WO2023030368A1 - 对终端设备进行感知的方法和通信装置 - Google Patents

对终端设备进行感知的方法和通信装置 Download PDF

Info

Publication number
WO2023030368A1
WO2023030368A1 PCT/CN2022/116097 CN2022116097W WO2023030368A1 WO 2023030368 A1 WO2023030368 A1 WO 2023030368A1 CN 2022116097 W CN2022116097 W CN 2022116097W WO 2023030368 A1 WO2023030368 A1 WO 2023030368A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
network element
service
perception
request message
Prior art date
Application number
PCT/CN2022/116097
Other languages
English (en)
French (fr)
Inventor
应江威
杨艳梅
张万强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023030368A1 publication Critical patent/WO2023030368A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/08Access security
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring

Definitions

  • the present application relates to the field of communication sensing, and more specifically, to a method and a communication device for sensing a terminal device.
  • the communication frequency band has derived perception capabilities, especially the millimeter wave frequency band.
  • an access network radio access network, RAN
  • RAN radio access network
  • the present application provides a method for sensing a terminal device and a communication device, which can support sensing of a UE end-to-end.
  • a method for sensing a terminal device including:
  • the NEF network element receives the first sensing service request message, the first sensing service request message is used to request the first sensing service, and the first sensing service is to sense the UE;
  • the NEF network element determines that the first sensing service is authorized based on the first sensing service request message
  • the NEF network element sends a second sensing service request message to the sensing network element, where the second sensing service request message is used to request the first sensing service.
  • a method for sensing the UE including:
  • the NEF network element receives the first sensing service request message, the first sensing service request message is used to request the first sensing service, and the first sensing service is to sense the user equipment UE;
  • the NEF network element sends a second sensing service request message to the AMF network element, where the second sensing service request message is used to request the first sensing service.
  • the NEF network element determines that the first sensing service is authorized based on the first sensing service request message, including:
  • the NEF network element sends a perception authorization request message to the UDM network element based on the first perception service request message, and the perception authorization request message is used to request confirmation that the first perception service is authorized;
  • the NEF network element receives an authorization response message from the UDM network element, and the authorization response message is used to indicate that the first sensing service is authorized;
  • the NEF network element determines that the first sensing service is authorized based on the authorization response message.
  • the authorization response message includes service authorization information.
  • the perception authorization request message includes one or more of the following:
  • the perception distance, perception area, perception speed range, perception distance resolution, perception angle measurement accuracy, perception speed resolution, perception service quality QoS requirements, perception object recognition accuracy rate, perception object recognition false alarm rate, perception data Accuracy, sensing data update frequency, sensing dimension, sensing feedback mode service type, sensing requester type, sensing requester ID, sensing application type, and sensing application ID are determined according to the first sensing service request message.
  • the first sensing service request message includes the first identifier of the UE, and the sensing authorization request message includes the second identifier of the UE;
  • the perception authorization response message includes the second identity of the UE
  • the second sensing service request message includes the second identifier of the UE.
  • the method before the NEF network element sends the second perception service request message to the perception network element, the method further includes:
  • the NEF network element acquires the location information of the UE from the GMLC network element based on the second identifier of the UE;
  • the second sensing service request message includes the location information of the UE.
  • a method for sensing a terminal device including:
  • the SF network element receives the sensing service request message, and the sensing service request message is used to request the first sensing service, and the first sensing service is to sense the UE;
  • the SF network element determines the first network element according to the sensing service request message, and the first network element supports the first sensing service;
  • the SF network element sends a sensing control request message to the first network element, where the sensing control request message is used to control the RAN network element to perform the sensing operation of the first sensing service.
  • the first network element may be an AMF network element, a RAN network element, or an SMF network element.
  • the sensing service request message includes the second identifier of the UE, and the SF network element determines the first network element according to the sensing service request message, including:
  • the SF network element determines the first network element according to the second identifier of the UE.
  • the sensing service request message includes UE location information
  • the SF network element determines the first network element according to the perceived service request message, including:
  • the SF network element determines the first network element according to the location information of the UE.
  • the sensing service request message includes the identifier of the UE, and the SF network element determines the first network element according to the sensing service request message, including:
  • the SF network element obtains the location information of the UE according to the identifier of the UE included in the sensing service request message;
  • the SF network element determines the first network element according to the location information of the UE.
  • the method further includes:
  • the SF network element allocates a perception association identifier for the UE, and the perception association identifier is used to identify the perception data of the UE.
  • the sensing control request message includes UE location information and/or a sensing association identifier, where the sensing association identifier is used to identify sensing data of the UE.
  • the method further includes:
  • the SF network element receives the first sensing data and the sensing association identifier from the first network element.
  • the first network element is an AMF network element
  • the method further includes:
  • the SF network element establishes a sensing signaling connection between the SF network element and the AMF network element, and the sensing signaling connection is used for the SF network element and the AMF network element to exchange signaling of the first sensing service of the UE.
  • a method for sensing a terminal device including:
  • the second network element receives the first request message, and the first request message is used to request the sensing service of the UE;
  • the second network element sends a response message to the first request message, where the response message is used to indicate acceptance of the perceived service of the UE.
  • the method before the second network element returns a response message to the first request message, the method further includes:
  • the second network element determines that the sensing service of the UE is authorized.
  • the first request message includes sensing indication information, and the sensing indication information is used to indicate that the sensing service is requested.
  • the response message includes sensing acceptance indication information, where the sensing acceptance indication information is used to indicate acceptance of the sensing service of the UE.
  • the response message includes address information of the sensing network element.
  • the second network element determines that the sensing service of the UE is authorized, including:
  • the second network element obtains subscription information of the UE, and the subscription information includes service authorization information of the UE;
  • the second network element determines that the perceived service of the UE is authorized according to the service authorization information.
  • the service authorization information includes first perception authorization indication information, and the first perception authorization indication information is used to indicate that the perception service of the UE is authorized.
  • the service authorization information includes a first perceptual authorization parameter
  • the first perceptual authorization parameter includes one or more of the following:
  • Perception business type perception distance, perception area, perception speed range, perception distance resolution, perception angle measurement accuracy, perception speed resolution, perception service quality QoS requirements, perception object recognition accuracy, perception object recognition false alarm rate, perception data Accuracy, sensory data update frequency, sensory dimension, sensory feedback method, sensory requester type, sensory requester ID, sensory application type, and sensory application ID.
  • the method further includes:
  • the second network element acquires second perceptual authorization indication information and/or second perceptual authorization parameters according to the service authorization information
  • the second network element sends the second perception authorization indication information and/or the second perception authorization parameter to the RAN network element.
  • the method further includes:
  • the second network element receives a first sensing service request message from the UE, where the first sensing service request is used to request the first sensing service;
  • the second network element sends a second sensing service request message to the sensing network element, where the second sensing service request message is used to request the first sensing service for the UE.
  • the second network element is an AMF network element or an SMF network element.
  • the first request message is specifically a session management request message
  • the response message is specifically a session management response message
  • the first request message is specifically a registration request message, and the response message is a registration acceptance message; or,
  • the first request message is specifically a service request message
  • the response message is a service acceptance message
  • a method for sensing a terminal device including:
  • the UE sends a first request message to the second network element, where the first request message is used to request a sensing service;
  • the UE receives a response message of the first request message, where the response message is used to indicate acceptance of the perceived service of the UE.
  • the first request message includes sensing indication information, and the sensing indication information is used to indicate that the sensing service is requested.
  • the response message includes sensing acceptance indication information, where the sensing acceptance indication information is used to indicate acceptance of the sensing service of the UE.
  • the method further includes:
  • the UE sends a first sensing service request message to the second network element, where the first sensing service request message is used to request the first sensing service;
  • the UE receives second sensing data of the first sensing service from the second network element.
  • the method further includes:
  • the UE sends a sensing request message to the RAN network element for the first sensing service, and the sensing request message is used to request sensing resources;
  • the UE receives the sensing resource indication information from the RAN network element, and the sensing resource indication information is used to indicate the sensing resource;
  • the UE performs sensing by using the sensing resource, and obtains first sensing data of the first sensing service.
  • the method further includes:
  • the UE sends a sensing service request message to the RAN network element for the first sensing service, and the sensing service request message is used to request sensing resources;
  • the UE receives the sensing resource indication information from the RAN network element, and the sensing resource indication information is used to indicate the sensing resource;
  • the UE performs sensing by using the sensing resource, and obtains first sensing data of the first sensing service.
  • the method further includes:
  • the UE sends a sensing request message to the RAN network element for the first sensing service, and the sensing request message is used to request sensing resources;
  • the UE receives the sensing resource indication information from the RAN network element, and the sensing resource indication information is used to indicate the sensing resource;
  • the UE receives the sensing signal from the RAN network element according to the sensing resource;
  • the UE Based on the sensing signal, the UE obtains first sensing data of the first sensing service.
