WO2023030416A1 - 换热器 - Google Patents

换热器 Download PDF

Info

Publication number
WO2023030416A1
WO2023030416A1 PCT/CN2022/116337 CN2022116337W WO2023030416A1 WO 2023030416 A1 WO2023030416 A1 WO 2023030416A1 CN 2022116337 W CN2022116337 W CN 2022116337W WO 2023030416 A1 WO2023030416 A1 WO 2023030416A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
section
pipe
tube
header
Prior art date
Application number
PCT/CN2022/116337
Other languages
English (en)
French (fr)
Inventor
王冠军
Original Assignee
浙江盾安人工环境股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111017346.9A external-priority patent/CN115727689A/zh
Priority claimed from CN202111017351.XA external-priority patent/CN115727690A/zh
Priority claimed from CN202122089025.1U external-priority patent/CN216159689U/zh
Priority claimed from CN202122087044.0U external-priority patent/CN216159688U/zh
Priority claimed from CN202122092336.3U external-priority patent/CN216159690U/zh
Priority claimed from CN202122084091.XU external-priority patent/CN216159687U/zh
Application filed by 浙江盾安人工环境股份有限公司 filed Critical 浙江盾安人工环境股份有限公司
Priority to KR1020247005860A priority Critical patent/KR20240038757A/ko
Publication of WO2023030416A1 publication Critical patent/WO2023030416A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • the present application relates to the technical field of heat exchangers, in particular, to a heat exchanger.
  • sheet metal parts are generally used to shield the side of the A-type heat exchanger (that is, the heat exchanger with bent flat tubes) .
  • the main purpose of the present application is to provide a heat exchanger to solve the technical problem of poor heat exchange performance of the A-type heat exchanger in the prior art.
  • the present application provides a heat exchanger, including: a first heat exchange part, the first heat exchange part includes a plurality of first flat tubes arranged at intervals, and the first flat tubes include first heat exchange tubes connected to each other The pipe section and the second heat exchange pipe section, the first heat exchange pipe section and the second heat exchange pipe section are arranged at a preset angle; or, the first heat exchange part includes a first heat exchange assembly and a second heat exchange assembly connected to each other, the first heat exchange assembly
  • the heat exchange assembly includes a plurality of first heat exchange flat tubes arranged at intervals along a first preset direction, the second heat exchange assembly includes a plurality of second heat exchange flat tubes arranged at intervals along a second preset direction, and the first preset The direction and the second preset direction are set at a preset angle; the first header and the second header, the first heat exchange pipe sections of the plurality of first flat tubes are all connected to the first header, and the plurality of first The second heat exchange tube section of the flat tube is connected to the
  • the installation section is a triangular section
  • the second heat exchange part is a triangular structure or a trapezoidal structure suitable for the installation section
  • at least part of the second heat exchange part is bonded to the first heat exchange pipe section and the second heat exchange pipe section set up.
  • the included angle between the first heat exchange tube section and the second heat exchange tube section forms the vertex angle of the triangular section, and the vertex angle of the triangular section is the same as the vertex angle of the triangular structure.
  • the second heat exchange part includes a second flat tube, and the second flat tube has a plurality of sequentially connected bent tube sections, and the heights of the sequentially connected bent tube sections are firstly increased and then decreased to make the multiple sequentially connected bent tube sections
  • the edges of the connected bent pipe segments form a triangular structure.
  • the second heat exchange part includes a second flat tube and a second fin
  • the second flat tube has a plurality of sequentially connected bent tube sections, and the heights of the sequentially connected bent tube sections are firstly set to increase or decrease , there are a plurality of second fins, and second fins are installed in the bending gap of each bent pipe section of a plurality of sequentially connected bent pipe sections and between two adjacent bent pipe sections; wherein, Two adjacent bent pipe sections include the first bent pipe section and the second bent pipe section, the height of the first bent pipe section, the second bent pipe section between the first bent pipe section and the second bent pipe section The heights of the two fins and the height of the second bent tube section are sequentially increased or decreased, so that the edges of the second flat tube and the edges of the plurality of second fins form a triangular structure.
  • the inlet end of the second heat exchange part communicates with the first header, and the outlet end of the second heat exchange part communicates with the second header.
  • the second heat exchange part includes a second flat tube; the first header is provided with a first insertion slot, the first insertion slot extends along the axial direction of the first header, and one end of the second flat tube Inserted in the first socket; and/or, the second header is provided with a second socket, the second socket extends along the axial direction of the second header, and the other of the second flat tube One end is inserted into the second socket.
  • the second heat exchange part includes a third header, a fourth header and a second flat tube; the second flat tube communicates with the third header and the fourth header respectively, and the third header and the fourth header communicate with the first header and the second header respectively through connecting pipes.
  • the two second heat exchange parts are respectively arranged at both ends of the first heat exchange part, and the inlet ends of the two second heat exchange parts are connected through the first connecting pipe.
  • the outlet end of the second heat exchange part is connected and arranged through the second connecting pipe;
  • the heat exchanger also includes a third connecting pipe and a fourth connecting pipe arranged at intervals, and the third connecting pipe and the fourth connecting pipe are both arranged in one of the first connecting pipes.
  • the third connection pipe is located between the second heat exchange part and the first header, and the fourth connection pipe is located between the second heat exchange part and the second header; or, the two second The heat exchange part and the first heat exchange part are arranged independently of each other, so that the two second heat exchange parts and the first heat exchange part can perform heat exchange independently.
  • the two second heat exchange parts are respectively arranged at both ends of the first heat exchange part; the inlet ends of the two second heat exchange parts are connected to the side of the first header.
  • the outlet ends of the two second heat exchange parts are connected to the side of the second header; the connection between the inlet end of one of the second heat exchange parts and the first header is The connection between the inlet end of the heat part and the first header is located at both ends of the first heat exchange part, and the connection between the outlet end of one second heat exchange part and the second header is connected to the other second heat exchange part.
  • connection between the outlet end of the heat part and the second header is respectively located at both ends of the first heat exchange part; or, the heat exchanger further includes two first connection pipes and two second connection pipes, and the two first connection pipes One end is respectively connected to both ends of the first header, and the other ends of the two first headers are respectively connected to the inlet ends of the two second heat exchange parts; one end of the two second headers is respectively connected to the The two ends are connected, and the other ends of the two second connecting pipes are respectively connected with the outlet ends of the two second heat exchange parts.
  • the second heat exchange part is arranged obliquely to the inner side of the installation area.
  • the second heat exchange part has a top end and a bottom end oppositely arranged, the top end of the second heat exchange part is located at the junction of the first heat exchange pipe section and the second heat exchange pipe section, and the bottom end of the second heat exchange part is located at the junction of the first heat exchange pipe section.
  • a heat exchange pipe section is away from one end of the second heat exchange pipe section; wherein, the top end of the second heat exchange part is inclined to the inside of the installation area relative to the bottom end of the second heat exchange part.
  • the heat exchanger also includes: an intermediate header, the intermediate header has an inlet pipe section and an outlet pipe section independent of each other, the inlet end of the second heat exchange part is connected to the inlet pipe section, and the outlet end of the second heat exchange part is connected to the The outlet pipe section is connected; the inlet end of the inlet pipe section is connected with the first header, and the outlet end of the outlet pipe section is connected with the second header.
  • the second heat exchange part includes at least two independently arranged heat exchange structures, there are at least two intermediate headers, and the at least two heat exchange structures extend from one end of the first heat exchange part to the other end of the first heat exchange part.
  • the extension direction of one end is arranged at intervals; at least two heat exchange structures are arranged in one-to-one correspondence with at least two intermediate headers, and each heat exchange structure is connected to a corresponding intermediate header.
  • the second heat exchange part includes two independently arranged heat exchange structures, and the two heat exchange structures are respectively arranged at both ends of the first heat exchange part; there are two intermediate headers, and the two heat exchange structures are connected to the two Each of the intermediate headers is arranged in a one-to-one correspondence, and each heat exchange structure is connected to the corresponding intermediate header.
  • the installation section is a triangular section
  • the heat exchange structure is installed in the triangular section
  • the shape of the heat exchange structure is a triangular structure matching the installation section Or a trapezoidal structure, at least part of the heat exchange structure is attached to the first heat exchange tube section or the second heat exchange tube section.
  • the heat exchange structure includes a plurality of third flat tubes arranged at intervals along the height direction, the inlet end of the third flat tube is connected to the inlet pipe section, and the outlet end of the third flat tube is connected to the outlet pipe section.
  • the third flat tube includes a first tube segment, a second tube segment and a third tube segment connected in sequence, the first tube segment and the third tube segment extend along the vertical direction or a direction at a predetermined angle with the vertical direction, and the second tube segment
  • the pipe section extends along the horizontal direction or a direction with a preset angle to the horizontal direction, the end of the first pipe section away from the second pipe section forms the inlet end of the third flat pipe, and the end of the third pipe section away from the second pipe section forms the outlet of the third flat pipe end.
  • the lengths of the plurality of second pipe segments gradually decrease, and the lengths of the plurality of first pipe segments and/or the lengths of the plurality of third pipe segments gradually decrease. Increase.
  • the third flat tube is integrally formed; the connection between the first pipe section and the second pipe section is an arc-shaped bending transition structure; and/or, the connection between the second pipe section and the third pipe section is an arc-shaped bending transition structure.
  • the heat exchanger also includes connecting pipes, and the connecting pipes and intermediate headers are respectively arranged at both ends of the first heat exchange part;
  • the second heat exchange part includes: two connected heat exchange structures, two heat exchange structures The structures are respectively arranged at both ends of the first heat exchange part, one heat exchange structure is connected to the connecting pipe, and the other heat exchange structure is connected to the intermediate header, so that the fluid entering through the inlet pipe section passes through the two heat exchange structures The outlet pipe section is discharged.
  • the second heat exchange part further includes: a fourth flat tube, the fourth flat tube has a fourth tube section, a fifth tube section and a sixth tube section connected in sequence, and the fourth tube section and the sixth tube section both extend in the vertical direction or Extending in a direction with a preset angle to the vertical direction; the fourth pipe section is located at one end of the first heat exchange part and connected to the intermediate header, and the fifth pipe section is located at one end of the first heat exchange part and the other end of the first heat exchange part Between one end, the sixth pipe section is located at the other end of the first heat exchange part and is connected to the connecting pipe; wherein, there are multiple fourth flat tubes, and the multiple fourth flat tubes are arranged at intervals along the extending direction of the intermediate header.
  • a heat exchange structure is surrounded by four fourth pipe sections, another heat exchange structure is surrounded by a plurality of sixth pipe sections, and one heat exchange structure is connected to another heat exchange structure through a plurality of fifth pipe sections.
  • the installation interval is a triangular interval, and at least part of the heat exchange structure is arranged in close contact with the first heat exchange pipe section or the second heat exchange pipe section;
  • the lengths of the fourth pipe sections of the multiple fourth flat tubes first increase and then decrease, so that the multiple fourth pipe sections form a triangular or trapezoidal structure suitable for the installation interval;
  • the lengths of the sixth pipe sections of the plurality of fourth flat pipes first increase and then decrease, so that the plurality of sixth pipe sections form a triangular or trapezoidal structure suitable for the installation interval.
  • the fourth flat tube is integrally formed; the connection between the fourth pipe section and the fifth pipe section is an arc-shaped bending transition structure; and/or, the connection between the fifth pipe section and the sixth pipe section is an arc-shaped bending transition structure.
  • the second heat exchange part includes a third heat exchange flat tube
  • the third heat exchange flat tube has a plurality of sequentially connected bent tube sections, and the heights of the sequentially connected bent tube sections are firstly set to increase or decrease in order to
  • the edges of a plurality of successively connected bent pipe sections enclose a triangular structure suitable for the installation interval between the first heat exchanging assembly and the second heat exchanging assembly.
  • the multiple third heat exchange flat tubes are arranged at intervals along the height direction.
  • inlet ends of the plurality of third heat exchange flat tubes are connected, and the outlet ends of the plurality of third heat exchange flat tubes are connected.
  • the second heat exchange part includes a plurality of third heat exchange flat tubes, the plurality of third heat exchange flat tubes are arranged at intervals along the extending direction from the first heat exchange assembly to the second heat exchange assembly, and each third heat exchange flat tube
  • the tubes each have a plurality of bent tube sections connected in sequence, and the heights of the bent tube sections of the plurality of third heat exchange flat tubes are firstly increased or decreased so that the edges of the plurality of third heat exchange flat tubes are surrounded by the first A triangular structure matching the installation interval between the heat exchange component and the second heat exchange component.
  • inlet ends of the plurality of third heat exchange flat tubes are connected, and the outlet ends of the plurality of third heat exchange flat tubes are connected.
  • the second heat exchange part further includes: an inlet connecting pipe, which extends along the extension direction from the first heat exchange assembly to the second heat exchange assembly, and the inlet ends of the plurality of third heat exchange flat pipes are all connected to the inlet Tube connection; and/or, an outlet connection pipe, the outlet connection pipe extends along the extension direction from the first heat exchange assembly to the second heat exchange assembly, and the outlet ends of the plurality of third heat exchange flat pipes are all connected to the outlet connection pipe.
  • the second heat exchange part is a bent flat tube structure
  • the bent flat tube structure has a heat exchange inlet part, a heat exchange outlet part, and a bent heat exchange flow connected to both the heat exchange inlet part and the heat exchange outlet part.
  • road structure wherein, the edges of the bent flat tube structure form a triangular structure or a trapezoidal structure.
  • the bent flat tube structure includes: a fifth flat tube, the fifth flat tube includes a plurality of fifth heat exchange tube sections arranged at intervals along the horizontal direction and communicated with each other, and the fifth heat exchange tube sections all extend along the vertical direction.
  • the heights of the plurality of fifth heat exchange tube sections first increase and then decrease, one end of the fifth flat tube forms a heat exchange inlet, and the other end of the fifth flat tube forms a heat exchange outlet.
  • the heat exchange inlet part includes the first heat exchange inlets of the plurality of fifth flat tubes
  • the heat exchange outlet part includes a plurality of fifth flat tubes. The heights of the first heat exchange outlets of the flat tubes and the fifth heat exchange tube sections of the fifth flat tubes first increase and then decrease.
  • a plurality of first heat exchange inlets are arranged at intervals, and a plurality of first heat exchange outlets are arranged at intervals;
  • the heat exchanger also includes: a first connection pipeline, and a plurality of first heat exchange inlets are all connected to the first connection pipeline , the first connecting pipeline extends along the interval arrangement direction of a plurality of first heat exchange inlets; and/or, the second connecting pipeline, a plurality of first heat exchange outlets are all connected to the second connecting pipeline, and the second connecting pipe The passage extends along the direction in which the plurality of first heat exchange outlets are arranged at intervals.
  • the heights of the multiple fifth heat exchange tube sections of the fifth flat tube first increase and then decrease, there are multiple fifth flat tubes, and the multiple fifth flat tubes are arranged at intervals along the vertical direction.
  • the bent flat tube structure further includes: a sixth flat tube, the sixth flat tube includes a plurality of horizontally spaced and connected The sixth heat exchange tube section, the sixth heat exchange tube section extends vertically, the heights of the multiple sixth heat exchange tube sections are the same, and the multiple fifth heat exchange tube sections are installed above the multiple sixth heat exchange tube sections.
  • the bent flat tube structure includes: a plurality of first inclined sections and a plurality of second inclined sections, the plurality of first inclined sections and the plurality of second inclined sections are set in one-to-one correspondence, each first inclined section and the corresponding The second slanted segments are arranged correspondingly to be spliced to form a triangular structure.
  • the bent flat tube structure includes: a seventh flat tube and an eighth flat tube, the seventh flat tube includes a plurality of third heat exchange tube sections spaced along the horizontal direction and arranged in communication, the eighth flat tube includes And a plurality of fourth heat exchange tube sections arranged in communication, each third heat exchange tube section includes a first inclined section, each fourth heat exchange tube section includes a second inclined section, the plurality of first inclined sections and the plurality of second inclined sections Correspondingly arranged, each first slanted section abuts against the corresponding second slanted section to form a triangular structure.
  • the bent flat tube structure includes: a ninth flat tube, the ninth flat tube includes a plurality of fifth heat exchange tube sections spaced apart and connected in the vertical direction, and each fifth heat exchange tube section includes a third inclined section connected to each other And the fourth inclined section, the third inclined section and the fourth inclined section form a triangular structure.
  • a second heat exchange part is provided at the end of the first heat exchange part, and the second heat exchange part and the first heat exchange part are enclosed to form an air duct, so that the second heat exchange part While playing the role of windshield, it can also perform effective heat exchange, which increases the overall heat exchange area of the heat exchanger, improves the heat exchange performance, effectively utilizes the space, and improves the compactness of the space layout. Therefore, the heat exchanger provided in this embodiment can solve the technical problem of poor heat exchange performance of the A-type heat exchanger in the prior art.
  • Fig. 1 shows a schematic structural diagram of a first heat exchange part of a heat exchanger provided according to Embodiment 1 of the present application;
  • Fig. 2 shows a front view of the first heat exchange part of the heat exchanger provided according to Embodiment 1 of the present application;
  • FIG. 3 shows a schematic structural diagram of a heat exchanger provided according to Embodiment 1 of the present application
  • Fig. 4 shows the front view of the heat exchanger provided according to Embodiment 1 of the present application
  • Fig. 5 shows a schematic structural view of the second heat exchange part of the heat exchanger provided according to Embodiment 2 of the present application;
  • Fig. 6 shows a front view of the second heat exchange part of the heat exchanger provided according to Embodiment 2 of the present application;
  • Fig. 7 shows a left view of the second heat exchange part of the heat exchanger provided according to Embodiment 2 of the present application.
  • Fig. 8 shows a top view of the second heat exchange part of the heat exchanger provided according to Embodiment 2 of the present application.
  • Fig. 9 shows a schematic structural diagram of a heat exchanger provided according to Embodiment 3 of the present application.
  • Fig. 10 shows a front view of a heat exchanger provided according to Embodiment 3 of the present application.
  • Fig. 11 shows a schematic structural diagram of a heat exchanger provided according to Embodiment 5 of the present application.
  • Fig. 12 shows a front view of a heat exchanger provided according to Embodiment 5 of the present application.
  • Fig. 13 shows a left view of the heat exchanger provided according to Embodiment 5 of the present application
  • Fig. 14 shows a top view of a heat exchanger provided according to Embodiment 5 of the present application.
  • Fig. 15 shows a bottom view of the heat exchanger provided according to Embodiment 5 of the present application.
  • Fig. 16 shows a schematic structural diagram of a heat exchanger provided according to Embodiment 6 of the present application.
  • Fig. 17 shows a schematic structural diagram of another angle of the heat exchanger provided according to Embodiment 6 of the present application.
  • Fig. 18 shows a top view of a heat exchanger provided according to Embodiment 6 of the present application.
  • Fig. 19 shows a bottom view of the heat exchanger provided according to Embodiment 6 of the present application.
  • Fig. 20 shows a schematic structural diagram of a heat exchanger provided according to Embodiment 7 of the present application.
  • Fig. 21 shows a front view of a heat exchanger provided according to Embodiment 7 of the present application.
  • Fig. 22 shows a top view of a heat exchanger provided according to Embodiment 7 of the present application.
  • Fig. 23 shows a bottom view of the heat exchanger provided according to Embodiment 7 of the present application.
  • Fig. 24 shows a schematic structural diagram of a heat exchanger provided according to Embodiment 8 of the present application.
  • Fig. 25 shows a front view of a heat exchanger provided according to Embodiment 8 of the present application.
  • Fig. 26 shows a top view of a heat exchanger provided according to Embodiment 8 of the present application.
  • Fig. 27 shows a schematic structural diagram of a heat exchanger provided according to Embodiment 9 of the present application.
  • Fig. 28 shows a structural schematic diagram of another angle of the heat exchanger provided according to Embodiment 9 of the present application.
  • Fig. 29 shows a front view of a heat exchanger provided according to Embodiment 9 of the present application.
  • Figure 30 shows a left view of the heat exchanger provided according to Embodiment 9 of the present application.
  • Fig. 31 shows a bottom view of a heat exchanger provided according to Embodiment 9 of the present application.
  • Fig. 32 shows a schematic structural diagram of a heat exchanger provided according to Embodiment 10 of the present application.
  • Fig. 33 shows a front view of a heat exchanger provided according to Embodiment 10 of the present application.
  • Fig. 34 shows a left view of the heat exchanger provided according to Embodiment 10 of the present application.
  • Fig. 35 shows a schematic structural view of the oblique arrangement of the heat exchange structure in the heat exchanger according to Embodiment 10 of the present application;
  • Fig. 36 shows a front view of the heat exchange structure provided according to Embodiment 10 of the present application.
  • Fig. 37 shows a schematic structural diagram of a heat exchange structure provided according to Embodiment 10 of the present application.
  • Fig. 38 shows a front view of a heat exchanger provided according to Embodiment 11 of the present application.
  • Fig. 39 shows a schematic structural diagram of a heat exchanger provided according to Embodiment 11 of the present application.
  • Fig. 40 shows a schematic structural diagram of a heat exchange structure provided according to Embodiment 11 of the present application.
  • Fig. 41 shows a schematic structural diagram of a heat exchanger provided according to Embodiment 12 of the present application.
  • Figure 42 shows the top view in Figure 41
  • Fig. 43 shows a schematic structural diagram of another angle of the heat exchanger provided according to Embodiment 12 of the present application.
  • Figure 44 shows the left side view among Figure 43;
  • Fig. 45 shows a schematic structural diagram of the second heat exchange part of the heat exchanger provided according to Embodiment 12 of the present application.
  • Figure 46 shows the front view in Figure 45
  • Figure 47 shows the left side view among Figure 45;
  • Figure 48 shows the top view in Figure 45
  • Fig. 49 shows a schematic structural view of a heat exchanger provided according to Embodiment 13 of the present application.
  • Fig. 50 shows a structural schematic diagram of another angle of the heat exchanger provided according to Embodiment 13 of the present application.
  • Figure 51 shows the left side view in Figure 50
  • Fig. 52 shows a schematic structural diagram of the second heat exchange part of the heat exchanger provided according to Embodiment 13 of the present application.
  • Figure 53 shows the front view in Figure 52
  • Figure 54 shows the left side view among Figure 52;
  • Figure 55 shows the top view in Figure 52
  • Fig. 56 shows a schematic structural diagram of a heat exchange assembly provided according to Embodiment 14 of the present application.
  • Fig. 57 shows a front view of a heat exchange assembly provided according to Embodiment 14 of the present application.
  • Fig. 58 shows a front view of a heat exchange assembly provided according to Embodiment 15 of the present application
  • Fig. 59 shows a top view of a heat exchange assembly provided according to Embodiment 15 of the present application.
  • Fig. 60 shows a left view of a heat exchange assembly provided according to Embodiment 15 of the present application.
  • Fig. 61 shows a schematic structural diagram of a heat exchange assembly provided according to Embodiment 15 of the present application.
  • Fig. 62 shows a front view of a heat exchange assembly provided according to Embodiment 16 of the present application.
  • Fig. 63 shows a front view of a heat exchange assembly provided according to Embodiment 17 of the present application.
  • Fig. 64 shows a front view of a heat exchange assembly provided according to Embodiment 18 of the present application.
  • Fig. 65 shows a front view of a heat exchange assembly provided according to Embodiment 19 of the present application. .
  • First heat exchange section 11. First flat tube; 111. First heat exchange tube section; 112. Second heat exchange tube section; 113. Installation section; 12. First fin; 13. First heat exchange assembly ; 131, the first heat exchange flat tube; 14, the second heat exchange assembly; 141, the second heat exchange flat tube;
  • Embodiment 1 of the present application provides a heat exchanger, which includes a first heat exchange part 10, a first header 20, a second header 30 and a first Two heat exchange parts 40 .
  • the first heat exchange part 10 includes a plurality of first flat tubes 11 arranged at intervals.
  • the first flat tubes 11 include a first heat exchange tube section 111 and a second heat exchange tube section 112 connected to each other.
  • the heat pipe section 112 is arranged at a preset angle.
  • the first heat exchange tube sections 111 of the plurality of first flat tubes 11 are all connected to the first header 20, and the second heat exchange tube sections 112 of the plurality of first flat tubes 11 are connected to the second header 30 to form A type heat exchanger structure.
  • the second heat exchange part 40 is disposed at the end of the first heat exchange part 10 , and the first heat exchange part 10 and the second heat exchange part 40 enclose to form an air duct.
  • the air duct here refers to the main circulation channel through which air enters the heat exchanger.
  • the air passage is formed by enclosing the first heat exchange part 10 and the second heat exchange part 40, so that the second heat exchange part 40 can effectively play the role of windshield
  • both the first heat exchange part 10 and the second heat exchange part 40 can perform heat exchange, increase the overall heat exchange area, improve the heat exchange performance, effectively use the space, and improve the compactness of the space layout. Therefore, the heat exchanger provided in this embodiment can solve the technical problem of poor heat exchange performance of the A-type heat exchanger in the prior art.
  • first heat exchange pipe section 111 and the second heat exchange pipe section 112 there is an installation interval 113 between the first heat exchange pipe section 111 and the second heat exchange pipe section 112 in this embodiment, and the second heat exchange part 40 is located in the installation interval 113 .
  • the first heat exchange pipe section 111 and the second heat exchange pipe section 112 are arranged at a preset angle, which facilitates the discharge of condensed water when the heat exchanger is in operation.
  • the second heat exchange portion 40 is provided at the end of the first heat exchange portion 10, and the second heat exchange portion 40 is located between the first heat exchange tube section 111 and the second heat exchange tube section 111.
  • this enables the second heat exchange part 40 to perform effective heat exchange while playing the role of windshield, increases the overall heat exchange area of the heat exchanger, and improves the heat exchange performance , effectively utilizing the space and improving the compactness of the space layout. Therefore, the heat exchanger provided in this embodiment can solve the technical problem of poor heat exchange performance of the A-type heat exchanger in the prior art.
  • the installation section 113 is a triangular section
  • the second heat exchange part 40 is a triangular structure or a trapezoidal structure compatible with the installation section 113
  • at least part of the second heat exchange part 40 is connected to the first heat exchange tube section 111 and the second heat exchange tube section 112 are arranged in close contact.
  • the wind-shielding performance can be improved
  • the stability of the second heat exchange part 40 can be improved
  • the structural arrangement can be optimized
  • the compactness of the structural arrangement can be improved.
  • the external dimensions of the second heat exchange part 40 and the first heat exchange tube section 111 of the first heat exchange part 10 can be combined.
  • the angle between it and the second heat exchange tube section 112 is kept exactly the same, so as to make full use of the space and play a certain role of windshield.
  • the included angle between the first heat exchange tube section 111 and the second heat exchange tube section 112 in this embodiment forms a vertex angle of a triangular section, and the vertex angle of a triangular section is the same as the vertex angle of a triangular structure.
