WO2023119883A1 - Inspection device, printing system, inspection system, curing system, substrate manufacturing method, and program - Google Patents

Inspection device, printing system, inspection system, curing system, substrate manufacturing method, and program Download PDF

Info

Publication number
WO2023119883A1
WO2023119883A1 PCT/JP2022/040634 JP2022040634W WO2023119883A1 WO 2023119883 A1 WO2023119883 A1 WO 2023119883A1 JP 2022040634 W JP2022040634 W JP 2022040634W WO 2023119883 A1 WO2023119883 A1 WO 2023119883A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal deposition
light
ink film
metal
deposition ink
Prior art date
Application number
PCT/JP2022/040634
Other languages
French (fr)
Japanese (ja)
Inventor
充 沢野
忠 京相
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023119883A1 publication Critical patent/WO2023119883A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern

Definitions

  • the present invention relates to an inspection device, a printing system, an inspection system and a cure system, a substrate manufacturing method and a program, and more particularly to a technology for inspecting liquid printed on a substrate.
  • a known technique is to apply ink containing a conductive substance to the surface of a printed circuit board to form a pattern.
  • Patent Document 1 a substrate having a water-repellent surface is irradiated with light or an electron beam to form a predetermined pattern having hydrophilicity on the surface of the substrate, and ink containing a conductive component is formed on the formed pattern. is described.
  • Patent Document 2 describes a manufacturing system for metal-coated products in which a coating film is obtained by coating a substrate with a dispersion containing fine metal particles, and the coating film is irradiated with a laser beam.
  • a metal deposition ink that deposits metal through a chemical reaction is known.
  • a printing device prints a metal deposition ink film (printing film) on a substrate using metal deposition ink, and then the substrate is dried and cured by ultraviolet irradiation and hot air heating in a curing device to form a metal film on the substrate. can do.
  • a common method is to use a sensor such as a camera in the printing device to check whether the print film has been formed correctly.
  • a sensor such as a camera
  • metal deposition inks were nearly transparent when unreacted, making inspection difficult.
  • AOI automated optical inspection
  • the present invention has been made in view of such circumstances, and includes an inspection apparatus, a printing system, an inspection system, a cure system, and a substrate manufacturing method for determining the state of a metal deposition ink film in which metal deposition ink is printed on a substrate. and to provide programs.
  • One aspect of an inspection apparatus for achieving the above object comprises at least one processor and at least one memory storing instructions for causing the at least one processor to execute, the at least one processor comprising: A metal deposition ink film printed on a substrate with a metal deposition ink that deposits metal by reaction, wherein the metal deposition ink film is formed on the substrate by chemical reaction after printing.
  • An inspection device that determines the condition of a metallized ink film based on two or more of the reflections. According to this aspect, the state of the metal deposition ink film in which the metal deposition ink is printed on the substrate can be determined.
  • At least one processor causes the light emitting element to emit emitted light toward the metal deposition ink film, causes the light receiving element to receive the light reflected by the surface of the metal deposition ink film, and calculates the amount of light emitted from the light emitting element and the light receiving element. It is preferable to detect the reflection of the metal-deposited ink film by comparing the amount of received light with the amount of light received. Thereby, the reflection of the metal deposition ink film can be appropriately detected.
  • At least one processor causes the light emitting element to emit emitted light toward the metal deposition ink film, and causes the light receiving element to emit light that is specularly reflected by the surface of the metal deposition ink film and specular reflection light of the metal deposition ink film. It is preferable to detect the glossiness of the metal deposition ink film by receiving scattered reflected light obtained by scattering reflected emitted light on the surface and comparing the received amount of specularly reflected light and the received amount of scattered reflected light. This makes it possible to appropriately detect the glossiness of the metal deposition ink film.
  • the at least one processor causes the light emitting element to emit emitted light having a first wavelength and emitted light having a second wavelength different from the first wavelength toward the metal deposition ink film, and causes the light receiving element to emit emitted light having a first wavelength.
  • the reflected light of the wavelength and the reflected light of the second wavelength are received, and the received amount of the reflected light of the first wavelength and the received amount of the reflected light of the second wavelength are compared to determine the color of the metal deposition ink film. is preferably detected. Thereby, the color of the metal deposition ink film can be appropriately detected.
  • At least one processor uses a common light-emitting element and a common light-receiving element to detect two or more of the color, gloss, and reflection of the metal deposition ink film with different detection timings. Thereby, two or more of the color, gloss, and reflection of the metal deposition ink film can be detected with a minimum of light-emitting elements and light-receiving elements.
  • the at least one processor preferably determines the condition of the metal deposited ink film by comparing the color, gloss and reflectance of the metal deposited ink film to a reference metal deposited ink film color, gloss and reflectance. . Thereby, the state of the metal deposition ink film can be appropriately determined.
  • One aspect of a printing system for achieving the above object is a printing system including a printing device that applies metal deposition ink to a substrate and prints a metal deposition ink film, and the inspection device described above. According to this aspect, the state of the metal deposition ink film in which the metal deposition ink is printed on the substrate can be determined.
  • At least one processor preferably feeds back the determination result of the state of the metal deposition ink film in the inspection device to the process conditions of the printing device.
  • the process conditions preferably include switching pass/fail lines or labeling pass/fail labels.
  • the process conditions may include at least one of the temperature in the printing apparatus, the light intensity of the light source for chemical reaction, and the scanning speed of the substrate when printing the metal deposition ink.
  • One aspect of a curing system for achieving the above object includes a curing device for forming a metal film on a substrate by chemically reacting a metal deposition ink film printed on the substrate with the metal deposition ink; and a cure system. According to this aspect, the state of the metal deposition ink film in which the metal deposition ink is printed on the substrate can be determined.
  • the process conditions preferably include switching pass/fail lines or labeling pass/fail labels.
  • the process conditions preferably include switching pass/fail lines or labeling pass/fail labels.
  • the process conditions may include at least one of the temperature in the curing device, the light intensity of the light source for causing the chemical reaction, the conveying speed of the substrate, and the drying and curing time.
  • an inspection system for achieving the above object is an inspection system that includes an appearance inspection device that optically inspects a base material, and the inspection device described above. According to this aspect, the state of the metal deposition ink film in which the metal deposition ink is printed on the substrate can be determined.
  • One aspect of the substrate manufacturing method for achieving the above object is to print a metal deposition ink film by applying a metal deposition ink that deposits metal through a chemical reaction to at least one of the substrate and the components mounted on the substrate. a curing step of forming a metal film by chemically reacting the printed metal deposition ink film; and an inspection step of inspecting the metal deposition ink film.
  • a method of manufacturing a substrate that determines the condition of a metallized ink film based on one or more of color, gloss, and reflectance. According to this aspect, the state of the metal deposition ink film in which the metal deposition ink is printed on the substrate can be determined.
  • One aspect of the program for achieving the above object is a program for causing a computer to execute the above substrate manufacturing method.
  • a computer-readable non-transitory recording medium in which this program is recorded may also be included in this embodiment.
  • the state of the metal deposition ink film printed on the substrate can be determined.
  • FIG. 1 is a side view showing an example of a printing system.
  • FIG. 2 is a top view showing an example of a printing system.
  • FIG. 3 is a block side view showing an example of the electrical configuration of the printing system.
  • FIG. 4 is a flow chart showing the steps of the manufacturing method of the mounting board.
  • FIG. 5 is a side view showing an example of the configuration of the light-emitting element and the light-receiving sensor.
  • FIG. 6 is a side view showing another example of the configuration of the light emitting element and the light receiving sensor.
  • FIG. 7 is a table showing the determination of the state of the metal deposition ink film by a combination of color, gloss, and reflectance.
  • FIG. 8 is a plan view of the mounting board.
  • FIG. 9 is a cross-sectional view showing the three-dimensional structure of the mounting board.
  • FIG. 1 is a side view showing an example of a printing system
  • FIG. 2 is a top view showing an example of a printing system.
  • the printing system 1 includes a transport device 10 , an insulating ink printing device 20 , a metal deposition ink printing device 30 and a curing device 40 .
  • the insulating ink printing device 20, the metal deposition ink printing device 30, and the curing device 40 are arranged along the X direction.
  • the transport device 10 transports the mounting substrate 1000 to the insulating ink printing device 20, the metal deposition ink printing device 30, and the curing device 40 in this order.
  • the mounting board 1000 is a printed wiring board 1002 (see FIG. 8) with electrical components mounted on both sides (front and back).
  • the transport device 10 includes transport belts 12A and 12B that support both ends of one surface (for example, the back surface) of the mounting board 1000 .
  • the transport device 10 transports the mounting substrate 1000 placed on the transport belts 12A and 12B with the other surface (here, the front surface) of the mounting substrate 1000 facing upward.
  • the transport device 10 may be configured to sandwich and support both ends of the mounting substrate 1000 from the front surface and the back surface.
  • the conveying device 10 includes a reversing device (not shown) provided between the metal deposition ink printing device 30 and the curing device 40, and the mounting substrate 1000 which is not conveyed from the reversing device to the inlet of the insulating ink printing device 20.
  • a return transport path is provided as shown.
  • the reversing device reverses the orientation of the front surface and back surface of the mounting board 1000 .
  • the conveying device 10 conveys the mounted substrate 1000 whose direction has been reversed to the inlet of the insulating ink printing device 20 through the return conveying route.
  • the printing system 1 directs the surface of the mounting substrate 1000 in the +Z direction and conveys it to the insulating ink printing device 20 and the metal deposition ink printing device 30, then reverses the orientation of the mounting substrate 1000 by the reversing device, and mounts it. It is possible to transport the substrate 1000 to the insulating ink printing device 20 and the metal deposition ink printing device 30 with the back surface of the substrate 1000 facing in the +Z direction.
  • the insulating ink printing device 20 is printing means for applying insulating ink to a desired position on either the front surface or the back surface of the mounting substrate 1000 on the printing surface facing the +Z direction.
  • the insulating ink printing apparatus 20 includes a carrier stage 21 , an insulating ink ejection head 22 , irradiation light sources 23 A and 23 B, a light emitting element 24 , a light receiving sensor 25 , cameras 26 A, 26 B and 26 C, and an insulating ink tank 27 .
  • the transport stage 21 transports the mounting substrate 1000 transferred from the transport device 10 in the +Y direction and the -Y direction. Further, the transport stage 21 transfers the mounting substrate 1000 having the insulating ink applied to the printed surface to the transport device 10 .
  • the transport stage 21 transports the mounting substrate 1000 at a speed of 500 mm/s, for example.
  • the insulating ink ejection head 22, the irradiation light sources 23A and 23B, the light emitting element 24, the light receiving sensor 25, and the cameras 26A, 26B, and 26C are arranged on the +Z direction side of the transportation path along the transportation path of the mounting substrate 1000 by the transportation stage 21. placed in
  • the insulating ink ejection head 22 is an inkjet head that applies insulating ink to the printed surface of the mounting substrate 1000 by an inkjet recording method.
  • the insulating ink is an ultraviolet curable resin ink.
  • the insulating ink may be a thermosetting resin ink or a thermoplastic resin ink.
  • the insulating ink ejection head 22 has a nozzle surface (not shown) on which a plurality of nozzles (not shown) for ejecting insulating ink are arranged, and the nozzle surface is oriented in the -Z direction.
  • the insulating ink ejection head 22 is a so-called line head in which a plurality of nozzles are arranged on the nozzle surface over a length equal to or longer than the width of the mounting substrate 1000 in the X direction.
  • the insulating ink ejection head 22 may be a dispenser or a sprayer.
  • the irradiation light sources 23A and 23B are ultraviolet light sources that irradiate the entire printed surface of the mounting board 1000 conveyed by the conveying stage 21 in the X direction with ultraviolet rays.
  • the irradiation light sources 23A and 23B irradiate the insulating ink film printed with the insulating ink on the mounting substrate 1000 by the insulating ink ejection head 22 with ultraviolet rays, thereby semi-curing the insulating ink film.
  • the irradiation light sources 23A and 23B each have a plurality of ultraviolet light emitting diodes (not shown) arranged along the X direction.
  • the ultraviolet light emitted from the irradiation light sources 23A and 23B to the mounting substrate 1000 has a wavelength of 365 nm, an irradiation intensity of 6 W/cm 2 on the printed surface of the mounting substrate 1000, and an irradiation width of 10 mm in the Y direction.
  • the irradiation light source 23A is arranged on the +Y direction side of the insulating ink ejection head 22 .
  • the insulating ink applied to the printed surface of the mounting substrate 1000 by the insulating ink ejection head 22 while being transported in the +Y direction by the transport stage 21 is semi-cured by ultraviolet rays emitted from the irradiation light source 23A.
  • the irradiation light source 23B is arranged on the -Y direction side of the insulating ink ejection head 22 .
  • the insulating ink applied to the printing surface of the mounting substrate 1000 by the insulating ink ejection head 22 while being transported in the -Y direction by the transport stage 21 is semi-cured by ultraviolet rays emitted from the irradiation light source 23B.
  • the light emitting element 24 and the light receiving sensor 25 are used as inspection means for determining the state of the insulating ink film.
  • the light-emitting element 24 has a plurality of laser diodes (not shown) arranged along the X direction.
  • the light receiving sensor 25 has a plurality of photodiodes (not shown) arranged along the X direction.
  • Cameras 26A, 26B, and 26C capture images of fiducial marks 1005 (see FIG. 8) provided on mounting board 1000 or part of the mounting components, and identify the positions of mounting board 1000 or mounting components (see FIG. 8). alignment). Cameras 26A, 26B, and 26C are arranged along the X direction. Also, the cameras 26A, 26B, and 26C are supported so as to be movable in the X direction. With these three movable cameras 26A, 26B, and 26C, it is possible to photograph the fiducial mark 1005 arranged at any position in the X direction of the mounting board 1000 and the mounting board.
  • the insulating ink tank 27 is storage means for storing insulating ink.
  • the insulating ink tank 27 is connected to the insulating ink ejection head 22 by a tube (not shown).
  • the insulating ink stored in the insulating ink tank 27 is supplied to the insulating ink ejection head 22 through the tube.
  • the metal deposition ink printing apparatus 30 is printing means for applying metal deposition ink to desired positions on the printing surface of the mounting substrate 1000 (an example of a “base material”) to print a metal deposition ink film.
  • the metal deposition ink printing apparatus 30 includes a carrier stage 31, a metal deposition ink ejection head 32, irradiation light sources 33A and 33B, a light emitting element 34, a light receiving sensor 35, cameras 36A, 36B and 36C, and a metal deposition ink tank 37.
  • the transport stage 31 transports the mounting substrate 1000 transferred from the transport device 10 in the +Y direction and the -Y direction. Further, the carrier stage 31 transfers the mounting substrate 1000 coated with the metal deposition ink to the carrier device 10 .
  • the transport stage 31 transports the mounting board 1000 at a speed of, for example, 500 mm/s (an example of the “scanning speed”).
  • the metal deposition ink ejection head 32, the irradiation light sources 33A and 33B, the light emitting element 34, the light receiving sensor 35, and the cameras 36A, 36B, and 36C are arranged along the transportation path of the mounting substrate 1000 by the transportation stage 31, respectively, in the +Z direction of the transportation path. placed on the side.
  • the metal deposition ink ejection head 32 is an inkjet head that applies metal deposition ink to the printing surface of the mounting substrate 1000 by an inkjet method.
  • a metal deposition ink is an ink that deposits metal through a chemical reaction. Chemical reactions include photoreactions and polymerization reactions. Metal deposition inks are transparent before chemical reaction and have a metallic luster after chemical reaction. Transparent means that the visible light transmittance is 90% or more, and may mean that the visible light transmittance is 80% or more.
  • the metal deposition ink according to the present embodiment is a solution that is reduced by heat or light to deposit silver. A solution that deposits other metals such as gold, platinum, nickel, or copper instead of silver may be used.
  • the metal deposition ink ejection head 32 has a nozzle surface (not shown) on which a plurality of nozzles (not shown) for ejecting metal deposition ink are arranged, and the nozzle surface is oriented in the -Z direction.
  • the metal deposition ink ejection head 32 is a so-called line head in which a plurality of nozzles are arranged on the nozzle surface over a length equal to or longer than the width of the mounting substrate 1000 in the X direction.
  • the metal deposition ink ejection head 32 may be a dispenser or a sprayer.
  • the irradiation light sources 33A and 33B are ultraviolet light sources that irradiate the entire printed surface of the mounting substrate 1000 conveyed by the conveying stage 31 in the X direction with ultraviolet rays.
  • the irradiation light sources 33A and 33B irradiate the metal deposition ink film printed with the metal deposition ink on the mounting substrate 1000 by the metal deposition ink ejection head 32 with ultraviolet rays, thereby promoting metal deposition of the metal deposition ink film.
  • the irradiation light sources 33A and 33B each have a plurality of ultraviolet light emitting diodes (not shown) arranged along the X direction.
  • the ultraviolet light emitted from the irradiation light sources 23A and 23B to the mounting substrate 1000 has a wavelength of 405 nm, an irradiation intensity of 6 W/cm 2 on the printed surface of the mounting substrate 1000, and an irradiation width of 10 mm in the Y direction.
  • the irradiation light source 33A is arranged on the +Y direction side of the metal deposition ink ejection head 32 . Also, the irradiation light source 33B is arranged on the -Y direction side of the metal depositing ink ejection head 32 .
  • the light-emitting element 34 and the light-receiving sensor 35 function as an inspection device for determining the state of the metal deposition ink film. That is, the metal deposition ink printing apparatus 30 can determine the state of the metal deposition ink film in addition to printing the metal deposition ink.
  • the light emitting element 34 has a plurality of laser diodes arranged along the X direction.
  • the light receiving sensor 35 (an example of a “light receiving element”) has a plurality of photodiodes arranged along the X direction.
  • the cameras 36A, 36B, and 36C are photographing devices for photographing the fiducial mark 1005 provided on the mounting substrate 1000 or a part of the mounting components to identify the positions of the mounting substrate 1000 or the mounting components. be. Cameras 36A, 36B, and 36C are arranged along the X direction. Also, the cameras 36A, 36B, and 36C are supported so as to be movable in the X direction. With these three movable cameras 36A, 36B, and 36C, it is possible to photograph the fiducial mark 1005 arranged at any position in the X direction of the mounting board 1000 and the mounting board.
  • the metal deposition ink tank 37 is storage means for storing metal deposition ink.
  • the metal deposition ink tank 37 is connected to the metal deposition ink ejection head 32 by a tube (not shown).
  • the insulating ink stored in the metal deposition ink tank 37 is supplied to the metal deposition ink ejection head 32 through a tube.
  • the curing device 40 dries and cures the mounting substrate 1000 transported by the transporting device 10 to further advance the metal deposition of the metal deposition ink film printed on the mounting substrate 1000 and finally form a metal film. It is a device for That is, the metal deposition ink film becomes a metal film through a chemical reaction caused by the drying and curing process.
  • the curing device 40 fully cures the insulating ink film that has been semi-cured in the insulating ink printing device 20 by a drying and curing process.
  • the transport speed of the mounting substrate 1000 by the transport device 10 is, for example, 10 mm/s.
  • the curing device 40 includes hot air fans 41A and 41B, light emitting elements 42A and 42B, light receiving sensors 43A and 43B, hot air fans 44A and 44B, light emitting elements 45A and 45B, light receiving sensors 46A and 46B, irradiation light sources 47A and 47B, and light emitting. It has elements 48A and 48B and light receiving sensors 49A and 49B.
  • the hot air fan 41A, the light emitting element 42A, the light receiving sensor 43A, the hot air fan 44A, the light emitting element 45A, the light receiving sensor 46A, the irradiation light source 47A, the light emitting element 48A, and the light receiving sensor 49A are the transport path of the mounting substrate 1000 by the transport device 10. are arranged on the +Z direction side of the transport path, respectively. Also, the hot air fan 41B, the light emitting element 42B, the light receiving sensor 43B, the hot air fan 44B, the light emitting element 45B, the light receiving sensor 46B, the irradiation light source 47B, the light emitting element 48B, and the light receiving sensor 49B are mounted on the mounting board 1000 by the transport device 10. They are arranged along the transport path on the +Z direction side of the transport path. The number, order, and length in the conveying direction of the hot air fans and the irradiation light sources are not particularly limited.
  • the hot air fans 41A and 41B blow hot air of 100°C over a length of 300 mm in the X direction over the entire surface and back surface of the mounting substrate 1000 transported by the transport device 10, respectively. That is, the hot air fans 41A and 41B blow hot air at 100° C. for 30 seconds onto the front and back surfaces of the mounting board 1000 .
  • the hot air fans 44A and 44B blow hot air of 180° C. over a length of 300 mm in the X direction over the entire surface and back surface of the mounting substrate 1000 transported by the transport device 10 in the Y direction. That is, the hot air fans 44A and 44B blow hot air at 180.degree.
  • the irradiation light sources 47A and 47B are ultraviolet light sources that irradiate the entire printed surface of the mounting substrate 1000 conveyed by the conveying device 10 in the Y direction with ultraviolet rays.
  • the irradiation light sources 47A and 47B each have a plurality of ultraviolet light emitting diodes (not shown) arranged along the Y direction.
  • the irradiation light sources 47A and 47B have a length of 50 mm in the X direction, a wavelength of 435 nm, and an irradiation intensity of 6 W/cm 2 on the front and rear surfaces of the mounting substrate 1000 . That is, the front and back surfaces of the mounting substrate 1000 are irradiated with ultraviolet rays of 6 W/cm 2 for 5 seconds by the irradiation light sources 47A and 47B.
  • the mounting substrate 1000 is conveyed inside the curing device 40 by the conveying device 10, and heating by the hot air fans 41A and 41B, heating by the hot air fans 44A and 44B, and application of energy by the irradiation light sources 47A and 47B are sequentially performed.
  • curing of the insulating ink film on the front and back surfaces of the mounting substrate 1000 progresses, and metal deposition of the metal deposition ink film progresses.
  • the light emitting elements 42A and 42B, the light receiving sensors 43A and 43B, the light emitting elements 45A and 45B, the light receiving sensors 46A and 46B, the light emitting elements 48A and 48B, and the light receiving sensors 49A and 49B are the metal deposition ink films applied to the mounting substrate 1000. It functions as an inspection device for determining the state. That is, the curing device 40 constitutes a curing system capable of determining the state of the metal deposition ink film in addition to the drying and curing process.
  • the light-emitting element 42A and the light-receiving sensor 43A are arranged on the downstream side of the hot air fan 41A in the transport path of the mounting board 1000 in the transport device 10.
  • the light-emitting element 42B and the light-receiving sensor 43B are arranged downstream of the hot air fan 41B in the transport path of the mounting substrate 1000 in the transport device 10 .
  • the light-emitting element 45A and the light-receiving sensor 46A are arranged on the downstream side of the hot air fan 44A in the transportation route of the mounting board 1000 in the transportation device 10.
  • the light-emitting element 45B and the light-receiving sensor 46B are arranged downstream of the hot air fan 44B in the transport path of the mounting substrate 1000 in the transport device 10 .
  • the light-emitting element 48A and the light-receiving sensor 49A are arranged on the downstream side of the irradiation light source 47A in the transport path of the mounting substrate 1000 in the transport device 10 .
  • the light-emitting element 48B and the light-receiving sensor 49B are arranged downstream of the irradiation light source 47B on the transport path of the mounting substrate 1000 in the transport device 10 .
  • the light emitting elements 42A and 42B, the light emitting elements 45A and 45B, and the light emitting elements 48A and 48B each have a plurality of laser diodes (not shown) arranged along the Y direction.
  • the light receiving sensors 43A and 43B, the light receiving sensors 46A and 46B, and the light receiving sensors 49A and 49B each have a plurality of photodiodes (not shown) arranged along the Y direction.
  • both the front surface and the back surface of the mounting substrate 1000 are treated by the curing device 40 at the same time, but the back surface may be dried and hardened after the surface is dried and hardened.
  • the total processing time for the mounting substrate 1000 can be shortened by drying and curing both surfaces at the same time.
  • FIG. 3 is a block side view showing an example of the electrical configuration of the printing system.
  • the printing system 1 includes, in addition to the transport device 10, the insulating ink printing device 20, the metal deposition ink printing device 30, and the curing device 40 already described, a substrate visual inspection device 50, a control device 60, and A memory 62 is provided.
  • the board appearance inspection device 50 performs automated optical inspection (AOI) on the mounting board 1000 that has completed the drying and curing process.
  • the substrate visual inspection apparatus 50 includes a photographing light source 52 , a camera 54 , a light emitting element 56 and a light receiving sensor 58 .
  • the imaging light source 52 is a light source that irradiates imaging light onto an imaging location of the mounting board 1000 to be inspected.
  • the camera 54 is an image capturing device that captures a captured image by capturing a captured portion of the mounting board 1000 to be inspected.
  • the board visual inspection apparatus 50 performs visual inspection of the mounted board 1000 based on the photographed image of the mounted board 1000 .
  • the light-emitting element 56 and the light-receiving sensor 58 function as an inspection device for determining the state of the metal film formed by drying and curing the metal deposition ink film. Moreover, the light emitting element 56 and the light receiving sensor 58 may function as an inspection device for determining the state of the metal deposition ink film. That is, the substrate visual inspection apparatus 50 constitutes an inspection system capable of determining the state of the metal deposition ink film in addition to the visual inspection of the mounting substrate 1000 .
  • the configurations of the light-emitting element 56 and the light-receiving sensor 58 are the same as the configurations of the light-emitting element 34 and the light-receiving sensor 35 .
  • the control device 60 comprehensively controls the transport device 10 , the insulating ink printing device 20 , the metal deposition ink printing device 30 , the curing device 40 , and the substrate visual inspection device 50 .
  • the control device 60 is realized by at least one computer.
  • the controller 60 has a processor.
  • the processor executes instructions stored in memory 62 .
  • the hardware structure of the processor is various processors as shown below.
  • Various processors include a CPU (Central Processing Unit), which is a general-purpose processor that executes software (programs) and acts as various functional units, a GPU (Graphics Processing Unit), which is a processor specialized for image processing, A circuit specially designed to execute specific processing such as PLD (Programmable Logic Device), which is a processor whose circuit configuration can be changed after manufacturing such as FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), etc. Also included are dedicated electrical circuits, which are processors with configuration, and the like.
  • One processing unit may be composed of one of these various processors, or two or more processors of the same or different type (for example, a plurality of FPGAs, a combination of CPU and FPGA, or a combination of CPU and GPU).
  • a plurality of functional units may be configured by one processor.
  • a single processor is configured by combining one or more CPUs and software.
  • a processor acts as a plurality of functional units.
  • SoC System On Chip
  • various functional units are configured using one or more of the above various processors as a hardware structure.
  • the hardware structure of these various processors is, more specifically, an electrical circuit that combines circuit elements such as semiconductor elements.
  • the memory 62 stores instructions for the control device 60 to execute.
  • the memory 62 includes RAM (Random Access Memory) and ROM (Read Only Memory) (not shown).
  • the control device 60 uses the RAM as a work area, executes software using various programs and parameters including a mounting board manufacturing program stored in the ROM, and uses the parameters stored in the ROM or the like. , execute various processes of the printing system 1 .
  • the memory 62 also stores a board number table for accumulating the board numbers for identifying each of all the mounting boards 1000 handled by the printing system 1 and pass/fail data for each inspection item.
  • the control device 60 and memory 62 function as an inspection device for determining the state of the metal deposition ink film, which is the metal deposition ink applied to the mounting board 1000 by the metal deposition ink ejection head 32 .
  • the image captured by the camera 54 may be acquired by the control device 60 and the appearance inspection of the mounting board 1000 may be performed by the control device 60 .
  • FIG. 4 is a flow chart showing the steps of the manufacturing method of the mounting board.
  • the mounting board manufacturing method is implemented by the controller 60 executing a mounting board manufacturing program stored in the memory 62 .
  • the mounting board manufacturing program may be provided by a computer-readable non-transitory recording medium. In this case, the controller 60 may read the mounting board manufacturing program from the non-temporary recording medium and store it in the memory 62 .
  • the mounting board manufacturing method includes a printing process in step S1, an inspection process in step S2, a curing process in step S3, and an inspection process in step S4.
  • a printing process in step S1 an inspection process in step S2
  • a curing process in step S3 an inspection process in step S4.
  • the transport device 10 transports the mounting substrate 1000 ejected from the insulating ink printing device 20 in the X direction while supporting both ends thereof with the transport belts 12A and 12B.
  • the conveying device 10 stops conveying when the conveying belts 12A and 12B and the mounting board 1000 reach the conveying stage 31 of the metal deposition ink printing device 30 .
  • the transport stage 31 fixes the transport belts 12A and 12B and the mounting board 1000 .
  • the transport stage 31 to which the mounting board 1000 is fixed transports the mounting board 1000 in the +Y direction.
  • Light is emitted from the light emitting element 34 to the transported mounting board 1000, and the fiducial marks 1005 of the mounting board 1000 or part of the mounted components are photographed by the cameras 36A, 36B, and 36C.
  • the control device 60 identifies the position of the mounting board 1000 or the mounting component from this photographed image, and processes the print data for printing by the metal deposition ink ejection head 32 so as to match the identified position. conduct.
  • the transport stage 31 transports the mounting board 1000 in the -Y direction.
  • the metal deposition ink ejection head 32 ejects the metal deposition ink onto the printed surface of the transported mounting substrate 1000 in accordance with the print data processed by the control device 60 (printing step of step S1). Further, the irradiation light source 33B irradiates the printed surface of the mounting substrate 1000 with ultraviolet rays. As a result, the viscosity of the metal deposition ink immediately after printing is increased, and the droplet ejection positions are fixed (pinned).
  • the transport stage 31 transports the mounting board 1000 in the +Y direction.
  • the metal deposition ink ejection head 32 ejects the metal deposition ink onto the printed surface of the transported mounting substrate 1000 in accordance with the print data processed by the control device 60 (printing step of step S1). Further, the irradiation light source 33A irradiates the printed surface of the mounting substrate 1000 with ultraviolet rays. As a result, the viscosity of the metal deposition ink immediately after printing is increased, and the droplet ejection position is fixed.
  • the control device 60 uses the light emitting element 34 and the light receiving sensor 35 to determine the state of the printed metal deposition ink film, and determines the state of the metal deposition ink film. is either "good” or “bad” (inspection process of step S2).
  • the state of the metal deposition ink film is determined by irradiating the metal deposition ink film on the surface of the mounting substrate 1000 with light including a wavelength that is absorbed after the curing reaction of the metal deposition ink from the light emitting element 34, and detecting the reflected light by the light receiving sensor 35.
  • the light irradiation position is a position obtained by determining the inspection position coordinates of the surface of the mounting board 1000 in advance and correcting the position coordinates according to the previous alignment result.
  • the light emitting element 34 may be caused to blink according to a predetermined rule, and only light receiving signals that match the blinking pattern may be adopted.
  • the transfer stage 31 is repeatedly moved in the +Y direction and the -Y direction until the predetermined number of repetitions is reached so that the metal deposition ink film has a predetermined film thickness.
  • Print metal deposition inks After that, if necessary, the metal deposition ink printing apparatus 30 reverses the orientation of the front surface and the back surface of the mounting substrate 1000 by a reversing device, and prints the metal deposition ink on the mounting substrate 1000 in the same manner.
  • the transport device 10 supports both ends of the mounting substrate 1000 printed with the metal deposition ink by the transport belts 12A and 12B, transports the mounting substrate 1000 in the X direction at a constant speed, and feeds it into the curing device 40 .
  • the transport device 10 does not put the mounting substrate 1000, the state of the metal deposition ink film of which is determined to be “defective” in the inspection process of step S2, into the curing device 40, but rather transports the mounting board 1000 through a discharge transport path (not shown) to the printing system 1. can be discharged from In this way, by providing the metal deposition ink printing apparatus 30 with the inspection device using the light emitting element 34 and the light receiving sensor 35, the metal deposition ink film can be inspected even if the metal deposition ink film contains more scatterers than specified.
  • the mounting board 1000 whose state is determined to be "defective” does not have to be transferred to the curing process, and wasteful processes can be eliminated. Further, by discharging the mounting substrate 1000 before the curing process is completed, the metal deposition ink film on the mounting substrate 1000 can be washed off, and rework can be restarted from printing.
  • the transport device 10 transports the mounting substrate 1000 to pass through the curing device 40 .
  • the mounting board 1000 first passes through a position facing the warm air fans 41A and 41B.
  • the hot air fans 41A and 41B blow hot air onto the mounting board 1000 to dry and harden the mounting board 1000 (curing process in step S3). By receiving this heating energy, the metal deposition of the metal deposition ink film on the mounting substrate 1000 progresses.
  • the mounting board 1000 passes through positions facing the light emitting elements 42A and 42B and the light receiving sensors 43A and 43B.
  • the control device 60 uses the light-emitting elements 42A and 42B and the light-receiving sensors 43A and 43B to determine the state of the metal deposition ink film, and determines whether the state of the metal deposition ink film is "good” or "bad". Existence is inspected (inspection process of step S4).
  • the determination method here may be the same as the inspection process in step S2.
  • the conveying device 10 may discharge the mounting substrate 1000 for which the state of the metal deposition ink film is determined to be "defective" from the printing system 1 through a discharge conveying path (not shown).
  • the curing device 40 is provided with an inspection device including the light emitting elements 42A and 42B and the light receiving sensors 43A and 43B.
  • the rate does not rise above the specified value, or when the final scattering occurs above the specified value, the mounting substrate 1000 for which the state of the metal deposition ink film is determined to be "defective” does not need to be transferred to the next process. Useless steps can be eliminated. Further, by discharging the mounting substrate 1000 before the curing process is completed, the metal deposition ink film on the mounting substrate 1000 can be washed off, and rework can be restarted from printing.
  • the mounting board 1000 passes through positions facing the warm air fans 44A and 44B.
  • the hot air fans 44A and 44B blow hot air onto the mounting substrate 1000 to dry and harden the mounting substrate 1000 (curing process in step S3).
  • the metal deposition of the metal deposition ink film on the mounting substrate 1000 progresses further.
  • the mounting board 1000 passes through positions facing the light emitting elements 45A and 45B and the light receiving sensors 46A and 46B.
  • the curing device 40 uses the light-emitting elements 45A and 45B and the light-receiving sensors 46A and 46B to determine the state of the metal deposition ink film (inspection process of step S4).
  • the mounting substrate 1000 passes through positions facing the irradiation light sources 47A and 47B.
  • the irradiation light sources 47A and 47B irradiate the mounting board 1000 with ultraviolet rays to dry and cure the mounting board 1000 (curing process in step S3).
  • the metal deposition of the metal deposition ink film on the mounting substrate 1000 further progresses.
  • the mounting board 1000 passes through positions facing the light emitting elements 48A and 48B and the light receiving sensors 49A and 49B.
  • the curing device 40 uses the light emitting elements 48A and 48B and the light receiving sensors 49A and 49B to determine the state of the metal deposition ink film (inspection process of step S4).
  • the transport device 10 discharges from the curing device 40 the mounting substrate 1000 for which the state of the metal deposition ink film has been determined by the light emitting elements 48A, 48B and the light receiving sensors 49A, 49B.
  • a metal film is completed by the chemical reaction of the metal deposition ink film.
  • the mounting substrate 1000 ejected from the curing device 40 is put into the substrate appearance inspection device 50 by a transport device (not shown), and the appearance inspection is performed.
  • the process in the curing device 40 can be omitted by completing the drying and curing process only by irradiating the ultraviolet rays from the metal deposition ink printing device 30. be able to.
  • the irradiation light sources 23A and 23B of the metal deposition ink printing apparatus 30 can irradiate any of ultraviolet rays, visible rays, and infrared rays, and it is also possible to irradiate a combination of two or more of these. be.
  • the reflectance of ultraviolet rays increases and the absorbance of ultraviolet rays decreases, resulting in a decrease in irradiation effect. Therefore, the irradiation efficiency can be increased by switching to irradiation with infrared rays that are absorbed by the metal deposition ink film.
  • the printing system 1 determines the state of the metal deposition ink film based on two or more of the color, gloss, and reflection of the metal deposition ink film, and performs pass/fail determination of the mounting board 1000 based on the determined state.
  • the color of the metal deposition ink film is represented based on the amount of specularly reflected light of two or more wavelengths among the attributes of the metal deposition ink film. It is represented based on the ratio of specular reflection light amounts.
  • the glossiness of the metal deposition ink film is expressed based on the reflection amount of the specular reflection light and the reflection amount of the scattered reflection light among the attributes of the metal deposition ink film. It is expressed based on the ratio to the amount of reflected scattered reflected light.
  • the reflection of the metal deposition ink film is represented based on the amount of specular reflection light or scattered reflection light among the attributes of the metal deposition ink film.
  • the printing system 1 can accurately determine the state of the metal deposition ink film based on a plurality of attributes of the metal deposition ink film.
  • FIG. 5 is a side view showing an example of the configuration of the light emitting element 34 and the light receiving sensor 35.
  • FIG. 5 shows a set of a first laser diode 70, a second laser diode 72, a first photodiode 74, and a second photodiode 76 included in the light emitting element 34 and the light receiving sensor 35.
  • a plurality of sets each including a first laser diode 70, a second laser diode 72, a first photodiode 74, and a second photodiode 76 are arranged along the X direction. It consists of
  • the first laser diode 70 and the second laser diode 72 are enclosed in one package.
  • the first laser diode 70 emits semiconductor laser light with a wavelength of 435 nm (an example of a "first wavelength") and an output intensity of 1 mW.
  • the first laser diode 70 emits emitted light at an incident angle of 20 degrees (an angle formed with the normal to the surface of the mounting substrate 1000), condensing the light onto the metal deposition ink film 1100 on the mounting substrate 1000 to a diameter of 1 mm. It has the optical system shown.
  • the second laser diode 72 emits semiconductor laser light with a wavelength of 638 nm (an example of a "second wavelength") and an output intensity of 1 mW.
  • the second laser diode 72 has an optical system (not shown) for condensing and irradiating the emitted light to the metal deposition ink film 1100 on the mounting substrate 1000 at an incident angle of 20 degrees to a diameter of 1 mm.
  • the first photodiode 74 is positioned opposite to the first laser diode 70 and the second laser diode 72 across the condensing position when viewed in the Z direction, and emits light at an angle of 20 degrees from the condensing position. placed in a corner position. That is, the first photodiode 74 is arranged at a position where it receives specularly reflected light that is the specularly reflected light emitted from the first laser diode 70 and the second laser diode 72 .
  • the second photodiode 76 is positioned opposite to the first laser diode 70 and the second laser diode 72 across the condensing position when viewed in the Z direction, and emits light at an angle of 45 degrees from the condensing position. placed in a corner position. That is, the second photodiode 76 is arranged at a position where it receives the scattered reflected light that is the scattered reflected light emitted from the first laser diode 70 and the second laser diode 72 .
  • the control device 60 controls a plurality of sets of a first laser diode 70, a second laser diode 72, a first photodiode 74, and a second photodiode 76 arranged in the light emitting element 34 and the light receiving sensor 35. Among them, a set corresponding to the position in the X direction of the metal deposition ink film 1100 whose state is to be determined is selected and used.
  • the control device 60 causes the first laser diode 70 to emit light for 0.1 ms every 1 ms with a light emission pulse signal having a period of 1 ms and a pulse width of 0.1 ms, so that the metal deposited ink film 1100 on the mounting substrate 1000 emits light with a wavelength of 0.1 ms. Light of 435 nm is applied. Then, the control device 60 causes the first photodiode 74 and the second photodiode 76 to receive the light with a wavelength of 435 nm reflected by the surface of the metal deposition ink film 1100 .
  • the control device 60 controls the first laser diode 70 to output the first pulse signal at a timing delayed by 0.05 ms to 0.1 ms from the start of pulse output of the light emission pulse signal of the first laser diode 70 (from the start of light emission of the first laser diode 70).
  • Light reception signals of the photodiode 74 and the second photodiode 76 are detected as a first light reception signal L 1 and a second light reception signal L 2 . That is, the first light receiving signal L1 is a detection signal of specularly reflected light of wavelength 435 nm, and the second light receiving signal L2 is a detection signal of scattered reflected light of light of wavelength 435 nm.
  • both specularly reflected light and scattered reflected light can be received at the same timing for irradiation light with a wavelength of 435 nm.
  • control device 60 outputs an emission pulse signal having a period of 1 ms and a pulse width of 0.1 ms with a delay of 0.2 ms from the start of pulse output of the emission pulse signal of the first laser diode 70 .
  • the light emission pulse signal causes the second laser diode 72 to emit light to irradiate the metal deposited ink film 1100 with light having a wavelength of 638 nm.
  • the control device 60 causes the first photodiode 74 to receive the light with a wavelength of 638 nm reflected by the surface of the metal deposition ink film 1100 .
  • the control device 60 converts the light receiving signal of the first photodiode 74 at a timing delayed by 0.05 ms to 0.1 ms from the start of pulse output of the light emission pulse signal of the second laser diode 72 into the third light receiving signal. Detect as L3 . That is, the third received light signal L3 is a detection signal of specularly reflected light with a wavelength of 638 nm.
  • one first photodiode 74 can receive specularly reflected light beams of a plurality of wavelengths.
  • the inspection of the color of the metal deposition ink film 1100 is performed by comparing the amount of reflected light of light of a plurality of wavelengths.
  • the relatively large size of the particles produced in the metal deposited ink film 1100 shifts the absorption spectrum to longer wavelengths. Therefore, the control device 60 can determine the state of the metal deposition ink film 1100 and detect an abnormality by comparing the relative values of the reflected light amounts of light of a plurality of wavelengths.
  • the control device 60 generates a first light reception signal L 1 that is a detection signal of specularly reflected light with a wavelength of 435 nm, and a third light reception signal that is a detection signal of specularly reflected light with a wavelength of 638 nm. From L3 , the color of the metal deposition ink film 1100 is detected. In addition, the control device 60 performs acceptance/rejection determination of the mounting board 1000 based on the difference from the target sample (teacher sample) of each process.
  • Equation 1 The color signal ratio C of the metal deposition ink film 1100 at the measurement position can be expressed by Equation 1 below.
  • C L 1 /(L 1 +L 3 ) (Formula 1)
  • the color variation rate F C [%] between the color signal ratio C 1 obtained from Equation 1 by measuring the metal deposition ink film 1100 can be expressed as in Equation 2 below.
  • F C (C 1 -C 0 )/C 0 ⁇ 100 (Formula 2)
  • the state of the metal deposition ink film 1100 is judged as "good”, and the acceptance or rejection of the mounting board 1000 is judged as “acceptable”.
  • the color variation rate F C exceeds ⁇ 10%, the state of the metal deposition ink film 1100 is determined as "defective”, and the pass/fail of the mounting board 1000 is determined as "failed”.
  • the control device 60 stores the pass/fail result of the mounting board 1000 in the item column of the color variation rate result of the corresponding board number in the board number table stored in the memory 62, and updates the board number table.
  • the glossiness of the metal deposition ink film 1100 is inspected by comparing the amount of specularly reflected light and the amount of scattered reflected light. As the metal deposition ink film 1100 hardens, the presence of deposited particles (aggregates) in the metal deposition ink film 1100 increases the amount of scattered light. Further, as the metal deposition ink film 1100 further hardens, the gloss of the deposited metal reduces the amount of scattered light. Thereby, an abnormality of the metal deposition ink film 1100 can be detected.
  • the control device 60 generates a first light reception signal L 1 that is a detection signal of specularly reflected light with a wavelength of 435 nm, and a second light reception signal that is a detection signal of scattered reflected light of light with a wavelength of 435 nm.
  • the glossiness of the metal deposition ink film 1100 is detected from L2 .
  • the control device 60 performs acceptance/rejection determination of the mounting board 1000 based on the difference from the target sample in each process.
  • the gloss ratio G at the measurement position can be expressed by Equation 3 below.
  • G L 1 /(L 1 +L 2 ) (Formula 3)
  • F G (G 1 -G 0 )/G 0 ⁇ 100 (Formula 4)
  • the state of the metal deposition ink film 1100 is determined as "good”, and the acceptance or failure of the mounting substrate 1000 is determined as "pass”.
  • the state of the metal deposition ink film 1100 is determined as "defective”, and the pass/fail of the mounting substrate 1000 is determined as "failed”.
  • the control device 60 stores the pass/fail result of the mounting board 1000 in the item column of the gloss variation rate result of the corresponding board number in the board number table stored in the memory 62, and updates the board number table.
  • the reflection of the metal deposition ink film 1100 is inspected by comparing the emitted light quantity L0 and the received light quantity.
  • the control device 60 detects the reflection of the metal deposition ink film 1100 from the first received light signal L1 when the emitted light quantity with a wavelength of 435 nm is constant.
  • the amount of emitted light L0 can be obtained by using the received light signal when the reference reflector is placed at the position of the metal deposition ink film as the amount of emitted light L0 .
  • the control device 60 performs acceptance/rejection determination of the mounting board 1000 based on the difference from the target sample in each process.
  • the reflection amount R at the measurement position can be expressed as in Equation 5 below.
  • R L 1 /L 0 (Formula 5)
  • F R (R 1 -R 0 )/R 0 ⁇ 100 (Formula 6)
  • the control device 60 stores the pass/fail result of the mounting board 1000 in the item column of the reflection variability result of the corresponding board number in the board number table stored in the memory 62, and updates the board number table.
  • Equation 7 the reflection amount R at the measurement position.
  • Reflection can be similarly inspected by calculating the reflection variation rate F R [%] shown in Equation 6 using R determined in this way.
  • F R [%] the reflection variation rate shown in Equation 6 using R determined in this way.
  • the gloss of the metal deposition ink film 1100 at the condensing position is high, there is a possibility that the amount of light will be insufficient and the error will increase.
  • the inspection of reflection may utilize both the first received light signal L 1 and the second received light signal L 2 when the amount of emitted light with a wavelength of 435 nm is constant.
  • Equation 8 k is a constant that satisfies 0 ⁇ k ⁇ 100.
  • Reflection can be similarly inspected by calculating the reflection variation rate F R [%] shown in Equation 6 using R determined in this way.
  • the case of using both the first light receiving signal L 1 and the second light receiving signal L 2 is compared with the case of using the first light receiving signal L 1 and the case of using the second light receiving signal L 2 .
  • first laser diode 70, second laser diode 72, first photodiode 74, and second photodiode 76 have been commonly used to determine the color, gloss, and reflection of metal deposited ink film 1100. Two or more of them were detected by shifting the detection timing, but the laser diode and photodiode for detecting color, the laser diode and photodiode for detecting gloss, and the laser diode and photodiode for detecting reflection are respectively It can be different.