  • the method further includes:
  • the UE sends a sensing service request message to the RAN network element for the first sensing service, and the sensing service request message is used to request sensing resources;
  • the UE receives the sensing resource indication information from the RAN network element, and the sensing resource indication information is used to indicate the sensing resource;
  • the UE receives the sensing signal from the RAN network element according to the sensing resource;
  • the UE Based on the sensing signal, the UE obtains first sensing data of the first sensing service.
  • the method further includes:
  • the UE sends a sensing request message to the RAN network element for the first sensing service, and the sensing request message is used to request the RAN network element to perform sensing;
  • the UE receives the sensing resource indication information from the RAN network element, and the sensing resource indication information is used to indicate the sensing resource;
  • the UE sends a sensing signal based on the sensing resource
  • the UE receives the first sensing data of the first sensing service from the RAN network element.
  • the method further includes:
  • the UE sends a sensing service request message to the RAN network element for the first sensing service, and the sensing service request message is used to request the RAN network element to perform sensing;
  • the UE receives the sensing resource indication information from the RAN network element, and the sensing resource indication information is used to indicate the sensing resource;
  • the UE sends a sensing signal based on the sensing resource
  • the UE receives the first sensing data of the first sensing service from the RAN network element.
  • the method before the UE sends the first sensing request message to the RAN network element, the method further includes:
  • the UE receives a sensing control request from the sensing network element, and the sensing control request is used to instruct the UE to perform sensing.
  • the method further includes:
  • the UE sends the first sensing data to the sensing network element
  • the UE receives the second sensing data of the first sensing service from the sensing network element.
  • the first request message is specifically a session management request message
  • the response message is specifically a session management response message
  • the first request message is specifically a registration request message, and the response message is a registration acceptance message; or,
  • the first request message is specifically a service request message
  • the response message is a service acceptance message
  • a method for sensing a terminal device including:
  • the RAN network element receives a sensing request message from the user equipment UE, where the sensing request message is used to request sensing resources;
  • the RAN network element sends the sensing resource indication information to the UE, where the sensing resource indication information is used to indicate the sensing resource.
  • the method before the RAN network element sends the sensing resource indication information to the UE, the method further includes:
  • the RAN network element receives the second sensing authorization indication information and/or the second sensing authorization parameter of the UE from the second network element, where the second sensing authorization indication information is used to indicate that the sensing service of the UE is authorized.
  • the method before the RAN network element sends the sensing resource indication information to the UE, the method further includes:
  • the RAN network element determines the authorization of the sensing request for the UE according to the second sensing authorization indication information and/or the second sensing authorization parameter.
  • the sensing request message further includes a sensing requirement
  • the method further includes:
  • the RAN network element determines to authorize the sensing request according to the second sensing authorization indication information and/or the second sensing authorization parameter, and the sensing requirement.
  • the method further includes:
  • the RAN network element sends a sensing signal to the UE based on the sensing resource.
  • the method further includes:
  • the RAN network element receives a sensing signal from the UE based on the sensing resource
  • the RAN network element obtains first sensing data according to the sensing signal
  • the RAN network element sends the first sensing data to the UE.
  • the second perceptual authorization parameters include one or more of the following:
  • Perception business type perception distance, perception area, perception speed range, perception distance resolution, perception angle measurement accuracy, perception speed resolution, perception service quality QoS requirements, perception object recognition accuracy, perception object recognition false alarm rate, perception data Accuracy, sensory data update frequency, sensory dimensions and sensory feedback methods.
  • the perception requirements include one or more of the following:
  • Perception business type perception distance, perception area, perception speed range, perception distance resolution, perception angle measurement accuracy, perception speed resolution, perception service quality QoS requirements, perception object recognition accuracy, perception object recognition false alarm rate, perception data Accuracy, sensory data update frequency, sensory dimensions and sensory feedback methods.
  • a method for sensing a terminal device including:
  • the UDM network element receives the sensing authorization request message from the NEF network element, and the sensing authorization request message is used to request and confirm that the sensing service of the UE is authorized;
  • the UDM network element sends an authorization response message to the NEF network element, and the authorization response message is used to indicate that the sensing service of the UE is authorized.
  • the perception authorization request message includes one or more of the following:
  • sensing service type sensing distance, sensing area, sensing speed range, sensing distance resolution, sensing angle measurement accuracy, sensing speed resolution, QoS requirements, sensing object recognition accuracy, sensing object recognition false alarm rate , sensing data accuracy, sensing data update frequency, sensing dimension, sensing feedback mode, sensing requester type, sensing requester ID, sensing application type, and sensing application ID.
  • the authorization response message includes service authorization information of the UE.
  • the method further includes:
  • the UDM network element receives a first request message from the SF network element, and the first request message is used to request the service AMF of the UE;
  • the UDM network element returns a response message to the first request message to the SF network element, and the response message includes the identity of the serving AMF of the UE.
  • a communication device in a seventh aspect, has a method for implementing any one of the first to sixth aspects, or any possible implementation of any one of the first to sixth aspects
  • the function of the method may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a communication device including a processor and a memory.
  • a transceiver may also be included.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the communication device executes the method according to any one of the first aspect to the sixth aspect, or A method in any possible implementation manner of any one of the first aspect to the sixth aspect.
  • a communication device including a processor and a communication interface
  • the communication interface is used to receive data and/or information, and transmit the received data and/or information to the processor
  • the processor processes the data and/or information /or information
  • the communication interface is also used to output the data and/or information processed by the processor, so that the method according to any one of the first aspect to the sixth aspect, or the first aspect to the sixth aspect A method in any possible implementation of any aspect is performed.
  • a computer-readable storage medium is provided.
  • Computer instructions are stored in the computer-readable storage medium.
  • the method according to any one of the first to sixth aspects or the method in any possible implementation manner of any one of the first aspect to the sixth aspect is executed.
  • a computer program product includes computer program code, and when the computer program code is run on a computer, the method according to any one of the first aspect to the sixth aspect, Or the method in any possible implementation manner of any one of the first aspect to the sixth aspect is executed.
  • a wireless communication system including one or more of the network elements involved in the methods of any one of the first to sixth aspects.
  • the foregoing communication device is a corresponding network element in this embodiment of the present application.
  • the corresponding network element may be a NEF network element, a perception network element, a second network element, a UE, a RAN network element, or a UDM network element.
  • the second network element may be an AMF network element or an SMF network element.
  • Fig. 1 is an example of a 5G communication system architecture applicable to the embodiment of the present application.
  • Figure 2 is a schematic diagram of a service architecture.
  • FIG. 3 is an architecture diagram of a communication system provided by the present application.
  • Fig. 4(a) is a schematic flowchart of a method for sensing a UE provided in the present application.
  • Fig. 4(b) is a schematic flowchart of a method for sensing a UE provided in the present application.
  • FIG. 5 is a structural diagram of another communication system provided by the present application.
  • FIG. 6 is a schematic flowchart of a method for sensing a UE provided in the present application.
  • FIG. 6 is a schematic flowchart of a method for sensing a UE provided in the present application.
  • FIG. 6 is a schematic flowchart of a method for sensing a UE provided in the present application.
  • FIG. 7 is a structural diagram of another communication system provided by the present application.
  • FIG. 8 is a schematic flowchart of another method for sensing a UE provided in the present application.
  • FIG. 9 is a structural diagram of another communication system provided by the present application.
  • FIG. 10 is a schematic flow chart of another method for providing a sensing service for a UE provided in the present application.
  • FIG. 11 is a schematic flowchart of a method for sensing a UE provided by the present application.
  • FIG. 11 is a schematic flowchart of a method for sensing a UE provided in the present application.
  • FIG. 12 is a schematic flowchart of a method for sensing a UE provided in the present application.
  • FIG. 12 is a schematic flowchart of a method for sensing a UE provided in the present application.
  • FIG. 13 is a schematic flowchart of a method for sensing a UE provided by the present application.
  • FIG. 13 is a schematic flowchart of a method for sensing a UE provided in the present application.
  • FIG. 14 is a schematic flowchart of a method for providing UE perception provided in the present application.
  • FIG. 15 is a schematic flowchart of a method for providing UE perception provided in the present application.
  • FIG. 16 is a schematic flowchart of a method for sensing a UE provided in the present application.
  • FIG. 17 is a schematic flowchart of a method for sensing a UE provided in the present application.
  • Fig. 18 is a schematic block diagram of a communication device provided in this application.
  • FIG. 19 is a schematic structural diagram of a communication device provided in the present application.
  • the method of the embodiment of the present application can be applied to a long term evolution technology (long term evolution, LTE) system, a long term evolution advanced technology (long term evolution-advanced, LTE-A) system, an enhanced long term evolution technology (enhanced long term evolution-advanced , eLTE), the fifth generation (the 5th Generation, 5G) mobile communication system, the new air interface (New Radio, NR) system, can also be extended to similar wireless communication systems, such as wireless-fidelity (wireless-fidelity, WiFi) , worldwide interoperability for microwave access (WIMAX), and cellular systems related to the 3rd generation partnership project (3gpp), as well as future communication systems.