  • the second heat exchange portion 40 can be better filled in the installation space 113 so as to better play a blocking role and effectively play a wind-shielding role.
  • the second heat exchange part 40 includes a second flat tube 41, and the second flat tube 41 has a plurality of sequentially connected bent tube sections, and the heights of the sequentially connected bent tube sections first increase and then decrease. Set so that the edges of multiple successively connected bent pipe segments form a triangular structure. With such a structural arrangement, the structure is simple, and it is convenient to form a triangular structure, which is convenient for manufacturing.
  • Embodiment 2 of the present application provides a heat exchanger.
  • the difference between the heat exchanger in this embodiment and the heat exchanger in Embodiment 1 is that the second heat exchange part 40
  • the specific structure is different.
  • the second heat exchange part 40 in this embodiment includes a second flat tube 41 and a second fin 42, the second flat tube 41 has a plurality of sequentially connected bent tube sections, and the multiple sequentially connected bent tube sections The height is firstly increased or decreased, and there are multiple second fins 42, and a plurality of sequentially connected bent pipe sections are installed in the bending gap of each bent pipe section and between two adjacent bent pipe sections. the second fin 42 .
  • the adjacent two bent pipe sections include the first bent pipe section 411 and the second bent pipe section 412, the height of the first bent pipe section 411, the position between the first bent pipe section 411 and the second bent pipe section
  • the heights of the second fins 42 between the pipe sections 412 and the heights of the second bent pipe sections 412 are sequentially increased or decreased, so that the edges of the second flat tube 41 and the edges of the plurality of second fins 42 form a triangle structure.
  • the first bent pipe section 411 and the second bent pipe section 412 here are two adjacent bent pipe sections selected arbitrarily.
  • the bent pipe section in this embodiment is a U-shaped pipe structure, the open end of the U-shaped pipe structure is located at the bottom, and two adjacent U-shaped pipe structures are connected by an arc-shaped plate.
  • the second flat tube 41 in this embodiment is integrally formed to facilitate manufacturing.
  • the second heat exchange part 40 in this embodiment can also have a multi-flow channel structure, that is, the second heat exchange part 40 can have multiple inlets and multiple outlets, and multiple inlets and multiple outlets correspond one-to-one. set up.
  • the third embodiment of the present application provides a heat exchanger
  • the heat exchanger in the third embodiment is based on the first and second embodiments of the second heat exchange part 40
  • the scheme of improving the connection relationship In this embodiment, the inlet end of the second heat exchange part 40 communicates with the first header 20 , and the outlet end of the second heat exchange part 40 communicates with the second header 30 .
  • the heat exchange medium can be provided to the first heat exchange part 10 and the second heat exchange part 40 through the first header 20, and the heat exchange medium passing through the first heat exchange part 10 and the second heat exchange part 40 can be collected through the second header 30.
  • the heat exchange medium flowing out of the second heat exchange part 40 does not require an additional collector structure, and the layout of the structure and the way of connection arrangement are optimized.
  • the second heat exchange portion 40 includes a second flat tube 41 .
  • a first insertion groove may be provided on the first header 20, the first insertion groove extends along the axial direction of the first header 20, and one end of the second flat tube 41 is inserted in the first insertion groove.
  • the second collecting pipe 30 is provided with a second insertion groove, the second insertion groove extends along the axial direction of the second collecting pipe 30, and the other end of the second flat tube 41 is inserted in the second insertion groove Inside.
  • a first insertion groove is provided on the first header 20, the first insertion groove extends along the axial direction of the first header 20, and one end of the second flat tube 41 is inserted into the first insertion groove Inside; and the second collecting pipe 30 is provided with a second insertion groove, the second insertion groove extends along the axial direction of the second collecting pipe 30, and the other end of the second flat tube 41 is inserted in the second insertion socket in the slot.
  • a first insertion slot may be provided on the first header 20, the first insertion slot extends along the axial direction of the first header 20, and one end of the second flat tube 41 is inserted in the first insertion slot.
  • the second collecting pipe 30 is provided with a second insertion groove, the second insertion groove extends along the axial direction of the second collecting pipe 30, and the other end of the second flat tube 41 is inserted in the second in the socket.
  • one end of the second flat tube 41 can be easily inserted into the first insertion slot, and the other end of the second flat tube 41 can be inserted into the second insertion slot, which is convenient for installation and disassembly. Make the connection directly.
  • both the first insertion slot and the second insertion slot in this embodiment are located on the side wall of the first header 20 .
  • the second heat exchange part 40 in this embodiment includes a second flat tube 41 and a second fin 42.
  • the second flat tube 41 has a plurality of bent tube sections connected in sequence, and a first Two fins 42 may also be provided with second fins 42 between two adjacent bent tube sections, the number of second fins 42 in this embodiment is smaller than the number of fins in Embodiment 2 Number, easy to install and manufacture.
  • Embodiment 4 of the present application provides a heat exchanger.
  • the inlet end of the second heat exchange part 40 is also communicated with the first header 20, and the outlet end of the second heat exchange part 40 is also connected with the first header 20.
  • the two headers 30 are connected.
  • the difference between the heat exchanger in this embodiment and the heat exchanger in Embodiment 3 mainly lies in the difference in the connection mode between the inlet end of the second heat exchange part 40 and the first header 20 and the connection of the second heat exchange part 40 .
  • the way the outlet end is connected to the second header 30 is different.
  • connecting pipes are provided at the inlet end and the outlet end of the second heat exchange part 40, so that the inlet end of the second heat exchange part 40 communicates with the first header 20 through the connection pipe, and the second The outlet end of the second heat exchange part 40 communicates with the second header 30 through a connecting pipe.
  • the second heat exchange part includes a third header, a fourth header and a second flat tube 41; the second flat tube 41 communicates with the third header and the fourth header respectively, and the third header
  • the flow pipe and the fourth flow pipe communicate with the first flow pipe 20 and the second flow pipe 30 respectively through connecting pipes.
  • At least two second heat exchange parts 40 can be provided, at least two second heat exchange parts 40 are arranged at intervals, and one second heat exchange part 40 is arranged at one end of the first heat exchange part 10 , another second heat exchange part 40 is disposed at the other end of the first heat exchange part 10 .
  • the heat exchange performance can be better improved, and the wind can be effectively blocked.
  • Embodiment 5 of the present application provides a heat exchanger, and Embodiment 5 is an improvement made on the basis of all the above-mentioned embodiments.
  • the heat exchanger also includes a third connecting pipe 53 and a fourth connecting pipe 54 arranged at intervals, the third connecting pipe 53 and the fourth connecting pipe 54 are both arranged on one of the second heat exchange parts 40, and the third connecting pipe 53 is located on Between the second heat exchange part 40 and the first header 20 , the fourth connecting pipe 54 is located between the second heat exchange part 40 and the second header 30 .
  • Embodiment 6 of the present application provides a heat exchanger, and Embodiment 6 is an improvement on the basis of Embodiment 1 to Embodiment 4.
  • there are two second heat exchange parts 40 and the two second heat exchange parts 40 are respectively arranged at both ends of the first heat exchange part 10, and the inlet ends of the two second heat exchange parts 40 pass through the first A connecting pipe 51 is connected and arranged, and the outlet ends of the two second heat exchange parts 40 are connected and arranged through a second connecting pipe 52 .
  • the two second heat exchange parts 40 are provided independently from the first heat exchange part 10 , so that the two second heat exchange parts 40 and the first heat exchange part 10 perform heat exchange independently.
  • Embodiment 7 of the present application provides a heat exchanger, and the heat exchanger in this embodiment is improved on the basis of Embodiment 1 to Embodiment 4.
  • there are two second heat exchange parts 40 and the two second heat exchange parts 40 are respectively arranged at both ends of the first heat exchange part 10, and the inlet ends of the two second heat exchange parts 40 are connected to the first heat exchange part 10.
  • the side of a header 20 is connected, and the outlet ends of the two second heat exchange parts 40 are connected to the side of the second header 30, which is the length of the first header 20 and the length of the second header.
  • the lengths of the tubes 30 are greater than the gap between the two second heat exchange parts 40 .
  • connection between the inlet end of one of the second heat exchange parts 40 and the first header 20 and the connection between the inlet end of the other second heat exchange part 40 and the first header 20 are respectively located in the first heat exchange part.
  • connection between the outlet end of one second heat exchange part 40 and the second header 30 and the connection between the outlet end of the other second heat exchange part 40 and the second header 30 are located at two ends of the first heat exchange part 10 .
  • the heat exchanger in this embodiment further includes two fifth connecting pipes 55 and two sixth connecting pipes 56, and the two fifth connecting pipes 55 are respectively located between the inlet ends of the two second heat exchange parts 40 and At the connection of the first header 20 , the two sixth connecting pipes 56 are respectively located at the connection of the outlet ends of the two second heat exchange parts 40 and the second header 30 .
  • Embodiment 8 of the present application provides a heat exchanger.
  • the heat exchanger in this embodiment is improved on the basis of Embodiment 1 to Embodiment 4.
  • the heat exchanger also includes two first connecting pipes 61 and two second connecting pipes 62, one end of the two first connecting pipes 61 is respectively connected to both ends of the first header 20, and the other ends of the two first connecting pipes 61 are respectively It is connected to the inlet ends of the two second heat exchange parts 40; one end of the two second connecting pipes 62 is respectively connected to both ends of the second header 30, and the other ends of the two second connecting pipes 62 are respectively connected to the two second The outlet end of the heat exchange part 40 is connected.
  • the connection structure of two first connecting pipes 61 and two second connecting pipes 62 is simple in structure and convenient for connection. No superfluous modifications to the header are required.
  • the heat exchanger in this embodiment also includes two first headers 71 and two second headers 72, and the two first headers 71 are connected to the two ends of the first header 20 respectively.
  • the two first connecting pipes 61 are set in one-to-one correspondence with the two first collecting pipes 71, each first connecting pipe 61 is connected with the corresponding first collecting pipe 71, so that each first connecting pipe 61 passes through the corresponding The first header 71 is connected to the first header 20 .
  • the two second headers 72 are respectively directly connected to the two ends of the second header 30, the two second headers 62 are set in one-to-one correspondence with the two second headers 72, and each second header 62 is connected to the corresponding The second headers 72 are connected, so that each second header 62 is connected to the second header 30 through the corresponding second headers 72 .
  • Embodiment 9 of the present application provides a heat exchanger, and the second heat exchange part 40 is arranged obliquely toward the inner side of the installation space 113 . With such a structural arrangement, drainage can be facilitated.
  • the second heat exchange part 40 in this embodiment has a top end 43 and a bottom end 44 arranged oppositely, and the top end 43 of the second heat exchange part 40 is located at the connection between the first heat exchange tube section 111 and the second heat exchange tube section 112 , the bottom end 44 of the second heat exchange portion 40 is located at the end of the first heat exchange tube section 111 away from the second heat exchange tube section 112 .
  • the top end 43 of the second heat exchange part 40 is inclined to the inside of the installation area 113 relative to the bottom end 44 of the second heat exchange part 40 .
  • Embodiment 10 of the present application provides a heat exchanger, which includes a first heat exchange part 10, a first header 20 (the first header 20 can be an inlet header), a second header
  • the flow pipe 30 (the second header 30 may be an outlet header), the second heat exchange part 40 and the intermediate header 80 .
  • the first heat exchange part 10 includes a plurality of first flat tubes 11 arranged at intervals.
  • the first flat tubes 11 include a first heat exchange tube section 111 and a second heat exchange tube section 112 connected to each other.
  • the heat exchange pipe section 112 is arranged at a predetermined angle to form an A-type heat exchanger structure.
  • the first heat exchange tube sections 111 of the plurality of first flat tubes 11 are all connected to the first header 20
  • the second heat exchange tube sections 112 of the plurality of first flat tubes 11 are connected to the second header 30 .
  • At least part of the second heat exchange part 40 is disposed at the end of the first heat exchange part 10 to enclose and form an air duct.
  • the intermediate header 80 has an inlet pipe section 81 and an outlet pipe section 82 that are independent of each other.
  • the inlet end of the second heat exchange part 40 is connected to the inlet pipe section 81, and the outlet end of the second heat exchange part 40 is connected to the outlet pipe section 82; the inlet pipe section 81
  • the inlet end of the outlet pipe section 82 is connected to the first header 20
  • the outlet end of the outlet pipe section 82 is connected to the second header 30 .
  • the air channel in "at least part of the second heat exchange part 40 is disposed at the end of the first heat exchange part 10 to enclose the synthetic air channel” refers to the main circulation channel through which air enters the heat exchanger.
  • the second heat exchange part 40 is provided at the end of the first heat exchange part 10, and at least part of the second heat exchange part 40 is surrounded by the first heat exchange part 10.
  • both the first heat exchange part 10 and the second heat exchange part 40 can perform heat exchange, so that the second heat exchange part 40 can also effectively exchange heat while playing the role of windshield.
  • heat increases the overall heat exchange area of the heat exchanger, improves heat exchange performance, and effectively utilizes the space, improving the compactness of the space layout. Therefore, the heat exchanger provided in this embodiment can solve the technical problem of poor heat exchange performance of the A-type heat exchanger in the prior art.
  • the fluid in the first header 20 will flow into the first heat exchange part 10 and flow into the second heat exchange part 40 through the inlet pipe section 81 of the intermediate header 80, and the fluid in the first heat exchange part 10
  • the fluid after heat exchange will enter into the second header 30
  • the fluid after heat exchange in the second heat exchange portion 40 will enter into the second header 30 through the outlet pipe section 82 .
  • An inlet connection 101 is arranged at the first header 20
  • an outlet connection 102 is arranged at the second header 30 .
  • the inlet pipe section 81 and the outlet pipe section 82 are separated by a partition 83 .
  • the second heat exchange part 40 includes at least two independently arranged heat exchange structures 45, at least two intermediate headers 80, and at least two heat exchange structures 45 They are arranged at intervals along the extending direction from one end of the first heat exchange part 10 to the other end of the first heat exchange part 10 .
  • At least two heat exchange structures 45 are provided in one-to-one correspondence with at least two intermediate headers 80 , and each heat exchange structure 45 is connected to a corresponding intermediate header 80 .
  • the first heat exchange part 10 in this embodiment further includes first fins 12 .
  • the second heat exchange part 40 in this embodiment includes two independently arranged heat exchange structures 45 , and the two heat exchange structures 45 are respectively arranged at both ends of the first heat exchange part 10 .
  • There are two intermediate headers 80 the two heat exchange structures 45 are provided in one-to-one correspondence with the two intermediate headers 80 , and each heat exchange structure 45 is connected to the corresponding intermediate headers 80 . Adopting such a structural arrangement can effectively play a role of shielding against wind, make full use of the space, improve the compactness of the structural layout, and also improve the heat exchange performance of the heat exchanger.
  • the installation section is a triangular section, and the heat exchange structure 45 is installed in the triangular section, and the shape of the heat exchange structure 45 is consistent with the installation
  • a triangular structure or a trapezoidal structure with matching intervals, at least part of the heat exchange structure 45 is arranged in close contact with the first heat exchange pipe section 111 or the second heat exchange pipe section 112 .
  • the outer dimensions of the heat exchange structure 45 can be compared with the first heat exchange pipe section 111 and the second heat exchange tube section 111 of the first heat exchange part 10.
  • the size of the space between the two heat exchange pipe sections 112 is completely consistent to make full use of the space and play a certain role of wind protection.
  • the included angle between the first heat exchange tube section 111 and the second heat exchange tube section 112 in this embodiment forms a vertex angle of a triangular section, and the vertex angle of a triangular section is the same as that of a triangular structure or a trapezoidal structure.
  • the second heat exchange part 40 can be better filled in the installation area, so as to better play a blocking role.
  • the heat exchange structure 45 in this embodiment includes a plurality of third flat tubes 46 arranged at intervals along the height direction, the inlet end of the third flat tube 46 is connected to the inlet pipe section 81, and the outlet end of the third flat tube 46 is connected The outlet pipe section 82 is connected.
  • a normal heat exchange flow path can be easily formed, so as to improve heat exchange efficiency.
  • the third flat tube 46 includes a first tube section 461, a second tube section 462, and a third tube section 463 connected in sequence, and the first tube section 461 and the third tube section 463 are all along the vertical direction or at an angle to the vertical direction.
  • the direction of the predetermined angle extends
  • the second pipe section 462 extends along the horizontal direction or the direction of the predetermined angle with the horizontal direction
  • the end of the first pipe section 461 away from the second pipe section 462 forms the inlet end of the third flat pipe 46
  • the third pipe section The end of 463 away from the second pipe section 462 forms the outlet end of the third flat pipe 46 .
  • both the first pipe section 461 and the third pipe section 463 can be arranged obliquely to the vertical direction, that is, to make the first pipe section 461 and the third pipe section 463 be inclined to the inside of the installation interval, so that drainage can be facilitated, It is also convenient to increase the heat exchange area.
  • the lengths of the plurality of second pipe segments 462 gradually decrease, and the lengths of the plurality of first pipe segments 461 and/or the lengths of the plurality of third pipe segments
  • the length of the pipe section 463 gradually increases.
  • the lengths of the plurality of first pipe sections 461 and the lengths of the plurality of third pipe sections are gradually increased, which can facilitate the formation of a triangular structure, so as to fully fill the end of the installation interval, thereby facilitating effective protection against wind and heat exchange.
  • the third flat tube 46 in this embodiment is integrally formed.
  • the junction of the first pipe section 461 and the second pipe section 462 can be an arc bend transition structure; or the junction of the second pipe section 462 and the third pipe section 463 can be an arc bend transition structure; or the first pipe section 461 and The junction of the second pipe section 462 and the junction of the second pipe section 462 and the third pipe section 463 are all curved transition structures.
  • the joints of the first pipe section 461 and the second pipe section 462 and the joints of the second pipe section 462 and the third pipe section 463 are all set as arc-shaped bending transition structures, so as to avoid reducing the The stress concentration phenomenon at the joint facilitates a smooth transition and improves the strength of the structure.
  • the third flat tube 46 in this embodiment can be formed by bending.
  • the two triangular-shaped heat exchange structures 45 in this embodiment are set independently, the first pipe section 461 and the third pipe section 463 in the heat exchange structure 45 play a major role in heat exchange, the second pipe section 462 extends laterally, and the second pipe section 462 It mainly plays the role of connecting the first pipe section 461 and the third pipe section 463 .
  • the arc-shaped bending transition structure can be a bending circle, or the bending circle can be flattened, and the bending form is not limited.
  • Embodiment 11 of the present application provides a heat exchanger.
  • the difference between the heat exchanger in this embodiment and the heat exchanger in Embodiment 1 is that the second heat exchange part
  • the heat exchange structure 45 of 40 has different structures and connection methods.
  • the heat exchanger in this embodiment further includes a connecting pipe 90 , and the connecting pipe 90 and the intermediate header 80 are respectively arranged at both ends of the first heat exchanging part 10 .
  • the second heat exchange part 40 includes two heat exchange structures 45 arranged in communication. The two heat exchange structures 45 are respectively arranged at both ends of the first heat exchange part 10 .
  • the heat structure 45 is connected with the intermediate header 80 so that the fluid entering through the inlet pipe section 81 passes through the two heat exchange structures 45 and then is discharged from the outlet pipe section 82 .
  • Adopting such a structural arrangement can also effectively play the role of shielding the wind, make full use of the space, improve the compactness of the structural layout, and also improve the heat exchange performance of the heat exchanger.
  • the second heat exchange part 40 in this embodiment further includes a fourth flat tube 47
  • the fourth flat tube 47 has a fourth tube segment 471, a fifth tube segment 472 and a sixth tube segment 473 connected in sequence, the fourth tube segment 471 and the sixth pipe section 473 extend in the vertical direction or in a direction with a preset angle to the vertical direction
  • the fourth pipe section 471 is located at one end of the first heat exchange part 10 and is connected to the intermediate header 80
  • the fifth pipe section 472 Located between one end of the first heat exchange part 10 and the other end of the first heat exchange part 10
  • the sixth pipe section 473 is located at the other end of the first heat exchange part 10 and connected to the connecting pipe 90 .
  • the plurality of fourth flat tubes 47 are arranged at intervals along the extending direction of the intermediate header 80.
  • a plurality of fourth tube sections 471 form a heat exchange structure 45, and a plurality of sixth tube sections 473 Surrounding another heat exchange structure 45 , one heat exchange structure 45 is connected to another heat exchange structure 45 through a plurality of fifth pipe sections 472 .
  • both the fourth pipe section 471 and the sixth pipe section 473 can be extended in a direction that forms a preset angle with the vertical direction, so that the fourth pipe section 471 and the sixth pipe section 473 are both extended toward the first heat exchange pipe section.
  • the installation interval between 111 and the second heat exchange tube section 112 is arranged obliquely so as to facilitate drainage and increase the heat exchange area. In this way, along the bottom end of the heat exchange structure 45 (corresponding to the opening end of the first heat exchange part 10) to the top end (connection with the first heat exchange pipe section 111 and the second heat exchange pipe section 112 of the first heat exchange part 10 In the direction corresponding to ), the length of the fifth pipe segment 472 gradually decreases.
  • the installation interval is a triangular interval, and at least part of the heat exchange structure 45 is connected to the first heat exchange pipe section 111 or the second heat exchange pipe section 111
  • the pipe section 112 is snugly arranged.
  • the lengths of the fourth pipe sections 471 of the plurality of fourth flat pipes 47 first increase and then decrease, so that the plurality of fourth pipe sections 471 form a triangular structure or Ladder structure.
  • the lengths of the sixth pipe sections 473 of the plurality of fourth flat pipes 47 first increase and then decrease, so that the plurality of sixth pipe sections 473 form a triangle suitable for the installation interval structure or trapezoidal structure.
  • the lengths of the fourth pipe sections 471 and the sixth pipe sections 473 are increased first and then decreased, so as to facilitate the replacement of a plurality of fourth pipe sections 471.
  • the thermal structure 45 and another heat exchange structure 45 surrounded by the plurality of sixth pipe sections 473 can both form a triangular structure or a trapezoidal structure suitable for the installation interval.
  • the lengths of the multiple fourth pipe segments 471 and the multiple sixth pipe segments 473 are firstly increased and then decreased.
  • the structure is simple, the layout is compact, the structural layout is optimized, and the heat exchange performance is improved.
  • the fourth flat tube 47 is integrally formed.
  • the junction of the fourth pipe section 471 and the fifth pipe section 472 can be an arc-shaped bending transition structure; or, the junction of the fifth pipe section 472 and the sixth pipe section 473 can be an arc-shaped bending transition structure;
  • the joints between the pipe section 471 and the fifth pipe section 472 and the joints between the fifth pipe section 472 and the sixth pipe section 473 are all arranged as arc bending transition structures.
  • the joints of the fourth pipe section 471 and the fifth pipe section 472 and the joints of the fifth pipe section 472 and the sixth pipe section 473 are all set as arc-shaped bending transition structures, so as to avoid reducing the The stress concentration phenomenon at the joint facilitates a smooth transition and improves the strength of the structure.
  • the fourth flat tube 47 in this embodiment can be formed by bending.
  • the fourth pipe section 471 and the sixth pipe section 473 in the fourth flat pipe 47 in this embodiment play a major role in heat exchange
  • the fifth pipe section 472 plays the role of connecting the fourth pipe section 471 and the sixth pipe section 473
  • the fifth pipe section The shape and structure of 472 are not limited.
  • the embodiment of the present application provides a heat exchanger, the heat exchanger includes a first heat exchange part 10 and a second heat exchange part 40, the first heat exchange part 10 Including interconnected first heat exchange assembly 13 and second heat exchange assembly 14, the first heat exchange assembly 13 includes interconnected first header 20 and a plurality of first heat exchange flat tubes 131, the plurality of first heat exchange The flat heating tubes 131 are arranged at intervals along a first preset direction.
  • the second heat exchange assembly 14 is connected to the first heat exchange assembly 13, and the second heat exchange assembly 14 includes a second header 30 connected to each other and a plurality of second heat exchange flat tubes 141, and the plurality of second heat exchange flat tubes 141 are arranged at intervals along the second preset direction, and the first preset direction and the second preset direction form a preset angle; the second heat exchange part 40 is arranged at the ends of the first heat exchange assembly 13 and the second heat exchange assembly 14 , the first heat exchange component 13 , the second heat exchange component 14 and the second heat exchange part 40 enclose to form an air duct.
  • the air duct here refers to the main circulation channel through which air enters the heat exchanger.
  • the first heat exchange assembly 13 , the second heat exchange assembly 14 , and the second heat exchange portion 40 are all connected through connecting pipes 110 .
  • the first heat exchange assembly 13, the second heat exchange assembly 14, and the second heat exchange portion 40 are enclosed to form an air duct, so that the second heat exchange portion 40 can Effectively play the role of windshield, and enable the first heat exchange component 13, the second heat exchange component 14 and the second heat exchange part 40 to perform heat exchange, increase the overall heat exchange area, improve heat exchange performance,
  • the space is effectively used, and the compactness of the space layout is improved.
  • the connecting pipe 110 is used to connect the first heat exchange assembly 13 and the second heat exchange assembly 14, so that the first heat exchange flat tubes 131 of the first heat exchange assembly 13 can all be long straight pipe sections, the second The second heat exchanging flat tube 141 of the heat exchanging assembly 14 is also a long straight tube section without bent tube section structure, so the structure is simple. Therefore, the heat exchanger provided in this embodiment can solve the technical problem of poor heat exchange performance of the A-type heat exchanger in the prior art.
  • Adopting such an installation method can further optimize the installation position of the second heat exchange part 40, thereby optimizing the overall structural layout of the second heat exchange part 40, and can also effectively increase the overall heat exchange area of the heat exchanger, improving the heat exchange efficiency. performance.
  • the installation section is a triangular section
  • the second heat exchange part 40 is a triangular or trapezoidal structure suitable for the installation section. At least part of the second heat exchange part 40 is compatible with the first heat exchange assembly 13 and the second The two heat exchange components 14 are arranged in close contact.
  • the external dimensions of the second heat exchange part 40 can be compared with the first heat exchange assembly 13 and the second heat exchange assembly 14 The angles between them are kept exactly the same to make full use of the space and play a certain role of windshield.
  • the included angle between the first heat exchange component 13 and the second heat exchange component 14 forms a vertex angle of a triangular section, and the vertex angle of the triangular section is the same as the vertex angle of the triangular structure. Adopting such a structural arrangement can facilitate the second heat exchange part 40 to be better filled in the installation area, so as to better play a blocking role and effectively play a wind-shielding role.
  • the second heat exchange part 40 includes a third heat exchange flat tube 48, and the third heat exchange flat tube 48 has a plurality of sequentially connected bent tube sections, and a plurality of sequentially connected bent tube sections
  • the height is firstly set in increments or decrements so that the edges of the successively connected bent pipe segments form a triangular structure.
  • the multiple third heat exchange flat tubes 48 are arranged at intervals along the height direction, which can facilitate the reduction of the distance between the bent tube sections to improve the heat exchange rate.
  • Thermally efficient and effective for wind protection Specifically, the projections of the plurality of third heat exchange flat tubes 48 in the height direction have overlapping areas, so that they can better play a role in shielding the wind and perform heat exchange effectively.
  • third fins are arranged between the plurality of third heat exchange flat tubes 48 in this embodiment.
  • the inlet ends of the plurality of third heat exchange flat tubes 48 are connected, and the outlet ends of the plurality of third heat exchange flat tubes 48 are connected, so as to facilitate the inflow and flow of the plurality of third heat exchange flat tubes 48 outflow management.