  • FIG. 6 is a side view showing another example of the configuration of the light emitting element 34 and the light receiving sensor 35. As shown in FIG. Parts common to those in FIG. 5 are denoted by common reference numerals, and detailed description thereof will be omitted.
  • FIG. 6 shows a set of a first laser diode 70, a second laser diode 72, a third laser diode 78, and a first photodiode 74 included in the light emitting element 34 and the light receiving sensor 35. .
  • the third laser diode 78 emits semiconductor laser light with a wavelength of 435 nm and an output intensity of 1 mW, like the first laser diode 70 .
  • the third laser diode 78 has an optical system (not shown) for condensing and irradiating the emitted light to the metal deposition ink film 1100 on the mounting substrate 1000 at an incident angle of 45 degrees to a diameter of 1 mm.
  • the arrangement of the first laser diode 70, the second laser diode 72, and the first photodiode 74 is the same as the example shown in FIG.
  • the third laser diode 78 is arranged on the opposite side of the first photodiode 74 across the condensing position when viewed in the Z direction. That is, the first photodiode 74 is arranged at a position to receive specularly reflected light emitted from the first laser diode 70 and the second laser diode 72, and is emitted from the third laser diode 78. It is arranged at a position to receive the scattered reflected light of the reflected light.
  • the control device 60 causes the first laser diode 70 and the second laser diode 72 to emit light, and the first photodiode 74 outputs the first received light signal L 1 and the first light reception signal L 1 . 3 is detected.
  • control device 60 outputs an emission pulse signal having a period of 1 ms and a pulse width of 0.1 ms with a delay of 0.3 ms from the start of pulse output of the emission pulse signal of the first laser diode 70 .
  • the light emission pulse signal causes the third laser diode 78 to emit light to irradiate the metal deposition ink film 1100 with light having a wavelength of 435 nm.
  • the controller 60 causes the first photodiode 74 to receive the light with a wavelength of 435 nm reflected by the surface of the metal deposition ink film 1100 .
  • the control device 60 converts the light receiving signal of the first photodiode 74 at a timing delayed by 0.05 ms to 0.1 ms from the start of pulse output of the light emission pulse signal of the third laser diode 78 into the second light receiving signal. Detect as L2 . That is, the second received light signal L2 is a detection signal of the scattered and reflected light of the wavelength 435 nm.
  • a signal L 1 , a second received light signal L 2 and a third received light signal L 3 can be detected. Therefore, the color, gloss and reflection of the metal deposited ink film 1100 can be detected.
  • the control device 60 may feed back the determination result of the state of the metal deposition ink film 1100 to the process conditions of the metal deposition ink printing device 30 and the curing device 40 .
  • the process conditions to be fed back are the switching of pass/fail lines or the labeling of pass/fail labels.
  • the pass/fail line is switched, for example, by the conveying device 10, which puts the mounting substrate 1000 whose state of the metal deposition ink film 1100 is determined to be "good” in the metal deposition ink printing device 30 into the curing device 40, and the metal deposition ink film 1100 is The mounting substrate 1000 whose state is determined to be “defective” is not put into the curing device 40 but is discharged through a discharge conveying path (not shown).
  • the transport device 10 transfers the mounting substrate 1000 whose state of the metal deposition ink film 1100 is determined to be “good” in the curing device 40 to the next step of the curing device 40, and the state of the metal deposition ink film 1100 is determined to be “bad”. ” is ejected from the curing device 40 .
  • the control device 60 stores the pass/fail result in the board number table stored in the memory 62 .
  • the control device 60 may identifiably attach a sticker or ink to the mounting substrate 1000 for which the state of the metal deposition ink film 1100 has been determined to be “defective”.
  • the process conditions to be fed back may be one or more of the internal temperature of the metal deposition ink printing apparatus 30, the amount of light emitted from the irradiation light sources 33A and 33B, and the moving speed of the carrier stage 31.
  • the state of the metal deposition ink film 1100 is "bad", it is desirable to record the color variation rate F C , the gloss variation rate F G , and the reflection variation rate F R .
  • the state of the metal deposition ink film 1100 after the second printing on a certain mounting board 1000 is determined to be "bad", and the color variation rate FC and the gloss variation rate of this mounting board 1000 are Assume that F G and reflection variation F R are -10% or less, respectively.
  • the control device 60 changes the emitted light amount of the irradiation light sources 33A and 33B by 10% based on this result. to implement feedback. As a result, the state of the metal deposition ink film 1100 on the mounting substrate 1000 after the feedback can be made "good".
  • the process conditions to be fed back include the internal temperature of the curing device 40, the heating temperature of the hot air fans 41A and 41B and the hot air fans 44A and 44B, the light intensity of the irradiation light sources 47A and 47B, the transport speed of the transport device 10, and the drying and curing process. It may be one or more of the hours.
  • the state of the metal deposit ink film 1100 on the light emitting elements 42A and 42B and the light receiving sensors 43A and 43B of a mounting substrate 1000 is determined to be "defective", the color variation rate F C and the reflection variation rate F R of this mounting board 1000 are -10% or less, and the reflection variation rate F R is within ⁇ 10%.
  • the control device 60 raises the heating temperature of the hot air fans 41A and 41B by 10° C. based on this result. feedback to change to 130°C. As a result, the state of the metal deposition ink film 1100 after the feedback can be set to "good".
  • FIG. 7 is a table showing the determination of the state of the metal deposition ink film by a combination of color, gloss, and reflectance.
  • the reflection of the metal deposition ink film is classified into “high reflection”, “medium reflection”, and “low reflection”.
  • “High reflection”, “middle reflection”, and “low reflection” are obtained by comparing the reflection amount R obtained by, for example, Equation 5 with a predetermined first threshold and a second threshold, and the reflection amount R is "High reflection” when the reflection amount R is greater than the first threshold, “Medium reflection” when the reflection amount R is equal to or less than the first threshold and greater than the second threshold, can be classified as “low reflection”.
  • the first threshold is 0.5 and the second threshold is 0.2.
  • gloss is classified into “gloss” and “scattering”.
  • gloss ratio G obtained by Equation 3 is compared with a predetermined third threshold, and when the gloss ratio G is greater than the third threshold, "gloss” If the rate G is less than or equal to a third threshold, it can be classified as "scattered".
  • the third threshold is set to 0.7.
  • colors are classified into “gray” and “brown”.
  • “gray color” and “brown color” for example, the color signal ratio C obtained by Equation 1 is compared with predetermined fourth and fifth thresholds, and the color signal ratio C is the fourth threshold. If it is larger than the fifth threshold and smaller than the fifth threshold, it can be classified as “gray”, and if the color signal ratio C is equal to or less than the fourth threshold, it can be classified as "brown”.
  • the fourth threshold is 0.3 and the fifth threshold is 0.7.
  • the reflection is "high reflection” and the gloss is “scattering”
  • the color is "gray”
  • the state of the metal deposition ink film is "many small crystals (intermediate stage of crystal growth)”.
  • the color is "brown”
  • it can be determined that the state of the metal deposited ink film is "small crystals mixed with impurity components (requires lamination)".
  • the state of the metal deposit ink film is "grey” if the color is "large crystal thin layer (intermediate stage of crystal growth)”. )”, and if the color is “brown”, it can be determined that it is an “impurity mixed layer (requires stacking)”.
  • the state of the metal deposit ink film is "small crystal thin layer (initial stage of crystal growth)” if the color is "gray color”. If the color is "brown”, it can be determined to be an "impurity small crystal layer (requires lamination)”.
  • the color is “gray” and the state of the metal deposited ink film is determined to be "a large amount of impurity crystals (impossible)". If the reflection is "low reflection” and the gloss is “scattering”, the color is “gray” and the state of the metal deposition ink film is "a large amount of impurity small crystals (impossible)" can be determined.
  • the state of the metal deposition ink film can be determined in detail, and the details of the subsequent process can be determined.
  • FIG. 8 is a plan view of the mounting board. As shown in FIG. 8, the mounting substrate 1000 is obtained by mounting an IC 1006 , a resistor 1008 and a capacitor 1010 on a component mounting surface 1004 of a printed wiring board 1002 .
  • a conductive pattern 1020 is formed on the mounting board 1000 for the IC 1006 , and an insulating coating 1022 is formed for the resistor 1008 and the capacitor 1010 . Insulating coating 1022 is formed on mounting board 1000 for electrodes 1009 that are exposed without the electrical components of printed wiring board 1002 being mounted.
  • FIG. 8 shows an example in which one surface of the printed wiring board 1002 is the component mounting surface 1004, both surfaces of the printed wiring board 1002 may be component mounting surfaces.
  • the printed wiring board 1002 is provided with two fiducial marks 1005 (alignment marks).
  • a fiducial mark 1005 indicates a reference position of the printed wiring board 1002 .
  • the number, position, and shape of fiducial marks 1005 can be determined as appropriate.
  • the IC 1006 is an electric component in which a semiconductor integrated circuit is enclosed in a package such as resin.
  • the IC 1006 has electrodes exposed outside the package. Note that IC is an abbreviation for Integrated Circuit. Also, electrical components are sometimes called electronic components.
  • a resistor 1008 includes an electrical resistance element.
  • Capacitor 1010 includes various capacitors such as electrolytic capacitors and ceramic capacitors. Resistor 1008 and capacitor 1010 are rectangular chip-type components.
  • An insulating pattern 1024 (see FIG. 9) is formed using insulating ink in an area where the IC 1006 is arranged among the electrical components mounted on the printed wiring board 1002. Further, at least a part of the insulating pattern 1024 is coated with metal. A conductive pattern 1020 is formed using a deposited ink. Note that the insulating pattern 1024 is not shown in FIG. 8 because it is covered with the conductive pattern 1020 and cannot be seen.
  • the conductive pattern 1020 is formed by arranging metal deposition ink in the formation area of the conductive pattern 1020 in the metal deposition ink ejection head 32 of the metal deposition ink printing apparatus 30 to print a metal deposition ink film, which is a continuous body of ink dots of the metal deposition ink. and then curing the metal deposition ink film in the irradiation light sources 33A and 33B. That is, the conductive pattern 1020 corresponds to a metal film formed by a chemical reaction of a metal deposition ink film printed with metal deposition ink.
  • the insulating coating 1022 and the insulating pattern 1024 are formed by arranging the insulating ink in the forming region of the insulating coating 1022 and the insulating pattern 1024 in the insulating ink ejection head 22 of the insulating ink printing device 20, and are a continuous body of ink dots of the insulating ink. It is formed by printing an insulating ink film and then curing the insulating ink film in the irradiation light sources 23A and 23B.
  • the conductive pattern 1020 functions as an electromagnetic shield for the purpose of suppressing electromagnetic waves received by the IC 1006 and suppressing electromagnetic waves emitted from the IC 1006 .
  • the insulating pattern 1024 serves as an insulating member for ensuring electrical insulation between the conductive pattern 1020 and the IC 1006, an adhesive member for ensuring adhesion between the conductive pattern 1020 and the IC 1006, and a member for ensuring the flatness of the base of the conductive pattern 1020. Function.
  • a ground electrode 1036 connected to ground potential is installed around the component mounting surface 1004 , and the conductive pattern 1020 is connected to the ground electrode 1036 .
  • the conductive pattern 1020 is preferably printed over a wider area than the insulating pattern 1024 . This is because electrical connection to the ground electrode 2020 becomes possible and the conductive pattern 1020 is placed in contact with the component mounting surface 1004, thereby improving the electromagnetic wave shielding property of the IC 1006 in the lateral direction.
  • At least a portion of the component area of the printed wiring board 1002 where electrical components that do not require electromagnetic wave shielding are arranged is not formed with the conductive pattern 1020 and is covered with an insulating coating 1022 .
  • Electrical parts that do not require electromagnetic shielding include resistors 1008, capacitors 1010, diodes, coils, transformers, switches, and the like.
  • the insulating pattern 1024 and the conductive pattern 1020 are also printed over those electric parts and wiring. If the print area includes the IC 1006 and is close to each other, the insulating pattern 1024 and the conductive pattern 1020 are printed continuously over the electrical components, wiring, and IC 1006 . This is because continuous printing of the conductive pattern 1020 facilitates printing, and also facilitates suppression of electromagnetic waves leaking from the intervals between printings.
  • the electrode area where the electrode 1009 is arranged is covered with an insulating coating 1022 .
  • the insulating coating 1022 suppresses a short circuit of an electric circuit caused by adhesion of finely divided metal deposition ink to the resistor 1008 or the like when the conductive pattern 1020 is formed.
  • FIG. 9 is a cross-sectional view showing the three-dimensional structure of the mounting board.
  • FIG. 9 schematically shows a cross section of any IC 1006 shown in FIG. 8 with insulating patterns 1024 and conductive patterns 1020 formed thereon.
  • the printed wiring board 1002 is provided with a board electrode 1030 and a ground electrode 1036 on the component mounting surface 1004 .
  • parts of the component mounting surface 1004 other than the ground electrode 1036 and the substrate electrode 1030 are covered with a solder resist 1038 that is an insulating material.
  • the inner layer circuits of the printed wiring board 1002 are omitted.
  • Board-side electrodes 1030 formed on the component mounting surface 1004 of the printed wiring board 1002 and element-side electrodes 1032 of the IC 1006 are electrically connected via solder bumps 1034 made of a conductive material.
  • solder bumps 1034 made of a conductive material.
  • the cavity between the back surface 1006B of the IC 1006 and the component mounting surface 1004 (solder resist 1038) is filled with an underfill material 1040, which is an insulating material, in order to maintain the bonding strength between the IC 1006 and the printed wiring board 1002. .
  • An insulating pattern 1024 is formed around the IC 1006 surrounding the four side surfaces 1006A of the IC 1006 and the top surface 1006C of the IC 1006.
  • the insulating pattern 1024 may be formed between the back surface 1006 B of the IC 1006 and the component mounting surface 1004 of the printed wiring board 1002 .
  • the conductive pattern 1020 is formed over at least part of an insulating pattern 1024 (an example of a "base material").
  • FIG. 9 shows an example in which the conductive pattern 1020 is formed over the entire surface of the insulating pattern 1024 .
  • the conductive pattern 1020 may be formed in a region covering the side surface 1006A of the IC 1006 (an example of a "base material” and an example of a “component mounted on a substrate") and the upper surface 1006C of the IC 1006.
  • the side surface 1006A of the IC 1006 and the top surface 1006C of the IC 1006 may be formed with insulating patterns 1024 underlying the conductive patterns 1020 .
  • an insulating pattern 1024 is formed at least in a region covering all the electrodes.
  • FIG. 9 shows the mounting substrate 1000 with the conductive pattern 1020 exposed
  • a protective film may be formed over the conductive pattern 1020 .
  • the protective film may have insulating properties.
  • metal deposition ink an ink containing a metal complex (hereinafter also referred to as “metal complex ink”) or an ink containing a metal salt (hereinafter also referred to as “metal salt ink”) is preferable.
  • metal complex ink a metal complex
  • metal salt ink an ink containing a metal salt
  • a metal complex ink is, for example, an ink composition in which a metal complex is dissolved in a solvent.
  • metals constituting metal complexes include silver, copper, gold, aluminum, magnesium, tungsten, molybdenum, zinc, nickel, iron, platinum, tin, copper, and lead.
  • the metal constituting the metal complex preferably contains at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper, and more preferably contains silver. preferable.
  • the content of the metal contained in the metal complex ink is preferably 1% by mass to 40% by mass, more preferably 5% by mass to 30% by mass, in terms of metal element, with respect to the total amount of the metal complex ink. Preferably, it is more preferably 7% by mass to 20% by mass.
  • a metal complex is obtained, for example, by reacting a metal salt with a complexing agent.
  • a method for producing a metal complex includes, for example, a method in which a metal salt and a complexing agent are added to an organic solvent and the mixture is stirred for a predetermined period of time.
  • the stirring method is not particularly limited, and can be appropriately selected from known methods such as a method of stirring using a stirrer, a stirring blade or a mixer, and a method of applying ultrasonic waves.
  • Metal salts include metal oxides, thiocyanates, sulfides, chlorides, cyanides, cyanates, carbonates, acetates, nitrates, nitrites, sulfates, phosphates, perchlorates, Tetrafluoroborates, acetylacetonate complexes, and carboxylates.
  • Complexing agents include amines, ammonium carbamate compounds, ammonium carbonate compounds, ammonium bicarbonate compounds, and carboxylic acids.
  • the complexing agent is at least selected from the group consisting of ammonium carbamate compounds, ammonium carbonate compounds, amines, and carboxylic acids having 8 to 20 carbon atoms. It is preferred that one species is included.
  • the metal complex has a structure derived from a complexing agent, and contains at least one selected from the group consisting of ammonium carbamate compounds, ammonium carbonate compounds, amines, and carboxylic acids having 8 to 20 carbon atoms.
  • a metal complex having a derived structure is preferred.
  • Amines that are complexing agents include, for example, ammonia, primary amines, secondary amines, tertiary amines, and polyamines.
  • Examples of primary amines having linear alkyl groups include methylamine, ethylamine, 1-propylamine, n-butylamine, n-pentylamine, n-hexylamine, heptylamine, octylamine, nonylamine, n - decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, and octadecylamine.
  • Examples of primary amines having branched alkyl groups include isopropylamine, sec-butylamine, tert-butylamine, isopentylamine, 2-ethylhexylamine, and tert-octylamine.
  • Examples of primary amines having an alicyclic structure include cyclohexylamine and dicyclohexylamine.
  • Examples of primary amines having a hydroxyalkyl group include ethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, propanolamine, isopropanolamine, dipropanolamine, diisopropanolamine, tripropanolamine, and triisopropanol. Amines are mentioned.
  • Examples of primary amines having an aromatic ring include benzylamine, N,N-dimethylbenzylamine, phenylamine, diphenylamine, triphenylamine, aniline, N,N-dimethylaniline, N,N-dimethyl-p- Toluidine, 4-aminopyridine, and 4-dimethylaminopyridine.
  • secondary amines include dimethylamine, diethylamine, dipropylamine, dibutylamine, diphenylamine, dicyclopentylamine, and methylbutylamine.
  • Tertiary amines include, for example, trimethylamine, triethylamine, tripropylamine, and triphenylamine.
  • Polyamines include, for example, ethylenediamine, 1,3-diaminopropane, diethylenetriamine, triethylenetetramine, tetramethylenepentamine, hexamethylenediamine, tetraethylenepentamine, and combinations thereof.
  • the amine is preferably an alkylamine, preferably an alkylamine having 3 to 10 carbon atoms, more preferably a primary alkylamine having 4 to 10 carbon atoms.
  • the number of amines constituting the metal complex may be one, or two or more.
  • the molar ratio of the amine to the metal salt is preferably 1 to 15 times, more preferably 1.5 to 6 times.
  • the complex formation reaction is completed and a transparent solution is obtained.
  • Ammonium carbamate compounds as complexing agents include ammonium carbamate, methylammonium methylcarbamate, ethylammonium ethylcarbamate, 1-propylammonium 1-propylcarbamate, isopropylammonium isopropylcarbamate, butylammonium butylcarbamate, isobutylammonium isobutylcarbamate, amyl ammonium amyl carbamate, hexylammonium hexyl carbamate, heptylammonium heptyl carbamate, octylammonium octyl carbamate, 2-ethylhexylammonium 2-ethylhexyl carbamate, nonyl ammonium nonyl carbamate, and decyl ammonium decyl carbamate.
  • Ammonium carbonate-based compounds as complexing agents include ammonium carbonate, methylammonium carbonate, ethylammonium carbonate, 1-propylammonium carbonate, isopropylammonium carbonate, butylammonium carbonate, isobutylammonium carbonate, amylammonium carbonate, hexylammonium carbonate, and heptyl. Ammonium carbonate, octylammonium carbonate, 2-ethylhexylammonium carbonate, nonyl ammonium carbonate, and decylammonium carbonate.
  • Ammonium bicarbonate-based compounds as complexing agents include ammonium bicarbonate, methylammonium bicarbonate, ethylammonium bicarbonate, 1-propylammonium bicarbonate, isopropylammonium bicarbonate, butylammonium bicarbonate, isobutylammonium bicarbonate, amyl Ammonium bicarbonate, hexylammonium bicarbonate, heptyl ammonium bicarbonate, octylammonium bicarbonate, 2-ethylhexylammonium bicarbonate, nonyl ammonium bicarbonate, and decylammonium bicarbonate.
  • the amount of the ammonium carbamate-based compound, the ammonium carbonate-based compound, or the ammonium bicarbonate-based compound relative to the molar amount of the metal salt is preferably 0.01 to 1, more preferably 0.05 to 0.6.
  • Carboxylic acid as a complexing agent includes, for example, caproic acid, caprylic acid, pelargonic acid, 2-ethylhexanoic acid, capric acid, neodecanoic acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, and palmitoleic acid. , oleic acid, linoleic acid, and linolenic acid.
  • the carboxylic acid is preferably a carboxylic acid having 8 to 20 carbon atoms, more preferably a carboxylic acid having 10 to 16 carbon atoms.
  • the content of the metal complex in the metal complex ink is preferably 10% by mass to 90% by mass, more preferably 10% by mass to 40% by mass, relative to the total amount of the metal complex ink.
  • the content of the metal complex is 10% by mass or more, the surface resistivity is further lowered.
  • the content of the metal complex is 90% by mass or less, the jettability is improved when the metal particle ink is applied using an inkjet recording method.
  • the metal complex ink preferably contains a solvent.
  • the solvent is not particularly limited as long as it can dissolve the components contained in the metal complex ink such as the metal complex. From the viewpoint of ease of production, the solvent preferably has a boiling point of 30°C to 300°C, more preferably 50°C to 200°C, and more preferably 50°C to 180°C.
  • the content of the solvent in the metal complex ink is such that the concentration of the metal ion relative to the metal complex (the amount of metal present as free ions per 1 g of the metal complex) is 0.01 mmol/g to 3.6 mmol/g. is preferred, and 0.05 mmol/g to 2 mmol/g is more preferred.
  • the metal ion concentration is within the above range, the metal complex ink has excellent fluidity and can obtain electromagnetic wave shielding properties.
  • solvents examples include hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, carbamates, alkenes, amides, ethers, esters, alcohols, thiols, thioethers, phosphines, and water.
  • the number of solvents contained in the metal complex ink may be one, or two or more.
  • the hydrocarbon is preferably a linear or branched hydrocarbon having 6 to 20 carbon atoms.
  • Hydrocarbons include, for example, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane and icosane.
  • the cyclic hydrocarbon is preferably a cyclic hydrocarbon having 6 to 20 carbon atoms.
  • Cyclic hydrocarbons can include, for example, cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, and decalin.
  • Aromatic hydrocarbons include, for example, benzene, toluene, xylene, and tetralin.
  • the ether may be any of straight-chain ether, branched-chain ether, and cyclic ether.
  • Ethers include, for example, diethyl ether, dipropyl ether, dibutyl ether, methyl-t-butyl ether, tetrahydrofuran, tetrahydropyran, dihydropyran, and 1,4-dioxane.
  • the alcohol may be any of primary alcohol, secondary alcohol, and tertiary alcohol.
  • alcohols examples include ethanol, 1-propanol, 2-propanol, 1-methoxy-2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3-pentanol and 1-hexanol.
  • Ketones include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • esters include methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, methoxybutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol.
  • the metal complex ink may contain a reducing agent.
  • the metal complex ink contains a reducing agent, the reduction of the metal complex to the metal is promoted.
  • reducing agents include metal borohydride salts, aluminum hydride salts, amines, alcohols, organic acids, reducing sugars, sugar alcohols, sodium sulfite, hydrazine compounds, dextrin, hydroquinone, hydroxylamine, ethylene glycol, glutathione, and oxime compounds.
  • the reducing agent may be an oxime compound described in JP 2014-516463.
  • oxime compounds include acetone oxime, cyclohexanone oxime, 2-butanone oxime, 2,3-butanedione monoxime, dimethylglyoxime, methylacetoacetate monoxime, methylpyruvate monoxime, benzaldehyde oxime, and 1-indanone.
  • oximes 2-adamantanone oxime, 2-methylbenzamide oxime, 3-methylbenzamide oxime, 4-methylbenzamide oxime, 3-aminobenzamide oxime, 4-aminobenzamide oxime, acetophenone oxime, benzamide oxime, and pinacolone oxime .
  • the number of reducing agents contained in the metal complex ink may be one, or two or more.
  • the content of the reducing agent in the metal complex ink is not particularly limited. More preferably 1% by mass to 5% by mass.
  • the metal complex ink may contain resin.
  • the adhesion of the metal complex ink to the substrate is improved.
  • resins include polyester, polyethylene, polypropylene, polyacetal, polyolefin, polycarbonate, polyamide, fluorine resin, silicone resin, ethyl cellulose, hydroxyethyl cellulose, rosin, acrylic resin, polyvinyl chloride, polysulfone, polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl-based Resins, polyacrylonitrile, polysulfides, polyamideimides, polyethers, polyarylates, polyetheretherketones, polyurethanes, epoxy resins, vinyl ester resins, phenolic resins, melamine resins, and urea resins.
  • the number of resins contained in the metal complex ink may be one, or two or more.
  • the metal complex ink further contains an inorganic salt, an organic salt, an inorganic oxide such as silica; Additives such as agents, surfactants, plasticizers, curing agents, thickeners, and silane coupling agents may be contained.
  • the total content of additives in the metal complex ink is preferably 20% by mass or less with respect to the total amount of the metal complex ink.
  • the viscosity of the metal complex ink is not particularly limited, and may be 0.01 Pa ⁇ s to 5000 Pa ⁇ s, preferably 0.1 Pa ⁇ s to 100 Pa ⁇ s.
  • the viscosity of the metal complex ink is preferably 1 mPa s to 100 mPa s, and more preferably 2 mPa s to 50 mPa s. is more preferable, and 3 mPa ⁇ s to 30 mPa ⁇ s is even more preferable.
  • the viscosity of the metal complex ink is a value measured at 25°C using a viscometer. Viscosity is measured using, for example, a VISCOMETER TV-22 viscometer (manufactured by Toki Sangyo Co., Ltd.).
  • the surface tension of the metal complex ink is not particularly limited, and is preferably 20 mN/m to 45 mN/m, more preferably 25 mN/m to 35 mN/m.
  • Surface tension is a value measured at 25°C using a surface tensiometer.
  • the surface tension of the metal complex ink is measured using, for example, DY-700 (manufactured by Kyowa Interface Science Co., Ltd.).
  • a metal salt ink is, for example, an ink composition in which a metal salt is dissolved in a solvent.
  • metals constituting metal salts include silver, copper, gold, aluminum, magnesium, tungsten, molybdenum, zinc, nickel, iron, platinum, tin, copper, and lead.
  • the metal constituting the metal salt preferably contains at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper, and more preferably contains silver. preferable.
  • the content of the metal contained in the metal salt ink is preferably 1% by mass to 40% by mass, more preferably 5% by mass to 30% by mass, in terms of metal element, relative to the total amount of the metal salt ink. Preferably, it is more preferably 7% by mass to 20% by mass.
  • the content of the metal salt in the metal salt ink is preferably 10% by mass to 90% by mass, more preferably 10% by mass to 40% by mass, relative to the total amount of the metal salt ink.
  • the content of the metal salt is 10% by mass or more, the surface resistivity is further lowered.
  • the content of the metal salt is 90% by mass or less, the jettability is improved when the metal particle ink is applied using a spray method or an inkjet recording method.
  • metal salts include metal benzoates, halides, carbonates, citrates, iodates, nitrites, nitrates, acetates, phosphates, sulfates, sulfides, trifluoroacetates, and carboxylates.
  • salt may combine 2 or more types.
  • the metal salt is preferably a metal carboxylate from the viewpoint of electromagnetic wave shielding properties and storage stability.
  • the carboxylic acid forming the carboxylic acid salt is preferably at least one selected from the group consisting of formic acid and a carboxylic acid having 1 to 30 carbon atoms, more preferably a carboxylic acid having 8 to 20 carbon atoms. , and fatty acids having 8 to 20 carbon atoms are more preferred.
  • the fatty acid may be linear or branched, and may have a substituent.
  • Linear fatty acids include, for example, acetic acid, propionic acid, butyric acid, valeric acid, pentanoic acid, hexanoic acid, heptanoic acid, behenic acid, oleic acid, octanoic acid, nonanoic acid, decanoic acid, caproic acid, enanthic acid, and caprylic acid. , pelargonic acid, capric acid, and undecanoic acid.
  • branched fatty acids examples include isobutyric acid, isovaleric acid, ethylhexanoic acid, neodecanoic acid, pivalic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, and 2-ethylbutanoic acid.
  • substituted carboxylic acids include hexafluoroacetylacetone acid, hydroangelic acid, 3-hydroxybutyric acid, 2-methyl-3-hydroxybutyric acid, 3-methoxybutyric acid, acetonedicarboxylic acid, 3-hydroxyglutaric acid, 2 -methyl-3-hydroxyglutarate, and 2,2,4,4-hydroxyglutarate.
  • the metal salt may be a commercially available product or may be produced by a known method.
  • a silver salt is manufactured by the following method, for example.
  • a silver compound for example, silver acetate
  • formic acid or a fatty acid having 1 to 30 carbon atoms in an amount equivalent to the molar equivalent of the silver compound.
  • the mixture is stirred for a predetermined time using an ultrasonic stirrer, and the precipitate formed is washed with ethanol and decanted. All these steps can be performed at room temperature (25°C).
  • the mixing ratio of the silver compound to the formic acid or the fatty acid having 1 to 30 carbon atoms is preferably 1:2 to 2:1, more preferably 1:1 in terms of molar ratio.
  • the metal salt ink preferably contains a solvent.
  • the type of solvent is not particularly limited as long as it can dissolve the metal salt contained in the metal salt ink.
  • the boiling point of the solvent is preferably 30°C to 300°C, more preferably 50°C to 300°C, and more preferably 50°C to 250°C, from the viewpoint of ease of production.
  • the content of the solvent in the metal salt ink is such that the concentration of metal ions relative to the metal salt (amount of metal present as free ions per 1 g of metal salt) is 0.01 mmol/g to 3.6 mmol/g. is preferred, and 0.05 mmol/g to 2.6 mmol/g is more preferred.
  • the metal salt ink has excellent fluidity and electromagnetic wave shielding properties can be obtained.
  • solvents examples include hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, carbamates, alkenes, amides, ethers, esters, alcohols, thiols, thioethers, phosphines, and water.
  • the number of solvents contained in the metal salt ink may be one, or two or more.
  • the solvent preferably contains aromatic hydrocarbons.
  • aromatic hydrocarbons examples include benzene, toluene, xylene, ethylbenzene, propylbenzene, isopropylbenzene, butylbenzene, isobutylbenzene, t-butylbenzene, trimethylbenzene, pentylbenzene, hexylbenzene, tetralin, benzyl alcohol, phenol, Cresol, methyl benzoate, ethyl benzoate, propyl benzoate, and butyl benzoate.
  • the number of aromatic rings in the aromatic hydrocarbon is preferably one or two, more preferably one.
  • the boiling point of the aromatic hydrocarbon is preferably 50°C to 300°C, more preferably 60°C to 250°C, and more preferably 80°C to 200°C, from the viewpoint of ease of production.
  • the solvent may contain aromatic hydrocarbons and hydrocarbons other than aromatic hydrocarbons.
  • Hydrocarbons other than aromatic hydrocarbons include linear hydrocarbons with 6 to 20 carbon atoms, branched hydrocarbons with 6 to 20 carbon atoms, and alicyclic hydrocarbons with 6 to 20 carbon atoms.
  • hydrocarbons other than aromatic hydrocarbons include pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane, decalin, cyclohexane, cycloheptane, and cyclooctane. , cyclononane, cyclodecane, decene, terpene compounds and icosane.
  • hydrocarbons other than aromatic hydrocarbons contain unsaturated bonds.
  • Hydrocarbons other than aromatic hydrocarbons containing unsaturated bonds include terpene compounds.
  • Terpene compounds are classified into, for example, hemiterpenes, monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, sesqualterpenes, and tetraterpenes, depending on the number of isoprene units that make up the terpene compounds.
  • the terpene-based compound as the solvent may be any of the above, but monoterpene is preferred.
  • Examples of monoterpenes include pinene ( ⁇ -pinene, ⁇ -pinene), terpineol ( ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol), myrcene, camphene, limonene (d-limonene, l-limonene, dipentene), Ocimene ( ⁇ -Ocimene, ⁇ -Ocimene), Alloocimene, Phellandrene ( ⁇ -Phellandrene, ⁇ -Phellandrene), Terpinene ( ⁇ -Terpinene, ⁇ -Terpinene), Terpinolene ( ⁇ -Terpinolene, ⁇ -Terpinolene, ⁇ - terpinolene, ⁇ -terpinolene), 1,8-cineol, 1,4-cineol, sabinene, paramentadiene, carene ( ⁇ -3-carene).
  • pinene
  • the monoterpene is preferably a cyclic monoterpene, more preferably pinene, terpineol, or carene.
  • the ether may be any of straight-chain ether, branched-chain ether, and cyclic ether.
  • Ethers include, for example, diethyl ether, dipropyl ether, dibutyl ether, methyl-t-butyl ether, tetrahydrofuran, tetrahydropyran, dihydropyran, and 1,4-dioxane.
  • the alcohol may be any of primary alcohol, secondary alcohol, and tertiary alcohol.
  • alcohols examples include ethanol, 1-propanol, 2-propanol, 1-methoxy-2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3-pentanol and 1-hexanol.
  • Ketones include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • esters include methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, methoxybutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol.
  • the viscosity of the metal salt ink is not particularly limited, and may be from 0.01 Pa ⁇ s to 5000 Pa ⁇ s, preferably from 0.1 Pa ⁇ s to 100 Pa ⁇ s.
  • the viscosity of the metal salt ink is preferably 1 mPa ⁇ s to 100 mPa ⁇ s, more preferably 2 mPa ⁇ s to 50 mPa ⁇ s. is more preferable, and 3 mPa ⁇ s to 30 mPa ⁇ s is even more preferable.
  • the viscosity of the metal salt ink is a value measured at 25°C using a viscometer. Viscosity is measured using, for example, a VISCOMETER TV-22 viscometer (manufactured by Toki Sangyo Co., Ltd.).
  • the surface tension of the metal salt ink is not particularly limited, and is preferably 20 mN/m to 45 mN/m, more preferably 25 mN/m to 35 mN/m.
  • Surface tension is a value measured at 25°C using a surface tensiometer.
  • the surface tension of the metal salt ink is measured using, for example, DY-700 (manufactured by Kyowa Interface Science Co., Ltd.).
  • the metal deposition ink preferably contains a metal complex or metal salt.
  • the metal complex is preferably a metal complex having a structure derived from at least one selected from the group consisting of ammonium carbamate compounds, ammonium carbonate compounds, amines, and carboxylic acids having 8 to 20 carbon atoms.
  • the metal salt is preferably a metal carboxylate.
  • the viscosity of the insulating ink is 12 mPa ⁇ s to 35 mPa ⁇ s.
  • the viscosity of the insulating ink By setting the viscosity of the insulating ink to 12 mPa ⁇ s or more, the insulating ink applied onto the electronic component is prevented from flowing out and from being lowered in dischargeability, and as a result, the pattern quality of the formed insulating layer is improved.
  • the viscosity of the insulating ink is 35 mPa ⁇ s or less at 25° C., the deterioration of the ink ejection property is suppressed, and as a result, the pattern quality of the formed insulating layer is improved.
  • the viscosity of the insulating ink is preferably 15 mPa ⁇ s to 30 mPa ⁇ s, more preferably 20 mPa ⁇ s to 30 mPa ⁇ s.
  • the viscosity of the ink in the present disclosure is a value measured at 25°C using a viscometer (eg, TV-22 viscometer manufactured by Toki Sangyo Co., Ltd.).
  • the insulating ink is active energy ray-curable ink.
  • the insulating ink preferably contains a polymerizable monomer and a polymerization initiator.
  • a polymerizable monomer refers to a monomer having at least one polymerizable group in one molecule.
  • the polymerizable group in the polymerizable monomer may be a cationically polymerizable group or a radically polymerizable group.
  • the radically polymerizable group is preferably an ethylenically unsaturated group from the viewpoint of curability.
  • the cationic polymerizable group is preferably a group containing at least one of an oxirane ring and an oxetane ring.
  • a monomer refers to a compound having a molecular weight of 1000 or less.
  • the molecular weight can be calculated from the type and number of atoms that constitute the compound.
  • the polymerizable monomer may be a monofunctional monomer having one polymerizable group, or a polyfunctional monomer having two or more polymerizable groups (that is, a bifunctional or higher monomer).
  • the monofunctional monomer is not particularly limited as long as it has one polymerizable group.
  • the radically polymerizable monomer preferably contains a monofunctional ethylenically unsaturated monomer from the viewpoint of durability of the insulating layer to be formed.
  • monofunctional ethylenically unsaturated monomers include monofunctional (meth)acrylates, monofunctional (meth)acrylamides, monofunctional aromatic vinyl compounds, monofunctional vinyl ethers and monofunctional N-vinyl compounds.
  • Examples of monofunctional (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, hexyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate.
  • tert-octyl (meth)acrylate isoamyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, cyclohexyl (meth)acrylate acrylates, 4-n-butylcyclohexyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, bornyl (meth)acrylate, isobornyl (meth)acrylate, 2-ethylhexyl diglycol (meth)acrylate, butoxyethyl ( meth) acrylate, 2-chloroethyl (meth) acrylate, 4-bromobutyl (meth) acrylate, cyanoethyl (meth) acrylate, benzyl (meth) acrylate,
  • the monofunctional (meth)acrylate is preferably a monofunctional (meth)acrylate having an aromatic ring or an aliphatic ring, such as isobornyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, dicyclopentenyl (Meth)acrylate or dicyclopentanyl (meth)acrylate is more preferred.
  • the insulating ink preferably contains a monofunctional monomer from the viewpoints of durability of the insulating layer to be formed, improvement of ejection properties in the inkjet recording method, and improvement of the pattern quality of the insulating layer.
  • the content of the monofunctional monomer is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, relative to the total amount of the insulating ink. .
  • the upper limit of the monofunctional monomer content is, for example, 98% by mass, 90% by mass, 80% by mass, 70% by mass, etc. with respect to the total amount of the insulating ink.
  • the insulating ink preferably contains a monofunctional acrylate.
  • the content of the monofunctional acrylate is preferably 10% by mass or more, more preferably 20% by mass or more, relative to the total amount of the insulating ink.
  • the upper limit of the content of the monofunctional acrylate is, for example, 98% by mass, 90% by mass, 80% by mass, 70% by mass, etc. with respect to the total amount of the insulating ink.
  • the monofunctional acrylate that can be contained in the insulating ink is a monofunctional acrylate X that satisfies at least one of having a molecular weight of 200 or more and containing a ring structure. It is more preferable to include
  • a monofunctional acrylate X2 that satisfies both a molecular weight of 200 or more and a ring structure is particularly preferred.
  • Monofunctional acrylate X2 that satisfies both a molecular weight of 200 or more and a ring structure includes isobornyl acrylate, cyclic trimethylolpropane formal monoacrylate, 4-tert-butylcyclohexyl acrylate, dicyclopentenyl Acrylates or dicyclopentanyl acrylates are preferred.
  • Examples of monofunctional (meth)acrylamides include (meth)acrylamide, N-methyl(meth)acrylamide, N-ethyl(meth)acrylamide, N-propyl(meth)acrylamide, Nn-butyl(meth)acrylamide, Nt-butyl (meth)acrylamide, N-butoxymethyl (meth)acrylamide, N-isopropyl (meth)acrylamide, N-methylol (meth)acrylamide, N,N-dimethyl (meth)acrylamide, N,N-diethyl (meth)acrylamide and (meth)acryloylmorpholine.
  • monofunctional aromatic vinyl compounds include styrene, dimethylstyrene, trimethylstyrene, isopropylstyrene, chloromethylstyrene, methoxystyrene, acetoxystyrene, chlorostyrene, dichlorostyrene, bromostyrene, vinylbenzoic acid methyl ester, 3-methyl Styrene, 4-methylstyrene, 3-ethylstyrene, 4-ethylstyrene, 3-propylstyrene, 4-propylstyrene, 3-butylstyrene, 4-butylstyrene, 3-hexylstyrene, 4-hexylstyrene, 3-octyl Styrene, 4-octylstyrene, 3-(2-ethylhexyl)styrene, 4-(2-ethylhexyl)styrene
  • Monofunctional vinyl ethers include, for example, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, n-butyl vinyl ether, t-butyl vinyl ether, 2-ethylhexyl vinyl ether, n-nonyl vinyl ether, lauryl vinyl ether, cyclohexyl vinyl ether, cyclohexylmethyl vinyl ether, 4-methyl Cyclohexyl methyl vinyl ether, benzyl vinyl ether, dicyclopentenyl vinyl ether, 2-dicyclopentenoxyethyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, butoxyethyl vinyl ether, methoxyethoxyethyl vinyl ether, ethoxyethoxyethyl vinyl ether, methoxypolyethylene glycol vinyl ether, tetrahydro Furfuryl vinyl ether, 2-hydroxyethyl vinyl ether, 2-hydroxy
  • Examples of monofunctional N-vinyl compounds include N-vinyl- ⁇ -caprolactam and N-vinylpyrrolidone.
  • the insulating ink preferably contains a polyfunctional polymerizable monomer.
  • the content of the polyfunctional polymerizable monomer is preferably 10% by mass or more, more preferably 20% by mass or more, and preferably 30% by mass or more with respect to the total amount of the insulating ink. More preferred.
  • the upper limit of the polyfunctional polymerizable monomer content is, for example, 98% by mass, 90% by mass, 80% by mass, 70% by mass, etc. with respect to the total amount of the insulating ink.
  • the polyfunctional polymerizable monomer is not particularly limited as long as it has two or more polymerizable groups.
  • the polyfunctional polymerizable monomer is preferably a polyfunctional radically polymerizable monomer, more preferably a polyfunctional ethylenically unsaturated monomer.
  • polyfunctional ethylenically unsaturated monomers examples include polyfunctional (meth)acrylate compounds and polyfunctional vinyl ethers.
  • polyfunctional (meth)acrylates include: Ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tri Propylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 3-methyl-1,5- pentanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, heptanediol di(meth)acrylate, EO-modified neopentyl glycol di(meth)acrylate, PO-modified neopentyl glycol glyco
  • Polyfunctional vinyl ethers include, for example, 1,4-butanediol divinyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, polyethylene glycol divinyl ether, propylene glycol divinyl ether, butylene glycol divinyl ether, hexanediol divinyl ether, Vinyl ether, 1,4-cyclohexanedimethanol divinyl ether, bisphenol A alkylene oxide divinyl ether, bisphenol F alkylene oxide divinyl ether, trimethylolethane trivinyl ether, trimethylolpropane trivinyl ether, ditrimethylolpropane tetravinyl ether, glycerin trivinyl ether, pentaerythritol Tetravinyl ether, dipentaerythritol pentavinyl ether, dipentaerythritol
  • the polyfunctional polymerizable monomer is preferably a monomer having 3 to 11 carbon atoms in the portion other than the (meth)acryloyl group.
  • Specific examples of the monomer having 3 to 11 carbon atoms in the portion other than the (meth)acryloyl group include 1,6-hexanediol di(meth)acrylate, dipropylene glycol di(meth)acrylate, and PO-modified neopentyl glycol.
  • Di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate, polyethylene glycol di(meth)acrylate (EO chain n 4-23) , or 1,10-decanediol di(meth)acrylate.
  • cationic polymerizable monomer compounds having an oxirane ring (also referred to as an "epoxy ring”) (also referred to as an "oxirane compound” or an “epoxy compound”) and compounds having an oxetane ring (also referred to as an "oxetane compound ”, and known cationic polymerizable monomers such as vinyl ether compounds can be used without particular limitation.
  • an oxirane ring also referred to as an "epoxy ring
  • oxetane compound also referred to as an "oxetane compound”
  • known cationic polymerizable monomers such as vinyl ether compounds
  • the cationic polymerizable monomer is not particularly limited as long as it is a compound that initiates a polymerization reaction by a cationic polymerization initiating species generated from a photocationic polymerization initiator described later and cures, and various known photocationic polymerizable monomers. Cationically polymerizable monomers can be used.
  • Examples of cationic polymerizable monomers include JP-A-6-9714, JP-A-2001-31892, JP-A-2001-40068, JP-A-2001-55507, JP-A-2001-310938, JP-A-2001-310937, JP-A-2001- Epoxy compounds, vinyl ether compounds, oxetane compounds and the like described in publications such as No. 220526 can be mentioned.
  • cationic polymerizable monomers for example, cationic polymerization photocurable resins are known.
  • cationic polymerizable monomers for example, cationic polymerization photocurable resins are known.
  • Japanese Unexamined Patent Publication No. 6-43633 Japanese Unexamined Patent Publication No. 8-324137.
  • the content of the polymerizable monomer is preferably 10% by mass or more, more preferably 50% by mass or more, relative to the total amount of the insulating ink.
  • the upper limit of the polymerizable monomer content is, for example, 98% by mass with respect to the total amount of the insulating ink.
  • the insulating ink preferably contains a polymerization initiator.
  • a suitable polymerization initiator can be selected from radical polymerization initiators and cationic polymerization initiators according to the type of polymerizable monomer.
  • polymerization initiators include oxime compounds, alkylphenone compounds, acylphosphine compounds, aromatic onium salt compounds, organic peroxides, thio compounds, hexaarylbisimidazole compounds, borate compounds, azinium compounds, titanocene compounds, active esters. compounds, compounds with carbon-halogen bonds, and alkylamines.
  • the polymerization initiator contained in the insulating ink is preferably at least one selected from the group consisting of oxime compounds, alkylphenone compounds, and titanocene compounds, more preferably alkylphenone compounds, ⁇ -aminoalkyl More preferably, it is at least one selected from the group consisting of phenone compounds and benzyl ketal alkylphenones.
  • the cationic polymerization initiator is preferably a photoacid generator.
  • photoacid generators examples include chemically amplified photoresists and compounds used for photocationic polymerization (Organic Electronics Materials Research Group, "Organic Materials for Imaging", Bunshin Publishing (1993), 187- (see page 192).
  • the photoacid generator is preferably an aromatic onium salt compound, preferably an onium salt compound such as a diazonium salt, a phosphonium salt, a sulfonium salt or an iodonium salt, more preferably a sulfonium salt or an iodonium salt.
  • the content of the polymerization initiator is preferably 0.5% by mass to 20% by mass, more preferably 2% by mass to 10% by mass, relative to the total amount of the insulating ink.
  • the insulating ink may contain components other than the polymerization initiator and the polymerizable monomer.
  • Other ingredients include polymerizable oligomers, chain transfer agents, polymerization inhibitors, sensitizers, surfactants and additives.
  • the insulating ink may contain a polymerizable oligomer as the polymerizable compound.
  • the polymerizable oligomer means a polymerizable compound having at least one polymerizable group and having a weight average molecular weight of 1000 to 10000.
  • the polymerizable group in the polymerizable oligomer is preferably a (meth)acryloyl group, a vinyl ether group, or an epoxy group.
  • an acryloyl group is more preferable.
  • Polymerizable oligomers include polyester acrylate oligomers that are polyesters having one or more polymerizable groups, urethane acrylate oligomers that are polyurethanes having one or more polymerizable groups, and modified polyethers that have one or more polymerizable groups. Examples thereof include resin-modified polyether acrylate oligomers and epoxy acrylate oligomers which are epoxy resin-modified products having one or more polymerizable groups.
  • the insulating ink may contain at least one chain transfer agent.
  • the chain transfer agent is preferably a polyfunctional thiol.
  • polyfunctional thiols include aliphatic thiols such as hexane-1,6-dithiol, decane-1,10-dithiol, dimercaptodiethyl ether, dimercaptodiethyl sulfide, xylylene dimercaptan, 4,4'- Aromatic thiols such as dimercaptodiphenyl sulfide and 1,4-benzenedithiol; Ethylene Glycol Bis (Mercaptoacetate), Polyethylene Glycol Bis (Mercaptoacetate), Propylene Glycol Bis (Mercaptoacetate), Glycerin Tris (Mercaptoacetate), Trimethylolethane Tris (Mercaptoacetate), Trimethylolpropane Tris (Mercaptoacetate), Penta poly(mercaptoacetate) of polyhydric alcohols such as erythritol tetrakis (mercaptoacetate), dipentaerythrito
  • the insulating ink may contain at least one polymerization inhibitor.
  • Polymerization inhibitors include p-methoxyphenol, quinones (e.g., hydroquinone, benzoquinone, methoxybenzoquinone, etc.), phenothiazine, catechols, alkylphenols (e.g., dibutylhydroxytoluene (BHT), etc.), alkylbisphenols, dimethyldithiocarbamine.
  • quinones e.g., hydroquinone, benzoquinone, methoxybenzoquinone, etc.
  • phenothiazine e.g., catechols
  • alkylphenols e.g., dibutylhydroxytoluene (BHT), etc.
  • alkylbisphenols e.g., dimethyldithiocarbamine.
  • the polymerization inhibitor is preferably at least one selected from p-methoxyphenol, catechols, quinones, alkylphenols, TEMPO, TEMPOL, and tris(N-nitroso-N-phenylhydroxylamine) aluminum salt, and p -Methoxyphenol, hydroquinone, benzoquinone, BHT, TEMPO, TEMPOL, and tris(N-nitroso-N-phenylhydroxylamine) aluminum salt is more preferred.
  • the content of the polymerization inhibitor is preferably 0.01% by mass to 2.0% by mass, more preferably 0.02% by mass to 1.0% by mass, based on the total amount of the ink. is more preferred, and 0.03% by mass to 0.5% by mass is particularly preferred.
  • the insulating ink may contain at least one sensitizer.
  • sensitizers include polynuclear aromatic compounds (e.g., pyrene, perylene, triphenylene, and 2-ethyl-9,10-dimethoxyanthracene), xanthene compounds (e.g., fluorescein, eosin, erythrosine, rhodamine B, and Rose Bengal), cyanine compounds (e.g., thiacarbocyanine and oxacarbocyanine), merocyanine compounds (e.g., merocyanine and carbomerocyanine), thiazine compounds (e.g., thionine, methylene blue, and toluidine blue), acridine compounds compounds (e.g., acridine orange, chloroflavin, and acriflavin), anthraquinones (e.g., anthraquinone), squalium compounds (e.g., squarium), coumarin compounds (e.g.
  • the content of the sensitizer is not particularly limited. More preferably, it is in the range of 5.0% by mass to 5.0% by mass.
  • the insulating ink may contain at least one surfactant.
  • surfactants examples include those described in JP-A-62-173463 and JP-A-62-183457.
  • anionic surfactants such as dialkylsulfosuccinates, alkylnaphthalenesulfonates, fatty acid salts
  • Nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, acetylene glycols, polyoxyethylene/polyoxypropylene block copolymers
  • Examples include cationic surfactants such as alkylamine salts and quaternary ammonium salts.
  • the surfactant may be a fluorine-based surfactant or a silicone-based surfactant.
  • the insulating ink may contain at least one organic solvent.
  • organic solvents examples include (poly)alkylene glycols such as ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether (PGME), dipropylene glycol monomethyl ether, and tripropylene glycol monomethyl ether.
  • polyalkylene glycols such as ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether (PGME), dipropylene glycol monomethyl ether, and tripropylene glycol monomethyl ether.
  • (poly)alkylene glycol dialkyl ethers such as ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol diethyl ether, tetraethylene glycol dimethyl ether;
  • (poly)alkylene glycol acetates such as diethylene glycol acetate;
  • (poly)alkylene glycol diacetates such as ethylene glycol diacetate and propylene glycol diacetate;
  • (poly)alkylene glycol monoalkyl ether acetates such as ethylene glycol monobutyl ether acetate and propylene glycol monomethyl ether acetate; ketones such as methyl ethyl ketone and cyclohexanone; Lactones such as ⁇ -butyrolactone; Esters such as ethyl acetate, propyl acetate, butyl acetate, 3-methoxybutyl
  • the content of the organic solvent is preferably 70% by mass or less, more preferably 50% by mass or less, relative to the total amount of the ink.
  • the lower limit of the organic solvent content is not particularly limited.
  • the insulating ink may contain additives such as a co-sensitizer, an ultraviolet absorber, an antioxidant, an anti-fading agent, and a basic compound, if necessary.
  • the pH of the insulating ink is preferably 7 to 10, more preferably 7.5 to 9.5, from the viewpoint of improving ejection stability when applied by an inkjet recording method.
  • the pH is measured at 25° C. using a pH meter, for example, using a pH meter manufactured by DKK Toa (model number “HM-31”).
  • the surface tension of the insulating ink is preferably 60 mN/m or less, more preferably 20 mN/m to 50 mN/m, even more preferably 25 mN/m to 45 mN/m.
  • the surface tension is measured at 25°C using a surface tensiometer, for example, by the plate method using an automatic surface tensiometer (product name "CBVP-Z”) manufactured by Kyowa Interface Science Co., Ltd.
  • CBVP-Z automatic surface tensiometer