  • 5G networks With the upgrading of mobile communication technologies, 5G networks will be constructed in a flexible and efficient manner. 5G networks can use communication awareness as a new capability. Exemplarily, the system architecture of the 5G network may be shown in FIG. 1 .
  • Fig. 1 is an example of a 5G communication system architecture applicable to the embodiment of the present application.
  • the functions of the terminal device and each network entity are as described below.
  • Terminal equipment can also be called user equipment (user equipment, UE), access terminal, terminal equipment unit (subscriber unit), terminal equipment station, mobile station, mobile station (mobile station, MS), remote station, remote terminal, A mobile device, user terminal, terminal, wireless communication device, terminal agent, or terminal device.
  • user equipment user equipment, UE
  • access terminal terminal equipment unit (subscriber unit)
  • terminal equipment station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • a mobile device user terminal, terminal, wireless communication device, terminal agent, or terminal device.
  • Radio access network A network composed of multiple 5G-RAN nodes, which realizes wireless physical layer functions, resource scheduling and wireless resource management, wireless access control, and mobility management functions.
  • the 5G-RAN is connected to the UPF through the user plane interface N3 to transmit the data of the terminal equipment; the 5G-RAN establishes a control plane signaling connection with the AMF through the control plane interface N2 to realize functions such as wireless access bearer control.
  • Access and mobility management function Mainly responsible for UE authentication, UE mobility management, network slice selection, and SMF selection; as the anchor point for N1 and N2 signaling connections, and for SMF Provide routing of N1/N2 SM messages; maintain and manage UE status information.
  • Session management function (session management function, SMF): mainly responsible for all control plane functions of UE session management, including user plane function (user plane function, UPF) selection, Internet protocol (internet protocol, IP) address allocation, session service Quality (quality of service, QoS) management, (from PCF) acquisition policy and charging control (policy and charging control, PCC) policy, etc.
  • UPF As the anchor point of the PDU session connection, it is responsible for data message filtering, data transmission/forwarding, rate control, and billing information generation for user equipment.
  • Unified data management mainly used to control user data, for example, the management of subscription information, including obtaining subscription information from the unified data repository (unified data repository, UDR) and providing it to other network elements (such as AMF ); generate the third generation partnership project (the third generation partnership project, 3GPP) authentication credential for the UE; register and maintain the network element currently serving the UE, for example, the AMF currently serving the UE (that is, serving AMF).
  • UDM Unified data management
  • Network exposure function used to connect other internal network elements of the core network and the interaction between the external application server of the core network, so as to provide network capability information to the external application server, or to share the information of the external application server Provided to core network elements.
  • Application function interacts with core network elements to provide some services, for example, interacts with policy and control function (PCF) for business policy control, and interacts with NEF to obtain some network capabilities information or provide some application information to the network, and provide some data network access point information to the PCF to generate corresponding routing information for data services.
  • PCF policy and control function
  • the authentication server function (authentication server function, AUSF) is used to perform security authentication on the UE when the UE accesses the network.
  • the network slice selection function selects a slice instance set for the UE, and determines the AMF set and allowed NSSAI for the UE.
  • Policy control function Policy control function: provide configuration policy information for the UE, and provide policy information for controlling the UE to the control plane network elements (for example, AMF, SMF) of the network.
  • FIG. 1 Interfaces between network elements in FIG. 1 are shown in FIG. 1 .
  • Figure 2 is a schematic diagram of a service architecture.
  • Nausf, Nnef, Npcf, Nudm, Naf, Namf, and Nsmf are the service interfaces provided by the above-mentioned AUSF, NEF, PCF, UDM, AF, AMF, and SMF respectively, and are used to call corresponding service operations.
  • N1, N2, N3, N4, and N6 are interface serial numbers.
  • N1 the interface between the AMF and the terminal, which can be used to transmit QoS control rules and the like to the terminal.
  • N2 the interface between the AMF and the RAN, which can be used to transfer radio bearer control information from the core network side to the RAN.
  • N3 The interface between RAN and UPF, mainly used to transfer uplink and downlink user plane data between RAN and UPF.
  • N4 The interface between SMF and UPF, which can be used to transfer information between the control plane and the user plane, including controlling the distribution of forwarding rules for the user plane, QoS control rules, traffic statistics rules, etc., and user plane information report.
  • N5 the interface between the AF and the PCF, which can be used for sending application service requests and reporting network events.
  • N6 the interface between UPF and DN, used to transmit the uplink and downlink user data flow between UPF and DN.
  • N7 The interface between PCF and SMF, which can be used to issue protocol data unit (protocol data unit, PDU) session granularity and service data flow granularity control policy.
  • protocol data unit protocol data unit
  • N8 The interface between AMF and UDM, which can be used for AMF to obtain subscription data and authentication data related to access and mobility management from UDM, and for AMF to register terminal current mobility management related information with UDM.
  • N9 a user plane interface between UPF and UPF, used to transmit uplink and downlink user data flows between UPFs.
  • N10 the interface between SMF and UDM, which can be used for SMF to obtain session management-related subscription data from UDM, and for SMF to register terminal current session-related information with UDM.
  • N11 The interface between SMF and AMF, which can be used to transfer PDU session tunnel information between RAN and UPF, transfer control messages sent to terminals, transfer radio resource control information sent to RAN, etc.
  • N12 The interface between AMF and AUSF, which can be used for AMF to initiate an authentication process to AUSF, which can carry SUCI as a subscription identifier;
  • N13 the interface between UDM and AUSF, which can be used for AUSF to obtain user authentication vector from UDM to execute the authentication process.
  • N15 the interface between PCF and AMF, which can be used to issue terminal policies and access control related policies.
  • N35 the interface between UDM and UDR, which can be used for UDM to obtain user subscription data information from UDR.
  • N36 interface between PCF and UDR, which can be used for PCF to obtain policy-related subscription data and application data-related information from UDR.
  • the foregoing network element or function may be a network element in a hardware device, or a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • a platform for example, a cloud platform.
  • the above-mentioned network element or function may be implemented by one device, or jointly implemented by multiple devices, or may be a functional module in one device, which is not specifically limited in this embodiment of the present application.
  • the access network device in this embodiment of the present application may be a wireless access network device.
  • network element may also be referred to as an entity, device, device, or module, etc., which are not particularly limited in this application. Moreover, for the sake of easy understanding and explanation, the description of "network element” is omitted in some descriptions below.
  • NEF network element is referred to as NEF. A description of the same or similar circumstances.
  • FIG. 1 is only an exemplary network architecture, and the network architecture applicable to this embodiment of the present application is not limited thereto, and any network architecture capable of realizing the functions of the foregoing network elements is applicable to this embodiment of this application.
  • network functional entities such as AMF, SMF, PCF, and UDM are called network function (network function, NF) network elements; or, in other network architectures, AMF, SMF, PCF, and UDM
  • AMF, SMF, PCF, and UDM A collection of such network elements may be referred to as a control plane function (control plane function, CPF) network element.
  • CPF control plane function
  • each network element in the solution can be replaced by another network element with corresponding functions, which is not limited in this application.
  • RAN With the evolution of communication technology, in future wireless communication, when RAN uses the millimeter wave frequency band for wireless communication, RAN will naturally have radar-like perception capabilities, that is, RAN will have both wireless communication capabilities and perception and recognition capabilities.
  • the industry only simply defines the end-to-end architecture that enables sensing services. In view of the current technical status, for example, the sensing accuracy of RAN network elements for areas (that is, per area) may not be able to meet certain application requirements (such as At present, the industry has no solution for specific UE sensing.
  • the present application provides a method for sensing a UE.
  • the sensing service data may be referred to as sensing data, sensing service data, or sensing application data.
  • the NEF network element in all the following embodiments may also be replaced by a gateway sensing center (Gateway Sensing Center, GSC). That is, the operations and/or processing performed by the NEF network element in each embodiment may be performed by the gateway awareness center.
  • GSC Gateway Sensing Center
  • the gateway sensing center is used to receive the sensing request from the sensing client (sensing client), and send the sensing request to the sensing network element.
  • the AF or the application server requests to sense the UE.
  • FIG. 3 is an architecture diagram of a communication system provided by the present application.
  • the communication system may include a NEF network element, a UDM/UDR network element, a perception network element and a first network element (for example, an AMF network element, an SMF network element or a RAN network element).
  • a NEF network element for example, an AMF network element, an SMF network element or a RAN network element.
  • the sensing network element is also a sensing function (sensing function, SF) network element.
  • the present application provides the UE sensing process as shown in FIG. 4( a ) and FIG. 4( b ).
  • FIG. 4(a) is a schematic flowchart of a method for sensing a UE provided in the present application.
  • the UE sends a perception service data request message to the AF/AS.
  • the AF/AS sends a first sensing service request message to the NEF.
  • the first sensing service request message is used to request the first sensing service.
  • the first sensing service is for sensing the UE, or in other words, the first sensing service is for the UE.
  • Perceived Perceived Business
  • the first sensing service request message includes the first identifier of the UE.
