WO2023032336A1 - Detection system, suction system, and liquid suction method - Google Patents

Detection system, suction system, and liquid suction method Download PDF

Info

Publication number
WO2023032336A1
WO2023032336A1 PCT/JP2022/016121 JP2022016121W WO2023032336A1 WO 2023032336 A1 WO2023032336 A1 WO 2023032336A1 JP 2022016121 W JP2022016121 W JP 2022016121W WO 2023032336 A1 WO2023032336 A1 WO 2023032336A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
suction
conductive portion
detection system
conductive
Prior art date
Application number
PCT/JP2022/016121
Other languages
French (fr)
Japanese (ja)
Inventor
克俊 田原
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023032336A1 publication Critical patent/WO2023032336A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers

Definitions

  • This technology relates to a detection system that detects a sample in liquid, an aspiration system that aspirates liquid, and a liquid aspiration method.
  • the sample liquid is automatically aspirated and introduced into the device, and various detections and analyzes are performed in various devices.
  • a flow cytometer that analyzes and fractionates microparticles such as cells and microorganisms
  • Patent Document 1 based on information detected by a detection unit, a feature amount related to the number of detections in a certain time interval is specified, and based on a predetermined threshold value, it is determined that the feature amount is abnormal.
  • a technique is disclosed for controlling to terminate the detection.
  • Japanese Patent Laid-Open No. 2002-200001 discloses a detection device that automatically terminates detection when air is detected, using this technology.
  • the detection of air in the detection unit means that the sample liquid has already disappeared from the sample container and sample tube, so recovery requires time and procedures.
  • the main purpose of this technology is to provide a suction technology that can detect the remaining amount of liquid with a simple structure and is easy to restore.
  • a suction unit having a suction nozzle for sucking liquid is provided,
  • the suction part is a first conductive portion;
  • a suction system comprising a second conductive portion insulated from the first conductive portion;
  • a detection unit that detects information about the sample in the liquid aspirated by the aspiration unit;
  • a detection system is provided, comprising: Part or all of the suction nozzle of the detection system according to the present technology may be configured with the first conductive portion.
  • the upstream end of the second conductive portion of the detection system according to the present technology may be provided near the tip of the suction nozzle.
  • the second conductive portion of the detection system according to the present technology may be provided downstream of the first conductive portion.
  • An upstream end of the second conductive portion of the detection system according to the present technology may be provided at a maximum water level position of the container holding the liquid.
  • a detection system according to the present technology can include a processing unit that detects the amount of the liquid based on an energization signal from the first conductive unit or the second conductive unit.
  • the processing section of the detection system according to the present technology is provided downstream of the second conductive section having an upstream end near the tip of the suction nozzle and/or the first conductive section. It is possible to detect lack of liquid based on the energization signal from the second conductive portion.
  • the processing unit of the detection system detects excess liquid based on an energization signal from the second conductive unit having an upstream end at a position of the maximum appropriate water surface of the container holding the liquid. can do.
  • the processing unit of the detection system according to the present technology Based on an energization signal from the second conductive portion having an upstream end near the tip of the suction nozzle and/or from the second conductive portion provided downstream of the first conductive portion , detect the lack of fluid, Excessive amount of liquid can be detected based on an energization signal from the second conductive section, the upstream end of which is provided at the maximum appropriate water surface position of the container holding the liquid.
  • the detection system according to the present technology can include a control unit that controls suction of the liquid based on information on the amount of the liquid detected by the processing unit.
  • the detection unit of the detection system according to the present technology can detect light from the sample.
  • the sample that can be detected by a detection system according to the present technology may be particles. In this case, cells can be detected as particles.
  • the detection system according to the present technology can also include a sorting unit that sorts the particles.
  • a suction unit having a suction nozzle for sucking liquid is provided,
  • the suction part is a first conductive portion;
  • An aspiration system is provided, comprising the first conductive portion and an insulated second conductive portion.
  • the present technology further provides a method of sucking liquid using a suction unit having a suction nozzle for sucking liquid, comprising:
  • the suction part is a first conductive portion; a second conductive portion insulated from the first conductive portion; An energizing step of energizing the first conductive portion or the second conductive portion; a liquid amount detection step of detecting the amount of the liquid based on an energization signal from the first conductive portion or the second conductive portion;
  • a control step of controlling suction based on the amount of liquid detected in the detection step it is also possible to perform a control step of controlling suction based on the amount of liquid detected in the detection step.
  • upstream side and downstream side mean the upstream side and downstream side with respect to the direction of liquid flow when the liquid is sucked.
  • particles can include a wide range of bio-related microparticles such as cells, microorganisms, and ribosomes, or synthetic particles such as latex particles, gel particles, and industrial particles.
  • Bioly relevant microparticles include chromosomes, ribosomes, mitochondria, and organelles that make up various cells.
  • Cells include animal cells (eg, blood cells, etc.) and plant cells.
  • Microorganisms include bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, and fungi such as yeast.
  • bio-related microparticles include bio-related macromolecules such as nucleic acids, proteins, and complexes thereof.
  • Technical particles may also be, for example, organic or inorganic polymeric materials, metals, and the like.
  • Organic polymeric materials include polystyrene, styrene-divinylbenzene, polymethyl methacrylate, and the like.
  • Inorganic polymeric materials include glass, silica, magnetic materials, and the like.
  • Metals include colloidal gold, aluminum, and the like.
  • the shape of these fine particles is generally spherical, but in the present technology, they may be non-spherical, and their size, mass, etc. are not particularly limited.
  • FIG. 1 is a block diagram showing an example of a detection system 1 according to the present technology
  • FIG. 1 is a front view showing a first embodiment of a suction system 11 according to the present technology
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG. 2
  • It is a cross-sectional schematic diagram which shows the cross section of 1st Embodiment of the suction system 11 which concerns on this technique.
  • It is a cross-sectional schematic diagram which shows the flow direction cross section of 1st Embodiment of the suction system 11 which concerns on this technique.
  • 1 is an enlarged cross-sectional schematic diagram in which a section perpendicular to a flow direction of a first embodiment of a suction system 11 according to the present technology is enlarged;
  • FIG. 1 is a front view showing a first embodiment of a suction system 11 according to the present technology
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG. 2
  • It is a cross-
  • FIG. 1 It is a cross-sectional schematic diagram which shows the flow direction cross section of 2nd Embodiment of the suction system 11 which concerns on this technique. It is a cross-sectional schematic diagram which shows the flow direction cross section of 3rd Embodiment of the suction system 11 which concerns on this technique. It is a cross-sectional schematic diagram which shows the flow direction cross section of 4th Embodiment of the suction system 11 which concerns on this technique. It is a cross-sectional schematic diagram which shows the flow direction cross section of 5th Embodiment of the suction system 11 which concerns on this technique.
  • FIG. 11 is an enlarged cross-sectional schematic view of a suction system 11 according to a fifth embodiment of the present technology, in which a vertical cross section is enlarged with respect to the flow direction; It is a cross-sectional schematic diagram which shows the flow direction cross section of 6th Embodiment of the suction system 11 which concerns on this technique.
  • FIG. 13 is an enlarged schematic diagram of a dashed circle portion in FIG. 12 ; It is a cross-sectional schematic diagram which shows the flow direction cross section of 7th Embodiment of the suction system 11 which concerns on this technique.
  • FIG. 12 is a schematic cross-sectional view showing a flow direction cross section of an eighth embodiment of the suction system 11 according to the present technology
  • 1 is a conceptual diagram schematically showing a first embodiment of a detection system 1 according to the present technology
  • FIG. It is a conceptual diagram which shows typically 2nd Embodiment of the detection system 1 which concerns on this technique.
  • FIG. 3 is a conceptual diagram schematically showing a third embodiment of a detection system 1 according to the present technology
  • FIG. 10 is a flow chart showing an example of a liquid suction control method using the liquid suction method according to the present technology
  • 4 is a drawing-substituting graph showing the results of Example 1.
  • FIG. 7 is a drawing-substituting graph showing the results of Example 2.
  • FIG. 10 is a flow chart showing an example of a liquid suction control method using the liquid suction method according to the present technology
  • 4 is a drawing-substituting graph showing the results of Example 1.
  • FIG. 7 is a drawing-
  • Detection system 1 (1) Suction system 11 ⁇ First embodiment> ⁇ Second embodiment> ⁇ Third Embodiment> ⁇ Fourth Embodiment> ⁇ Fifth Embodiment> ⁇ Sixth embodiment> ⁇ Seventh embodiment> ⁇ Eighth embodiment> (2) Flow path P (P11, P12a, P12b, P13) (3) Detector 12 (4) Processing unit 13 (5) Control unit 14 (6) Fractionation section 15 (7) Storage unit 16 (8) Display unit 17 (9) Input section 18 2. Liquid suction method
  • FIG. 1 is a block diagram showing an example of a detection system 1 according to the present technology.
  • a detection system 1 according to the present technology includes at least a suction system 11 and a detection unit 12 .
  • the suction system 11 is provided in the detection device, but the present technology is not limited to this form, and for example, a suction device may be provided separately from the detection device and connected to each other. is also possible.
  • the processing unit 13, the control unit 14, the sorting unit 15, the storage unit 16, the display unit 17, and the input unit 18 are included in the information processing apparatus.
  • the detection system 1 will be described in detail below.
  • FIG. 2 is a front view showing the first embodiment of the suction system 11 according to the present technology
  • FIG. 3 is a cross-sectional view taken along line AA. 2 and 3 show a tube t that connects the suction system 11 and the detection device and a liquid storage section C that stores the liquid L for convenience of explanation.
  • the tube t and the liquid containing portion C are not essential, and it is also possible to use tubes and containers provided in the detection device, and disposable tubes and containers.
  • the suction system 11 may be provided with a pump, a pressurizing mechanism, and the like for suction.
  • FIG. 4 is a conceptual diagram showing an example of how the liquid L is reduced.
  • 1 in FIG. 4 is a state in which the liquid L is abundant.
  • 2 in FIG. 4 shows a state in which the liquid L is sucked and the height of the tip of the nozzle is the same as that of the liquid L.
  • FIG. 4 When the liquid L is further sucked, the liquid L and the tip of the nozzle are connected by surface tension, as indicated by 3 in FIG.
  • the surface tension between the liquid L and the tip of the nozzle is broken, leaving an arcuate droplet at the tip of the nozzle, and the droplet at the tip of the nozzle gradually becomes smaller. (See 5 in FIG. 4).
  • the droplets at the tip of the nozzle disappear and air is sucked.
  • FIG. 5 is a schematic cross-sectional view showing a flow direction cross-section of the suction system 11 according to the first embodiment of the present technology, and is a cross-sectional view along the line AA in FIG. 3 for explaining the cross-sectional structure of the suction system 11. It is a schematic diagram of the enlarged width direction.
  • FIG. 6 is an enlarged schematic cross-sectional view of the first embodiment of the suction system 11 according to the present technology in a direction perpendicular to the flow direction, and is an enlarged schematic cross-sectional view of the BB line cross section of FIG. .
  • the suction system 11 includes a suction section 111 having a suction nozzle N for sucking the liquid L.
  • a pump for suction not shown
  • One or two or more types of equipment can be freely provided.
  • the suction part 111 of the suction system 11 is characterized by including a first conductive part 1111 and a second conductive part 1112 .
  • the first conductive portion 1111 and the second conductive portion 1112 are in a state of being insulated via an insulating portion 1113, for example.
  • the suction system 11 has a structure in which the suction nozzle N is composed of a first conductive portion 1111 and covered with a second conductive portion 1112 with an insulating portion 1113 interposed therebetween (FIG. 6). reference).
  • the suction nozzle N which is the first conductive portion 1111, is connected to Vcc via a resistor, and the second conductive portion 1112 is connected to Vout via a resistor.
  • the suction system 11 can detect the state before the liquid L completely disappears from the suction system 11, recovery is very simple compared to the conventional technology.
  • the first conductive portion 1111 is connected to Vcc and the second conductive portion 1112 is connected to Vout, but the effect of the present technology can be obtained even in reverse. can. That is, it is possible to connect the first conductive portion 1111 to Vout and connect the second conductive portion 1112 to Vcc.
  • Vcc is preferably a temporally limited pressurization such as a pulse, considering the effect on the sample and the necessary detection frequency.
  • a pulse of 1-10 V and 3-30 ⁇ s at 0.5-2 times per second can be mentioned.
  • the number of resistors may be 3 to 30 k ⁇ for R 0 and 0.5 to 5 M ⁇ for R 1 , but other constants may be used depending on the sensitivity of detection.
  • FIG. 7 is a schematic cross-sectional view showing a flow direction cross section of the suction system 11 according to the second embodiment of the present technology.
  • both the first conductive portion 1111 and the second conductive portion 1112 are located near the tip of the suction nozzle N, that is, the bottom surface of the liquid storage portion C.
  • the end of the suction portion 111 is raised downstream only to the end of the second conductive portion 1112 .
  • the energized state is canceled in any of the states 3 to 5 in FIG. If not, as in the suction system 11 according to the second embodiment shown in FIG. The lack of liquid can be detected before the suction nozzle N sucks air.
  • the upstream end portion of the second conductive portion 1112 is raised too much, the level of Vout becomes Low with the liquid L remaining in the liquid containing portion C being large.
  • the suction system 11 according to the first embodiment shown in FIG. Since there is also an advantage that the liquid L in the storage portion C can be sucked to the limit, depending on the thickness of the insulating portion 1113, the viscosity of the liquid L, etc., the first conductive portion 1111, the second conductive portion 1112, and the insulation It is desirable to design the configuration of the upstream end of portion 1113 .
  • the second embodiment is the same as the first embodiment except for the shapes of the upstream end portions of the first conductive portion 1111, the second conductive portion 1112, and the insulating portion 1113, so the description is omitted here.
  • FIG. 8 is a schematic cross-sectional view showing a flow direction cross section of the suction system 11 according to the third embodiment of the present technology.
  • the upstream end portion of the second conductive portion 1112 is provided at the maximum appropriate water surface position of the container (liquid storage portion C) holding the liquid L.
  • the upstream end portion of the second conductive portion 1112 is provided at the maximum appropriate water surface position of the container (liquid storage portion C) that holds the liquid L, thereby Excess liquid in part C can be detected.
  • the first conductive portion 1111 and the second conductive portion 1112 are electrically connected through the liquid L, that is, , the circuit is closed to the suction nozzle N, which is the first conductive part 1111, so the level of Vout becomes High.
  • the electrical connection between the first conductive portion 1111 and the second conductive portion 1112 is broken. state, that is, the circuit is no longer closed to the suction nozzle N, which is the first conductive portion 1111, and the level of Vout becomes Low. In this way, the position of the water surface of the liquid L can be detected from the level of Vout, and an excess of the liquid L can be detected.
  • the third embodiment is the same as the first embodiment except that the upstream end of the second conductive part 1112 is provided at the maximum appropriate water surface position of the container (liquid storage part C) holding the liquid L. Since it is the same, the explanation is omitted here.
  • FIG. 9 is a schematic cross-sectional view showing a flow direction cross section of the suction system 11 according to the fourth embodiment of the present technology.
  • a suction system 11 according to the fourth embodiment is a modification of the third embodiment shown in FIG. 8 described above.
  • the upstream end of the second conductive portion 1112 and the upstream end of the insulating portion 1113 are at the same height, but the fourth embodiment shown in FIG.
  • the suction system 11 according to the embodiment has a configuration in which the upstream end of the insulating portion 1113 extends further downward than the upstream end of the second conductive portion 1112 .
  • the suction system 11 according to the fourth embodiment shown in FIG. , the upstream end of the insulating portion 1113 is preferably extended below the upstream end of the second conductive portion 1112 .
  • FIG. 10 is a schematic cross-sectional view showing a flow direction cross section of the suction system 11 according to the fifth embodiment of the present technology.
  • FIG. 11 is an enlarged schematic cross-sectional view of the fifth embodiment of the suction system 11 according to the present technology, in which the cross section perpendicular to the flow direction is enlarged.
  • the suction system 11 according to the fifth embodiment has a configuration in which the first embodiment shown in FIG. 5 described above and the third embodiment shown in FIG. 8 described above are combined. That is, the suction system 11 according to the fifth embodiment includes both the second conductive portion 1112a for detecting the lack of the liquid L and the second conductive portion 1112b for detecting the excess of the liquid L. ing.
  • the upstream end portion of the second conductive portion 1112a for detecting the loss of the liquid L from the liquid containing portion C is the upstream side of the insulating portion 1113a, as in the second embodiment shown in FIG. It is also possible to provide side edges and steps.
  • the upstream end of the second conductive portion 1112b for detecting excess liquid L is separated from the upstream end of the insulating portion 1113b by a step, as in the fourth embodiment shown in FIG. It is also possible to provide
  • Detection of lack of liquid L using the second conductive part 1112a is the same as in the first embodiment, and detection of excess liquid L using the second conductive part 1112b is the same as in the third embodiment.
  • other structures are the same as those in the first and third embodiments, and thus descriptions thereof are omitted here.
  • FIG. 12 is a schematic cross-sectional view showing a flow direction cross section of the suction system 11 according to the sixth embodiment of the present technology.
  • the second conductive portion 1112 is provided downstream of the suction nozzle N, which is the first conductive portion 1111, via the insulating portion 1113.
  • lack of the liquid L can be detected before air is detected by the detection section. The principle will be described with reference to FIG.
  • FIG. 13 is an enlarged schematic diagram of the dashed circle portion in FIG. 13, that is, when the insulating portion 1113 is filled with the liquid L, the state in which the first conductive portion 1111 and the second conductive portion 1112 are electrically connected through the liquid L, that is, the circuit is closed to the suction nozzle N, which is the first conductive portion 1111, the level of Vout becomes High.
  • the electrical connection between the first conductive portion 1111 and the second conductive portion 1112 is broken, that is, the circuit is closed to the first conductive portion.
  • the suction nozzle N, which is 1111 is no longer closed, and the level of Vout becomes Low. In this way, the lack of liquid L can be detected by the level of Vout in state 3 of FIG. 13, ie, before air enters tube t.
  • the second conductive portion 1112 is provided downstream of the suction nozzle N, which is the first conductive portion 1111, the liquid L in the suction nozzle N is depleted. Then, the lack of the liquid L is detected, so the liquid L in the suction nozzle N is also detected by the detection unit 12, which will be described later. Therefore, the liquid L can be sucked to the limit.
  • the second conductive portion 1112 on the downstream side of the suction nozzle N, which is the first conductive portion 1111 .
  • FIG. 14 is a schematic cross-sectional view showing a flow direction cross section of the suction system 11 according to the seventh embodiment of the present technology.
  • the suction system 11 according to the seventh embodiment has a configuration in which the first embodiment shown in FIG. 5 described above and the sixth embodiment shown in FIG. 12 described above are combined. That is, the suction system 11 according to the seventh embodiment includes the second conductive portion 1112a for detecting loss of the liquid L from the liquid storage portion C and the second conductive portion 1112a for detecting loss of the liquid L from the suction nozzle N. and a second conductive portion 1112b are provided.
  • the upstream end portion of the second conductive portion 1112a for detecting the loss of the liquid L from the liquid containing portion C is the upstream side of the insulating portion 1113a, as in the second embodiment shown in FIG. It is also possible to provide side edges and steps.
  • the suction system 11 according to the seventh embodiment includes a second conductive part for detecting excess liquid L according to the third embodiment shown in FIG. 8 or the fourth embodiment shown in FIG. A portion 1112 may also be included.
  • Detection of loss of the liquid L from the liquid containing portion C using the second conductive portion 1112a is the same as in the first embodiment, and loss of the liquid L from the suction nozzle N using the second conductive portion 1112b. is the same as in the sixth embodiment. Further, since other structures are the same as those of the first and sixth embodiments, descriptions thereof are omitted here.
  • FIG. 15 is a schematic cross-sectional view showing a flow direction cross section of the suction system 11 according to the eighth embodiment of the present technology.
  • the suction nozzle N was formed of the first conductive portion 1111, but the suction nozzle N of the suction system 11 according to the eighth embodiment has conductivity. It is made up of materials that do not In the suction system 11 according to the eighth embodiment, a first conductive portion 1111 is provided downstream of the suction nozzle N, and a second conductive portion 1112 is provided downstream of the first conductive portion 1111 via an insulating portion 1113. .
  • the loss of the liquid L can be detected at the stage when air begins to enter the insulating portion 1113 . Since the principle of detection of lack of liquid L is the same as that of the suction system 11 according to the sixth embodiment, the explanation is omitted here.
  • the flow path P can pass a fluid composed of a sample flow (liquid L) containing a sample and a sheath flow that flows so as to enclose the sample flow.
  • This channel P may be provided in advance in the detection system 1 according to the present technology, but it is also possible to install a disposable chip T or the like provided with the channel P in the detection system 1 and perform detection. is.
  • the form of the flow path P is also not particularly limited and can be freely designed.
  • the flow path P formed in the chip T of two-dimensional or three-dimensional plastic, glass, or the like as shown in FIG. can also be used in the detection system 1 according to the present technology.
  • the channel width, channel depth, and channel cross-sectional shape of the channel P are not particularly limited as long as they can form a laminar flow, and can be designed freely.
  • a microchannel with a channel width of 1 mm or less can also be used in the detection system 1 .
  • a microchannel having a channel width of about 10 ⁇ m or more and 1 mm or less can be suitably used for the present technology.
  • the method of sending the liquid L is not particularly limited, and it can be made to flow through the channel P according to the form of the channel P to be used.
  • the case of the channel P formed in the chip T shown in FIG. 16 will be described.
  • the liquid L containing the sample is introduced into the sample liquid channel P11, and the sheath liquid is introduced into the two sheath liquid channels P12a and P12b.
  • the sample liquid flow path P11 and the sheath liquid flow paths P12a and P12b merge to form a main flow path P13.
  • sample liquid laminar flow sent in the sample liquid channel P11 and the sheath liquid laminar flows sent in the sheath liquid channels P12a and P12b join in the main channel P13, and the sample liquid laminar flow A sheath flow sandwiched by the sheath liquid laminar flow can be formed.
  • the sample that flows through the channel P can be labeled with one or more dyes such as fluorescent dyes.
  • fluorescent dyes that can be used in this technology include Cascade Blue, Pacific Blue, Fluorescein isothiocyanate (FITC), Phycoerythrin (PE), Propidium iodide (PI), Texas red (TR), Peridinin chlorophyll protein (PerCP ), Allophycocyanin (APC), 4',6-Diamidino-2-phenylindole (DAPI), Cy3, Cy5, Cy7, Brilliant Violet (BV421) and the like.
  • the detection unit 12 detects measurement target light generated from the sample by light irradiation emitted from the light source 121 .
  • the detection unit 12 detects the characteristics of the sample flowing through the main flow path P13.
  • the characteristic detection is not particularly limited, for example, in the case of optical detection, by irradiating a sample such as particles that are arranged in a row in the center of the three-dimensional laminar flow in the main flow path P13 and sent, Scattered light and fluorescence generated from the sample are detected by the detector 12 .
  • an irradiation system such as a condenser lens, a dichroic mirror, and a band-pass filter that collects and irradiates the laser to the cells may be configured.
  • the detection system is composed of, for example, a PMT (photomultiplier tube), an area imaging device such as a CCD or a CMOS device, or the like.
  • the light to be measured detected by the detection system of the detection unit 12 is light generated from the sample by irradiation with the measurement light. Specifically, for example, it is forward scattered light, side scattered light, scattered light such as Rayleigh scattering and Mie scattering. These light beams to be measured are converted into electrical signals, output to a processing unit 13, a control unit 14, a sorting unit 15, a storage unit 16, a display unit 17 and the like, which will be described later, and used to determine the optical properties of particles.
  • the detection unit 12 may magnetically or electrically detect cell characteristics.
  • microelectrodes are arranged to face the main flow path P13 of the chip T, and the resistance value, capacitance value (capacitance value), inductance value, impedance, change value of the electric field between the electrodes, or magnetization , magnetic field change, magnetic field change, etc. can be measured.
  • Processing unit 13 detects the amount of the liquid L based on the energization signal from the first conductive unit 1111 or the second conductive unit 1112 .
  • the suction system 11 when using the suction system 11 according to the first embodiment shown in FIG. 5, the second embodiment shown in FIG. 7, and the sixth to eighth embodiments shown in FIGS. Based on the energization signal from the second conductive part 1112 provided with the upstream end near the tip of the suction nozzle N and/or the second conductive part 1112 provided downstream of the first conductive part 1111 , to detect the lack of fluid.
  • the processing unit 13 can also be connected to the detection unit 12 and analyze detection signals obtained from samples detected by the detection unit 12 .
  • the processing unit 13 can correct the light detection value received from the detection unit 12 and calculate the feature amount of each sample.
  • a feature amount indicating the size, shape, internal structure, etc. of the sample is calculated from the detected values of the received fluorescence, forward scattered light, and backscattered light.
  • Control unit 14 controls the suction of the liquid L based on the amount information of the liquid L detected by the processor 13 . Specifically, control is performed to stop the suction of the liquid L when the lack or excess of the liquid L is detected. By stopping the suction of the liquid L when the lack of the liquid L is detected, the suction of air to the detection section can be prevented. Further, by stopping the suction of the liquid L when an excess of the liquid L is detected, it is possible to prevent the outflow of the liquid L due to stirring of the liquid L or the like.
  • Fractionation unit 15 The detection system 1 according to the present technology can include a sorting unit 15 for sorting samples.
  • the fractionation unit 15 is not essential, and may be a device for detecting the sample in the liquid L. However, based on the information detected by the detection unit 12 described above, the sample can also be fractionated.
  • the fractionation unit 15 fractionates the sample based on the information about the sample in the liquid L detected by the detection unit 12 .
  • particles can be sorted downstream of the channel P based on the analysis results of the size, shape, internal structure, etc. of the sample analyzed from the optical data.
  • the fractionation method will be described separately for each embodiment.
  • the vibrating element 151 to be used is not particularly limited, and a known one can be freely selected and used.
  • a piezo vibration element is one example.
  • the droplet size can be adjusted. It can be adjusted to generate droplets containing aliquots of the sample.
  • downstream of the main flow path P13 formed in the substrate T there are provided three branch flow paths, namely, the fractionation flow path P14 and the waste flow paths P15a and P15b.
  • a sample to be fractionated that has been determined to satisfy the characteristics is taken into the fractionation channel P14, and a sample that is not to be fractionated that has been determined to not satisfy the predetermined characteristics is not taken into the fractionation channel P14.
  • the two waste flow paths P15a and P15b so that the liquid can be sorted.
  • the sample to be sorted can be taken into the sorting channel P14 using a known method. This can be done by generating pressure and using this negative pressure to suck the sample liquid and the sheath liquid containing the sample to be sorted into the sorting channel P14.
  • the sample to be fractionated is taken into the fractionation channel P14. It is also possible to
  • the sample liquid reservoir B1 is provided in the sample liquid flow path P11
  • the sheath liquid reservoir B2 is provided in the sheath liquid flow paths P12a and P12b
  • the fractionation flow path P14 is divided.
  • a completely closed sorting device can be formed.
  • the detection system 1 according to the third embodiment shown in FIG. It is preferable to design to be a completely closed type such as
  • the suction system 11 according to the present technology can also be used for the completely closed detection system 1.
  • Storage unit 16 The detection system 1 according to the present technology can include a storage unit 16 that stores various data.
  • the storage unit 16 can store, for example, information on samples detected by the detection unit 12, records of information processing in the processing unit 13, and all other items related to detection.
  • the storage unit 16 can be provided in a cloud environment. In that case, it is also possible for each user to share various information recorded in the storage unit 16 on the cloud via the network.
  • the storage unit 16 is not essential in the present technology, and various data can be stored using an external storage device or the like.
  • the detection system 1 can include a display unit 17 that displays various types of information.
  • the display unit 17 can display all items related to detection, such as sample information detected by the detection unit 12 and various data processed by the processing unit 13 .
  • the display unit 17 is not essential, and an external display device may be connected.
  • the detection system 1 can include an input unit 18 that is a part operated by a user. A user can access and control each part through the input part 18 .
  • the input unit 18 is not essential, and an external operating device may be connected.
  • an external operating device for example, a mouse, a keyboard, or the like can be used as the input unit 18 .
  • the liquid suction method according to the present technology includes an energization step of energizing the first conductive portion 1111 or the second conductive portion 1112 using the suction system 11 according to the present technology described above, and Alternatively, a liquid amount detection step of detecting the amount of the liquid L based on the energization signal from the second conductive portion 1112 is performed.
  • the remaining amount of the liquid L is detected.
  • the suction system 11 according to the first embodiment shown in FIG. 5, the second embodiment shown in FIG. 7, or the sixth to eighth embodiments shown in FIGS. Based on the energization signal from the second conductive portion 1112 provided with the upstream end near the portion and/or the second conductive portion 1112 provided downstream of the first conductive portion 1111, the lack of the liquid L is detected. detect loss.
  • Example 1 liquid loss from the tip of the suction nozzle N was detected using the suction system 11 according to the first embodiment shown in FIG. Specifically, SUS is used for the suction nozzle N, which is the first conductive part 1111, an insulating sheet is wrapped around it, and a copper plate is wrapped around it as the second conductive part 1112, and the circuit shown in FIG. 5 is applied. and verified it.
  • SUS is used for the suction nozzle N, which is the first conductive part 1111, an insulating sheet is wrapped around it, and a copper plate is wrapped around it as the second conductive part 1112, and the circuit shown in FIG. 5 is applied. and verified it.
  • Event Rate is the number of samples detected by the laser spot per second
  • Vout is the High/Low level of the technique
  • Sample Aspirate Pressure is the pressure at which the nozzle aspirates the sample.
  • the sample suction pressure becomes unstable from 59 seconds onwards, so it can be seen that air begins to enter the laser spot from this point. Going back even further, Vout goes Low at 22 seconds, which is 37 seconds earlier than when air started to enter at the laser spot.
  • the Event Rate drops once and then rises, but the time when the Event Rate drops once is thought to be just before the connection between the sample solution and the sample solution at the tip of the suction nozzle N is broken. Also, the reason why the Event Rate increases after that is that although the sample is taken in at the same pressure, air enters the inside of the sample line from the tip of the suction nozzle N, and the load gradually decreases. This is probably because the amount of sample sucked per unit time increases.
  • the timing at which Vout becomes Low indicates any of the states 3 to 5 in FIG. .
  • Example 2 the lack of liquid from the suction nozzle N was detected using the suction system 11 according to the sixth embodiment shown in FIG. Specifically, SUS is used for the suction nozzle N, which is the first conductive portion 1111, a short sample line with a slightly thick inner diameter is connected to facilitate the passage of electricity, and a short second conductive portion 1112 is further connected thereon. , and a conventional sample line were connected to it, and the circuit shown in FIG. 12 was applied for actual verification. The results are shown in the graph of FIG. In the graph of FIG. 21, Event Rate is the number of samples per second detected by the laser spot, Vout is the high/low level of the technique, and sample suction pressure is the pressure at which the nozzle sucks up the sample.
  • Event Rate is the number of samples per second detected by the laser spot
  • Vout is the high/low level of the technique
  • sample suction pressure is the pressure at which the nozzle sucks up the sample.
  • a suction unit having a suction nozzle for sucking liquid The suction part is a first conductive portion; a suction system comprising a second conductive portion insulated from the first conductive portion; a detection unit that detects information about the sample in the liquid aspirated by the aspiration unit; a detection system.
  • the detection system according to (1) wherein part or all of the suction nozzle is composed of the first conductive portion.
  • the processing section includes the second conductive section having an upstream end near the tip of the suction nozzle and/or the second conductive section provided downstream of the first conductive section.
  • the detection system according to (6) which detects lack of liquid based on the energization signal of.
  • the processing unit is Based on an energization signal from the second conductive portion having an upstream end near the tip of the suction nozzle and/or from the second conductive portion provided downstream of the first conductive portion , detect the lack of fluid, any one of (6) to (8), wherein an excess of the liquid is detected based on an energization signal from the second conductive section having an upstream end provided at a water surface position of the maximum appropriate amount of the container holding the liquid.
  • the detection system described in . (10) The detection system according to any one of (6) to (9), further comprising a control unit that controls suction of the liquid based on information on the amount of the liquid detected by the processing unit.
  • a suction part having a suction nozzle for sucking liquid is provided, The suction part is a first conductive portion; A suction system comprising a second conductive portion insulated from the first conductive portion.
  • a method for sucking liquid using a suction unit having a suction nozzle for sucking liquid The suction part is a first conductive portion; a second conductive portion insulated from the first conductive portion; An energizing step of energizing the first conductive portion or the second conductive portion; a liquid amount detection step of detecting the amount of the liquid based on an energization signal from the first conductive portion or the second conductive portion; the liquid aspiration method.
  • Detection system 1 Suction system: 11 Liquid: L Suction part: 111 First conductive part: 1111 Second conductive part: 1112 Insulator: 1113 Suction nozzle: N Flow path: P Sample liquid flow path: P11 Sheath liquid flow path: P12a, P12b Main flow path: P13 Preparative flow path: P14 Waste channel: P15a, P15b Detector: 12 Light source: 121 Processing unit: 13 Control unit: 14 Preparative section: 15 Vibration element: 151 Counter electrodes: 152a, 152b Collection containers: 153a, 153b, 153c Sample liquid reservoir: B1 Sheath liquid reservoir: B2 Preparative liquid reservoir: B3 Waste liquid reservoir: B4 Storage unit: 16 Display part: 17 Input part: 18

Abstract

Provided is a suction technology that makes it possible to detect a remaining amount of liquid by means of a simple structure and can be easily reset. Provided is a detection system that has a suction system and a detection unit. The suction system comprises a suction unit that has a suction nozzle that suctions a liquid. The suction unit has a first conduction unit and a second conduction unit that is insulated from the first conduction unit. The detection unit detects information about a sample in the liquid suctioned by the suction unit. The detection system of the present technology makes it possible to detect the remaining amount of liquid before the liquid is completely gone from the suction system, i.e., before air is detected at the detection unit.