Abstract

Provided are an inspection device that can determine the state of a metal precipitation ink film that has been obtained by printing a metal precipitation ink on a base material, a printing system, an inspection system, a curing system, a substrate manufacturing method, and a program. At least one processor determines the state of a metal precipitation ink film that has been obtained by printing, on a base material, a metal precipitation ink in which a metal is to be precipitated by chemical reaction, said state being determined on the basis of at least two from among the color, gloss, and reflection of the metal precipitation ink film by which a metal film is formed on the base material by chemical reaction after printing.

Description

検査装置、印刷システム、検査システム及びキュアシステム、基板の製造方法及びプログラムInspection device, printing system, inspection system and cure system, substrate manufacturing method and program
 本発明は検査装置、印刷システム、検査システム及びキュアシステム、基板の製造方法及びプログラムに係り、特に基材に印刷された液体を検査する技術に関する。 The present invention relates to an inspection device, a printing system, an inspection system and a cure system, a substrate manufacturing method and a program, and more particularly to a technology for inspecting liquid printed on a substrate.
 プリント基板の表面に導電性物質を含むインクを塗布してパターンを形成する技術が知られている。 A known technique is to apply ink containing a conductive substance to the surface of a printed circuit board to form a pattern.
 例えば、特許文献1には、撥水性の表面を有する基板に光または電子線を照射することにより基板の表面に親水性を有する所定パターンを形成し、形成したパターン上に導電性成分を含むインクを吐出する電子回路基板の製造装置が記載されている。 For example, in Patent Document 1, a substrate having a water-repellent surface is irradiated with light or an electron beam to form a predetermined pattern having hydrophilicity on the surface of the substrate, and ink containing a conductive component is formed on the formed pattern. is described.
 また、特許文献2には、基板上に金属微粒子を含む分散液を塗布して塗布膜を得て、塗布膜にレーザ光を照射する金属被膜形成品の製造システムが記載されている。 In addition, Patent Document 2 describes a manufacturing system for metal-coated products in which a coating film is obtained by coating a substrate with a dispersion containing fine metal particles, and the coating film is irradiated with a laser beam.
特許第5448639号Patent No. 5448639 特許第6043323号Patent No. 6043323
 化学反応により金属を析出する金属析出インクが知られている。印刷装置において基板に金属析出インクによる金属析出インク膜(印刷膜)を印刷し、その後、キュア装置において紫外線照射、及び温風加熱などにより基板を乾燥硬化処理することで、基板に金属膜を形成することができる。 A metal deposition ink that deposits metal through a chemical reaction is known. A printing device prints a metal deposition ink film (printing film) on a substrate using metal deposition ink, and then the substrate is dried and cured by ultraviolet irradiation and hot air heating in a curing device to form a metal film on the substrate. can do.
 印刷膜が正しく製膜されたかどうかは、印刷装置内のカメラなどのセンサによって検査する方法が一般的である。しかしながら、金属析出インクは、未反応であればほぼ透明であり、検査が困難であった。 A common method is to use a sensor such as a camera in the printing device to check whether the print film has been formed correctly. However, metal deposition inks were nearly transparent when unreacted, making inspection difficult.
 また、印刷装置内では、基板に金属析出インクを印刷した直後に光照射、又は加熱によって乾燥を促進して、金属析出インクの印刷精度を高める工夫を行うが、その乾燥促進条件によっては、金属析出インク内の化学反応が途中まで進んでしまう。化学反応が途中まで進んで停止すると、その後、キュア装置で乾燥硬化処理しても正常な金属析出ができない。しかしながら、従来の検査では、途中まで化学反応が進んだ「不良な印刷膜」と「正常な印刷膜」とを分離検出することができなかった。 In addition, in the printing apparatus, immediately after printing the metal deposition ink on the substrate, drying is accelerated by light irradiation or heating to improve the printing accuracy of the metal deposition ink. The chemical reaction in the deposited ink proceeds halfway. If the chemical reaction progresses halfway and stops, then normal metal deposition cannot occur even if drying and hardening treatment is performed using a curing device. However, in the conventional inspection, it was not possible to separate and detect the "defective printed film" in which the chemical reaction has progressed halfway from the "normal printed film".
 このように、金属析出インクが印刷された基板がキュア装置に投入される際に、「正常な印刷膜」であることを確認できないため、キュア装置での乾燥硬化処理後に印刷膜の電気特性を測定することで正常な「金属析出膜」であるか否かを判断している。したがって、「不良な印刷膜」の基板を乾燥硬化処理するという無駄な工程が発生していた。 In this way, when the substrate on which the metal deposition ink is printed is put into the curing device, it cannot be confirmed that it is a "normal printed film." It is judged whether it is a normal "metal deposit film" by measuring. Therefore, a wasteful process of drying and curing a substrate with a "defective printed film" has occurred.
 さらに、キュア装置に投入する前は「正常な印刷膜」であっても、キュア装置内の工程トラブルにより「不良な金属膜」になってしまう場合がある。この場合も、最終工程まで終了する前の途中段階で「不良な金属膜」であることを検出できないため、無駄な工程を排除できないという問題があった。 Furthermore, even if it is a "normal printed film" before it is put into the curing device, it may become a "defective metal film" due to process troubles in the curing device. In this case as well, there is a problem that it is not possible to eliminate unnecessary processes because it is not possible to detect a "defective metal film" at an intermediate stage before finishing up to the final process.
 さらに、乾燥硬化処理を完了した基板を自動光学検査(AOI:Automated Optical Inspection)する基板外観検査装置においては、金属膜の存在位置を検査することはできるが、金属膜の状態を判別することはできなかった。 Furthermore, in a substrate appearance inspection apparatus that performs automated optical inspection (AOI) on substrates that have completed the drying and curing process, it is possible to inspect the position of the metal film, but it is not possible to determine the state of the metal film. could not.
 本発明はこのような事情に鑑みてなされたもので、金属析出インクが基材に印刷された金属析出インク膜の状態を判別する検査装置、印刷システム、検査システム及びキュアシステム、基板の製造方法及びプログラムを提供することを目的とする。 The present invention has been made in view of such circumstances, and includes an inspection apparatus, a printing system, an inspection system, a cure system, and a substrate manufacturing method for determining the state of a metal deposition ink film in which metal deposition ink is printed on a substrate. and to provide programs.
 上記目的を達成するための検査装置の一の態様は、少なくとも1つのプロセッサと、少なくとも1つのプロセッサに実行させるための命令を記憶する少なくとも1つのメモリと、を備え、少なくとも1つのプロセッサは、化学反応により金属を析出する金属析出インクが基材に印刷された金属析出インク膜であって、印刷後に化学反応させることで基材に金属膜が形成される金属析出インク膜の色、光沢、及び反射のうちの2つ以上に基づいて、金属析出インク膜の状態を判別する検査装置である。本態様によれば、金属析出インクが基材に印刷された金属析出インク膜の状態を判別することができる。 One aspect of an inspection apparatus for achieving the above object comprises at least one processor and at least one memory storing instructions for causing the at least one processor to execute, the at least one processor comprising: A metal deposition ink film printed on a substrate with a metal deposition ink that deposits metal by reaction, wherein the metal deposition ink film is formed on the substrate by chemical reaction after printing. An inspection device that determines the condition of a metallized ink film based on two or more of the reflections. According to this aspect, the state of the metal deposition ink film in which the metal deposition ink is printed on the substrate can be determined.
 出射光を出射する発光素子と、出射光の反射光を受光する受光素子と、を備えることが好ましい。これにより、金属析出インク膜の色、光沢、及び反射のうちの2つ以上を検出することができる。 It is preferable to have a light-emitting element that emits emitted light and a light-receiving element that receives reflected light of the emitted light. This allows detection of two or more of the color, gloss, and reflection of the metallized ink film.
 少なくとも1つのプロセッサは、発光素子に、金属析出インク膜に向けて出射光を出射させ、受光素子に、金属析出インク膜の表面で反射した反射光を受光させ、発光素子の出射光量と受光素子の受光量とを比較して金属析出インク膜の反射を検出することが好ましい。これにより、金属析出インク膜の反射を適切に検出することができる。 At least one processor causes the light emitting element to emit emitted light toward the metal deposition ink film, causes the light receiving element to receive the light reflected by the surface of the metal deposition ink film, and calculates the amount of light emitted from the light emitting element and the light receiving element. It is preferable to detect the reflection of the metal-deposited ink film by comparing the amount of received light with the amount of light received. Thereby, the reflection of the metal deposition ink film can be appropriately detected.
 少なくとも1つのプロセッサは、発光素子に、金属析出インク膜に向けて出射光を出射させ、受光素子に、金属析出インク膜の表面で出射光が正反射した正反射光、及び金属析出インク膜の表面で出射光が散乱反射した散乱反射光を受光させ、正反射光の受光量と散乱反射光の受光量とを比較して金属析出インク膜の光沢を検出することが好ましい。これにより、金属析出インク膜の光沢を適切に検出することができる。 At least one processor causes the light emitting element to emit emitted light toward the metal deposition ink film, and causes the light receiving element to emit light that is specularly reflected by the surface of the metal deposition ink film and specular reflection light of the metal deposition ink film. It is preferable to detect the glossiness of the metal deposition ink film by receiving scattered reflected light obtained by scattering reflected emitted light on the surface and comparing the received amount of specularly reflected light and the received amount of scattered reflected light. This makes it possible to appropriately detect the glossiness of the metal deposition ink film.
 少なくとも1つのプロセッサは、発光素子に、金属析出インク膜に向けて第1の波長の出射光、及び第1の波長とは異なる第2の波長の出射光を出射させ、受光素子に、第1の波長の反射光、及び第2の波長の反射光を受光させ、第1の波長の反射光の受光量と第2の波長の反射光の受光量とを比較して金属析出インク膜の色を検出することが好ましい。これにより、金属析出インク膜の色を適切に検出することができる。 The at least one processor causes the light emitting element to emit emitted light having a first wavelength and emitted light having a second wavelength different from the first wavelength toward the metal deposition ink film, and causes the light receiving element to emit emitted light having a first wavelength. The reflected light of the wavelength and the reflected light of the second wavelength are received, and the received amount of the reflected light of the first wavelength and the received amount of the reflected light of the second wavelength are compared to determine the color of the metal deposition ink film. is preferably detected. Thereby, the color of the metal deposition ink film can be appropriately detected.
 少なくとも1つのプロセッサは、共通の発光素子、及び共通の受光素子を用いて、金属析出インク膜の色、光沢、及び反射のうち2つ以上の検出タイミングをずらして検出することが好ましい。これにより、最小限の発光素子、及び受光素子により金属析出インク膜の色、光沢、及び反射のうち2つ以上を検出することができる。 It is preferable that at least one processor uses a common light-emitting element and a common light-receiving element to detect two or more of the color, gloss, and reflection of the metal deposition ink film with different detection timings. Thereby, two or more of the color, gloss, and reflection of the metal deposition ink film can be detected with a minimum of light-emitting elements and light-receiving elements.
 少なくとも1つのプロセッサは、金属析出インク膜の色、光沢、及び反射を基準となる金属析出インク膜の色、光沢、及び反射と比較することで、金属析出インク膜の状態を判別することが好ましい。これにより、金属析出インク膜の状態を適切に判別することができる。 The at least one processor preferably determines the condition of the metal deposited ink film by comparing the color, gloss and reflectance of the metal deposited ink film to a reference metal deposited ink film color, gloss and reflectance. . Thereby, the state of the metal deposition ink film can be appropriately determined.
 上記目的を達成するための印刷システムの一の態様は、金属析出インクを基材に塗布して金属析出インク膜を印刷する印刷装置と、上記の検査装置と、を含む印刷システムである。本態様によれば、金属析出インクが基材に印刷された金属析出インク膜の状態を判別することができる。 One aspect of a printing system for achieving the above object is a printing system including a printing device that applies metal deposition ink to a substrate and prints a metal deposition ink film, and the inspection device described above. According to this aspect, the state of the metal deposition ink film in which the metal deposition ink is printed on the substrate can be determined.
 少なくとも1つのプロセッサは、検査装置における金属析出インク膜の状態の判別結果を印刷装置のプロセス条件にフィードバックすることが好ましい。プロセス条件は、合否ラインの切替、又は合否ラベルのラベリングを含むことが好ましい。これにより、金属析出インク膜の状態が不良の基材を排除、又は識別することができるので、不良の基材を人手で排除、又は識別する場合に比べて、間違いが防止できる。また、異常な金属析出インク膜が印刷された基材を最終工程まで完了させることによる無駄を排除し、工程の効率を向上させることができる。さらに、金属膜が形成される前に排除された基材であれば、リワークが可能であるので、廃棄する基材を減少させることができる。 At least one processor preferably feeds back the determination result of the state of the metal deposition ink film in the inspection device to the process conditions of the printing device. The process conditions preferably include switching pass/fail lines or labeling pass/fail labels. As a result, substrates with defective metal deposition ink films can be excluded or identified, so errors can be prevented as compared to the case of manually excluding or identifying defective substrates. In addition, the efficiency of the process can be improved by eliminating the waste caused by finishing the substrate printed with the abnormal metal deposition ink film to the final process. Furthermore, the substrates that have been removed before the metal film is formed can be reworked, so the substrates to be discarded can be reduced.
 プロセス条件は、印刷装置内の温度、化学反応させるための光源の光量、及び金属析出インクを印刷する際の基材の走査速度のうちの少なくとも1つを含んでもよい。これにより、金属析出インク膜の状態が不良の基材が次々に発生することを防止することができるので、歩留まりを向上させることができる。また、印刷装置を停止して人手で対処する場合と比較して、生産性を向上させることができる。 The process conditions may include at least one of the temperature in the printing apparatus, the light intensity of the light source for chemical reaction, and the scanning speed of the substrate when printing the metal deposition ink. As a result, it is possible to prevent substrates having defective metal deposition ink films from being generated one after another, so that the yield can be improved. In addition, productivity can be improved as compared with the case where the printing apparatus is stopped and the problem is dealt with manually.
 上記目的を達成するためのキュアシステムの一の態様は、金属析出インクが基材に印刷された金属析出インク膜を化学反応させることで基材に金属膜を形成するキュア装置と、上記の検査装置と、を含むキュアシステムである。本態様によれば、金属析出インクが基材に印刷された金属析出インク膜の状態を判別することができる。 One aspect of a curing system for achieving the above object includes a curing device for forming a metal film on a substrate by chemically reacting a metal deposition ink film printed on the substrate with the metal deposition ink; and a cure system. According to this aspect, the state of the metal deposition ink film in which the metal deposition ink is printed on the substrate can be determined.
 検査装置における金属析出インク膜の状態の判別結果をキュア装置のプロセス条件にフィードバックすることが好ましい。プロセス条件は、合否ラインの切替、又は合否ラベルのラベリングを含むことが好ましい。これにより、金属析出インク膜の状態が不良の基材を排除、又は識別することができるので、不良の基材を人手で排除、又は識別する場合に比べて、間違いが防止できる。また、異常な金属析出インク膜が印刷された基材を最終工程まで完了させることによる無駄を排除し、工程の効率を向上させることができる。さらに、金属膜が形成される前に排除された基材であれば、リワークが可能であるので、廃棄する基材を減少させることができる。 It is preferable to feed back the determination result of the state of the metal deposition ink film in the inspection device to the process conditions of the curing device. The process conditions preferably include switching pass/fail lines or labeling pass/fail labels. As a result, substrates with defective metal deposition ink films can be excluded or identified, so errors can be prevented as compared to the case of manually excluding or identifying defective substrates. In addition, the efficiency of the process can be improved by eliminating the waste caused by finishing the substrate printed with the abnormal metal deposition ink film to the final process. Furthermore, the substrates that have been removed before the metal film is formed can be reworked, so the substrates to be discarded can be reduced.
 プロセス条件は、キュア装置内の温度、化学反応させるための光源の光量、基材の搬送速度、及び乾燥硬化処理時間のうちの少なくとも1つを含んでもよい。これにより、金属析出インク膜の状態が不良の基材が次々に発生することを防止することができるので、歩留まりを向上させることができる。また、キュア装置を停止して人手で対処する場合と比較して、生産性を向上させることができる。 The process conditions may include at least one of the temperature in the curing device, the light intensity of the light source for causing the chemical reaction, the conveying speed of the substrate, and the drying and curing time. As a result, it is possible to prevent substrates having defective metal deposition ink films from being generated one after another, so that the yield can be improved. In addition, productivity can be improved as compared with the case where the curing device is stopped and the problem is handled manually.
 上記目的を達成するための検査システムの一の態様は、基材を光学検査する外観検査装置と、上記の検査装置と、を含む検査システムである。本態様によれば、金属析出インクが基材に印刷された金属析出インク膜の状態を判別することができる。 One aspect of an inspection system for achieving the above object is an inspection system that includes an appearance inspection device that optically inspects a base material, and the inspection device described above. According to this aspect, the state of the metal deposition ink film in which the metal deposition ink is printed on the substrate can be determined.
 上記目的を達成するための基板の製造方法の一の態様は、化学反応により金属を析出する金属析出インクを基板、及び基板に実装された部品の少なくとも一方に塗布して金属析出インク膜を印刷する印刷工程と、印刷された金属析出インク膜を化学反応させることで金属膜を形成するキュア工程と、金属析出インク膜を検査する検査工程と、を含み、検査工程は、金属析出インク膜の色、光沢、及び反射のうち2つ以上に基づいて、金属析出インク膜の状態を判別する基板の製造方法である。本態様によれば、金属析出インクが基材に印刷された金属析出インク膜の状態を判別することができる。 One aspect of the substrate manufacturing method for achieving the above object is to print a metal deposition ink film by applying a metal deposition ink that deposits metal through a chemical reaction to at least one of the substrate and the components mounted on the substrate. a curing step of forming a metal film by chemically reacting the printed metal deposition ink film; and an inspection step of inspecting the metal deposition ink film. A method of manufacturing a substrate that determines the condition of a metallized ink film based on one or more of color, gloss, and reflectance. According to this aspect, the state of the metal deposition ink film in which the metal deposition ink is printed on the substrate can be determined.
 上記目的を達成するためのプログラムの一の態様は、上記の基板の製造方法をコンピュータに実行させるためのプログラムである。このプログラムが記録された、コンピュータが読み取り可能な非一時的記録媒体も本態様に含んでよい。 One aspect of the program for achieving the above object is a program for causing a computer to execute the above substrate manufacturing method. A computer-readable non-transitory recording medium in which this program is recorded may also be included in this embodiment.
 本発明によれば、金属析出インクが基材に印刷された金属析出インク膜の状態を判別することができる。 According to the present invention, the state of the metal deposition ink film printed on the substrate can be determined.
図1は、印刷システムの一例を示す側面図である。FIG. 1 is a side view showing an example of a printing system. 図2は、印刷システムの一例を示す上面図である。FIG. 2 is a top view showing an example of a printing system. 図3は、印刷システムの電気的構成の一例を示すブロック側面図である。FIG. 3 is a block side view showing an example of the electrical configuration of the printing system. 図4は、実装基板の製造方法の工程を示すフローチャートである。FIG. 4 is a flow chart showing the steps of the manufacturing method of the mounting board. 図5は、発光素子、及び受光センサの構成の一例を示す側面図である。FIG. 5 is a side view showing an example of the configuration of the light-emitting element and the light-receiving sensor. 図6は、発光素子、及び受光センサの構成の他の例を示す側面図である。FIG. 6 is a side view showing another example of the configuration of the light emitting element and the light receiving sensor. 図7は、色、光沢、及び反射の組み合わせによる金属析出インク膜の状態の判別を示す表である。FIG. 7 is a table showing the determination of the state of the metal deposition ink film by a combination of color, gloss, and reflectance. 図8は、実装基板の平面図である。FIG. 8 is a plan view of the mounting board. 図9は、実装基板の立体構造を示す断面図である。FIG. 9 is a cross-sectional view showing the three-dimensional structure of the mounting board.
 以下、添付図面に従って本発明の好ましい実施形態について詳説する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 <印刷システムの構成>
 図1は、印刷システムの一例を示す側面図であり、図2は、印刷システムの一例を示す上面図である。図1、及び図2に示すように、印刷システム1は、搬送装置10、絶縁インク印刷装置20、金属析出インク印刷装置30、及びキュア装置40を備える。
<Configuration of printing system>
FIG. 1 is a side view showing an example of a printing system, and FIG. 2 is a top view showing an example of a printing system. As shown in FIGS. 1 and 2, the printing system 1 includes a transport device 10 , an insulating ink printing device 20 , a metal deposition ink printing device 30 and a curing device 40 .
 〔搬送装置〕
 絶縁インク印刷装置20、金属析出インク印刷装置30、及びキュア装置40は、X方向に沿って配置される。搬送装置10は、絶縁インク印刷装置20、金属析出インク印刷装置30、及びキュア装置40の順に実装基板1000を搬送する。
[Conveyor]
The insulating ink printing device 20, the metal deposition ink printing device 30, and the curing device 40 are arranged along the X direction. The transport device 10 transports the mounting substrate 1000 to the insulating ink printing device 20, the metal deposition ink printing device 30, and the curing device 40 in this order.
 実装基板1000は、プリント配線基板1002(図8参照)の両面(表面、及び裏面)に電気部品が実装されたものである。搬送装置10は、実装基板1000の一方の面(例えば裏面)の両端を支持する搬送ベルト12A,12Bを備える。搬送装置10は、実装基板1000の他方の面(ここでは表面)を上方に向けて搬送ベルト12A,12Bに載置された実装基板1000を搬送する。搬送装置10は、実装基板1000の両端を表面、及び裏面から上下で挟み込んで支持するように構成されていてもよい。 The mounting board 1000 is a printed wiring board 1002 (see FIG. 8) with electrical components mounted on both sides (front and back). The transport device 10 includes transport belts 12A and 12B that support both ends of one surface (for example, the back surface) of the mounting board 1000 . The transport device 10 transports the mounting substrate 1000 placed on the transport belts 12A and 12B with the other surface (here, the front surface) of the mounting substrate 1000 facing upward. The transport device 10 may be configured to sandwich and support both ends of the mounting substrate 1000 from the front surface and the back surface.
 なお、搬送装置10は、金属析出インク印刷装置30とキュア装置40との間に設けられた不図示の反転装置、及び反転装置から絶縁インク印刷装置20の投入口まで実装基板1000を搬送する不図示の戻り搬送経路を備える。 The conveying device 10 includes a reversing device (not shown) provided between the metal deposition ink printing device 30 and the curing device 40, and the mounting substrate 1000 which is not conveyed from the reversing device to the inlet of the insulating ink printing device 20. A return transport path is provided as shown.
 反転装置は、実装基板1000の表面、及び裏面の向きを反転させる。搬送装置10は、向きを反転させた実装基板1000を戻り搬送経路によって絶縁インク印刷装置20の投入口まで搬送する。 The reversing device reverses the orientation of the front surface and back surface of the mounting board 1000 . The conveying device 10 conveys the mounted substrate 1000 whose direction has been reversed to the inlet of the insulating ink printing device 20 through the return conveying route.
 したがって、印刷システム1は、実装基板1000の表面を+Z方向に向けて絶縁インク印刷装置20、及び金属析出インク印刷装置30に搬送し、その後、反転装置により実装基板1000の向きを反転させ、実装基板1000の裏面を+Z方向に向けて絶縁インク印刷装置20、及び金属析出インク印刷装置30に搬送することが可能である。 Therefore, the printing system 1 directs the surface of the mounting substrate 1000 in the +Z direction and conveys it to the insulating ink printing device 20 and the metal deposition ink printing device 30, then reverses the orientation of the mounting substrate 1000 by the reversing device, and mounts it. It is possible to transport the substrate 1000 to the insulating ink printing device 20 and the metal deposition ink printing device 30 with the back surface of the substrate 1000 facing in the +Z direction.
 〔絶縁インク印刷装置〕
 絶縁インク印刷装置20は、実装基板1000の表面、及び裏面のうちのいずれかの+Z方向を向いた印刷面の所望の位置に絶縁インクを塗布する印刷手段である。絶縁インク印刷装置20は、搬送ステージ21、絶縁インク吐出ヘッド22、照射光源23A,23B、発光素子24、受光センサ25、カメラ26A,26B,26C、及び絶縁インクタンク27を備える。
[Insulation ink printer]
The insulating ink printing device 20 is printing means for applying insulating ink to a desired position on either the front surface or the back surface of the mounting substrate 1000 on the printing surface facing the +Z direction. The insulating ink printing apparatus 20 includes a carrier stage 21 , an insulating ink ejection head 22 , irradiation light sources 23 A and 23 B, a light emitting element 24 , a light receiving sensor 25 , cameras 26 A, 26 B and 26 C, and an insulating ink tank 27 .
 搬送ステージ21は、搬送装置10から受け渡された実装基板1000を+Y方向、及び-Y方向に搬送する。また、搬送ステージ21は、印刷面に絶縁インクが塗布された実装基板1000を搬送装置10に受け渡す。搬送ステージ21は、例えば500mm/sの速度で実装基板1000を搬送する。絶縁インク吐出ヘッド22、照射光源23A,23B、発光素子24、受光センサ25、及びカメラ26A,26B,26Cは、搬送ステージ21による実装基板1000の搬送経路に沿って、それぞれ搬送経路の+Z方向側に配置される。 The transport stage 21 transports the mounting substrate 1000 transferred from the transport device 10 in the +Y direction and the -Y direction. Further, the transport stage 21 transfers the mounting substrate 1000 having the insulating ink applied to the printed surface to the transport device 10 . The transport stage 21 transports the mounting substrate 1000 at a speed of 500 mm/s, for example. The insulating ink ejection head 22, the irradiation light sources 23A and 23B, the light emitting element 24, the light receiving sensor 25, and the cameras 26A, 26B, and 26C are arranged on the +Z direction side of the transportation path along the transportation path of the mounting substrate 1000 by the transportation stage 21. placed in
 絶縁インク吐出ヘッド22は、インクジェット記録方式で実装基板1000の印刷面に絶縁インクを塗布するインクジェットヘッドである。絶縁インクは、紫外線硬化樹脂インクである。絶縁インクは、熱硬化樹脂インク、又は熱可塑性樹脂インクであってもよい。 The insulating ink ejection head 22 is an inkjet head that applies insulating ink to the printed surface of the mounting substrate 1000 by an inkjet recording method. The insulating ink is an ultraviolet curable resin ink. The insulating ink may be a thermosetting resin ink or a thermoplastic resin ink.
 絶縁インク吐出ヘッド22は、絶縁インクを吐出する不図示の複数のノズルが配置された不図示のノズル面を備え、ノズル面が-Z方向に向けて配置される。絶縁インク吐出ヘッド22は、ノズル面に複数のノズルが実装基板1000のX方向の幅以上の長さに渡って配置されたいわゆるラインヘッドである。絶縁インク吐出ヘッド22は、ディスペンサーであってもよいし、スプレーであってもよい。 The insulating ink ejection head 22 has a nozzle surface (not shown) on which a plurality of nozzles (not shown) for ejecting insulating ink are arranged, and the nozzle surface is oriented in the -Z direction. The insulating ink ejection head 22 is a so-called line head in which a plurality of nozzles are arranged on the nozzle surface over a length equal to or longer than the width of the mounting substrate 1000 in the X direction. The insulating ink ejection head 22 may be a dispenser or a sprayer.
 照射光源23A,23Bは、それぞれ搬送ステージ21によって搬送される実装基板1000の印刷面のX方向の全体に紫外線を照射する紫外線光源である。照射光源23A,23Bは、絶縁インク吐出ヘッド22によって実装基板1000に絶縁インクが印刷された絶縁インク膜に紫外線を照射することで、絶縁インク膜を半硬化させる。照射光源23A,23Bは、それぞれ不図示の複数の紫外線発光ダイオードがX方向に沿って配置される。 The irradiation light sources 23A and 23B are ultraviolet light sources that irradiate the entire printed surface of the mounting board 1000 conveyed by the conveying stage 21 in the X direction with ultraviolet rays. The irradiation light sources 23A and 23B irradiate the insulating ink film printed with the insulating ink on the mounting substrate 1000 by the insulating ink ejection head 22 with ultraviolet rays, thereby semi-curing the insulating ink film. The irradiation light sources 23A and 23B each have a plurality of ultraviolet light emitting diodes (not shown) arranged along the X direction.
 照射光源23A,23Bから実装基板1000に照射される紫外線は、それぞれ波長が365nm、実装基板1000の印刷面上における照射強度が6W/cm、Y方向の照射幅が10mmである。 The ultraviolet light emitted from the irradiation light sources 23A and 23B to the mounting substrate 1000 has a wavelength of 365 nm, an irradiation intensity of 6 W/cm 2 on the printed surface of the mounting substrate 1000, and an irradiation width of 10 mm in the Y direction.
 照射光源23Aは、絶縁インク吐出ヘッド22の+Y方向側に配置される。搬送ステージ21によって+Y方向に搬送されながら絶縁インク吐出ヘッド22で実装基板1000の印刷面に塗布された絶縁インクは、照射光源23Aから照射される紫外線によって半硬化される。また、照射光源23Bは、絶縁インク吐出ヘッド22の-Y方向側に配置される。搬送ステージ21によって-Y方向に搬送されながら絶縁インク吐出ヘッド22で実装基板1000の印刷面に塗布された絶縁インクは、照射光源23Bから照射される紫外線によって半硬化される。 The irradiation light source 23A is arranged on the +Y direction side of the insulating ink ejection head 22 . The insulating ink applied to the printed surface of the mounting substrate 1000 by the insulating ink ejection head 22 while being transported in the +Y direction by the transport stage 21 is semi-cured by ultraviolet rays emitted from the irradiation light source 23A. Also, the irradiation light source 23B is arranged on the -Y direction side of the insulating ink ejection head 22 . The insulating ink applied to the printing surface of the mounting substrate 1000 by the insulating ink ejection head 22 while being transported in the -Y direction by the transport stage 21 is semi-cured by ultraviolet rays emitted from the irradiation light source 23B.
 発光素子24、受光センサ25は、絶縁インク膜の状態を判別するための検査手段として用いられる。発光素子24は、不図示の複数のレーザダイオードがX方向に沿って配置される。受光センサ25は、不図示の複数のフォトダイオードがX方向に沿って配置される。 The light emitting element 24 and the light receiving sensor 25 are used as inspection means for determining the state of the insulating ink film. The light-emitting element 24 has a plurality of laser diodes (not shown) arranged along the X direction. The light receiving sensor 25 has a plurality of photodiodes (not shown) arranged along the X direction.
 カメラ26A,26B,26Cは、それぞれ実装基板1000に設けられたフィデューシャルマーク1005(図8参照)、又は実装部品の一部を撮影して、実装基板1000、又は実装部品の位置を同定(アライメント)するための撮影装置である。カメラ26A,26B,26Cは、X方向に沿って配置される。また、カメラ26A,26B,26Cは、それぞれX方向に移動可能に支持される。この移動可能な3つのカメラ26A,26B,26Cによって、実装基板1000のX方向のいずれの位置に配置されたフィデューシャルマーク1005、及び実装基板であっても、撮影することができる。 Cameras 26A, 26B, and 26C capture images of fiducial marks 1005 (see FIG. 8) provided on mounting board 1000 or part of the mounting components, and identify the positions of mounting board 1000 or mounting components (see FIG. 8). alignment). Cameras 26A, 26B, and 26C are arranged along the X direction. Also, the cameras 26A, 26B, and 26C are supported so as to be movable in the X direction. With these three movable cameras 26A, 26B, and 26C, it is possible to photograph the fiducial mark 1005 arranged at any position in the X direction of the mounting board 1000 and the mounting board.
 絶縁インクタンク27は、絶縁インクを貯留する貯留手段である。絶縁インクタンク27から絶縁インク吐出ヘッド22へは、不図示のチューブによって接続されている。絶縁インクタンク27に貯留された絶縁インクは、チューブを介して絶縁インク吐出ヘッド22に供給される。 The insulating ink tank 27 is storage means for storing insulating ink. The insulating ink tank 27 is connected to the insulating ink ejection head 22 by a tube (not shown). The insulating ink stored in the insulating ink tank 27 is supplied to the insulating ink ejection head 22 through the tube.
 〔金属析出インク印刷装置〕
 金属析出インク印刷装置30は、実装基板1000(「基材」の一例)の印刷面の所望の位置に金属析出インクを塗布して金属析出インク膜を印刷する印刷手段である。金属析出インク印刷装置30は、搬送ステージ31、金属析出インク吐出ヘッド32、照射光源33A,33B、発光素子34、受光センサ35,カメラ36A,36B,36C、及び金属析出インクタンク37を備える。
[Metal Deposition Ink Printer]
The metal deposition ink printing apparatus 30 is printing means for applying metal deposition ink to desired positions on the printing surface of the mounting substrate 1000 (an example of a “base material”) to print a metal deposition ink film. The metal deposition ink printing apparatus 30 includes a carrier stage 31, a metal deposition ink ejection head 32, irradiation light sources 33A and 33B, a light emitting element 34, a light receiving sensor 35, cameras 36A, 36B and 36C, and a metal deposition ink tank 37.
 搬送ステージ31は、搬送装置10から受け渡された実装基板1000を+Y方向、及び-Y方向に搬送する。また、搬送ステージ31は、金属析出インクが塗布された実装基板1000を搬送装置10に受け渡す。搬送ステージ31は、例えば500mm/sの速度(「走査速度」の一例)で実装基板1000を搬送する。金属析出インク吐出ヘッド32、照射光源33A,33B、発光素子34、受光センサ35、及びカメラ36A,36B,36Cは、搬送ステージ31による実装基板1000の搬送経路に沿って、それぞれ搬送経路の+Z方向側に配置される。 The transport stage 31 transports the mounting substrate 1000 transferred from the transport device 10 in the +Y direction and the -Y direction. Further, the carrier stage 31 transfers the mounting substrate 1000 coated with the metal deposition ink to the carrier device 10 . The transport stage 31 transports the mounting board 1000 at a speed of, for example, 500 mm/s (an example of the “scanning speed”). The metal deposition ink ejection head 32, the irradiation light sources 33A and 33B, the light emitting element 34, the light receiving sensor 35, and the cameras 36A, 36B, and 36C are arranged along the transportation path of the mounting substrate 1000 by the transportation stage 31, respectively, in the +Z direction of the transportation path. placed on the side.
 金属析出インク吐出ヘッド32は、インクジェット方式で実装基板1000の印刷面に金属析出インクを塗布するインクジェットヘッドである。金属析出インクは、化学反応により金属を析出するインクである。化学反応は、光反応、及び重合反応を含む。金属析出インクは、化学反応前は透明であり、化学反応後は金属光沢を有する。透明とは、可視光の透過率が90%以上であることを意味し、可視光の透過率が80%以上であることを意味してもよい。本実施形態に係る金属析出インクは、熱、又は光によって還元して銀を析出する溶液である。銀に代えて、金、白金、ニッケル、又は銅など、他の金属を析出する溶液であってもよい。 The metal deposition ink ejection head 32 is an inkjet head that applies metal deposition ink to the printing surface of the mounting substrate 1000 by an inkjet method. A metal deposition ink is an ink that deposits metal through a chemical reaction. Chemical reactions include photoreactions and polymerization reactions. Metal deposition inks are transparent before chemical reaction and have a metallic luster after chemical reaction. Transparent means that the visible light transmittance is 90% or more, and may mean that the visible light transmittance is 80% or more. The metal deposition ink according to the present embodiment is a solution that is reduced by heat or light to deposit silver. A solution that deposits other metals such as gold, platinum, nickel, or copper instead of silver may be used.
 金属析出インク吐出ヘッド32は、金属析出インクを吐出する不図示の複数のノズルが配置された不図示のノズル面を備え、ノズル面が-Z方向に向けて配置される。金属析出インク吐出ヘッド32は、ノズル面に複数のノズルが実装基板1000のX方向の幅以上の長さに渡って配置されたいわゆるラインヘッドである。金属析出インク吐出ヘッド32は、ディスペンサーであってもよいし、スプレーであってもよい。 The metal deposition ink ejection head 32 has a nozzle surface (not shown) on which a plurality of nozzles (not shown) for ejecting metal deposition ink are arranged, and the nozzle surface is oriented in the -Z direction. The metal deposition ink ejection head 32 is a so-called line head in which a plurality of nozzles are arranged on the nozzle surface over a length equal to or longer than the width of the mounting substrate 1000 in the X direction. The metal deposition ink ejection head 32 may be a dispenser or a sprayer.
 照射光源33A,33Bは、それぞれ搬送ステージ31によって搬送される実装基板1000の印刷面のX方向の全体に紫外線を照射する紫外線光源である。照射光源33A,33Bは、金属析出インク吐出ヘッド32によって実装基板1000に金属析出インクが印刷された金属析出インク膜に紫外線を照射することで、金属析出インク膜の金属析出を進行させる。照射光源33A,33Bは、それぞれ不図示の複数の紫外線発光ダイオードがX方向に沿って配置される。 The irradiation light sources 33A and 33B are ultraviolet light sources that irradiate the entire printed surface of the mounting substrate 1000 conveyed by the conveying stage 31 in the X direction with ultraviolet rays. The irradiation light sources 33A and 33B irradiate the metal deposition ink film printed with the metal deposition ink on the mounting substrate 1000 by the metal deposition ink ejection head 32 with ultraviolet rays, thereby promoting metal deposition of the metal deposition ink film. The irradiation light sources 33A and 33B each have a plurality of ultraviolet light emitting diodes (not shown) arranged along the X direction.
 照射光源23A,23Bから実装基板1000に照射される紫外線は、それぞれ波長が405nm、実装基板1000の印刷面上における照射強度が6W/cm、Y方向の照射幅が10mmである。 The ultraviolet light emitted from the irradiation light sources 23A and 23B to the mounting substrate 1000 has a wavelength of 405 nm, an irradiation intensity of 6 W/cm 2 on the printed surface of the mounting substrate 1000, and an irradiation width of 10 mm in the Y direction.
 照射光源33Aは、金属析出インク吐出ヘッド32の+Y方向側に配置される。また、照射光源33Bは、金属析出インク吐出ヘッド32の-Y方向側に配置される。 The irradiation light source 33A is arranged on the +Y direction side of the metal deposition ink ejection head 32 . Also, the irradiation light source 33B is arranged on the -Y direction side of the metal depositing ink ejection head 32 .
 発光素子34、及び受光センサ35は、金属析出インク膜の状態を判別するための検査装置として機能する。すなわち、金属析出インク印刷装置30は、金属析出インクの印刷に加えて、金属析出インク膜の状態を判別することができる。 The light-emitting element 34 and the light-receiving sensor 35 function as an inspection device for determining the state of the metal deposition ink film. That is, the metal deposition ink printing apparatus 30 can determine the state of the metal deposition ink film in addition to printing the metal deposition ink.
 発光素子34は、複数のレーザダイオードがX方向に沿って配置される。受光センサ35(「受光素子」の一例)は、複数のフォトダイオードがX方向に沿って配置される。 The light emitting element 34 has a plurality of laser diodes arranged along the X direction. The light receiving sensor 35 (an example of a “light receiving element”) has a plurality of photodiodes arranged along the X direction.
 カメラ36A,36B,36Cは、それぞれ実装基板1000に設けられたフィデューシャルマーク1005、又は実装部品の一部を撮影して、実装基板1000、又は実装部品の位置を同定するための撮影装置である。カメラ36A,36B,36Cは、X方向に沿って配置される。また、カメラ36A,36B,36Cは、それぞれX方向に移動可能に支持される。この移動可能な3つのカメラ36A,36B,36Cによって、実装基板1000のX方向のいずれの位置に配置されたフィデューシャルマーク1005、及び実装基板であっても、撮影することができる。 The cameras 36A, 36B, and 36C are photographing devices for photographing the fiducial mark 1005 provided on the mounting substrate 1000 or a part of the mounting components to identify the positions of the mounting substrate 1000 or the mounting components. be. Cameras 36A, 36B, and 36C are arranged along the X direction. Also, the cameras 36A, 36B, and 36C are supported so as to be movable in the X direction. With these three movable cameras 36A, 36B, and 36C, it is possible to photograph the fiducial mark 1005 arranged at any position in the X direction of the mounting board 1000 and the mounting board.
 金属析出インクタンク37は、金属析出インクを貯留する貯留手段である。金属析出インクタンク37から金属析出インク吐出ヘッド32へは、不図示のチューブによって接続されている。金属析出インクタンク37に貯留された絶縁インクは、チューブを介して金属析出インク吐出ヘッド32に供給される。 The metal deposition ink tank 37 is storage means for storing metal deposition ink. The metal deposition ink tank 37 is connected to the metal deposition ink ejection head 32 by a tube (not shown). The insulating ink stored in the metal deposition ink tank 37 is supplied to the metal deposition ink ejection head 32 through a tube.
 〔キュア装置〕
 キュア装置40は、搬送装置10によって搬送される実装基板1000を乾燥硬化処理することで、実装基板1000に印刷された金属析出インク膜の金属析出を更に進行させ、最終的に金属膜を形成させるための装置である。すなわち、金属析出インク膜は、乾燥硬化処理による化学反応で金属膜となる。
[Cure device]
The curing device 40 dries and cures the mounting substrate 1000 transported by the transporting device 10 to further advance the metal deposition of the metal deposition ink film printed on the mounting substrate 1000 and finally form a metal film. It is a device for That is, the metal deposition ink film becomes a metal film through a chemical reaction caused by the drying and curing process.
 また、キュア装置40は、絶縁インク印刷装置20において半硬化されていた絶縁インク膜を、乾燥硬化処理によって本硬化させる。キュア装置40の内部において、搬送装置10による実装基板1000の搬送速度は、例えば10mm/sである。 In addition, the curing device 40 fully cures the insulating ink film that has been semi-cured in the insulating ink printing device 20 by a drying and curing process. Inside the curing device 40, the transport speed of the mounting substrate 1000 by the transport device 10 is, for example, 10 mm/s.
 キュア装置40は、温風ファン41A,41B、発光素子42A,42B、受光センサ43A,43B、温風ファン44A,44B、発光素子45A,45B、受光センサ46A,46B、照射光源47A,47B、発光素子48A,48B、及び受光センサ49A,49Bを備える。 The curing device 40 includes hot air fans 41A and 41B, light emitting elements 42A and 42B, light receiving sensors 43A and 43B, hot air fans 44A and 44B, light emitting elements 45A and 45B, light receiving sensors 46A and 46B, irradiation light sources 47A and 47B, and light emitting. It has elements 48A and 48B and light receiving sensors 49A and 49B.
 温風ファン41A、発光素子42A、受光センサ43A、温風ファン44A、発光素子45A、受光センサ46A、照射光源47A、発光素子48A、及び受光センサ49Aは、搬送装置10による実装基板1000の搬送経路に沿って、それぞれ搬送経路の+Z方向側に配置される。また、温風ファン41B、発光素子42B、受光センサ43B、温風ファン44B、発光素子45B、受光センサ46B、照射光源47B、発光素子48B、及び受光センサ49Bは、搬送装置10による実装基板1000の搬送経路に沿って、それぞれ搬送経路の+Z方向側に配置される。なお、温風ファン、及び照射光源の数、順序、及び搬送方向の長さは特に限定されない。 The hot air fan 41A, the light emitting element 42A, the light receiving sensor 43A, the hot air fan 44A, the light emitting element 45A, the light receiving sensor 46A, the irradiation light source 47A, the light emitting element 48A, and the light receiving sensor 49A are the transport path of the mounting substrate 1000 by the transport device 10. are arranged on the +Z direction side of the transport path, respectively. Also, the hot air fan 41B, the light emitting element 42B, the light receiving sensor 43B, the hot air fan 44B, the light emitting element 45B, the light receiving sensor 46B, the irradiation light source 47B, the light emitting element 48B, and the light receiving sensor 49B are mounted on the mounting board 1000 by the transport device 10. They are arranged along the transport path on the +Z direction side of the transport path. The number, order, and length in the conveying direction of the hot air fans and the irradiation light sources are not particularly limited.