  • the first identifier may be an internal identifier of the UE, for example, a user permanent identifier (subscription permanent identifier, SUPI); the first identifier may also be an external identifier of the UE, for example, a general public user identifier ( generic public subscription identifier, GPSI).
  • the first sensing service request message also includes information such as service type, service requirement, QoS requirement and UE location information.
  • the service type is also the perceived service type.
  • Business requirements are also perceived requirements.
  • business requirements may include one or more of the following:
  • the NEF network element determines that the first sensing service is authorized.
  • the NEF network element may obtain the service authorization information of the UE through the UDM network element/UDR network element, and determine that the first perceived service of the UE is authorized according to the service authorization information of the UE.
  • Determining that the first sensing service of the UE is authorized may be understood as determining that the UE has the sensing right, or in other words, determining that the UE has the right to sense the service.
  • the NEF network element sends the second sensing service request message to the SF network element, and the SF network element receives the second sensing service request message from the NEF network element.
  • the second sensing service request message is used to request the first sensing service, and the second sensing service request message includes the second identity of the UE.
  • the second identity is an internal identity of the UE, for example, SUPI.
  • the second identifier is obtained according to the first identifier.
  • the second sensing service request message further includes information such as the service type, service requirement, and QoS requirement of the first sensing service.
  • the NEF network element may request the GMLC network element to obtain the location information of the UE according to the second identifier of the UE. Specifically, the NEF network element sends a location request message to the GMLC network element, where the location request message includes the second identifier of the UE. The GMLC network element returns a location response message to the NEF network element, and the location response message includes the location information of the UE. Optionally, the NEF sends the location information of the UE to the SF network element through the second sensing service request message.
  • the GMLC network element is a gateway mobile location center (gateway mobile location center), which can be responsible for processing the location request of an external client (external client).
  • the external client requests the location information of the UE from the GMLC, and the GMLC requests the location information of the UE from the positioning network element of the network. After obtaining the location of the UE, it is provided to the requester of the UE location or an external client.
  • the positioning network element in the network can be a location management function (location management function, LMF), which can realize the positioning of the UE.
  • LMF location management function
  • the SF network element determines the first network element according to the second sensing service request message.
  • the first network element may be an AMF network element, an SMF network element, or a RAN network element.
  • the AMF network element determined in step 25 is referred to as the first AMF network element
  • the SMF network element determined in step 25 is referred to as the first SMF network element
  • the RAN network element determined in step 25 is referred to as It is called the first RAN network element.
  • the first network element is an AMF network element.
  • the second cognitive service request message includes the second identifier of the UE.
  • the SF network element determines the AMF network element according to the second identity of the UE. Specifically, the SF network element determines the identity of the serving AMF of the UE according to the second identity of the UE, which is hereinafter referred to as the serving AMF ID.
  • the second sensing service request message may further include UE location information.
  • the SF network element may obtain the location information of the UE.
  • the SF network element may obtain the location information of the UE from the GMLC, the AMF network element or the LMF.
  • the SF network element sends a location request message to the GMLC or AMF or LMF, and the UE location request message contains the UE ID.
  • the GMLC or AMF or LMF initiates positioning of the UE based on the location request message, obtains the location of the UE, and provides it to the SF network element.
  • the SF network element determines the AMF according to the location information of the UE. At this time, the determined AMF may be the serving AMF of the UE, or may not be the serving AMF of the UE.
  • the AMF network element may or may not be the serving AMF of the UE.
  • the first network element is an SMF network element.
  • the second cognitive service request message includes the second identifier of the UE.
  • the SF network element determines the SMF network element according to the second identity of the UE. Specifically, the SF network element determines the identity of the serving SMF of the UE according to the second identity of the UE, which is hereinafter referred to as the serving SMF ID.
  • the second sensing service request message may further include UE location information.
  • the SF network element determines the SMF according to the second identity of the UE and/or the location information of the UE. At this time, the determined SMF may or may not be the serving SMF of the UE.
  • the SMF network element may or may not be the serving SMF of the UE.
  • the SF network element sends a perception control request message to the first network element.
  • the sensing control request message is used to control the RAN network element to perform the sensing operation of the first sensing service.
  • the SF network element determines the first RAN network element in step 25, and then in step 26, the SF network element sends the first perception control request message to the first RAN.
  • the SF network element determines the first AMF network element in step 25, then in step 26, the SF network element sends the first perception control request message to the first AMF, and the AMF network element further Send the second perception control request message to the first RAN network element.
  • the SF network element determines the first SMF network element in step 25, then in step 26, the SF network element sends a first perception control request message to the first SMF, and the SMF network element further Send the second perception control request message to the first RAN network element.
  • the first RAN network element performs a sensing operation of the first sensing service according to the first control request message or the second control request message, and obtains first sensing data of the first sensing service.
  • the first network element reports the first sensing data to the SF network element.
  • the SF network element returns the second sensing data to the AF/AS through the NEF network element.
  • the second sensing data is obtained according to the first sensing data, or the second sensing data is the first sensing data.
  • step 28 is also included.
  • the AF/AF sends the second sensing data to the UE.
  • the sensing service for UE sensing can be provided.
  • the NEF network element performs an authorization check for the first sensing service requested by the AF/AS (wherein, the first sensing service is to sense the UE), and provides the first sensing service if authorization of the first sensing service is confirmed , which can ensure that 5GS only provides sensing services for UEs with sensing rights. Therefore, this embodiment can not only perform perception detection on the UE, but also guarantee the privacy and security requirements of the UE.
  • FIG. 4(b) is a schematic flowchart of a method for sensing a UE provided in the present application.
  • the UE sends a perception service data request message to the AF/AS.
  • the AF/AS sends a first sensing service request message to the NEF, where the first sensing service request message is used to request the first sensing service.
  • the NEF network element determines that the first sensing service is authorized.
  • the NEF network element obtains the location information of the UE.
  • the NEF network element sends a location request message to the GMLC or LMF, and the location request message includes the identifier of the UE.
  • the GMLC or LMF returns a location response message to the NEF network element, and the location response message includes the location information of the UE.
  • the NEF sends the location information of the UE to the AMF network element through the second sensing service request message in the following steps.
  • steps 71-73 reference may be made to the above-mentioned steps 21-23.
  • the NEF network element sends a second sensing service request message to the AMF network element, where the second sensing service request message is used to request the first sensing service.
  • the second sensing service request message includes the location information of the UE.
  • the AMF network element may acquire the location information of the UE by itself.
  • the AMF network element sends a location request message to the GMLC or LMF, and the location request message includes the identifier of the UE.
  • the GMLC or LMF returns a location response message to the NEF network element, and the location response message includes the location information of the UE.
  • the AMF sends the location information of the UE to the SF network element through the third sensing service request message in the following steps.
  • the second perceived service request message may also include one or more of the UE's identity (second identity), service type, service requirement, and QoS requirement.
  • the AMF network element sends a third sensing service request message to the SF network element.
  • the third sensing service request message is used to request the first sensing service, and the third sensing service request message includes the second identity of the UE.
  • the second identity is an internal identity of the UE, for example, SUPI.
  • the third sensing service request message further includes one or more items of UE location information, service type, service requirement and QoS requirement.
  • the SF network element may obtain the location information of the UE by itself.
  • the SF network element sends a location request message to the GMLC or LMF, and the location request message includes the identifier of the UE.
  • the GMLC or LMF returns a location response message to the NEF network element, and the location response message includes the location information of the UE.
  • the SF network element determines the first network element according to the third sensing service request message.
  • the first network element may be an AMF network element, an SMF network element, or a RAN network element.
  • Step 76 may refer to the step 25 above, determining the first AMF, or determining the first RAN, or determining the content of the first SMF.
  • the SF network element sends a perception control request message to the first network element.
  • the sensing control request message is used to control the RAN network element to perform the sensing operation of the first sensing service.
  • the first network element in step 76 is a RAN network element (for example, the first RAN), then in step 77, the SF network element sends the first perception control to the first RAN network element request message.
  • the RAN network element for example, the first RAN
  • the first network element in step 76 is an AMF network element (for example, the first AMF), then in step 77, the SF network element sends the first perception control to the first AMF network element For the request message, the first AMF network element further sends a second perception control request message to the first RAN network element.
  • AMF AMF network element
  • the SF network element determines the first SMF network element in step 76, then in step 77, the SF network element sends a first perception control request message to the first SMF, and the first SMF network element The element further sends a second perception control request message to the first RAN network element.
  • the RAN network element (that is, the first RAN network element) performs a sensing operation of the first sensing service according to the first control request message or the second control request message, and obtains first sensing data of the first sensing service.
  • the RAN network element reports the first sensing data to the SF network element.
  • the SF network element returns the second sensing data to the AF/AS through the AMF network element and the NEF network element.
  • the second sensing data is obtained according to the first sensing data, or the second sensing data is the first sensing data.
  • the AF/AF sends the second sensing data to the UE.
  • the sensing service for UE sensing can be provided.
  • the NEF network element performs an authorization check for the first sensing service requested by the AF/AS, and provides the first sensing service when the authorization of the first sensing service is confirmed, which can ensure that the 5GS only provides the UE with the sensing authority. Perceive business.
