 1, comprising one or more selected from radically polymerizable compounds.
  3.  前記モデル材用組成物において、前記カチオン重合性化合物(B)は、水酸基を有する化合物及び/又はオキシラン化合物を含有する、請求項1又は2に記載の光造形用インクセット。 The ink set for stereolithography according to claim 1 or 2, wherein in the model material composition, the cationic polymerizable compound (B) contains a compound having a hydroxyl group and / or an oxirane compound.
  4.  前記モデル材用組成物において、前記ラジカル重合開始剤(C)は、アシルフォスフィンオキサイド系化合物を含有する、請求項1~3のいずれか一つに記載の光造形用インクセット。 The optical modeling ink set according to any one of claims 1 to 3, wherein, in the model material composition, the radical polymerization initiator (C) contains an acylphosphine oxide compound.
  5.  前記モデル材用組成物において、前記カチオン重合開始剤(D)は、スルホニウム塩系化合物から選択される1種以上を含有する、請求項1~4のいずれか一つに記載の光造形用インクセット。 The optical modeling ink according to any one of claims 1 to 4, wherein in the model material composition, the cationic polymerization initiator (D) contains at least one selected from sulfonium salt compounds. set.
  6.  前記モデル材用組成物において、前記ラジカル重合性化合物(A)の含有量は、該モデル材用組成物全体100重量部に対して、10~90重量部である、請求項1~5のいずれか一つに記載の光造形用インクセット。 The content of the radical polymerizable compound (A) in the model material composition is 10 to 90 parts by weight with respect to 100 parts by weight of the entire model material composition. The ink set for stereolithography according to any one of the above.
  7.  前記モデル材用組成物において、前記カチオン重合性化合物(B)の含有量は、該モデル材用組成物全体100重量部に対して、10~90重量部である、請求項1~6のいずれか一つに記載の光造形用インクセット。 7. The model material composition, wherein the content of the cationically polymerizable compound (B) is 10 to 90 parts by weight with respect to 100 parts by weight of the model material composition as a whole. The ink set for stereolithography according to any one of the above.
  8.  前記モデル材用組成物において、前記ラジカル重合開始剤(C)の含有量は、該モデル材用組成物全体100重量部に対して、0.5~10重量部である、請求項1~7のいずれか一つに記載の光造形用インクセット。 In the model material composition, the content of the radical polymerization initiator (C) is 0.5 to 10 parts by weight with respect to 100 parts by weight of the entire model material composition. The ink set for stereolithography according to any one of the above.
  9.  前記モデル材用組成物において、前記カチオン重合開始剤(D)の含有量は、該モデル材用組成物全体100重量部に対して、0.5~10重量部である、請求項1~8のいずれか一つに記載の光造形用インクセット。 In the model material composition, the content of the cationic polymerization initiator (D) is 0.5 to 10 parts by weight with respect to 100 parts by weight of the entire model material composition. The ink set for stereolithography according to any one of the above.
  10.  前記モデル材用組成物において、前記カチオン重合性化合物(B)は、オキシラン化合物及びオキセタン化合物から選択される少なくとも1種類を含有する、請求項1~9のいずれか一つに記載の光造形用インクセット。 The stereolithographic compound according to any one of claims 1 to 9, wherein in the model material composition, the cationically polymerizable compound (B) contains at least one selected from an oxirane compound and an oxetane compound. Ink set.
  11.  前記サポート材用組成物において、前記水溶性単官能エチレン性不飽和単量体(a)の含有量は、該サポート材用組成物全体100重量部に対して、25~45重量部である、請求項1~10のいずれか一つに記載の光造形用インクセット。 In the support material composition, the content of the water-soluble monofunctional ethylenically unsaturated monomer (a) is 25 to 45 parts by weight with respect to 100 parts by weight of the entire support material composition. The optical modeling ink set according to any one of claims 1 to 10.
  12.  前記サポート材用組成物において、前記ポリアルキレングリコール(b)の含有量は、該サポート材用組成物全体100重量部に対して、25~45重量部である、請求項1~11のいずれか一つに記載の光造形用インクセット。 The content of the polyalkylene glycol (b) in the support material composition is 25 to 45 parts by weight with respect to 100 parts by weight of the entire support material composition. The ink set for stereolithography according to one.
  13.  前記サポート材用組成物において、前記水溶性有機溶剤(c)の含有量は、該サポート材用組成物全体100重量部に対して、5重量部以上である、請求項1~12のいずれか一つに記載の光造形用インクセット。 In the support material composition, the content of the water-soluble organic solvent (c) is 5 parts by weight or more with respect to 100 parts by weight of the entire support material composition. The ink set for stereolithography according to one.
  14.  前記サポート材用組成物において、光重合開始剤(d)の含有量は、該サポート材用組成物全体100重量部に対して、5~20重量部である、請求項1~13のいずれか一つに記載の光造形用インクセット。 The content of the photopolymerization initiator (d) in the support material composition is 5 to 20 parts by weight with respect to 100 parts by weight of the entire support material composition. The ink set for stereolithography according to one.
  15.  前記サポート材用組成物は、さらに、該サポート材用組成物全体100重量部に対して、0.05~3.0重量部の保存安定化剤(e)を含有する、請求項1~14のいずれか一つに記載の光造形用インクセット。 The support material composition further comprises 0.05 to 3.0 parts by weight of a storage stabilizer (e) with respect to 100 parts by weight of the entire support material composition. The ink set for stereolithography according to any one of the above.
  16.  インクジェット光造形法により、請求項1~15のいずれか一つに記載の光造形用インクセットを用いて造形された、光造形品。 An optical modeling product formed by using the optical modeling ink set according to any one of claims 1 to 15 by an ink jet optical modeling method.
  17.  インクジェット光造形法により、請求項1~15のいずれか一つに記載の光造形用インクセットを用いて光造形品を製造する方法であって、
     前記モデル材用組成物を光硬化させることによりモデル材を得るとともに、前記サポート材用組成物を光硬化させることによりサポート材を得る工程(I)と、
     前記サポート材を除去する工程(II)と、
     を有する、光造形品の製造方法。
    A method for producing a stereolithographic product using the stereolithography ink set according to any one of claims 1 to 15, by an inkjet stereolithography method,
    Step (I) of obtaining a model material by photocuring the composition for model material, and obtaining a support material by photocuring the composition for support material;
    Removing the support material (II);
    A method for manufacturing an optically shaped article.
PCT/JP2018/003290 2017-01-31 2018-01-31 Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article WO2018143299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018565622A JPWO2018143299A1 (en) 2017-01-31 2018-01-31 Optical modeling ink set, optical modeling product, and manufacturing method of optical modeling product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-016123 2017-01-31
JP2017016123 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018143299A1 true WO2018143299A1 (en) 2018-08-09