 温風ファン41A,41Bは、それぞれ搬送装置10によって搬送される実装基板1000の表面、及び裏面のY方向の全体に、X方向について300mmの長さに渡って100℃の温風を吹き出す。すなわち、実装基板1000の表面、及び裏面の各領域には、温風ファン41A,41Bによって100℃の温風が30秒間吹き付けられる。 The hot air fans 41A and 41B blow hot air of 100°C over a length of 300 mm in the X direction over the entire surface and back surface of the mounting substrate 1000 transported by the transport device 10, respectively. That is, the hot air fans 41A and 41B blow hot air at 100° C. for 30 seconds onto the front and back surfaces of the mounting board 1000 .
 温風ファン44A,44Bは、それぞれ搬送装置10によって搬送される実装基板1000の表面、及び裏面のY方向の全体に、X方向について300mmの長さに渡って180℃の温風を吹き出す。すなわち、実装基板1000の表面、及び裏面の各領域には、温風ファン44A,44Bによって180℃の温風が30秒間吹き付けられる。 The hot air fans 44A and 44B blow hot air of 180° C. over a length of 300 mm in the X direction over the entire surface and back surface of the mounting substrate 1000 transported by the transport device 10 in the Y direction. That is, the hot air fans 44A and 44B blow hot air at 180.degree.
 照射光源47A,47Bは、それぞれ搬送装置10によって搬送される実装基板1000の印刷面のY方向の全体に紫外線を照射する紫外線光源である。照射光源47A,47Bは、それぞれ不図示の複数の紫外線発光ダイオードがY方向に沿って配置される。 The irradiation light sources 47A and 47B are ultraviolet light sources that irradiate the entire printed surface of the mounting substrate 1000 conveyed by the conveying device 10 in the Y direction with ultraviolet rays. The irradiation light sources 47A and 47B each have a plurality of ultraviolet light emitting diodes (not shown) arranged along the Y direction.
 照射光源47A,47Bは、X方向について50mmの長さを有し、それぞれ波長が435nm、実装基板1000の表面、及び裏面上における照射強度が6W/cmである。すなわち、実装基板1000の表面、及び裏面の各領域には、照射光源47A,47Bによって6W/cmの紫外線が5秒間照射される。 The irradiation light sources 47A and 47B have a length of 50 mm in the X direction, a wavelength of 435 nm, and an irradiation intensity of 6 W/cm 2 on the front and rear surfaces of the mounting substrate 1000 . That is, the front and back surfaces of the mounting substrate 1000 are irradiated with ultraviolet rays of 6 W/cm 2 for 5 seconds by the irradiation light sources 47A and 47B.
 搬送装置10により実装基板1000がキュア装置40の内部を搬送され、温風ファン41A,41Bによる加熱、温風ファン44A,44Bによる加熱、及び照射光源47A,47Bによるエネルギーの付与が順に行われることで、実装基板1000の表面、及び裏面の絶縁インク膜の硬化が進み、かつ金属析出インク膜の金属析出が進む。 The mounting substrate 1000 is conveyed inside the curing device 40 by the conveying device 10, and heating by the hot air fans 41A and 41B, heating by the hot air fans 44A and 44B, and application of energy by the irradiation light sources 47A and 47B are sequentially performed. Thus, curing of the insulating ink film on the front and back surfaces of the mounting substrate 1000 progresses, and metal deposition of the metal deposition ink film progresses.
 発光素子42A,42B、受光センサ43A,43B、発光素子45A,45B、受光センサ46A,46B、発光素子48A,48B、及び受光センサ49A,49Bは、実装基板1000に塗布された金属析出インク膜の状態を判別するための検査装置として機能する。すなわち、キュア装置40は、乾燥硬化処理に加えて、金属析出インク膜の状態を判別することができるキュアシステムを構成する。 The light emitting elements 42A and 42B, the light receiving sensors 43A and 43B, the light emitting elements 45A and 45B, the light receiving sensors 46A and 46B, the light emitting elements 48A and 48B, and the light receiving sensors 49A and 49B are the metal deposition ink films applied to the mounting substrate 1000. It functions as an inspection device for determining the state. That is, the curing device 40 constitutes a curing system capable of determining the state of the metal deposition ink film in addition to the drying and curing process.
 発光素子42A、及び受光センサ43Aは、搬送装置10における実装基板1000の搬送経路の温風ファン41Aの下流側に配置される。発光素子42B、及び受光センサ43Bは、搬送装置10における実装基板1000の搬送経路の温風ファン41Bの下流側に配置される。 The light-emitting element 42A and the light-receiving sensor 43A are arranged on the downstream side of the hot air fan 41A in the transport path of the mounting board 1000 in the transport device 10. The light-emitting element 42B and the light-receiving sensor 43B are arranged downstream of the hot air fan 41B in the transport path of the mounting substrate 1000 in the transport device 10 .
 発光素子45A、及び受光センサ46Aは、搬送装置10における実装基板1000の搬送経路の温風ファン44Aの下流側に配置される。発光素子45B、及び受光センサ46Bは、搬送装置10における実装基板1000の搬送経路の温風ファン44Bの下流側に配置される。 The light-emitting element 45A and the light-receiving sensor 46A are arranged on the downstream side of the hot air fan 44A in the transportation route of the mounting board 1000 in the transportation device 10. The light-emitting element 45B and the light-receiving sensor 46B are arranged downstream of the hot air fan 44B in the transport path of the mounting substrate 1000 in the transport device 10 .
 発光素子48A、及び受光センサ49Aは、搬送装置10における実装基板1000の搬送経路の照射光源47Aの下流側に配置される。発光素子48B、及び受光センサ49Bは、搬送装置10における実装基板1000の搬送経路の照射光源47Bの下流側に配置される。 The light-emitting element 48A and the light-receiving sensor 49A are arranged on the downstream side of the irradiation light source 47A in the transport path of the mounting substrate 1000 in the transport device 10 . The light-emitting element 48B and the light-receiving sensor 49B are arranged downstream of the irradiation light source 47B on the transport path of the mounting substrate 1000 in the transport device 10 .
 発光素子42A,42B、発光素子45A,45B、及び発光素子48A,48Bは、それぞれ不図示の複数のレーザダイオードがY方向に沿って配置される。受光センサ43A,43B、受光センサ46A,46B、及び受光センサ49A,49Bは、それぞれ不図示の複数のフォトダイオードがY方向に沿って配置される。 The light emitting elements 42A and 42B, the light emitting elements 45A and 45B, and the light emitting elements 48A and 48B each have a plurality of laser diodes (not shown) arranged along the Y direction. The light receiving sensors 43A and 43B, the light receiving sensors 46A and 46B, and the light receiving sensors 49A and 49B each have a plurality of photodiodes (not shown) arranged along the Y direction.
 ここでは、実装基板1000の表面、及び裏面の両面を同時にキュア装置40で処理しているが、表面を乾燥硬化処理した後に、裏面を乾燥硬化処理してもよい。しかしながら、両面を同時に乾燥硬化処理した方が、実装基板1000の合計処理時間を短縮することができる。 Here, both the front surface and the back surface of the mounting substrate 1000 are treated by the curing device 40 at the same time, but the back surface may be dried and hardened after the surface is dried and hardened. However, the total processing time for the mounting substrate 1000 can be shortened by drying and curing both surfaces at the same time.
 <印刷システムの電気的構成>
 図3は、印刷システムの電気的構成の一例を示すブロック側面図である。図3に示すように、印刷システム1は、すでに説明した搬送装置10、絶縁インク印刷装置20、金属析出インク印刷装置30、及びキュア装置40の他、基板外観検査装置50、制御装置60、及びメモリ62を備える。
<Electrical Configuration of Printing System>
FIG. 3 is a block side view showing an example of the electrical configuration of the printing system. As shown in FIG. 3, the printing system 1 includes, in addition to the transport device 10, the insulating ink printing device 20, the metal deposition ink printing device 30, and the curing device 40 already described, a substrate visual inspection device 50, a control device 60, and A memory 62 is provided.
 基板外観検査装置50は、乾燥硬化処理を完了した実装基板1000を自動光学検査(AOI:Automated Optical Inspection)する。基板外観検査装置50は、撮影光源52、カメラ54、発光素子56、及び受光センサ58を備える。 The board appearance inspection device 50 performs automated optical inspection (AOI) on the mounting board 1000 that has completed the drying and curing process. The substrate visual inspection apparatus 50 includes a photographing light source 52 , a camera 54 , a light emitting element 56 and a light receiving sensor 58 .
 撮影光源52は、検査対象の実装基板1000の撮影箇所に撮影光を照射する光源である。カメラ54は、検査対象の実装基板1000の撮影箇所を撮影して撮影画像を取得する撮影装置である。基板外観検査装置50は、実装基板1000の撮影画像に基づいて実装基板1000の外観検査を行う。 The imaging light source 52 is a light source that irradiates imaging light onto an imaging location of the mounting board 1000 to be inspected. The camera 54 is an image capturing device that captures a captured image by capturing a captured portion of the mounting board 1000 to be inspected. The board visual inspection apparatus 50 performs visual inspection of the mounted board 1000 based on the photographed image of the mounted board 1000 .
 発光素子56、及び受光センサ58は、金属析出インク膜を乾燥硬化処理することにより形成された金属膜の状態を判別するための検査装置として機能する。また、発光素子56、及び受光センサ58は、金属析出インク膜の状態を判別するための検査装置として機能してもよい。すなわち、基板外観検査装置50は、実装基板1000の外観検査に加えて、金属析出インク膜の状態を判別することができる検査システムを構成する。発光素子56、及び受光センサ58の構成は、発光素子34、及び受光センサ35の構成と同様である。 The light-emitting element 56 and the light-receiving sensor 58 function as an inspection device for determining the state of the metal film formed by drying and curing the metal deposition ink film. Moreover, the light emitting element 56 and the light receiving sensor 58 may function as an inspection device for determining the state of the metal deposition ink film. That is, the substrate visual inspection apparatus 50 constitutes an inspection system capable of determining the state of the metal deposition ink film in addition to the visual inspection of the mounting substrate 1000 . The configurations of the light-emitting element 56 and the light-receiving sensor 58 are the same as the configurations of the light-emitting element 34 and the light-receiving sensor 35 .
 制御装置60は、搬送装置10、絶縁インク印刷装置20、金属析出インク印刷装置30、キュア装置40、及び基板外観検査装置50を統括制御する。 The control device 60 comprehensively controls the transport device 10 , the insulating ink printing device 20 , the metal deposition ink printing device 30 , the curing device 40 , and the substrate visual inspection device 50 .
 制御装置60は、少なくとも1つのコンピュータで実現される。制御装置60は、プロセッサを備える。プロセッサは、メモリ62に記憶された命令を実行する。プロセッサのハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の機能部として作用する汎用的なプロセッサであるCPU(Central Processing Unit)、画像処理に特化したプロセッサであるGPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるPLD(Programmable Logic Device)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。 The control device 60 is realized by at least one computer. The controller 60 has a processor. The processor executes instructions stored in memory 62 . The hardware structure of the processor is various processors as shown below. Various processors include a CPU (Central Processing Unit), which is a general-purpose processor that executes software (programs) and acts as various functional units, a GPU (Graphics Processing Unit), which is a processor specialized for image processing, A circuit specially designed to execute specific processing such as PLD (Programmable Logic Device), which is a processor whose circuit configuration can be changed after manufacturing such as FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), etc. Also included are dedicated electrical circuits, which are processors with configuration, and the like.
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサ(例えば、複数のFPGA、又はCPUとFPGAの組み合わせ、あるいはCPUとGPUの組み合わせ)で構成されてもよい。また、複数の機能部を1つのプロセッサで構成してもよい。複数の機能部を1つのプロセッサで構成する例としては、第1に、クライアント又はサーバー等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の機能部として作用させる形態がある。第2に、SoC(System On Chip)等に代表されるように、複数の機能部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の機能部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。 One processing unit may be composed of one of these various processors, or two or more processors of the same or different type (for example, a plurality of FPGAs, a combination of CPU and FPGA, or a combination of CPU and GPU). Also, a plurality of functional units may be configured by one processor. As an example of configuring a plurality of functional units in a single processor, first, as represented by a computer such as a client or server, a single processor is configured by combining one or more CPUs and software. There is a form in which a processor acts as a plurality of functional units. Secondly, as typified by SoC (System On Chip), etc., there is a mode of using a processor that realizes the functions of the entire system including multiple functional units with a single IC (Integrated Circuit) chip. In this way, various functional units are configured using one or more of the above various processors as a hardware structure.
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(circuitry)である。 Furthermore, the hardware structure of these various processors is, more specifically, an electrical circuit that combines circuit elements such as semiconductor elements.
 メモリ62は、制御装置60に実行させるための命令を記憶する。メモリ62は、不図示のRAM(Random Access Memory)、及びROM(Read Only Memory)を含む。制御装置60は、RAMを作業領域とし、ROMに記憶された実装基板の製造プログラムを含む各種のプログラム及びパラメータを使用してソフトウェアを実行し、かつROM等に記憶されたパラメータを使用することで、印刷システム1の各種の処理を実行する。 The memory 62 stores instructions for the control device 60 to execute. The memory 62 includes RAM (Random Access Memory) and ROM (Read Only Memory) (not shown). The control device 60 uses the RAM as a work area, executes software using various programs and parameters including a mounting board manufacturing program stored in the ROM, and uses the parameters stored in the ROM or the like. , execute various processes of the printing system 1 .
 また、メモリ62には、印刷システム1が扱う全ての実装基板1000について、それぞれを識別するための基板番号と各検査項目に対する合否のデータとを蓄積するための基板番号表が記憶されている。 The memory 62 also stores a board number table for accumulating the board numbers for identifying each of all the mounting boards 1000 handled by the printing system 1 and pass/fail data for each inspection item.
 制御装置60、及びメモリ62は、金属析出インク吐出ヘッド32によって実装基板1000に塗布された金属析出インクである金属析出インク膜の状態を判別するための検査装置として機能する。 The control device 60 and memory 62 function as an inspection device for determining the state of the metal deposition ink film, which is the metal deposition ink applied to the mounting board 1000 by the metal deposition ink ejection head 32 .
 カメラ54において撮影した撮影画像を制御装置60が取得し、制御装置60において実装基板1000の外観検査を行ってもよい。 The image captured by the camera 54 may be acquired by the control device 60 and the appearance inspection of the mounting board 1000 may be performed by the control device 60 .
 <実装基板の製造方法>
 印刷システム1における実装基板の製造方法について説明する。図4は、実装基板の製造方法の工程を示すフローチャートである。実装基板の製造方法は、制御装置60がメモリ62に記憶された実装基板の製造プログラムを実行することで実現される。実装基板の製造プログラムは、コンピュータが読み取り可能な非一時的記録媒体によって提供されてもよい。この場合、制御装置60は、非一時的記録媒体から実装基板の製造プログラムを読み取り、メモリ62に記憶させてもよい。
<Manufacturing Method of Mounting Board>
A method of manufacturing a mounting board in the printing system 1 will be described. FIG. 4 is a flow chart showing the steps of the manufacturing method of the mounting board. The mounting board manufacturing method is implemented by the controller 60 executing a mounting board manufacturing program stored in the memory 62 . The mounting board manufacturing program may be provided by a computer-readable non-transitory recording medium. In this case, the controller 60 may read the mounting board manufacturing program from the non-temporary recording medium and store it in the memory 62 .
 図4に示すように、実装基板の製造方法は、ステップS1の印刷工程、ステップS2の検査工程、ステップS3のキュア工程、及びステップS4の検査工程を含む。ここでは、実装基板1000が絶縁インク印刷装置20によって絶縁インクが塗布された状態から説明する。 As shown in FIG. 4, the mounting board manufacturing method includes a printing process in step S1, an inspection process in step S2, a curing process in step S3, and an inspection process in step S4. Here, the state where the insulating ink is applied to the mounting substrate 1000 by the insulating ink printing device 20 will be described.
 搬送装置10は、絶縁インク印刷装置20から排出された実装基板1000を、搬送ベルト12A,12Bによって両端を支持してX方向に搬送する。搬送装置10は、搬送ベルト12A,12B、及び実装基板1000が金属析出インク印刷装置30の搬送ステージ31上に到達すると、搬送を停止させる。搬送ステージ31は、搬送ベルト12A,12B、及び実装基板1000を固定する。 The transport device 10 transports the mounting substrate 1000 ejected from the insulating ink printing device 20 in the X direction while supporting both ends thereof with the transport belts 12A and 12B. The conveying device 10 stops conveying when the conveying belts 12A and 12B and the mounting board 1000 reach the conveying stage 31 of the metal deposition ink printing device 30 . The transport stage 31 fixes the transport belts 12A and 12B and the mounting board 1000 .
 実装基板1000が固定された搬送ステージ31は、実装基板1000を+Y方向に搬送する。この搬送される実装基板1000に対して、発光素子34から光を照射し、カメラ36A,36B,36Cにより実装基板1000のフィデューシャルマーク1005、又は実装部品の一部を撮影する。制御装置60は、この撮影画像から実装基板1000、又は実装部品の位置を同定して、金属析出インク吐出ヘッド32によって印刷するための印刷データに対して、同定した位置に合わせるようにデータ処理を行う。 The transport stage 31 to which the mounting board 1000 is fixed transports the mounting board 1000 in the +Y direction. Light is emitted from the light emitting element 34 to the transported mounting board 1000, and the fiducial marks 1005 of the mounting board 1000 or part of the mounted components are photographed by the cameras 36A, 36B, and 36C. The control device 60 identifies the position of the mounting board 1000 or the mounting component from this photographed image, and processes the print data for printing by the metal deposition ink ejection head 32 so as to match the identified position. conduct.
 次に、搬送ステージ31は、実装基板1000を-Y方向に搬送する。この搬送される実装基板1000の印刷面に対して、金属析出インク吐出ヘッド32は、制御装置60によってデータ処理された印刷データに応じて金属析出インクを吐出する(ステップS1の印刷工程)。また、照射光源33Bは、実装基板1000の印刷面に紫外線を照射する。これにより、印刷直後の金属析出インクは、粘度が高くなり、打滴位置が固定(ピニング)される。 Next, the transport stage 31 transports the mounting board 1000 in the -Y direction. The metal deposition ink ejection head 32 ejects the metal deposition ink onto the printed surface of the transported mounting substrate 1000 in accordance with the print data processed by the control device 60 (printing step of step S1). Further, the irradiation light source 33B irradiates the printed surface of the mounting substrate 1000 with ultraviolet rays. As a result, the viscosity of the metal deposition ink immediately after printing is increased, and the droplet ejection positions are fixed (pinned).
 続いて、搬送ステージ31は、実装基板1000を+Y方向に搬送する。この搬送される実装基板1000の印刷面に対して、金属析出インク吐出ヘッド32は、制御装置60によってデータ処理された印刷データに応じて金属析出インクを吐出する(ステップS1の印刷工程)。また、照射光源33Aは、実装基板1000の印刷面に紫外線を照射する。これにより、印刷直後の金属析出インクは、粘度が高くなり、打滴位置が固定される。 Subsequently, the transport stage 31 transports the mounting board 1000 in the +Y direction. The metal deposition ink ejection head 32 ejects the metal deposition ink onto the printed surface of the transported mounting substrate 1000 in accordance with the print data processed by the control device 60 (printing step of step S1). Further, the irradiation light source 33A irradiates the printed surface of the mounting substrate 1000 with ultraviolet rays. As a result, the viscosity of the metal deposition ink immediately after printing is increased, and the droplet ejection position is fixed.
 さらに、+Y方向に搬送される実装基板1000に対して、制御装置60は、発光素子34、及び受光センサ35を用いて、印刷した金属析出インク膜の状態を判別し、金属析出インク膜の状態が「良」、及び「不良」のいずれかであるかを検査する(ステップS2の検査工程)。金属析出インク膜の状態の判別は、実装基板1000の表面の金属析出インク膜に、発光素子34から金属析出インクの硬化反応後に吸収のある波長を含む光を照射させ、反射光を受光センサ35において受光させることで行う。光の照射位置は、予め実装基板1000の表面の検査位置座標を決めておき、その位置座標を先のアライメント結果に応じて補正した位置である。受光センサ35に入力されるノイズを低減するために、発光素子34を既定のルールで点滅させ、その点滅パターンに一致した受光信号のみを採用してもよい。 Furthermore, with respect to the mounting board 1000 transported in the +Y direction, the control device 60 uses the light emitting element 34 and the light receiving sensor 35 to determine the state of the printed metal deposition ink film, and determines the state of the metal deposition ink film. is either "good" or "bad" (inspection process of step S2). The state of the metal deposition ink film is determined by irradiating the metal deposition ink film on the surface of the mounting substrate 1000 with light including a wavelength that is absorbed after the curing reaction of the metal deposition ink from the light emitting element 34, and detecting the reflected light by the light receiving sensor 35. This is done by receiving light at The light irradiation position is a position obtained by determining the inspection position coordinates of the surface of the mounting board 1000 in advance and correcting the position coordinates according to the previous alignment result. In order to reduce noise input to the light receiving sensor 35, the light emitting element 34 may be caused to blink according to a predetermined rule, and only light receiving signals that match the blinking pattern may be adopted.
 以下同様に、金属析出インク膜が既定の膜厚になるように、予め設定した繰返し回数に到達するまで搬送ステージ31による+Y方向、及び-Y方向の移動を繰り返し、実装基板1000の印刷面に金属析出インクを印刷する。その後、必要であれば、金属析出インク印刷装置30は、反転装置により実装基板1000の表面、及び裏面の向きを反転させ、同様に実装基板1000に金属析出インクを印刷する。 In the same manner, the transfer stage 31 is repeatedly moved in the +Y direction and the -Y direction until the predetermined number of repetitions is reached so that the metal deposition ink film has a predetermined film thickness. Print metal deposition inks. After that, if necessary, the metal deposition ink printing apparatus 30 reverses the orientation of the front surface and the back surface of the mounting substrate 1000 by a reversing device, and prints the metal deposition ink on the mounting substrate 1000 in the same manner.
 搬送装置10は、金属析出インクの印刷が終了した実装基板1000を、搬送ベルト12A,12Bによって両端を支持してX方向に一定速度で搬送し、キュア装置40に投入する。 The transport device 10 supports both ends of the mounting substrate 1000 printed with the metal deposition ink by the transport belts 12A and 12B, transports the mounting substrate 1000 in the X direction at a constant speed, and feeds it into the curing device 40 .
 なお、搬送装置10は、ステップS2の検査工程において金属析出インク膜の状態が「不良」と判定された実装基板1000を、キュア装置40に投入せずに不図示の排出搬送路によって印刷システム1から排出してもよい。このように、金属析出インク印刷装置30に、発光素子34、及び受光センサ35による検査装置を設けたことで、金属析出インク膜中に散乱体が規定以上発生した場合など、金属析出インク膜の状態が「不良」と判定された実装基板1000をキュア工程に移行させずに済み、無駄な工程を排除することができる。またキュア工程が完了する前に排出することで、実装基板1000の金属析出インク膜を洗い取って、印刷からやり直すリワークが可能となる。 It should be noted that the transport device 10 does not put the mounting substrate 1000, the state of the metal deposition ink film of which is determined to be “defective” in the inspection process of step S2, into the curing device 40, but rather transports the mounting board 1000 through a discharge transport path (not shown) to the printing system 1. can be discharged from In this way, by providing the metal deposition ink printing apparatus 30 with the inspection device using the light emitting element 34 and the light receiving sensor 35, the metal deposition ink film can be inspected even if the metal deposition ink film contains more scatterers than specified. The mounting board 1000 whose state is determined to be "defective" does not have to be transferred to the curing process, and wasteful processes can be eliminated. Further, by discharging the mounting substrate 1000 before the curing process is completed, the metal deposition ink film on the mounting substrate 1000 can be washed off, and rework can be restarted from printing.
 搬送装置10は、実装基板1000を搬送し、キュア装置40の内部を通過させる。実装基板1000は、最初に温風ファン41A,41Bと対向する位置を通過する。温風ファン41A,41Bは、実装基板1000に温風を吹き付けて乾燥硬化処理する(ステップS3のキュア工程)。この加熱のエネルギーを受けて、実装基板1000の金属析出インク膜の金属析出が進行する。 The transport device 10 transports the mounting substrate 1000 to pass through the curing device 40 . The mounting board 1000 first passes through a position facing the warm air fans 41A and 41B. The hot air fans 41A and 41B blow hot air onto the mounting board 1000 to dry and harden the mounting board 1000 (curing process in step S3). By receiving this heating energy, the metal deposition of the metal deposition ink film on the mounting substrate 1000 progresses.
 その後、実装基板1000は、発光素子42A,42B、及び受光センサ43A,43Bと対向する位置を通過する。制御装置60は、発光素子42A,42B、及び受光センサ43A,43Bを用いて、金属析出インク膜の状態を判別し、金属析出インク膜の状態が「良」、及び「不良」のいずれかであるかを検査する(ステップS4の検査工程)。ここでの判別の方法は、ステップS2の検査工程と同様であってよい。 After that, the mounting board 1000 passes through positions facing the light emitting elements 42A and 42B and the light receiving sensors 43A and 43B. The control device 60 uses the light-emitting elements 42A and 42B and the light-receiving sensors 43A and 43B to determine the state of the metal deposition ink film, and determines whether the state of the metal deposition ink film is "good" or "bad". Existence is inspected (inspection process of step S4). The determination method here may be the same as the inspection process in step S2.
 また、搬送装置10は、金属析出インク膜の状態が「不良」と判定された実装基板1000を不図示の排出搬送路によって印刷システム1から排出してもよい。このように、キュア装置40に、発光素子42A,42B、及び受光センサ43A,43Bによる検査装置を設けたことで、キュア装置40の工程の前半で散乱体が規定以上発生しない場合、後半で反射率が規定以上に上がらない場合、及び最後に散乱が規定以上発生している場合など、金属析出インク膜の状態が「不良」と判定された実装基板1000を次工程に移行させずに済み、無駄な工程を排除することができる。またキュア工程が完了する前に排出することで、実装基板1000の金属析出インク膜を洗い取って、印刷からやり直すリワークが可能となる。 Further, the conveying device 10 may discharge the mounting substrate 1000 for which the state of the metal deposition ink film is determined to be "defective" from the printing system 1 through a discharge conveying path (not shown). In this way, the curing device 40 is provided with an inspection device including the light emitting elements 42A and 42B and the light receiving sensors 43A and 43B. When the rate does not rise above the specified value, or when the final scattering occurs above the specified value, the mounting substrate 1000 for which the state of the metal deposition ink film is determined to be "defective" does not need to be transferred to the next process. Useless steps can be eliminated. Further, by discharging the mounting substrate 1000 before the curing process is completed, the metal deposition ink film on the mounting substrate 1000 can be washed off, and rework can be restarted from printing.
 続いて、実装基板1000は、温風ファン44A,44Bと対向する位置を通過する。温風ファン44A,44Bは、実装基板1000に温風を吹き付けて乾燥硬化処理する(ステップS3のキュア工程)。この加熱のエネルギーを受けて、実装基板1000の金属析出インク膜の金属析出がさらに進行する。 Subsequently, the mounting board 1000 passes through positions facing the warm air fans 44A and 44B. The hot air fans 44A and 44B blow hot air onto the mounting substrate 1000 to dry and harden the mounting substrate 1000 (curing process in step S3). By receiving this heating energy, the metal deposition of the metal deposition ink film on the mounting substrate 1000 progresses further.
 その後、実装基板1000は、発光素子45A,45B、及び受光センサ46A,46Bと対向する位置を通過する。キュア装置40は、発光素子45A,45B、及び受光センサ46A,46Bを用いて、金属析出インク膜の状態を判別する(ステップS4の検査工程)。 After that, the mounting board 1000 passes through positions facing the light emitting elements 45A and 45B and the light receiving sensors 46A and 46B. The curing device 40 uses the light-emitting elements 45A and 45B and the light-receiving sensors 46A and 46B to determine the state of the metal deposition ink film (inspection process of step S4).
 さらに、実装基板1000は、照射光源47A,47Bと対向する位置を通過する。照射光源47A,47Bは、実装基板1000に紫外線を照射して乾燥硬化処理する(ステップS3のキュア工程)。この照射のエネルギーを受けて、実装基板1000の金属析出インク膜の金属析出がさらに進行する。 Furthermore, the mounting substrate 1000 passes through positions facing the irradiation light sources 47A and 47B. The irradiation light sources 47A and 47B irradiate the mounting board 1000 with ultraviolet rays to dry and cure the mounting board 1000 (curing process in step S3). By receiving the energy of this irradiation, the metal deposition of the metal deposition ink film on the mounting substrate 1000 further progresses.
 その後、実装基板1000は、発光素子48A,48B、及び受光センサ49A,49Bと対向する位置を通過する。キュア装置40は、発光素子48A,48B、及び受光センサ49A,49Bを用いて、金属析出インク膜の状態を判別する(ステップS4の検査工程)。 After that, the mounting board 1000 passes through positions facing the light emitting elements 48A and 48B and the light receiving sensors 49A and 49B. The curing device 40 uses the light emitting elements 48A and 48B and the light receiving sensors 49A and 49B to determine the state of the metal deposition ink film (inspection process of step S4).
 搬送装置10は、発光素子48A,48B、及び受光センサ49A,49Bによって金属析出インク膜の状態が判別された実装基板1000をキュア装置40から排出する。キュア装置40において乾燥硬化処理が終了した実装基板1000には、金属析出インク膜が化学反応することで金属膜が完成している。 The transport device 10 discharges from the curing device 40 the mounting substrate 1000 for which the state of the metal deposition ink film has been determined by the light emitting elements 48A, 48B and the light receiving sensors 49A, 49B. On the mounting substrate 1000 that has been dried and cured in the curing device 40, a metal film is completed by the chemical reaction of the metal deposition ink film.
 キュア装置40から排出された実装基板1000は、不図示の搬送装置によって基板外観検査装置50に投入され、外観検査が実施される。 The mounting substrate 1000 ejected from the curing device 40 is put into the substrate appearance inspection device 50 by a transport device (not shown), and the appearance inspection is performed.
 なお、金属析出インクの材料、及び金属析出インクによる金属膜の用途によっては、金属析出インク印刷装置30による紫外線の照射だけで乾燥硬化処理を完了させることで、キュア装置40での工程を省略することができる。 Depending on the material of the metal deposition ink and the application of the metal film formed by the metal deposition ink, the process in the curing device 40 can be omitted by completing the drying and curing process only by irradiating the ultraviolet rays from the metal deposition ink printing device 30. be able to.
 この場合、金属析出インク印刷装置30の照射光源23A,23Bは、紫外線、可視光線、及び赤外線のいずれかを照射することが可能であり、これらの2つ以上を組合せて照射することも可能である。例えば、紫外線を照射後に赤外線を照射して加熱することが望ましい。紫外線の照射によって金属析出インク膜に金属が析出してくると、紫外線の反射率が高まり紫外線の吸収率が低下するため照射効果が低下する。このため、金属析出インク膜が吸収する赤外線の照射に切り替えることで、照射効率を高めることができる。 In this case, the irradiation light sources 23A and 23B of the metal deposition ink printing apparatus 30 can irradiate any of ultraviolet rays, visible rays, and infrared rays, and it is also possible to irradiate a combination of two or more of these. be. For example, it is desirable to heat by irradiating infrared rays after irradiating ultraviolet rays. When metal is deposited on the metal-deposited ink film by irradiation with ultraviolet rays, the reflectance of ultraviolet rays increases and the absorbance of ultraviolet rays decreases, resulting in a decrease in irradiation effect. Therefore, the irradiation efficiency can be increased by switching to irradiation with infrared rays that are absorbed by the metal deposition ink film.
 <金属析出インク膜の状態の判別の詳細>
 金属析出インク膜の状態の判別の詳細について説明する。印刷システム1は、金属析出インク膜の色、光沢、及び反射のうちの2つ以上に基づいて金属析出インク膜の状態を判別し、判別した状態に基づいて実装基板1000の合否判定を行う。
<Details of determining the state of the metal deposition ink film>
Details of determination of the state of the metal deposition ink film will be described. The printing system 1 determines the state of the metal deposition ink film based on two or more of the color, gloss, and reflection of the metal deposition ink film, and performs pass/fail determination of the mounting board 1000 based on the determined state.
 ここで、金属析出インク膜の色とは、金属析出インク膜の属性のうち、2種類以上の波長の正反射光の反射量に基づいて表されるものであり、例えば2種類以上の波長の正反射光量の比率に基づいて表されるものである。金属析出インク膜の光沢とは、金属析出インク膜の属性のうち、正反射光の反射量と散乱反射光の反射量とに基づいて表されるものであり、例えば正反射光の反射量と散乱反射光の反射量との比率に基づいて表されるものである。金属析出インク膜の反射とは、金属析出インク膜の属性のうち、正反射光、又は散乱反射光の反射量に基づいて表されるものである。印刷システム1は、金属析出インク膜の複数の属性に基づくことで、金属析出インク膜の状態を精度よく判別することができる。 Here, the color of the metal deposition ink film is represented based on the amount of specularly reflected light of two or more wavelengths among the attributes of the metal deposition ink film. It is represented based on the ratio of specular reflection light amounts. The glossiness of the metal deposition ink film is expressed based on the reflection amount of the specular reflection light and the reflection amount of the scattered reflection light among the attributes of the metal deposition ink film. It is expressed based on the ratio to the amount of reflected scattered reflected light. The reflection of the metal deposition ink film is represented based on the amount of specular reflection light or scattered reflection light among the attributes of the metal deposition ink film. The printing system 1 can accurately determine the state of the metal deposition ink film based on a plurality of attributes of the metal deposition ink film.
 なお、以下においては、金属析出インク印刷装置30における発光素子34、及び受光センサ35による金属析出インク膜の状態の判別について説明するが、キュア装置40、及び基板外観検査装置50における判別も同様に行うことが可能である。 In the following, determination of the state of the metal deposition ink film by the light emitting element 34 and the light receiving sensor 35 in the metal deposition ink printing device 30 will be described, but the determination in the curing device 40 and the substrate appearance inspection device 50 is the same. It is possible.
 〔発光素子、及び受光センサの構成〕
 図5は、発光素子34、及び受光センサ35の構成の一例を示す側面図である。図5では、発光素子34、及び受光センサ35に含まれる1組の第1のレーザダイオード70、第2のレーザダイオード72、第1のフォトダイオード74、及び第2のフォトダイオード76を示している。発光素子34、及び受光センサ35は、第1のレーザダイオード70、第2のレーザダイオード72、第1のフォトダイオード74、及び第2のフォトダイオード76からなる組がX方向に沿って複数配置されて構成される。
[Configuration of light-emitting element and light-receiving sensor]
FIG. 5 is a side view showing an example of the configuration of the light emitting element 34 and the light receiving sensor 35. As shown in FIG. FIG. 5 shows a set of a first laser diode 70, a second laser diode 72, a first photodiode 74, and a second photodiode 76 included in the light emitting element 34 and the light receiving sensor 35. . As for the light emitting element 34 and the light receiving sensor 35, a plurality of sets each including a first laser diode 70, a second laser diode 72, a first photodiode 74, and a second photodiode 76 are arranged along the X direction. It consists of
 第1のレーザダイオード70、及び第2のレーザダイオード72は、1つのパッケージ内に封入されている。 The first laser diode 70 and the second laser diode 72 are enclosed in one package.
 第1のレーザダイオード70は、波長が435nm(「第1の波長」の一例)であり、出力強度が1mWの半導体レーザ光を出射する。第1のレーザダイオード70は、出射光を20度の入射角(実装基板1000の表面の法線となす角度)で実装基板1000の金属析出インク膜1100に1mm径に集光して照射する不図示の光学系を有する。 The first laser diode 70 emits semiconductor laser light with a wavelength of 435 nm (an example of a "first wavelength") and an output intensity of 1 mW. The first laser diode 70 emits emitted light at an incident angle of 20 degrees (an angle formed with the normal to the surface of the mounting substrate 1000), condensing the light onto the metal deposition ink film 1100 on the mounting substrate 1000 to a diameter of 1 mm. It has the optical system shown.
 第2のレーザダイオード72は、波長が638nm(「第2の波長」の一例)であり、出力強度が1mWの半導体レーザ光を出射する。第2のレーザダイオード72は、出射光を20度の入射角で実装基板1000の金属析出インク膜1100に1mm径に集光して照射する不図示の光学系を有する。 The second laser diode 72 emits semiconductor laser light with a wavelength of 638 nm (an example of a "second wavelength") and an output intensity of 1 mW. The second laser diode 72 has an optical system (not shown) for condensing and irradiating the emitted light to the metal deposition ink film 1100 on the mounting substrate 1000 at an incident angle of 20 degrees to a diameter of 1 mm.
 第1のフォトダイオード74は、Z方向視において第1のレーザダイオード70、及び第2のレーザダイオード72とは集光位置を挟んだ反対側の位置であって、集光位置から20度の出射角の位置に配置される。すなわち、第1のフォトダイオード74は、第1のレーザダイオード70、及び第2のレーザダイオード72から出射された光が正反射した正反射光を受光する位置に配置される。 The first photodiode 74 is positioned opposite to the first laser diode 70 and the second laser diode 72 across the condensing position when viewed in the Z direction, and emits light at an angle of 20 degrees from the condensing position. placed in a corner position. That is, the first photodiode 74 is arranged at a position where it receives specularly reflected light that is the specularly reflected light emitted from the first laser diode 70 and the second laser diode 72 .
 第2のフォトダイオード76は、Z方向視において第1のレーザダイオード70、及び第2のレーザダイオード72とは集光位置を挟んだ反対側の位置であって、集光位置から45度の出射角の位置に配置される。すなわち、第2のフォトダイオード76は、第1のレーザダイオード70、及び第2のレーザダイオード72から出射された光が散乱反射した散乱反射光を受光する位置に配置される。 The second photodiode 76 is positioned opposite to the first laser diode 70 and the second laser diode 72 across the condensing position when viewed in the Z direction, and emits light at an angle of 45 degrees from the condensing position. placed in a corner position. That is, the second photodiode 76 is arranged at a position where it receives the scattered reflected light that is the scattered reflected light emitted from the first laser diode 70 and the second laser diode 72 .
 〔発光素子、及び受光センサの作用〕
 制御装置60は、発光素子34、及び受光センサ35に配置された第1のレーザダイオード70、第2のレーザダイオード72、第1のフォトダイオード74、及び第2のフォトダイオード76からなる複数の組のうち、状態を判別する金属析出インク膜1100のX方向の位置に対応する組を選択して使用する。
[Action of light emitting element and light receiving sensor]
The control device 60 controls a plurality of sets of a first laser diode 70, a second laser diode 72, a first photodiode 74, and a second photodiode 76 arranged in the light emitting element 34 and the light receiving sensor 35. Among them, a set corresponding to the position in the X direction of the metal deposition ink film 1100 whose state is to be determined is selected and used.
 制御装置60は、1msの周期の0.1msのパルス幅の発光パルス信号により、第1のレーザダイオード70を1msごとに0.1msだけ発光させて、実装基板1000の金属析出インク膜1100に波長435nmの光を照射する。そして、制御装置60は、金属析出インク膜1100表面で反射した波長435nmの光を、第1のフォトダイオード74、及び第2のフォトダイオード76で受光させる。ここでは、制御装置60は、第1のレーザダイオード70の発光パルス信号のパルス出力開始から(第1のレーザダイオード70の発光開始から)0.05ms~0.1msだけ遅れたタイミングの第1のフォトダイオード74、及び第2のフォトダイオード76の受光信号を第1の受光信号L、及び第2の受光信号Lとして検出する。すなわち、第1の受光信号Lは、波長435nmの光の正反射光の検出信号であり、第2の受光信号Lは、波長435nmの光の散乱反射光の検出信号である。 The control device 60 causes the first laser diode 70 to emit light for 0.1 ms every 1 ms with a light emission pulse signal having a period of 1 ms and a pulse width of 0.1 ms, so that the metal deposited ink film 1100 on the mounting substrate 1000 emits light with a wavelength of 0.1 ms. Light of 435 nm is applied. Then, the control device 60 causes the first photodiode 74 and the second photodiode 76 to receive the light with a wavelength of 435 nm reflected by the surface of the metal deposition ink film 1100 . Here, the control device 60 controls the first laser diode 70 to output the first pulse signal at a timing delayed by 0.05 ms to 0.1 ms from the start of pulse output of the light emission pulse signal of the first laser diode 70 (from the start of light emission of the first laser diode 70). Light reception signals of the photodiode 74 and the second photodiode 76 are detected as a first light reception signal L 1 and a second light reception signal L 2 . That is, the first light receiving signal L1 is a detection signal of specularly reflected light of wavelength 435 nm, and the second light receiving signal L2 is a detection signal of scattered reflected light of light of wavelength 435 nm.
 このように、波長435nmの照射光に対して、正反射光、及び散乱反射光の両方を同じタイミングで受光することができる。 In this way, both specularly reflected light and scattered reflected light can be received at the same timing for irradiation light with a wavelength of 435 nm.
 さらに、制御装置60は、1msの周期の0.1msのパルス幅の発光パルス信号であって、第1のレーザダイオード70の発光パルス信号のパルス出力開始から0.2msだけ遅れてパルス出力される発光パルス信号により第2のレーザダイオード72を発光させて、金属析出インク膜1100に波長638nmの光を照射する。そして、制御装置60は、金属析出インク膜1100の表面で反射した波長638nmの光を、第1のフォトダイオード74で受光させる。ここでは、制御装置60は、第2のレーザダイオード72の発光パルス信号のパルス出力開始から0.05ms~0.1msだけ遅れたタイミングの第1のフォトダイオード74の受光信号を第3の受光信号Lとして検出する。すなわち、第3の受光信号Lは、波長638nmの光の正反射光の検出信号である。 Further, the control device 60 outputs an emission pulse signal having a period of 1 ms and a pulse width of 0.1 ms with a delay of 0.2 ms from the start of pulse output of the emission pulse signal of the first laser diode 70 . The light emission pulse signal causes the second laser diode 72 to emit light to irradiate the metal deposited ink film 1100 with light having a wavelength of 638 nm. Then, the control device 60 causes the first photodiode 74 to receive the light with a wavelength of 638 nm reflected by the surface of the metal deposition ink film 1100 . Here, the control device 60 converts the light receiving signal of the first photodiode 74 at a timing delayed by 0.05 ms to 0.1 ms from the start of pulse output of the light emission pulse signal of the second laser diode 72 into the third light receiving signal. Detect as L3 . That is, the third received light signal L3 is a detection signal of specularly reflected light with a wavelength of 638 nm.
 このように、それぞれ異なる波長の光の照射タイミングを異ならせることで、1つの第1のフォトダイオード74で複数の波長の正反射光を受光することができる。 In this way, by varying the irradiation timings of the light beams of different wavelengths, one first photodiode 74 can receive specularly reflected light beams of a plurality of wavelengths.
 〔色の検査〕
 金属析出インク膜1100の色の検査は、複数の波長の光の反射光量を比較することで行われる。金属析出インク膜1100の中の生成粒子のサイズが相対的に大きくなると、吸収スペクトルが長波にシフトする。したがって、制御装置60は、複数の波長光の反射光量の相対値を比較することで、金属析出インク膜1100の状態を判別し、異常を検出することができる。
[Color inspection]
The inspection of the color of the metal deposition ink film 1100 is performed by comparing the amount of reflected light of light of a plurality of wavelengths. The relatively large size of the particles produced in the metal deposited ink film 1100 shifts the absorption spectrum to longer wavelengths. Therefore, the control device 60 can determine the state of the metal deposition ink film 1100 and detect an abnormality by comparing the relative values of the reflected light amounts of light of a plurality of wavelengths.