  • the NEF network element performs an authorization check for the first sensing service.
  • the AMF network element may also perform the authorization check for the first sensing service, which is not limited.
  • FIG. 5 is a structural diagram of another communication system provided by the present application.
  • the communication system may include a NEF network element, a UDM network element/UDR network element, an SF network element, a first network element (for example, an AMF network element or a RAN network element) and a GMLC network element.
  • the present application provides a process for sensing the UE as shown in FIG. 6 .
  • FIG. 6 is a schematic flowchart of a method for sensing a UE provided by the present application.
  • the UE sends a perception service data request message to the AF/AS.
  • the AF/AS sends a first perception service request message to the NEF.
  • the first sensing service request message is used to request the first sensing service, and the first sensing service request message includes the identifier of the UE.
  • the first perceived service request message also includes information such as service type, service requirement, and QoS requirement.
  • business requirements may include one or more of the following:
  • the NEF network element determines that the first sensing service is authorized.
  • the NEF network element can obtain the service authorization information of the UE through the UDM network element/UDR network element, and determine that the first perceived service of the UE is authorized according to the service authorization information.
  • steps 31-33 reference may be made to the above-mentioned steps 21-23.
  • the NEF network element acquires the location information of the UE according to the identifier of the UE.
  • the NEF network element obtains the location information of the UE from the GMLC.
  • the NEF network element may send a location request message to the GMLC network element, and the location request message includes the identifier of the UE.
  • the GMLC network element initiates positioning of the UE according to the location request message, and obtains the location of the UE.
  • the GMLC network element sends a location response message to the NEF network element, and the location response message includes the location information of the UE.
  • the NEF network element requests the LMF network element to acquire the location information of the UE.
  • the NEF network element sends a location request message to the LMF network element, and the location request message includes the identifier of the UE.
  • the LMF network element Based on the request of the NEF network element, the LMF network element initiates the positioning of the UE, obtains the location of the UE, and returns the location information of the UE to the NEF network element.
  • the NEF network element obtains the location information of the UE from the AMF network element.
  • the NEF network element sends a location request message to the AMF network element, and the location request message includes the identifier of the UE.
  • the AMF network element requests the LMF network element to obtain the location of the UE according to the location request message. Based on the request of the AMF network element, the LMF network element initiates the positioning of the UE, obtains the location of the UE, and returns the location information of the UE to the AMF network element.
  • the AMF network element further provides the location information of the UE to the NEF network element.
  • the NEF network element sends a second sensing service request message to the SF network element, where the second sensing service request message is used to request the first sensing service.
  • the second sensing service request message includes one or more of UE location information, UE identity, service type, service requirement and QoS requirement.
  • business requirements may include one or more of the following:
  • the SF network element may obtain the UE location information by itself.
  • the SF network element may obtain the location information of the UE from the GMLC, the AMF network element or the LMF.
  • the SF network element sends a location request message to the GMLC or AMF or LMF, and the UE location request message contains the UE ID.
  • the GMLC or AMF or LMF initiates positioning of the UE based on the location request message, obtains the location of the UE, and provides it to the SF network element.
  • the SF network element allocates a perception association identifier.
  • the sensing association identifier is used to identify sensing data of the UE. That is, the perception association identifier is an identifier of UE granularity, and is used to distinguish perception data of different UEs.
  • the sensing association identifier is used to identify sensing data of the first sensing service of the UE. That is, the perception association identifier is an identifier of the granularity of the perception service, which can distinguish the perception data of different perception services of a UE.
  • the perception association identifier may also be of other granularity, which is not limited.
  • the sensing association identifier may not be required, but the UE's location information may be required.
  • the receiving end can know that it is the sensing data of the UE.
  • the SF network element sends a perception control request message to the first network element.
  • the sensing control request message includes UE location information and/or sensing association identifier.
  • the location information of the UE is used by the RAN to perform the sensing operation, so that the RAN does not need to sense according to the identity of the UE, and the privacy of the UE can be protected.
  • the sensing association identifier is used to carry when reporting the sensing data, so that the SF and subsequent nodes can identify that the sensing data belongs to the UE or belongs to the first sensing service of the UE.
  • the SF network element receives the first sensing data of the first sensing service from the first network element.
  • the perception control request message in step 37 includes the perception association identifier
  • the SF network element also receives the perception association identifier.
  • an optional step 39 is also included.
  • the UE receives the second sensing data of the first sensing service.
  • the SF network element sends the second sensing data to the AF/AS through the NEF network element.
  • the second sensing data is obtained according to the first sensing data, or the second sensing data is the first sensing data.
  • the AF/AS sends the second sensing data to the UE.
  • a sensing service for UE sensing can be provided.
  • the NEF network element performs an authorization check for the first sensing service requested by the AF or AS, and optionally, the NEF network element converts the sensing of the UE ID into the sensing of the UE's location point, which can not only ensure the 5GS Only providing sensing services to UEs with sensing rights can also prevent RAN network elements from involving user security and privacy, and strengthen the privacy protection of sensing services.
  • FIG. 6 is a schematic flowchart of a method for sensing a UE provided by the present application.
  • the UE sends a perception service data request message to the AF/AS.
  • the AF/AS sends a first perception service request message to the NEF.
  • the first sensing service request message is used to request the first sensing service, and the first sensing service request message includes the identifier of the UE.
  • the first perceived service request message also includes information such as service type, service requirement, and QoS requirement.
  • business requirements may include one or more of the following:
  • the NEF network element determines that the first sensing service is authorized.
  • the NEF network element may determine that the first sensing service of the UE is authorized through the UDM network element/UDR network element.
  • the NEF network element acquires the location information of the UE according to the identifier of the UE.
  • the NEF network element may obtain the location information of the UE from the GMLC network element, the LMF network element or the AMF network element.
  • the NEF network element may send a location request message to the GMLC network element or the LMF network element, and the location request message includes the identifier of the UE.
  • the GMLC network element or the LMF network element initiates positioning of the UE according to the location request message, and obtains the location of the UE.
  • the GMLC network element or the LMF network element sends a location response message to the NEF network element, and the location response message includes the location information of the UE.
  • the NEF network element obtains the location information of the UE from the AMF network element.
  • the NEF network element sends a location request message to the AMF network element, and the location request message includes the identifier of the UE.
  • the AMF network element requests the LMF network element to obtain the location of the UE according to the location request message. Based on the request of the AMF network element, the LMF network element initiates the positioning of the UE, obtains the location of the UE, and returns the location information of the UE to the AMF network element.
  • the AMF network element further provides the location information of the UE to the NEF network element.
  • steps 81-84 reference may be made to the above-mentioned steps 31-34.
  • the NEF network element sends a second sensing service request message to the AMF network element, where the second sensing service request message is used to request the first sensing service.
  • the second sensing service request message includes one or more of UE location information, UE identity, service type, service requirement and QoS requirement.
  • business requirements may include one or more of the following:
  • the AMF network element may obtain the UE location information by itself.
  • the AMF network element may obtain the location information of the UE from the GMLC or the LMF.
  • the AMF network element sends a location request message to the GMLC or LMF, and the UE location request message contains the UE ID.
  • the GMLC or LMF initiates positioning of the UE based on the location request message, obtains the location of the UE, and provides it to the AMF network element.
  • the AMF network element sends a third sensing service request message to the SF network element, where the third sensing service request message is used to request the first sensing service.
  • the third sensing service request message includes one or more of UE location information, UE identity, service type, service requirement and QoS requirement.
  • business requirements may include one or more of the following:
  • the SF network element may obtain the location information of the UE by itself.
  • the SF network element may send a location request message to the GMLC or LMF, and the location request message includes the identifier of the UE.
  • the GMLC or LMF returns a location response message to the NEF network element, and the location response message includes the location information of the UE.
  • the SF network element allocates a perception association identifier.
  • step 36 For the perceptual association identifier, reference may be made to the description of step 36 above, which will not be repeated here.
  • the SF network element sends a perception control request message to the first network element.
  • the sensing control request message includes UE location information and/or sensing association identifier.
  • the SF network element receives the first sensing data of the first sensing service from the first network element.
  • the perception control request message in step 87 includes the perception association identifier
  • the SF network element also receives the perception association identifier.
  • the foregoing first network element may be an AMF network element, an SMF network element, or a RAN network element.
  • the SF network element sends the first perception control request message to the RAN network element.
  • the SF network element sends a first perception control request message to the AMF, and the AMF network element further sends a second perception control request message to the RAN network element.
  • the SF network element sends a first perception control request message to the SMF network element, and the SMF network element further sends a second perception control request message to the RAN network element.
  • the RAN network element performs the sensing operation of the first sensing service according to the first control request message or the second control request message, and obtains the first sensing data of the first sensing service.
  • the RAN network element reports the first sensing data to the SF network element, and the SF network element returns the second sensing data to the AF/AS through the NEF network element.
  • the AF/AS sends the second sensing data to the UE.
  • a sensing service for UE sensing can be provided.