Description

検出システム、吸引システム、および液体吸引方法Detection system, aspiration system, and liquid aspiration method
 本技術は、液体中のサンプルの検出を行う検出システム、液体の吸引を行う吸引システム、および液体吸引方法に関する。 This technology relates to a detection system that detects a sample in liquid, an aspiration system that aspirates liquid, and a liquid aspiration method.
 液体状のサンプルを用いた各種検出や分析では、近年、自動的にサンプル液が吸引されて装置内へ導入され、各種装置における各種検出や分析が行われている。例えば、細胞や微生物などの微小粒子の分析や分取を行うフローサイトメータでは、一般的に、サンプルノズルの中心に孔が空いており、そこからサンプルを吸い込んで、装置においてサンプルからのデータを取得する。 In recent years, in various detections and analyzes using liquid samples, the sample liquid is automatically aspirated and introduced into the device, and various detections and analyzes are performed in various devices. For example, in a flow cytometer that analyzes and fractionates microparticles such as cells and microorganisms, there is generally a hole in the center of the sample nozzle, through which the sample is sucked, and data from the sample is collected in the instrument. get.
 このように、サンプル液の自動吸引技術が進む中、測定を続けていくとサンプル液が無くなり空気を吸い込むことで、測定データや装置の測定システムに不具合が発生するといった問題が生じる場合があった。 In this way, as the technology for automatically sucking the sample liquid progressed, there were cases where the sample liquid ran out and air was sucked in as the measurement continued, causing problems in the measurement data and the measurement system of the device. .
 これに対し、例えば、特許文献1では、検出部で検出した情報に基づき、ある時間区間における検出数に関連する特徴量を特定し、所定の閾値に基づいて前記特徴量が異常であると判定し、検出を終了するよう制御する技術が開示されている。特許文献1では、この技術が用いられた、空気を検知すると、検出が自動的に終了する検出装置が開示されている。 On the other hand, for example, in Patent Document 1, based on information detected by a detection unit, a feature amount related to the number of detections in a certain time interval is specified, and based on a predetermined threshold value, it is determined that the feature amount is abnormal. A technique is disclosed for controlling to terminate the detection. Japanese Patent Laid-Open No. 2002-200001 discloses a detection device that automatically terminates detection when air is detected, using this technology.
国際公開第2018/047442号パンフレットInternational Publication No. 2018/047442 Pamphlet
 前述の通り、液体状のサンプルを用いた各種検出や分析において、サンプル液の自動吸引技術が進む中、特許文献1に記載の技術のように、空気を吸い込んだ場合等、異常を検知した際に、検出を終了する技術は開発されつつある。 As described above, in various detections and analyzes using a liquid sample, while the automatic suction technology of the sample liquid is progressing, as in the technology described in Patent Document 1, when an abnormality is detected such as when air is sucked Finally, techniques for terminating detection are being developed.
 しかしながら、検出部において空気が検知されたということは、サンプル容器やサンプルチューブからは既にサンプル液が無くなっている状態であるため、復帰には、時間とプロシージャが必要となる。 However, the detection of air in the detection unit means that the sample liquid has already disappeared from the sample container and sample tube, so recovery requires time and procedures.
 サンプル容器内のサンプル残量を検知する方法としては、例えば、サンプルの重量測定等が考えられるが、装置に重量測定機構を備えるためには、装置の複雑化や増大化の問題や、サンプルの撹拌等の他の機構との両立の困難性の問題がある。 As a method for detecting the remaining amount of sample in the sample container, for example, weight measurement of the sample is conceivable. There is a problem of compatibility with other mechanisms such as stirring.
 そこで、本技術では、簡単な構造で液体の残量を検知でき、復帰も簡便な吸引技術を提供することを主目的とする。 Therefore, the main purpose of this technology is to provide a suction technology that can detect the remaining amount of liquid with a simple structure and is easy to restore.
 本技術では、まず、液体を吸引する吸引ノズルを有する吸引部を備え、
 該吸引部は、
 第1導電部と、
 該第1導電部と絶縁された第2導電部と、を有する、吸引システムと、
 前記吸引部によって吸引された液体中のサンプルに関する情報を検出する検出部と、
 を有する、検出システムを提供する。
 本技術に係る検出システムの前記吸引ノズルは、その一部または全部が、前記第1導電部で構成することができる。
 本技術に係る検出システムの前記第2導電部の上流側の端部を、前記吸引ノズルの先端部付近に備えることができる。
 本技術に係る検出システムの前記第2導電部は、前記第1導電部の下流側に備えることができる。
 本技術に係る検出システムの前記第2導電部の上流側の端部を、前記液体を保持する容器の最大適量水面位置に備えることができる。
 本技術に係る検出システムには、前記第1導電部、または、前記第2導電部からの通電信号に基づき、前記液体の量を検知する処理部を備えることができる。
 本技術に係る検出システムの前記処理部は、前記吸引ノズルの先端部付近に上流側の端部が備えられた前記第2導電部、および/または、前記第1導電部の下流側に備えられた前記第2導電部からの通電信号に基づき、液体の欠失を検知することができる。
 本技術に係る検出システムの前記処理部は、前記液体を保持する容器の最大適量水面位置に上流側の端部が備えられた前記第2導電部からの通電信号に基づき、液体の過多を検知することができる。
 本技術に係る検出システムの前記処理部は、
 前記吸引ノズルの先端部付近に上流側の端部が備えられた前記第2導電部、および/または、前記第1導電部の下流側に備えられた前記第2導電部からの通電信号に基づき、液体の欠失を検知し、
 前記液体を保持する容器の最大適量水面位置に上流側の端部が備えられた前記第2導電部からの通電信号に基づき、液体の過多を検知することができる。
 本技術に係る検出システムには、前記処理部で検知された前記液体の量情報に基づいて、前記液体の吸引の制御を行う制御部を備えることができる。
 本技術に係る検出システムの前記検出部では、前記サンプルからの光を検出することができる。
 本技術に係る検出システムで検出することができる前記サンプルは、粒子であってもよい。
 この場合、粒子としては、細胞を検出することができる。
 本技術に係る検出システムには、前記粒子を分取する分取部を備えることもできる。
In the present technology, first, a suction unit having a suction nozzle for sucking liquid is provided,
The suction part is
a first conductive portion;
a suction system comprising a second conductive portion insulated from the first conductive portion;
a detection unit that detects information about the sample in the liquid aspirated by the aspiration unit;
A detection system is provided, comprising:
Part or all of the suction nozzle of the detection system according to the present technology may be configured with the first conductive portion.
The upstream end of the second conductive portion of the detection system according to the present technology may be provided near the tip of the suction nozzle.
The second conductive portion of the detection system according to the present technology may be provided downstream of the first conductive portion.
An upstream end of the second conductive portion of the detection system according to the present technology may be provided at a maximum water level position of the container holding the liquid.
A detection system according to the present technology can include a processing unit that detects the amount of the liquid based on an energization signal from the first conductive unit or the second conductive unit.
The processing section of the detection system according to the present technology is provided downstream of the second conductive section having an upstream end near the tip of the suction nozzle and/or the first conductive section. It is possible to detect lack of liquid based on the energization signal from the second conductive portion.
The processing unit of the detection system according to the present technology detects excess liquid based on an energization signal from the second conductive unit having an upstream end at a position of the maximum appropriate water surface of the container holding the liquid. can do.
The processing unit of the detection system according to the present technology,
Based on an energization signal from the second conductive portion having an upstream end near the tip of the suction nozzle and/or from the second conductive portion provided downstream of the first conductive portion , detect the lack of fluid,
Excessive amount of liquid can be detected based on an energization signal from the second conductive section, the upstream end of which is provided at the maximum appropriate water surface position of the container holding the liquid.
The detection system according to the present technology can include a control unit that controls suction of the liquid based on information on the amount of the liquid detected by the processing unit.
The detection unit of the detection system according to the present technology can detect light from the sample.
The sample that can be detected by a detection system according to the present technology may be particles.
In this case, cells can be detected as particles.
The detection system according to the present technology can also include a sorting unit that sorts the particles.
 本技術では、次に、液体を吸引する吸引ノズルを有する吸引部を備え、
 該吸引部は、
 第1導電部と、
 該第1導電部と絶縁された第2導電部と、を有する、吸引システムを提供する。
In the present technology, next, a suction unit having a suction nozzle for sucking liquid is provided,
The suction part is
a first conductive portion;
An aspiration system is provided, comprising the first conductive portion and an insulated second conductive portion.
 本技術では、更に、液体を吸引する吸引ノズルを有する吸引部を用いて、液体を吸引する方法であって、
 該吸引部は、
 第1導電部と、
 該第1導電部と絶縁された第2導電部と、を有し、
 前記第1導電部、または、前記第2導電部へ通電する通電工程と、
 前記第1導電部、または、前記第2導電部からの通電信号に基づき、前記液体の量を検知する液体量検知工程と、
 を行う、液体吸引方法を提供する。
 本技術に係る液体吸引方法では、前記検知工程において検知された液体の量に基づき、吸引を制御する制御工程を行うこともできる。
The present technology further provides a method of sucking liquid using a suction unit having a suction nozzle for sucking liquid, comprising:
The suction part is
a first conductive portion;
a second conductive portion insulated from the first conductive portion;
An energizing step of energizing the first conductive portion or the second conductive portion;
a liquid amount detection step of detecting the amount of the liquid based on an energization signal from the first conductive portion or the second conductive portion;
To provide a liquid suction method for performing
In the liquid suction method according to the present technology, it is also possible to perform a control step of controlling suction based on the amount of liquid detected in the detection step.
 本技術において、「上流側」、「下流側」とは、液体が吸引される際に液体の流通方向に対する上流側、下流側を意味する。 In the present technology, "upstream side" and "downstream side" mean the upstream side and downstream side with respect to the direction of liquid flow when the liquid is sucked.
 本技術において、「粒子」には、細胞や微生物、リボソーム等の生体関連微小粒子、或いはラテックス粒子やゲル粒子、工業用粒子等の合成粒子などが広く含まれ得る。 In the present technology, "particles" can include a wide range of bio-related microparticles such as cells, microorganisms, and ribosomes, or synthetic particles such as latex particles, gel particles, and industrial particles.
 生体関連微小粒子には、各種細胞を構成する染色体、リボソーム、ミトコンドリア、オルガネラ(細胞小器官)などが含まれる。細胞には、動物細胞(例えば、血球系細胞など)および植物細胞が含まれる。微生物には、大腸菌等の細菌類、タバコモザイクウイルス等のウイルス類、イースト菌等の菌類などが含まれる。更に、生体関連微小粒子には、核酸やタンパク質、これらの複合体等の生体関連高分子をも包含される。また、工業用粒子は、例えば、有機または無機高分子材料、金属等であってもよい。有機高分子材料には、ポリスチレン、スチレン・ジビニルベンゼン、ポリメチルメタクリレート等が含まれる。無機高分子材料には、ガラス、シリカ、磁性体材料等が含まれる。金属には、金コロイド、アルミ等が含まれる。これらの微小粒子の形状は、一般には球形であるのが普通であるが、本技術では、非球形であってもよく、また、その大きさ、質量等も特に限定されない。 Biologically relevant microparticles include chromosomes, ribosomes, mitochondria, and organelles that make up various cells. Cells include animal cells (eg, blood cells, etc.) and plant cells. Microorganisms include bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, and fungi such as yeast. Furthermore, bio-related microparticles include bio-related macromolecules such as nucleic acids, proteins, and complexes thereof. Technical particles may also be, for example, organic or inorganic polymeric materials, metals, and the like. Organic polymeric materials include polystyrene, styrene-divinylbenzene, polymethyl methacrylate, and the like. Inorganic polymeric materials include glass, silica, magnetic materials, and the like. Metals include colloidal gold, aluminum, and the like. The shape of these fine particles is generally spherical, but in the present technology, they may be non-spherical, and their size, mass, etc. are not particularly limited.
本技術に係る検出システム1の一例を示すブロック図である。1 is a block diagram showing an example of a detection system 1 according to the present technology; FIG. 本技術に係る吸引システム11の第1実施形態を示す正面図である。1 is a front view showing a first embodiment of a suction system 11 according to the present technology; FIG. 図2のA-A線断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIG. 2; 本技術に係る吸引システム11の第1実施形態の断面を示す断面模式図である。It is a cross-sectional schematic diagram which shows the cross section of 1st Embodiment of the suction system 11 which concerns on this technique. 本技術に係る吸引システム11の第1実施形態の通流方向断面を示す断面模式図である。It is a cross-sectional schematic diagram which shows the flow direction cross section of 1st Embodiment of the suction system 11 which concerns on this technique. 本技術に係る吸引システム11の第1実施形態の通流方向に対して垂直方向断面を拡大した拡大断面模式図である。1 is an enlarged cross-sectional schematic diagram in which a section perpendicular to a flow direction of a first embodiment of a suction system 11 according to the present technology is enlarged; FIG. 本技術に係る吸引システム11の第2実施形態の通流方向断面を示す断面模式図である。It is a cross-sectional schematic diagram which shows the flow direction cross section of 2nd Embodiment of the suction system 11 which concerns on this technique. 本技術に係る吸引システム11の第3実施形態の通流方向断面を示す断面模式図である。It is a cross-sectional schematic diagram which shows the flow direction cross section of 3rd Embodiment of the suction system 11 which concerns on this technique. 本技術に係る吸引システム11の第4実施形態の通流方向断面を示す断面模式図である。It is a cross-sectional schematic diagram which shows the flow direction cross section of 4th Embodiment of the suction system 11 which concerns on this technique. 本技術に係る吸引システム11の第5実施形態の通流方向断面を示す断面模式図である。It is a cross-sectional schematic diagram which shows the flow direction cross section of 5th Embodiment of the suction system 11 which concerns on this technique. 本技術に係る吸引システム11の第5実施形態の通流方向に対して垂直方向断面を拡大した拡大断面模式図である。FIG. 11 is an enlarged cross-sectional schematic view of a suction system 11 according to a fifth embodiment of the present technology, in which a vertical cross section is enlarged with respect to the flow direction; 本技術に係る吸引システム11の第6実施形態の通流方向断面を示す断面模式図である。It is a cross-sectional schematic diagram which shows the flow direction cross section of 6th Embodiment of the suction system 11 which concerns on this technique. 図12の破線円部分の拡大模式図である。FIG. 13 is an enlarged schematic diagram of a dashed circle portion in FIG. 12 ; 本技術に係る吸引システム11の第7実施形態の通流方向断面を示す断面模式図である。It is a cross-sectional schematic diagram which shows the flow direction cross section of 7th Embodiment of the suction system 11 which concerns on this technique. 本技術に係る吸引システム11の第8実施形態の通流方向断面を示す断面模式図である。FIG. 12 is a schematic cross-sectional view showing a flow direction cross section of an eighth embodiment of the suction system 11 according to the present technology; 本技術に係る検出システム1の第1実施形態を模式的に示す概念図である。1 is a conceptual diagram schematically showing a first embodiment of a detection system 1 according to the present technology; FIG. 本技術に係る検出システム1の第2実施形態を模式的に示す概念図である。It is a conceptual diagram which shows typically 2nd Embodiment of the detection system 1 which concerns on this technique. 本技術に係る検出システム1の第3実施形態を模式的に示す概念図である。FIG. 3 is a conceptual diagram schematically showing a third embodiment of a detection system 1 according to the present technology; 本技術に係る液体吸引方法を用いた液体の吸引制御方法の一例を示すフロー図である。FIG. 10 is a flow chart showing an example of a liquid suction control method using the liquid suction method according to the present technology; 実施例1の結果を示す図面代用グラフである。4 is a drawing-substituting graph showing the results of Example 1. FIG. 実施例2の結果を示す図面代用グラフである。7 is a drawing-substituting graph showing the results of Example 2. FIG.
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。
 以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。
 1.検出システム1
 (1)吸引システム11
 <第1実施形態>
 <第2実施形態>
 <第3実施形態>
 <第4実施形態>
 <第5実施形態>
 <第6実施形態>
 <第7実施形態>
 <第8実施形態>
 (2)流路P(P11、P12a、P12b、P13)
 (3)検出部12
 (4)処理部13
 (5)制御部14
 (6)分取部15
 (7)記憶部16
 (8)表示部17
 (9)入力部18
 2.液体吸引方法
Preferred embodiments for carrying out the present technology will be described below with reference to the drawings.