 本実施形態では、制御装置60は、波長435nmの光の正反射光の検出信号である第1の受光信号L、及び波長638nmの光の正反射光の検出信号である第3の受光信号Lから、金属析出インク膜1100の色を検出する。また、制御装置60は、各工程の目標サンプル(教師サンプル)との差分に基づいて実装基板1000の合否判定を行う。 In the present embodiment, the control device 60 generates a first light reception signal L 1 that is a detection signal of specularly reflected light with a wavelength of 435 nm, and a third light reception signal that is a detection signal of specularly reflected light with a wavelength of 638 nm. From L3 , the color of the metal deposition ink film 1100 is detected. In addition, the control device 60 performs acceptance/rejection determination of the mounting board 1000 based on the difference from the target sample (teacher sample) of each process.
 測定位置の金属析出インク膜1100の色信号比Cは、以下の式1のように表すことができる。
 C=L/(L+L) …(式1)
The color signal ratio C of the metal deposition ink film 1100 at the measurement position can be expressed by Equation 1 below.
C=L 1 /(L 1 +L 3 ) (Formula 1)
 予め合格品として定めた実装基板1000である「目標実装基板」の指定位置の金属析出インク膜を測定して式1より求めた色信号比Cと、検査対象の実装基板1000の同じ指定位置の金属析出インク膜1100を測定して式1より求めた色信号比Cとの色変動率F[%]は、以下の式2のように表すことができる。
 F=(C-C)/C×100 …(式2)
The color signal ratio C0 obtained from Equation 1 by measuring the metal deposition ink film at the specified position of the "target mounting board", which is the mounting board 1000 determined in advance as the acceptable product, and the same specified position of the mounting board 1000 to be inspected. The color variation rate F C [%] between the color signal ratio C 1 obtained from Equation 1 by measuring the metal deposition ink film 1100 can be expressed as in Equation 2 below.
F C =(C 1 -C 0 )/C 0 ×100 (Formula 2)
 この色変動率Fが、±10%以内の場合の金属析出インク膜1100の状態を「良」と判定し、実装基板1000の合否を「合格」と判定する。一方、色変動率Fが、±10%を超える場合の金属析出インク膜1100の状態を「不良」と判定し、実装基板1000の合否を「不合格」と判定する。制御装置60は、メモリ62に記憶されている基板番号表の該当基板番号の色変動率結果の項目の欄に、実装基板1000の合否結果を記憶させ、基板番号表を更新する。 When the color variation rate F C is within ±10%, the state of the metal deposition ink film 1100 is judged as "good", and the acceptance or rejection of the mounting board 1000 is judged as "acceptable". On the other hand, when the color variation rate F C exceeds ±10%, the state of the metal deposition ink film 1100 is determined as "defective", and the pass/fail of the mounting board 1000 is determined as "failed". The control device 60 stores the pass/fail result of the mounting board 1000 in the item column of the color variation rate result of the corresponding board number in the board number table stored in the memory 62, and updates the board number table.
 〔光沢の検査〕
 金属析出インク膜1100の光沢の検査は、正反射光の光量と散乱反射光の光量とを比較することで行われる。金属析出インク膜1100の硬化に伴い金属析出インク膜1100の中の析出粒子(凝集物)の存在により散乱光量が増加する。また、金属析出インク膜1100のさらなる硬化に伴い析出された金属の光沢により散乱光量が減少する。これにより、金属析出インク膜1100の異常を検出することができる。
[Gloss inspection]
The glossiness of the metal deposition ink film 1100 is inspected by comparing the amount of specularly reflected light and the amount of scattered reflected light. As the metal deposition ink film 1100 hardens, the presence of deposited particles (aggregates) in the metal deposition ink film 1100 increases the amount of scattered light. Further, as the metal deposition ink film 1100 further hardens, the gloss of the deposited metal reduces the amount of scattered light. Thereby, an abnormality of the metal deposition ink film 1100 can be detected.
 本実施形態では、制御装置60は、波長435nmの光の正反射光の検出信号である第1の受光信号L、及び波長435nmの光の散乱反射光の検出信号である第2の受光信号Lから、金属析出インク膜1100の光沢を検出する。また、制御装置60は、各工程の目標サンプルとの差分に基づいて実装基板1000の合否判定を行う。 In this embodiment, the control device 60 generates a first light reception signal L 1 that is a detection signal of specularly reflected light with a wavelength of 435 nm, and a second light reception signal that is a detection signal of scattered reflected light of light with a wavelength of 435 nm. The glossiness of the metal deposition ink film 1100 is detected from L2 . In addition, the control device 60 performs acceptance/rejection determination of the mounting board 1000 based on the difference from the target sample in each process.
 測定位置の光沢率Gは、以下の式3のように表すことができる。
 G=L/(L+L) …(式3)
The gloss ratio G at the measurement position can be expressed by Equation 3 below.
G=L 1 /(L 1 +L 2 ) (Formula 3)
 目標実装基板の指定位置の金属析出インク膜を測定した光沢率Gと、検査対象の実装基板1000の同じ指定位置の金属析出インク膜1100を測定した光沢率Gとの光沢変動率F[%]は、以下の式4のように表すことができる。
 F=(G-G)/G×100 …(式4)
Gloss change rate F G between the gloss rate G0 measured for the metal deposition ink film at the specified position on the target mounting board and the gloss rate G1 measured for the metal deposition ink film 1100 at the same specified position on the mounting board 1000 to be inspected. [%] can be expressed as in Equation 4 below.
F G = (G 1 -G 0 )/G 0 ×100 (Formula 4)
 この光沢変動率Fが、±10%以内の場合の金属析出インク膜1100の状態を「良」と判定し、実装基板1000の合否を「合格」と判定する。一方、光沢変動率Fが、±10%を超える場合の金属析出インク膜1100の状態を「不良」と判定し、実装基板1000の合否を「不合格」と判定する。制御装置60は、メモリ62に記憶されている基板番号表の該当基板番号の光沢変動率結果の項目の欄に、実装基板1000の合否結果を記憶させ、基板番号表を更新する。 When this gloss variation rate FG is within ±10%, the state of the metal deposition ink film 1100 is determined as "good", and the acceptance or failure of the mounting substrate 1000 is determined as "pass". On the other hand, when the gloss variation rate FG exceeds ±10%, the state of the metal deposition ink film 1100 is determined as "defective", and the pass/fail of the mounting substrate 1000 is determined as "failed". The control device 60 stores the pass/fail result of the mounting board 1000 in the item column of the gloss variation rate result of the corresponding board number in the board number table stored in the memory 62, and updates the board number table.
 〔反射の検査〕
 金属析出インク膜1100の反射の検査は、出射光量Lと受光量とを比較することで行われる。ここでは、制御装置60は、波長435nmの出射光量を一定とした場合の第1の受光信号Lから、金属析出インク膜1100の反射を検出する。出射光量Lの求め方は、金属析出インク膜の位置に基準反射板を設置した時の受光信号を出射光量Lとすることができる。また、制御装置60は、各工程の目標サンプルとの差分に基づいて実装基板1000の合否判定を行う。
[Reflex test]
The reflection of the metal deposition ink film 1100 is inspected by comparing the emitted light quantity L0 and the received light quantity. Here, the control device 60 detects the reflection of the metal deposition ink film 1100 from the first received light signal L1 when the emitted light quantity with a wavelength of 435 nm is constant. The amount of emitted light L0 can be obtained by using the received light signal when the reference reflector is placed at the position of the metal deposition ink film as the amount of emitted light L0 . In addition, the control device 60 performs acceptance/rejection determination of the mounting board 1000 based on the difference from the target sample in each process.
 測定位置の反射量Rは、以下の式5のように表すことができる。
 R=L/L …(式5)
The reflection amount R at the measurement position can be expressed as in Equation 5 below.
R=L 1 /L 0 (Formula 5)
 目標実装基板の指定位置の金属析出インク膜を測定した反射量Rと、検査対象の実装基板1000の同じ指定位置の金属析出インク膜1100を測定した反射量Rとの反射変動率F[%]は、以下の式6のように表すことができる。
 F=(R-R)/R×100 …(式6)
Reflection variation rate F R between the reflection amount R 0 measured for the metal deposition ink film at the specified position on the target mounting board and the reflection amount R 1 measured for the metal deposition ink film 1100 at the same specified position on the inspection target mounting board 1000 . [%] can be expressed as in Equation 6 below.
F R = (R 1 -R 0 )/R 0 ×100 (Formula 6)
 この反射変動率Fが、±10%以内の場合の金属析出インク膜1100の状態を「良」と判定し、実装基板1000の合否を「合格」と判定する。一方、反射変動率Fが、±10%を超える場合の金属析出インク膜1100の状態を「不良」と判定し、実装基板1000の合否を「不合格」と判定する。制御装置60は、メモリ62に記憶されている基板番号表の該当基板番号の反射変動率結果の項目の欄に、実装基板1000の合否結果を記憶させ、基板番号表を更新する。 If the reflection variation rate FR is within ±10%, the state of the metal deposited ink film 1100 is determined as "good", and the acceptance or rejection of the mounting board 1000 is determined as "acceptable". On the other hand, when the reflection variation rate FR exceeds ±10%, the state of the metal deposition ink film 1100 is determined as "defective", and the pass/fail of the mounting board 1000 is determined as "failed". The control device 60 stores the pass/fail result of the mounting board 1000 in the item column of the reflection variability result of the corresponding board number in the board number table stored in the memory 62, and updates the board number table.
 〔反射の検査の変形例1〕
 反射の検査は、波長435nmの出射光量を一定とした場合の第2の受光信号Lを利用してもよい。この場合、測定位置の反射量Rは、以下の式7のように表すことができる。
 R=L/L …(式7)
[Modification 1 of Reflection Inspection]
For inspection of reflection, the second received light signal L2 obtained when the amount of emitted light with a wavelength of 435 nm is constant may be used. In this case, the reflection amount R at the measurement position can be expressed as in Equation 7 below.
R=L 2 /L 0 (Formula 7)
 このように求めたRを用いて式6に示した反射変動率F[%]を算出することで、同様に反射を検査することができる。この場合、第1の受光信号Lを利用する場合と比較して、金属析出インク膜1100の集光位置の角度変動による誤差を減少することができる。一方、金属析出インク膜1100の集光位置の光沢が大きいと、光量が不足して誤差が大きくなる可能性がある。 Reflection can be similarly inspected by calculating the reflection variation rate F R [%] shown in Equation 6 using R determined in this way. In this case, compared with the case of using the first received light signal L1 , it is possible to reduce the error caused by the angular variation of the condensing position of the metal deposition ink film 1100 . On the other hand, if the gloss of the metal deposition ink film 1100 at the condensing position is high, there is a possibility that the amount of light will be insufficient and the error will increase.
 〔反射の検査の変形例2〕
 反射の検査は、波長435nmの出射光量を一定とした場合の第1の受光信号L、及び第2の受光信号Lの両方を利用してもよい。この場合、測定位置の反射量Rは、以下の式8のように表すことができる。
 R=(L+k×L)/L …(式8)
[Modification 2 of Reflection Inspection]
The inspection of reflection may utilize both the first received light signal L 1 and the second received light signal L 2 when the amount of emitted light with a wavelength of 435 nm is constant. In this case, the reflection amount R at the measurement position can be expressed as in Equation 8 below.
R=(L 1 +k×L 2 )/L 0 (Formula 8)
 なお、式8において、kは0<k<100を満たす定数である。 Note that in Equation 8, k is a constant that satisfies 0<k<100.
 このように求めたRを用いて式6に示した反射変動率F[%]を算出することで、同様に反射を検査することができる。第1の受光信号L、及び第2の受光信号Lの両方を利用する場合は、第1の受光信号Lを利用する場合、及び第2の受光信号Lを利用する場合と比較して、それぞれの中間的な特性となる。したがって、金属析出インク膜1100の集光位置の角度変動による誤差、及び光量不足による誤差が、極端になることを防止することができる。すなわち、金属析出インク膜1100の様々な集光位置に対して誤差が乗りにくい。 Reflection can be similarly inspected by calculating the reflection variation rate F R [%] shown in Equation 6 using R determined in this way. The case of using both the first light receiving signal L 1 and the second light receiving signal L 2 is compared with the case of using the first light receiving signal L 1 and the case of using the second light receiving signal L 2 . As a result, it becomes an intermediate characteristic of each. Therefore, it is possible to prevent the error caused by the angular variation of the condensing position of the metal deposition ink film 1100 and the error caused by the insufficient amount of light from becoming extreme. That is, errors are less likely to occur with respect to various condensing positions of the metal deposition ink film 1100 .
 〔発光素子、及び受光センサの変形例〕
 ここまでは、第1のレーザダイオード70、第2のレーザダイオード72、第1のフォトダイオード74、及び第2のフォトダイオード76を共通に使用して金属析出インク膜1100の色、光沢、及び反射のうちの2つ以上を、検出タイミングをずらして検出したが、色を検出するレーザダイオードとフォトダイオード、光沢を検出するレーザダイオードとフォトダイオード、及び反射を検出するレーザダイオードとフォトダイオードは、それぞれ異なるものであってもよい。
[Modified example of light-emitting element and light-receiving sensor]
So far, first laser diode 70, second laser diode 72, first photodiode 74, and second photodiode 76 have been commonly used to determine the color, gloss, and reflection of metal deposited ink film 1100. Two or more of them were detected by shifting the detection timing, but the laser diode and photodiode for detecting color, the laser diode and photodiode for detecting gloss, and the laser diode and photodiode for detecting reflection are respectively It can be different.
 また、ここまでは第1のフォトダイオード74、及び第2のフォトダイオード76の2つのフォトダイオードを用いたが、1つのフォトダイオードで構成することも可能である。図6は、発光素子34、及び受光センサ35の構成の他の例を示す側面図である。なお、図5と共通する部分には共通の符号を付し、詳細な説明は省略する。 Also, although two photodiodes, the first photodiode 74 and the second photodiode 76, have been used so far, it is also possible to use one photodiode. FIG. 6 is a side view showing another example of the configuration of the light emitting element 34 and the light receiving sensor 35. As shown in FIG. Parts common to those in FIG. 5 are denoted by common reference numerals, and detailed description thereof will be omitted.
 図6では、発光素子34、及び受光センサ35に含まれる1組の第1のレーザダイオード70、第2のレーザダイオード72、第3のレーザダイオード78、及び第1のフォトダイオード74を示している。 FIG. 6 shows a set of a first laser diode 70, a second laser diode 72, a third laser diode 78, and a first photodiode 74 included in the light emitting element 34 and the light receiving sensor 35. .
 第3のレーザダイオード78は、第1のレーザダイオード70と同様に、波長が435nmであり、出力強度が1mWの半導体レーザ光を出射する。第3のレーザダイオード78は、出射光を45度の入射角で実装基板1000の金属析出インク膜1100に1mm径に集光して照射する不図示の光学系を有する。 The third laser diode 78 emits semiconductor laser light with a wavelength of 435 nm and an output intensity of 1 mW, like the first laser diode 70 . The third laser diode 78 has an optical system (not shown) for condensing and irradiating the emitted light to the metal deposition ink film 1100 on the mounting substrate 1000 at an incident angle of 45 degrees to a diameter of 1 mm.
 第1のレーザダイオード70、第2のレーザダイオード72、及び第1のフォトダイオード74の配置は、図5に示した例と同様である。また、第3のレーザダイオード78は、Z方向視において第1のフォトダイオード74とは集光位置を挟んだ反対側の位置に配置される。すなわち、第1のフォトダイオード74は、第1のレーザダイオード70、及び第2のレーザダイオード72から出射された光の正反射光を受光する位置に配置され、かつ第3のレーザダイオード78から出射された光の散乱反射光を受光する位置に配置される。 The arrangement of the first laser diode 70, the second laser diode 72, and the first photodiode 74 is the same as the example shown in FIG. Also, the third laser diode 78 is arranged on the opposite side of the first photodiode 74 across the condensing position when viewed in the Z direction. That is, the first photodiode 74 is arranged at a position to receive specularly reflected light emitted from the first laser diode 70 and the second laser diode 72, and is emitted from the third laser diode 78. It is arranged at a position to receive the scattered reflected light of the reflected light.
 制御装置60は、図5に示した例と同様に、第1のレーザダイオード70、及び第2のレーザダイオード72を発光させ、第1のフォトダイオード74によって第1の受光信号L、及び第3の受光信号Lを検出する。 As in the example shown in FIG. 5, the control device 60 causes the first laser diode 70 and the second laser diode 72 to emit light, and the first photodiode 74 outputs the first received light signal L 1 and the first light reception signal L 1 . 3 is detected.
 さらに、制御装置60は、1msの周期の0.1msのパルス幅の発光パルス信号であって、第1のレーザダイオード70の発光パルス信号のパルス出力開始から0.3msだけ遅れてパルス出力される発光パルス信号により第3のレーザダイオード78を発光させて、金属析出インク膜1100に波長435nmの光を照射する。そして、制御装置60は、金属析出インク膜1100の表面で反射した波長435nmの光を、第1のフォトダイオード74で受光させる。ここでは、制御装置60は、第3のレーザダイオード78の発光パルス信号のパルス出力開始から0.05ms~0.1msだけ遅れたタイミングの第1のフォトダイオード74の受光信号を第2の受光信号Lとして検出する。すなわち、第2の受光信号Lは、波長435nmの光の散乱反射光の検出信号である。 Further, the control device 60 outputs an emission pulse signal having a period of 1 ms and a pulse width of 0.1 ms with a delay of 0.3 ms from the start of pulse output of the emission pulse signal of the first laser diode 70 . The light emission pulse signal causes the third laser diode 78 to emit light to irradiate the metal deposition ink film 1100 with light having a wavelength of 435 nm. Then, the controller 60 causes the first photodiode 74 to receive the light with a wavelength of 435 nm reflected by the surface of the metal deposition ink film 1100 . Here, the control device 60 converts the light receiving signal of the first photodiode 74 at a timing delayed by 0.05 ms to 0.1 ms from the start of pulse output of the light emission pulse signal of the third laser diode 78 into the second light receiving signal. Detect as L2 . That is, the second received light signal L2 is a detection signal of the scattered and reflected light of the wavelength 435 nm.
 このように、発光素子34、及び受光センサ35を図6に示したように構成した場合であっても、制御装置60は、共通のレーザダイオード、及びフォトダイオードを使用して、第1の受光信号L、第2の受光信号L、及び第3の受光信号Lを検出することができる。したがって、金属析出インク膜1100の色、光沢、及び反射を検出することができる。 Thus, even when the light-emitting element 34 and the light-receiving sensor 35 are configured as shown in FIG. A signal L 1 , a second received light signal L 2 and a third received light signal L 3 can be detected. Therefore, the color, gloss and reflection of the metal deposited ink film 1100 can be detected.
 <プロセスへのフィードバック>
 制御装置60は、金属析出インク膜1100の状態の判別結果を、金属析出インク印刷装置30、及びキュア装置40のプロセス条件にフィードバックしてもよい。
<Feedback to the process>
The control device 60 may feed back the determination result of the state of the metal deposition ink film 1100 to the process conditions of the metal deposition ink printing device 30 and the curing device 40 .
 フィードバックするプロセス条件は、合否ラインの切替、又は合否ラベルのラベリングである。合否ラインの切替は、例えば搬送装置10は、金属析出インク印刷装置30において金属析出インク膜1100の状態が「良」と判定された実装基板1000をキュア装置40に投入し、金属析出インク膜1100の状態が「不良」と判定された実装基板1000はキュア装置40に投入せずに不図示の排出搬送路によって排出する。また、搬送装置10は、キュア装置40において金属析出インク膜1100の状態が「良」と判定された実装基板1000をキュア装置40の次工程に移行させ、金属析出インク膜1100の状態が「不良」と判定された実装基板1000はキュア装置40から排出する。 The process conditions to be fed back are the switching of pass/fail lines or the labeling of pass/fail labels. The pass/fail line is switched, for example, by the conveying device 10, which puts the mounting substrate 1000 whose state of the metal deposition ink film 1100 is determined to be "good" in the metal deposition ink printing device 30 into the curing device 40, and the metal deposition ink film 1100 is The mounting substrate 1000 whose state is determined to be “defective” is not put into the curing device 40 but is discharged through a discharge conveying path (not shown). In addition, the transport device 10 transfers the mounting substrate 1000 whose state of the metal deposition ink film 1100 is determined to be “good” in the curing device 40 to the next step of the curing device 40, and the state of the metal deposition ink film 1100 is determined to be “bad”. ” is ejected from the curing device 40 .
 これにより、状態が「不良」の金属析出インク膜1100の発生時に、その実装基板1000が次工程に流れないことで、工程の効率を向上させることができる。また、金属析出インク膜1100の状態が「不良」の実装基板1000を人手で抜き取る場合に比べて、間違いによる不要混入を防止することができる。 This prevents the mounting substrate 1000 from flowing to the next process when the metal deposition ink film 1100 in the "defective" state occurs, thereby improving the efficiency of the process. In addition, it is possible to prevent unnecessary contamination due to mistakes, as compared with the case of manually extracting the mounting substrate 1000 whose state of the metal deposition ink film 1100 is “defective”.
 合否ラベルのラベリングは、例えば制御装置60は、メモリ62に記憶されている基板番号表に合否結果を記憶させる。制御装置60は、金属析出インク膜1100の状態が「不良」と判定された実装基板1000にシール、又はインクなどを識別可能に付与してもよい。 For the pass/fail labeling, for example, the control device 60 stores the pass/fail result in the board number table stored in the memory 62 . The control device 60 may identifiably attach a sticker or ink to the mounting substrate 1000 for which the state of the metal deposition ink film 1100 has been determined to be “defective”.
 フィードバックするプロセス条件は、金属析出インク印刷装置30の内部の温度、照射光源33A,33Bの出射光量、搬送ステージ31の移動速度のうちの1つ以上であってもよい。 The process conditions to be fed back may be one or more of the internal temperature of the metal deposition ink printing apparatus 30, the amount of light emitted from the irradiation light sources 33A and 33B, and the moving speed of the carrier stage 31.
 これにより、金属析出インク膜1100の状態が「不良」の実装基板1000が発生した場合に、次に金属析出インク印刷装置30で印刷する実装基板1000の金属析出インク膜1100の状態が「不良」にならないようにできるので、金属析出インク膜1100の状態が「不良」の実装基板1000が次々に発生することを防止し、歩留まりを向上させることができる。また、金属析出インク印刷装置30を停止させて人手でプロセス条件を変更する場合に比べて、生産性を向上させることができる。 As a result, when there is a mounting board 1000 in which the state of the metal deposition ink film 1100 is "defective", the state of the metal deposition ink film 1100 of the mounting board 1000 to be printed by the metal deposition ink printing apparatus 30 next is "defective". Therefore, it is possible to prevent mounting substrates 1000 in which the state of the metal deposition ink film 1100 is "defective" from occurring one after another, and to improve the yield. Moreover, productivity can be improved as compared with the case where the metal deposition ink printing apparatus 30 is stopped and the process conditions are changed manually.
 なお、金属析出インク膜1100の状態が「不良」であった場合、色変動率F、光沢変動率F、及び反射変動率Fを記録することが望ましい。例えば、金属析出インク印刷装置30において、ある実装基板1000の2回目の印刷後の金属析出インク膜1100の状態が「不良」と判別され、この実装基板1000の色変動率F、光沢変動率F、及び反射変動率Fがそれぞれ-10%以下であったとする。さらに、金属析出インク膜1100の状態がこれと同等の実装基板1000が5枚連続で発生したとすると、制御装置60は、この結果に基づいて照射光源33A,33Bの出射光量を10%大きく変更するフィードバックを実行する。これにより、フィードバック以降の実装基板1000の金属析出インク膜1100の状態を「良」とすることができる。 Note that when the state of the metal deposition ink film 1100 is "bad", it is desirable to record the color variation rate F C , the gloss variation rate F G , and the reflection variation rate F R . For example, in the metal deposition ink printing apparatus 30, the state of the metal deposition ink film 1100 after the second printing on a certain mounting board 1000 is determined to be "bad", and the color variation rate FC and the gloss variation rate of this mounting board 1000 are Assume that F G and reflection variation F R are -10% or less, respectively. Furthermore, assuming that five mounting substrates 1000 having the same state of the metal deposition ink film 1100 occur consecutively, the control device 60 changes the emitted light amount of the irradiation light sources 33A and 33B by 10% based on this result. to implement feedback. As a result, the state of the metal deposition ink film 1100 on the mounting substrate 1000 after the feedback can be made "good".
 フィードバックするプロセス条件は、キュア装置40の内部の温度、温風ファン41A,41B、温風ファン44A,44Bの加熱温度、照射光源47A,47Bの光量、搬送装置10の搬送速度、及び乾燥硬化処理時間のうちの1つ以上であってもよい。 The process conditions to be fed back include the internal temperature of the curing device 40, the heating temperature of the hot air fans 41A and 41B and the hot air fans 44A and 44B, the light intensity of the irradiation light sources 47A and 47B, the transport speed of the transport device 10, and the drying and curing process. It may be one or more of the hours.
 これにより、金属析出インク膜1100の状態が「不良」の実装基板1000が発生した場合に、次にキュア装置40で乾燥硬化させる実装基板1000の金属析出インク膜1100の状態が「不良」にならないようにできるので、金属析出インク膜1100の状態が「不良」の実装基板1000が次々に発生することを防止し、歩留まりを向上させることができる。また、キュア装置40を停止させて人手でプロセス条件を変更する場合に比べて、生産性を向上させることができる。 As a result, even if the state of the metal deposition ink film 1100 of the mounting substrate 1000 is "defective", the state of the metal deposition ink film 1100 of the mounting substrate 1000 to be dried and cured by the curing device 40 next does not become "defective". Therefore, it is possible to prevent mounting substrates 1000 in which the state of the metal deposition ink film 1100 is "defective" from occurring one after another, and to improve the yield. In addition, productivity can be improved as compared with the case where the cure device 40 is stopped and the process conditions are changed manually.
 例えば、キュア装置40の温風ファン41A,41Bの加熱温度が120℃に設定された状態において、ある実装基板1000の発光素子42A,42B、及び受光センサ43A,43Bにおける金属析出インク膜1100の状態が「不良」と判別され、この実装基板1000の色変動率F、及び反射変動率Fがそれぞれ-10%以下であり、反射変動率Fが±10%以内であったとする。さらに、金属析出インク膜1100の状態がこれと同等の実装基板1000が5枚連続で発生したとすると、制御装置60は、この結果に基づいて温風ファン41A,41Bの加熱温度を10℃上げて130℃に変更するフィードバックを実行する。これにより、フィードバック以降の金属析出インク膜1100の状態を「良」とすることができる。 For example, in a state where the heating temperature of the hot air fans 41A and 41B of the curing device 40 is set to 120° C., the state of the metal deposit ink film 1100 on the light emitting elements 42A and 42B and the light receiving sensors 43A and 43B of a mounting substrate 1000 is determined to be "defective", the color variation rate F C and the reflection variation rate F R of this mounting board 1000 are -10% or less, and the reflection variation rate F R is within ±10%. Furthermore, assuming that five mounting substrates 1000 having the same state of the metal deposition ink film 1100 are continuously produced, the control device 60 raises the heating temperature of the hot air fans 41A and 41B by 10° C. based on this result. feedback to change to 130°C. As a result, the state of the metal deposition ink film 1100 after the feedback can be set to "good".
 <金属析出インク膜の状態の判別>
 色、光沢、及び反射の検査結果を組み合わせて金属析出インク膜の状態を判別してもよい。図7は、色、光沢、及び反射の組み合わせによる金属析出インク膜の状態の判別を示す表である。
<Determining the State of the Metal Deposition Ink Film>
Color, gloss, and reflection test results may be combined to determine the condition of the metallized ink film. FIG. 7 is a table showing the determination of the state of the metal deposition ink film by a combination of color, gloss, and reflectance.
 ここでは、金属析出インク膜の反射について、「高反射」、「中反射」、及び「低反射」に分類されている。「高反射」、「中反射」、及び「低反射」は、例えば式5により求めた反射量Rと予め定められた第1の閾値、及び第2の閾値とを比較し、反射量Rが第1の閾値より大きい場合を「高反射」、反射量Rが第1の閾値以下、かつ第2の閾値より大きい場合を「中反射」、反射量Rが第2の閾値以下の場合を「低反射」と分類することができる。ここでは、第1の閾値を0.5、第2の閾値を0.2としている。 Here, the reflection of the metal deposition ink film is classified into "high reflection", "medium reflection", and "low reflection". "High reflection", "middle reflection", and "low reflection" are obtained by comparing the reflection amount R obtained by, for example, Equation 5 with a predetermined first threshold and a second threshold, and the reflection amount R is "High reflection" when the reflection amount R is greater than the first threshold, "Medium reflection" when the reflection amount R is equal to or less than the first threshold and greater than the second threshold, can be classified as "low reflection". Here, the first threshold is 0.5 and the second threshold is 0.2.
 また、光沢について、「光沢」、及び「散乱」に分類されている。「光沢」、及び「散乱」は、例えば式3により求めた光沢率Gと予め定められた第3の閾値とを比較し、光沢率Gが第3の閾値より大きい場合を「光沢」、光沢率Gが第3の閾値以下の場合を「散乱」と分類することができる。ここでは、第3の閾値を0.7としている。 In addition, gloss is classified into "gloss" and "scattering". For "gloss" and "scattering", for example, the gloss ratio G obtained by Equation 3 is compared with a predetermined third threshold, and when the gloss ratio G is greater than the third threshold, "gloss" If the rate G is less than or equal to a third threshold, it can be classified as "scattered". Here, the third threshold is set to 0.7.
 さらに、色について、「グレー色」、及び「茶色」に分類されている。「グレー色」、及び「茶色」は、例えば式1により求めた色信号比Cと予め定められた第4の閾値、及び第5の閾値とを比較し、色信号比Cが第4の閾値より大きく、かつ第5の閾値より小さい場合を「グレー色」、色信号比Cが第4の閾値以下の場合を「茶色」と分類することができる。ここでは、第4の閾値を0.3、第5の閾値を0.7としている。 In addition, colors are classified into "gray" and "brown". For “gray color” and “brown color”, for example, the color signal ratio C obtained by Equation 1 is compared with predetermined fourth and fifth thresholds, and the color signal ratio C is the fourth threshold. If it is larger than the fifth threshold and smaller than the fifth threshold, it can be classified as "gray", and if the color signal ratio C is equal to or less than the fourth threshold, it can be classified as "brown". Here, the fourth threshold is 0.3 and the fifth threshold is 0.7.
 図7に示すように、反射が「高反射」であり、光沢が「光沢」である場合、色が「グレー色」であれば、金属析出インク膜の状態が「大結晶成長(優良)」であると判別することができる。一方、色が「茶色」であれば、金属析出インク膜の状態が「不純物成分混合(可)」であると判別することができる。 As shown in FIG. 7, when the reflection is "high reflection", the gloss is "glossy", and the color is "gray", the state of the metal deposition ink film is "large crystal growth (excellent)". It can be determined that On the other hand, if the color is "brown", it can be determined that the state of the metal deposition ink film is "mixed with impurity components (possible)".
 また、反射が「高反射」であり、光沢が「散乱」である場合、色が「グレー色」であれば、金属析出インク膜の状態が「小結晶多数(結晶成長の中間段階)」であると判別することができる。一方、色が「茶色」であれば、金属析出インク膜の状態が「不純物成分混合の小結晶(積層が必要)」であると判別することができる。 Also, if the reflection is "high reflection" and the gloss is "scattering", if the color is "gray", the state of the metal deposition ink film is "many small crystals (intermediate stage of crystal growth)". can be determined to exist. On the other hand, if the color is "brown", it can be determined that the state of the metal deposited ink film is "small crystals mixed with impurity components (requires lamination)".
 これに対し、反射が「中反射」であり、光沢が「光沢」である場合、金属析出インク膜の状態は、色が「グレー色」であれば「大結晶薄層(結晶成長の中間段階)」、色が「茶色」であれば「不純物混合層(積層が必要)」であると判別することができる。また、反射が「中反射」であり、光沢が「散乱」である場合、金属析出インク膜の状態は、色が「グレー色」であれば「小結晶薄層(結晶成長の初期段階)」、色が「茶色」であれば「不純物小結晶層(積層が必要)」であると判別することができる。 On the other hand, when the reflection is "medium reflection" and the gloss is "glossy", the state of the metal deposit ink film is "grey" if the color is "large crystal thin layer (intermediate stage of crystal growth)". )”, and if the color is “brown”, it can be determined that it is an “impurity mixed layer (requires stacking)”. In addition, when the reflection is "medium reflection" and the gloss is "scattering", the state of the metal deposit ink film is "small crystal thin layer (initial stage of crystal growth)" if the color is "gray color". If the color is "brown", it can be determined to be an "impurity small crystal layer (requires lamination)".
 さらに、反射が「低反射」であり、光沢が「光沢」である場合、色は「グレー色」であり、金属析出インク膜の状態は、「不純物結晶大量(不可)」であると判別することができ、反射が「低反射」であり、光沢が「散乱」である場合、色は「グレー色」であり、金属析出インク膜の状態は、「不純物小結晶大量(不可)」であると判別することができる。 Further, when the reflection is "low reflection" and the gloss is "glossy", the color is "gray" and the state of the metal deposited ink film is determined to be "a large amount of impurity crystals (impossible)". If the reflection is "low reflection" and the gloss is "scattering", the color is "gray" and the state of the metal deposition ink film is "a large amount of impurity small crystals (impossible)" can be determined.
 なお、「結晶成長の初期段階」と判別された場合は、乾燥硬化処理を進めれば「結晶成長の中間段階」に変わるので、処理をさらに進めればよい。「結晶成長の中間段階」と判別された場合は、乾燥硬化処理を進めれば「可」となるので、処理をさらに進めればよい。 In addition, if it is determined to be in the "initial stage of crystal growth", it will change to the "intermediate stage of crystal growth" if the drying and curing process is advanced, so the process should be advanced further. If it is judged to be in the "intermediate stage of crystal growth", it will be "possible" if the drying and hardening treatment is advanced, so the treatment can be further advanced.
 また、「積層が必要」と判別された場合は、このままでは「可」にすることはできないが、この層の上に積層すれば「可」とすることができる可能性がある。「不可」と判別された場合は、対応する方法がなく、不良品として扱う。 Also, if it is determined that "lamination is necessary", it cannot be made "acceptable" as it is, but it may be possible to make it "acceptable" if it is laminated on top of this layer. If it is determined as "impossible", there is no way to deal with it, and it is treated as a defective product.
 このように、色、光沢、及び反射の検査結果を組み合わせることで、金属析出インク膜の状態を詳細に判別し、その後の工程内容を決定することができる。 In this way, by combining the inspection results of color, gloss, and reflection, the state of the metal deposition ink film can be determined in detail, and the details of the subsequent process can be determined.
 <実装基板の構成>
 図8は、実装基板の平面図である。図8に示すように、実装基板1000は、プリント配線基板1002の部品実装面1004に、IC1006、抵抗器1008、及びコンデンサ1010が実装されたものである。
<Structure of Mounting Board>
FIG. 8 is a plan view of the mounting board. As shown in FIG. 8, the mounting substrate 1000 is obtained by mounting an IC 1006 , a resistor 1008 and a capacitor 1010 on a component mounting surface 1004 of a printed wiring board 1002 .
 実装基板1000には、IC1006に対して導電パターン1020が形成され、抵抗器1008、及びコンデンサ1010に対して絶縁被覆1022が形成される。また、実装基板1000には、プリント配線基板1002の電気部品が実装されずに露出する電極1009に対して絶縁被覆1022が形成される。 A conductive pattern 1020 is formed on the mounting board 1000 for the IC 1006 , and an insulating coating 1022 is formed for the resistor 1008 and the capacitor 1010 . Insulating coating 1022 is formed on mounting board 1000 for electrodes 1009 that are exposed without the electrical components of printed wiring board 1002 being mounted.
 図8には、プリント配線基板1002の一方の面が部品実装面1004である例を示したが、プリント配線基板1002の両面が部品実装面であってもよい。 Although FIG. 8 shows an example in which one surface of the printed wiring board 1002 is the component mounting surface 1004, both surfaces of the printed wiring board 1002 may be component mounting surfaces.
 プリント配線基板1002には、2つのフィデューシャルマーク1005(アライメントマーク)が設けられる。フィデューシャルマーク1005は、プリント配線基板1002の基準となる位置を示すものである。フィデューシャルマーク1005の数、位置、及び形状は、適宜決めることができる。 The printed wiring board 1002 is provided with two fiducial marks 1005 (alignment marks). A fiducial mark 1005 indicates a reference position of the printed wiring board 1002 . The number, position, and shape of fiducial marks 1005 can be determined as appropriate.
 IC1006は、半導体集積回路が樹脂等のパッケージに封入された電気部品である。IC1006は、パッケージの外部に電極が露出される。なお、ICはIntegrated Circuitの省略語である。また、電気部品は、電子部品と呼ばれる場合もある。 The IC 1006 is an electric component in which a semiconductor integrated circuit is enclosed in a package such as resin. The IC 1006 has electrodes exposed outside the package. Note that IC is an abbreviation for Integrated Circuit. Also, electrical components are sometimes called electronic components.
 抵抗器1008は、電気抵抗素子を含む。コンデンサ1010は、電解コンデンサ、及びセラミックコンデンサ等の各種のコンデンサを含む。抵抗器1008、及びコンデンサ1010は、角形のチップタイプの部品である。 A resistor 1008 includes an electrical resistance element. Capacitor 1010 includes various capacitors such as electrolytic capacitors and ceramic capacitors. Resistor 1008 and capacitor 1010 are rectangular chip-type components.
 プリント配線基板1002に実装される電気部品のうち、IC1006の配置領域は、絶縁インクを用いて絶縁パターン1024(図9参照)が形成され、更に、絶縁パターン1024の少なくとも一部に対して、金属析出インクを用いて導電パターン1020が形成される。なお、図8では、絶縁パターン1024は導電パターン1020に覆われて見えないため、その図示が省略されている。 An insulating pattern 1024 (see FIG. 9) is formed using insulating ink in an area where the IC 1006 is arranged among the electrical components mounted on the printed wiring board 1002. Further, at least a part of the insulating pattern 1024 is coated with metal. A conductive pattern 1020 is formed using a deposited ink. Note that the insulating pattern 1024 is not shown in FIG. 8 because it is covered with the conductive pattern 1020 and cannot be seen.
 導電パターン1020は、金属析出インク印刷装置30の金属析出インク吐出ヘッド32において導電パターン1020の形成領域に金属析出インクを配置して金属析出インクのインクドットの連続体である金属析出インク膜を印刷し、その後に照射光源33A,33Bにおいて金属析出インク膜を硬化させることで形成される。すなわち、導電パターン1020は、金属析出インクによって印刷された金属析出インク膜が化学反応して形成された金属膜に相当する。 The conductive pattern 1020 is formed by arranging metal deposition ink in the formation area of the conductive pattern 1020 in the metal deposition ink ejection head 32 of the metal deposition ink printing apparatus 30 to print a metal deposition ink film, which is a continuous body of ink dots of the metal deposition ink. and then curing the metal deposition ink film in the irradiation light sources 33A and 33B. That is, the conductive pattern 1020 corresponds to a metal film formed by a chemical reaction of a metal deposition ink film printed with metal deposition ink.
 絶縁被覆1022、及び絶縁パターン1024は、絶縁インク印刷装置20の絶縁インク吐出ヘッド22において絶縁被覆1022、及び絶縁パターン1024の形成領域に絶縁インクを配置して絶縁インクのインクドットの連続体である絶縁インク膜を印刷し、その後に照射光源23A,23Bにおいて絶縁インク膜を硬化させることで形成される。 The insulating coating 1022 and the insulating pattern 1024 are formed by arranging the insulating ink in the forming region of the insulating coating 1022 and the insulating pattern 1024 in the insulating ink ejection head 22 of the insulating ink printing device 20, and are a continuous body of ink dots of the insulating ink. It is formed by printing an insulating ink film and then curing the insulating ink film in the irradiation light sources 23A and 23B.
 導電パターン1020は、IC1006が受ける電磁波の抑制、及びIC1006から放出される電磁波の抑制を目的とする電磁波シールドとして機能する。絶縁パターン1024は、導電パターン1020とIC1006との電気的絶縁を確保する絶縁部材、導電パターン1020とIC1006と密着性を確保する接着部材、及び導電パターン1020の下地の平坦性を確保する部材等として機能する。 The conductive pattern 1020 functions as an electromagnetic shield for the purpose of suppressing electromagnetic waves received by the IC 1006 and suppressing electromagnetic waves emitted from the IC 1006 . The insulating pattern 1024 serves as an insulating member for ensuring electrical insulation between the conductive pattern 1020 and the IC 1006, an adhesive member for ensuring adhesion between the conductive pattern 1020 and the IC 1006, and a member for ensuring the flatness of the base of the conductive pattern 1020. Function.
 部品実装面1004の周囲には、グラウンド電位に接続されるグラウンド電極1036設置されており、導電パターン1020は、グラウンド電極1036に接続される。グラウンド電極1036の上面には、絶縁パターン1024は形成せず、導電パターン1020のみを印刷することで、導電パターン1020とグラウンド電極1036の電気的接続を確保する。導電パターン1020は、絶縁パターン1024よりも広い面積に印刷することが望ましい。グラウンド電極2020への電気的接続が可能になり、また、導電パターン1020が部品実装面1004に接触して設置されることで、IC1006の側面方向の電磁波シールド性が向上するためである。 A ground electrode 1036 connected to ground potential is installed around the component mounting surface 1004 , and the conductive pattern 1020 is connected to the ground electrode 1036 . By printing only the conductive pattern 1020 without forming the insulating pattern 1024 on the upper surface of the ground electrode 1036, electrical connection between the conductive pattern 1020 and the ground electrode 1036 is ensured. The conductive pattern 1020 is preferably printed over a wider area than the insulating pattern 1024 . This is because electrical connection to the ground electrode 2020 becomes possible and the conductive pattern 1020 is placed in contact with the component mounting surface 1004, thereby improving the electromagnetic wave shielding property of the IC 1006 in the lateral direction.
 プリント配線基板1002のうち、電磁波シールドを不要とする電気部品が配置される部品領域の少なくとも一部は、導電パターン1020は形成されず、絶縁被覆1022を用いて被覆される。電磁波シールドを不要とする電気部品は、抵抗器1008、コンデンサ1010の他、ダイオード、コイル、トランス、及びスイッチ等を含む。 At least a portion of the component area of the printed wiring board 1002 where electrical components that do not require electromagnetic wave shielding are arranged is not formed with the conductive pattern 1020 and is covered with an insulating coating 1022 . Electrical parts that do not require electromagnetic shielding include resistors 1008, capacitors 1010, diodes, coils, transformers, switches, and the like.
 一方で、電磁波シールドを必要とする電気部品や配線もある。その場合は、それらの電気部品、及び配線の上にも絶縁パターン1024、及び導電パターン1020を印刷する。この印刷範囲がIC1006を含めて各々近接している場合には、電気部品、配線、及びIC1006の上に連続的に絶縁パターン1024、及び導電パターン1020を印刷する。連続的に導電パターン1020を印刷する方が、印刷が容易となり、また、印刷と印刷の間隔から漏洩する電磁波も抑制しやすいためである。 On the other hand, there are electrical components and wiring that require electromagnetic shielding. In that case, the insulating pattern 1024 and the conductive pattern 1020 are also printed over those electric parts and wiring. If the print area includes the IC 1006 and is close to each other, the insulating pattern 1024 and the conductive pattern 1020 are printed continuously over the electrical components, wiring, and IC 1006 . This is because continuous printing of the conductive pattern 1020 facilitates printing, and also facilitates suppression of electromagnetic waves leaking from the intervals between printings.
 また、電極1009が配置される電極領域は、絶縁被覆1022を用いて被覆される。絶縁被覆1022は、導電パターン1020が形成される際に微粒子化された金属析出インクが抵抗器1008等へ付着して生じる電気回路の短絡を抑制する。 Also, the electrode area where the electrode 1009 is arranged is covered with an insulating coating 1022 . The insulating coating 1022 suppresses a short circuit of an electric circuit caused by adhesion of finely divided metal deposition ink to the resistor 1008 or the like when the conductive pattern 1020 is formed.
 図9は、実装基板の立体構造を示す断面図である。図9は、図8に示した任意のIC1006について、絶縁パターン1024、及び導電パターン1020が形成された状態の断面を模式的に示している。 FIG. 9 is a cross-sectional view showing the three-dimensional structure of the mounting board. FIG. 9 schematically shows a cross section of any IC 1006 shown in FIG. 8 with insulating patterns 1024 and conductive patterns 1020 formed thereon.