  • the NEF network element performs an authorization check for the first sensing service requested by the AF or AS, and optionally, the NEF network element converts the sensing of the UE ID into the sensing of the UE's location point, not only Ensuring that 5GS only provides sensing services to UEs with sensing rights can also prevent RAN network elements from involving user security and privacy, and strengthen the privacy protection of sensing services.
  • the NEF network element performs an authorization check for the first sensing service requested by the AF/AS.
  • the AMF network element may also perform an authorization check for the first perception service requested by the AF/AS, as shown in (c) of FIG. 6 .
  • FIG. 6 is a schematic flowchart of a method for sensing a UE provided by the present application.
  • the UE sends a perception service data request message to the AF/AS.
  • the AF/AS sends a first perception service request message to the NEF.
  • the first sensing service request message is used to request the first sensing service, and the first sensing service request message includes the identifier of the UE.
  • the first perceived service request message also includes information such as service type, service requirement, and QoS requirement.
  • business requirements may include one or more of the following:
  • the NEF network element acquires the location information of the UE.
  • the NEF network element sends a second sensing service request message to the AMF network element, where the second sensing service request message is used to request the first sensing service.
  • the second sensing service request message includes one or more of UE location information, UE identity, service type, service requirement and QoS requirement.
  • business requirements may include one or more of the following:
  • the AMF network element determines that the first sensing service is authorized.
  • the AMF network element may request the UDM/UDR network element to acquire service authorization information of the UE, and confirm that the first perceived service is authorized according to the service authorization information.
  • the AMF network element may obtain the UE location information by itself.
  • the AMF network element can obtain the location information of the UE from the GMLC or the LMF.
  • the AMF network element sends a location request message to the GMLC or LMF, and the UE location request message includes the UE ID.
  • the GMLC or LMF initiates positioning of the UE based on the location request message, obtains the location of the UE, and provides it to the AMF network element.
  • the AMF network element sends a third sensing service request message to the SF network element, where the third sensing service request message is used to request the first sensing service.
  • the third sensing service request message includes one or more of UE location information, UE identity, service type, service requirement and QoS requirement.
  • business requirements may include one or more of the following:
  • the SF network element may obtain the location information of the UE by itself.
  • the SF network element may send a location request message to the GMLC or LMF, and the location request message includes the identifier of the UE.
  • the GMLC or LMF returns a location response message to the NEF network element, and the location response message includes the location information of the UE.
  • the SF network element allocates a perception association identifier.
  • the SF network element sends a perception control request message to the first network element.
  • the sensing control request message includes UE location information and/or sensing association identifier.
  • the SF network element receives the first sensing data of the first sensing service from the first network element.
  • the perception control request message in step 98 includes the perception association identifier
  • the SF network element also receives the perception association identifier.
  • the first network element may be an AMF network element, a RAN network element, or an SMF network element.
  • the SF network element returns the second sensing data to the AF/AS through the AMF network element and the NEF network element.
  • the AF/AS sends the second sensing data to the UE.
  • a sensing service for UE sensing can be provided.
  • the AMF network element performs an authorization check for the first sensing service requested by the AF or the AS, and optionally, the NEF network element or the AMF network element or the SF network element converts the perception for the UE ID into the UE ID
  • the perception of location points can not only ensure that 5GS only provides sensing services to UEs with sensing rights, but also prevent RAN network elements from involving the security and privacy of UEs when performing UE sensing, and strengthen the privacy protection of sensing services.
  • the UE directly requests the sensing service data from the 5GS.
  • FIG. 7 is a structural diagram of another communication system provided by the present application.
  • the communication system may include an SF network element and a second network element (AMF network element or SMF network element).
  • AMF network element AMF network element or SMF network element
  • UDM/UDR network elements are also included.
  • this application provides the flow of providing sensing services for the UE as shown in FIG. 8 .
  • FIG. 8 is a schematic flowchart of another method for providing a sensing service for a UE according to the present application.
  • the second network element receives the first request message from the UE. Wherein, the first request message is used to request the perception service.
  • the first request message carries sensing indication information, and the sensing indication information is used to indicate that the first request message requests the sensing service.
  • the first request message also includes one or more of UE ID, service type, service requirement and QoS requirement.
  • business requirements may include one or more of the following:
  • Sensing business type sensing distance, sensing area, sensing speed range, sensing distance resolution, sensing angle measurement accuracy, sensing speed resolution, QoS requirements, sensing object recognition accuracy, sensing object recognition false alarm rate, sensing data accuracy, sensing Data update frequency, perception dimension and perception feedback method.
  • the second network element is an AMF network element or an SMF network element.
  • the second network element determines that the sensing service of the UE is authorized.
  • the second network element stores subscription information of the UE, and the subscription information includes service authorization information of the UE.
  • the second network element determines that the perceived service of the UE is authorized according to the service authorization information of the UE.
  • the second network element may request the UDM/UDR network element to obtain the subscription information of the UE, and then obtain the service authorization information of the UE.
  • the second network element determines that the perceived service of the UE is authorized according to the service authorization information of the UE.
  • the service authorization information includes first perceptual authorization indication information and/or first perceptual authorization parameters.
  • the first sensing authorization indication information is used to indicate that the sensing service of the UE is authorized.
  • the first perception authorization parameter includes one or more of the following:
  • Perception business type perception distance, perception area, perception speed range, perception distance resolution, perception angle measurement accuracy, perception speed resolution, perception service quality QoS requirements, perception object recognition accuracy, perception object recognition false alarm rate, perception data Accuracy, sensory data update frequency, sensory dimension, sensory feedback method, sensory requester type, sensory requester ID, sensory application type, and sensory application ID.
  • the perception requester type may be public security, fire protection, enterprise or individual.
  • RAN network elements may adopt different priorities when performing sensing.
  • the second network element sends a response message to the first request message to the UE, where the response message is used to indicate that the sensing service of the UE is authorized.
  • the response message includes sensing acceptance indication information, and the sensing acceptance indication information is used to indicate acceptance of the sensing service of the UE. That is, the sensing acceptance indication information is used to indicate the sensing service authorization for the UE.
  • the response message also includes address information of the sensing network element (for example, the SF network element).
  • the response message includes address information of the sensing network element, and in this case, steps 44-45 are performed after step 43 .
  • the UE sends the first sensing service request message to the SF network element through the user plane connection according to the address information of the SF network element.
  • the first sensing service request message is used to request the first sensing service.
  • the first sensing service request message includes the identifier of the UE.
  • the first perceived service request message may also include one or more items of service type, service requirement and QoS requirement.
  • the UE receives the sensing data of the first sensing service from the SF network element (for example, the second sensing data in the foregoing embodiment).
  • the response message includes sensing acceptance indication information, but does not include the address information of the sensing network element.
  • steps 46-47 are performed after step 43 .
  • the UE sends a first sensing service request message to the second network element, where the first sensing service request message is used to request the first sensing service.
  • the first sensing service request message includes one or more items of UE identifier, service type, service requirement and QoS requirement.
  • the second network element sends a second sensing service request message to the SF network element, where the second sensing service request message is used to request the first sensing service.
  • the second sensing service request message includes the identifier of the UE.
  • the second perceived service request message further includes one or more items of service type, service requirement and QoS requirement.
  • business requirements may include one or more of the following:
  • the UE receives the second sensing data of the first sensing service from the SF network element.
  • the process shown in FIG. 8 provides a method for providing a UE with a sensing service.
  • the second network element (AMF network element or SMF network element) performs an authorization check for the UE's perception service, and instructs the UE to authorize its perception service if the UE's perception service authorization is determined, and may indicate the address information of the perception network element.
  • the UE can directly request the first sensing service from the sensing network element through the user plane connection, and receive the second sensing data of the first sensing service from the sensing network element (such as the process of implementing mode 1 ).
  • the UE requests the first sensing service from the SF network element through control, and receives the second sensing data of the first sensing service from the sensing network element (such as the process of implementing mode 2).
  • This embodiment can not only ensure that 5GS provides sensing services only to UEs with sensing rights, but also avoid strengthening the privacy protection of sensing services.
  • FIG. 9 is an architecture diagram of another communication system provided by the present application.
  • the communication system may include a second network element (AMF network element or SMF network element), a UDM/UDR network element and a RAN network element.
  • AMF network element AMF network element or SMF network element
  • UDM/UDR network element UDM/UDR network element
  • RAN network element a second network element
  • this application provides the flow of providing sensing services for UE as shown in FIG. 10 .
  • the process shown in FIG. 10 is a schematic flowchart of a method for sensing a UE.
  • FIG. 10 is a schematic flowchart of another method for providing a sensing service for a UE according to the present application.
  • the UE sends a first request message to the second network element.
  • the first request message is used to request the perception service.
  • the first request message carries sensing indication information, and the sensing indication information is used to indicate that the first request message is used to request the sensing service.
  • the first request message further includes one or more items of the UE's identifier, service type, service requirement and QoS requirement.
  • business requirements may include one or more of the following:
  • the second network element is an AMF network element or an SMF network element.