  • the second heat exchange part 40 in this embodiment includes a third header 4100, the inlet ends of a plurality of third heat exchange flat tubes 48 are connected through a third header 4100, and the plurality of third heat exchange The outlet ends of the flat tubes 48 are connected through another third header 4100 .
  • Embodiment 13 of the present application provides a heat exchanger.
  • the difference between the heat exchanger in Embodiment 13 and the heat exchanger in Embodiment 12 lies in the structure of the second heat exchange part 40 .
  • the second heat exchange part 40 in this embodiment includes a plurality of third heat exchange flat tubes 48, and the plurality of third heat exchange flat tubes 48 extends from the first heat exchange assembly 13 to the second heat exchange assembly 14.
  • Each of the third heat exchange flat tubes 48 has a plurality of bent tube sections connected in sequence.
  • the edges of the three heat exchange flat tubes 48 form a triangular structure. With such a structural arrangement, the structure is simple, it is convenient to form a triangular structure, and it is convenient for manufacturing.
  • the circulation resistance of the refrigerant in the single third heat exchange flat tube 48 can also be reduced.
  • the inlet ends of the plurality of third heat exchange flat tubes 48 in this embodiment are connected, and the outlet ends of the plurality of third heat exchange flat tubes 48 are connected, so that the inlets of the plurality of third heat exchange flat tubes 48 Concentrating the inflow at the ends facilitates centralized recovery of the outlet ends of the plurality of third heat exchange flat tubes 48 .
  • the second heat exchange part 40 further includes an inlet connection pipe 491, the inlet connection pipe 491 extends along the extending direction from the first heat exchange assembly 13 to the second heat exchange assembly 14, and a plurality of third heat exchange flat pipes 48 are connected to the inlet connection pipe 491; and/or, the second heat exchange part 40 also includes an outlet connection pipe 492, and the outlet connection pipe 492 is along the extending direction from the first heat exchange assembly 13 to the second heat exchange assembly 14 Extending, the outlet ends of the plurality of third heat exchange flat tubes 48 are all connected to the outlet connecting pipe 492 .
  • the second heat exchange part 40 in this embodiment includes an inlet connection pipe 491 and an outlet connection pipe 492.
  • the inlet connection pipe 491 extends along the extension direction from the first heat exchange assembly 13 to the second heat exchange assembly 14, and a plurality of The inlet ends of the third heat exchange flat tubes 48 are all connected to the inlet connecting pipes 491, so as to centrally supply refrigerant to multiple third heat exchanging flat tubes 48 through the inlet connecting pipes 491, and centrally recover multiple third heat exchanging flat tubes 48 through the outlet connecting pipes 492.
  • the refrigerant in the heat exchange flat tube 48 is particularly, a plurality of The inlet ends of the third heat exchange flat tubes 48 are all connected to the inlet connecting pipes 491, so as to centrally supply refrigerant to multiple third heat exchanging flat tubes 48 through the inlet connecting pipes 491, and centrally recover multiple third heat exchanging flat tubes 48 through the outlet connecting pipes 492.
  • This application adopts two single-piece non-bending heat exchangers (including the first heat exchange assembly 13 and the second heat exchange assembly 14), which are connected into a V shape with the connecting pipe 110, which is inherent in solving the application of bending heat exchangers.
  • a tube-and-belt heat exchanger (second heat exchange part 40) is added to further increase the effective heat exchange area and improve heat exchange efficiency.
  • compact structure high space utilization.
  • the two single-row heat exchangers in this embodiment are connected into a V shape with connecting pipes, without bending sections; The role of the wind.
  • three flat tubes in order to reduce the refrigerant flow resistance in the tube-belt heat exchanger, three flat tubes can be folded and bent into a triangle, and connected in parallel with the V-shaped single-row heat exchanger.
  • two or four flat tubes can be overlapped and bent into triangles, trapezoids and other shapes to reduce flow resistance and connect with V-shaped single-row heat exchangers.
  • the flat tube in order to reduce the refrigerant flow resistance in the tube-strip heat exchanger, can be divided into three ways to bend the inlet and outlet and form a triangle to connect with the V-shaped single-row heat exchanger.
  • It can be bent into triangles or trapezoids in two or four ways.
  • Embodiment 12 and Embodiment 13 of the present application achieve the following technical effects: increase the effective heat exchange area, improve heat exchange efficiency, and have a compact structure and high space utilization.
  • the embodiment of the present application provides a heat exchange assembly
  • the heat exchange assembly includes a bent flat tube structure
  • the bent flat tube structure has a heat exchange inlet, a heat exchange outlet and a A bent heat exchange flow path structure in which both the heat exchange inlet and the heat exchange outlet are connected.
  • the edges of the bent flat tube structure form a triangular structure or a trapezoidal structure.
  • the above-mentioned heat exchange assembly structure can replace the sheet metal parts in the A-type heat exchange assembly, so that the windshielding effect on the A-type heat exchanger can be realized , improve the compactness of the structure, and can also effectively improve the overall heat exchange effect of the A-type heat exchanger. Therefore, using the heat exchange assembly provided in this embodiment can facilitate and effectively improve the heat exchange performance of the A-type heat exchanger.
  • the bent flat tube structure includes a first flat tube 11, and the first flat tube 11 includes a plurality of first heat exchange tube sections 111 arranged at intervals along the horizontal direction and communicated with each other. Extend straight.
  • the heights of the plurality of first heat exchange tube sections 111 in this embodiment first increase and then decrease, one end of the first flat tube 11 forms a heat exchange inlet, and the other end of the first flat tube 11 forms a heat exchange outlet .
  • a bent flat tube structure can be formed by one bent first flat tube 11 , which is simple in structure, easy to manufacture and realize, and effectively reduces the manufacturing cost.
  • the heat exchange assembly further includes a first header 20 and a second header 30, the heat exchange inlet is connected to the first header 20, and the heat exchange outlet is connected to the second header 30 .
  • the heat exchange assembly in this embodiment is a single-circuit pipe-belt structure, which can be considered when the overall size of the heat exchange assembly is small.
  • Embodiment 2 of the present application provides a heat exchange assembly.
  • the bent flat tube structure includes a first flat tube 11, and the first flat tube 11 includes a plurality of first flat tubes arranged at intervals along the horizontal A heat exchange tube section 111, the first heat exchange tube section 111 both extend along the vertical direction.
  • a plurality of first flat tubes 11 arranged at intervals along the horizontal direction can facilitate making the edges of the bent flat tube structure form a triangular structure or a trapezoidal structure.
  • the length of the heat exchange flow path in each first flat tube 11 can be reduced, thereby reducing the heat exchange resistance of the refrigerant. , so as to improve the heat transfer effect.
  • the heat exchange assembly further includes: a first header 20, a plurality of first heat exchange inlets are all connected to the first header 20, and the first header 20 extends along the direction of the interval arrangement of the plurality of first heat exchange inlets; And/or, in the second header 30, the plurality of first heat exchange outlets are all connected to the second header 30, and the second header 30 extends along the direction in which the plurality of first heat exchange outlets are arranged at intervals.
  • the heat exchange assembly in this embodiment further includes a first header 20 and a second header 30, a plurality of first heat exchange inlets are connected to the first header 20, and the first header 20 Extending along the direction of spacing arrangement of multiple first heat exchange inlets; multiple first heat exchange outlets are all connected to the second header 30, and the second header 30 extends along the direction of spacing arrangement of multiple first heat exchange outlets .
  • a structural arrangement it is convenient to provide refrigerant to the multiple first heat exchange inlets through the first header 20, and it is convenient to transfer the refrigerant flowing out of the first heat exchange outlets through the second header 30. collect.
  • the heat exchange assembly in this embodiment has a multi-circuit pipe-belt structure, which can be considered when the heat exchanger is relatively long, so as to avoid the large flow resistance of the refrigerant and affect the heat exchange performance.
  • Embodiment 3 of the present application provides a heat exchange assembly.
  • the bent flat tube structure includes a first flat tube 11, and the first flat tube 11 includes a plurality of first heat exchange tube sections 111 arranged at intervals along the horizontal direction and communicated with each other.
  • a heat exchange pipe segment 111 extends vertically.
  • the heights of the multiple first heat exchange tube segments 111 of the first flat tube 11 in this embodiment first increase and then decrease, there are multiple first flat tubes 11, and the multiple first flat tubes 11 are vertically interval setting. With such a structural arrangement, it is convenient to effectively increase the number of heat exchange flow paths, so as to effectively improve the heat exchange effect.
  • the structure in this embodiment is a multiple single-circuit pipe-belt structure, which is also applicable to heat exchange components of smaller size.
  • the heat exchange assembly in this embodiment includes a first header 20 and a second header 30, the heat exchange inlet includes a plurality of first heat exchange inlets of the first flat tubes 11, and the heat exchange outlet includes The first heat exchange outlets of the plurality of first flat tubes 11, the plurality of first heat exchange inlets are all connected to the first header 20 (the first header may be an inlet header), and the plurality of first heat exchange The outlets are all connected to the second header 30 (the second header may be an outlet header).
  • Embodiment 4 of the present application provides a heat exchange assembly.
  • the bent flat tube structure in this embodiment includes a first flat tube 11. Both the heat pipe section 111 and the first heat exchange pipe section 111 extend vertically.
  • the heights of the multiple first heat exchange tube sections 111 of the first flat tube 11 of the heat exchange assembly first increase and then decrease, and the bent flat tube structure also includes a second flat tube 41, and the second flat tube 41 includes multiple Two second heat exchange pipe sections 112 spaced apart and connected in the horizontal direction, the second heat exchange pipe sections 112 extend vertically, the heights of the multiple second heat exchange pipe sections 112 are the same, and the multiple first heat exchange pipe sections 111 are installed on multiple above the second heat exchange tube section 112.
  • the layout of the heat exchange assembly is also optimized by setting the layout of the first flat tube 11 and the second flat tube 41.
  • the structural compactness of the heat exchange assembly is improved, the length of the heat exchange flow path in each flat tube is reduced, and the fluid resistance in the corresponding flat tube is further reduced.
  • Embodiment 5 of the present application provides a heat exchange assembly.
  • the bent flat tube structure includes a plurality of first inclined sections 4131 and a plurality of second inclined sections 4141, and a plurality of first inclined sections 4131 and a plurality of second inclined sections. 4141 are provided in a one-to-one correspondence, and each first slanting section 4131 and the corresponding second slanting section 4141 are correspondingly arranged so as to be spliced to form a triangular structure.
  • first inclined sections 4131 are arranged at intervals in the horizontal direction
  • second inclined sections 4141 are arranged at intervals in the horizontal direction
  • the outermost first inclined section 4131 and the outermost second inclined section 4141 form a folding
  • the edges of the flat tube structure are bent and formed into a triangular structure or a trapezoidal structure.
  • Embodiment 6 of the present application provides a heat exchange assembly.
  • the bent flat tube structure includes a third flat tube 46 and a fourth flat tube 47.
  • the third flat tube 46 includes horizontally spaced and connected A plurality of third heat exchange tube sections
  • the fourth flat tube 47 includes a plurality of fourth heat exchange tube sections arranged at intervals along the horizontal direction and communicated with each other
  • each third heat exchange tube section includes a first inclined section 4131
  • each fourth heat exchange tube section Including the second inclined section 4141, a plurality of first inclined sections 4131 and a plurality of second inclined sections 4141 are provided in one-to-one correspondence, and each first inclined section 4131 abuts against a corresponding second inclined section 4141 to form a triangular structure.
  • the third heat exchange pipe section in this embodiment further includes a first vertical section 4132, the first vertical section 4132 is located below the first inclined section 4131 and communicates with the first inclined section 4131, and the fourth heat exchange pipe section It also includes a second vertical section 4142 , the second vertical section 4142 is located below the second inclined section 4141 and communicates with the second inclined section 4141 .
  • the heat exchange assembly in this embodiment may further include a sixth flat tube 4120, the sixth flat tube 4120 is located between the third flat tube 46 and the fourth flat tube 47, and the sixth flat tube 4120 has And the sixth heat exchange tube section, the seventh heat exchange tube section and the eighth heat exchange tube section are arranged in communication.
  • the sixth heat exchange tube section includes a sixth vertical section and a sixth inclined section connected to each other.
  • the sixth inclined section is located in the sixth vertical section Above the straight section, the seventh heat exchange tube section includes a seventh vertical section, the eighth heat exchange tube section includes an eighth vertical section and an eighth inclined section connected to each other, and the eighth inclined section is located above the eighth vertical section.
  • the sixth heat exchange tube section is set close to the third heat exchange tube section
  • the seventh heat exchange tube section is set close to the fourth heat exchange tube section
  • the sixth inclined section and the eighth inclined section form a triangular structure, and at least part of the seventh vertical section It is located in the triangle interval surrounded by the sixth and eighth inclined sections.
  • the heat exchange assembly in this embodiment further includes a third connecting pipe 53 and a fourth connecting pipe 54
  • the heat exchange inlet part includes the third heat exchange inlet of the third flat tube 46, the fourth The heat exchange inlet and the sixth heat exchange inlet of the sixth flat tube 4120
  • the heat exchange outlet part includes the third heat exchange outlet of the third flat tube 46, the fourth heat exchange outlet of the fourth flat tube 47 and the sixth flat tube 4120 The sixth heat exchange outlet.
  • the third connecting pipe 53 extends along the layout direction of the third heat exchange inlet, the fourth heat exchange inlet and the sixth heat exchange inlet, and the third heat exchange inlet, the fourth heat exchange inlet and the sixth heat exchange inlet are all connected to the first Three connecting pipes 53 are connected.
  • the fourth connecting pipe 54 extends along the layout direction of the third heat exchange outlet, the fourth heat exchange outlet and the sixth heat exchange outlet, and the third heat exchange outlet, the fourth heat exchange outlet and the sixth heat exchange outlet are all connected to the first Four connecting pipes 54 are connected.
  • Embodiment 7 of the present application provides a heat exchange assembly.
  • the bent flat tube structure of the heat exchange assembly includes a fifth flat tube 4110.
  • the fifth flat tube 4110 includes a plurality of fifth tubes that
  • the heat pipe section, each fifth heat exchange pipe section includes a third inclined section 4151 and a fourth inclined section 4152 connected to each other, and the third inclined section 4151 and the fourth inclined section 4152 form a triangular structure. Adopting such a structural arrangement can facilitate the optimization of the structural layout of the heat exchange components, improve the structural compactness of the heat exchange components, and facilitate the formation of a triangular structure.
  • the end of the third inclined section 4151 away from the fourth inclined section 4152 is provided with a third vertical section 4153
  • the end of the fourth inclined section 4152 away from the third inclined section 4151 is provided with a fourth vertical section 4154.
  • fifth flat tubes 4110 there are multiple fifth flat tubes 4110 in this embodiment, and the multiple fifth flat tubes 4110 are arranged at intervals along the direction from the outside to the inside of the triangular structure.
  • the heat exchange assembly further includes a fifth connecting pipe 55 and a sixth connecting pipe 56, a plurality of fifth heat exchange inlets are connected to the fifth connecting pipe 55, and a plurality of sixth heat exchange inlets are connected to the sixth
  • the connecting pipe 56 is connected.
  • the flow resistance of the refrigerant is relatively small, so they are applicable to heat exchange components with a small overall size.
  • the flow resistance of the refrigerant is relatively large, so it can be applied to heat exchange components with a large overall size.
  • the heat exchange inlet part and the heat exchange outlet part are arranged at intervals at the bottom of the heat exchange assembly.
  • the embodiment of the present application provides a heat exchanger
  • the second heat exchange part 40 is a bent flat tube structure
  • the bent flat tube structure has a heat exchange inlet part and a heat exchange outlet part And a bent heat exchange flow path structure communicating with both the heat exchange inlet part and the heat exchange outlet part.
  • the edges of the bent flat tube structure form a triangular structure or a trapezoidal structure.
  • the above-mentioned heat exchanger structure can replace the sheet metal parts in the A-type heat exchanger, so that the windshielding effect on the A-type heat exchanger can be realized , improve the compactness of the structure, and can also effectively improve the overall heat exchange effect of the A-type heat exchanger. Therefore, the use of the heat exchanger provided in this embodiment can facilitate and effectively improve the heat exchange performance of the A-type heat exchanger.
  • the bent flat tube structure includes a fifth flat tube 4110, and the fifth flat tube 4110 includes a plurality of fifth heat exchange tube sections 4111 arranged at intervals along the horizontal direction and communicated with each other.
  • the fifth heat exchange tube sections 4111 are arranged along the Extend vertically.
  • the heights of the plurality of fifth heat exchange tube sections 4111 in this embodiment first increase and then decrease, one end of the fifth flat tube 4110 forms a heat exchange inlet, and the other end of the fifth flat tube 4110 forms a heat exchange outlet .
  • a bent flat tube structure can be formed by one bent fifth flat tube 4110 , which has a simple structure, is easy to manufacture and realizes, and effectively reduces the manufacturing cost.
  • the heat exchanger also includes a first header 20 (which may be an inlet header) and a second header 30 (which may be an outlet header), and the heat exchange inlet part and the first header
  • the tubes 20 are connected, and the heat exchange outlet is connected to the second header 30 .
  • the heat exchanger in this embodiment has a single-circuit pipe-belt structure, which can be considered when the overall size of the heat exchanger is small.
  • Embodiment 15 of the present application provides a heat exchanger.
  • the bent flat tube structure includes a fifth flat tube 4110
  • the fifth flat tube 4110 includes a plurality of horizontally spaced and connected
  • the fifth heat exchange pipe section 4111 and the fifth heat exchange pipe section 4111 both extend along the vertical direction.
  • the heat exchange inlet part includes the first heat exchange inlets of the fifth flat tubes 4110
  • the heat exchange outlet part includes multiple fifth The heights of the first heat exchange outlet of the flat tube 4110 and the plurality of fifth heat exchange tube sections 4111 of the plurality of fifth flat tubes 4110 first increase and then decrease.
  • the plurality of fifth flat tubes 4110 arranged at intervals along the horizontal direction can facilitate making the edges of the bent flat tubes form a triangular structure or a trapezoidal structure.
  • the length of the heat exchange flow path in each fifth flat tube 4110 can be reduced, thereby reducing the heat exchange resistance of the refrigerant. , so as to improve the heat transfer effect.
  • the heat exchanger also includes: a first connecting pipeline 120, a plurality of first heat exchange inlets are all connected to the first connecting pipeline 120, and the first connecting pipeline 120 extends along the direction of the interval arrangement of the plurality of first heat exchange inlets; And/or, in the second connecting pipeline 130, the plurality of first heat exchange outlets are all connected to the second connecting pipeline 130, and the second connecting pipeline 130 extends along the direction of the interval arrangement of the plurality of first heat exchange outlets.
  • the heat exchanger in this embodiment further includes a first connecting pipeline 120 and a second connecting pipeline 130, a plurality of first heat exchange inlets are connected to the first connecting pipeline 120, and the first connecting pipeline 120 Extending along the direction of the spacing arrangement of the plurality of first heat exchange inlets; the plurality of first heat exchange outlets are all connected to the second connection pipeline 130, and the second connection pipeline 130 extends along the direction of the spacing arrangement of the plurality of first heat exchange outlets .
  • the heat exchanger in this embodiment is a multi-circuit pipe-belt structure, which can be considered when the heat exchanger is relatively long, so as to avoid the large flow resistance of the refrigerant and affect the heat exchange performance.
  • Embodiment 16 of the present application provides a heat exchanger.
  • the bent flat tube structure includes a fifth flat tube 4110, and the fifth flat tube 4110 includes a plurality of fifth heat exchange tube sections 4111 arranged at intervals along the horizontal direction and communicated with each other.
  • the fifth heat exchange pipe sections 4111 all extend along the vertical direction.
  • the heights of the multiple fifth heat exchange tube sections 4111 of the fifth flat tube 4110 in this embodiment first increase and then decrease, there are multiple fifth flat tubes 4110, and the multiple fifth flat tubes 4110 are vertically interval setting. With such a structural arrangement, it is convenient to effectively increase the number of heat exchange flow paths, so as to effectively improve the heat exchange effect.
  • the structure in this embodiment is a multiple single-circuit pipe-belt structure, which is also suitable for heat exchangers of smaller size.
  • the heat exchanger in this embodiment includes the first header 20 and the second header 30, the heat exchange inlet part includes the first heat exchange inlet of a plurality of fifth flat tubes 4110, and the heat exchange outlet part includes The first heat exchange outlets and the first heat exchange inlets of the plurality of fifth flat tubes 4110 are all connected to the first header 20 , and the plurality of first heat exchange outlets are all connected to the second header 30 .
  • Embodiment 17 of the present application provides a heat exchanger.
  • the bent flat tube structure in this embodiment includes a fifth flat tube 4110, and the fifth flat tube 4110 includes a plurality of fifth flat tubes arranged horizontally and communicated. Both the heat exchange pipe section 4111 and the fifth heat exchange pipe section 4111 extend along the vertical direction.
  • the bent flat tube structure also includes a sixth flat tube 4120, which includes multiple Sixth heat exchange pipe sections 4121 spaced apart and connected in the horizontal direction, the sixth heat exchange pipe sections 4121 extend vertically, the heights of the multiple sixth heat exchange pipe sections 4121 are the same, and the multiple fifth heat exchange pipe sections 4111 are installed on multiple Above the sixth heat exchange tube section 4121.
  • a structural arrangement it is easy to form a bent flat tube structure with triangular or trapezoidal edges.
  • the structural layout of the heat exchanger is also optimized. The structural compactness of the heat exchanger is improved, the length of the heat exchange flow path in each flat tube is reduced, and the fluid resistance in the corresponding flat tube is further reduced.
  • Embodiment 18 of the present application provides a heat exchanger.
  • the bent flat tube structure includes a plurality of first inclined sections 4131 and a plurality of second inclined sections 4141, and a plurality of first inclined sections 4131 and a plurality of second inclined sections
  • the segments 4141 are provided in one-to-one correspondence, and each first inclined segment 4131 and the corresponding second inclined segment 4141 are correspondingly arranged to form a triangular structure by splicing.
  • first inclined sections 4131 are arranged at intervals in the horizontal direction
  • second inclined sections 4141 are arranged at intervals in the horizontal direction
  • the outermost first inclined section 4131 and the outermost second inclined section 4141 form a folding
  • the edges of the flat tube structure are bent and formed into a triangular structure or a trapezoidal structure.
  • Embodiment 19 of the present application provides a heat exchanger.
  • the bent flat tube structure includes a seventh flat tube 4130 and an eighth flat tube 4140.
  • the seventh flat tube 4130 includes horizontally spaced and connected
  • the eighth flat tube 4140 includes a plurality of fourth heat exchange tube sections arranged at intervals along the horizontal direction and communicated with each other, each third heat exchange tube section includes a first inclined section 4131, and each fourth heat exchange tube section
  • the pipe section includes a second inclined section 4141, a plurality of first inclined sections 4131 and a plurality of second inclined sections 4141 are arranged in one-to-one correspondence, and each first inclined section 4131 abuts against a corresponding second inclined section 4141 to form a triangular structure .
  • the third heat exchange pipe section in this embodiment further includes a first vertical section 4132, the first vertical section 4132 is located below the first inclined section 4131 and communicates with the first inclined section 4131, and the fourth heat exchange pipe section It also includes a second vertical section 4142 , the second vertical section 4142 is located below the second inclined section 4141 and communicates with the second inclined section 4141 .
  • the heat exchanger in this embodiment may further include a tenth flat tube 4160, the tenth flat tube 4160 is located between the seventh flat tube 4130 and the eighth flat tube 4140, and the tenth flat tube 4160 has intervals along the horizontal direction
  • the sixth heat exchange tube section, the seventh heat exchange tube section and the eighth heat exchange tube section are arranged in communication.
  • the sixth heat exchange tube section includes a sixth vertical section and a sixth inclined section connected to each other.
  • the sixth inclined section is located in the sixth vertical section Above the straight section, the seventh heat exchange tube section includes a seventh vertical section, the eighth heat exchange tube section includes an eighth vertical section and an eighth inclined section connected to each other, and the eighth inclined section is located above the eighth vertical section.
  • the sixth heat exchange tube section is set close to the third heat exchange tube section
  • the seventh heat exchange tube section is set close to the fourth heat exchange tube section
  • the sixth inclined section and the eighth inclined section form a triangular structure, and at least part of the seventh vertical section It is located in the triangle interval surrounded by the sixth and eighth inclined sections.
  • the heat exchanger in this embodiment also includes a third connection pipeline 140 and a fourth connection pipeline 150
  • the heat exchange inlet part includes the third heat exchange inlet of the seventh flat tube 4130, the eighth flat tube 4140
  • the heat exchange outlet includes the third heat exchange outlet of the seventh flat tube 4130, the fourth heat exchange outlet of the eighth flat tube 4140 and the tenth flat tube
  • the sixth heat exchange outlet of tube 4160 The third connecting pipeline 140 extends along the layout direction of the third heat exchange inlet, the fourth heat exchange inlet and the sixth heat exchange inlet, and the third heat exchange inlet, the fourth heat exchange inlet and the sixth heat exchange inlet are all connected to the The third connecting pipeline 140 is connected.
  • the fourth connecting pipeline 150 extends along the layout direction of the third heat exchange outlet, the fourth heat exchange outlet and the sixth heat exchange outlet, and the third heat exchange outlet, the fourth heat exchange outlet and the sixth heat exchange outlet are all connected to the The fourth connecting pipeline 150 is connected.
  • Embodiment 7 of the present application provides a heat exchanger.
  • the bent flat tube structure of the heat exchanger includes a ninth flat tube 4150, and the ninth flat tube 4150 includes a plurality of fifth heat exchangers spaced apart and connected in the vertical direction.
  • the heat pipe section, each fifth heat exchange pipe section includes a third inclined section 4151 and a fourth inclined section 4152 connected to each other, and the third inclined section 4151 and the fourth inclined section 4152 form a triangular structure. Adopting such a structural arrangement can facilitate the optimization of the structural layout of the heat exchanger, improve the structural compactness of the heat exchanger, and facilitate the formation of a triangular structure.
  • the end of the third inclined section 4151 away from the fourth inclined section 4152 is provided with a third vertical section 4153
  • the end of the fourth inclined section 4152 away from the third inclined section 4151 is provided with a fourth vertical section 4154.
  • the multiple ninth flat tubes 4150 there are multiple ninth flat tubes 4150 in this embodiment, and the multiple ninth flat tubes 4150 are arranged at intervals along the direction from the outside to the inside of the triangular structure.
  • the heat exchanger further includes a fifth connection pipeline 160 and a sixth connection pipeline 170, and a plurality of fifth heat exchange inlets are connected to the fifth connection pipeline 160, and a plurality of sixth heat exchange inlets are connected to each other. It is connected with the sixth connecting pipeline 170 .
  • the flow resistance of the refrigerant is relatively small, so they are applicable to heat exchangers with a small overall size.
  • the flow resistance of the refrigerant is relatively large, so it can be applied to heat exchangers with a large overall size.
  • the heat exchange inlet part and the heat exchange outlet part are arranged at intervals at the bottom of the heat exchanger.
  • orientation words such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” etc. indicate the orientation Or positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the application and simplifying the description. In the absence of a contrary statement, these orientation words do not indicate or imply the device or element referred to It must have a specific orientation or be constructed and operated in a specific orientation, so it should not be construed as limiting the protection scope of the present application; the orientation words “inner and outer” refer to the inner and outer relative to the outline of each component itself.
  • spatially relative terms may be used here, such as “on !, “over !, “on the surface of !, “above”, etc., to describe the The spatial positional relationship between one device or feature shown and other devices or features. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, devices described as “above” or “above” other devices or configurations would then be oriented “beneath” or “above” the other devices or configurations. under other devices or configurations”. Thus, the exemplary term “above” can encompass both an orientation of “above” and “beneath”. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.