Family

ID=63039860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003290 WO2018143299A1 (en) 2017-01-31 2018-01-31 Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article

Country Status (2)

Country Link
JP (1) JPWO2018143299A1 (en)
WO (1) WO2018143299A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11325315B2 (en) * 2017-12-29 2022-05-10 Basf Se Composition to produce support sub-structures for 3D photopolymer jetting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020474A (en) * 2014-06-20 2016-02-04 株式会社キーエンス Model material for forming photo molded article in inkjet photo molding method and manufacturing method of photo molded article
JP2016098324A (en) * 2014-11-21 2016-05-30 東洋インキScホールディングス株式会社 Active energy ray-polymerizable resin composition for optical three-dimensional molding, and three-dimensional molded object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020474A (en) * 2014-06-20 2016-02-04 株式会社キーエンス Model material for forming photo molded article in inkjet photo molding method and manufacturing method of photo molded article
JP2016098324A (en) * 2014-11-21 2016-05-30 東洋インキScホールディングス株式会社 Active energy ray-polymerizable resin composition for optical three-dimensional molding, and three-dimensional molded object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11325315B2 (en) * 2017-12-29 2022-05-10 Basf Se Composition to produce support sub-structures for 3D photopolymer jetting

Also Published As

Publication number Publication date
JPWO2018143299A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
US11485067B2 (en) Resin composition for modeling material, resin composition for supporting material, photofabrication product, and process for producing photofabrication product
JP6751096B2 (en) Model material resin composition, stereolithography ink set, and method for producing stereolithography product
JP6796069B2 (en) Ink set for stereolithography and manufacturing method of stereolithography products
WO2018142485A1 (en) Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article
US10557032B2 (en) Composition for support material and ink set for stereolithography
JP6571297B2 (en) Optical modeling ink set, optical modeling product, and manufacturing method of optical modeling product
JP6615849B2 (en) Composition for model materials
JP6937300B2 (en) Manufacturing method of resin composition for model material and stereolithography
WO2018143303A1 (en) Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article
JP2018122499A (en) Ink set for photo-shaping, photo-shaped article, and method for producing photo-shaped article
US11491776B2 (en) Composition for model materials, optically shaped article, and method for producing optically shaped articles
JPWO2019176139A1 (en) Composition for model material and composition for stereolithography
WO2018143299A1 (en) Ink set for stereolithography, stereolithographic article, and method for producing stereolithographic article
WO2019230134A1 (en) Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article
JP2020121431A (en) Model material clear composition
JP2020040408A (en) Composition for model material
JP2020040407A (en) Composition for model material
JP2019155801A (en) Composition for model material, and composition set for material jetting optical shaping
JP2021130724A (en) Composition set for photo-molding
JP7133619B2 (en) Support material composition
JP2019206112A (en) Photo-fabrication composition set, photo-fabricated article, and production method for photo-fabricated article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748521

Country of ref document: EP

Kind code of ref document: A1