  • the second network element determines that the sensing service of the UE is authorized.
  • the second network element may determine that the perceived service of the UE is authorized through the UDM/UDR network element. Specifically, the second network element obtains subscription information of the UE from the UDM/UDR network element, and the subscription information includes service authorization information of the UE. The second network element determines that the perceived service of the UE is authorized according to the service authorization information of the UE.
  • the second network element sends a response message to the first request message to the UE, where the response message is used to indicate that the sensing service of the UE is authorized.
  • the response message includes sensing acceptance indication information, and the sensing acceptance indication information is used to indicate acceptance of the sensing service of the UE.
  • the second network element sends the second perception authorization indication information and/or the second perception authorization parameter to the RAN network element.
  • the second perceptual authorization indication information and/or the second perceptual authorization parameter are determined according to service authorization information of the UE.
  • the service authorization information may include the first perceptual authorization indication information and/or the first perceptual authorization parameter.
  • the second perception authorization indication information may be the first perception authorization indication information.
  • the second perceptual authorization parameter is determined according to the first perceptual authorization parameter. For the first perceptual authorization parameter, refer to the example in step 42.
  • the second perception authorization parameters include one or more of the following:
  • Sensing business type sensing distance, sensing area, sensing speed range, sensing distance resolution, sensing angle measurement accuracy, sensing speed resolution, QoS requirements, sensing object recognition accuracy, sensing object recognition false alarm rate, sensing data accuracy, sensing Data update frequency, perception dimension and perception feedback method.
  • the UE sends a sensing request message to the RAN network element.
  • the sensing request message is used to request sensing resources for the first sensing service of the UE, or the sensing request message is used to request the RAN network element to perform sensing on the UE.
  • the sensing request message includes one or more items of UE identity, service type, service requirement and QoS requirement.
  • business requirements include one or more of the following:
  • the RAN network element performs an authorization check on the first sensing service of the UE according to the second sensing authorization indication information and/or the second sensing authorization parameter received in step 54, and if the authorization of the first sensing service to the UE is confirmed, Send the sensing resource indication information to the UE.
  • the UE receives the sensing resource indication information from the RAN network element, where the sensing resource indication information is used to indicate the sensing resource of the first sensing service of the UE.
  • the UE obtains the first sensing data of the first sensing service according to the sensing resource.
  • the UE sends a sensing signal based on the sensing resource, receives an echo signal of the sensing signal to perform sensing, and obtains the first sensing data of the first sensing service.
  • the UE receives the echo signal of the sensing signal from the RAN network element according to the sensing resource and performs sensing to obtain the first sensing data of the first sensing service.
  • the UE sends the sensing signal based on the sensing resource, and the RAN network element receives the echo signal of the sensing signal and performs sensing to obtain the first sensing data of the first sensing service.
  • the RAN network element sends the first sensing data to the UE, and the UE receives the first sensing data from the RAN network element.
  • the above-mentioned echo signal may also be called a reflected signal.
  • the UE may also send the first sensing data to the sensing network element, where the first sensing data can be used by the sensing network element, as in step 58 below.
  • the UE may also send the first sensing data to the sensing network element and receive the second sensing data from the sensing network element.
  • the second sensing data is obtained by processing the first sensing data, such as steps 58-59.
  • the UE sends the first sensing data to the sensing network element.
  • the UE receives the second sensing data from the sensing network element.
  • the process shown in FIG. 10 provides a method for providing a sensing service for a UE.
  • the second network element (AMF network element or SMF network element) performs an authorization check for the perceived service of the UE, and instructs the UE to authorize the perceived service if it is determined that the perceived service of the UE is authorized.
  • the UE obtains sensing resources from the RAN network element, performs sensing based on the sensing resources, and obtains sensing data.
  • the UE sends a sensing signal based on the sensing resource
  • the RAN network element receives the sensing signal and obtains the sensing data
  • the RAN network element further provides the obtained sensing data to the UE.
  • the UE receives the sensing signal from the RAN network element based on the sensing resource and performs sensing to obtain sensing data.
  • This embodiment prevents the UE from requesting sensing data from the 5GC, so that the UE can cooperate with RAN network elements to perform sensing based on its own sensing service requirements, so as to obtain sensing data.
  • This implementation manner can enable the UE to sense and obtain sensing data quickly and efficiently.
  • FIG. 11 is a schematic flowchart of a method for sensing a UE provided by the present application.
  • the UE when it has a sensing requirement, it sends a sensing service data request message to the AF or the AS through an application layer message.
  • the AF or the AS sends a perception service request message 1 to the NEF based on the perception requirement from the UE or its own perception requirement.
  • the sensing service request message 1 carries UE information.
  • the UE information may be UE ID.
  • the UE ID here may be an external identifier or an internal identifier.
  • the sensing service request message 1 also includes information such as the service type of the sensing service, sensing requirements, and QoS requirements.
  • business requirements may include one or more of the following:
  • the NEF Based on the perception service request message 1, the NEF sends a perception authorization request message to the UDM or UDR.
  • the perception authorization request message is used to request to acquire service authorization information of the UE.
  • Perception authorization request message 1 includes UE information.
  • business type and business requirements are also included.
  • the NEF converts the external identity into an internal identity.
  • the UDM or the UDM returns a perception authorization response message to the NEF according to the service authorization information of the UE.
  • the sensing authorization response message is used to indicate that the sensing service of the UE is authorized.
  • the perception service authorization response message includes service authorization indication information, and the service authorization indication information is used to indicate that the perception service of the UE is authorized.
  • UDM or UDR also converts the UE's external identity into an internal identity.
  • the NEF network element can determine that the sensing service of the UE is authorized.
  • the NEF selects a perception network element.
  • the NEF network element selects a sensing network element supporting the first sensing service according to the sensing service request message 1 .
  • the sensing network element supporting the first sensing service means that the sensing network element supports the service type, service requirement and QoS requirement of the first sensing service.
  • the NEF sends a sensing service request message 2 to the sensing network element.
  • the sensing service request message 2 includes the identity of the UE. Specifically, it may be the internal identifier of the UE.
  • the perceived service request message 2 may also include one or more items of service type, service requirement and QoS requirement.
  • business requirements may include one or more of the following:
  • the sensing network element sends a first message to the UDM, where the first message is used to request a serving AMF of the UE.
  • the first message includes the internal identifier of the UE.
  • the UDM returns a second message to the sensing network element, where the second message includes the identifier of the serving AMF of the UE, which is hereinafter referred to as the serving AMF ID.
  • the sensing network element may establish a sensing signaling connection of the Nx interface between the sensing network element and the AMF, where the sensing signaling connection is used to exchange signaling of the sensing service of the UE between the sensing network element and the AMF network element, Such as steps 309-310.
  • the sensing network element sends a UE sensing context establishment request message to the AMF, and the UE sensing context establishment request message carries the UE ID.
  • the AMF returns a UE perception context establishment response message to the perception network element.
  • the AMF pages the UE to make it enter the connected state.
  • an N2 signaling connection is established between the RAN and the AMF.
  • the Nx interface refers to the interface between the perception network element and the AMF, and may also be defined as the first interface. It can be understood that the specific name of the first interface may not be limited, and other names may be used in the 5G system or future communication systems without limitation.
  • the perception network element may invoke the existing message transmission service of the AMF to perform signaling interaction with the RAN.
  • the existing message transmission service of the AMF is used for the interaction of the perception signaling between the perception network element and the AMF.
  • steps 309-310 are optional steps.
  • the sensing network element sends a sensing control request message to the RAN.
  • the sensing network element may directly send the sensing control request message 1 to the RAN.
  • the sensing network element sends the sensing control request message 1 to the AMF through the sensing signaling of the Nx interface, and then the AMF sends the sensing control request message 1 to the RAN through the signaling of the N2 interface.
  • the sensory control request message 1 carries sensory control parameters.
  • the UE if the UE is in the idle state, after the AMF receives the sensing control request message from the sensing network element through the sensing signaling of the Nx interface, it will page the UE to enter the connected state. At this time, an N2 signaling connection is established between the RAN and the AMF.
  • the sensory control parameters may include one or more of the following:
  • the sensing control parameter is determined by the sensing network element according to the service type, sensing requirement and QoS requirement of the sensing service.
  • the sensing control parameter is acquired by the sensing network element from the sensing service request message 1 .
  • the RAN performs a sensing operation according to the sensing control request message 1, and obtains first sensing data of the first sensing service.
  • the RAN sends the first sensing data to the sensing network element.
  • step 314 is included.
  • the sensing network element performs sensing calculation on the first sensing data to obtain the second sensing data.
  • the sensing network element returns the second sensing data to the AF or the AS.
  • the sensing network element does not process the first sensing data from the RAN, that is, the second sensing data is the first sensing data.
  • step 316 may also be included.
  • the AF or AS returns the second sensing data to the UE.
  • FIG. 11 is a schematic flowchart of a method for sensing a UE provided by the present application.
  • the UE when the UE has a sensing need, send a sensing service data request message to the AF or the AS through an application layer message.