Abstract

一种换热器,包括:第一换热部(10),第一换热部(10)包括多个间隔设置的第一扁管(11),第一扁管(11)包括相互连接的第一换热管段(111)和第二换热管段(112),第一换热管段(111)和第二换热管段(112)呈预设角度设置;第一集流管(20)和第二集流管(30),多个第一扁管(11)的第一换热管段(111)均与第一集流管(20)连接,多个第一扁管(11)的第二换热管段(112)与第二集流管(30)连接;第二换热部(40),设置在第一换热部(10)的端部,第一换热部(10)和第二换热部(40)围合形成风道。上述换热器能够解决现有技术中的A型换热器的换热性能较差的技术问题。

Description

换热器
本申请要求于2021年8月31日提交至中国国家知识产权局、申请号为202111017351.X、申请名称为“换热器”的专利申请的优先权、于2021年8月31日提交至中国国家知识产权局、申请号为202122087044.0、申请名称为“换热器”的专利申请的优先权、于2021年8月31日提交至中国国家知识产权局、申请号为202111017346.9、申请名称为“换热器”的专利申请的优先权、于2021年8月31日提交至中国国家知识产权局、申请号为202122092336.3、申请名称为“换热器”的专利申请的优先权、于2021年8月31日提交至中国国家知识产权局、申请号为202122089025.1、申请名称为“换热器”的专利申请的优先权以及于2021年8月31日提交至中国国家知识产权局、申请号为202122084091.X、申请名称为“换热组件”的专利申请的优先权。
技术领域
本申请涉及换热器技术领域,具体而言,涉及一种换热器。
背景技术
目前,为了对现有技术中的常规折弯换热器进行安装和挡风,一般在A型换热器(即为具有折弯扁管的换热器)的侧边用钣金件进行遮挡。
然而,采用上述结构设置,会使得占据空间大,浪费了空间,也使得结构不够紧凑,换热面积有限,无法有效提高换热性能。
申请内容
本申请的主要目的在于提供一种换热器,以解决现有技术中的A型换热器的换热性能较差的技术问题。
为了实现上述目的,本申请提供了一种换热器,包括:第一换热部,第一换热部包括多个间隔设置第一扁管,第一扁管包括相互连接的第一换热管段和第二换热管段,第一换热管段和第二换热管段呈预设角度设置;或者,第一换热部包括相互连接的第一换热组件和第二换热组件,第一换热组件包括多个沿第一预设方向间隔设置的第一换热扁管,第二换热组件包括多个沿第二预设方向间隔设置的第二换热扁管,第一预设方向与第二预设方向呈预设角度设置;第一集流管和第二集流管,多个第一扁管的第一换热管段均与第一集流管连接,多个第一扁管的第二换热管段与第二集流管连接;或者,多个第一换热扁管均与第一集流管连接,多个第二换热扁管均与第二集流管连接;第二换热部,设置在第一换热部的端部,第一换热部和第二换热部围合形成风道。
进一步地,第一换热管段和第二换热管段之间具有安装区间,第二换热部位于安装区间内。
进一步地,安装区间为三角区间,第二换热部为与安装区间相适配的三角形结构或梯形结构,第二换热部的至少部分与第一换热管段和第二换热管段贴合设置。
进一步地,第一换热管段和第二换热管段之间的夹角形成三角区间的顶角,三角区间的顶角与三角形结构的顶角相同。
进一步地,第二换热部包括第二扁管,第二扁管具有多个依次连接的折弯管段,多个依次连接的折弯管段的高度先递增后递减设置以使多个依次连接的折弯管段的边缘围成三角形结构。
进一步地,第二换热部包括第二扁管和第二翅片,第二扁管具有多个依次连接的折弯管段,多个依次连接的折弯管段的高度先递增或递减设置,第二翅片为多个,多个依次连接的折弯管段的各个折弯管段的折弯间隙内以及相邻两个折弯管段之间均安装有第二翅片;其中,相邻两个折弯管段包括第一折弯管段和第二折弯管段,第一折弯管段的高度、位于第一折弯管段和第二折弯管段之间的第二翅片的高度以及第二折弯管段的高度依次递增或递减,以使第二扁管的边缘和多个第二翅片的边缘围成三角形结构。
进一步地,第二换热部的进口端与第一集流管连通,第二换热部的出口端与第二集流管连通。
进一步地,第二换热部包括第二扁管;第一集流管上设置有第一插接槽,第一插接槽沿第一集流管的轴向延伸,第二扁管的一端插设在第一插接槽内;和/或,第二集流管上设置有第二插接槽,第二插接槽沿第二集流管的轴向延伸,第二扁管的另一端插设在第二插接槽内。
进一步地,第二换热部包括第三集流管、第四集流管和第二扁管;第二扁管分别与第三集流管和第四集流管连通,第三集流管和第四集流管通过连接管分别与第一集流管和第二集流管连通。
进一步地,第二换热部为两个,两个第二换热部分别设置在第一换热部的两端,两个第二换热部的进口端通过第一连接管连接设置,两个第二换热部的出口端通过第二连接管连接设置;换热器还包括间隔设置的第三连接管和第四连接管,第三连接管和第四连接管均设置在其中一个第二换热部上,第三连接管位于第二换热部和第一集流管之间,第四连接管位于第二换热部和第二集流管之间;或者,两个第二换热部与第一换热部相互独立设置,以使两个第二换热部和第一换热部独立进行换热。
进一步地,第二换热部为两个,两个第二换热部分别设置在第一换热部的两端;两个第二换热部的进口端均与第一集流管的侧部连接,两个第二换热部的出口端均与第二集流管的侧部连接;其中一个第二换热部的进口端与第一集流管的连接处和另一个第二换热部的进口端与第一集流管的连接处分别位于第一换热部的两端,其中一个第二换热部的出口端与第二集流管的连接处和另一个第二换热部的出口端与第二集流管的连接处分别位于第一换热部的两端;或者,换热器还包括两个第一接管和两个第二接管,两个第一接管的一端分别与第一集流管的两端连接,两个第一接管的另一端分别与两个第二换热部的进口端连接;两个第二 接管的一端分别与第二集流管的两端连接,两个第二接管的另一端分别与两个第二换热部的出口端连接。
进一步地,第二换热部向安装区间的内侧倾斜设置。
进一步地,第二换热部具有相对设置的顶端和底端,第二换热部的顶端位于第一换热管段和第二换热管段的连接处,第二换热部的底端位于第一换热管段远离第二换热管段的一端;其中,第二换热部的顶端相对于第二换热部的底端向安装区间的内侧倾斜设置。
进一步地,换热器还包括:中间集流管,中间集流管具有相互独立的进口管段和出口管段,第二换热部的进口端与进口管段连接,第二换热部的出口端与出口管段连接;进口管段的进口端与第一集流管连接,出口管段的出口端与第二集流管连接。
进一步地,第二换热部包括至少两个独立设置的换热结构,中间集流管至少为两个,至少两个换热结构沿第一换热部的一端至第一换热部的另一端的延伸方向间隔设置;至少两个换热结构与至少两个中间集流管一一对应地设置,各个换热结构与相应的中间集流管连接。
进一步地,第二换热部包括两个独立设置的换热结构,两个换热结构分别设置在第一换热部的两端;中间集流管为两个,两个换热结构与两个中间集流管一一对应地设置,各个换热结构与相应的中间集流管连接。
进一步地,第一换热管段和第二换热管段之间具有安装区间,安装区间为三角区间,换热结构安装在三角区间内,换热结构的外形为与安装区间相适配的三角形结构或梯形结构,换热结构的至少部分与第一换热管段或第二换热管段贴合设置。
进一步地,换热结构包括多个沿高度方向间隔设置的第三扁管,第三扁管的进口端与进口管段连接,第三扁管的出口端与出口管段连接。
进一步地,第三扁管包括依次连接的第一管段、第二管段和第三管段,第一管段和第三管段均沿竖直方向或与竖直方向呈预设角度的方向延伸,第二管段沿水平方向或与水平方向呈预设角度的方向延伸,第一管段远离第二管段的一端形成第三扁管的进口端,第三管段远离第二管段的一端形成第三扁管的出口端。
进一步地,沿换热结构的底端至换热结构的顶端的延伸方向上,多个第二管段的长度逐渐减小,多个第一管段的长度和/或多个第三管段的长度逐渐增加。
进一步地,第三扁管为一体成型结构;第一管段和第二管段的连接处为弧形折弯过渡结构;和/或,第二管段和第三管段的连接处为弧形折弯过渡结构。
进一步地,换热器还包括连接管,连接管和中间集流管分别设置在第一换热部的两端;第二换热部包括:两个连通设置的换热结构,两个换热结构分别设置在第一换热部的两端,一个换热结构与连接管连接,另一个换热结构与中间集流管连接,以使经进口管段进入的流体经两个换热结构后由出口管段排出。
进一步地,第二换热部还包括:第四扁管,第四扁管具有依次连接的第四管段、第五管段和第六管段,第四管段和第六管段均沿竖直方向延伸或与竖直方向呈预设角度的方向延伸;第四管段位于第一换热部的一端并与中间集流管连接,第五管段位于第一换热部的一端和第一换热部的另一端之间,第六管段位于第一换热部的另一端并与连接管连接;其中,第四扁管为多个,多个第四扁管沿中间集流管的延伸方向间隔设置,多个第四管段围成一个换热结构,多个第六管段围成另一个换热结构,一个换热结构与另一个换热结构通过多个第五管段连接。
进一步地,第一换热管段和第二换热管段之间具有安装区间,安装区间为三角区间,换热结构的至少部分与第一换热管段或第二换热管段贴合设置;沿中间集流管的延伸方向,多个第四扁管的第四管段的长度先增加后减小,以使多个第四管段围成与安装区间相适配的三角形结构或梯形结构;和/或,沿中间集流管的延伸方向,多个第四扁管的第六管段的长度先增加后减小,以使多个第六管段围成与安装区间相适配的三角形结构或梯形结构。
进一步地,第四扁管为一体成型结构;第四管段和第五管段的连接处为弧形折弯过渡结构;和/或,第五管段和第六管段的连接处为弧形折弯过渡结构。
进一步地,第二换热部包括第三换热扁管,第三换热扁管具有多个依次连接的折弯管段,多个依次连接的折弯管段的高度先递增或递减设置以使多个依次连接的折弯管段的边缘围成与第一换热组件和第二换热组件之间的安装区间相适配的三角形结构。
进一步地,第三换热扁管为多个,多个第三换热扁管沿高度方向间隔设置。
进一步地,多个第三换热扁管的进口端连接,多个第三换热扁管的出口端连接。
进一步地,第二换热部包括多个第三换热扁管,多个第三换热扁管沿第一换热组件至第二换热组件的延伸方向间隔设置,各个第三换热扁管均具有多个依次连接的折弯管段,多个第三换热扁管的折弯管段的高度先递增或递减设置以使多个第三换热扁管的边缘围成与第一换热组件和第二换热组件之间的安装区间相适配的三角形结构。
进一步地,多个第三换热扁管的进口端连接,多个第三换热扁管的出口端连接。
进一步地,第二换热部还包括:进口连接管,进口连接管沿第一换热组件至第二换热组件的延伸方向延伸,多个第三换热扁管的进口端均与进口连接管连接;和/或,出口连接管,出口连接管沿第一换热组件至第二换热组件的延伸方向延伸,多个第三换热扁管的出口端均与出口连接管连接。
进一步地,第二换热部为折弯扁管结构,折弯扁管结构具有换热进口部、换热出口部以及与换热进口部和换热出口部均连通的折弯的换热流路结构;其中,折弯扁管结构的边缘围成三角形结构或梯形结构。
进一步地,折弯扁管结构包括:第五扁管,第五扁管包括多个沿水平方向间隔且连通设置的第五换热管段,第五换热管段均沿竖直方向延伸。
进一步地,多个第五换热管段的高度先增加后减小,第五扁管的一端形成换热进口部,第五扁管的另一端形成换热出口部。
进一步地,第五扁管为多个,多个第五扁管沿水平方向间隔设置,换热进口部包括多个第五扁管的第一换热进口,换热出口部包括多个第五扁管的第一换热出口,多个第五扁管的多个第五换热管段的高度先增加后减小。
进一步地,多个第一换热进口间隔设置,多个第一换热出口间隔设置;换热器还包括:第一连接管路,多个第一换热进口均与第一连接管路连接,第一连接管路沿多个第一换热进口的间隔布置方向延伸;和/或,第二连接管路,多个第一换热出口均与第二连接管路连接,第二连接管路沿多个第一换热出口的间隔布置方向延伸。
进一步地,第五扁管的多个第五换热管段的高度先增加后减小,第五扁管为多个,多个第五扁管沿竖直方向间隔设置。
进一步地,第五扁管的多个第五换热管段的高度先增加后减小,折弯扁管结构还包括:第六扁管,第六扁管包括多个沿水平方向间隔且连通的第六换热管段,第六换热管段沿竖直方向延伸,多个第六换热管段的高度相同,多个第五换热管段安装在多个第六换热管段的上方。
进一步地,折弯扁管结构包括:多个第一倾斜段和多个第二倾斜段,多个第一倾斜段和多个第二倾斜段一一对应地设置,各个第一倾斜段和对应的第二倾斜段对应设置以拼接形成三角形结构。
进一步地,折弯扁管结构包括:第七扁管和第八扁管,第七扁管包括沿水平方向间隔且连通设置的多个第三换热管段,第八扁管包括沿水平方向间隔且连通设置的多个第四换热管段,各个第三换热管段包括第一倾斜段,各个第四换热管段包括第二倾斜段,多个第一倾斜段和多个第二倾斜段一一对应地设置,各个第一倾斜段与对应的第二倾斜段抵接以围成三角形结构。
进一步地,折弯扁管结构包括:第九扁管,第九扁管包括沿竖直方向间隔且连通的多个第五换热管段,各个第五换热管段包括相互连接的第三倾斜段和第四倾斜段,第三倾斜段和第四倾斜段围成三角形结构。
应用本申请的技术方案,通过在第一换热部的端部设置有第二换热部,并使第二换热部和第一换热部围合形成风道,这样使得第二换热部在起到挡风的作用的同时还能够进行有效换热,增加了换热器的整体换热面积,提高了换热性能,有效利用了空间,提高了空间布局的紧凑性。因此,通过本实施例提供的换热器,能够解决现有技术中的A型换热器的换热性能较差的技术问题。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的实施例一提供的换热器的第一换热部的结构示意图;
图2示出了根据本申请的实施例一提供的换热器的第一换热部的主视图;
图3示出了根据本申请的实施例一提供的换热器的结构示意图;
图4示出了根据本申请的实施例一提供的换热器的主视图;
图5示出了根据本申请的实施例二提供的换热器的第二换热部的结构示意图;
图6示出了根据本申请的实施例二提供的换热器的第二换热部的主视图;
图7示出了根据本申请的实施例二提供的换热器的第二换热部的左视图;
图8示出了根据本申请的实施例二提供的换热器的第二换热部的俯视图;
图9示出了根据本申请的实施例三提供的换热器的结构示意图;
图10示出了根据本申请的实施例三提供的换热器的主视图;
图11示出了根据本申请的实施例五提供的换热器的结构示意图;
图12示出了根据本申请的实施例五提供的换热器的主视图;
图13示出了根据本申请的实施例五提供的换热器的左视图;
图14示出了根据本申请的实施例五提供的换热器的俯视图;
图15示出了根据本申请的实施例五提供的换热器的仰视图;
图16示出了根据本申请的实施例六提供的换热器的结构示意图;
图17示出了根据本申请的实施例六提供的换热器的另一角度的结构示意图;
图18示出了根据本申请的实施例六提供的换热器的俯视图;
图19示出了根据本申请的实施例六提供的换热器的仰视图;
图20示出了根据本申请的实施例七提供的换热器的结构示意图;
图21示出了根据本申请的实施例七提供的换热器的主视图;
图22示出了根据本申请的实施例七提供的换热器的俯视图;
图23示出了根据本申请的实施例七提供的换热器的仰视图;
图24示出了根据本申请的实施例八提供的换热器的结构示意图;
图25示出了根据本申请的实施例八提供的换热器的主视图;
图26示出了根据本申请的实施例八提供的换热器的俯视图;
图27示出了根据本申请的实施例九提供的换热器的结构示意图;
图28示出了根据本申请的实施例九提供的换热器的另一角度的结构示意图;
图29示出了根据本申请的实施例九提供的换热器的主视图;
图30示出了根据本申请的实施例九提供的换热器的左视图;
图31示出了根据本申请的实施例九提供的换热器的仰视图;
图32示出了根据本申请的实施例十提供的换热器的结构示意图;
图33示出了根据本申请的实施例十提供的换热器的主视图;
图34示出了根据本申请的实施例十提供的换热器的左视图;
图35示出了根据本申请的实施例十提供的换热器内的换热结构倾斜布置的结构示意图;
图36示出了根据本申请的实施例十提供的换热结构的主视图;
图37示出了根据本申请的实施例十提供的换热结构的结构示意图;
图38示出了根据本申请的实施例十一提供的换热器的主视图;
图39示出了根据本申请的实施例十一提供的换热器的结构示意图;
图40示出了根据本申请的实施例十一提供的换热结构的结构示意图;
图41示出了根据本申请的实施例十二提供的换热器的结构示意图;
图42示出了图41中的俯视图;
图43示出了根据本申请的实施例十二提供的换热器的另一角度的结构示意图;
图44示出了图43中的左视图;
图45示出了根据本申请的实施例十二提供的换热器的第二换热部的结构示意图;
图46示出了图45中的主视图;
图47示出了图45中的左视图;
图48示出了图45中的俯视图;
图49示出了根据本申请的实施例十三提供的换热器的结构示意图;
图50示出了根据本申请的实施例十三提供的换热器的另一角度的结构示意图;
图51示出了图50中的左视图;
图52示出了根据本申请的实施例十三提供的换热器的第二换热部的结构示意图;
图53示出了图52中的主视图;
图54示出了图52中的左视图;
图55示出了图52中的俯视图;
图56示出了根据本申请的实施例十四提供的换热组件的结构示意图;
图57示出了根据本申请的实施例十四提供的换热组件的主视图;
图58示出了根据本申请的实施例十五提供的换热组件的主视图;
图59示出了根据本申请的实施例十五提供的换热组件的俯视图;
图60示出了根据本申请的实施例十五提供的换热组件的左视图;
图61示出了根据本申请的实施例十五提供的换热组件的结构示意图;
图62示出了根据本申请的实施例十六提供的换热组件的主视图;
图63示出了根据本申请的实施例十七提供的换热组件的主视图;
图64示出了根据本申请的实施例十八提供的换热组件的主视图;
图65示出了根据本申请的实施例十九提供的换热组件的主视图。。
其中,上述附图包括以下附图标记:
10、第一换热部;11、第一扁管;111、第一换热管段;112、第二换热管段;113、安装区间;12、第一翅片;13、第一换热组件;131、第一换热扁管;14、第二换热组件;141、第二换热扁管;
20、第一集流管;30、第二集流管;
40、第二换热部;41、第二扁管;411、第一折弯管段;412、第二折弯管段;42、第二翅片;43、顶端;44、底端;45、换热结构;46、第三扁管;461、第一管段;462、第二管段;463、第三管段;47、第四扁管;471、第四管段;472、第五管段;473、第六管段;48、第三换热扁管;491、进口连接管;492、出口连接管;4100、第三集流管;4110、第五扁管;4111、第五换热管段;4120、第六扁管;4121、第六换热管段;4130、第七扁管;4131、第一倾斜段;4132、第一竖直段;4140、第八扁管;4141、第二倾斜段;4142、第二竖直段;4150、第九扁管;4151、第三倾斜段;4152、第四倾斜段;4153、第三竖直段;4154、第四竖直段;4160、第十扁管;
51、第一连接管;52、第二连接管;53、第三连接管;54、第四连接管;55、第五连接管;56、第六连接管;
61、第一接管;62、第二接管;
71、第一集流接管;72、第二集流接管;
80、中间集流管;81、进口管段;82、出口管段;83、隔板;
90、连接管;
101、进口接管;102、出口接管;
110、连接接管;
120、第一连接管路;130、第二连接管路;140、第三连接管路;150、第四连接管路;160、第五连接管路;170、第六连接管路。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
如图1至图4所示,本申请的实施例一提供了一种换热器,该换热器包括第一换热部10、第一集流管20、第二集流管30和第二换热部40。第一换热部10包括多个间隔设置第一扁管11,第一扁管11包括相互连接的第一换热管段111和第二换热管段112,第一换热管段111和第二换热管段112呈预设角度设置。多个第一扁管11的第一换热管段111均与第一集流管20连接,多个第一扁管11的第二换热管段112与第二集流管30连接,以形成A型换热器结构。第二换热部40设置在第一换热部10的端部,第一换热部10和第二换热部40围合形成风道。需要说明的是,这里的风道是指空气进入换热器的主要流通通道。
采用本实施例提供的换热器,通过将第一换热部10和第二换热部40围合形成风道,这样,既能够使得第二换热部40能够有效起到挡风的作用,同时还能够使得第一换热部10和第二换热部40均能够进行换热,增加了整体换热面积,提高了换热性能,有效利用了空间,提高了空间布局的紧凑性。因此,通过本实施例提供的换热器,能够解决现有技术中的A型换热器的换热性能较差的技术问题。
具体的,本实施例中的第一换热管段111和第二换热管段112之间具有安装区间113,第二换热部40位于安装区间113内。且第一换热管段111和第二换热管段112呈预设角度设置,便于换热器在工作时冷凝水的排出。
采用本实施例提供的换热器,通过在第一换热部10的端部设置有第二换热部40,并使第二换热部40位于第一换热管段111和第二换热管段112之间的安装区间113内,这样使得第二换热部40在起到挡风的作用的同时还能够进行有效换热,增加了换热器的整体换热面积, 提高了换热性能,有效利用了空间,提高了空间布局的紧凑性。因此,通过本实施例提供的换热器,能够解决现有技术中的换热器的A型换热器的换热性能较差的技术问题。
在本实施例中,安装区间113为三角区间,第二换热部40为与安装区间113相适配的三角形结构或梯形结构,第二换热部40的至少部分与第一换热管段111和第二换热管段112贴合设置。采用这样的结构设置,能够便于提高挡风性能,提高第二换热部40的设置稳定性,优化结构布置,提高结构布局的紧凑性。为了更充分地利用换热器的换热空间,并有效起到挡风作用,本实施例中可以将第二换热部40的外形尺寸与第一换热部10的第一换热管段111和第二换热管段112之间的角度保持完全一致,以充分利用空间,并起到一定的挡风作用。
优选的,本实施例中的第一换热管段111和第二换热管段112之间的夹角形成三角区间的顶角,三角区间的顶角与三角形结构的顶角相同。采用这样的结构设置,能够便于使得第二换热部40能够更好地填充在安装区间113内,以更好地起到阻挡作用,以有效起到挡风作用。
在本实施例中,第二换热部40包括第二扁管41,第二扁管41具有多个依次连接的折弯管段,多个依次连接的折弯管段的高度先递增后递减设置以使多个依次连接的折弯管段的边缘围成三角形结构。采用这样的结构设置,结构简单,便于形成三角形结构,方便进行生产制造。