The embodiments described below are examples of representative embodiments of the present technology, and the scope of the present technology should not be interpreted narrowly. The description will be given in the following order.
1. Detection system 1
(1) Suction system 11
<First embodiment>
<Second embodiment>
<Third Embodiment>
<Fourth Embodiment>
<Fifth Embodiment>
<Sixth embodiment>
<Seventh embodiment>
<Eighth embodiment>
(2) Flow path P (P11, P12a, P12b, P13)
(3) Detector 12
(4) Processing unit 13
(5) Control unit 14
(6) Fractionation section 15
(7) Storage unit 16
(8) Display unit 17
(9) Input section 18
2. Liquid suction method
 1.検出システム1
 図1は、本技術に係る検出システム1の一例を示すブロック図である。本技術に係る検出システム1は、少なくとも、吸引システム11と、検出部12と、を備える。また、必要に応じて、流路P、処理部13、制御部14、分取部15、記憶部16、表示部17、入力部18等を備えることも可能である。
1. Detection system 1
FIG. 1 is a block diagram showing an example of a detection system 1 according to the present technology. A detection system 1 according to the present technology includes at least a suction system 11 and a detection unit 12 . Moreover, it is also possible to provide a channel P, a processing unit 13, a control unit 14, a sorting unit 15, a storage unit 16, a display unit 17, an input unit 18, and the like, as necessary.
 図1に示す例では、検出装置内に吸引システム11を備えているが、本技術ではこの形態に限定されず、例えば、検出装置とは別に吸引装置を備え、これらを接続した形態とすることも可能である。また、図1に示す例では、処理部13、制御部14、分取部15、記憶部16、表示部17、入力部18を、情報処理装置内に備えているが、本技術ではこの形態に限定されず、例えば、情報処理機能を備えた検出装置とし、検出装置内に、これらの一部または全部を備えることも可能である。以下、検出システム1について、詳細に説明する。 In the example shown in FIG. 1, the suction system 11 is provided in the detection device, but the present technology is not limited to this form, and for example, a suction device may be provided separately from the detection device and connected to each other. is also possible. In the example shown in FIG. 1, the processing unit 13, the control unit 14, the sorting unit 15, the storage unit 16, the display unit 17, and the input unit 18 are included in the information processing apparatus. For example, it is also possible to use a detection device having an information processing function and to include some or all of these in the detection device. The detection system 1 will be described in detail below.
 (1)吸引システム11
 図2は、本技術に係る吸引システム11の第1実施形態を示す正面図であり、図3は、A-A線断面図である。図2および図3には、説明の都合上、吸引システム11と検出装置とを接続するチューブtと、液体Lを収容する液体収容部Cを示しているが、本技術に係る吸引システム11には、チューブtと液体収容部Cは必須ではなく、検出装置に備えられているチューブや容器、使い捨てのチューブや容器を用いることも可能である。なお、図示しないが、吸引システム11には、吸引のためのポンプや加圧機構等を備えることも可能である。
(1) Suction system 11
FIG. 2 is a front view showing the first embodiment of the suction system 11 according to the present technology, and FIG. 3 is a cross-sectional view taken along line AA. 2 and 3 show a tube t that connects the suction system 11 and the detection device and a liquid storage section C that stores the liquid L for convenience of explanation. , the tube t and the liquid containing portion C are not essential, and it is also possible to use tubes and containers provided in the detection device, and disposable tubes and containers. Although not shown, the suction system 11 may be provided with a pump, a pressurizing mechanism, and the like for suction.
 図4は、液体Lの減り方の一例を示す概念図である。図4の1は、液体Lが潤沢にある状態である。図4の2は、液体Lが吸引されて、液体Lとノズル先端高さが同じになった状態を示す。更に液体Lが吸引されると、図4の3に示すように、液体Lとノズル先端が表面張力で繋がった状態になる。更に液体Lが吸引されると、図4の4に示すように、液体Lとノズル先端の表面張力が切れて、ノズル先端に円弧状の液滴が残り、次第にノズル先端の液滴が小さくなる(図4の5参照)。そして、更に液体Lが吸引されると、図4の6に示すように、ノズル先端の液滴がなくなり、空気が吸われてしまう。 FIG. 4 is a conceptual diagram showing an example of how the liquid L is reduced. 1 in FIG. 4 is a state in which the liquid L is abundant. 2 in FIG. 4 shows a state in which the liquid L is sucked and the height of the tip of the nozzle is the same as that of the liquid L. FIG. When the liquid L is further sucked, the liquid L and the tip of the nozzle are connected by surface tension, as indicated by 3 in FIG. When the liquid L is further sucked, as shown in 4 in FIG. 4, the surface tension between the liquid L and the tip of the nozzle is broken, leaving an arcuate droplet at the tip of the nozzle, and the droplet at the tip of the nozzle gradually becomes smaller. (See 5 in FIG. 4). Then, when the liquid L is further sucked, as indicated by 6 in FIG. 4, the droplets at the tip of the nozzle disappear and air is sucked.
 前述の通り、従来技術では、検出装置の検出部において空気が検知されることにより、異常を検知していたため、その際は、吸引部111における液体Lは、既に、無くなっている状態であった。一方、本技術に係る吸引システム11を用いれば、液体Lが吸引システム11から完全に無くなってしまう前、即ち、検出部において空気が検知される前に、液体Lの残量を検知することができる。以下、本技術に係る吸引システム11が液体Lの残量を検知する方法について、各実施形態を示しながら詳細に説明する。 As described above, in the conventional technology, an abnormality is detected by detecting air in the detection unit of the detection device. . On the other hand, if the suction system 11 according to the present technology is used, it is possible to detect the remaining amount of the liquid L before the liquid L completely disappears from the suction system 11, that is, before air is detected by the detection unit. can. Hereinafter, a method for detecting the remaining amount of the liquid L by the suction system 11 according to the present technology will be described in detail while showing each embodiment.
 <第1実施形態>
 図5は、本技術に係る吸引システム11の第1実施形態の通流方向断面を示す断面模式図であり、吸引システム11の断面構造の説明のために、図3のA-A線断面図の幅方向を拡大して模式化した図面である。図6は、本技術に係る吸引システム11の第1実施形態の通流方向に対して垂直方向断面を拡大した拡大断面模式図であり、図2のB-B線断面の拡大模式図である。
<First embodiment>
FIG. 5 is a schematic cross-sectional view showing a flow direction cross-section of the suction system 11 according to the first embodiment of the present technology, and is a cross-sectional view along the line AA in FIG. 3 for explaining the cross-sectional structure of the suction system 11. It is a schematic diagram of the enlarged width direction. FIG. 6 is an enlarged schematic cross-sectional view of the first embodiment of the suction system 11 according to the present technology in a direction perpendicular to the flow direction, and is an enlarged schematic cross-sectional view of the BB line cross section of FIG. .
 本技術に係る吸引システム11は、液体Lを吸引する吸引ノズルNを有する吸引部111を備える。その他、必要に応じて、検出装置へ接続するためのチューブt、液体Lを収容する容器(液体収容部C)、図示しないが吸引のためのポンプ等、液体Lの吸引に必要な一般的な機材を、1種または2種以上自由に備えることができる。 The suction system 11 according to the present technology includes a suction section 111 having a suction nozzle N for sucking the liquid L. In addition, if necessary, a tube t for connecting to the detection device, a container (liquid storage portion C) containing the liquid L, a pump for suction (not shown), etc. One or two or more types of equipment can be freely provided.
 本技術に係る吸引システム11の吸引部111には、第1導電部1111と、第2導電部1112と、を備えることを特徴とする。第1導電部1111と、第2導電部1112とは、例えば、絶縁部1113を介して絶縁された状態である。 The suction part 111 of the suction system 11 according to the present technology is characterized by including a first conductive part 1111 and a second conductive part 1112 . The first conductive portion 1111 and the second conductive portion 1112 are in a state of being insulated via an insulating portion 1113, for example.
 第1実施形態に係る吸引システム11は、吸引ノズルNを、第1導電部1111で構成し、その周縁に絶縁部1113を挟んだ状態で第2導電部1112が覆った構造である(図6参照)。そして、第1導電部1111である吸引ノズルNをVccに抵抗を介して接続し、第2導電部1112をVoutに抵抗を介して接続する。 The suction system 11 according to the first embodiment has a structure in which the suction nozzle N is composed of a first conductive portion 1111 and covered with a second conductive portion 1112 with an insulating portion 1113 interposed therebetween (FIG. 6). reference). The suction nozzle N, which is the first conductive portion 1111, is connected to Vcc via a resistor, and the second conductive portion 1112 is connected to Vout via a resistor.
 液体Lが前述した図4の1および2の状態では、第1導電部1111と第2導電部1112とが液体Lを介して電気的に接続した状態、即ち、回路が第1導電部1111である吸引ノズルNに対して閉じられるため、VoutのレベルはHighとなる。液体Lが前述した図4の3~5のいずれかの状態において、第1導電部1111と第2導電部1112との電気的接続が切れ、即ち、回路が第1導電部1111である吸引ノズルNに対して閉じられなくなり、VoutのレベルはLowとなる。このように、液体Lが前述した図4の6の状態、即ち、吸引ノズルNが空気を吸引する前に、Voutのレベルによって液体Lの欠失を検知することができる。 When the liquid L is in the states 1 and 2 of FIGS. Since a certain suction nozzle N is closed, the level of Vout becomes High. 4, the electrical connection between the first conductive portion 1111 and the second conductive portion 1112 is broken, that is, the suction nozzle whose circuit is the first conductive portion 1111 N is no longer closed, and the level of Vout becomes Low. Thus, the lack of the liquid L can be detected by the level of Vout before the liquid L is in the state of 6 in FIG. 4 described above, that is, before the suction nozzle N sucks air.
 本技術に係る吸引システム11では、液体Lが吸引システム11から完全に無くなってしまう前の状態を検知することができるため、従来技術に比べて、復帰が非常に簡便である。 Since the suction system 11 according to the present technology can detect the state before the liquid L completely disappears from the suction system 11, recovery is very simple compared to the conventional technology.
 図5に示す第1実施形態に係る吸引システム11では、第1導電部1111をVccに接続し、第2導電部1112をVoutに接続しているが、逆でも本技術の効果を得ることができる。即ち、第1導電部1111をVoutに接続し、第2導電部1112をVccに接続することも可能である。 In the suction system 11 according to the first embodiment shown in FIG. 5, the first conductive portion 1111 is connected to Vcc and the second conductive portion 1112 is connected to Vout, but the effect of the present technology can be obtained even in reverse. can. That is, it is possible to connect the first conductive portion 1111 to Vout and connect the second conductive portion 1112 to Vcc.
 Vccは、サンプルへの影響と必要な検知頻度を考慮して、パルス等の時間的に限定した加圧が好ましい。例えば、1秒間に0.5~2回、1~10Vで3~30μsのパルスを挙げることができる。また、抵抗数は、Rを3~30kΩ、Rを0.5~5MΩなどを挙げることができるが、検知の感度により別の定数とすることも可能である。 Vcc is preferably a temporally limited pressurization such as a pulse, considering the effect on the sample and the necessary detection frequency. For example, a pulse of 1-10 V and 3-30 μs at 0.5-2 times per second can be mentioned. The number of resistors may be 3 to 30 kΩ for R 0 and 0.5 to 5 MΩ for R 1 , but other constants may be used depending on the sensitivity of detection.
 液体Lの減り方としては、一般的なフローサイトメータに於いて、概ねサンプルの消費量は240μL/分(=4μL/秒)以下であり、この場合、サンプルノズルの先端に残る水滴が10μL以上あるならば、それらを吸い切るためには、2.5秒かかるため、1秒間に0.5~2回の検知は十分である。 As for how the liquid L is reduced, in a general flow cytometer, the sample consumption is generally 240 μL/min (=4 μL/sec) or less, and in this case, the water droplets remaining at the tip of the sample nozzle are 10 μL or more. If there are, it takes 2.5 seconds to suck them out, so 0.5-2 detections per second is sufficient.
 <第2実施形態>
 図7は、本技術に係る吸引システム11の第2実施形態の通流方向断面を示す断面模式図である。前述した図5に示す第1実施形態および図7に示す第2実施形態も、第1導電部1111および第2導電部1112共に、吸引ノズルNの先端部付近、即ち、液体収容部Cの底面付近に備えられているが、図5に示す第1実施形態に係る吸引システム11では、第1導電部1111、第2導電部1112、および絶縁部1113の上流側の端部が同じ高さで構成されているのに対し、図7に示す第2実施形態に係る吸引システム11では、吸引部111の端部が、第2導電部1112の端部のみに下流側に上がった構成である。
<Second embodiment>
FIG. 7 is a schematic cross-sectional view showing a flow direction cross section of the suction system 11 according to the second embodiment of the present technology. In the first embodiment shown in FIG. 5 and the second embodiment shown in FIG. 7, both the first conductive portion 1111 and the second conductive portion 1112 are located near the tip of the suction nozzle N, that is, the bottom surface of the liquid storage portion C. Although provided in the vicinity, in the suction system 11 according to the first embodiment shown in FIG. In contrast, in the suction system 11 according to the second embodiment shown in FIG. 7, the end of the suction portion 111 is raised downstream only to the end of the second conductive portion 1112 .
 例えば、絶縁部1113の厚みや、液体Lの粘度等により、図5に示す第1実施形態に係る吸引システム11の構成では、図4の3~5のいずれの状態においても、通電状態が解除されない場合は、図7に示す第2実施形態に係る吸引システム11のように、第1導電部1111、第2導電部1112、および絶縁部1113の上流側の端部に段差を設けることで、吸引ノズルNが空気を吸引する前に、液体の欠失を検知することができる。 For example, in the configuration of the suction system 11 according to the first embodiment shown in FIG. 5, the energized state is canceled in any of the states 3 to 5 in FIG. If not, as in the suction system 11 according to the second embodiment shown in FIG. The lack of liquid can be detected before the suction nozzle N sucks air.
 ただし、第2導電部1112の上流側の端部を上げすぎてしまうと、液体収容部C内の液体Lの残量が多い状態で、VoutのレベルがLowとなってしまう。一方、図5に示す第1実施形態に係る吸引システム11のように、第1導電部1111、第2導電部1112、および絶縁部1113の上流側の端部を同じ高さとすることで、液体収容部C内の液体Lを、極限まで吸引可能となるメリットもあるため、絶縁部1113の厚みや、液体Lの粘度等に応じて、第1導電部1111、第2導電部1112、および絶縁部1113の上流側の端部の形態を設計することが望ましい。 However, if the upstream end portion of the second conductive portion 1112 is raised too much, the level of Vout becomes Low with the liquid L remaining in the liquid containing portion C being large. On the other hand, like the suction system 11 according to the first embodiment shown in FIG. Since there is also an advantage that the liquid L in the storage portion C can be sucked to the limit, depending on the thickness of the insulating portion 1113, the viscosity of the liquid L, etc., the first conductive portion 1111, the second conductive portion 1112, and the insulation It is desirable to design the configuration of the upstream end of portion 1113 .
 第2実施形態は、第1導電部1111、第2導電部1112、および絶縁部1113の上流側の端部の形態以外は、第1実施形態と同様であるため、ここでは説明を割愛する。 The second embodiment is the same as the first embodiment except for the shapes of the upstream end portions of the first conductive portion 1111, the second conductive portion 1112, and the insulating portion 1113, so the description is omitted here.
 <第3実施形態>
 図8は、本技術に係る吸引システム11の第3実施形態の通流方向断面を示す断面模式図である。第3実施形態に係る吸引システム11は、第2導電部1112の上流側の端部が、液体Lを保持する容器(液体収容部C)の最大適量水面位置に備えられている。
<Third Embodiment>
FIG. 8 is a schematic cross-sectional view showing a flow direction cross section of the suction system 11 according to the third embodiment of the present technology. In the suction system 11 according to the third embodiment, the upstream end portion of the second conductive portion 1112 is provided at the maximum appropriate water surface position of the container (liquid storage portion C) holding the liquid L.
 撹拌等の動作により、液体収容部Cに液体Lを入れすぎると、こぼれる場合があるため、液体収容部Cの大きさや各種動作に応じて、液体Lの最大適量がある。そこで、第3実施形態に係る吸引システム11では、第2導電部1112の上流側の端部を、液体Lを保持する容器(液体収容部C)の最大適量水面位置に備えることで、液体収容部C中の液体の過多を検知することができる。 If too much liquid L is put into the liquid storage part C due to an operation such as stirring, it may spill out. Therefore, in the suction system 11 according to the third embodiment, the upstream end portion of the second conductive portion 1112 is provided at the maximum appropriate water surface position of the container (liquid storage portion C) that holds the liquid L, thereby Excess liquid in part C can be detected.
 液体Lが第2導電部1112の上流側の端部を超える位置まで満たされている場合、第1導電部1111と第2導電部1112とが液体Lを介して電気的に接続した状態、即ち、回路が第1導電部1111である吸引ノズルNに対して閉じられるため、VoutのレベルはHighとなる。一方、図8に示す例のように、液体Lの水面が第2導電部1112の上流側の端部より下の場合、第1導電部1111と第2導電部1112との電気的接続が切れた状態、即ち、回路が第1導電部1111である吸引ノズルNに対して閉じられなくなり、VoutのレベルはLowとなる。このように、Voutのレベルによって液体Lの水面の位置を検知することができ、液体Lの過多を検知することができる。 When the liquid L is filled up to the position exceeding the upstream end of the second conductive portion 1112, the first conductive portion 1111 and the second conductive portion 1112 are electrically connected through the liquid L, that is, , the circuit is closed to the suction nozzle N, which is the first conductive part 1111, so the level of Vout becomes High. On the other hand, as in the example shown in FIG. 8, when the water surface of the liquid L is below the upstream end of the second conductive portion 1112, the electrical connection between the first conductive portion 1111 and the second conductive portion 1112 is broken. state, that is, the circuit is no longer closed to the suction nozzle N, which is the first conductive portion 1111, and the level of Vout becomes Low. In this way, the position of the water surface of the liquid L can be detected from the level of Vout, and an excess of the liquid L can be detected.