 図9に示すように、プリント配線基板1002は、部品実装面1004に基板電極1030、及びグラウンド電極1036が設けられている。また、部品実装面1004は、グラウンド電極1036、及び基板電極1030以外の部分が絶縁材料であるソルダレジスト1038で覆われている。なお、図9では、プリント配線基板1002の内層回路は図示が省略されている。 As shown in FIG. 9, the printed wiring board 1002 is provided with a board electrode 1030 and a ground electrode 1036 on the component mounting surface 1004 . In addition, parts of the component mounting surface 1004 other than the ground electrode 1036 and the substrate electrode 1030 are covered with a solder resist 1038 that is an insulating material. In FIG. 9, the inner layer circuits of the printed wiring board 1002 are omitted.
 プリント配線基板1002の部品実装面1004に形成される基板側電極1030、及びIC1006の素子側電極1032は、導電材料であるはんだバンプ1034を介して電気接続される。また、IC1006の裏面1006Bと部品実装面1004(ソルダレジスト1038)との間の空洞は、IC1006とプリント配線基板1002との接合強度を保つために絶縁材料であるアンダフィル材料1040で埋められている。 Board-side electrodes 1030 formed on the component mounting surface 1004 of the printed wiring board 1002 and element-side electrodes 1032 of the IC 1006 are electrically connected via solder bumps 1034 made of a conductive material. In addition, the cavity between the back surface 1006B of the IC 1006 and the component mounting surface 1004 (solder resist 1038) is filled with an underfill material 1040, which is an insulating material, in order to maintain the bonding strength between the IC 1006 and the printed wiring board 1002. .
 絶縁パターン1024は、IC1006の4つの側面1006A、及びIC1006の上面1006Cを囲むIC1006の周囲に形成される。絶縁パターン1024は、IC1006の裏面1006B、及びプリント配線基板1002の部品実装面1004の間に形成されてもよい。 An insulating pattern 1024 is formed around the IC 1006 surrounding the four side surfaces 1006A of the IC 1006 and the top surface 1006C of the IC 1006. The insulating pattern 1024 may be formed between the back surface 1006 B of the IC 1006 and the component mounting surface 1004 of the printed wiring board 1002 .
 導電パターン1020は、絶縁パターン1024(「基材」の一例)の少なくとも一部に重ねて形成される。図9は、導電パターン1020が絶縁パターン1024の全面に重ねて形成される例を示している。 The conductive pattern 1020 is formed over at least part of an insulating pattern 1024 (an example of a "base material"). FIG. 9 shows an example in which the conductive pattern 1020 is formed over the entire surface of the insulating pattern 1024 .
 また、導電パターン1020は、IC1006(「基材」の一例、「基板に実装された部品」の一例)の側面1006A、及びIC1006の上面1006Cを覆う領域に形成されてもよい。IC1006の側面1006A、及びIC1006の上面1006Cは、導電パターン1020の下地となる絶縁パターン1024が形成されてもよい。 Also, the conductive pattern 1020 may be formed in a region covering the side surface 1006A of the IC 1006 (an example of a "base material" and an example of a "component mounted on a substrate") and the upper surface 1006C of the IC 1006. The side surface 1006A of the IC 1006 and the top surface 1006C of the IC 1006 may be formed with insulating patterns 1024 underlying the conductive patterns 1020 .
 IC1006が、側面1006AからIC1006の外側へ突出する電極を備える場合は、少なくとも、全ての電極を被覆する領域に絶縁パターン1024が形成される。 When the IC 1006 has electrodes protruding from the side surface 1006A to the outside of the IC 1006, an insulating pattern 1024 is formed at least in a region covering all the electrodes.
 図9には、導電パターン1020が露出する実装基板1000を示したが、導電パターン1020に重ねて保護膜が形成されてもよい。保護膜は、絶縁性を有していてもよい。 Although FIG. 9 shows the mounting substrate 1000 with the conductive pattern 1020 exposed, a protective film may be formed over the conductive pattern 1020 . The protective film may have insulating properties.
 <金属析出インクの詳細>
 金属析出インクとしては、金属錯体を含むインク(以下、「金属錯体インク」ともいう)、又は、金属塩を含むインク(以下、「金属塩インク」ともいう)が好ましい。
<Details of metal deposition ink>
As the metal deposition ink, an ink containing a metal complex (hereinafter also referred to as "metal complex ink") or an ink containing a metal salt (hereinafter also referred to as "metal salt ink") is preferable.
(金属錯体インク)
 金属錯体インクは、例えば、金属錯体が溶媒中に溶解したインク組成物である。
(metal complex ink)
A metal complex ink is, for example, an ink composition in which a metal complex is dissolved in a solvent.
-金属錯体-
 金属錯体を構成する金属としては、例えば、銀、銅、金、アルミニウム、マグネシウム、タングステン、モリブデン、亜鉛、ニッケル、鉄、白金、スズ、銅、及び鉛が挙げられる。中でも、電磁波シールド性の観点から、金属錯体を構成する金属は、銀、金、白金、ニッケル、パラジウム及び銅からなる群より選択される少なくとも1種を含むことが好ましく、銀を含むことがより好ましい。
-Metal complex-
Examples of metals constituting metal complexes include silver, copper, gold, aluminum, magnesium, tungsten, molybdenum, zinc, nickel, iron, platinum, tin, copper, and lead. Among them, from the viewpoint of electromagnetic wave shielding properties, the metal constituting the metal complex preferably contains at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper, and more preferably contains silver. preferable.
 金属錯体インクに含まれる金属の含有量は、金属錯体インクの全量に対して、金属元素換算で1質量%~40質量%であることが好ましく、5質量%~30質量%であることがより好ましく、7質量%~20質量%であることがさらに好ましい。 The content of the metal contained in the metal complex ink is preferably 1% by mass to 40% by mass, more preferably 5% by mass to 30% by mass, in terms of metal element, with respect to the total amount of the metal complex ink. Preferably, it is more preferably 7% by mass to 20% by mass.
 金属錯体は、例えば、金属塩と、錯化剤とを反応させることにより得られる。金属錯体の製造方法としては、例えば、金属塩及び錯化剤を有機溶媒に加え、所定時間撹拌する方法が挙げられる。撹拌方法は特に限定されず、撹拌子、撹拌翼又はミキサーを用いて撹拌させる方法、超音波を加える方法等の公知の方法から適宜選択することができる。 A metal complex is obtained, for example, by reacting a metal salt with a complexing agent. A method for producing a metal complex includes, for example, a method in which a metal salt and a complexing agent are added to an organic solvent and the mixture is stirred for a predetermined period of time. The stirring method is not particularly limited, and can be appropriately selected from known methods such as a method of stirring using a stirrer, a stirring blade or a mixer, and a method of applying ultrasonic waves.
 金属塩としては、金属の酸化物、チオシアン酸塩、硫化物、塩化物、シアン化物、シアン酸塩、炭酸塩、酢酸塩、硝酸塩、亜硝酸塩、硫酸塩、リン酸塩、過塩素酸塩、テトラフルオロホウ酸塩、アセチルアセトナート錯塩、及びカルボン酸塩が挙げられる。 Metal salts include metal oxides, thiocyanates, sulfides, chlorides, cyanides, cyanates, carbonates, acetates, nitrates, nitrites, sulfates, phosphates, perchlorates, Tetrafluoroborates, acetylacetonate complexes, and carboxylates.
 錯化剤としては、アミン、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、アンモニウムバイカーボネート化合物、及びカルボン酸が挙げられる。中でも、電磁波シールド性及び金属錯体の安定性の観点から、錯化剤は、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、アミン、及び、炭素数8~20のカルボン酸からなる群より選択される少なくとも1種を含むことが好ましい。 Complexing agents include amines, ammonium carbamate compounds, ammonium carbonate compounds, ammonium bicarbonate compounds, and carboxylic acids. Among them, from the viewpoint of electromagnetic wave shielding properties and stability of the metal complex, the complexing agent is at least selected from the group consisting of ammonium carbamate compounds, ammonium carbonate compounds, amines, and carboxylic acids having 8 to 20 carbon atoms. It is preferred that one species is included.
 金属錯体は、錯化剤に由来する構造を有しており、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、アミン、及び、炭素数8~20のカルボン酸からなる群より選択される少なくとも1種に由来する構造を有する金属錯体であることが好ましい。 The metal complex has a structure derived from a complexing agent, and contains at least one selected from the group consisting of ammonium carbamate compounds, ammonium carbonate compounds, amines, and carboxylic acids having 8 to 20 carbon atoms. A metal complex having a derived structure is preferred.
 錯化剤であるアミンとしては、例えば、アンモニア、第1級アミン、第2級アミン、第3級アミン、及びポリアミンが挙げられる。 Amines that are complexing agents include, for example, ammonia, primary amines, secondary amines, tertiary amines, and polyamines.
 直鎖状のアルキル基を有する第1級アミンとしては、例えば、メチルアミン、エチルアミン、1-プロピルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、n-デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、及びオクタデシルアミンが挙げられる。 Examples of primary amines having linear alkyl groups include methylamine, ethylamine, 1-propylamine, n-butylamine, n-pentylamine, n-hexylamine, heptylamine, octylamine, nonylamine, n - decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, and octadecylamine.
 分岐鎖状アルキル基を有する第1級アミンとしては、例えば、イソプロピルアミン、sec-ブチルアミン、tert-ブチルアミン、イソペンチルアミン、2-エチルヘキシルアミン、及びtert-オクチルアミンが挙げられる。 Examples of primary amines having branched alkyl groups include isopropylamine, sec-butylamine, tert-butylamine, isopentylamine, 2-ethylhexylamine, and tert-octylamine.
 脂環構造を有する第1級アミンとしては、例えば、シクロヘキシルアミン、及びジシクロヘキシルアミンが挙げられる。 Examples of primary amines having an alicyclic structure include cyclohexylamine and dicyclohexylamine.
 ヒドロキシアルキル基を有する第1級アミンとしては、例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルエタノールアミン、プロパノールアミン、イソプロパノールアミン、ジプロパノールアミン、ジイソプロパノールアミン、トリプロパノールアミン、及びトリイソプロパノールアミンが挙げられる。 Examples of primary amines having a hydroxyalkyl group include ethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, propanolamine, isopropanolamine, dipropanolamine, diisopropanolamine, tripropanolamine, and triisopropanol. Amines are mentioned.
 芳香環を有する第1級アミンとしては、例えば、ベンジルアミン、N,N-ジメチルベンジルアミン、フェニルアミン、ジフェニルアミン、トリフェニルアミン、アニリン、N,N-ジメチルアニリン、N,N-ジメチル-p-トルイジン、4-アミノピリジン、及び4-ジメチルアミノピリジンが挙げられる。 Examples of primary amines having an aromatic ring include benzylamine, N,N-dimethylbenzylamine, phenylamine, diphenylamine, triphenylamine, aniline, N,N-dimethylaniline, N,N-dimethyl-p- Toluidine, 4-aminopyridine, and 4-dimethylaminopyridine.
 第二級アミンとしては、例えば、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジフェニルアミン、ジシクロペンチルアミン、及びメチルブチルアミンが挙げられる。 Examples of secondary amines include dimethylamine, diethylamine, dipropylamine, dibutylamine, diphenylamine, dicyclopentylamine, and methylbutylamine.
 第三級アミンとしては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、及びトリフェニルアミンが挙げられる。 Tertiary amines include, for example, trimethylamine, triethylamine, tripropylamine, and triphenylamine.
 ポリアミンとしては、例えば、エチレンジアミン、1,3-ジアミノプロパン、ジエチレントリアミン、トリエチレンテトラミン、テトラメチレンペンタミン、ヘキサメチレンジアミン、テトラエチレンペンタミン、及びこれらの組み合わせが挙げられる。 Polyamines include, for example, ethylenediamine, 1,3-diaminopropane, diethylenetriamine, triethylenetetramine, tetramethylenepentamine, hexamethylenediamine, tetraethylenepentamine, and combinations thereof.
 アミンは、アルキルアミンであることが好ましく、炭素原子数が3~10のアルキルアミンであることが好ましく、炭素原子数が4~10の第1級アルキルアミンであることがより好ましい。 The amine is preferably an alkylamine, preferably an alkylamine having 3 to 10 carbon atoms, more preferably a primary alkylamine having 4 to 10 carbon atoms.
 金属錯体を構成するアミンは1種であってもよく、2種以上であってもよい。 The number of amines constituting the metal complex may be one, or two or more.
 金属塩とアミンとを反応させる際、金属塩のモル量に対するアミンのモル量の比率は、1倍~15倍であることが好ましく、1.5倍~6倍であることがより好ましい。上記比率が上記範囲内であると、錯体形成反応が完結し、透明な溶液が得られる。 When the metal salt and the amine are reacted, the molar ratio of the amine to the metal salt is preferably 1 to 15 times, more preferably 1.5 to 6 times. When the above ratio is within the above range, the complex formation reaction is completed and a transparent solution is obtained.
 錯化剤であるアンモニウムカルバメート系化合物としては、アンモニウムカルバメート、メチルアンモニウムメチルカルバメート、エチルアンモニウムエチルカルバメート、1-プロピルアンモニウム1-プロピルカルバメート、イソプロピルアンモニウムイソプロピルカルバメート、ブチルアンモニウムブチルカルバメート、イソブチルアンモニウムイソブチルカルバメート、アミルアンモニウムアミルカルバメート、ヘキシルアンモニウムヘキシルカルバメート、ヘプチルアンモニウムヘプチルカルバメート、オクチルアンモニウムオクチルカルバメート、2-エチルヘキシルアンモニウム2-エチルヘキシルカルバメート、ノニルアンモニウムノニルカルバメート、及びデシルアンモニウムデシルカルバメートが挙げられる。 Ammonium carbamate compounds as complexing agents include ammonium carbamate, methylammonium methylcarbamate, ethylammonium ethylcarbamate, 1-propylammonium 1-propylcarbamate, isopropylammonium isopropylcarbamate, butylammonium butylcarbamate, isobutylammonium isobutylcarbamate, amyl ammonium amyl carbamate, hexylammonium hexyl carbamate, heptylammonium heptyl carbamate, octylammonium octyl carbamate, 2-ethylhexylammonium 2-ethylhexyl carbamate, nonyl ammonium nonyl carbamate, and decyl ammonium decyl carbamate.
 錯化剤であるアンモニウムカーボネート系化合物としては、アンモニウムカーボネート、メチルアンモニウムカーボネート、エチルアンモニウムカーボネート、1-プロピルアンモニウムカーボネート、イソプロピルアンモニウムカーボネート、ブチルアンモニウムカーボネート、イソブチルアンモニウムカーボネート、アミルアンモニウムカーボネート、ヘキシルアンモニウムカーボネート、ヘプチルアンモニウムカーボネート、オクチルアンモニウムカーボネート、2-エチルヘキシルアンモニウムカーボネート、ノニルアンモニウムカーボネート、及びデシルアンモニウムカーボネートが挙げられる。 Ammonium carbonate-based compounds as complexing agents include ammonium carbonate, methylammonium carbonate, ethylammonium carbonate, 1-propylammonium carbonate, isopropylammonium carbonate, butylammonium carbonate, isobutylammonium carbonate, amylammonium carbonate, hexylammonium carbonate, and heptyl. Ammonium carbonate, octylammonium carbonate, 2-ethylhexylammonium carbonate, nonyl ammonium carbonate, and decylammonium carbonate.
 錯化剤であるアンモニウムバイカーボネート系化合物としては、アンモニウムバイカーボネート、メチルアンモニウムバイカーボネート、エチルアンモニウムバイカーボネート、1-プロピルアンモニウムバイカーボネート、イソプロピルアンモニウムバイカーボネート、ブチルアンモニウムバイカーボネート、イソブチルアンモニウムバイカーボネート、アミルアンモニウムバイカーボネート、ヘキシルアンモニウムバイカーボネート、ヘプチルアンモニウムバイカーボネート、オクチルアンモニウムバイカーボネート、2-エチルヘキシルアンモニウムバイカーボネート、ノニルアンモニウムバイカーボネート、及びデシルアンモニウムバイカーボネートが挙げられる。 Ammonium bicarbonate-based compounds as complexing agents include ammonium bicarbonate, methylammonium bicarbonate, ethylammonium bicarbonate, 1-propylammonium bicarbonate, isopropylammonium bicarbonate, butylammonium bicarbonate, isobutylammonium bicarbonate, amyl Ammonium bicarbonate, hexylammonium bicarbonate, heptyl ammonium bicarbonate, octylammonium bicarbonate, 2-ethylhexylammonium bicarbonate, nonyl ammonium bicarbonate, and decylammonium bicarbonate.
 金属塩と、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、又はアンモニウムバイカーボネート系化合物とを反応させる際、金属塩のモル量に対する、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、又はアンモニウムバイカーボネート系化合物のモル量の比率は、0.01倍~1倍であることが好ましく、0.05倍~0.6倍であることがより好ましい。 When reacting a metal salt with an ammonium carbamate-based compound, an ammonium carbonate-based compound, or an ammonium bicarbonate-based compound, the amount of the ammonium carbamate-based compound, the ammonium carbonate-based compound, or the ammonium bicarbonate-based compound relative to the molar amount of the metal salt. The molar ratio is preferably 0.01 to 1, more preferably 0.05 to 0.6.
 錯化剤であるカルボン酸としては、例えば、カプロン酸、カプリル酸、ペラルゴン酸、2-エチルヘキサン酸、カプリン酸、ネオデカン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、パルミトレイン酸、オレイン酸、リノール酸、及びリノレン酸が挙げられる。中でも、カルボン酸は、炭素数8~20のカルボン酸であることが好ましく、炭素数10~16のカルボン酸であることがより好ましい。 Carboxylic acid as a complexing agent includes, for example, caproic acid, caprylic acid, pelargonic acid, 2-ethylhexanoic acid, capric acid, neodecanoic acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, and palmitoleic acid. , oleic acid, linoleic acid, and linolenic acid. Among them, the carboxylic acid is preferably a carboxylic acid having 8 to 20 carbon atoms, more preferably a carboxylic acid having 10 to 16 carbon atoms.
 金属錯体インク中、金属錯体の含有量は、金属錯体インクの全量に対して、10質量%~90質量%であることが好ましく、10質量%~40質量%であることがより好ましい。金属錯体の含有量は10質量%以上であると、表面抵抗率がより低下する。金属錯体の含有量が90質量%以下であると、インクジェット記録方式を用いて金属粒子インクを付与する場合に、吐出性が向上する。 The content of the metal complex in the metal complex ink is preferably 10% by mass to 90% by mass, more preferably 10% by mass to 40% by mass, relative to the total amount of the metal complex ink. When the content of the metal complex is 10% by mass or more, the surface resistivity is further lowered. When the content of the metal complex is 90% by mass or less, the jettability is improved when the metal particle ink is applied using an inkjet recording method.
-溶媒-
 金属錯体インクは、溶媒を含有することが好ましい。溶媒は、金属錯体等の金属錯体インクに含まれる成分を溶解することができれば特に限定されない。溶媒は、製造容易性の観点から、沸点が30℃~300℃であることが好ましく、50℃~200℃であることがより好ましく、50℃~180℃であることがより好ましい。
-solvent-
The metal complex ink preferably contains a solvent. The solvent is not particularly limited as long as it can dissolve the components contained in the metal complex ink such as the metal complex. From the viewpoint of ease of production, the solvent preferably has a boiling point of 30°C to 300°C, more preferably 50°C to 200°C, and more preferably 50°C to 180°C.
 金属錯体インク中、溶媒の含有量は、金属錯体に対する金属イオンの濃度(金属錯体1gに対して遊離イオンとして存在する金属の量)が、0.01mmol/g~3.6mmol/gであることが好ましく、0.05mmol/g~2mmol/gであることがより好ましい。金属イオンの濃度が上記範囲内であると、金属錯体インクが流動性に優れ、かつ、電磁波シールド性を得ることができる。 The content of the solvent in the metal complex ink is such that the concentration of the metal ion relative to the metal complex (the amount of metal present as free ions per 1 g of the metal complex) is 0.01 mmol/g to 3.6 mmol/g. is preferred, and 0.05 mmol/g to 2 mmol/g is more preferred. When the metal ion concentration is within the above range, the metal complex ink has excellent fluidity and can obtain electromagnetic wave shielding properties.
 溶媒としては、例えば、炭化水素、環状炭化水素、芳香族炭化水素、カルバメート、アルケン、アミド、エーテル、エステル、アルコール、チオール、チオエーテル、ホスフィン、及び水が挙げられる。金属錯体インクに含まれる溶媒は、1種のみであってもよく、2種以上であってもよい。 Examples of solvents include hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, carbamates, alkenes, amides, ethers, esters, alcohols, thiols, thioethers, phosphines, and water. The number of solvents contained in the metal complex ink may be one, or two or more.
 炭化水素は、炭素数6~20の直鎖状又は分枝状の炭化水素であることが好ましい。炭化水素としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、オクタデカン、ノナデカン及びイコサンが挙げられる。 The hydrocarbon is preferably a linear or branched hydrocarbon having 6 to 20 carbon atoms. Hydrocarbons include, for example, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane and icosane.
 環状炭化水素は、炭素数6~20の環状炭化水素であることが好ましい。環状炭化水素としては、例えば、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、及びデカリンを含むことができる。 The cyclic hydrocarbon is preferably a cyclic hydrocarbon having 6 to 20 carbon atoms. Cyclic hydrocarbons can include, for example, cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, and decalin.
 芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン、及びテトラリンが挙げられる。 Aromatic hydrocarbons include, for example, benzene, toluene, xylene, and tetralin.
 エーテルは、直鎖状エーテル、分枝鎖状エーテル、及び環状エーテルのいずれであってもよい。エーテルとしては、例えば、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、メチル-t-ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジヒドロピラン、及び1,4-ジオキサンが挙げられる。 The ether may be any of straight-chain ether, branched-chain ether, and cyclic ether. Ethers include, for example, diethyl ether, dipropyl ether, dibutyl ether, methyl-t-butyl ether, tetrahydrofuran, tetrahydropyran, dihydropyran, and 1,4-dioxane.
 アルコールは、第1級アルコール、第2級アルコール、及び第3級アルコールのいずれであってもよい。 The alcohol may be any of primary alcohol, secondary alcohol, and tertiary alcohol.
 アルコールとしては、例えば、エタノール、1-プロパノール、2-プロパノール、1-メトキシ-2-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、1-オクタノール、2-オクタノール、3-オクタノール、テトラヒドロフルフリルアルコール、シクロペンタノール、テルピネオール、デカノール、イソデシルアルコール、ラウリルアルコール、イソラウリルアルコール、ミリスチルアルコール、イソミリスチルアルコール、セチルアルコール(セタノール)、イソセチルアルコール、ステアリルアルコール、イソステアリルアルコール、オレイルアルコール、イソオレイルアルコール、リノリルアルコール、イソリノリルアルコール、パルミチルアルコール、イソパルミチルアルコール、アイコシルアルコール、及びイソアイコシルアルコールが挙げられる。 Examples of alcohols include ethanol, 1-propanol, 2-propanol, 1-methoxy-2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3-pentanol and 1-hexanol. , 2-hexanol, 3-hexanol, 1-octanol, 2-octanol, 3-octanol, tetrahydrofurfuryl alcohol, cyclopentanol, terpineol, decanol, isodecyl alcohol, lauryl alcohol, isolauryl alcohol, myristyl alcohol, isomyristyl alcohol, cetyl alcohol (cetanol), isocetyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, isoleyl alcohol, linolyl alcohol, isolinolyl alcohol, palmityl alcohol, isopalmityl alcohol, eicosyl alcohol, and iso Aicosyl alcohols can be mentioned.
 ケトンとしては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、及びシクロヘキサノンが挙げられる。 Ketones include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
 エステルとしては、例えば、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸メトキシブチル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、及び3-メトキシブチルアセテートが挙げられる。 Examples of esters include methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, methoxybutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol. monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene glycol monoethyl ether acetate, Propylene glycol monobutyl ether acetate, and 3-methoxybutyl acetate.
-還元剤-
 金属錯体インクは、還元剤を含有していてもよい。金属錯体インクに還元剤が含まれていると、金属錯体から金属への還元が促進される。
-Reducing agent-
The metal complex ink may contain a reducing agent. When the metal complex ink contains a reducing agent, the reduction of the metal complex to the metal is promoted.
 還元剤としては、例えば、水素化ホウ素金属塩、水素化アルミニウム塩、アミン、アルコール、有機酸、還元糖、糖アルコール、亜硫酸ナトリウム、ヒドラジン化合物、デキストリン、ハイドロキノン、ヒドロキシルアミン、エチレングリコール、グルタチオン、及びオキシム化合物が挙げられる。 Examples of reducing agents include metal borohydride salts, aluminum hydride salts, amines, alcohols, organic acids, reducing sugars, sugar alcohols, sodium sulfite, hydrazine compounds, dextrin, hydroquinone, hydroxylamine, ethylene glycol, glutathione, and oxime compounds.
 還元剤は、特表2014-516463号公報に記載のオキシム化合物であってもよい。オキシム化合物としては、例えば、アセトンオキシム、シクロヘキサノンオキシム、2-ブタノンオキシム、2,3-ブタンジオンモノオキシム、ジメチルグリオキシム、メチルアセトアセテートモノオキシム、メチルピルベートモノオキシム、ベンズアルデヒドオキシム、1-インダノンオキシム、2-アダマンタノンオキシム、2-メチルベンズアミドオキシム、3-メチルベンズアミドオキシム、4-メチルベンズアミドオキシム、3-アミノベンズアミドオキシム、4-アミノベンズアミドオキシム、アセトフェノンオキシム、ベンズアミドオキシム、及びピナコロンオキシムが挙げられる。 The reducing agent may be an oxime compound described in JP 2014-516463. Examples of oxime compounds include acetone oxime, cyclohexanone oxime, 2-butanone oxime, 2,3-butanedione monoxime, dimethylglyoxime, methylacetoacetate monoxime, methylpyruvate monoxime, benzaldehyde oxime, and 1-indanone. oximes, 2-adamantanone oxime, 2-methylbenzamide oxime, 3-methylbenzamide oxime, 4-methylbenzamide oxime, 3-aminobenzamide oxime, 4-aminobenzamide oxime, acetophenone oxime, benzamide oxime, and pinacolone oxime .
 金属錯体インクに含まれる還元剤は、1種であってもよく、2種以上であってもよい。 The number of reducing agents contained in the metal complex ink may be one, or two or more.
 金属錯体インク中、還元剤の含有量は特に限定されないが、金属錯体インクの全量に対して、0.1質量%~20質量%であることが好ましく、0.3質量%~10質量%であることがより好ましく、1質量%~5質量%であることがさらに好ましい。 The content of the reducing agent in the metal complex ink is not particularly limited. more preferably 1% by mass to 5% by mass.
-樹脂-
 金属錯体インクは、樹脂を含有していてもよい。金属錯体インクに樹脂が含まれていると、金属錯体インクの基材への密着性が向上する。
-resin-
The metal complex ink may contain resin. When the metal complex ink contains a resin, the adhesion of the metal complex ink to the substrate is improved.
 樹脂としては、例えば、ポリエステル、ポリエチレン、ポリプロピレン、ポリアセタール、ポリオレフィン、ポリカーボネート、ポリアミド、フッ素樹脂、シリコーン樹脂、エチルセルロース、ヒドロキシエチルセルロース、ロジン、アクリル樹脂、ポリ塩化ビニル、ポリスルホン、ポリビニルピロリドン、ポリビニルアルコール、ポリビニル系樹脂、ポリアクリロニトリル、ポリスルフィド、ポリアミドイミド、ポリエーテル、ポリアリレート、ポリエーテルエーテルケトン、ポリウレタン、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、メラミン樹脂、及び尿素樹脂が挙げられる。 Examples of resins include polyester, polyethylene, polypropylene, polyacetal, polyolefin, polycarbonate, polyamide, fluorine resin, silicone resin, ethyl cellulose, hydroxyethyl cellulose, rosin, acrylic resin, polyvinyl chloride, polysulfone, polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl-based Resins, polyacrylonitrile, polysulfides, polyamideimides, polyethers, polyarylates, polyetheretherketones, polyurethanes, epoxy resins, vinyl ester resins, phenolic resins, melamine resins, and urea resins.
 金属錯体インクに含まれる樹脂は、1種であってもよく、2種以上であってもよい。 The number of resins contained in the metal complex ink may be one, or two or more.
-添加剤-
 金属錯体インクは、本開示の効果を損なわない範囲で、さらに、無機塩、有機塩、シリカ等の無機酸化物;表面調整剤、湿潤剤、架橋剤、酸化防止剤、防錆剤、耐熱安定剤、界面活性剤、可塑剤、硬化剤、増粘剤、シランカップリング剤等の添加剤を含有してもよい。金属錯体インク中、添加剤の合計含有量は、金属錯体インクの全量に対して、20質量%以下であることが好ましい。
-Additive-
The metal complex ink further contains an inorganic salt, an organic salt, an inorganic oxide such as silica; Additives such as agents, surfactants, plasticizers, curing agents, thickeners, and silane coupling agents may be contained. The total content of additives in the metal complex ink is preferably 20% by mass or less with respect to the total amount of the metal complex ink.
 金属錯体インクの粘度は特に限定されず、0.01Pa・s~5000Pa・sであればよく、0.1Pa・s~100Pa・sであることが好ましい。金属錯体インクをスプレー方式、又はインクジェット記録方式を用いて付与する場合には、金属錯体インクの粘度は、1mPa・s~100mPa・sであることが好ましく、2mPa・s~50mPa・sであることがより好ましく、3mPa・s~30mPa・sであることがさらに好ましい。 The viscosity of the metal complex ink is not particularly limited, and may be 0.01 Pa·s to 5000 Pa·s, preferably 0.1 Pa·s to 100 Pa·s. When the metal complex ink is applied using a spray method or an inkjet recording method, the viscosity of the metal complex ink is preferably 1 mPa s to 100 mPa s, and more preferably 2 mPa s to 50 mPa s. is more preferable, and 3 mPa·s to 30 mPa·s is even more preferable.
 金属錯体インクの粘度は、粘度計を用い、25℃で測定される値である。粘度は、例えば、VISCOMETER TV-22型粘度計(東機産業社製)を用いて測定される。 The viscosity of the metal complex ink is a value measured at 25°C using a viscometer. Viscosity is measured using, for example, a VISCOMETER TV-22 viscometer (manufactured by Toki Sangyo Co., Ltd.).
 金属錯体インクの表面張力は特に限定されず、20mN/m~45mN/mであることが好ましく、25mN/m~35mN/mであることがより好ましい。表面張力は、表面張力計を用い、25℃で測定される値である。 The surface tension of the metal complex ink is not particularly limited, and is preferably 20 mN/m to 45 mN/m, more preferably 25 mN/m to 35 mN/m. Surface tension is a value measured at 25°C using a surface tensiometer.
 金属錯体インクの表面張力は、例えば、DY-700(協和界面科学社製)を用いて測定される。  The surface tension of the metal complex ink is measured using, for example, DY-700 (manufactured by Kyowa Interface Science Co., Ltd.).
(金属塩インク)
 金属塩インクは、例えば、金属塩が溶媒中に溶解したインク組成物である。
(metal salt ink)
A metal salt ink is, for example, an ink composition in which a metal salt is dissolved in a solvent.
-金属塩-
 金属塩を構成する金属としては、例えば、銀、銅、金、アルミニウム、マグネシウム、タングステン、モリブデン、亜鉛、ニッケル、鉄、白金、スズ、銅、及び鉛が挙げられる。中でも、電磁波シールド性の観点から、金属塩を構成する金属は、銀、金、白金、ニッケル、パラジウム及び銅からなる群より選択される少なくとも1種を含むことが好ましく、銀を含むことがより好ましい。
-metal salt-
Examples of metals constituting metal salts include silver, copper, gold, aluminum, magnesium, tungsten, molybdenum, zinc, nickel, iron, platinum, tin, copper, and lead. Among them, from the viewpoint of electromagnetic wave shielding properties, the metal constituting the metal salt preferably contains at least one selected from the group consisting of silver, gold, platinum, nickel, palladium and copper, and more preferably contains silver. preferable.
 金属塩インクに含まれる金属の含有量は、金属塩インクの全量に対して、金属元素換算で1質量%~40質量%であることが好ましく、5質量%~30質量%であることがより好ましく、7質量%~20質量%であることがさらに好ましい。 The content of the metal contained in the metal salt ink is preferably 1% by mass to 40% by mass, more preferably 5% by mass to 30% by mass, in terms of metal element, relative to the total amount of the metal salt ink. Preferably, it is more preferably 7% by mass to 20% by mass.
 金属塩インク中、金属塩の含有量は、金属塩インクの全量に対して、10質量%~90質量%であることが好ましく、10質量%~40質量%であることがより好ましい。金属塩の含有量は10質量%以上であると、表面抵抗率がより低下する。金属塩の含有量が90質量%以下であると、スプレー方式、又はインクジェット記録方式を用いて金属粒子インクを付与する場合に、吐出性が向上する。 The content of the metal salt in the metal salt ink is preferably 10% by mass to 90% by mass, more preferably 10% by mass to 40% by mass, relative to the total amount of the metal salt ink. When the content of the metal salt is 10% by mass or more, the surface resistivity is further lowered. When the content of the metal salt is 90% by mass or less, the jettability is improved when the metal particle ink is applied using a spray method or an inkjet recording method.
 金属塩としては、例えば、金属の安息香酸塩、ハロゲン化物、炭酸塩、クエン酸塩、ヨウ素酸塩、亜硝酸塩、硝酸塩、酢酸塩、リン酸塩、硫酸塩、硫化物、トリフルオロ酢酸塩、及びカルボン酸塩が挙げられる。なお、塩は、2種以上を組み合わせてもよい。 Examples of metal salts include metal benzoates, halides, carbonates, citrates, iodates, nitrites, nitrates, acetates, phosphates, sulfates, sulfides, trifluoroacetates, and carboxylates. In addition, salt may combine 2 or more types.
 金属塩は、電磁波シールド性及び保存安定性の観点から、金属カルボン酸塩であることが好ましい。カルボン酸塩を形成するカルボン酸は、ギ酸及び炭素数1~30のカルボン酸からなる群より選択される少なくとも1種であることが好ましく、炭素数8~20のカルボン酸であることがより好ましく、炭素数8~20の脂肪酸であることがさらに好ましい。脂肪酸は直鎖状であってもよく、分岐鎖状であってもよく、置換基を有していてもよい。 The metal salt is preferably a metal carboxylate from the viewpoint of electromagnetic wave shielding properties and storage stability. The carboxylic acid forming the carboxylic acid salt is preferably at least one selected from the group consisting of formic acid and a carboxylic acid having 1 to 30 carbon atoms, more preferably a carboxylic acid having 8 to 20 carbon atoms. , and fatty acids having 8 to 20 carbon atoms are more preferred. The fatty acid may be linear or branched, and may have a substituent.
 直鎖脂肪酸としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、ペンタン酸、ヘキサン酸、ヘプタン酸、ベヘン酸、オレイン酸、オクタン酸、ノナン酸、デカン酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、及びウンデカン酸が挙げられる。 Linear fatty acids include, for example, acetic acid, propionic acid, butyric acid, valeric acid, pentanoic acid, hexanoic acid, heptanoic acid, behenic acid, oleic acid, octanoic acid, nonanoic acid, decanoic acid, caproic acid, enanthic acid, and caprylic acid. , pelargonic acid, capric acid, and undecanoic acid.
 分岐脂肪酸としては、例えば、イソ酪酸、イソ吉草酸、エチルヘキサン酸、ネオデカン酸、ピバル酸、2-メチルペンタン酸、3-メチルペンタン酸、4-メチルペンタン酸、2,2-ジメチルブタン酸、2,3-ジメチルブタン酸、3,3-ジメチルブタン酸、及び2-エチルブタン酸が挙げられる。 Examples of branched fatty acids include isobutyric acid, isovaleric acid, ethylhexanoic acid, neodecanoic acid, pivalic acid, 2-methylpentanoic acid, 3-methylpentanoic acid, 4-methylpentanoic acid, 2,2-dimethylbutanoic acid, 2,3-dimethylbutanoic acid, 3,3-dimethylbutanoic acid, and 2-ethylbutanoic acid.
 置換基を有するカルボン酸としては、例えば、ヘキサフルオロアセチルアセトン酸、ヒドロアンゲリカ酸、3-ヒドロキシ酪酸、2-メチル-3-ヒドロキシ酪酸、3-メトキシ酪酸、アセトンジカルボン酸、3-ヒドロキシグルタル酸、2-メチル-3-ヒドロキシグルタル酸、及び2,2,4,4-ヒドロキシグルタル酸が挙げられる。 Examples of substituted carboxylic acids include hexafluoroacetylacetone acid, hydroangelic acid, 3-hydroxybutyric acid, 2-methyl-3-hydroxybutyric acid, 3-methoxybutyric acid, acetonedicarboxylic acid, 3-hydroxyglutaric acid, 2 -methyl-3-hydroxyglutarate, and 2,2,4,4-hydroxyglutarate.
 金属塩は市販品であってもよく、公知の方法により製造されたものであってもよい。銀塩は、例えば、以下の方法で製造される。 The metal salt may be a commercially available product or may be produced by a known method. A silver salt is manufactured by the following method, for example.
 まず、エタノール等の有機溶媒中に、銀の供給源となる銀化合物(例えば酢酸銀)と、銀化合物のモル当量に対して等量のギ酸又は炭素数1~30の脂肪酸とを加える。所定時間、超音波撹拌機を用いて撹拌し、生成した沈殿物をエタノールで洗浄してデカンテーションする。これらの工程は全て室温(25℃)で行うことができる。銀化合物と、ギ酸又は炭素数1~30の脂肪酸との混合比は、モル比で1:2~2:1であることが好ましく、1:1であることがより好ましい。 First, in an organic solvent such as ethanol, add a silver compound (for example, silver acetate) as a source of silver, and formic acid or a fatty acid having 1 to 30 carbon atoms in an amount equivalent to the molar equivalent of the silver compound. The mixture is stirred for a predetermined time using an ultrasonic stirrer, and the precipitate formed is washed with ethanol and decanted. All these steps can be performed at room temperature (25°C). The mixing ratio of the silver compound to the formic acid or the fatty acid having 1 to 30 carbon atoms is preferably 1:2 to 2:1, more preferably 1:1 in terms of molar ratio.
-溶媒-
 金属塩インクは、溶媒を含有することが好ましい。
-solvent-
The metal salt ink preferably contains a solvent.
 溶媒の種類は、金属塩インクに含まれる金属塩を溶解することができれば特に限定されない。 The type of solvent is not particularly limited as long as it can dissolve the metal salt contained in the metal salt ink.
 溶媒の沸点は、製造容易性の観点から、30℃~300℃であることが好ましく、50℃~300℃であることがより好ましく、50℃~250℃であることがより好ましい。 The boiling point of the solvent is preferably 30°C to 300°C, more preferably 50°C to 300°C, and more preferably 50°C to 250°C, from the viewpoint of ease of production.
 金属塩インク中、溶媒の含有量は、金属塩に対する金属イオンの濃度(金属塩1gに対して遊離イオンとして存在する金属の量)が、0.01mmol/g~3.6mmol/gであることが好ましく、0.05mmol/g~2.6mmol/gであることがより好ましい。金属イオンの濃度が上記範囲内であると、金属塩インクが流動性に優れ、かつ、電磁波シールド性を得ることができる。 The content of the solvent in the metal salt ink is such that the concentration of metal ions relative to the metal salt (amount of metal present as free ions per 1 g of metal salt) is 0.01 mmol/g to 3.6 mmol/g. is preferred, and 0.05 mmol/g to 2.6 mmol/g is more preferred. When the metal ion concentration is within the above range, the metal salt ink has excellent fluidity and electromagnetic wave shielding properties can be obtained.
 溶媒としては、例えば、炭化水素、環状炭化水素、芳香族炭化水素、カルバメート、アルケン、アミド、エーテル、エステル、アルコール、チオール、チオエーテル、ホスフィン、及び水が挙げられる。 Examples of solvents include hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, carbamates, alkenes, amides, ethers, esters, alcohols, thiols, thioethers, phosphines, and water.
 金属塩インクに含まれる溶媒は、1種のみであってもよく、2種以上であってもよい。 The number of solvents contained in the metal salt ink may be one, or two or more.
 溶媒は、芳香族炭化水素を含むことが好ましい。 The solvent preferably contains aromatic hydrocarbons.
 芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、プロピルベンゼン、イソプロピルベンゼン、ブチルベンゼン、イソブチルベンゼン、t-ブチルベンゼン、トリメチルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、テトラリン、ベンジルアルコール、フェノール、クレゾール、安息香酸メチル、安息香酸エチル、安息香酸プロピル、及び安息香酸ブチルが挙げられる。 Examples of aromatic hydrocarbons include benzene, toluene, xylene, ethylbenzene, propylbenzene, isopropylbenzene, butylbenzene, isobutylbenzene, t-butylbenzene, trimethylbenzene, pentylbenzene, hexylbenzene, tetralin, benzyl alcohol, phenol, Cresol, methyl benzoate, ethyl benzoate, propyl benzoate, and butyl benzoate.
 芳香族炭化水素における芳香族環の数は、他成分との相溶性の観点から、1つ又は2つが好ましく、1つがより好ましい。 From the viewpoint of compatibility with other components, the number of aromatic rings in the aromatic hydrocarbon is preferably one or two, more preferably one.
 芳香族炭化水素の沸点は、製造容易性の観点から、50℃~300℃であることが好ましく、60℃~250℃であることがより好ましく、80℃~200℃であることがより好ましい。 The boiling point of the aromatic hydrocarbon is preferably 50°C to 300°C, more preferably 60°C to 250°C, and more preferably 80°C to 200°C, from the viewpoint of ease of production.
 溶剤は、芳香族炭化水素と、芳香族炭化水素以外の炭化水素と、を含んでもよい。 The solvent may contain aromatic hydrocarbons and hydrocarbons other than aromatic hydrocarbons.
 芳香族炭化水素以外の炭化水素としては、炭素数6~20の直鎖状炭化水素、炭素数6~20の分枝状炭化水素、炭素数6~20の脂環式炭化水素が挙げられる。 Hydrocarbons other than aromatic hydrocarbons include linear hydrocarbons with 6 to 20 carbon atoms, branched hydrocarbons with 6 to 20 carbon atoms, and alicyclic hydrocarbons with 6 to 20 carbon atoms.
 芳香族炭化水素以外の炭化水素としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、オクタデカン、ノナデカン、デカリン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、デセン、テルペン系化合物及びイコサンが挙げられる。 Examples of hydrocarbons other than aromatic hydrocarbons include pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, nonadecane, decalin, cyclohexane, cycloheptane, and cyclooctane. , cyclononane, cyclodecane, decene, terpene compounds and icosane.
 芳香族炭化水素以外の炭化水素は不飽和結合を含むことが好ましい。 It is preferable that hydrocarbons other than aromatic hydrocarbons contain unsaturated bonds.
 不飽和結合を含む芳香族炭化水素以外の炭化水素としては、テルペン系化合物が挙げられる。 Hydrocarbons other than aromatic hydrocarbons containing unsaturated bonds include terpene compounds.
 テルペン系化合物は、テルペン系化合物を構成するイソプレン単位の数に応じ、例えば、ヘミテルペン、モノテルペン、セスキテルペン、ジテルペン、セステルテルペン、トリテルペン、セスクアルテルペン、及びテトラテルペンに分類される。 Terpene compounds are classified into, for example, hemiterpenes, monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, sesqualterpenes, and tetraterpenes, depending on the number of isoprene units that make up the terpene compounds.
 溶媒としてのテルペン系化合物は、上記のいずれでもよいが、モノテルペンが好ましい。 The terpene-based compound as the solvent may be any of the above, but monoterpene is preferred.
 モノテルペンとしては、例えば、ピネン(α-ピネン、β-ピネン)、テルピネオール(α-テルピネオール、β-テルピネオール、γ-テルピネオール)、ミルセン、カンフェン、リモネン(d-リモネン、l-リモネン、ジペンテン)、オシメン(α-オシメン、β-オシメン)、アロオシメン、フェランドレン(α-フェランドレン、β-フェランドレン)、テルピネン(α-テルピネン、γ-テルピネン)、テルピノーレン(α-テルピノーレン、β-テルピノーレン、γ-テルピノーレン、δ-テルピノーレン)、1,8-シネオール、1,4-シネオール、サビネン、パラメンタジエン、カレン(δ-3-カレン)が挙げられる。 Examples of monoterpenes include pinene (α-pinene, β-pinene), terpineol (α-terpineol, β-terpineol, γ-terpineol), myrcene, camphene, limonene (d-limonene, l-limonene, dipentene), Ocimene (α-Ocimene, β-Ocimene), Alloocimene, Phellandrene (α-Phellandrene, β-Phellandrene), Terpinene (α-Terpinene, γ-Terpinene), Terpinolene (α-Terpinolene, β-Terpinolene, γ- terpinolene, δ-terpinolene), 1,8-cineol, 1,4-cineol, sabinene, paramentadiene, carene (δ-3-carene).
 モノテルペンとしては、環式モノテルペンが好ましく、ピネン、テルピネオール、又はカレンがより好ましい。 The monoterpene is preferably a cyclic monoterpene, more preferably pinene, terpineol, or carene.
 エーテルは、直鎖状エーテル、分枝鎖状エーテル、及び環状エーテルのいずれであってもよい。エーテルとしては、例えば、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、メチル-t-ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジヒドロピラン、及び1,4-ジオキサンが挙げられる。 The ether may be any of straight-chain ether, branched-chain ether, and cyclic ether. Ethers include, for example, diethyl ether, dipropyl ether, dibutyl ether, methyl-t-butyl ether, tetrahydrofuran, tetrahydropyran, dihydropyran, and 1,4-dioxane.
 アルコールは、第1級アルコール、第2級アルコール、及び第3級アルコールのいずれであってもよい。 The alcohol may be any of primary alcohol, secondary alcohol, and tertiary alcohol.
 アルコールとしては、例えば、エタノール、1-プロパノール、2-プロパノール、1-メトキシ-2-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、1-オクタノール、2-オクタノール、3-オクタノール、テトラヒドロフルフリルアルコール、シクロペンタノール、テルピネオール、デカノール、イソデシルアルコール、ラウリルアルコール、イソラウリルアルコール、ミリスチルアルコール、イソミリスチルアルコール、セチルアルコール(セタノール)、イソセチルアルコール、ステアリルアルコール、イソステアリルアルコール、オレイルアルコール、イソオレイルアルコール、リノリルアルコール、イソリノリルアルコール、パルミチルアルコール、イソパルミチルアルコール、アイコシルアルコール、及びイソアイコシルアルコールが挙げられる。 Examples of alcohols include ethanol, 1-propanol, 2-propanol, 1-methoxy-2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3-pentanol and 1-hexanol. , 2-hexanol, 3-hexanol, 1-octanol, 2-octanol, 3-octanol, tetrahydrofurfuryl alcohol, cyclopentanol, terpineol, decanol, isodecyl alcohol, lauryl alcohol, isolauryl alcohol, myristyl alcohol, isomyristyl alcohol, cetyl alcohol (cetanol), isocetyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, isoleyl alcohol, linolyl alcohol, isolinolyl alcohol, palmityl alcohol, isopalmityl alcohol, eicosyl alcohol, and iso Aicosyl alcohols can be mentioned.
 ケトンとしては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、及びシクロヘキサノンが挙げられる。 Ketones include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
 エステルとしては、例えば、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸メトキシブチル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、及び3-メトキシブチルアセテートが挙げられる。 Examples of esters include methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, methoxybutyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol. monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene glycol monoethyl ether acetate, Propylene glycol monobutyl ether acetate, and 3-methoxybutyl acetate.
 金属塩インクの粘度は特に限定されず、0.01Pa・s~5000Pa・sであればよく、0.1Pa・s~100Pa・sであることが好ましい。金属塩インクをスプレー方式、又はインクジェット記録方式を用いて付与する場合には、金属塩インクの粘度は、1mPa・s~100mPa・sであることが好ましく、2mPa・s~50mPa・sであることがより好ましく、3mPa・s~30mPa・sであることがさらに好ましい。 The viscosity of the metal salt ink is not particularly limited, and may be from 0.01 Pa·s to 5000 Pa·s, preferably from 0.1 Pa·s to 100 Pa·s. When the metal salt ink is applied using a spray method or an inkjet recording method, the viscosity of the metal salt ink is preferably 1 mPa·s to 100 mPa·s, more preferably 2 mPa·s to 50 mPa·s. is more preferable, and 3 mPa·s to 30 mPa·s is even more preferable.
 金属塩インクの粘度は、粘度計を用い、25℃で測定される値である。粘度は、例えば、VISCOMETER TV-22型粘度計(東機産業社製)を用いて測定される。 The viscosity of the metal salt ink is a value measured at 25°C using a viscometer. Viscosity is measured using, for example, a VISCOMETER TV-22 viscometer (manufactured by Toki Sangyo Co., Ltd.).
 金属塩インクの表面張力は特に限定されず、20mN/m~45mN/mであることが好ましく、25mN/m~35mN/mであることがより好ましい。表面張力は、表面張力計を用い、25℃で測定される値である。 The surface tension of the metal salt ink is not particularly limited, and is preferably 20 mN/m to 45 mN/m, more preferably 25 mN/m to 35 mN/m. Surface tension is a value measured at 25°C using a surface tensiometer.
 金属塩インクの表面張力は、例えば、DY-700(協和界面科学社製)を用いて測定される。  The surface tension of the metal salt ink is measured using, for example, DY-700 (manufactured by Kyowa Interface Science Co., Ltd.).
 金属析出インクは、金属錯体又は金属塩を含むことが好ましい。 The metal deposition ink preferably contains a metal complex or metal salt.
 金属錯体は、アンモニウムカルバメート系化合物、アンモニウムカーボネート系化合物、アミン、及び炭素数8~20のカルボン酸からなる群より選択される少なくとも1種に由来する構造を有する金属錯体であることが好ましい。 The metal complex is preferably a metal complex having a structure derived from at least one selected from the group consisting of ammonium carbamate compounds, ammonium carbonate compounds, amines, and carboxylic acids having 8 to 20 carbon atoms.
 金属塩は、金属カルボン酸塩であることが好ましい。 The metal salt is preferably a metal carboxylate.
 <絶縁インクの詳細>
 絶縁インクの粘度は、12mPa・s~35mPa・sである。
<Details of insulation ink>
The viscosity of the insulating ink is 12 mPa·s to 35 mPa·s.
 絶縁インクの粘度が12mPa・s以上であることにより、電子部品上に付与された絶縁インクの流れ出し及び吐出性の低下が抑制され、その結果、形成される絶縁層のパターン品質が向上する。 By setting the viscosity of the insulating ink to 12 mPa·s or more, the insulating ink applied onto the electronic component is prevented from flowing out and from being lowered in dischargeability, and as a result, the pattern quality of the formed insulating layer is improved.