如图5至图8所示,本申请的实施例二提供了一种换热器,本实施例中的换热器与实施例一中的换热器的区别在于第二换热部40的具体结构的不同。本实施例中的第二换热部40包括第二扁管41和第二翅片42,第二扁管41具有多个依次连接的折弯管段,多个依次连接的折弯管段的高度先递增或递减设置,第二翅片42为多个,多个依次连接的折弯管段的各个折弯管段的折弯间隙内以及相邻两个折弯管段之间均安装有第二翅片42。其中,相邻两个折弯管段包括第一折弯管段411和第二折弯管段412,第一折弯管段411的高度、位于第一折弯管段411和第二折弯管段412之间的第二翅片42的高度以及第二折弯管段412的高度依次递增或递减,以使第二扁管41的边缘和多个第二翅片42的边缘围成三角形结构。具体的,这里的第一折弯管段411和第二折弯管段412为任意选择相邻两个折弯管段。采用这样的结构设置,能够优化第二扁管41和第二翅片42的结构布局,提高结构布置的紧凑性,便于形成三角形结构,优化整体空间布局。
优选的,本实施例中的折弯管段为U形管结构,U形管结构的开口端位于底部,相邻两个U形管结构通过弧形板连接。本实施例中的第二扁管41为一体成型结构,以便于生产制造。
具体的,本实施例中的第二换热部40还可以为多流路结构,即第二换热部40可以具有多个进口和多个出口,多个进口与多个出口一一对应地设置。
如图9和图10所示,本申请的实施例三提供了一种换热器,实施例三中的换热器是在实施例一和实施例二的基础上对第二换热部40的连接关系进行改进的方案。在本实施例中,第二换热部40的进口端与第一集流管20连通,第二换热部40的出口端与第二集流管30连通。采用这样的结构设置,通过第一集流管20能够向第一换热部10和第二换热部40提供换热介 质,通过第二集流管30能够收集经第一换热部10和第二换热部40流出的换热介质,不需要额外增加集流管结构,优化了结构的布局以及连接设置方式。
在本实施例中,第二换热部40包括第二扁管41。具体的,可以在第一集流管20上设置有第一插接槽,第一插接槽沿第一集流管20的轴向延伸,第二扁管41的一端插设在第一插接槽内。或者,第二集流管30上设置有第二插接槽,第二插接槽沿第二集流管30的轴向延伸,第二扁管41的另一端插设在第二插接槽内。或者,在第一集流管20上设置有第一插接槽,第一插接槽沿第一集流管20的轴向延伸,第二扁管41的一端插设在第一插接槽内;并第二集流管30上设置有第二插接槽,第二插接槽沿第二集流管30的轴向延伸,第二扁管41的另一端插设在第二插接槽内。
优选的,可以在第一集流管20上设置有第一插接槽,第一插接槽沿第一集流管20的轴向延伸,第二扁管41的一端插设在第一插接槽内;并第二集流管30上设置有第二插接槽,第二插接槽沿第二集流管30的轴向延伸,第二扁管41的另一端插设在第二插接槽内。采用这样的结构设置,能够便于使第二扁管41的一端插设在第一插接槽内、第二扁管41的另一端插设在第二插接槽内,方便安装和拆卸,便于直接进行连接。具体的,本实施例中的第一插接槽和第二插接槽均位于第一集流管20的侧壁上。
本实施例中的第二换热部40包括第二扁管41和第二翅片42,第二扁管41具有多个依次连接的折弯管段,可以在折弯管段内设置有第二翅片42,也可以在相邻的两个折弯管段之间设置有第二翅片42,本实施例中的第二翅片42的个数小于实施例二中的翅片的个数,便于进行安装和制造。
本申请的实施例四提供了一种换热器,本实施例中的第二换热部40的进口端也与第一集流管20连通、第二换热部40的出口端也与第二集流管30连通。本实施例中的换热器与实施例三中的换热器的区别主要在于第二换热部40的进口端与第一集流管20的连接方式的不同以及第二换热部40的出口端与第二集流管30的连接方式的不同。
具体的,本实施例中在第二换热部40的进口端和出口端均设置有连接管件,以使第二换热部40的进口端通过连接管件与第一集流管20连通、第二换热部40的出口端通过连接管件与第二集流管30连通。采用这样的连接方式,连接简单,便于操作。
具体的,第二换热部包括第三集流管、第四集流管和第二扁管41;第二扁管41分别与第三集流管和第四集流管连通,第三集流管和第四集流管通过连接管分别与第一集流管20和第二集流管30连通。
在上述所有实施例中均可以将第二换热部40至少设置为两个,至少两个第二换热部40间隔设置,一个第二换热部40设置在第一换热部10的一端,另一个第二换热部40设置在第一换热部10的另一端。采用这样的结构设置,能够便于更好地提高换热性能,并有效起到对风的阻挡作用。
如图11至图15所示,本申请的实施例五提供了一种换热器,实施例五是在上述所有实施例的基础上进行的改进。具体的,本实施例中的第二换热部40为两个,两个第二换热部40分别设置在第一换热部10的两端,两个第二换热部40的进口端通过第一连接管51连接设置,两个第二换热部40的出口端通过第二连接管52连接设置。换热器还包括间隔设置的第三连接管53和第四连接管54,第三连接管53和第四连接管54均设置在其中一个第二换热部40上,第三连接管53位于第二换热部40和第一集流管20之间,第四连接管54位于第二换热部40和第二集流管30之间。采用这样的结构设置,能够便于使第一集流管20内的换热介质依次流入至两个换热部的进口端内,也便于通过第二集流管30收集两个换热部的出口端流出的换热介质,不需要增加额外的集流管结构,简化了零件数量,优化了结构布局。
如图16至图19所示,本申请的实施例六提供了一种换热器,实施例六是在实施例一至实施例四的基础上进行的改进。在本实施例中,第二换热部40为两个,两个第二换热部40分别设置在第一换热部10的两端,两个第二换热部40的进口端通过第一连接管51连接设置,两个第二换热部40的出口端通过第二连接管52连接设置。两个第二换热部40均与第一换热部10相互独立设置,以使两个第二换热部40和第一换热部10独立进行换热。采用这样的结构设置,能够便于使两个连通的第二换热部40与第一换热部10独立换热,避免连通的两个第二换热部40内的换热介质与第一换热部10内的换热介质相互干扰,以便于实现不同效果的换热,实现不同的换热需求。
如图20至图23所示,本申请的实施例七提供了一种换热器,本实施例中的换热器是在实施例一至实施例四的基础上进行的改进。本实施例中的第二换热部40为两个,两个第二换热部40分别设置在第一换热部10的两端,两个第二换热部40的进口端均与第一集流管20的侧部连接,两个第二换热部40的出口端均与第二集流管30的侧部连接,也即为第一集流管20的长度和第二集流管30的长度均大于两个第二换热部40之间的间隙。其中一个第二换热部40的进口端与第一集流管20的连接处和另一个第二换热部40的进口端与第一集流管20的连接处分别位于第一换热部10的两端,其中一个第二换热部40的出口端与第二集流管30的连接处和另一个第二换热部40的出口端与第二集流管30的连接处分别位于第一换热部10的两端。采用这样的结构设置,只需要将两个第二换热部40就近与第一集流管20和第二集流管30进行连接即可,使用方便,便于操作。具体的,本实施例中的换热器还包括两个第五连接管55和两个第六连接管56,两个第五连接管55分别位于两个第二换热部40的进口端与第一集流管20的连接处,两个第六连接管56分别位于两个第二换热部40的出口端与第二集流管30的连接处。
如图24至图26所示,本申请的实施例八提供了一种换热器,本实施例中的换热器是在实施例一至实施例四的基础上进行的改进,本实施例中的第二换热部40为两个,两个第二换热部40分别设置在第一换热部10的两端。换热器还包括两个第一接管61和两个第二接管62,两个第一接管61的一端分别与第一集流管20的两端连接,两个第一接管61的另一端分别与两个第二换热部40的进口端连接;两个第二接管62的一端分别与第二集流管30的两端连接,两个第二接管62的另一端分别与两个第二换热部40的出口端连接。采用两个第一接管61和两个第二接管62进行连接的结构,结构简单,便于连接。不需要对集流管进行多余的改进。
具体的,本实施例中的换热器还包括两个第一集流接管71和两个第二集流接管72,两个第一集流接管71分别与第一集流管20的两端直接连接,两个第一接管61与两个第一集流接管71一一对应地设置,各个第一接管61与对应的第一集流接管71连接,以使各个第一接管61通过对应的第一集流接管71与第一集流管20连接。两个第二集流接管72分别与第二集流管30的两端直接连接,两个第二接管62与两个第二集流接管72一一对应地设置,各个第二接管62与对应的第二集流接管72连接,以使各个第二接管62通过对应的第二集流接管72与第二集流管30连接。
如图27至图31所示,本申请的实施例九提供了一种换热器,第二换热部40向安装区间113的内侧倾斜设置。采用这样的结构设置,能够便于进行排水。
优选的,本实施例中的第二换热部40具有相对设置的顶端43和底端44,第二换热部40的顶端43位于第一换热管段111和第二换热管段112的连接处,第二换热部40的底端44位于第一换热管段111远离第二换热管段112的一端。其中,第二换热部40的顶端43相对于第二换热部40的底端44向安装区间113的内侧倾斜设置。采用这样的结构设置,能够便于进行排水,同时也便于有效起到挡风作用。
本申请的实施例十提供了一种换热器,该换热器包括第一换热部10、第一集流管20(第一集流管20可以为进口集流管)、第二集流管30(第二集流管30可以为出口集流管)、第二换热部40和中间集流管80。第一换热部10包括多个间隔设置的第一扁管11,第一扁管11包括相互连接的第一换热管段111和第二换热管段112,第一换热管段111和第二换热管段112呈预设角度设置,以形成A型换热器结构。多个第一扁管11的第一换热管段111均与第一集流管20连接,多个第一扁管11的第二换热管段112与第二集流管30连接。第二换热部40的至少部分设置在第一换热部10的端部以围合形成风道。中间集流管80具有相互独立的进口管段81和出口管段82,第二换热部40的进口端与进口管段81连接,第二换热部40的出口端与出口管段82连接;进口管段81的进口端与第一集流管20连接,出口管段82的出口端与第二集流管30连接。需要说明的是“第二换热部40的至少部分设置在第一换热部10的端部以围合成风道”中的风道是指空气进入换热器的主要流通通道。
采用本实施例提供的换热器,通过在第一换热部10的端部设置有第二换热部40,并使第二换热部40的至少部分与第一换热部10围合成风道,这样空气在进入风道时,第一换热部10和第二换热部40均能够进行换热,使得第二换热部40在起到挡风作用的同时还能够进行有效换热,增加了换热器的整体换热面积,提高换热性能,并有效利用空间,提高了空间布局的紧凑性。因此,通过本实施例提供的换热器,能够解决现有技术中的换热器的A型换热器的换热性能较差的技术问题。
具体的,第一集流管20内的流体将流入至第一换热部10内并经中间集流管80的进口管段81流入至第二换热部40内,第一换热部10内换热后的流体将进入至第二集流管30内,第二换热部40内换热后的流体将经出口管段82进入至第二集流管30内。在第一集流管20处设置有进口接管101,在第二集流管30处设置有出口接管102。进口管段81和出口管段82通过隔板83进行隔开。
如图32至图37所示,在实施例十中,第二换热部40包括至少两个独立设置的换热结构45,中间集流管80至少为两个,至少两个换热结构45沿第一换热部10的一端至第一换热部10的另一端的延伸方向间隔设置。至少两个换热结构45与至少两个中间集流管80一一对应地设置,各个换热结构45与相应的中间集流管80连接。采用这样的结构设置,能够便于使各个换热结构45经相应的中间集流管80分别与第一集流管20和第二集流管30连通,以使各个换热结构45分别进行独立的换热。另外,通过设置至少两个独立的换热结构45的间隔设置的布局方向,能够便于充分利用空间,在进一步提高空间布局的紧凑性的基础上,还有效提高了换热器的换热性能。本实施例中的第一换热部10还包括第一翅片12。
优选的,本实施例中的第二换热部40包括两个独立设置的换热结构45,两个换热结构45分别设置在第一换热部10的两端。中间集流管80为两个,两个换热结构45与两个中间集流管80一一对应地设置,各个换热结构45与相应的中间集流管80连接。采用这样的结构设置,能够便于有效起到挡风作用,充分利用空间,提高了结构布局的紧凑性,也提高了换热器的换热性能。
在本实施例中,第一换热管段111和第二换热管段112之间具有安装区间,安装区间为三角区间,换热结构45安装在三角区间内,换热结构45的外形为与安装区间相适配的三角形结构或梯形结构,换热结构45的至少部分与第一换热管段111或第二换热管段112贴合设置。采用这样的结构设置,能够便于提高挡风性能,提高换热结构45的设置稳定性,优化结构布局,提高结构布局的紧凑性。为了更充分地利用换热器的换热空间,并有效起到挡风作用,本实施例中可以将换热结构45的外形尺寸与第一换热部10的第一换热管段111和第二换热管段112之间的空间尺寸保持完全一致,以充分利用空间,并起到一定的挡风作用。
优选的,本实施例中的第一换热管段111和第二换热管段112之间的夹角形成三角区间的顶角,三角区间的顶角与三角形结构或梯形结构的顶角相同。采用这样的结构设置,能够便于使得第二换热部40能够更好地填充在安装区间内,以更好的起到阻挡作用。
具体的,本实施例中的换热结构45包括多个沿高度方向间隔设置的第三扁管46,第三扁管46的进口端与进口管段81连接,第三扁管46的出口端与出口管段82连接。采用这样的结构设置,能够便于形成正常的换热流路,以便于提高换热效率。
在本实施例中,第三扁管46包括依次连接的第一管段461、第二管段462和第三管段463,第一管段461和第三管段463均沿竖直方向或与竖直方向呈预设角度的方向延伸,第二管段462沿水平方向或与水平方向呈预设角度的方向延伸,第一管段461远离第二管段462的一端形成第三扁管46的进口端,第三管段463远离第二管段462的一端形成第三扁管46的出口端。采用这样的结构设置,能够便于形成三角形结构,也便于形成完整的换热流路。优选的,可以将第一管段461和第三管段463均与竖直方向倾斜设置,即为使得第一管段461和第三管段463均向安装区间的内侧倾斜设置,这样,能够便于进行排水,也便于提高换热面积。
优选的,沿换热结构45的底端至换热结构45的顶端的延伸方向上,多个第二管段462的长度逐渐减小,多个第一管段461的长度和/或多个第三管段463的长度逐渐增加。优选的, 使多个第一管段461的长度和多个第三管段的长度均逐渐增加,这样能够便于形成三角形结构,以便于充分填充在安装区间的端部,从而便于有效起到挡风和换热作用。
具体的,本实施例中的第三扁管46为一体成型结构。可以使第一管段461和第二管段462的连接处为弧形折弯过渡结构;或者使第二管段462和第三管段463的连接处为弧形折弯过渡结构;或者第一管段461和第二管段462的连接处以及第二管段462和第三管段463的连接处均为弧形折弯过渡结构。优选的,本实施例中将第一管段461和第二管段462的连接处以及第二管段462和第三管段463的连接处均设置为弧形折弯过渡结构,这样,避免了减小了连接处的应力集中现象,便于顺利过渡,提高了结构的强度。具体的,本实施例中第三扁管46可以通过折弯成型。
本实施例中的两个三角形结构换热结构45独立设置,换热结构45中的第一管段461和第三管段463起主要的换热作用,第二管段462沿横向延伸,第二管段462主要起到连通第一管段461和第三管段463的作用。本实施例中弧形折弯过渡结构可以为折弯圆,或者折弯圆可以压扁,折弯形式不限。
如图38至图40所示,本申请的实施例十一提供了一种换热器,本实施例中的换热器与实施例一中的换热器的区别主要在于第二换热部40的换热结构45具有不同的结构和连接方式。具体的,本实施例中的换热器还包括连接管90,连接管90和中间集流管80分别设置在第一换热部10的两端。第二换热部40包括两个连通设置的换热结构45,两个换热结构45分别设置在第一换热部10的两端,一个换热结构45与连接管90连接,另一个换热结构45与中间集流管80连接,以使经进口管段81进入的流体经两个换热结构45后由出口管段82排出。采用这样的结构设置,也能够便于有效起到挡风作用,充分利用空间,提高了结构布局的紧凑性,也提高了换热器的换热性能。
具体的,本实施例中的第二换热部40还包括第四扁管47,第四扁管47具有依次连接的第四管段471、第五管段472和第六管段473,第四管段471和第六管段473均沿竖直方向延伸或与竖直方向呈预设角度的方向延伸;第四管段471位于第一换热部10的一端并与中间集流管80连接,第五管段472位于第一换热部10的一端和第一换热部10的另一端之间,第六管段473位于第一换热部10的另一端并与连接管90连接。其中,第四扁管47为多个,多个第四扁管47沿中间集流管80的延伸方向间隔设置,多个第四管段471围成一个换热结构45,多个第六管段473围成另一个换热结构45,一个换热结构45与另一个换热结构45通过多个第五管段472连接。采用这样的结构设置,有效利用了安装区间,结构布局紧凑,也有效提高了换热器的换热性能。
优选的,本实施例中可以将第四管段471和第六管段473均与竖直方向呈预设角度的方向延伸,这样,使得第四管段471和第六管段473均向第一换热管段111和第二换热管段112之间的安装区间内倾斜设置,以便于进行排水,也便于增大换热面积。这样,使得沿换热结构45的底端(与第一换热部10的开口端对应)至顶端(与第一换热部10的第一换热管段111和第二换热管段112的连接处对应)的方向上,第五管段472的长度逐渐减小。
在本实施例中,第一换热管段111和第二换热管段112之间具有安装区间,安装区间为三角区间,换热结构45的至少部分与第一换热管段111或第二换热管段112贴合设置。沿中间集流管80的延伸方向,多个第四扁管47的第四管段471的长度先增加后减小,以使多个第四管段471围成与安装区间相适配的三角形结构或梯形结构。或者,沿中间集流管80的延伸方向,多个第四扁管47的第六管段473的长度先增加后减小,以使多个第六管段473围成与安装区间相适配的三角形结构或梯形结构。或者,沿中间集流管80的延伸方向,使多个第四管段471和多个第六管段473的长度均为先增加后减小,从而便于使得多个第四管段471围成的一个换热结构45和多个第六管段473围成的另一个换热结构45均能够围成与安装区间相适配的三角形结构或梯形结构。
优选的,沿中间集流管80的延伸方向,使多个第四管段471和多个第六管段473的长度均为先增加后减小。采用这样的结构设置,结构简单,布局紧凑,优化了结构布局,提高了换热性能。
具体的,第四扁管47为一体成型结构。可以使第四管段471和第五管段472的连接处为弧形折弯过渡结构;或者,使第五管段472和第六管段473的连接处为弧形折弯过渡结构;或者,使第四管段471和第五管段472的连接处以及第五管段472和第六管段473的连接处均设置为弧形折弯过渡结构。
优选的,本实施例中使第四管段471和第五管段472的连接处以及第五管段472和第六管段473的连接处均设置为弧形折弯过渡结构,这样,避免了减小了连接处的应力集中现象,便于顺利过渡,提高了结构的强度。具体的,本实施例中第四扁管47可以通过折弯成型。
本实施例中的第四扁管47中的第四管段471和第六管段473起主要的换热作用,第五管段472起到连接第四管段471和第六管段473的作用,第五管段472的形状和结构不限制。
如图41至图55所示,本申请的实施例提十二供了一种换热器,该换热器包括第一换热部10和第二换热部40,第一换热部10包括相互连接的第一换热组件13和第二换热组件14,第一换热组件13包括相互连接的第一集流管20和多个第一换热扁管131,多个第一换热扁管131沿第一预设方向间隔设置。第二换热组件14与第一换热组件13连接,第二换热组件14包括相互连接的第二集流管30和多个第二换热扁管141,多个第二换热扁管141沿第二预设方向间隔设置,第一预设方向和第二预设方向形成预设角度;第二换热部40设置在第一换热组件13和第二换热组件14的端部,第一换热组件13、第二换热组件14和第二换热部40围合形成风道。需要说明的是,这里的风道是指空气进入换热器的主要流通通道。具体的,第一换热组件13、第二换热组件14和第二换热部40均通过连接接管110进行连接。
采用本实施例提供的换热器,通过将第一换热组件13、第二换热组件14和第二换热部40围合形成风道,这样,既能够使得第二换热部40能够有效起到挡风的作用,又能够使得第一换热组件13、第二换热组件14和第二换热部40均能够进行换热,增加了整体换热面积,提高了换热性能,有效利用了空间,提高了空间布局的紧凑性。另外,采用连接接管110将第一换热组件13和第二换热组件14进行连接的方式,使得第一换热组件13的第一换热扁管131 可以均为长直形管段、第二换热组件14的第二换热扁管141也为长直形管段,没有弯折管段结构,结构简单。因此,通过本实施例提供的换热器,能够解决现有技术中的A型换热器的换热性能较差的技术问题。
具体的,本实施例中第一换热组件13和第二换热组件14之间具有安装区间,第二换热部40位于安装区间内。采用这样的安装方式,能够便于进一步优化第二换热部40的安装位置,从而优化第二换热部40的整体结构布局,还能够有效增加换热器的整体换热面积,提高了换热性能。
在本实施例中,安装区间为三角区间,第二换热部40为与安装区间相适配的三角形结构或梯形结构,第二换热部40的至少部分与第一换热组件13和第二换热组件14贴合设置。采用这样的结构设置,能够便于提高挡风性能,提高了第二换热部40的设置稳定性,优化了结构布局,提高了结构布局的紧凑性。为了更充分地利用换热器的换热空间,并有效起到挡风作用,本实施例中可以将第二换热部40的外形尺寸与第一换热组件13和第二换热组件14之间的角度保持完全一致,以充分利用空间,并起到一定的挡风作用。
具体的,本实施例中第一换热组件13和第二换热组件14之间的夹角形成三角区间的顶角,三角区间的顶角与三角形结构的顶角相同。采用这样的结构设置,能够便于使得第二换热部40能够更好地填充在安装区间内,以更好地起到阻挡作用,并有效起到挡风作用。
在实施例十二中,第二换热部40包括第三换热扁管48,第三换热扁管48具有多个依次连接的折弯管段,多个依次连接的折弯管段的高度先递增或递减设置以使多个依次连接的折弯管段的边缘围成三角形结构。采用这样的结构设置,结构简单,便于形成三角形结构,方便进行生产制造;同时还能够降低第二换热部40内的制冷剂的流通阻力。