 第3実施形態は、第2導電部1112の上流側の端部が、液体Lを保持する容器(液体収容部C)の最大適量水面位置に備えられていること以外は、第1実施形態と同様であるため、ここでは説明を割愛する。 The third embodiment is the same as the first embodiment except that the upstream end of the second conductive part 1112 is provided at the maximum appropriate water surface position of the container (liquid storage part C) holding the liquid L. Since it is the same, the explanation is omitted here.
 <第4実施形態>
 図9は、本技術に係る吸引システム11の第4実施形態の通流方向断面を示す断面模式図である。第4実施形態に係る吸引システム11は、前述した図8に示す第3実施形態の変形例である。図8に示す第3実施形態に係る吸引システム11は、第2導電部1112の上流側の端部と絶縁部1113の上流側の端部が同じ高さであるが、図9に示す第4実施形態に係る吸引システム11は、絶縁部1113の上流側の端部が、第2導電部1112の上流側の端部よりも下側に伸びた構成である。
<Fourth Embodiment>
FIG. 9 is a schematic cross-sectional view showing a flow direction cross section of the suction system 11 according to the fourth embodiment of the present technology. A suction system 11 according to the fourth embodiment is a modification of the third embodiment shown in FIG. 8 described above. In the suction system 11 according to the third embodiment shown in FIG. 8, the upstream end of the second conductive portion 1112 and the upstream end of the insulating portion 1113 are at the same height, but the fourth embodiment shown in FIG. The suction system 11 according to the embodiment has a configuration in which the upstream end of the insulating portion 1113 extends further downward than the upstream end of the second conductive portion 1112 .
 例えば、外部洗浄の水滴等の残りにより、第1導電部1111と第2導電部1112とが通電してしまう誤動作を防止するためにも、図9に示す第4実施形態に係る吸引システム11のように、絶縁部1113の上流側の端部を、第2導電部1112の上流側の端部よりも下側に伸ばすことが好ましい。 For example, the suction system 11 according to the fourth embodiment shown in FIG. , the upstream end of the insulating portion 1113 is preferably extended below the upstream end of the second conductive portion 1112 .
 第4実施形態のその他の構成については、前記第3実施形態と同様であるため、ここでは説明を割愛する。 Other configurations of the fourth embodiment are the same as those of the third embodiment, so the description is omitted here.
 <第5実施形態>
 図10は、本技術に係る吸引システム11の第5実施形態の通流方向断面を示す断面模式図である。図11は、本技術に係る吸引システム11の第5実施形態の通流方向に対して垂直方向断面を拡大した拡大断面模式図である。第5実施形態に係る吸引システム11は、前述した図5に示す第1実施形態と、前述した図8に示す第3実施形態とを、合わせた構成である。即ち、第5実施形態に係る吸引システム11は、液体Lの欠失を検知するための第2導電部1112aと、液体Lの過多を検知するための第2導電部1112bとが、両方備えられている。
<Fifth Embodiment>
FIG. 10 is a schematic cross-sectional view showing a flow direction cross section of the suction system 11 according to the fifth embodiment of the present technology. FIG. 11 is an enlarged schematic cross-sectional view of the fifth embodiment of the suction system 11 according to the present technology, in which the cross section perpendicular to the flow direction is enlarged. The suction system 11 according to the fifth embodiment has a configuration in which the first embodiment shown in FIG. 5 described above and the third embodiment shown in FIG. 8 described above are combined. That is, the suction system 11 according to the fifth embodiment includes both the second conductive portion 1112a for detecting the lack of the liquid L and the second conductive portion 1112b for detecting the excess of the liquid L. ing.
 なお、液体Lの液体収容部Cからの欠失を検知するための第2導電部1112aの上流側の端部は、前述した図7に示す第2実施形態のように、絶縁部1113aの上流側の端部と段差を設けることも可能である。 Note that the upstream end portion of the second conductive portion 1112a for detecting the loss of the liquid L from the liquid containing portion C is the upstream side of the insulating portion 1113a, as in the second embodiment shown in FIG. It is also possible to provide side edges and steps.
 また、液体Lの過多を検知するための第2導電部1112bの上流側の端部は、前述した図9に示す第4実施形態のように、絶縁部1113bの上流側の端部と段差を設けることも可能である。 Further, the upstream end of the second conductive portion 1112b for detecting excess liquid L is separated from the upstream end of the insulating portion 1113b by a step, as in the fourth embodiment shown in FIG. It is also possible to provide
 第2導電部1112aを用いた液体Lの欠失の検知は、第1実施形態と同様であり、第2導電部1112bを用いた液体Lの過多の検知は、第3実施形態と同様である。また、その他の構造についても、第1実施形態および第3実施形態と同様であるため、ここでは説明を割愛する。 Detection of lack of liquid L using the second conductive part 1112a is the same as in the first embodiment, and detection of excess liquid L using the second conductive part 1112b is the same as in the third embodiment. . Also, other structures are the same as those in the first and third embodiments, and thus descriptions thereof are omitted here.
 <第6実施形態>
 図12は、本技術に係る吸引システム11の第6実施形態の通流方向断面を示す断面模式図である。第6実施形態に係る吸引システム11は、第2導電部1112が、第1導電部1111である吸引ノズルNの下流側に、絶縁部1113を介して備えられている。第6実施形態に係る吸引システム11では、検出部において空気が検知される前に、液体Lの欠失を検知することができる。その原理を、図13を用いて説明する。
<Sixth embodiment>
FIG. 12 is a schematic cross-sectional view showing a flow direction cross section of the suction system 11 according to the sixth embodiment of the present technology. In the suction system 11 according to the sixth embodiment, the second conductive portion 1112 is provided downstream of the suction nozzle N, which is the first conductive portion 1111, via the insulating portion 1113. As shown in FIG. In the suction system 11 according to the sixth embodiment, lack of the liquid L can be detected before air is detected by the detection section. The principle will be described with reference to FIG.
 図13は、図12の破線円部分の拡大模式図である。図13の1の状態、即ち、絶縁部1113が液体Lで満たされている場合、第1導電部1111と第2導電部1112とが液体Lを介して電気的に接続した状態、即ち、回路が第1導電部1111である吸引ノズルNに対して閉じられるため、VoutのレベルはHighとなる。次に、図13の2の状態、即ち、絶縁部1113に空気が入り始めた場合、第1導電部1111と第2導電部1112との電気的接続が切れ、即ち、回路が第1導電部1111である吸引ノズルNに対して閉じられなくなり、VoutのレベルはLowとなる。このように、図13の3の状態、即ち、チューブtに空気が入る前に、Voutのレベルによって液体Lの欠失を検知することができる。 FIG. 13 is an enlarged schematic diagram of the dashed circle portion in FIG. 13, that is, when the insulating portion 1113 is filled with the liquid L, the state in which the first conductive portion 1111 and the second conductive portion 1112 are electrically connected through the liquid L, that is, the circuit is closed to the suction nozzle N, which is the first conductive portion 1111, the level of Vout becomes High. Next, in the state of 2 in FIG. 13, that is, when air begins to enter the insulating portion 1113, the electrical connection between the first conductive portion 1111 and the second conductive portion 1112 is broken, that is, the circuit is closed to the first conductive portion. The suction nozzle N, which is 1111, is no longer closed, and the level of Vout becomes Low. In this way, the lack of liquid L can be detected by the level of Vout in state 3 of FIG. 13, ie, before air enters tube t.
 第6実施形態に係る吸引システム11では、第2導電部1112が、第1導電部1111である吸引ノズルNの下流側に備えられているため、吸引ノズルN内の液体Lが欠失した状態になると液体Lの欠失が検知されるため、吸引ノズルN内の液体Lも後述する検出部12での検出に進めることになる。従って、液体Lを極限まで吸引することができる。その結果、例えば、吸引ノズルN内の液体Lにレア検体が含まれている場合等、液体Lを最後まで検出段階へ進めたい場合等は、第6実施形態に係る吸引システム11のように、第2導電部1112を、第1導電部1111である吸引ノズルNの下流側に備えることが好ましい。 In the suction system 11 according to the sixth embodiment, since the second conductive portion 1112 is provided downstream of the suction nozzle N, which is the first conductive portion 1111, the liquid L in the suction nozzle N is depleted. Then, the lack of the liquid L is detected, so the liquid L in the suction nozzle N is also detected by the detection unit 12, which will be described later. Therefore, the liquid L can be sucked to the limit. As a result, for example, when the liquid L in the suction nozzle N contains a rare specimen, and when it is desired to advance the liquid L to the detection stage until the end, like the suction system 11 according to the sixth embodiment, It is preferable to provide the second conductive portion 1112 on the downstream side of the suction nozzle N, which is the first conductive portion 1111 .
 なお、第6実施形態に係る吸引システム11でも、図5に示す第1実施形態と同様に、第1導電部1111をVoutに接続し、第2導電部1112をVccに接続することも可能である。 In the suction system 11 according to the sixth embodiment, as in the first embodiment shown in FIG. 5, it is also possible to connect the first conductive portion 1111 to Vout and connect the second conductive portion 1112 to Vcc. be.
 <第7実施形態>
 図14は、本技術に係る吸引システム11の第7実施形態の通流方向断面を示す断面模式図である。第7実施形態に係る吸引システム11は、前述した図5に示す第1実施形態と、前述した図12に示す第6実施形態とを、合わせた構成である。即ち、第7実施形態に係る吸引システム11は、液体Lの液体収容部Cからの欠失を検知するための第2導電部1112aと、液体Lの吸引ノズルNからの欠失を検知するための第2導電部1112bとが、両方備えられている。
<Seventh embodiment>
FIG. 14 is a schematic cross-sectional view showing a flow direction cross section of the suction system 11 according to the seventh embodiment of the present technology. The suction system 11 according to the seventh embodiment has a configuration in which the first embodiment shown in FIG. 5 described above and the sixth embodiment shown in FIG. 12 described above are combined. That is, the suction system 11 according to the seventh embodiment includes the second conductive portion 1112a for detecting loss of the liquid L from the liquid storage portion C and the second conductive portion 1112a for detecting loss of the liquid L from the suction nozzle N. and a second conductive portion 1112b are provided.
 なお、液体Lの液体収容部Cからの欠失を検知するための第2導電部1112aの上流側の端部は、前述した図7に示す第2実施形態のように、絶縁部1113aの上流側の端部と段差を設けることも可能である。 Note that the upstream end portion of the second conductive portion 1112a for detecting the loss of the liquid L from the liquid containing portion C is the upstream side of the insulating portion 1113a, as in the second embodiment shown in FIG. It is also possible to provide side edges and steps.
 また、図示しないが、第7実施形態に係る吸引システム11には、前述した図8に示す第3実施形態、または、図9に示す第4実施形態の液体Lの過多を検知する第2導電部1112を更に備えることも可能である。 Further, although not shown, the suction system 11 according to the seventh embodiment includes a second conductive part for detecting excess liquid L according to the third embodiment shown in FIG. 8 or the fourth embodiment shown in FIG. A portion 1112 may also be included.
 第2導電部1112aを用いた液体Lの液体収容部Cからの欠失の検知は、第1実施形態と同様であり、第2導電部1112bを用いた液体Lの吸引ノズルNからの欠失の検知は、第6実施形態と同様である。また、その他の構造についても、第1実施形態および第6実施形態と同様であるため、ここでは説明を割愛する。 Detection of loss of the liquid L from the liquid containing portion C using the second conductive portion 1112a is the same as in the first embodiment, and loss of the liquid L from the suction nozzle N using the second conductive portion 1112b. is the same as in the sixth embodiment. Further, since other structures are the same as those of the first and sixth embodiments, descriptions thereof are omitted here.
 <第8実施形態>
 図15は、本技術に係る吸引システム11の第8実施形態の通流方向断面を示す断面模式図である。前述した第1実施形態~第7実施形態までは、吸引ノズルNを第1導電部1111で形成していたが、第8実施形態に係る吸引システム11の吸引ノズルNは、導電性を有さない材料で構成している。そして、第8実施形態に係る吸引システム11は、吸引ノズルNの下流に第1導電部1111が、第1導電部1111の下流に絶縁部1113を介して第2導電部1112が備えられている。
<Eighth Embodiment>
FIG. 15 is a schematic cross-sectional view showing a flow direction cross section of the suction system 11 according to the eighth embodiment of the present technology. In the first to seventh embodiments described above, the suction nozzle N was formed of the first conductive portion 1111, but the suction nozzle N of the suction system 11 according to the eighth embodiment has conductivity. It is made up of materials that do not In the suction system 11 according to the eighth embodiment, a first conductive portion 1111 is provided downstream of the suction nozzle N, and a second conductive portion 1112 is provided downstream of the first conductive portion 1111 via an insulating portion 1113. .
 第8実施形態に係る吸引システム11では、絶縁部1113に空気が入り始めた段階で、液体Lの欠失を検知することができる。液体Lの欠失検知の原理は、前記第6実施形態に係る吸引システム11と同様であるため、ここでは説明を割愛する。 In the suction system 11 according to the eighth embodiment, the loss of the liquid L can be detected at the stage when air begins to enter the insulating portion 1113 . Since the principle of detection of lack of liquid L is the same as that of the suction system 11 according to the sixth embodiment, the explanation is omitted here.
 なお、第8実施形態に係る吸引システム11でも、図5に示す第1実施形態と同様に、第1導電部1111をVoutに接続し、第2導電部1112をVccに接続することも可能である。 In the suction system 11 according to the eighth embodiment, as in the first embodiment shown in FIG. 5, it is also possible to connect the first conductive portion 1111 to Vout and connect the second conductive portion 1112 to Vcc. be.
 (2)流路P(P11、P12a、P12b、P13)
 前述した吸引システム11で吸引された液体Lは、後述する検出部12に送られ、液体L中のサンプルの検出が行なわれる。サンプルの検出は、例えば、図16に示す第1実施形態に係る検出システム1に例示するように、サンプルを含む液体Lを、流路P内に通流させた状態で行うことができる。
(2) Flow path P (P11, P12a, P12b, P13)
The liquid L sucked by the suction system 11 described above is sent to the detection section 12, which will be described later, and the sample in the liquid L is detected. The detection of the sample can be performed in a state where the liquid L containing the sample is caused to flow through the channel P, as exemplified in the detection system 1 according to the first embodiment shown in FIG. 16, for example.
 流路Pは、サンプルを含むサンプル流(液体L)と、該サンプル流を内包するように流れるシース流と、からなる流体を通流させることができる。この流路Pは、本技術に係る検出システム1に予め備えられていてもよいが、流路Pが設けられた使い捨てのチップT等を、検出システム1に設置し、検出を行うことも可能である。 The flow path P can pass a fluid composed of a sample flow (liquid L) containing a sample and a sheath flow that flows so as to enclose the sample flow. This channel P may be provided in advance in the detection system 1 according to the present technology, but it is also possible to install a disposable chip T or the like provided with the channel P in the detection system 1 and perform detection. is.
 流路Pの形態も特に限定されず、自由に設計することができる。例えば、図16に示すような2次元又は3次元のプラスチックやガラス等のチップT内に形成した流路Pに限らず、図17に示す第2実施形態に係る検出システム1のように、従来のフローサイトメータで用いられているような流路Pも、本技術に係る検出システム1に用いることができる。 The form of the flow path P is also not particularly limited and can be freely designed. For example, not only the flow path P formed in the chip T of two-dimensional or three-dimensional plastic, glass, or the like as shown in FIG. can also be used in the detection system 1 according to the present technology.
 また、前記流路Pの流路幅、流路深さ、流路断面形状も、層流を形成し得る形態であれば特に限定されず、自由に設計することができる。例えば、流路幅1mm以下のマイクロ流路も、検出システム1に用いることが可能である。特に、流路幅10μm以上1mm以下程度のマイクロ流路は、本技術に好適に用いることができる。 Further, the channel width, channel depth, and channel cross-sectional shape of the channel P are not particularly limited as long as they can form a laminar flow, and can be designed freely. For example, a microchannel with a channel width of 1 mm or less can also be used in the detection system 1 . In particular, a microchannel having a channel width of about 10 μm or more and 1 mm or less can be suitably used for the present technology.