 絶縁インクの25℃での粘度が35mPa・s以下であることにより、インクの吐出性の低下が抑制され、その結果、形成される絶縁層のパターン品質が向上する。 When the viscosity of the insulating ink is 35 mPa·s or less at 25° C., the deterioration of the ink ejection property is suppressed, and as a result, the pattern quality of the formed insulating layer is improved.
 絶縁インクの粘度は、好ましくは15mPa・s~30mPa・sであり、より好ましくは20mPa・s~30mPa・sである。 The viscosity of the insulating ink is preferably 15 mPa·s to 30 mPa·s, more preferably 20 mPa·s to 30 mPa·s.
 本開示におけるインクの粘度は、粘度計(例えば、東機産業社製のTV-22型粘度計)を用いて25℃で測定される値である。 The viscosity of the ink in the present disclosure is a value measured at 25°C using a viscometer (eg, TV-22 viscometer manufactured by Toki Sangyo Co., Ltd.).
 絶縁インクは、活性エネルギー線硬化型インクである。 The insulating ink is active energy ray-curable ink.
 絶縁インクは、重合性モノマー及び重合開始剤を含むことが好ましい。 The insulating ink preferably contains a polymerizable monomer and a polymerization initiator.
-重合性モノマー-
 重合性モノマーとは、1分子中に少なくとも1つの重合性基を有するモノマーのことをいう。重合性モノマーにおける重合性基は、カチオン重合性基であっても、ラジカル重合性基であってもよい。また、ラジカル重合性基は、硬化性の観点から、エチレン性不飽和基であることが好ましい。カチオン重合性基は、硬化性の観点から、オキシラン環及びオキセタン環の少なくとも一方を含む基であることが好ましい。
-Polymerizable Monomer-
A polymerizable monomer refers to a monomer having at least one polymerizable group in one molecule. The polymerizable group in the polymerizable monomer may be a cationically polymerizable group or a radically polymerizable group. Moreover, the radically polymerizable group is preferably an ethylenically unsaturated group from the viewpoint of curability. From the viewpoint of curability, the cationic polymerizable group is preferably a group containing at least one of an oxirane ring and an oxetane ring.
 本開示において、モノマーとは、分子量が1000以下である化合物のことをいう。分子量は、化合物を構成する原子の種類及び数より算出することができる。 In the present disclosure, a monomer refers to a compound having a molecular weight of 1000 or less. The molecular weight can be calculated from the type and number of atoms that constitute the compound.
 重合性モノマーは、重合性基を1つ有する単官能モノマーであってもよく、重合性基を2つ以上有する多官能モノマー(即ち、2官能以上のモノマー)であってもよい。 The polymerizable monomer may be a monofunctional monomer having one polymerizable group, or a polyfunctional monomer having two or more polymerizable groups (that is, a bifunctional or higher monomer).
 単官能モノマーは、重合性基を1つ有するモノマーであれば特に限定されない。 The monofunctional monomer is not particularly limited as long as it has one polymerizable group.
-ラジカル重合性モノマー-
 ラジカル重合性モノマーは、形成される絶縁層の耐久性の観点から、単官能エチレン性不飽和モノマーを含むことが好ましい。
-Radical polymerizable monomer-
The radically polymerizable monomer preferably contains a monofunctional ethylenically unsaturated monomer from the viewpoint of durability of the insulating layer to be formed.
 単官能エチレン性不飽和モノマーとしては、例えば、単官能(メタ)アクリレート、単官能(メタ)アクリルアミド、単官能芳香族ビニル化合物、単官能ビニルエーテル及び単官能N-ビニル化合物が挙げられる。 Examples of monofunctional ethylenically unsaturated monomers include monofunctional (meth)acrylates, monofunctional (meth)acrylamides, monofunctional aromatic vinyl compounds, monofunctional vinyl ethers and monofunctional N-vinyl compounds.
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、tert-オクチル(メタ)アクリレート、イソアミル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-n-ブチルシクロヘキシル(メタ)アクリレート、(メタ)アクリル酸4-tert-ブチルシクロヘキシル、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-エチルヘキシルジグリコール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2-クロロエチル(メタ)アクリレート、4-ブロモブチル(メタ)アクリレート、シアノエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ブトキシメチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-(2-メトキシエトキシ)エチル(メタ)アクリレート、2-(2-ブトキシエトキシ)エチル(メタ)アクリレート、2,2,2-テトラフルオロエチル(メタ)アクリレート、1H,1H,2H,2H-パーフルオロデシル(メタ)アクリレート、4-ブチルフェニル(メタ)アクリレート、フェニル(メタ)アクリレート、2,4,5-テトラメチルフェニル(メタ)アクリレート、4-クロロフェニル(メタ)アクリレート、2-フェノキシメチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、グリシジルオキシブチル(メタ)アクリレート、グリシジルオキシエチル(メタ)アクリレート、グリシジルオキシプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、環状トリメチロールプロパンホルマール(メタ)アクリレート、フェニルグリシジルエーテル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリレート、トリメトキシシリルプロピル(メタ)アクリレート、トリメチルシリルプロピル(メタ)アクリレート、ポリエチレンオキシドモノメチルエーテル(メタ)アクリレート、ポリエチレンオキシド(メタ)アクリレート、ポリエチレンオキシドモノアルキルエーテル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、ポリプロピレンオキシドモノアルキルエーテル(メタ)アクリレート、2-メタクリロイルオキシエチルコハク酸、2-メタクリロイルオキシヘキサヒドロフタル酸、2-メタクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、エトキシジエチレングリコール(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、エチレンオキシド(EO)変性フェノール(メタ)アクリレート、EO変性クレゾール(メタ)アクリレート、EO変性ノニルフェノール(メタ)アクリレート、プロピレンオキシド(PO)変性ノニルフェノール(メタ)アクリレート、EO変性-2-エチルヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、(3-エチル-3-オキセタニルメチル)(メタ)アクリレート、フェノキシエチレングリコール(メタ)アクリレート、2-カルボキシエチル(メタ)アクリレート、及び2-(メタ)アクリロイルオキシエチルサクシネートが挙げられる。 Examples of monofunctional (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, hexyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. , tert-octyl (meth)acrylate, isoamyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, cyclohexyl (meth)acrylate acrylates, 4-n-butylcyclohexyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, bornyl (meth)acrylate, isobornyl (meth)acrylate, 2-ethylhexyl diglycol (meth)acrylate, butoxyethyl ( meth) acrylate, 2-chloroethyl (meth) acrylate, 4-bromobutyl (meth) acrylate, cyanoethyl (meth) acrylate, benzyl (meth) acrylate, butoxymethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2- (2-Methoxyethoxy)ethyl (meth)acrylate, 2-(2-butoxyethoxy)ethyl (meth)acrylate, 2,2,2-tetrafluoroethyl (meth)acrylate, 1H,1H,2H,2H-perfluoro Decyl (meth)acrylate, 4-butylphenyl (meth)acrylate, phenyl (meth)acrylate, 2,4,5-tetramethylphenyl (meth)acrylate, 4-chlorophenyl (meth)acrylate, 2-phenoxymethyl (meth)acrylate acrylates, 2-phenoxyethyl (meth)acrylate, glycidyl (meth)acrylate, glycidyloxybutyl (meth)acrylate, glycidyloxyethyl (meth)acrylate, glycidyloxypropyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, 2 - hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate ) acrylate, cyclic trimethylolpropane formal (meth)acrylate, phenylglycidyl ether (meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, diethylaminopropyl (meth)acrylate , trimethoxysilylpropyl (meth)acrylate, trimethylsilylpropyl (meth)acrylate, polyethylene oxide monomethyl ether (meth)acrylate, polyethylene oxide (meth)acrylate, polyethylene oxide monoalkyl ether (meth)acrylate, dipropylene glycol (meth)acrylate , polypropylene oxide monoalkyl ether (meth)acrylate, 2-methacryloyloxyethyl succinic acid, 2-methacryloyloxyhexahydrophthalic acid, 2-methacryloyloxyethyl-2-hydroxypropyl phthalate, ethoxydiethylene glycol (meth)acrylate, butoxydiethylene glycol ( meth) acrylate, trifluoroethyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, ethylene oxide (EO)-modified phenol (meth) acrylate, EO-modified cresol (meth) ) acrylate, EO-modified nonylphenol (meth)acrylate, propylene oxide (PO)-modified nonylphenol (meth)acrylate, EO-modified 2-ethylhexyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth) acrylates, dicyclopentanyl (meth)acrylate, (3-ethyl-3-oxetanylmethyl) (meth)acrylate, phenoxyethylene glycol (meth)acrylate, 2-carboxyethyl (meth)acrylate, and 2-(meth)acryloyl Oxyethyl succinate can be mentioned.
 中でも、単官能(メタ)アクリレートは、芳香環又は脂肪族環を有する単官能(メタ)アクリレートであることが好ましく、イソボルニル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレ-ト、又はジシクロペンタニル(メタ)アクリレ-トであることがさらに好ましい。 Among them, the monofunctional (meth)acrylate is preferably a monofunctional (meth)acrylate having an aromatic ring or an aliphatic ring, such as isobornyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, dicyclopentenyl (Meth)acrylate or dicyclopentanyl (meth)acrylate is more preferred.
 絶縁インクは、形成される絶縁層の耐久性、インクジェット記録方式での吐出性向上、及び絶縁層のパターン品質向上の観点から、単官能モノマーを含有することが好ましい。 The insulating ink preferably contains a monofunctional monomer from the viewpoints of durability of the insulating layer to be formed, improvement of ejection properties in the inkjet recording method, and improvement of the pattern quality of the insulating layer.
 この場合、単官能モノマーの含有量は、絶縁インクの全量に対して、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましい。 In this case, the content of the monofunctional monomer is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more, relative to the total amount of the insulating ink. .
 単官能モノマーの含有量の上限は、絶縁インクの全量に対して、例えば、98質量%、90質量%、80質量%、70質量%等である。 The upper limit of the monofunctional monomer content is, for example, 98% by mass, 90% by mass, 80% by mass, 70% by mass, etc. with respect to the total amount of the insulating ink.
 形成される絶縁層の耐久性をより向上させる観点から、絶縁インクは、単官能アクリレートを含有することが好ましい。 From the viewpoint of further improving the durability of the insulating layer to be formed, the insulating ink preferably contains a monofunctional acrylate.
 この場合、単官能アクリレートの含有量は、絶縁インクの全量に対して、10質量%以上であることが好ましく、20質量%以上であることがより好ましい。 In this case, the content of the monofunctional acrylate is preferably 10% by mass or more, more preferably 20% by mass or more, relative to the total amount of the insulating ink.
 単官能アクリレートの含有量の上限は、絶縁インクの全量に対して、例えば、98質量%、90質量%、80質量%、70質量%等である。 The upper limit of the content of the monofunctional acrylate is, for example, 98% by mass, 90% by mass, 80% by mass, 70% by mass, etc. with respect to the total amount of the insulating ink.
 形成される絶縁層の耐久性を更に向上させる観点から、絶縁インクに含有され得る上記単官能アクリレートは、分子量が200以上であること及び環構造を含むことの少なくとも一方を満足する単官能アクリレートXを含むことがより好ましい。 From the viewpoint of further improving the durability of the insulating layer to be formed, the monofunctional acrylate that can be contained in the insulating ink is a monofunctional acrylate X that satisfies at least one of having a molecular weight of 200 or more and containing a ring structure. It is more preferable to include
 単官能アクリレートXとしては、分子量が200以上であること及び環構造を含むことの両方を満足する単官能アクリレートX2が特に好ましい。 As the monofunctional acrylate X, a monofunctional acrylate X2 that satisfies both a molecular weight of 200 or more and a ring structure is particularly preferred.
 分子量が200以上であること及び環構造を含むことの両方を満足する単官能アクリレートX2としては、イソボルニルアクリレート、サイクリックトリメチロールプロパンホルマールモノアクリレート、4-tert-ブチルシクロヘキシルアクリレート、ジシクロペンテニルアクリレ-ト、又はジシクロペンタニルアクリレ-トが好ましい。 Monofunctional acrylate X2 that satisfies both a molecular weight of 200 or more and a ring structure includes isobornyl acrylate, cyclic trimethylolpropane formal monoacrylate, 4-tert-butylcyclohexyl acrylate, dicyclopentenyl Acrylates or dicyclopentanyl acrylates are preferred.
 単官能(メタ)アクリルアミドとしては、例えば、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド及び(メタ)アクリロイルモルフォリンが挙げられる。 Examples of monofunctional (meth)acrylamides include (meth)acrylamide, N-methyl(meth)acrylamide, N-ethyl(meth)acrylamide, N-propyl(meth)acrylamide, Nn-butyl(meth)acrylamide, Nt-butyl (meth)acrylamide, N-butoxymethyl (meth)acrylamide, N-isopropyl (meth)acrylamide, N-methylol (meth)acrylamide, N,N-dimethyl (meth)acrylamide, N,N-diethyl (meth)acrylamide and (meth)acryloylmorpholine.
 単官能芳香族ビニル化合物としては、例えば、スチレン、ジメチルスチレン、トリメチルスチレン、イソプロピルスチレン、クロロメチルスチレン、メトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、ビニル安息香酸メチルエステル、3-メチルスチレン、4-メチルスチレン、3-エチルスチレン、4-エチルスチレン、3-プロピルスチレン、4-プロピルスチレン、3-ブチルスチレン、4-ブチルスチレン、3-ヘキシルスチレン、4-ヘキシルスチレン、3-オクチルスチレン、4-オクチルスチレン、3-(2-エチルヘキシル)スチレン、4-(2-エチルヘキシル)スチレン、アリルスチレン、イソプロペニルスチレン、ブテニルスチレン、オクテニルスチレン、4-t-ブトキシカルボニルスチレン及び4-t-ブトキシスチレンが挙げられる。 Examples of monofunctional aromatic vinyl compounds include styrene, dimethylstyrene, trimethylstyrene, isopropylstyrene, chloromethylstyrene, methoxystyrene, acetoxystyrene, chlorostyrene, dichlorostyrene, bromostyrene, vinylbenzoic acid methyl ester, 3-methyl Styrene, 4-methylstyrene, 3-ethylstyrene, 4-ethylstyrene, 3-propylstyrene, 4-propylstyrene, 3-butylstyrene, 4-butylstyrene, 3-hexylstyrene, 4-hexylstyrene, 3-octyl Styrene, 4-octylstyrene, 3-(2-ethylhexyl)styrene, 4-(2-ethylhexyl)styrene, allylstyrene, isopropenylstyrene, butenylstyrene, octenylstyrene, 4-t-butoxycarbonylstyrene and 4- t-butoxystyrene can be mentioned.
 単官能ビニルエーテルとしては、例えば、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、n-ブチルビニルエーテル、t-ブチルビニルエーテル、2-エチルヘキシルビニルエーテル、n-ノニルビニルエーテル、ラウリルビニルエーテル、シクロヘキシルビニルエーテル、シクロヘキシルメチルビニルエーテル、4-メチルシクロヘキシルメチルビニルエーテル、ベンジルビニルエーテル、ジシクロペンテニルビニルエーテル、2-ジシクロペンテノキシエチルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、ブトキシエチルビニルエーテル、メトキシエトキシエチルビニルエーテル、エトキシエトキシエチルビニルエーテル、メトキシポリエチレングリコールビニルエーテル、テトラヒドロフルフリルビニルエーテル、2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、4-ヒドロキシメチルシクロヘキシルメチルビニルエーテル、ジエチレングリコールモノビニルエーテル、ポリエチレングリコールビニルエーテル、クロルエチルビニルエーテル、クロルブチルビニルエーテル、クロルエトキシエチルビニルエーテル、フェニルエチルビニルエーテル及びフェノキシポリエチレングリコールビニルエーテルが挙げられる。 Monofunctional vinyl ethers include, for example, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, n-butyl vinyl ether, t-butyl vinyl ether, 2-ethylhexyl vinyl ether, n-nonyl vinyl ether, lauryl vinyl ether, cyclohexyl vinyl ether, cyclohexylmethyl vinyl ether, 4-methyl Cyclohexyl methyl vinyl ether, benzyl vinyl ether, dicyclopentenyl vinyl ether, 2-dicyclopentenoxyethyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, butoxyethyl vinyl ether, methoxyethoxyethyl vinyl ether, ethoxyethoxyethyl vinyl ether, methoxypolyethylene glycol vinyl ether, tetrahydro Furfuryl vinyl ether, 2-hydroxyethyl vinyl ether, 2-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether, 4-hydroxymethylcyclohexylmethyl vinyl ether, diethylene glycol monovinyl ether, polyethylene glycol vinyl ether, chloroethyl vinyl ether, chlorobutyl vinyl ether, chloroethoxyethyl vinyl ether , phenylethyl vinyl ether and phenoxy polyethylene glycol vinyl ether.
 単官能N-ビニル化合物としては、例えば、N-ビニル-ε-カプロラクタム及びN-ビニルピロリドンが挙げられる。 Examples of monofunctional N-vinyl compounds include N-vinyl-ε-caprolactam and N-vinylpyrrolidone.
-多官能重合性モノマー-
 形成される絶縁層の硬化性をより向上させる観点から、絶縁インクは、多官能重合性モノマーを含有することも好ましい。
-Polyfunctional Polymerizable Monomer-
From the viewpoint of further improving the curability of the insulating layer to be formed, the insulating ink preferably contains a polyfunctional polymerizable monomer.
 この場合、多官能重合性モノマーの含有量は、絶縁インクの全量に対して、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましい。 In this case, the content of the polyfunctional polymerizable monomer is preferably 10% by mass or more, more preferably 20% by mass or more, and preferably 30% by mass or more with respect to the total amount of the insulating ink. More preferred.
 多官能重合性モノマー含有量の上限は、絶縁インクの全量に対して、例えば、98質量%、90質量%、80質量%、70質量%等である。 The upper limit of the polyfunctional polymerizable monomer content is, for example, 98% by mass, 90% by mass, 80% by mass, 70% by mass, etc. with respect to the total amount of the insulating ink.
 多官能重合性モノマーは、重合性基を2つ以上有するモノマーであれば特に限定されない。多官能重合性モノマーは、硬化性の観点から、多官能のラジカル重合性モノマーであることが好ましく、多官能エチレン性不飽和モノマーであることがより好ましい。 The polyfunctional polymerizable monomer is not particularly limited as long as it has two or more polymerizable groups. From the viewpoint of curability, the polyfunctional polymerizable monomer is preferably a polyfunctional radically polymerizable monomer, more preferably a polyfunctional ethylenically unsaturated monomer.
 多官能エチレン性不飽和モノマーとしては、例えば、多官能(メタ)アクリレート化合物及び多官能ビニルエーテルが挙げられる。 Examples of polyfunctional ethylenically unsaturated monomers include polyfunctional (meth)acrylate compounds and polyfunctional vinyl ethers.
 多官能(メタ)アクリレートとしては、例えば;
エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ヘプタンジオールジ(メタ)アクリレート、EO変性ネオペンチルグリコールジ(メタ)アクリレート、PO変性ネオペンチルグリコールジ(メタ)アクリレート、アルコキシ化ネオペンチルグリコールジ(メタ)アクリレート、EO変性ヘキサンジオールジ(メタ)アクリレート、PO変性ヘキサンジオールジ(メタ)アクリレート、アルコキシ化ヘキサンジオールジ(メタ)アクリレート、オクタンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、デカンジオールジ(メタ)アクリレート、ドデカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の2官能(メタ)アクリレート;
トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO付加トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート等の3官能以上の(メタ)アクリレート;
等が挙げられる。
Examples of polyfunctional (meth)acrylates include:
Ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tri Propylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 3-methyl-1,5- pentanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, heptanediol di(meth)acrylate, EO-modified neopentyl glycol di(meth)acrylate, PO-modified neopentyl glycol di(meth)acrylate, Alkoxylated neopentyl glycol di(meth)acrylate, EO-modified hexanediol di(meth)acrylate, PO-modified hexanediol di(meth)acrylate, alkoxylated hexanediol di(meth)acrylate, octanediol di(meth)acrylate, nonane Diol di(meth)acrylate, decanediol di(meth)acrylate, dodecanediol di(meth)acrylate, glycerin di(meth)acrylate, pentaerythritol di(meth)acrylate, ethylene glycol diglycidyl ether di(meth)acrylate, diethylene glycol Difunctional (meth)acrylates such as diglycidyl ether di(meth)acrylate and tricyclodecanedimethanol di(meth)acrylate;
trimethylolethane tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, trimethylolpropane EO adduct tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol tetra( meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, tri(meth)acryloyloxyethoxytrimethylolpropane, glycerin polyglycidyl ether poly(meth)acrylate, tris(2-acryloyloxyethyl) ) Tri- or higher functional (meth)acrylates such as isocyanurate;
etc.
 多官能ビニルエーテルとしては、例えば、1,4-ブタンジオールジビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ブチレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル、ビスフェノールAアルキレンオキシドジビニルエーテル、ビスフェノールFアルキレンオキシドジビニルエーテル、トリメチロールエタントリビニルエーテル、トリメチロールプロパントリビニルエーテル、ジトリメチロールプロパンテトラビニルエーテル、グリセリントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ジペンタエリスリトールペンタビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル、EO付加トリメチロールプロパントリビニルエーテル、PO付加トリメチロールプロパントリビニルエーテル、EO付加ジトリメチロールプロパンテトラビニルエーテル、PO付加ジトリメチロールプロパンテトラビニルエーテル、EO付加ペンタエリスリトールテトラビニルエーテル、PO付加ペンタエリスリトールテトラビニルエーテル、EO付加ジペンタエリスリトールヘキサビニルエーテル及びPO付加ジペンタエリスリトールヘキサビニルエーテルが挙げられる。 Polyfunctional vinyl ethers include, for example, 1,4-butanediol divinyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, polyethylene glycol divinyl ether, propylene glycol divinyl ether, butylene glycol divinyl ether, hexanediol divinyl ether, Vinyl ether, 1,4-cyclohexanedimethanol divinyl ether, bisphenol A alkylene oxide divinyl ether, bisphenol F alkylene oxide divinyl ether, trimethylolethane trivinyl ether, trimethylolpropane trivinyl ether, ditrimethylolpropane tetravinyl ether, glycerin trivinyl ether, pentaerythritol Tetravinyl ether, dipentaerythritol pentavinyl ether, dipentaerythritol hexavinyl ether, EO-added trimethylolpropane trivinyl ether, PO-added trimethylolpropane trivinyl ether, EO-added ditrimethylolpropane tetravinyl ether, PO-added ditrimethylolpropane tetravinyl ether, EO-added penta Erythritol tetravinyl ether, PO-added pentaerythritol tetravinyl ether, EO-added dipentaerythritol hexavinyl ether and PO-added dipentaerythritol hexavinyl ether can be mentioned.
 中でも、硬化性の観点から、多官能重合性モノマーは、(メタ)アクリロイル基以外の部分の炭素数が3~11のモノマーであることが好ましい。(メタ)アクリロイル基以外の部分の炭素数が3~11のモノマーとして、具体的には、1,6-ヘキサンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、PO変性ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート(EO鎖n=4~23)、又は1,10-デカンジオールジ(メタ)アクリレートであることがより好ましい。 Above all, from the viewpoint of curability, the polyfunctional polymerizable monomer is preferably a monomer having 3 to 11 carbon atoms in the portion other than the (meth)acryloyl group. Specific examples of the monomer having 3 to 11 carbon atoms in the portion other than the (meth)acryloyl group include 1,6-hexanediol di(meth)acrylate, dipropylene glycol di(meth)acrylate, and PO-modified neopentyl glycol. Di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate, polyethylene glycol di(meth)acrylate (EO chain n=4-23) , or 1,10-decanediol di(meth)acrylate.
-カチオン重合性モノマー-
 カチオン重合性モノマーとしては、硬化性の観点でオキシラン環(「エポキシ環」ともいう。)を有する化合物(「オキシラン化合物」又は「エポキシ化合物」ともいう。)、オキセタン環を有する化合物(「オキセタン化合物」ともいう。)、ビニルエーテル化合物等の公知のカチオン重合性モノマーを特に制限なく用いることができる。
-Cationically polymerizable monomer-
As the cationic polymerizable monomer, compounds having an oxirane ring (also referred to as an "epoxy ring") (also referred to as an "oxirane compound" or an "epoxy compound") and compounds having an oxetane ring (also referred to as an "oxetane compound ”, and known cationic polymerizable monomers such as vinyl ether compounds can be used without particular limitation.
 カチオン重合性モノマーとしては、後述する光カチオン重合開始剤から発生するカチオン重合開始種により重合反応を開始し、硬化する化合物であれば特に制限はなく、光カチオン重合性モノマーとして知られる各種公知のカチオン重合性のモノマーを使用することができる。 The cationic polymerizable monomer is not particularly limited as long as it is a compound that initiates a polymerization reaction by a cationic polymerization initiating species generated from a photocationic polymerization initiator described later and cures, and various known photocationic polymerizable monomers. Cationically polymerizable monomers can be used.
 カチオン重合性モノマーとしては、例えば、特開平6-9714号、特開2001-31892号、同2001-40068号、同2001-55507号、同2001-310938号、同2001-310937号、同2001-220526号などの各公報に記載されているエポキシ化合物、ビニルエーテル化合物、オキセタン化合物などが挙げられる。 Examples of cationic polymerizable monomers include JP-A-6-9714, JP-A-2001-31892, JP-A-2001-40068, JP-A-2001-55507, JP-A-2001-310938, JP-A-2001-310937, JP-A-2001- Epoxy compounds, vinyl ether compounds, oxetane compounds and the like described in publications such as No. 220526 can be mentioned.
 また、カチオン重合性モノマーとしては、例えば、カチオン重合系の光硬化性樹脂が知られており、最近では400nm以上の可視光波長域に増感された光カチオン重合系の光硬化性樹脂も、例えば特開平6-43633号、特開平8-324137号の各公報等に公開されている。 Further, as cationic polymerizable monomers, for example, cationic polymerization photocurable resins are known. For example, it is disclosed in Japanese Unexamined Patent Publication No. 6-43633 and Japanese Unexamined Patent Publication No. 8-324137.
 重合性モノマーの含有量は、絶縁インクの全量に対して、10質量%以上であることが好ましく、50質量%以上であることがより好ましい。 The content of the polymerizable monomer is preferably 10% by mass or more, more preferably 50% by mass or more, relative to the total amount of the insulating ink.
 重合性モノマーの含有量の上限は、絶縁インクの全量に対して、例えば98質量%である。 The upper limit of the polymerizable monomer content is, for example, 98% by mass with respect to the total amount of the insulating ink.
-重合開始剤-
 絶縁インクは、重合開始剤を含むことが好ましい。
-Polymerization initiator-
The insulating ink preferably contains a polymerization initiator.
 重合開始剤は、重合性モノマーの種類に応じて、ラジカル重合開始剤又はカチオン重合開始剤のうち適するものを選択することができる。重合開始剤としては、例えば、オキシム化合物、アルキルフェノン化合物、アシルホスフィン化合物、芳香族オニウム塩化合物、有機過酸化物、チオ化合物、ヘキサアリールビスイミダゾール化合物、ボレート化合物、アジニウム化合物、チタノセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物、及びアルキルアミンが挙げられる。 A suitable polymerization initiator can be selected from radical polymerization initiators and cationic polymerization initiators according to the type of polymerizable monomer. Examples of polymerization initiators include oxime compounds, alkylphenone compounds, acylphosphine compounds, aromatic onium salt compounds, organic peroxides, thio compounds, hexaarylbisimidazole compounds, borate compounds, azinium compounds, titanocene compounds, active esters. compounds, compounds with carbon-halogen bonds, and alkylamines.
 絶縁インクに含まれる重合開始剤は、オキシム化合物、アルキルフェノン化合物、及びチタノセン化合物からなる群より選択される少なくとも1種であることが好ましく、アルキルフェノン化合物であることがより好ましく、α-アミノアルキルフェノン化合物及びベンジルケタールアルキルフェノンからなる群より選択される少なくとも1種であることがさらに好ましい。 The polymerization initiator contained in the insulating ink is preferably at least one selected from the group consisting of oxime compounds, alkylphenone compounds, and titanocene compounds, more preferably alkylphenone compounds, α-aminoalkyl More preferably, it is at least one selected from the group consisting of phenone compounds and benzyl ketal alkylphenones.
 カチオン重合開始剤は、光酸発生剤であることが好ましい。 The cationic polymerization initiator is preferably a photoacid generator.
 光酸発生剤として、例えば、化学増幅型フォトレジスト又は光カチオン重合に利用される化合物が挙げられる(有機エレクトロニクス材料研究会編、「イメージング用有機材料」、ぶんしん出版(1993年)、187~192ページ参照)。中でも、光酸発生剤は、芳香族オニウム塩化合物が好ましく、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩等のオニウム塩化合物が好ましく、スルホニウム塩又はヨードニウム塩がより好ましい。 Examples of photoacid generators include chemically amplified photoresists and compounds used for photocationic polymerization (Organic Electronics Materials Research Group, "Organic Materials for Imaging", Bunshin Publishing (1993), 187- (see page 192). Among them, the photoacid generator is preferably an aromatic onium salt compound, preferably an onium salt compound such as a diazonium salt, a phosphonium salt, a sulfonium salt or an iodonium salt, more preferably a sulfonium salt or an iodonium salt.
 重合開始剤の含有量は、絶縁インクの全量に対して、0.5質量%~20質量%であることが好ましく、2質量%~10質量%であることがより好ましい。 The content of the polymerization initiator is preferably 0.5% by mass to 20% by mass, more preferably 2% by mass to 10% by mass, relative to the total amount of the insulating ink.
 本開示において、絶縁インクは、重合開始剤及び重合性モノマー以外の他の成分を含んでいてもよい。他の成分としては、重合性オリゴマー、連鎖移動剤、重合禁止剤、増感剤、界面活性剤及び添加剤が挙げられる。 In the present disclosure, the insulating ink may contain components other than the polymerization initiator and the polymerizable monomer. Other ingredients include polymerizable oligomers, chain transfer agents, polymerization inhibitors, sensitizers, surfactants and additives.
-重合性オリゴマー-
 絶縁インクは、重合性化合物として重合性オリゴマーを含んでいてもよい。
-Polymerizable Oligomer-
The insulating ink may contain a polymerizable oligomer as the polymerizable compound.
 ここで、重合性オリゴマーとは、少なくとも1つの重合性基を有する、重量平均分子量1000~10000の重合性化合物を意味する。 Here, the polymerizable oligomer means a polymerizable compound having at least one polymerizable group and having a weight average molecular weight of 1000 to 10000.
 重合性オリゴマーにおける重合性基としては、重合性の観点から、(メタ)アクリロイル基、ビニルエーテル基、又はエポキシ基が好ましい。 From the viewpoint of polymerizability, the polymerizable group in the polymerizable oligomer is preferably a (meth)acryloyl group, a vinyl ether group, or an epoxy group.
 中でも、アクリロイル基がより好ましい。 Among them, an acryloyl group is more preferable.
 重合性オリゴマーとしては、1つ以上の重合性基を有するポリエステルであるポリエステルアクリレートオリゴマー、1つ以上の重合性基を有するポリウレタンであるウレタンアクリレートオリゴマー、1つ以上の重合性基を有する変性ポリエーテル樹脂変性ポリエーテルアクリレートオリゴマー、1つ以上の重合性基を有するエポキシ樹脂変性物であるエポキシアクリレートオリゴマーなどがあげられる。 Polymerizable oligomers include polyester acrylate oligomers that are polyesters having one or more polymerizable groups, urethane acrylate oligomers that are polyurethanes having one or more polymerizable groups, and modified polyethers that have one or more polymerizable groups. Examples thereof include resin-modified polyether acrylate oligomers and epoxy acrylate oligomers which are epoxy resin-modified products having one or more polymerizable groups.
-連鎖移動剤-
 絶縁インクは、少なくとも1種の連鎖移動剤を含有してもよい。
-Chain transfer agent-
The insulating ink may contain at least one chain transfer agent.
 連鎖移動剤は、光重合反応の反応性を向上させる観点から、多官能チオールであることが好ましい。 From the viewpoint of improving the reactivity of the photopolymerization reaction, the chain transfer agent is preferably a polyfunctional thiol.
 多官能性チオールとしては、例えば、ヘキサン-1,6-ジチオール、デカン-1,10-ジチオール、ジメルカプトジエチルエーテル、ジメルカプトジエチルスルフィド等の脂肪族チオール類、キシリレンジメルカプタン、4,4′-ジメルカプトジフェニルスルフィド、1,4-ベンゼンジチオール等の芳香族チオール類;
エチレングリコールビス(メルカプトアセテート)、ポリエチレングリコールビス(メルカプトアセテート)、プロピレングリコールビス(メルカプトアセテート)、グリセリントリス(メルカプトアセテート)、トリメチロールエタントリス(メルカプトアセテート)、トリメチロールプロパントリス(メルカプトアセテート)、ペンタエリスリトールテトラキス(メルカプトアセテート)、ジペンタエリスリトールヘキサキス(メルカプトアセテート)等の多価アルコールのポリ(メルカプトアセテート);
エチレングリコールビス(3-メルカプトプロピオネート)、ポリエチレングリコールビス(3-メルカプトプロピオネート)、プロピレングリコールビス(3-メルカプトプロピオネート)、グリセリントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)等の多価アルコールのポリ(3-メルカプトプロピオネート);及び、
1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)等のポリ(メルカプトブチレート)が挙げられる。
Examples of polyfunctional thiols include aliphatic thiols such as hexane-1,6-dithiol, decane-1,10-dithiol, dimercaptodiethyl ether, dimercaptodiethyl sulfide, xylylene dimercaptan, 4,4'- Aromatic thiols such as dimercaptodiphenyl sulfide and 1,4-benzenedithiol;
Ethylene Glycol Bis (Mercaptoacetate), Polyethylene Glycol Bis (Mercaptoacetate), Propylene Glycol Bis (Mercaptoacetate), Glycerin Tris (Mercaptoacetate), Trimethylolethane Tris (Mercaptoacetate), Trimethylolpropane Tris (Mercaptoacetate), Penta poly(mercaptoacetate) of polyhydric alcohols such as erythritol tetrakis (mercaptoacetate), dipentaerythritol hexakis (mercaptoacetate);
Ethylene glycol bis(3-mercaptopropionate), polyethylene glycol bis(3-mercaptopropionate), propylene glycol bis(3-mercaptopropionate), glycerol bis(3-mercaptopropionate), trimethylolethane Polyvalent tris (mercaptopropionate), trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), etc. alcohol poly(3-mercaptopropionate); and
1,4-bis(3-mercaptobutyryloxy)butane, 1,3,5-tris(3-mercaptobutyloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H )-trione, and poly(mercaptobutyrate) such as pentaerythritol tetrakis(3-mercaptobutyrate).
-重合禁止剤-
 絶縁インクは、少なくとも1種の重合禁止剤を含有してもよい。
-Polymerization inhibitor-
The insulating ink may contain at least one polymerization inhibitor.
 重合禁止剤としては、p-メトキシフェノール、キノン類(例えば、ハイドロキノン、ベンゾキノン、メトキシベンゾキノン等)、フェノチアジン、カテコール類、アルキルフェノール類(例えば、ジブチルヒドロキシトルエン(BHT)等)、アルキルビスフェノール類、ジメチルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅、サリチル酸銅、チオジプロピオン酸エステル類、メルカプトベンズイミダゾール、ホスファイト類、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)、2,2,6,6-テトラメチル-4-ヒドロキシピペリジン-1-オキシル(TEMPOL)、及びトリス(N-ニトロソ-N-フェニルヒドロキシルアミン)アルミニウム塩(別名:クペロンAl)が挙げられる。 Polymerization inhibitors include p-methoxyphenol, quinones (e.g., hydroquinone, benzoquinone, methoxybenzoquinone, etc.), phenothiazine, catechols, alkylphenols (e.g., dibutylhydroxytoluene (BHT), etc.), alkylbisphenols, dimethyldithiocarbamine. zinc acid, copper dimethyldithiocarbamate, copper dibutyldithiocarbamate, copper salicylate, thiodipropionates, mercaptobenzimidazole, phosphites, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl (TEMPOL), and tris(N-nitroso-N-phenylhydroxylamine) aluminum salt (also known as Cupferron Al).
 中でも、重合禁止剤は、p-メトキシフェノール、カテコール類、キノン類、アルキルフェノール類、TEMPO、TEMPOL、及びトリス(N-ニトロソ-N-フェニルヒドロキシルアミン)アルミニウム塩から選ばれる少なくとも1種が好ましく、p-メトキシフェノール、ハイドロキノン、ベンゾキノン、BHT、TEMPO、TEMPOL、及びトリス(N-ニトロソ-N-フェニルヒドロキシルアミン)アルミニウム塩から選ばれる少なくとも1種がより好ましい。 Among them, the polymerization inhibitor is preferably at least one selected from p-methoxyphenol, catechols, quinones, alkylphenols, TEMPO, TEMPOL, and tris(N-nitroso-N-phenylhydroxylamine) aluminum salt, and p -Methoxyphenol, hydroquinone, benzoquinone, BHT, TEMPO, TEMPOL, and tris(N-nitroso-N-phenylhydroxylamine) aluminum salt is more preferred.
 絶縁インクが重合禁止剤を含有する場合、重合禁止剤の含有量は、インクの全量に対し、0.01質量%~2.0質量%が好ましく、0.02質量%~1.0質量%がより好ましく、0.03質量%~0.5質量%が特に好ましい。 When the insulating ink contains a polymerization inhibitor, the content of the polymerization inhibitor is preferably 0.01% by mass to 2.0% by mass, more preferably 0.02% by mass to 1.0% by mass, based on the total amount of the ink. is more preferred, and 0.03% by mass to 0.5% by mass is particularly preferred.
-増感剤-
 絶縁インクは、少なくとも1種の増感剤を含有してもよい。
- Sensitizer -
The insulating ink may contain at least one sensitizer.
 増感剤として、例えば、多核芳香族化合物(例えば、ピレン、ペリレン、トリフェニレン、及び2-エチル-9,10-ジメトキシアントラセン)、キサンテン系化合物(例えば、フルオレッセイン、エオシン、エリスロシン、ローダミンB、及びローズベンガル)、シアニン系化合物(例えば、チアカルボシアニン及びオキサカルボシアニン)、メロシアニン系化合物(例えば、メロシアニン、及びカルボメロシアニン)、チアジン系化合物(例えば、チオニン、メチレンブルー、及びトルイジンブルー)、アクリジン系化合物(例えば、アクリジンオレンジ、クロロフラビン、及びアクリフラビン)、アントラキノン類(例えば、アントラキノン)、スクアリウム系化合物(例えば、スクアリウム)、クマリン系化合物(例えば、7-ジエチルアミノ-4-メチルクマリン)、チオキサントン系化合物(例えば、イソプロピルチオキサントン)、及びチオクロマノン系化合物(例えば、チオクロマノン)が挙げられる。中でも、増感剤は、チオキサントン系化合物であることが好ましい。 Examples of sensitizers include polynuclear aromatic compounds (e.g., pyrene, perylene, triphenylene, and 2-ethyl-9,10-dimethoxyanthracene), xanthene compounds (e.g., fluorescein, eosin, erythrosine, rhodamine B, and Rose Bengal), cyanine compounds (e.g., thiacarbocyanine and oxacarbocyanine), merocyanine compounds (e.g., merocyanine and carbomerocyanine), thiazine compounds (e.g., thionine, methylene blue, and toluidine blue), acridine compounds compounds (e.g., acridine orange, chloroflavin, and acriflavin), anthraquinones (e.g., anthraquinone), squalium compounds (e.g., squarium), coumarin compounds (e.g., 7-diethylamino-4-methylcoumarin), thioxanthone compounds (eg, isopropylthioxanthone), and thiochromanone-based compounds (eg, thiochromanone). Among them, the sensitizer is preferably a thioxanthone compound.
 絶縁インクが増感剤を含有する場合、増感剤の含有量は特に限定されないが、インクの全量に対して、1.0質量%~15.0質量%であることが好ましく、1.5質量%~5.0質量%であることがより好ましい。 When the insulating ink contains a sensitizer, the content of the sensitizer is not particularly limited. More preferably, it is in the range of 5.0% by mass to 5.0% by mass.
-界面活性剤-
 絶縁インクは、少なくとも1種の界面活性剤を含有してもよい。
-Surfactant-
The insulating ink may contain at least one surfactant.
 界面活性剤としては、特開昭62-173463号公報、及び特開昭62-183457号公報に記載されたものが挙げられる。 Examples of surfactants include those described in JP-A-62-173463 and JP-A-62-183457.
 また、界面活性剤としては、例えば;
ジアルキルスルホコハク酸塩、アルキルナフタレンスルホン酸塩、脂肪酸塩等のアニオン性界面活性剤;
ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、アセチレングリコール、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー等のノニオン性界面活性剤;及び、
アルキルアミン塩、第四級アンモニウム塩等のカチオン性界面活性剤が挙げられる。
Further, as a surfactant, for example;
anionic surfactants such as dialkylsulfosuccinates, alkylnaphthalenesulfonates, fatty acid salts;
Nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, acetylene glycols, polyoxyethylene/polyoxypropylene block copolymers; and
Examples include cationic surfactants such as alkylamine salts and quaternary ammonium salts.
 また、界面活性剤は、フッ素系界面活性剤又はシリコーン系界面活性剤であってもよい。 In addition, the surfactant may be a fluorine-based surfactant or a silicone-based surfactant.
-有機溶剤-
 絶縁インクは、少なくとも1種の有機溶剤を含有してもよい。
-Organic solvent-
The insulating ink may contain at least one organic solvent.
 有機溶剤としては、例えば、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル類;
エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテル、テトラエチレングリコールジメチルエーテル等の(ポリ)アルキレングリコールジアルキルエーテル類;
ジエチレングリコールアセテート等の(ポリ)アルキレングリコールアセテート類;
エチレングリコールジアセテート、プロピレングリコールジアセテート等の(ポリ)アルキレングリコールジアセテート類;
エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等の(ポリ)アルキレングリコールモノアルキルエーテルアセテート類、メチルエチルケトン、シクロヘキサノン等のケトン類;
γ-ブチロラクトン等のラクトン類;
酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸3-メトキシブチル(MBA)、プロピオン酸メチル、プロピオン酸エチル等のエステル類;
テトラヒドロフラン、ジオキサン等の環状エーテル類;及び
ジメチルホルムアミド、ジメチルアセトアミド等のアミド類が挙げられる。
Examples of organic solvents include (poly)alkylene glycols such as ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether (PGME), dipropylene glycol monomethyl ether, and tripropylene glycol monomethyl ether. monoalkyl ethers;
(poly)alkylene glycol dialkyl ethers such as ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol diethyl ether, tetraethylene glycol dimethyl ether;
(poly)alkylene glycol acetates such as diethylene glycol acetate;
(poly)alkylene glycol diacetates such as ethylene glycol diacetate and propylene glycol diacetate;
(poly)alkylene glycol monoalkyl ether acetates such as ethylene glycol monobutyl ether acetate and propylene glycol monomethyl ether acetate; ketones such as methyl ethyl ketone and cyclohexanone;
Lactones such as γ-butyrolactone;
Esters such as ethyl acetate, propyl acetate, butyl acetate, 3-methoxybutyl acetate (MBA), methyl propionate, ethyl propionate;
cyclic ethers such as tetrahydrofuran and dioxane; and amides such as dimethylformamide and dimethylacetamide.
 絶縁インクが有機溶剤を含有する場合、有機溶剤の含有量は、インクの全量に対して、70質量%以下であることが好ましく、50質量%以下であることがより好ましい。 When the insulating ink contains an organic solvent, the content of the organic solvent is preferably 70% by mass or less, more preferably 50% by mass or less, relative to the total amount of the ink.
 有機溶剤の含有量の下限値は特に限定されない。 The lower limit of the organic solvent content is not particularly limited.
-添加剤-
 絶縁インクは、必要に応じて、共増感剤、紫外線吸収剤、酸化防止剤、褪色防止剤、塩基性化合物等の添加剤を含有してもよい。
-Additive-
The insulating ink may contain additives such as a co-sensitizer, an ultraviolet absorber, an antioxidant, an anti-fading agent, and a basic compound, if necessary.
-物性-
 絶縁インクのpHは、インクジェット記録方式で付与する場合に吐出安定性を向上させる観点から、7~10であることが好ましく、7.5~9.5であることがより好ましい。pHは、pH計を用いて25℃で測定され、例えば、東亜DKK社製のpHメーター(型番「HM-31」)を用いて測定される。
-Physical properties-
The pH of the insulating ink is preferably 7 to 10, more preferably 7.5 to 9.5, from the viewpoint of improving ejection stability when applied by an inkjet recording method. The pH is measured at 25° C. using a pH meter, for example, using a pH meter manufactured by DKK Toa (model number “HM-31”).
 絶縁インクの表面張力は、60mN/m以下であることが好ましく、20mN/m~50mN/mであることがより好ましく、25mN/m~45mN/mであることがさらに好ましい。 The surface tension of the insulating ink is preferably 60 mN/m or less, more preferably 20 mN/m to 50 mN/m, even more preferably 25 mN/m to 45 mN/m.
 表面張力は、表面張力計を用いて25℃で測定され、例えば、協和界面科学社製の自動表面張力計(製品名「CBVP-Z」)を用いて、プレート法によって測定される。 The surface tension is measured at 25°C using a surface tensiometer, for example, by the plate method using an automatic surface tensiometer (product name "CBVP-Z") manufactured by Kyowa Interface Science Co., Ltd.
 <その他>
 本発明の技術的範囲は、上記の実施形態に記載の範囲には限定されない。各実施形態における構成等は、本発明の趣旨を逸脱しない範囲で、各実施形態間で適宜組み合わせることができる。
<Others>
The technical scope of the present invention is not limited to the scope described in the above embodiments. Configurations and the like in each embodiment can be appropriately combined between each embodiment without departing from the gist of the present invention.
1…印刷システム
10…搬送装置
12A…搬送ベルト
12B…搬送ベルト
20…絶縁インク印刷装置
21…搬送ステージ
22…絶縁インク吐出ヘッド
23A…照射光源
23B…照射光源
24…発光素子
25…受光センサ
26A…カメラ
26B…カメラ
26C…カメラ
27…絶縁インクタンク
30…金属析出インク印刷装置
31…搬送ステージ
32…金属析出インク吐出ヘッド
33A…照射光源
33B…照射光源
34…発光素子
35…受光センサ
36A…カメラ
36B…カメラ
36C…カメラ
37…金属析出インクタンク
40…キュア装置
41A…温風ファン
41B…温風ファン
42A…発光素子
42B…発光素子
43A…受光センサ
43B…受光センサ
44A…温風ファン
44B…温風ファン
45A…発光素子
45B…発光素子
46A…受光センサ
46B…受光センサ
47A…照射光源
47B…照射光源
48A…発光素子
48B…発光素子
49A…受光センサ
49B…受光センサ
50…基板外観検査装置
52…撮影光源
54…カメラ
56…発光素子
58…受光センサ
60…制御装置
62…メモリ
70…第1のレーザダイオード
72…第2のレーザダイオード
74…第1のフォトダイオード
76…第2のフォトダイオード
78…第3のレーザダイオード
1000…実装基板
1002…プリント配線基板
1004…部品実装面
1005…フィデューシャルマーク
1006A…側面
1006B…裏面
1006C…上面
1008…抵抗器
1009…電極
1010…コンデンサ
1020…導電パターン
1022…絶縁被覆
1024…絶縁パターン
1030…基板側電極
1032…素子側電極
1034…バンプ
1036…グラウンド電極
1038…ソルダレジスト
1040…アンダフィル材料
1100…金属析出インク膜
S1~S4…実装基板の製造方法の工程
Reference Signs List 1 printing system 10 conveying device 12A conveying belt 12B conveying belt 20 insulating ink printing device 21 conveying stage 22 insulating ink discharge head 23A irradiation light source 23B irradiation light source 24 light emitting element 25 light receiving sensor 26A Camera 26B Camera 26C Camera 27 Insulating ink tank 30 Metal deposition ink printer 31 Conveyor stage 32 Metal deposition ink discharge head 33A Irradiation light source 33B Irradiation light source 34 Light emitting element 35 Light receiving sensor 36A Camera 36B Camera 36C Camera 37 Metal deposition ink tank 40 Curing device 41A Warm air fan 41B Warm air fan 42A Light emitting element 42B Light emitting element 43A Light receiving sensor 43B Light receiving sensor 44A Warm air fan 44B Warm air Fan 45A Light-emitting element 45B Light-emitting element 46A Light-receiving sensor 46B Light-receiving sensor 47A Irradiation light source 47B Irradiation light source 48A Light-emitting element 48B Light-emitting element 49A Light-receiving sensor 49B Light-receiving sensor 50 Board appearance inspection device 52 Photographing Light source 54 Camera 56 Light emitting element 58 Light receiving sensor 60 Control device 62 Memory 70 First laser diode 72 Second laser diode 74 First photodiode 76 Second photodiode 78 Second 3 Laser diode 1000 Mounting board 1002 Printed wiring board 1004 Component mounting surface 1005 Fiducial mark 1006A Side surface 1006B Back surface 1006C Top surface 1008 Resistor 1009 Electrode 1010 Capacitor 1020 Conductive pattern 1022 Insulation Coating 1024 Insulating pattern 1030 Substrate-side electrode 1032 Device-side electrode 1034 Bump 1036 Ground electrode 1038 Solder resist 1040 Underfill material 1100 Metal deposited ink films S1 to S4 Processes of manufacturing method of mounting substrate