优选的,本实施例中第三换热扁管48为多个,多个第三换热扁管48沿高度方向间隔设置,这样能够便于减小折弯管段之间的间距,以提高换热效率,并有效进行挡风。具体的,多个第三换热扁管48在高度方向上的投影具有重叠区域,这样,能够便于更好的起到挡风作用,并有效进行换热。
具体的,本实施例中的多个第三换热扁管48之间设置有第三翅片。
在本实施例中,多个第三换热扁管48的进口端连接,多个第三换热扁管48的出口端连接,以便于对多个第三换热扁管48进行进流和出流管理。具体的,本实施例中的第二换热部40包括第三集流管4100,多个第三换热扁管48的进口端通过一个第三集流管4100连接,多个第三换热扁管48的出口端通过另一个第三集流管4100连接。
本申请的实施例十三提供了一种换热器,实施例十三中的换热器与实施例十二中的换热器的区别在于第二换热部40的结构的不同。具体的,本实施例中的第二换热部40包括多个第三换热扁管48,多个第三换热扁管48沿第一换热组件13至第二换热组件14的延伸方向间隔设置,各个第三换热扁管48均具有多个依次连接的折弯管段,多个第三换热扁管48的折弯管段的高度先递增或递减设置以使多个第三换热扁管48的边缘围成三角形结构。采用这样 的结构设置,结构简单,便于形成三角形结构,方便进行生产制造。另外,还能够降低单个第三换热扁管48内的制冷剂的流通阻力。
具体的,本实施例中的多个第三换热扁管48的进口端连接,多个第三换热扁管48的出口端连接,以便于对多个第三换热扁管48的进口端集中进流,便于对多个第三换热扁管48的出口端进行集中回收。
在本实施例中,第二换热部40还包括进口连接管491,进口连接管491沿第一换热组件13至第二换热组件14的延伸方向延伸,多个第三换热扁管48的进口端均与进口连接管491连接;和/或,第二换热部40还包括出口连接管492,出口连接管492沿第一换热组件13至第二换热组件14的延伸方向延伸,多个第三换热扁管48的出口端均与出口连接管492连接。
优选的,本实施例中的第二换热部40包括进口连接管491和出口连接管492,进口连接管491沿第一换热组件13至第二换热组件14的延伸方向延伸,多个第三换热扁管48的进口端均与进口连接管491连接,以便于通过进口连接管491集中向多个第三换热扁管48提供冷媒、通过出口连接管492集中回收多个第三换热扁管48内的冷媒。
本申请采用两单片无折弯换热器(包括第一换热组件13和第二换热组件14),用连接接管110连接成V型,在解决折弯换热器应用时与生俱来的结构弊端的同时,在两片单排换热器连接的V型侧边,增加管带式换热器(第二换热部40),进一步增加有效换热面积,提高换热效率,且结构紧凑,空间利用率高。
具体的,本实施例中的两单排换热器用接管连接成V型,无折弯段;并在V型侧边用管带式换热器填充,增加换热面积的同时,可起到挡风的作用。
在实施例十二中为降低管带换热器中制冷剂流通阻力,可采用三根扁管重叠折弯成三角形,并与V型单排换热器并联,可选的在V型侧边有限空间内,可采用两根、四根扁管重叠折弯成三角形,以及梯形等其他形状,降低流阻,并与V型单排换热器连接。
在实施例十三中,为降低管带换热器中制冷剂流通阻力,可采用扁管分三路进出口折弯并形成三角形,与V型单排换热器连接,可选的,也可以分两路、四路折弯成三角形或梯形等。
从以上的描述中,可以看出,本申请实施例十二和实施例十三实现了如下技术效果:增加有效换热面积,提高换热效率,且结构紧凑,空间利用率高。
如图1至图10所示,本申请的实施例提供了一种换热组件,该换热组件包括折弯扁管结构,折弯扁管结构具有换热进口部、换热出口部以及与换热进口部和换热出口部均连通的折弯的换热流路结构。其中,折弯扁管结构的边缘围成三角形结构或梯形结构。
采用本实施例提供的换热组件的结构,在具体使用时,可以将上述换热组件结构取代A型换热组件中的钣金件,这样,能够实现对A型换热器的挡风作用,提高结构的紧凑性,同 时还能够有效提高A型换热器的整体的换热效果。因此,采用本实施例提供的换热组件,能够便于有效提高A型换热器的换热性能。
在实施例一中,折弯扁管结构包括第一扁管11,第一扁管11包括多个沿水平方向间隔且连通设置的第一换热管段111,第一换热管段111均沿竖直方向延伸。
具体的,本实施例中的多个第一换热管段111的高度先增加后减小,第一扁管11的一端形成换热进口部,第一扁管11的另一端形成换热出口部。采用这样的结构设置,通过一个折弯的第一扁管11就能够形成折弯扁管结构,结构简单,便于制造实现,有效降低了制造成本。
在本实施例中,换热组件还包括第一集流管20和第二集流管30,换热进口部与第一集流管20连接,换热出口部与第二集流管30连接。
本实施例中的换热组件为单回路管带式结构,换热组件的整体尺寸较小时可以考虑该结构形式。
本申请的实施例二中提供了一种换热组件,在本实施例中,折弯扁管结构包括第一扁管11,第一扁管11包括多个沿水平方向间隔且连通设置的第一换热管段111,第一换热管段111均沿竖直方向延伸。第一扁管11为多个,多个第一扁管11沿水平方向间隔设置,换热进口部包括多个第一扁管11的第一换热进口,换热出口部包括多个第一扁管11的第一换热出口,多个第一扁管11的多个第一换热管段111的高度先增加后减小。采用这样的结构设置,通过多个沿水平方向间隔设置的第一扁管11能够便于使折弯扁管结构的边缘围呈三角形结构或梯形结构。另外,通过设置多个第一扁管11,相比于一个扁管的结构而言,能够使得各个第一扁管11内的换热流路长度减小,从而减小了冷媒的换热阻力,从而便于提高换热效果。
具体的,本实施例中的多个第一换热进口间隔设置,多个第一换热出口间隔设置。换热组件还包括:第一集流管20,多个第一换热进口均与第一集流管20连接,第一集流管20沿多个第一换热进口的间隔布置方向延伸;和/或,第二集流管30,多个第一换热出口均与第二集流管30连接,第二集流管30沿多个第一换热出口的间隔布置方向延伸。
优选的,本实施例中的换热组件还包括第一集流管20和第二集流管30,多个第一换热进口均与第一集流管20连接,第一集流管20沿多个第一换热进口的间隔布置方向延伸;多个第一换热出口均与第二集流管30连接,第二集流管30沿多个第一换热出口的间隔布置方向延伸。采用这样的结构设置,能够便于通过第一集流管20分别向多个第一换热进口内提供冷媒,通过第二集流管30能够便于将有多个第一换热出口流出的冷媒进行收集。
本实施例中的换热组件为多回路管带式结构,在换热器尺寸较长时可以考虑采用该结构,避免冷媒流阻大的情况,避免影响换热性能。
本申请的实施例三提供了一种换热组件,折弯扁管结构包括第一扁管11,第一扁管11包括多个沿水平方向间隔且连通设置的第一换热管段111,第一换热管段111均沿竖直方向延伸。具体的,本实施例中的第一扁管11的多个第一换热管段111的高度先增加后减小,第一扁管11为多个,多个第一扁管11沿竖直方向间隔设置。采用这样的结构设置,能够便于有效增加 换热流路数量,以便于有效提高换热效果。本实施例中的结构为多个单回路管带式结构,也适用于较小尺寸的换热组件。
具体的,本实施例中的换热组件包括第一集流管20和第二集流管30,换热进口部包括多个第一扁管11的第一换热进口,换热出口部包括多个第一扁管11的第一换热出口,多个第一换热进口均与第一集流管20(第一集流管可以为进口集流管)连接,多个第一换热出口均与第二集流管30(第二集流管可以为出口集流管)连接。
本申请的实施例四提供了一种换热组件,本实施例中的折弯扁管结构包括第一扁管11,第一扁管11包括多个沿水平方向间隔且连通设置的第一换热管段111,第一换热管段111均沿竖直方向延伸。本实施例中的换热组件第一扁管11的多个第一换热管段111的高度先增加后减小,折弯扁管结构还包括第二扁管41,第二扁管41包括多个沿水平方向间隔且连通的第二换热管段112,第二换热管段112沿竖直方向延伸,多个第二换热管段112的高度相同,多个第一换热管段111安装在多个第二换热管段112的上方。采用这样的结构设置,能够便于形成边沿为三角形结构或梯形结构的折弯扁管结构,另外,通过设置第一扁管11和第二扁管41的布局也优化了换热组件的结构布局,提高了换热组件的结构紧凑性,减少了各个扁管内的换热流路长度,进而减少了相应扁管内的流体阻力。
本申请的实施例五提供了一种换热组件,折弯扁管结构包括多个第一倾斜段4131和多个第二倾斜段4141,多个第一倾斜段4131和多个第二倾斜段4141一一对应地设置,各个第一倾斜段4131和对应的第二倾斜段4141对应设置以拼接形成三角形结构。具体的,多个第一倾斜段4131沿水平方向间隔设置,多个第二倾斜段4141沿水平方向间隔设置,位于最外侧的第一倾斜段4131和位于最外侧的第二倾斜段4141形成折弯扁管结构的边缘并围成三角形结构或梯形结构。
本申请的实施例六提供了一种换热组件,在本实施例中折弯扁管结构包括第三扁管46和第四扁管47,第三扁管46包括沿水平方向间隔且连通设置的多个第三换热管段,第四扁管47包括沿水平方向间隔且连通设置的多个第四换热管段,各个第三换热管段包括第一倾斜段4131,各个第四换热管段包括第二倾斜段4141,多个第一倾斜段4131和多个第二倾斜段4141一一对应地设置,各个第一倾斜段4131与对应的第二倾斜段4141抵接以围成三角形结构。采用这样的结构设置,能够便于优化折弯扁管结构的结构布局,提高结构设置的紧凑性。具体的,本实施例中的第三换热管段还包括第一竖直段4132,第一竖直段4132位于第一倾斜段4131的下方且与第一倾斜段4131连通,第四换热管段还包括第二竖直段4142,第二竖直段4142位于第二倾斜段4141的下方且与第二倾斜段4141连通。
优选的,本实施例中的换热组件还可以包括第六扁管4120,第六扁管4120位于第三扁管46和第四扁管47之间,第六扁管4120具有沿水平方向间隔且连通设置的第六换热管段、第七换热管段和第八换热管段,第六换热管段包括相互连接的第六竖直段和第六倾斜段,第六倾斜段位于第六竖直段的上方,第七换热管段包括第七竖直段,第八换热管段包括相互连接的第八竖直段和第八倾斜段,第八倾斜段位于第八竖直段的上方。其中,第六换热管段靠近第三换热管段设置,第七换热管段靠近第四换热管段设置,第六倾斜段和第八倾斜段围成三 角形结构,第七竖直段的至少部分位于第六倾斜段和第八倾斜段围成的三角形区间内。采用这样的结构设置,通过使换热组件包括第三扁管46、第四扁管47以及第六扁管4120,能够便于优化换热组件的结构布局,提高换热组件的结构紧凑性,同时也能够减少各个扁管内的换热流路的长度,以减小换热阻力。
具体的,本实施例中的换热组件还包括第三连接管53和第四连接管54,换热进口部包括第三扁管46的第三换热进口、第四扁管47的第四换热进口以及第六扁管4120的第六换热进口,换热出口部包括第三扁管46的第三换热出口、第四扁管47的第四换热出口以及第六扁管4120的第六换热出口。第三连接管53沿第三换热进口、第四换热进口和第六换热进口的间隔布局方向进行延伸,第三换热进口、第四换热进口和第六换热进口均与第三连接管53连接。第四连接管54沿第三换热出口、第四换热出口和第六换热出口的间隔布局方向进行延伸,第三换热出口、第四换热出口和第六换热出口均与第四连接管54连接。
本申请的实施例七提供了一种换热组件,该换热组件的折弯扁管结构包括第五扁管4110,第五扁管4110包括沿竖直方向间隔且连通的多个第五换热管段,各个第五换热管段包括相互连接的第三倾斜段4151和第四倾斜段4152,第三倾斜段4151和第四倾斜段4152围成三角形结构。采用这样的结构设置,能够便于优化换热组件的结构布局,提高换热组件的结构紧凑性,也便于围成三角形结构。
具体的,本实施例中的第三倾斜段4151远离第四倾斜段4152的一端设置有第三竖直段4153,第四倾斜段4152远离第三倾斜段4151的一端设置有第四竖直段4154。
具体的,本实施例中的第五扁管4110为多个,多个第五扁管4110沿三角形结构的外侧向里侧的方向间隔布局。优选的,第五扁管4110可以为两个,一个第五扁管4110的第五换热进口和第五换热出口之间具有安装区间,另一个第五扁管4110安装在该安装区间内,上述结构布局紧凑。
在本实施例中,换热组件还包括第五连接管55和第六连接管56,多个第五换热进口均与第五连接管55连接,多个第六换热进口均与第六连接管56连接。
在上述所有实施例中,对于单回路的管带式结构而言,冷媒流阻较小,因而均可以适用于整体尺寸较小的换热组件。对于多回路的管带式结构而言,冷媒流阻较大,因而均可以适用于整体尺寸较大的换热组件。
在上述所有实施例中,换热进口部和换热出口部均间隔设置在换热组件的底部。
如图56至图65所示,本申请的实施例提供了一种换热器,第二换热部40为折弯扁管结构,折弯扁管结构具有换热进口部、换热出口部以及与换热进口部和换热出口部均连通的折弯的换热流路结构。其中,折弯扁管结构的边缘围成三角形结构或梯形结构。
采用本实施例提供的换热器的结构,在具体使用时,可以将上述换热器结构取代A型换热器中的钣金件,这样,能够实现对A型换热器的挡风作用,提高结构的紧凑性,同时还能 够有效提高A型换热器的整体的换热效果。因此,采用本实施例提供的换热器,能够便于有效提高A型换热器的换热性能。
在实施例十四中,折弯扁管结构包括第五扁管4110,第五扁管4110包括多个沿水平方向间隔且连通设置的第五换热管段4111,第五换热管段4111均沿竖直方向延伸。
具体的,本实施例中的多个第五换热管段4111的高度先增加后减小,第五扁管4110的一端形成换热进口部,第五扁管4110的另一端形成换热出口部。采用这样的结构设置,通过一个折弯的第五扁管4110就能够形成折弯扁管结构,结构简单,便于制造实现,有效降低了制造成本。
在本实施例中,换热器还包括第一集流管20(可以为进口集流管)和第二集流管30(可以为出口集流管),换热进口部与第一集流管20连接,换热出口部与第二集流管30连接。
本实施例中的换热器为单回路管带式结构,换热器的整体尺寸较小时可以考虑该结构形式。
本申请的实施例十五中提供了一种换热器,在本实施例中,折弯扁管结构包括第五扁管4110,第五扁管4110包括多个沿水平方向间隔且连通设置的第五换热管段4111,第五换热管段4111均沿竖直方向延伸。第五扁管4110为多个,多个第五扁管4110沿水平方向间隔设置,换热进口部包括多个第五扁管4110的第一换热进口,换热出口部包括多个第五扁管4110的第一换热出口,多个第五扁管4110的多个第五换热管段4111的高度先增加后减小。采用这样的结构设置,通过多个沿水平方向间隔设置的第五扁管4110能够便于使折弯扁管结构的边缘围呈三角形结构或梯形结构。另外,通过设置多个第五扁管4110,相比于一个扁管的结构而言,能够使得各个第五扁管4110内的换热流路长度减小,从而减小了冷媒的换热阻力,从而便于提高换热效果。
具体的,本实施例中的多个第一换热进口间隔设置,多个第一换热出口间隔设置。换热器还包括:第一连接管路120,多个第一换热进口均与第一连接管路120连接,第一连接管路120沿多个第一换热进口的间隔布置方向延伸;和/或,第二连接管路130,多个第一换热出口均与第二连接管路130连接,第二连接管路130沿多个第一换热出口的间隔布置方向延伸。
优选的,本实施例中的换热器还包括第一连接管路120和第二连接管路130,多个第一换热进口均与第一连接管路120连接,第一连接管路120沿多个第一换热进口的间隔布置方向延伸;多个第一换热出口均与第二连接管路130连接,第二连接管路130沿多个第一换热出口的间隔布置方向延伸。采用这样的结构设置,能够便于通过第一连接管路120分别向多个第一换热进口内提供冷媒,通过第二连接管路130能够便于将有多个第一换热出口流出的冷媒进行收集。
本实施例中的换热器为多回路管带式结构,在换热器尺寸较长时可以考虑采用该结构,避免冷媒流阻大的情况,避免影响换热性能。
本申请的实施例十六提供了一种换热器,折弯扁管结构包括第五扁管4110,第五扁管4110包括多个沿水平方向间隔且连通设置的第五换热管段4111,第五换热管段4111均沿竖直方向延伸。具体的,本实施例中的第五扁管4110的多个第五换热管段4111的高度先增加后减小,第五扁管4110为多个,多个第五扁管4110沿竖直方向间隔设置。采用这样的结构设置,能够便于有效增加换热流路数量,以便于有效提高换热效果。本实施例中的结构为多个单回路管带式结构,也适用于较小尺寸的换热器。
具体的,本实施例中的换热器包括第一集流管20和第二集流管30,换热进口部包括多个第五扁管4110的第一换热进口,换热出口部包括多个第五扁管4110的第一换热出口,多个第一换热进口均与第一集流管20连接,多个第一换热出口均与第二集流管30连接。
本申请的实施例十七提供了一种换热器,本实施例中的折弯扁管结构包括第五扁管4110,第五扁管4110包括多个沿水平方向间隔且连通设置的第五换热管段4111,第五换热管段4111均沿竖直方向延伸。本实施例中的换热器第五扁管4110的多个第五换热管段4111的高度先增加后减小,折弯扁管结构还包括第六扁管4120,第六扁管4120包括多个沿水平方向间隔且连通的第六换热管段4121,第六换热管段4121沿竖直方向延伸,多个第六换热管段4121的高度相同,多个第五换热管段4111安装在多个第六换热管段4121的上方。采用这样的结构设置,能够便于形成边沿为三角形结构或梯形结构的折弯扁管结构,另外,通过设置第五扁管4110和第六扁管4120的布局也优化了换热器的结构布局,提高了换热器的结构紧凑性,减少了各个扁管内的换热流路长度,进而减少了相应扁管内的流体阻力。
本申请的实施例十八提供了一种换热器,折弯扁管结构包括多个第一倾斜段4131和多个第二倾斜段4141,多个第一倾斜段4131和多个第二倾斜段4141一一对应地设置,各个第一倾斜段4131和对应的第二倾斜段4141对应设置以拼接形成三角形结构。具体的,多个第一倾斜段4131沿水平方向间隔设置,多个第二倾斜段4141沿水平方向间隔设置,位于最外侧的第一倾斜段4131和位于最外侧的第二倾斜段4141形成折弯扁管结构的边缘并围成三角形结构或梯形结构。
本申请的实施例十九提供了一种换热器,在本实施例中折弯扁管结构包括第七扁管4130和第八扁管4140,第七扁管4130包括沿水平方向间隔且连通设置的多个第三换热管段,第八扁管4140包括沿水平方向间隔且连通设置的多个第四换热管段,各个第三换热管段包括第一倾斜段4131,各个第四换热管段包括第二倾斜段4141,多个第一倾斜段4131和多个第二倾斜段4141一一对应地设置,各个第一倾斜段4131与对应的第二倾斜段4141抵接以围成三角形结构。采用这样的结构设置,能够便于优化折弯扁管结构的结构布局,提高结构设置的紧凑性。具体的,本实施例中的第三换热管段还包括第一竖直段4132,第一竖直段4132位于第一倾斜段4131的下方且与第一倾斜段4131连通,第四换热管段还包括第二竖直段4142,第二竖直段4142位于第二倾斜段4141的下方且与第二倾斜段4141连通。
优选的,本实施例中的换热器还可以包括第十扁管4160,第十扁管4160位于第七扁管4130和第八扁管4140之间,第十扁管4160具有沿水平方向间隔且连通设置的第六换热管段、第七换热管段和第八换热管段,第六换热管段包括相互连接的第六竖直段和第六倾斜段,第 六倾斜段位于第六竖直段的上方,第七换热管段包括第七竖直段,第八换热管段包括相互连接的第八竖直段和第八倾斜段,第八倾斜段位于第八竖直段的上方。其中,第六换热管段靠近第三换热管段设置,第七换热管段靠近第四换热管段设置,第六倾斜段和第八倾斜段围成三角形结构,第七竖直段的至少部分位于第六倾斜段和第八倾斜段围成的三角形区间内。采用这样的结构设置,通过使换热器包括第七扁管4130、第八扁管4140以及第十扁管4160,能够便于优化换热器的结构布局,提高换热器的结构紧凑性,同时也能够减少各个扁管内的换热流路的长度,以减小换热阻力。
具体的,本实施例中的换热器还包括第三连接管路140和第四连接管路150,换热进口部包括第七扁管4130的第三换热进口、第八扁管4140的第四换热进口以及第十扁管4160的第六换热进口,换热出口部包括第七扁管4130的第三换热出口、第八扁管4140的第四换热出口以及第十扁管4160的第六换热出口。第三连接管路140沿第三换热进口、第四换热进口和第六换热进口的间隔布局方向进行延伸,第三换热进口、第四换热进口和第六换热进口均与第三连接管路140连接。第四连接管路150沿第三换热出口、第四换热出口和第六换热出口的间隔布局方向进行延伸,第三换热出口、第四换热出口和第六换热出口均与第四连接管路150连接。
本申请的实施例七提供了一种换热器,该换热器的折弯扁管结构包括第九扁管4150,第九扁管4150包括沿竖直方向间隔且连通的多个第五换热管段,各个第五换热管段包括相互连接的第三倾斜段4151和第四倾斜段4152,第三倾斜段4151和第四倾斜段4152围成三角形结构。采用这样的结构设置,能够便于优化换热器的结构布局,提高换热器的结构紧凑性,也便于围成三角形结构。
具体的,本实施例中的第三倾斜段4151远离第四倾斜段4152的一端设置有第三竖直段4153,第四倾斜段4152远离第三倾斜段4151的一端设置有第四竖直段4154。
具体的,本实施例中的第九扁管4150为多个,多个第九扁管4150沿三角形结构的外侧向里侧的方向间隔布局。优选的,第九扁管4150可以为两个,一个第九扁管4150的第五换热进口和第五换热出口之间具有安装区间,另一个第九扁管4150安装在该安装区间内,上述结构布局紧凑。
在本实施例中,换热器还包括第五连接管路160和第六连接管路170,多个第五换热进口均与第五连接管路160连接,多个第六换热进口均与第六连接管路170连接。
在上述所有实施例中,对于单回路的管带式结构而言,冷媒流阻较小,因而均可以适用于整体尺寸较小的换热器。对于多回路的管带式结构而言,冷媒流阻较大,因而均可以适用于整体尺寸较大的换热器。
在上述所有实施例中,换热进口部和换热出口部均间隔设置在换热器的底部。
本申请上述的实施例实现了如下技术效果:增大了换热面积,提高了换热性能,优化了换热器的空间布局,充分利用了换热器的空间,提高了结构设置的紧凑性;有效进行挡风。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本申请的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (41)