 液体Lの送流方法は特に限定されず、用いる流路Pの形態に応じて、流路P内を通流させることができる。例えば、図16に示すチップT内に形成した流路Pの場合を説明する。サンプルを含む液体Lはサンプル液流路P11に、また、シース液は2本のシース液流路P12a、P12bに、それぞれ導入される。サンプル液流路P11とシース液流路P12a、P12bは合流して主流路P13となる。サンプル液流路P11内を送液されるサンプル液層流と、シース液流路P12a、P12b内を送液されるシース液層流と、は主流路P13内において合流し、サンプル液層流がシース液層流に挟み込まれたシースフローを形成することができる。 The method of sending the liquid L is not particularly limited, and it can be made to flow through the channel P according to the form of the channel P to be used. For example, the case of the channel P formed in the chip T shown in FIG. 16 will be described. The liquid L containing the sample is introduced into the sample liquid channel P11, and the sheath liquid is introduced into the two sheath liquid channels P12a and P12b. The sample liquid flow path P11 and the sheath liquid flow paths P12a and P12b merge to form a main flow path P13. The sample liquid laminar flow sent in the sample liquid channel P11 and the sheath liquid laminar flows sent in the sheath liquid channels P12a and P12b join in the main channel P13, and the sample liquid laminar flow A sheath flow sandwiched by the sheath liquid laminar flow can be formed.
 流路Pを通流させるサンプルは、1種又は2種以上の蛍光色素等の色素で標識することができる。この場合、本技術で使用可能な蛍光色素としては、例えば、Cascade Blue、Pacific Blue、Fluorescein isothiocyanate(FITC)、Phycoerythrin(PE)、Propidium iodide(PI)、Texas red(TR)、Peridinin chlorophyll protein(PerCP)、Allophycocyanin(APC)、4’,6-Diamidino-2-phenylindole(DAPI)、Cy3、Cy5、Cy7、Brilliant Violet(BV421)等が挙げられる。 The sample that flows through the channel P can be labeled with one or more dyes such as fluorescent dyes. In this case, fluorescent dyes that can be used in this technology include Cascade Blue, Pacific Blue, Fluorescein isothiocyanate (FITC), Phycoerythrin (PE), Propidium iodide (PI), Texas red (TR), Peridinin chlorophyll protein (PerCP ), Allophycocyanin (APC), 4',6-Diamidino-2-phenylindole (DAPI), Cy3, Cy5, Cy7, Brilliant Violet (BV421) and the like.
 (3)検出部12
 検出部12は、光源121から発せられる光照射によってサンプルから発生する測定対象光を検出する。検出部12は、主流路P13を通流中のサンプルの特性検出を行う。当該特性検出は特に限定されるものではないが、例えば光学的検出の場合、主流路P13中を3次元層流の中心に一列に配列して送流される粒子等のサンプルに対するレーザの照射により、サンプルから発生する散乱光や蛍光が検出部12によって検出される。
(3) Detector 12
The detection unit 12 detects measurement target light generated from the sample by light irradiation emitted from the light source 121 . The detection unit 12 detects the characteristics of the sample flowing through the main flow path P13. Although the characteristic detection is not particularly limited, for example, in the case of optical detection, by irradiating a sample such as particles that are arranged in a row in the center of the three-dimensional laminar flow in the main flow path P13 and sent, Scattered light and fluorescence generated from the sample are detected by the detector 12 .
 この光照射及び検出では、レーザ光源の他に、細胞に対してレーザを集光・照射する集光レンズやダイクロイックミラー、バンドパスフィルター等の照射系も構成されていてもよい。検出系は、例えば、PMT(photomultiplier tube)や、CCDやCMOS素子等のエリア撮像素子等によって構成される。 In this light irradiation and detection, in addition to the laser light source, an irradiation system such as a condenser lens, a dichroic mirror, and a band-pass filter that collects and irradiates the laser to the cells may be configured. The detection system is composed of, for example, a PMT (photomultiplier tube), an area imaging device such as a CCD or a CMOS device, or the like.
 検出部12の検出系により検出される測定対象光は、測定光の照射によってサンプルから発生する光である。具体的には、例えば、前方散乱光や側方散乱光、レイリー散乱やミー散乱等の散乱光などである。これらの測定対象光は電気信号に変換され、後述する処理部13、制御部14、分取部15、記憶部16、および表示部17等に出力され、粒子の光学特性判定に供される。 The light to be measured detected by the detection system of the detection unit 12 is light generated from the sample by irradiation with the measurement light. Specifically, for example, it is forward scattered light, side scattered light, scattered light such as Rayleigh scattering and Mie scattering. These light beams to be measured are converted into electrical signals, output to a processing unit 13, a control unit 14, a sorting unit 15, a storage unit 16, a display unit 17 and the like, which will be described later, and used to determine the optical properties of particles.
 なお、検出部12は、磁気的、或いは、電気的に細胞の特性を検出するものであってもよい。この場合には、例えば、チップTの主流路P13に微小電極を対向させて配設し、抵抗値、容量値(キャパシタンス値)、インダクタンス値、インピーダンス、電極間の電界の変化値、或いは、磁化、磁界変化、磁場変化等を測定することができる。 Note that the detection unit 12 may magnetically or electrically detect cell characteristics. In this case, for example, microelectrodes are arranged to face the main flow path P13 of the chip T, and the resistance value, capacitance value (capacitance value), inductance value, impedance, change value of the electric field between the electrodes, or magnetization , magnetic field change, magnetic field change, etc. can be measured.
 (4)処理部13
 処理部13では、第1導電部1111、または、第2導電部1112からの通電信号に基づき、液体Lの量の検知が行なわれる。
(4) Processing unit 13
The processing unit 13 detects the amount of the liquid L based on the energization signal from the first conductive unit 1111 or the second conductive unit 1112 .
 具体的には、図5に示す第1実施形態、図7に示す第2実施形態、および図12~15に示す第6~8実施形態に係る吸引システム11を用いる場合、処理部13は、吸引ノズルNの先端部付近に上流側の端部が備えられた第2導電部1112、および/または、第1導電部1111の下流側に備えられた第2導電部1112からの通電信号に基づき、液体の欠失を検知する。 Specifically, when using the suction system 11 according to the first embodiment shown in FIG. 5, the second embodiment shown in FIG. 7, and the sixth to eighth embodiments shown in FIGS. Based on the energization signal from the second conductive part 1112 provided with the upstream end near the tip of the suction nozzle N and/or the second conductive part 1112 provided downstream of the first conductive part 1111 , to detect the lack of fluid.
 また、図8に示す第3実施形態、および図9に示す第4実施形態に係る吸引システム11を用いる場合、処理部13は、液体Lを保持する液体収容部Cの最大適量水面位置に上流側の端部が備えられた第2導電部1112からの通電信号に基づき、液体の過多を検知する。 Further, when using the suction system 11 according to the third embodiment shown in FIG. 8 and the fourth embodiment shown in FIG. Based on the energization signal from the second conductive part 1112 provided with the side end, excess liquid is detected.
 また、図10に示す第5実施形態に係る吸引システム11を用いる場合、処理部13は、吸引ノズルNの先端部付近に上流側の端部が備えられた第2導電部1112からの通電信号に基づき、液体Lの欠失を検知し、液体Lを保持する液体収容部Cの最大適量水面位置に上流側の端部が備えられた第2導電部1112からの通電信号に基づき、液体の過多を検知する。 Further, when using the suction system 11 according to the fifth embodiment shown in FIG. based on the energization signal from the second conductive part 1112 whose upstream end is provided at the maximum appropriate water surface position of the liquid storage part C holding the liquid L. Detect excess.
 処理部13は、検出部12と接続し、検出部12で検出したサンプルから得られた検出信号の解析も行うことができる。例えば、処理部13では、検出部12より受け取った光の検出値を補正し、各サンプルの特徴量を算出することができる。具体的には、受光した蛍光、前方散乱光及び後方散乱光の検出値よりサンプルの大きさ、形態、内部構造等を示す特徴量を算出する。また、算出した特徴量と事前に入力部18より受け取った分取条件等に基づき分取判断を行い、分取制御信号を生成することもできる。 The processing unit 13 can also be connected to the detection unit 12 and analyze detection signals obtained from samples detected by the detection unit 12 . For example, the processing unit 13 can correct the light detection value received from the detection unit 12 and calculate the feature amount of each sample. Specifically, a feature amount indicating the size, shape, internal structure, etc. of the sample is calculated from the detected values of the received fluorescence, forward scattered light, and backscattered light. Further, it is also possible to perform fractionation determination based on the calculated feature quantity and the fractionation conditions received in advance from the input unit 18 and generate a fractionation control signal.
 (5)制御部14
 制御部14では、処理部13で検知された液体Lの量情報に基づいて、液体Lの吸引の制御が行なわれる。具体的には、液体Lの欠失や過多を検知した際に、液体Lの吸引を停止する制御が行なわれる。液体Lの欠失が検知された場合に液体Lの吸引を停止することで、検出部への空気の吸引を防止することができる。また、液体Lの過多を検知した場合に液体Lの吸引を停止することで、液体Lの撹拌等による液体Lの流出等を防止することができる。
(5) Control unit 14
The controller 14 controls the suction of the liquid L based on the amount information of the liquid L detected by the processor 13 . Specifically, control is performed to stop the suction of the liquid L when the lack or excess of the liquid L is detected. By stopping the suction of the liquid L when the lack of the liquid L is detected, the suction of air to the detection section can be prevented. Further, by stopping the suction of the liquid L when an excess of the liquid L is detected, it is possible to prevent the outflow of the liquid L due to stirring of the liquid L or the like.
 なお、液体Lの欠失や過多を検知して、液体Lの吸引が停止された際、後述する表示部17にて表示したり、メールや電話等の予め設定された連絡先に、自動的に連絡したりすることも可能である。 In addition, when the lack or excess of the liquid L is detected and the suction of the liquid L is stopped, it is displayed on the display unit 17 described later, or automatically sent to a preset contact such as e-mail or telephone. It is also possible to contact
 (6)分取部15
 本技術に係る検出システム1には、サンプルを分取するための分取部15を備えることができる。本技術に係る検出システム1において、分取部15は必須ではなく、液体L内のサンプルの検出を行うための装置としてもよいが、前述した検出部12で検出された情報に基づいて、サンプルを分取することも可能である。
(6) Fractionation unit 15
The detection system 1 according to the present technology can include a sorting unit 15 for sorting samples. In the detection system 1 according to the present technology, the fractionation unit 15 is not essential, and may be a device for detecting the sample in the liquid L. However, based on the information detected by the detection unit 12 described above, the sample can also be fractionated.
 分取部15では、検出部12により検出された液体L中のサンプルに関する情報に基づいて、サンプルの分取が行われる。例えば、分取部15では、光データから解析されたサンプルの大きさ、形態、内部構造等の解析結果に基づいて、流路Pの下流において、粒子の分取を行うことができる。以下、各実施形態に分けて分取方法を説明する。 The fractionation unit 15 fractionates the sample based on the information about the sample in the liquid L detected by the detection unit 12 . For example, in the sorting section 15, particles can be sorted downstream of the channel P based on the analysis results of the size, shape, internal structure, etc. of the sample analyzed from the optical data. Hereinafter, the fractionation method will be described separately for each embodiment.
 例えば、図16に示す第1実施形態に係る検出システム1や、図17に示す第2実施形態に係る検出システム1では、例えば、所定の振動数で振動する振動素子151などを用いて、主流路P13の全体若しくは一部に振動を加えることで、主流路P13の吐出口Oから出た液柱の所定の箇所(ブレイクオフポイントBOP)にて液滴Dを発生させる。なお、この場合、用いる振動素子151は特に限定されず、公知のものを自由に選択して用いることができる。一例としては、ピエゾ振動素子などを挙げることができる。また、サンプル液流路P11とシース液流路P12a、P12b、及び主流路P13への送液量、吐出口の径、振動素子151の振動数などを調整することにより、液滴の大きさを調整し、サンプルを一定量ずつ含む液滴を発生させることができる。 For example, in the detection system 1 according to the first embodiment shown in FIG. 16 and the detection system 1 according to the second embodiment shown in FIG. By applying vibration to the whole or part of the path P13, droplets D are generated at a predetermined point (break-off point BOP) of the liquid column coming out of the ejection port O of the main path P13. In this case, the vibrating element 151 to be used is not particularly limited, and a known one can be freely selected and used. One example is a piezo vibration element. In addition, by adjusting the amount of liquid supplied to the sample liquid flow path P11, the sheath liquid flow paths P12a and P12b, and the main flow path P13, the diameter of the ejection port, the vibration frequency of the vibration element 151, and the like, the droplet size can be adjusted. It can be adjusted to generate droplets containing aliquots of the sample.
 次に、検出部12により検出された液体L中のサンプルに関する情報に基づいて解析されたサンプルの大きさ、形態、内部構造等の解析結果に基づいて、プラスまたはマイナスの電荷を荷電する。そして、荷電された液滴は、電圧が印加された対向電極152a、152bによって、その進路が所望の方向へ変更され、回収容器153a、153b、153cへ分取される。 Next, based on the analysis results of the size, shape, internal structure, etc. of the sample analyzed based on the information on the sample in the liquid L detected by the detection unit 12, positive or negative charges are applied. Then, the charged droplets are changed in a desired direction by counter electrodes 152a and 152b to which a voltage is applied, and collected into collection containers 153a, 153b and 153c.
 また、例えば、図18に示す実施形態では、基板Tに形成された主流路P13の下流に、分取流路P14、及び、廃棄流路P15a、P15bの3つの分岐流路を設け、所定の特性を満たすと判定された分取対象のサンプルを分取流路P14に取り込み、所定の特性を満たさないと判定された非分取対象のサンプルは、分取流路P14内に取り込まれることなく、2本の廃棄流路P15a、P15bのいずれか一方に流れるようにすることで分取することができる。 Further, for example, in the embodiment shown in FIG. 18, downstream of the main flow path P13 formed in the substrate T, there are provided three branch flow paths, namely, the fractionation flow path P14 and the waste flow paths P15a and P15b. A sample to be fractionated that has been determined to satisfy the characteristics is taken into the fractionation channel P14, and a sample that is not to be fractionated that has been determined to not satisfy the predetermined characteristics is not taken into the fractionation channel P14. , the two waste flow paths P15a and P15b, so that the liquid can be sorted.
 分取対象のサンプルの分取流路P14内への取り込みは、公知の方法を用いて行うことができるが、例えば、ピエゾ素子等の振動素子(図示しない)によって分取流路P14内に負圧を発生させ、この負圧を利用して分取対象のサンプルを含むサンプル液及びシース液を分取流路P14内に吸い込むことによって行うことができる。また、図示しないが、バルブ電磁力、または流体ストリーム(気体または液体)等を用いて、層流方向の制御または変化を行うことで、分取対象のサンプルの分取流路P14内への取り込みを行うことも可能である。 The sample to be sorted can be taken into the sorting channel P14 using a known method. This can be done by generating pressure and using this negative pressure to suck the sample liquid and the sheath liquid containing the sample to be sorted into the sorting channel P14. In addition, although not shown, by controlling or changing the laminar flow direction using a valve electromagnetic force, a fluid stream (gas or liquid), or the like, the sample to be fractionated is taken into the fractionation channel P14. It is also possible to
 図18に示す第3実施形態に係る検出システム1では、サンプル液流路P11にサンプル液貯留部B1を、シース液流路P12a、P12bにシース液貯留部B2を、分取流路P14に分取液貯留部B3を、廃棄流路P15a、P15bに廃液貯留部B4を、それぞれ連通させて接続することで、完全閉鎖型の分取装置とすることができる。例えば、分取対象のサンプルが、細胞製剤等に使用するための細胞等である場合は、滅菌環境を維持し、コンタミネーションを防止するため、図18に示す第3実施形態に係る検出システム1のような完全閉鎖型になるように設計することが好ましい。 In the detection system 1 according to the third embodiment shown in FIG. 18, the sample liquid reservoir B1 is provided in the sample liquid flow path P11, the sheath liquid reservoir B2 is provided in the sheath liquid flow paths P12a and P12b, and the fractionation flow path P14 is divided. By connecting the liquid collecting portion B3 and the waste liquid storing portion B4 to the waste flow paths P15a and P15b, a completely closed sorting device can be formed. For example, when the sample to be fractionated is cells or the like for use in cell preparations or the like, in order to maintain a sterile environment and prevent contamination, the detection system 1 according to the third embodiment shown in FIG. It is preferable to design to be a completely closed type such as
 このように、本技術に係る吸引システム11は、完全閉鎖型の検出システム1に用いることも可能である。 In this way, the suction system 11 according to the present technology can also be used for the completely closed detection system 1.
 (7)記憶部16
 本技術に係る検出システム1には、各種データを記憶させる記憶部16を備えることができる。記憶部16では、例えば、検出部12によって検出されたサンプルの情報、処理部13における情報処理の記録等、検出に関わるあらゆる事項を記憶することができる。
(7) Storage unit 16
The detection system 1 according to the present technology can include a storage unit 16 that stores various data. The storage unit 16 can store, for example, information on samples detected by the detection unit 12, records of information processing in the processing unit 13, and all other items related to detection.
 また、本技術では、記憶部16をクラウド環境に設けることもできる。その場合、ネットワークを介して、各ユーザーがクラウド上の記憶部16に記録された各種情報を、共用することも可能である。 Also, in the present technology, the storage unit 16 can be provided in a cloud environment. In that case, it is also possible for each user to share various information recorded in the storage unit 16 on the cloud via the network.