Claims (19)

  1.  少なくとも1つのプロセッサと、
     前記少なくとも1つのプロセッサに実行させるための命令を記憶する少なくとも1つのメモリと、
     を備え、
     前記少なくとも1つのプロセッサは、
     化学反応により金属を析出する金属析出インクが基材に印刷された金属析出インク膜であって、印刷後に化学反応させることで前記基材に金属膜が形成される前記金属析出インク膜の色、光沢、及び反射のうちの2つ以上に基づいて、前記金属析出インク膜の状態を判別する、
     検査装置。
    at least one processor;
    at least one memory storing instructions for execution by the at least one processor;
    with
    The at least one processor
    A metal deposition ink film printed on a substrate with a metal deposition ink that deposits metal through a chemical reaction, wherein the color of the metal deposition ink film is formed on the substrate by causing a chemical reaction after printing; determining the condition of the metallized ink film based on two or more of gloss and reflectance;
    inspection equipment.
  2.  出射光を出射する発光素子と、
     前記出射光の反射光を受光する受光素子と、
     を備える、
     請求項1に記載の検査装置。
    a light-emitting element that emits emitted light;
    a light receiving element that receives reflected light of the emitted light;
    comprising a
    The inspection device according to claim 1.
  3.  前記少なくとも1つのプロセッサは、
     前記発光素子に、前記金属析出インク膜に向けて出射光を出射させ、
     前記受光素子に、前記金属析出インク膜の表面で反射した反射光を受光させ、
     前記発光素子の出射光量と前記受光素子の受光量とを比較して前記金属析出インク膜の反射を検出する、
     請求項2に記載の検査装置。
    The at least one processor
    causing the light emitting element to emit emitted light toward the metal deposition ink film;
    causing the light-receiving element to receive reflected light reflected by the surface of the metal-deposited ink film;
    comparing the amount of light emitted by the light-emitting element and the amount of light received by the light-receiving element to detect the reflection of the metal-deposited ink film;
    The inspection device according to claim 2.
  4.  前記少なくとも1つのプロセッサは、
     前記発光素子に、前記金属析出インク膜に向けて出射光を出射させ、
     前記受光素子に、前記金属析出インク膜の表面で前記出射光が正反射した正反射光、及び前記金属析出インク膜の表面で前記出射光が散乱反射した散乱反射光を受光させ、
     前記正反射光の受光量と前記散乱反射光の受光量とを比較して前記金属析出インク膜の光沢を検出する、
     請求項2又は3に記載の検査装置。
    The at least one processor
    causing the light emitting element to emit emitted light toward the metal deposition ink film;
    causing the light-receiving element to receive specular reflected light obtained by specular reflection of the emitted light on the surface of the metal deposition ink film and scattered reflected light obtained by scattering reflection of the emitted light on the surface of the metal deposition ink film;
    comparing the received amount of the specularly reflected light and the received amount of the scattered reflected light to detect the glossiness of the metal deposition ink film;
    The inspection device according to claim 2 or 3.
  5.  前記少なくとも1つのプロセッサは、
     前記発光素子に、前記金属析出インク膜に向けて第1の波長の出射光、及び前記第1の波長とは異なる第2の波長の出射光を出射させ、
     前記受光素子に、前記第1の波長の反射光、及び前記第2の波長の反射光を受光させ、
     前記第1の波長の反射光の受光量と前記第2の波長の反射光の受光量とを比較して前記金属析出インク膜の色を検出する、
     請求項2から4のいずれか1項に記載の検査装置。
    The at least one processor
    causing the light emitting element to emit emitted light of a first wavelength and emitted light of a second wavelength different from the first wavelength toward the metal deposition ink film;
    causing the light receiving element to receive the reflected light of the first wavelength and the reflected light of the second wavelength;
    detecting the color of the metal-deposited ink film by comparing the received amount of the reflected light of the first wavelength and the received amount of the reflected light of the second wavelength;
    The inspection device according to any one of claims 2 to 4.
  6.  前記少なくとも1つのプロセッサは、共通の発光素子、及び共通の受光素子を用いて、前記金属析出インク膜の色、光沢、及び反射のうち2つ以上の検出タイミングをずらして検出する、
     請求項2から5のいずれか1項に記載の検査装置。
    The at least one processor uses a common light-emitting element and a common light-receiving element to detect two or more of the color, gloss, and reflection of the metal deposition ink film by shifting the detection timing.
    The inspection device according to any one of claims 2 to 5.
  7.  前記少なくとも1つのプロセッサは、
     前記金属析出インク膜の色、光沢、及び反射を基準となる金属析出インク膜の色、光沢、及び反射と比較することで、前記金属析出インク膜の状態を判別する、
     請求項1から6のいずれか1項に記載の検査装置。
    The at least one processor
    The state of the metal deposition ink film is determined by comparing the color, gloss, and reflection of the metal deposition ink film with the color, gloss, and reflection of a reference metal deposition ink film,
    The inspection device according to any one of claims 1 to 6.
  8.  前記金属析出インクを基材に塗布して金属析出インク膜を印刷する印刷装置と、
     請求項1から7のいずれか1項に記載の検査装置と、
     を含む、
     印刷システム。
    a printing device that applies the metal deposition ink to a substrate to print a metal deposition ink film;
    an inspection apparatus according to any one of claims 1 to 7;
    including,
    printing system.
  9.  前記少なくとも1つのプロセッサは、
     前記検査装置における前記金属析出インク膜の状態の判別結果を前記印刷装置のプロセス条件にフィードバックする、
     請求項8に記載の印刷システム。
    The at least one processor
    Feeding back the determination result of the state of the metal deposition ink film in the inspection device to the process conditions of the printing device;
    9. The printing system of claim 8.
  10.  前記プロセス条件は、合否ラインの切替、又は合否ラベルのラベリングを含む請求項9に記載の印刷システム。 The printing system according to claim 9, wherein the process conditions include switching of pass/fail lines or labeling of pass/fail labels.
  11.  前記プロセス条件は、前記印刷装置内の温度、前記化学反応させるための光源の光量、及び前記金属析出インクを印刷する際の前記基材の走査速度のうちの少なくとも1つを含む請求項9又は10に記載の印刷システム。 10. The process conditions include at least one of the temperature in the printing apparatus, the light intensity of the light source for causing the chemical reaction, and the scanning speed of the substrate when printing the metal deposition ink. 11. The printing system according to 10.
  12.  前記金属析出インクが基材に印刷された金属析出インク膜を化学反応させることで前記基材に金属膜を形成するキュア装置と、
     請求項1から7のいずれか1項に記載の検査装置と、
     を含む、
     キュアシステム。
    a curing device for forming a metal film on the substrate by chemically reacting the metal deposition ink film printed on the substrate with the metal deposition ink;
    an inspection apparatus according to any one of claims 1 to 7;
    including,
    cure system.
  13.  前記検査装置における前記金属析出インク膜の状態の判別結果を前記キュア装置のプロセス条件にフィードバックする、
     請求項12に記載のキュアシステム。
    Feeding back the determination result of the state of the metal deposition ink film in the inspection device to the process conditions of the curing device;
    13. The cure system of claim 12.
  14.  前記プロセス条件は、合否ラインの切替、又は合否ラベルのラベリングを含む請求項13に記載のキュアシステム。  The cure system according to claim 13, wherein the process conditions include switching of pass/fail lines or labeling of pass/fail labels.
  15.  前記プロセス条件は、前記キュア装置内の温度、前記化学反応させるための光源の光量、前記基材の搬送速度、及び乾燥硬化処理時間のうちの少なくとも1つを含む請求項13又は14に記載のキュアシステム。 15. The process conditions according to claim 13 or 14, wherein the process conditions include at least one of the temperature in the curing device, the light intensity of the light source for causing the chemical reaction, the transport speed of the substrate, and the drying and curing treatment time. cure system.
  16.  基材を光学検査する外観検査装置と、
     請求項1から7のいずれか1項に記載の検査装置と、
     を含む、
     検査システム。
    an appearance inspection device for optically inspecting the base material;
    an inspection apparatus according to any one of claims 1 to 7;
    including,
    inspection system.
  17.  化学反応により金属を析出する金属析出インクを基板、及び前記基板に実装された部品の少なくとも一方に塗布して金属析出インク膜を印刷する印刷工程と、
     前記印刷された金属析出インク膜を化学反応させることで金属膜を形成するキュア工程と、
     前記金属析出インク膜を検査する検査工程と、
     を含み、
     前記検査工程は、前記金属析出インク膜の色、光沢、及び反射のうち2つ以上に基づいて、前記金属析出インク膜の状態を判別する、
     基板の製造方法。
    a printing step of applying a metal deposition ink that deposits metal by a chemical reaction to at least one of a substrate and components mounted on the substrate to print a metal deposition ink film;
    a curing step of chemically reacting the printed metal deposition ink film to form a metal film;
    an inspection step of inspecting the metal deposition ink film;
    including
    The inspection step determines the state of the metal deposition ink film based on two or more of color, gloss, and reflection of the metal deposition ink film.
    Substrate manufacturing method.
  18.  請求項17に記載の基板の製造方法をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the substrate manufacturing method according to claim 17.
  19.  非一時的かつコンピュータ読取可能な記録媒体であって、請求項18に記載のプログラムが記録された記録媒体。 A recording medium that is non-temporary and computer-readable, in which the program according to claim 18 is recorded.
PCT/JP2022/040634 2021-12-24 2022-10-31 Inspection device, printing system, inspection system, curing system, substrate manufacturing method, and program WO2023119883A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021211095 2021-12-24
JP2021-211095 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023119883A1 true WO2023119883A1 (en) 2023-06-29

Family

ID=86901973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040634 WO2023119883A1 (en) 2021-12-24 2022-10-31 Inspection device, printing system, inspection system, curing system, substrate manufacturing method, and program

Country Status (2)

Country Link
TW (1) TW202326105A (en)
WO (1) WO2023119883A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131243A (en) * 1998-10-21 2000-05-12 Omron Corp Reflection type sensor
JP2004317131A (en) * 2003-04-11 2004-11-11 Fuji Xerox Co Ltd Method and apparatus for evaluating glossiness
JP2007150273A (en) * 2005-10-25 2007-06-14 Mitsui Mining & Smelting Co Ltd Two-layered flexible printed circuit board and method for manufacturing two-layered flexible printed circuit board
WO2009078448A1 (en) * 2007-12-18 2009-06-25 Hitachi Chemical Company, Ltd. Copper conductor film and manufacturing method thereof, conductive substrate and manufacturing method thereof, copper conductor wiring and manufacturing method thereof, and treatment solution
JP2012521559A (en) * 2009-03-24 2012-09-13 オルボテック・リミテッド Multimode imaging
JP2019043088A (en) * 2017-09-06 2019-03-22 富士フイルム株式会社 Printing method and printing device
WO2020059269A1 (en) * 2018-09-21 2020-03-26 コニカミノルタ株式会社 Reflection characteristic measuring device, and method for same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131243A (en) * 1998-10-21 2000-05-12 Omron Corp Reflection type sensor
JP2004317131A (en) * 2003-04-11 2004-11-11 Fuji Xerox Co Ltd Method and apparatus for evaluating glossiness
JP2007150273A (en) * 2005-10-25 2007-06-14 Mitsui Mining & Smelting Co Ltd Two-layered flexible printed circuit board and method for manufacturing two-layered flexible printed circuit board
WO2009078448A1 (en) * 2007-12-18 2009-06-25 Hitachi Chemical Company, Ltd. Copper conductor film and manufacturing method thereof, conductive substrate and manufacturing method thereof, copper conductor wiring and manufacturing method thereof, and treatment solution
JP2012521559A (en) * 2009-03-24 2012-09-13 オルボテック・リミテッド Multimode imaging
JP2019043088A (en) * 2017-09-06 2019-03-22 富士フイルム株式会社 Printing method and printing device
WO2020059269A1 (en) * 2018-09-21 2020-03-26 コニカミノルタ株式会社 Reflection characteristic measuring device, and method for same

Also Published As

Publication number Publication date
TW202326105A (en) 2023-07-01

Similar Documents

Publication Publication Date Title
US11167374B2 (en) Three-dimensional (3D) printing
WO2023119883A1 (en) Inspection device, printing system, inspection system, curing system, substrate manufacturing method, and program
TW201501816A (en) Method for forming thin film and apparatus for forming thin film
CN114651050B (en) Thermosetting inkjet ink and printing method
WO2023074507A1 (en) Method for producing electronic device
WO2023058613A1 (en) Film formation method, electronic device production method, and film formation device
WO2023058612A1 (en) Film formation method and method for producing electronic device
WO2023189594A1 (en) Method for producing conductor, method for producing electromagnetic shielding body, and conductor
WO2023286747A1 (en) Electronic device and method for manufacturing electronic device
WO2023286748A1 (en) Electronic device and method for manufacturing electronic device
WO2023033007A1 (en) Electronic device and manufacturing method therefor
WO2023189291A1 (en) Method for manufacturing printed circuit board
WO2023007987A1 (en) Electronic device and method for manufacturing same
WO2023189328A1 (en) Method for manufacturing laminate
JP2017047633A (en) Inkjet print device and inkjet print method
WO2023032356A1 (en) Electronic device and method for manufacturing electronic device
WO2022091883A1 (en) Image recording method
WO2023032355A1 (en) Electronic device production method
WO2023017678A1 (en) Electronic device and method for producing same
JP2023070947A (en) Manufacturing method of electronic device, electronic device ink, and ink set
CN116601246A (en) Ink set, laminate, and method for producing laminate
WO2024070844A1 (en) Method for producing electroconductive film, and method for producing electromagnetic wave shielding body
JP6659278B2 (en) Masking cured film removing device and etching metal plate manufacturing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910603

Country of ref document: EP

Kind code of ref document: A1