  1. 一种换热器,其特征在于,包括:
    第一换热部(10),所述第一换热部(10)包括多个间隔设置第一扁管(11),所述第一扁管(11)包括相互连接的第一换热管段(111)和第二换热管段(112),所述第一换热管段(111)和所述第二换热管段(112)呈预设角度设置;或者,所述第一换热部(10)包括相互连接的第一换热组件(13)和第二换热组件(14),所述第一换热组件(13)包括多个沿第一预设方向间隔设置的第一换热扁管(131),所述第二换热组件(14)包括多个沿第二预设方向间隔设置的第二换热扁管(141),所述第一预设方向与所述第二预设方向呈预设角度设置;
    第一集流管(20)和第二集流管(30),多个所述第一扁管(11)的第一换热管段(111)均与所述第一集流管(20)连接,多个所述第一扁管(11)的第二换热管段(112)与所述第二集流管(30)连接;或者,多个所述第一换热扁管(131)均与所述第一集流管(20)连接,多个所述第二换热扁管(141)均与所述第二集流管(30)连接;
    第二换热部(40),设置在所述第一换热部(10)的端部,所述第一换热部(10)和所述第二换热部(40)围合形成风道。
  2. 根据权利要求1所述的换热器,其特征在于,所述第一换热管段(111)和所述第二换热管段(112)之间具有安装区间(113),所述第二换热部(40)位于所述安装区间(113)内。
  3. 根据权利要求2所述的换热器,其特征在于,所述安装区间(113)为三角区间,所述第二换热部(40)为与所述安装区间(113)相适配的三角形结构或梯形结构,所述第二换热部(40)的至少部分与所述第一换热管段(111)和所述第二换热管段(112)贴合设置。
  4. 根据权利要求3所述的换热器,其特征在于,所述第一换热管段(111)和所述第二换热管段(112)之间的夹角形成所述三角区间的顶角,所述三角区间的顶角与所述三角形结构的顶角相同。
  5. 根据权利要求3所述的换热器,其特征在于,所述第二换热部(40)包括第二扁管(41),所述第二扁管(41)具有多个依次连接的折弯管段,所述多个依次连接的折弯管段的高度先递增后递减设置以使所述多个依次连接的折弯管段的边缘围成所述三角形结构。
  6. 根据权利要求3所述的换热器,其特征在于,所述第二换热部(40)包括第二扁管(41)和第二翅片(42),所述第二扁管(41)具有多个依次连接的折弯管段,所述多个依次连接的折弯管段的高度先递增或递减设置,所述第二翅片(42)为多个,所述多个依次连接的折弯管段的各个折弯管段的折弯间隙内以及相邻两个所述折弯管段之间均安装有所述第二翅片(42);
    其中,相邻两个所述折弯管段包括第一折弯管段(411)和第二折弯管段(412),所述第一折弯管段(411)的高度、位于所述第一折弯管段(411)和所述第二折弯管段 (412)之间的第二翅片的高度以及所述第二折弯管段(412)的高度依次递增或递减,以使所述第二扁管(41)的边缘和多个所述第二翅片(42)的边缘围成所述三角形结构。
  7. 根据权利要求1所述的换热器,其特征在于,所述第二换热部(40)的进口端与所述第一集流管(20)连通,所述第二换热部(40)的出口端与所述第二集流管(30)连通。
  8. 根据权利要求1所述的换热器,其特征在于,所述第二换热部(40)包括第二扁管(41);
    所述第一集流管(20)上设置有第一插接槽,所述第一插接槽沿所述第一集流管(20)的轴向延伸,所述第二扁管(41)的一端插设在所述第一插接槽内;和/或,
    所述第二集流管(30)上设置有第二插接槽,所述第二插接槽沿所述第二集流管(30)的轴向延伸,所述第二扁管(41)的另一端插设在所述第二插接槽内。
  9. 根据权利要求1所述的换热器,其特征在于,所述第二换热部(40)包括第三集流管、第四集流管和第二扁管(41);所述第二扁管(41)分别与所述第三集流管和第四集流管连通,所述第三集流管和所述第四集流管通过连接管分别与所述第一集流管(20)和所述第二集流管(30)连通。
  10. 根据权利要求1所述的换热器,其特征在于,所述第二换热部(40)为两个,两个所述第二换热部(40)分别设置在所述第一换热部(10)的两端,两个所述第二换热部(40)的进口端通过第一连接管(51)连接设置,两个所述第二换热部(40)的出口端通过第二连接管(52)连接设置;
    所述换热器还包括间隔设置的第三连接管(53)和第四连接管(54),所述第三连接管(53)和所述第四连接管(54)均设置在其中一个所述第二换热部(40)上,所述第三连接管(53)位于所述第二换热部(40)和所述第一集流管(20)之间,所述第四连接管(54)位于所述第二换热部(40)和所述第二集流管(30)之间;
    或者,两个所述第二换热部(40)与所述第一换热部(10)相互独立设置,以使两个所述第二换热部(40)和所述第一换热部(10)独立进行换热。
  11. 根据权利要求2所述的换热器,其特征在于,所述第二换热部(40)为两个,两个所述第二换热部(40)分别设置在所述第一换热部(10)的两端;
    两个所述第二换热部(40)的进口端均与所述第一集流管(20)的侧部连接,两个所述第二换热部(40)的出口端均与所述第二集流管(30)的侧部连接;其中一个所述第二换热部(40)的进口端与所述第一集流管(20)的连接处和另一个所述第二换热部(40)的进口端与所述第一集流管(20)的连接处分别位于所述第一换热部(10)的两端,其中一个所述第二换热部(40)的出口端与所述第二集流管(30)的连接处和另一个所述第二换热部(40)的出口端与所述第二集流管(30)的连接处分别位于所述第一换热部(10)的两端;
    或者,所述换热器还包括两个第一接管(61)和两个第二接管(62),所述两个第 一接管(61)的一端分别与所述第一集流管(20)的两端连接,所述两个第一接管(61)的另一端分别与两个所述第二换热部(40)的进口端连接;所述两个第二接管(62)的一端分别与所述第二集流管(30)的两端连接,所述两个第二接管(62)的另一端分别与两个所述第二换热部(40)的出口端连接。
  12. 根据权利要求2所述的换热器,其特征在于,所述第二换热部(40)向所述安装区间(113)的内侧倾斜设置。
  13. 根据权利要求11所述的换热器,其特征在于,所述第二换热部(40)具有相对设置的顶端(43)和底端(44),所述第二换热部(40)的顶端(43)位于所述第一换热管段(111)和所述第二换热管段(112)的连接处,所述第二换热部(40)的底端(44)位于所述第一换热管段(111)远离所述第二换热管段(112)的一端;
    其中,所述第二换热部(40)的顶端(43)相对于所述第二换热部(40)的底端(44)向所述安装区间(113)的内侧倾斜设置。
  14. 根据权利要求1所述的换热器,其特征在于,所述换热器还包括:
    中间集流管(80),所述中间集流管(80)具有相互独立的进口管段(81)和出口管段(82),所述第二换热部(40)的进口端与所述进口管段(81)连接,所述第二换热部(40)的出口端与所述出口管段(82)连接;所述进口管段(81)的进口端与所述第一集流管(20)连接,所述出口管段(82)的出口端与所述第二集流管(30)连接。
  15. 根据权利要求14所述的换热器,其特征在于,所述第二换热部(40)包括至少两个独立设置的换热结构(45),所述中间集流管(80)至少为两个,至少两个所述换热结构(45)沿所述第一换热部(10)的一端至所述第一换热部(10)的另一端的延伸方向间隔设置;至少两个所述换热结构(45)与至少两个所述中间集流管(80)一一对应地设置,各个所述换热结构(45)与相应的所述中间集流管(80)连接。
  16. 根据权利要求14所述的换热器,其特征在于,所述第二换热部(40)包括两个独立设置的换热结构(45),两个所述换热结构(45)分别设置在所述第一换热部(10)的两端;
    所述中间集流管(80)为两个,两个所述换热结构(45)与两个所述中间集流管(80)一一对应地设置,各个所述换热结构(45)与相应的所述中间集流管(80)连接。
  17. 根据权利要求15或16所述的换热器,其特征在于,所述第一换热管段(111)和所述第二换热管段(112)之间具有安装区间,所述安装区间为三角区间,所述换热结构(45)安装在所述三角区间内,所述换热结构(45)的外形为与所述安装区间相适配的三角形结构或梯形结构,所述换热结构(45)的至少部分与所述第一换热管段(111)或所述第二换热管段(112)贴合设置。
  18. 根据权利要求15或16所述的换热器,其特征在于,所述换热结构(45)包括多个沿高度方向间隔设置的第三扁管(46),所述第三扁管(46)的进口端与所述进口管段(81)连接,所述第三扁管(46)的出口端与所述出口管段(82)连接。
  19. 根据权利要求18所述的换热器,其特征在于,所述第三扁管(46)包括依次连接的第一管段(461)、第二管段(462)和第三管段(463),所述第一管段(461)和所述第三管段(463)均沿竖直方向或与竖直方向呈预设角度的方向延伸,所述第二管段(462)沿水平方向或与水平方向呈预设角度的方向延伸,所述第一管段(461)远离所述第二管段(462)的一端形成所述第三扁管(46)的进口端,所述第三管段(463)远离所述第二管段(462)的一端形成所述第三扁管(46)的出口端。
  20. 根据权利要求19所述的换热器,其特征在于,沿所述换热结构(45)的底端至所述换热结构(45)的顶端的延伸方向上,多个所述第二管段(462)的长度逐渐减小,多个所述第一管段(461)的长度和/或多个所述第三管段(463)的长度逐渐增加。
  21. 根据权利要求19所述的换热器,其特征在于,所述第三扁管(46)为一体成型结构;
    所述第一管段(461)和所述第二管段(462)的连接处为弧形折弯过渡结构;和/或,
    所述第二管段(462)和所述第三管段(463)的连接处为弧形折弯过渡结构。
  22. 根据权利要求14所述的换热器,其特征在于,所述换热器还包括连接管(90),所述连接管(90)和所述中间集流管(80)分别设置在所述第一换热部(10)的两端;所述第二换热部(40)包括:
    两个连通设置的换热结构(45),两个所述换热结构(45)分别设置在所述第一换热部(10)的两端,一个所述换热结构(45)与所述连接管(90)连接,另一个所述换热结构(45)与所述中间集流管(80)连接,以使经所述进口管段(81)进入的流体经两个所述换热结构(45)后由所述出口管段(82)排出。
  23. 根据权利要求22所述的换热器,其特征在于,所述第二换热部(40)还包括:
    第四扁管(47),所述第四扁管(47)具有依次连接的第四管段(471)、第五管段(472)和第六管段(473),所述第四管段(471)和所述第六管段(473)均沿竖直方向延伸或与竖直方向呈预设角度的方向延伸;所述第四管段(471)位于所述第一换热部(10)的一端并与所述中间集流管(80)连接,所述第五管段(472)位于所述第一换热部(10)的一端和所述第一换热部(10)的另一端之间,所述第六管段(473)位于所述第一换热部(10)的另一端并与所述连接管(90)连接;
    其中,所述第四扁管(47)为多个,多个所述第四扁管(47)沿所述中间集流管(80)的延伸方向间隔设置,多个所述第四管段(471)围成一个所述换热结构(45),多个所述第六管段(473)围成另一个所述换热结构(45),一个所述换热结构(45)与另一个所述换热结构(45)通过多个所述第五管段(472)连接。
  24. 根据权利要求23所述的换热器,其特征在于,所述第一换热管段(111)和所述第二换热管段(112)之间具有安装区间,所述安装区间为三角区间,所述换热结构(45)的至少部分与所述第一换热管段(111)或所述第二换热管段(112)贴合设置;
    沿所述中间集流管(80)的延伸方向,多个所述第四扁管(47)的第四管段(471)的长度先增加后减小,以使多个所述第四管段(471)围成与所述安装区间相适配的三角形结构或梯形结构;和/或,
    沿所述中间集流管(80)的延伸方向,多个所述第四扁管(47)的第六管段(473)的长度先增加后减小,以使多个所述第六管段(473)围成与所述安装区间相适配的三角形结构或梯形结构。
  25. 根据权利要求23所述的换热器,其特征在于,所述第四扁管(47)为一体成型结构;
    所述第四管段(471)和所述第五管段(472)的连接处为弧形折弯过渡结构;和/或,
    所述第五管段(472)和所述第六管段(473)的连接处为弧形折弯过渡结构。
  26. 根据权利要求25所述的换热器,其特征在于,所述第二换热部(40)包括第三换热扁管(48),所述第三换热扁管(48)具有多个依次连接的折弯管段,所述多个依次连接的折弯管段的高度先递增或递减设置以使所述多个依次连接的折弯管段的边缘围成与所述第一换热组件(13)和所述第二换热组件(14)之间的安装区间相适配的三角形结构。
  27. 根据权利要求26所述的换热器,其特征在于,所述第三换热扁管(48)为多个,多个所述第三换热扁管(48)沿高度方向间隔设置。
  28. 根据权利要求27所述的换热器,其特征在于,多个所述第三换热扁管(48)的进口端连接,多个所述第三换热扁管(48)的出口端连接。
  29. 根据权利要求25所述的换热器,其特征在于,所述第二换热部(40)包括多个第三换热扁管(48),多个所述第三换热扁管(48)沿所述第一换热组件(13)至所述第二换热组件(14)的延伸方向间隔设置,各个所述第三换热扁管(48)均具有多个依次连接的折弯管段,多个所述第三换热扁管(48)的折弯管段的高度先递增或递减设置以使多个所述第三换热扁管(48)的边缘围成与所述第一换热组件(13)和所述第二换热组件(14)之间的安装区间相适配的三角形结构。
  30. 根据权利要求29所述的换热器,其特征在于,多个所述第三换热扁管(48)的进口端连接,多个所述第三换热扁管(48)的出口端连接。
  31. 根据权利要求30所述的换热器,其特征在于,所述第二换热部(40)还包括:
    进口连接管(491),所述进口连接管(491)沿所述第一换热组件(13)至所述第二换热组件(14)的延伸方向延伸,多个所述第三换热扁管(48)的进口端均与所述进口连接管(491)连接;和/或,
    出口连接管(492),所述出口连接管(492)沿所述第一换热组件(13)至所述第二换热组件(14)的延伸方向延伸,多个所述第三换热扁管(48)的出口端均与所述出口连接管(492)连接。
  32. 根据权利要求1所述的换热器,其特征在于,所述第二换热部(40)为折弯扁管结构,所述折弯扁管结构具有换热进口部、换热出口部以及与所述换热进口部和所述换热出口部均连通的折弯的换热流路结构;其中,所述折弯扁管结构的边缘围成三角形结构或梯形结构。
  33. 根据权利要求32所述的换热器,其特征在于,所述折弯扁管结构包括:
    第五扁管(4110),所述第五扁管(4110)包括多个沿水平方向间隔且连通设置的第五换热管段(4111),所述第五换热管段(4111)均沿竖直方向延伸。
  34. 根据权利要求33所述的换热器,其特征在于,多个所述第五换热管段(4111)的高度先增加后减小,所述第五扁管(4110)的一端形成所述换热进口部,所述第五扁管(4110)的另一端形成所述换热出口部。
  35. 根据权利要求34所述的换热器,其特征在于,所述第五扁管(4110)为多个,多个所述第五扁管(4110)沿水平方向间隔设置,所述换热进口部包括多个所述第五扁管(4110)的第一换热进口,所述换热出口部包括多个所述第五扁管(4110)的第一换热出口,多个所述第五扁管(4110)的多个第五换热管段(4111)的高度先增加后减小。
  36. 根据权利要求35所述的换热器,其特征在于,多个所述第一换热进口间隔设置,多个所述第一换热出口间隔设置;所述换热器还包括:
    第一连接管路(120),多个所述第一换热进口均与所述第一连接管路(120)连接,所述第一连接管路(120)沿多个所述第一换热进口的间隔布置方向延伸;和/或,
    第二连接管路(130),多个所述第一换热出口均与所述第二连接管路(130)连接,所述第二连接管路(130)沿多个所述第一换热出口的间隔布置方向延伸。
  37. 根据权利要求33所述的换热器,其特征在于,所述第五扁管(4110)的多个所述第五换热管段(4111)的高度先增加后减小,所述第五扁管(4110)为多个,多个所述第五扁管(4110)沿竖直方向间隔设置。
  38. 根据权利要求33所述的换热器,其特征在于,所述第五扁管(4110)的多个所述第五换热管段(4111)的高度先增加后减小,所述折弯扁管结构还包括:
    第六扁管(4120),所述第六扁管(4120)包括多个沿水平方向间隔且连通的第六换热管段(4121),所述第六换热管段(4121)沿竖直方向延伸,多个所述第六换热管段(4121)的高度相同,多个所述第五换热管段(4111)安装在所述多个所述第六换热管段(4121)的上方。
  39. 根据权利要求32所述的换热器,其特征在于,所述折弯扁管结构包括:
    多个第一倾斜段(4131)和多个第二倾斜段(4141),所述多个第一倾斜段(4131)和所述多个第二倾斜段(4141)一一对应地设置,各个所述第一倾斜段(4131)和对应的所述第二倾斜段(4141)对应设置以拼接形成三角形结构。
  40. 根据权利要求32所述的换热器,其特征在于,所述折弯扁管结构包括:
    第七扁管(4130)和第八扁管(4140),所述第七扁管(4130)包括沿水平方向间隔且连通设置的多个第三换热管段,所述第八扁管(4140)包括沿水平方向间隔且连通设置的多个第四换热管段,各个所述第三换热管段包括第一倾斜段(4131),各个所述第四换热管段包括第二倾斜段(4141),多个所述第一倾斜段(4131)和多个所述第二倾斜段(4141)一一对应地设置,各个所述第一倾斜段(4131)与对应的所述第二倾斜段(4141)抵接以围成三角形结构。
  41. 根据权利要求32所述的换热器,其特征在于,所述折弯扁管结构包括:
    第九扁管(4150),所述第九扁管(4150)包括沿竖直方向间隔且连通的多个第五换热管段,各个所述第五换热管段包括相互连接的第三倾斜段(4151)和第四倾斜段(4152),所述第三倾斜段(4151)和所述第四倾斜段(4152)围成三角形结构。
PCT/CN2022/116337 2021-08-31 2022-08-31 换热器 WO2023030416A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247005860A KR20240038757A (ko) 2021-08-31 2022-08-31 열교환기