 なお、本技術において、記憶部16は必須ではなく、外部の記憶装置等を用いて、各種データの記憶を行うことも可能である。 Note that the storage unit 16 is not essential in the present technology, and various data can be stored using an external storage device or the like.
 (8)表示部17
 本技術に係る検出システム1には、各種情報を表示する表示部17を備えることができる。表示部17では、例えば、検出部12によって検出されたサンプルの情報、処理部13における情報処理された各種データ等、検出に関わるあらゆる事項を表示することができる。
(8) Display unit 17
The detection system 1 according to the present technology can include a display unit 17 that displays various types of information. The display unit 17 can display all items related to detection, such as sample information detected by the detection unit 12 and various data processed by the processing unit 13 .
 本技術において、表示部17は必須ではなく、外部の表示装置を接続してもよい。表示部17としては、例えば、ディスプレイやプリンタなどを用いることができる。 In the present technology, the display unit 17 is not essential, and an external display device may be connected. As the display unit 17, for example, a display, a printer, or the like can be used.
 (9)入力部18
 本技術に係る検出システム1には、ユーザーが操作するための部位である入力部18を備えることができる。ユーザーは、入力部18を通じて、各部にアクセスし、各部を制御することができる。
(9) Input section 18
The detection system 1 according to the present technology can include an input unit 18 that is a part operated by a user. A user can access and control each part through the input part 18 .
 本技術において、入力部18は必須ではなく、外部の操作装置を接続してもよい。入力部18としては、例えば、マウスやキーボード等を用いることができる。 In the present technology, the input unit 18 is not essential, and an external operating device may be connected. For example, a mouse, a keyboard, or the like can be used as the input unit 18 .
 2.液体吸引方法
 本技術に係る液体吸引方法は、前述した本技術に係る吸引システム11を用いて、第1導電部1111、または、第2導電部1112へ通電する通電工程と、第1導電部1111、または、第2導電部1112からの通電信号に基づき、液体Lの量を検知する液体量検知工程と、を行う方法である。
2. Liquid Suction Method The liquid suction method according to the present technology includes an energization step of energizing the first conductive portion 1111 or the second conductive portion 1112 using the suction system 11 according to the present technology described above, and Alternatively, a liquid amount detection step of detecting the amount of the liquid L based on the energization signal from the second conductive portion 1112 is performed.
 本技術に係る液体吸引方法では、検知工程において検知された液体の量に基づき、吸引を制御する制御工程を行うことができる。制御工程の具体的な一例を、図19のフロー図を用いて説明する。 In the liquid suction method according to the present technology, it is possible to perform a control process for controlling suction based on the amount of liquid detected in the detection process. A specific example of the control process will be described with reference to the flowchart of FIG.
 まず、図8に示す第3実施形態、または図9に示す第4実施形態に係る吸引システム11を用いて、液体Lを保持する液体収容部Cの最大適量水面位置に上流側の端部が備えられた第2導電部1112からの通電信号に基づき、液体Lが規定量未満か否かを検知する。液体Lの過多が検知された場合、エラーを出して吸引を終了する。液体Lの過多が検知されない場合、吸引が開始されて、液体L中のサンプルの検出が行なわれる。 First, using the suction system 11 according to the third embodiment shown in FIG. 8 or the fourth embodiment shown in FIG. Based on the energization signal from the provided second conductive part 1112, it is detected whether or not the amount of the liquid L is less than the specified amount. When an excess of the liquid L is detected, an error is issued and the suction is terminated. If excess liquid L is not detected, aspiration is initiated and sample detection in liquid L is performed.
 サンプルの検出作業に平行して、液体Lの残量の検知作業が行なわれる。具体的には、図5に示す第1実施形態、図7に示す第2実施形態、または図12~15に示す第6~8実施形態に係る吸引システム11を用いて、吸引ノズルNの先端部付近に上流側の端部が備えられた第2導電部1112、および/または、第1導電部1111の下流側に備えられた第2導電部1112からの通電信号に基づき、液体Lの欠失を検知する。 In parallel with the sample detection work, the remaining amount of the liquid L is detected. Specifically, using the suction system 11 according to the first embodiment shown in FIG. 5, the second embodiment shown in FIG. 7, or the sixth to eighth embodiments shown in FIGS. Based on the energization signal from the second conductive portion 1112 provided with the upstream end near the portion and/or the second conductive portion 1112 provided downstream of the first conductive portion 1111, the lack of the liquid L is detected. detect loss.
 液体Lの欠失が検知された場合、エラーを出して吸引を終了する。液体Lの欠失が検知されない場合、検出において取得したイベント数等が設定数を超えていれば検出を終了し、設定数を超えていなければ、更に検出が行なわれる。 When the lack of liquid L is detected, an error is issued and the suction is terminated. When the lack of the liquid L is not detected, the detection is terminated if the number of events acquired in the detection exceeds the set number, and further detection is performed if the set number is not exceeded.
 以下、実施例に基づいて本発明を更に詳細に説明する。なお、以下に説明する実施例は、本発明の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 The present invention will be described in further detail below based on examples. It should be noted that the examples described below are examples of typical examples of the present invention, and the scope of the present invention should not be interpreted narrowly.
 実施例1では、図5に示す第1実施形態に係る吸引システム11を用いて、吸引ノズルNの先端からの液体の欠失の検知を行った。具体的には、第1導電部1111である吸引ノズルNにSUSを使用し、その周りに絶縁シートを巻き、更にその周りに第2導電部1112として銅板を巻き、図5に示す回路を適用して、実検証した。結果を、図20のグラフに示す。図20のグラフに於いて、Event Rateは、レーザースポットで検出したサンプルの1秒あたりの数、Voutは、本技術のHigh/Lowのレベル、サンプル吸引圧力はノズルがサンプルを吸い上げる圧力である。 In Example 1, liquid loss from the tip of the suction nozzle N was detected using the suction system 11 according to the first embodiment shown in FIG. Specifically, SUS is used for the suction nozzle N, which is the first conductive part 1111, an insulating sheet is wrapped around it, and a copper plate is wrapped around it as the second conductive part 1112, and the circuit shown in FIG. 5 is applied. and verified it. The results are shown in the graph of FIG. In the graph of FIG. 20, Event Rate is the number of samples detected by the laser spot per second, Vout is the High/Low level of the technique, and Sample Aspirate Pressure is the pressure at which the nozzle aspirates the sample.
 図20のグラフに示す通り、59秒以降からサンプル吸引圧力が不安定になっているため、この時点からレーザースポットにおいて、空気が入り始めていると分かる。それより遡り、VoutがLowになっているのは、22秒の時点であり、レーザースポットにおいて、空気が入り始めた時点より37秒早い。 As shown in the graph of FIG. 20, the sample suction pressure becomes unstable from 59 seconds onwards, so it can be seen that air begins to enter the laser spot from this point. Going back even further, Vout goes Low at 22 seconds, which is 37 seconds earlier than when air started to enter at the laser spot.
 また、Event Rateが一旦落ち込み、その後、上がっているが、Event Rateが一旦落ち込むのは、サンプル溶液と吸引ノズルN先端のサンプル溶液のつながりが切れる直前のタイミングと考えられる。また、その後に、Event Rateが上がっていくのは、同じ圧力でサンプルを取り込んでいるにもかかわらず、サンプルライン内部に吸引ノズルN先端から空気が入ってきて、徐々に負荷が下がっていき、単位時間あたりに吸い込むサンプル量が増えるためであると考えられる。 Also, the Event Rate drops once and then rises, but the time when the Event Rate drops once is thought to be just before the connection between the sample solution and the sample solution at the tip of the suction nozzle N is broken. Also, the reason why the Event Rate increases after that is that although the sample is taken in at the same pressure, air enters the inside of the sample line from the tip of the suction nozzle N, and the load gradually decreases. This is probably because the amount of sample sucked per unit time increases.
 以上の結果から、VoutがLowになったタイミングは、図4の3~5の状態のどこかを示しており、サンプル溶液が吸引ノズルN先端からなくなったタイミングを捉えることが出来ることが分かった。 From the above results, the timing at which Vout becomes Low indicates any of the states 3 to 5 in FIG. .
 実施例2では、図12に示す第6実施形態に係る吸引システム11を用いて、吸引ノズルNからの液体の欠失の検知を行った。具体的には、第1導電部1111である吸引ノズルNにSUSを使用し、電気を通り易くするため少し内径の太い短いサンプルラインを繋げ、さらにその上に短い第2導電部1112を連結し、それに従来のサンプルラインを繋げて、図12に示す回路を適用して実検証した。結果を、図21のグラフに示す。図21のグラフに於いて、Event Rateは、レーザースポットで検出したサンプルの1秒あたりの数、Voutは、本技術のHigh/Lowのレベル、サンプル吸引圧力はノズルがサンプルを吸い上げる圧力である。 In Example 2, the lack of liquid from the suction nozzle N was detected using the suction system 11 according to the sixth embodiment shown in FIG. Specifically, SUS is used for the suction nozzle N, which is the first conductive portion 1111, a short sample line with a slightly thick inner diameter is connected to facilitate the passage of electricity, and a short second conductive portion 1112 is further connected thereon. , and a conventional sample line were connected to it, and the circuit shown in FIG. 12 was applied for actual verification. The results are shown in the graph of FIG. In the graph of FIG. 21, Event Rate is the number of samples per second detected by the laser spot, Vout is the high/low level of the technique, and sample suction pressure is the pressure at which the nozzle sucks up the sample.
 図21のグラフに示す通り、サンプル吸引圧力の不安定状態より、レーザースポットに空気が入るのは、115秒の時である。これに対して、VoutがLowになっているのは、109秒の時で、レーザースポットに空気が入るよりも6秒前であり、その段階でサンプルがなくなったことを検知できていることが分かった。 As shown in the graph of FIG. 21, air enters the laser spot at 115 seconds due to the unstable sample suction pressure. On the other hand, Vout became Low at 109 seconds, 6 seconds before the air entered the laser spot, and at that stage it was possible to detect that the sample had run out. Do you get it.
 なお、本技術では、以下の構成を取ることもできる。
(1)
 液体を吸引する吸引ノズルを有する吸引部を備え、
 該吸引部は、
 第1導電部と、
 該第1導電部と絶縁された第2導電部と、を有する、吸引システムと、
 前記吸引部によって吸引された液体中のサンプルに関する情報を検出する検出部と、
 を有する、検出システム。
(2)
 前記吸引ノズルの一部または全部が、前記第1導電部からなる、(1)に記載の検出システム。
(3)
 前記第2導電部の上流側の端部が、前記吸引ノズルの先端部付近に備えられた、(1)または(2)に記載の検出システム。
(4)
 前記第2導電部が、前記第1導電部の下流側に備えられた、(1)から(3)のいずれかに記載の検出システム。
(5)
 前記第2導電部の上流側の端部が、前記液体を保持する容器の最大適量水面位置に備えられた、(1)から(4)のいずれかに記載の検出システム。
(6)
 前記第1導電部、または、前記第2導電部からの通電信号に基づき、前記液体の量を検知する処理部を有する、(1)から(5)のいずれかに記載の検出システム。
(7)
 前記処理部は、前記吸引ノズルの先端部付近に上流側の端部が備えられた前記第2導電部、および/または、前記第1導電部の下流側に備えられた前記第2導電部からの通電信号に基づき、液体の欠失を検知する、(6)に記載の検出システム。
(8)
 前記処理部は、前記液体を保持する容器の最大適量水面位置に上流側の端部が備えられた前記第2導電部からの通電信号に基づき、液体の過多を検知する、(6)または(7)に記載の検出システム。
(9)
 前記処理部は、
 前記吸引ノズルの先端部付近に上流側の端部が備えられた前記第2導電部、および/または、前記第1導電部の下流側に備えられた前記第2導電部からの通電信号に基づき、液体の欠失を検知し、
 前記液体を保持する容器の最大適量水面位置に上流側の端部が備えられた前記第2導電部からの通電信号に基づき、液体の過多を検知する、(6)から(8)のいずれかに記載の検出システム。
(10)
 前記処理部で検知された前記液体の量情報に基づいて、前記液体の吸引の制御を行う制御部を有する、(6)から(9)のいずれかに記載の検出システム。
(11)
 前記検出部では、前記サンプルからの光が検出される、(1)から(10)のいずれかに記載の検出システム。
(12)
 前記サンプルは、粒子である、(1)から(11)のいずれかに記載の検出システム。
(13)
 前記粒子を分取する分取部を有する、(12)に記載の検出システム。
(14)
 前記粒子は、細胞である、(12)または(13)に記載の検出システム。
(15)
 液体を吸引する吸引ノズルを有する吸引部を備え、
 該吸引部は、
 第1導電部と、
 該第1導電部と絶縁された第2導電部と、を有する、吸引システム。
(16)
 液体を吸引する吸引ノズルを有する吸引部を用いて、液体を吸引する方法であって、
 該吸引部は、
 第1導電部と、
 該第1導電部と絶縁された第2導電部と、を有し、
 前記第1導電部、または、前記第2導電部へ通電する通電工程と、
 前記第1導電部、または、前記第2導電部からの通電信号に基づき、前記液体の量を検知する液体量検知工程と、
 を行う、液体吸引方法。
(17)
 前記液体量検知工程において検知された液体の量に基づき、吸引を制御する制御工程を行う、(16)に記載の液体吸引方法。
Note that the present technology can also have the following configuration.
(1)
A suction unit having a suction nozzle for sucking liquid,
The suction part is
a first conductive portion;
a suction system comprising a second conductive portion insulated from the first conductive portion;
a detection unit that detects information about the sample in the liquid aspirated by the aspiration unit;
a detection system.
(2)
The detection system according to (1), wherein part or all of the suction nozzle is composed of the first conductive portion.
(3)
The detection system according to (1) or (2), wherein the upstream end of the second conductive portion is provided near the tip of the suction nozzle.
(4)
The detection system according to any one of (1) to (3), wherein the second conductive section is provided downstream of the first conductive section.
(5)
The detection system according to any one of (1) to (4), wherein the upstream end portion of the second conductive portion is provided at the maximum appropriate water surface position of the container holding the liquid.
(6)
The detection system according to any one of (1) to (5), further comprising a processing section that detects the amount of the liquid based on an energization signal from the first conductive section or the second conductive section.
(7)
The processing section includes the second conductive section having an upstream end near the tip of the suction nozzle and/or the second conductive section provided downstream of the first conductive section. The detection system according to (6), which detects lack of liquid based on the energization signal of.
(8)
(6) or ( The detection system according to 7).
(9)
The processing unit is
Based on an energization signal from the second conductive portion having an upstream end near the tip of the suction nozzle and/or from the second conductive portion provided downstream of the first conductive portion , detect the lack of fluid,
any one of (6) to (8), wherein an excess of the liquid is detected based on an energization signal from the second conductive section having an upstream end provided at a water surface position of the maximum appropriate amount of the container holding the liquid. The detection system described in .
(10)
The detection system according to any one of (6) to (9), further comprising a control unit that controls suction of the liquid based on information on the amount of the liquid detected by the processing unit.
(11)
The detection system according to any one of (1) to (10), wherein the detection unit detects light from the sample.
(12)
The detection system according to any one of (1) to (11), wherein the sample is a particle.
(13)
The detection system according to (12), which has a sorting section that sorts the particles.
(14)
The detection system according to (12) or (13), wherein the particles are cells.
(15)
A suction part having a suction nozzle for sucking liquid is provided,
The suction part is
a first conductive portion;
A suction system comprising a second conductive portion insulated from the first conductive portion.
(16)
A method for sucking liquid using a suction unit having a suction nozzle for sucking liquid,
The suction part is
a first conductive portion;
a second conductive portion insulated from the first conductive portion;
An energizing step of energizing the first conductive portion or the second conductive portion;
a liquid amount detection step of detecting the amount of the liquid based on an energization signal from the first conductive portion or the second conductive portion;
the liquid aspiration method.
(17)
The liquid suction method according to (16), wherein a control step of controlling suction is performed based on the amount of liquid detected in the liquid amount detection step.
検出システム:1
吸引システム:11
液体:L
吸引部:111
第1導電部:1111
第2導電部:1112
絶縁部:1113
吸引ノズル:N
流路:P
サンプル液流路:P11
シース液流路:P12a、P12b
主流路:P13
分取流路:P14
廃棄流路:P15a、P15b
検出部:12
光源:121
処理部:13
制御部:14
分取部:15
振動素子:151
対向電極:152a、152b
回収容器:153a、153b、153c
サンプル液貯留部:B1
シース液貯留部:B2
分取液貯留部:B3
廃液貯留部:B4
記憶部:16
表示部:17
入力部:18
Detection system: 1
Suction system: 11
Liquid: L
Suction part: 111
First conductive part: 1111
Second conductive part: 1112
Insulator: 1113
Suction nozzle: N
Flow path: P
Sample liquid flow path: P11
Sheath liquid flow path: P12a, P12b
Main flow path: P13
Preparative flow path: P14
Waste channel: P15a, P15b
Detector: 12
Light source: 121
Processing unit: 13
Control unit: 14
Preparative section: 15
Vibration element: 151
Counter electrodes: 152a, 152b
Collection containers: 153a, 153b, 153c
Sample liquid reservoir: B1
Sheath liquid reservoir: B2
Preparative liquid reservoir: B3
Waste liquid reservoir: B4
Storage unit: 16
Display part: 17
Input part: 18