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202111017346.9 2021-08-31
CN202111017351.X 2021-08-31
CN202111017346.9A CN115727689A (zh) 2021-08-31 2021-08-31 换热器
CN202111017351.XA CN115727690A (zh) 2021-08-31 2021-08-31 换热器
CN202122092336.3 2021-08-31
CN202122089025.1 2021-08-31
CN202122087044.0 2021-08-31
CN202122089025.1U CN216159689U (zh) 2021-08-31 2021-08-31 换热器
CN202122087044.0U CN216159688U (zh) 2021-08-31 2021-08-31 换热器
CN202122092336.3U CN216159690U (zh) 2021-08-31 2021-08-31 换热器
CN202122084091.X 2021-08-31
CN202122084091.XU CN216159687U (zh) 2021-08-31 2021-08-31 换热组件

Publications (1)

Publication Number Publication Date
WO2023030416A1 true WO2023030416A1 (zh) 2023-03-09

Family

ID=85411948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116337 WO2023030416A1 (zh) 2021-08-31 2022-08-31 换热器

Country Status (2)

Country Link
KR (1) KR20240038757A (zh)
WO (1) WO2023030416A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201731683U (zh) * 2010-05-24 2011-02-02 三花丹佛斯(杭州)微通道换热器有限公司 热交换装置
CN105698383A (zh) * 2016-03-31 2016-06-22 杭州三花微通道换热器有限公司 换热器、热泵热水器及换热器的生产方法和生产装置
CN205717905U (zh) * 2016-03-31 2016-11-23 杭州三花微通道换热器有限公司 用于热泵热水器的换热器和具有它的热泵热水器
CN205784008U (zh) * 2016-05-16 2016-12-07 丹佛斯微通道换热器(嘉兴)有限公司 换热器和换热模块
US20170130974A1 (en) * 2015-11-09 2017-05-11 Carrier Corporation Residential outdoor heat exchanger unit
CN206959637U (zh) * 2017-03-23 2018-02-02 杭州三花微通道换热器有限公司 换热器和换热模块
CN107664366A (zh) * 2016-07-27 2018-02-06 杭州三花家电热管理系统有限公司 一种微通道换热器、微通道换热器组件及制冷系统
CN216159687U (zh) * 2021-08-31 2022-04-01 浙江盾安热工科技有限公司 换热组件
CN216159690U (zh) * 2021-08-31 2022-04-01 浙江盾安热工科技有限公司 换热器
CN216159688U (zh) * 2021-08-31 2022-04-01 浙江盾安热工科技有限公司 换热器
CN216159689U (zh) * 2021-08-31 2022-04-01 浙江盾安热工科技有限公司 换热器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201731683U (zh) * 2010-05-24 2011-02-02 三花丹佛斯(杭州)微通道换热器有限公司 热交换装置
US20170130974A1 (en) * 2015-11-09 2017-05-11 Carrier Corporation Residential outdoor heat exchanger unit
CN105698383A (zh) * 2016-03-31 2016-06-22 杭州三花微通道换热器有限公司 换热器、热泵热水器及换热器的生产方法和生产装置
CN205717905U (zh) * 2016-03-31 2016-11-23 杭州三花微通道换热器有限公司 用于热泵热水器的换热器和具有它的热泵热水器
CN205784008U (zh) * 2016-05-16 2016-12-07 丹佛斯微通道换热器(嘉兴)有限公司 换热器和换热模块
CN107664366A (zh) * 2016-07-27 2018-02-06 杭州三花家电热管理系统有限公司 一种微通道换热器、微通道换热器组件及制冷系统
CN206959637U (zh) * 2017-03-23 2018-02-02 杭州三花微通道换热器有限公司 换热器和换热模块
CN216159687U (zh) * 2021-08-31 2022-04-01 浙江盾安热工科技有限公司 换热组件
CN216159690U (zh) * 2021-08-31 2022-04-01 浙江盾安热工科技有限公司 换热器
CN216159688U (zh) * 2021-08-31 2022-04-01 浙江盾安热工科技有限公司 换热器
CN216159689U (zh) * 2021-08-31 2022-04-01 浙江盾安热工科技有限公司 换热器

Also Published As

Publication number Publication date
KR20240038757A (ko) 2024-03-25

Similar Documents

Publication Publication Date Title
CN107314573B (zh) 一种微通道热交换器
WO2015158280A1 (zh) 换热器及其制造方法、换热模块、换热装置和热源单元
US20110232884A1 (en) Heat exchanger
WO2011000137A1 (zh) 一种微通道、平行流、全铝扁管焊接式结构换热器及应用
US20120222848A1 (en) Integrated counter cross flow condenser
CN106288911B (zh) 一种翅片及包括该翅片的散热器
CN107990758A (zh) 换热器和热泵系统
CN1099019C (zh) 热交换器
WO2022253206A1 (zh) 换热器
JP5338883B2 (ja) 熱源ユニット
WO2023030416A1 (zh) 换热器
CN103256834A (zh) 椭圆管翅片式换热器及顶出风空调室外机
CN108225063A (zh) 一种三介质换热器及其制造方法、一种三介质换热设备
CN216159688U (zh) 换热器
WO2024001737A1 (zh) 换热器
CN216159690U (zh) 换热器
CN210051186U (zh) 三介质换热器
JP2008261552A (ja) 熱源ユニット
WO2022127599A1 (zh) 换热器和空调系统
CN210688819U (zh) 换热器和具有其的空调器
CN216159689U (zh) 换热器
CN203011010U (zh) 斜插式平行流热交换器
CN206160567U (zh) 一种冷凝器
CN103486771B (zh) 一种换热器及具有该换热器的空调器
CN208333166U (zh) 换热器和热泵系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247005860

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247005860

Country of ref document: KR