Claims (17)

  1.  液体を吸引する吸引ノズルを有する吸引部を備え、
     該吸引部は、
     第1導電部と、
     該第1導電部と絶縁された第2導電部と、を有する、吸引システムと、
     前記吸引部によって吸引された液体中のサンプルに関する情報を検出する検出部と、
     を有する、検出システム。
    A suction unit having a suction nozzle for sucking liquid,
    The suction part is
    a first conductive portion;
    a suction system comprising a second conductive portion insulated from the first conductive portion;
    a detection unit that detects information about the sample in the liquid aspirated by the aspiration unit;
    a detection system.
  2.  前記吸引ノズルの一部または全部が、前記第1導電部からなる、請求項1に記載の検出システム。 The detection system according to claim 1, wherein part or all of said suction nozzle consists of said first conductive portion.
  3.  前記第2導電部の上流側の端部が、前記吸引ノズルの先端部付近に備えられた、請求項1に記載の検出システム。  The detection system according to claim 1, wherein the upstream end of the second conductive part is provided near the tip of the suction nozzle.
  4.  前記第2導電部が、前記第1導電部の下流側に備えられた、請求項1に記載の検出システム。 The detection system according to claim 1, wherein said second conductive portion is provided downstream of said first conductive portion.
  5.  前記第2導電部の上流側の端部が、前記液体を保持する容器の最大適量水面位置に備えられた、請求項1に記載の検出システム。  The detection system according to claim 1, wherein the upstream end of the second conductive part is provided at the maximum appropriate water surface position of the container holding the liquid.
  6.  前記第1導電部、または、前記第2導電部からの通電信号に基づき、前記液体の量を検知する処理部を有する、請求項1に記載の検出システム。 The detection system according to claim 1, comprising a processing section that detects the amount of the liquid based on the energization signal from the first conductive section or the second conductive section.
  7.  前記処理部は、前記吸引ノズルの先端部付近に上流側の端部が備えられた前記第2導電部、および/または、前記第1導電部の下流側に備えられた前記第2導電部からの通電信号に基づき、液体の欠失を検知する、請求項6に記載の検出システム。 The processing section includes the second conductive section having an upstream end near the tip of the suction nozzle and/or the second conductive section provided downstream of the first conductive section. 7. The detection system according to claim 6, which detects lack of liquid based on the energization signal of the.
  8.  前記処理部は、前記液体を保持する容器の最大適量水面位置に上流側の端部が備えられた前記第2導電部からの通電信号に基づき、液体の過多を検知する、請求項6に記載の検出システム。 7. The processing unit according to claim 6, wherein the processing unit detects excess liquid based on an energization signal from the second conductive unit, the upstream end of which is provided at the maximum appropriate water surface position of the container holding the liquid. detection system.
  9.  前記処理部は、
     前記吸引ノズルの先端部付近に上流側の端部が備えられた前記第2導電部、および/または、前記第1導電部の下流側に備えられた前記第2導電部からの通電信号に基づき、液体の欠失を検知し、
     前記液体を保持する容器の最大適量水面位置に上流側の端部が備えられた前記第2導電部からの通電信号に基づき、液体の過多を検知する、請求項6に記載の検出システム。
    The processing unit is
    Based on an energization signal from the second conductive portion having an upstream end near the tip of the suction nozzle and/or from the second conductive portion provided downstream of the first conductive portion , detect the lack of fluid,
    7. The detection system according to claim 6, wherein an excess of liquid is detected based on an energization signal from said second conductive part having an upstream end at a water level position of the maximum appropriate amount of said liquid holding container.
  10.  前記処理部で検知された前記液体の量情報に基づいて、前記液体の吸引の制御を行う制御部を有する、請求項6に記載の検出システム。 The detection system according to claim 6, comprising a control unit that controls suction of the liquid based on information on the amount of the liquid detected by the processing unit.
  11.  前記検出部では、前記サンプルからの光が検出される、請求項1に記載の検出システム。 The detection system according to claim 1, wherein the detection unit detects light from the sample.
  12.  前記サンプルは、粒子である、請求項1に記載の検出システム。 The detection system according to claim 1, wherein the sample is a particle.
  13.  前記粒子を分取する分取部を有する、請求項12に記載の検出システム。 The detection system according to claim 12, comprising a sorting section that sorts the particles.
  14.  前記粒子は、細胞である、請求項12に記載の検出システム。 The detection system according to claim 12, wherein the particles are cells.
  15.  液体を吸引する吸引ノズルを有する吸引部を備え、
     該吸引部は、
     第1導電部と、
     該第1導電部と絶縁された第2導電部と、を有する、吸引システム。
    A suction unit having a suction nozzle for sucking liquid,
    The suction part is
    a first conductive portion;
    A suction system comprising a second conductive portion insulated from the first conductive portion.
  16.  液体を吸引する吸引ノズルを有する吸引部を用いて、液体を吸引する方法であって、
     該吸引部は、
     第1導電部と、
     該第1導電部と絶縁された第2導電部と、を有し、
     前記第1導電部、または、前記第2導電部へ通電する通電工程と、
     前記第1導電部、または、前記第2導電部からの通電信号に基づき、前記液体の量を検知する液体量検知工程と、
     を行う、液体吸引方法。
    A method for sucking liquid using a suction unit having a suction nozzle for sucking liquid,
    The suction part is
    a first conductive portion;
    a second conductive portion insulated from the first conductive portion;
    An energizing step of energizing the first conductive portion or the second conductive portion;
    a liquid amount detection step of detecting the amount of the liquid based on an energization signal from the first conductive portion or the second conductive portion;
    the liquid aspiration method.
  17.  前記液体量検知工程において検知された液体の量に基づき、吸引を制御する制御工程を行う、請求項16に記載の液体吸引方法。 The liquid suction method according to claim 16, wherein a control step for controlling suction is performed based on the amount of liquid detected in the liquid amount detection step.
PCT/JP2022/016121 2021-08-30 2022-03-30 Detection system, suction system, and liquid suction method WO2023032336A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021139678 2021-08-30
JP2021-139678 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023032336A1 true WO2023032336A1 (en) 2023-03-09

Family

ID=85412058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016121 WO2023032336A1 (en) 2021-08-30 2022-03-30 Detection system, suction system, and liquid suction method

Country Status (1)

Country Link
WO (1) WO2023032336A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286721A (en) * 1987-05-07 1988-11-24 ベクトン・ディッキンソン・アンド・カンパニー Level detector for liquid
JPH06249862A (en) * 1993-03-01 1994-09-09 Daikin Ind Ltd Detection of anomaly of dispensing device and device therefor
JP2000338117A (en) * 1999-04-28 2000-12-08 Roche Diagnostics Gmbh Method and device for liquid transfer for analyzing device
JP2009512838A (en) * 2005-10-07 2009-03-26 ベックマン コールター, インコーポレイテッド Method and apparatus for detecting the level of liquid in a liquid containment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286721A (en) * 1987-05-07 1988-11-24 ベクトン・ディッキンソン・アンド・カンパニー Level detector for liquid
JPH06249862A (en) * 1993-03-01 1994-09-09 Daikin Ind Ltd Detection of anomaly of dispensing device and device therefor
JP2000338117A (en) * 1999-04-28 2000-12-08 Roche Diagnostics Gmbh Method and device for liquid transfer for analyzing device
JP2009512838A (en) * 2005-10-07 2009-03-26 ベックマン コールター, インコーポレイテッド Method and apparatus for detecting the level of liquid in a liquid containment

Similar Documents

Publication Publication Date Title
US4756427A (en) Method and apparatus for sorting particles
KR101615177B1 (en) Microchip, channel structure, fluid analyzing apparatus, particulate fractionating apparatus, and liquid feeding method
JP5304434B2 (en) Fine particle measuring device
EP2693192B1 (en) Micro-particle isolation device and method for controlling position in the micro-particle isolation device
JPH03179237A (en) Apparatus and method for sorting trapping tube for flow cytometer
JP5542060B2 (en) Fluorescence based pipette instrument
Holmes et al. On-chip high-speed sorting of micron-sized particles for high-throughput analysis
EP2696190A1 (en) Microparticle fractionation apparatus, and method for optimizing fluid stream in said apparatus
US20080070311A1 (en) Microfluidic flow cytometer and applications of same
EP0463562A1 (en) Closed sample cell for use in flow cytometry
WO2007040313A1 (en) Microchip with expansion channel and flowcytometer using this microchip
KR20130045236A (en) Microchip and particulate analyzing device
US11733152B2 (en) Microfluidic system with combined electrical and optical detection for high accuracy particle sorting and methods thereof
EP1595140A2 (en) Dielectric particle focusing
JP2024010163A (en) Microparticle analysis device and microparticle analysis method
JPWO2014017186A1 (en) Microparticle measuring apparatus and liquid feeding method in microparticle measuring apparatus
JP2015141116A (en) blood cell analyzer
JP5905317B2 (en) Calibration method and apparatus for fine particle sorting apparatus
WO2008036083A1 (en) Microfluidic flow cytometer and applications of same
JP6237806B2 (en) Fine particle fractionator
WO2023032336A1 (en) Detection system, suction system, and liquid suction method
JP4037828B2 (en) Cytometer
EP3582895B1 (en) Microchip and microparticle fractionating device
CN108452854A (en) A kind of micro-fluidic chip and its application
JP5480455B1 (en) Specimen identification sorting apparatus and specimen identification sorting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863926

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545072

Country of ref document: JP