  • the AF or the AS sends a perception service request message 1 to the NEF based on the perception requirement from the UE or its own perception requirement.
  • the NEF Based on the perception service request message 1, the NEF sends a perception authorization request message to the UDM/UDR.
  • the UDM or the UDM returns a perception authorization response message to the NEF according to the service authorization information of the UE.
  • the sensing authorization response message is used to indicate that the sensing service of the UE is authorized.
  • the sensing authorization response message itself is used to indicate that the sensing service of the UE is authorized.
  • the perception service authorization response message includes service authorization indication information, and the service authorization indication information is used to indicate that the perception service of the UE is authorized.
  • steps 1001-1004 reference may be made to steps 301-304. In order to avoid redundant description, a brief description is given here.
  • the NEF sends a perception service request message 2 to the AMF.
  • the sensing service request message 2 includes the identity of the UE. Specifically, it may be the internal identifier of the UE.
  • the perceived service request message 2 may also include one or more items of service type, service requirement and QoS requirement.
  • business requirements may include one or more of the following:
  • the AMF network element sends a sensing service request message 3 to the sensing network element.
  • the sensing service request message 3 includes the identity of the UE.
  • the perceived service request message 3 may also include one or more items of service type, service requirement and QoS requirement.
  • business requirements may include one or more of the following:
  • the sensing network element sends a first message to the UDM, where the first message is used to request a serving AMF of the UE.
  • the first message includes the identifier of the UE.
  • the UDM returns a second message to the sensing network element, and the second message includes the identifier of the serving AMF of the UE, which is hereinafter referred to as the serving AMF ID.
  • the sensing network element may establish a sensing signaling connection of the Nx interface between the sensing network element and the AMF, where the sensing signaling connection is used to exchange signaling of the sensing service of the UE between the sensing network element and the AMF network element, Such as steps 1109-1110.
  • the sensing network element sends a UE sensing context establishment request message to the AMF, and the UE sensing context establishment request message carries the UE ID.
  • the AMF returns a UE perception context establishment response message to the perception network element.
  • steps 1009-1010 are optional steps.
  • the existing message transmission service may be used between the sensing network element and the AMF to exchange sensing signaling without establishing a dedicated sensing signaling connection.
  • the sensing network element sends a sensing control request message to a first network element (for example, a RAN network element or an AMF network element).
  • a first network element for example, a RAN network element or an AMF network element.
  • the sensory control request message carries sensory control parameters.
  • the sensory control parameters may include one or more of the following:
  • the sensing control parameter is determined by the sensing network element according to the service type, sensing requirement and QoS requirement of the sensing service.
  • the sensing control parameter is acquired by the sensing network element from the sensing service request message.
  • the sensing network element receives the first sensing data of the first sensing service from the first network element.
  • the first network element may be an AMF network element, an SMF network element, or a RAN network element.
  • the sensing network element returns the second sensing data to the AF or the AS.
  • the second sensing data is obtained according to the first sensing data, or the second sensing data is obtained from the first sensing data.
  • step 1014 may also be included.
  • the AF or AS returns the second sensing data to the UE.
  • FIG. 12 is a schematic flowchart of another method for sensing a UE provided by the present application.
  • the UE when the UE has a sensing need, send a sensing service data request to the AF or the AS through an application layer message.
  • the AF or the AS sends a perception service request message 1 to the NEF based on the perception requirement from the UE or its own perception requirement.
  • the sensing service request message 1 includes the UE ID.
  • one or more items of service type, service requirement and QoS requirement are also included.
  • the NEF Based on the perception service request message 1, the NEF sends a perception authorization request message to the UDM or UDR.
  • the UE ID is included in the perception authorization request message.
  • information such as service types, service requirements, and QoS requirements are also included.
  • the UDM or the UDM returns a perception authorization response message to the NEF according to the service authorization information of the UE.
  • the sensing authorization response message is used to indicate that the sensing service of the UE is authorized.
  • the perception service authorization response message includes service authorization indication information, and the service authorization indication information is used to indicate that the perception service of the UE is authorized.
  • the UDM or UDR will also convert the external identification of the UE into an internal identification.
  • steps 403-404 are a process in which the NEF performs an authorization check on the sensing service requested by the AF/AS through the UDM/UDR network element.
  • the NEF determines that the perceived service of the UE is authorized according to the authorization response message or the service authorization indication information.
  • the NEF selects a perception network element.
  • steps 401-405 reference may be made to the detailed description of steps 301-305 in FIG. 11 . In order to avoid redundancy, these steps are briefly described.
  • the NEF obtains the location information of the UE, that is, steps 406-407 are optional steps.
  • the NEF requests the location information of the UE from the GMLC.
  • the GMLC returns the location information of the UE to the NEF.
  • the NEF sends a message 1 to the GMLC, and the message 1 includes the UE ID.
  • the GMLC After receiving the message 1 from the NEF for requesting the location of the UE, the GMLC initiates positioning for the UE and obtains the location of the UE.
  • the GMLC returns a message 2 to the NEF, and the message 2 includes the location information of the UE.
  • the NEF sends a sensing service request message 2 to the sensing network element, so as to request sensing of the UE.
  • the sensing service request message 2 carries the location information of the UE.
  • it can also carry UE ID, service type, service requirements and QoS requirements, etc.
  • the NEF converts the perception of the UE ID into the perception of the location point of the UE.
  • the sensing network element sends a message 3 to the UDM, where the message 3 is used to request the serving AMF of the UE.
  • message 3 carries UEID (internal identification).
  • the UDM returns a message 4 to the sensing network element, where the message 4 carries the ID of the serving AMF of the UE.
  • the NEF after receiving the sensing authorization response message, the NEF directly sends the sensing service request message 2 to the sensing network element, and the sensing service request message 2 includes the identity of the UE, but does not Contains the location information of the UE. That is, the above process does not execute steps 406-407.
  • the sensing network element After receiving the sensing service request message 2, the sensing network element requests the location information of the UE from the GMLC, as in step 411 . That is, if steps 406-407 are not executed, step 411 is executed.
  • the sensing network element acquires the location information of the UE from the GMLC or the AMF or the LMF.
  • the sensing network element sends a location request message to the GMLC or AMF or LMF, and the UE location request message includes the UE ID.
  • the GMLC or AMF or LMF initiates positioning of the UE based on the location request message, obtains the location of the UE, and provides it to the sensing network element.
  • the sensing network element allocates a sensing association ID.
  • the sensing association ID is used to identify sensing data of the UE. Further, the sensing network element may send the sensing association ID to the RAN through the per node signaling of the Nx interface and the per node signaling of the N2 interface.
  • the RAN uses the sensing association ID when reporting the sensing data of the UE, thereby associating the sensing data with the UE.
  • the sensing network element establishes a sensing signaling connection with the Nx interface between the AMF, as in steps 412-413 below.
  • the sensing network element sends a sensing context establishment request message to the AMF.
  • the AMF returns a sensing context establishment response message to the sensing network element.
  • the sensing signaling connection of the Nx interface may be a per UE signaling connection, or a per Node signaling connection.
  • the sensing network element controls the RAN to perform sensing on the UE through the per node signaling of the Nx interface and the per node signaling of the N2 interface.
  • the sensing network element does not send the sensing control request message 1 through per UE signaling, that is, the sensing control request message 1 is sent to the RAN through the per node signaling of the Nx interface and the per node signaling of the N2 interface , the per node signaling of the Nx interface and the per node signaling of the N2 interface carry the location information and the perception association ID of the UE.
  • the sensing network element sends a sensing control request message 1 to the AMF.
  • the sensing network element may directly send the sensing control request message 1 to the RAN.
  • the sensing network element sends the sensing control request message 1 to the AMF through the sensing signaling of the Nx interface, and then the AMF sends the sensing control request message 1 to the RAN through the signaling of the N2 interface.
  • the sensory control request message 1 carries sensory control parameters.
  • the sensing network element also sends the information of the RAN responsible for sensing the UE to the AMF. That is, the sensing network element indicates the information of the RAN to the AMF, so that the AMF determines the corresponding RAN.
  • the RAN information may be a RAN ID or an E-UTRAN cell global identifier (E-UTRAN cell global identifier, ECGI).
  • E-UTRAN represents an evolved universal terrestrial radio access network (evolved universal terrestrial radio access network).
  • the sensing network element also sends the location information of the UE to be sensed to the AMF, so that the AMF determines the corresponding RAN according to the location information of the UE.
  • the AMF determines the corresponding RAN according to the RAN information indicated by the sensing network element or the location information of the UE.
  • the AMF finds that there is no sensing signaling connection on the N2 interface between it and the RAN, establish a sensing signaling connection on the N2 interface.
  • the sensing signaling connection of the N2 interface may be a per Node N2 signaling connection or a per UE N2 signaling connection.
  • the AMF sends the sensing control request message 1 through per UE signaling, and the UE is in an idle state, then the AMF receives the sensing control request message 1 from the sensing network element through the sensing signaling of the Nx interface. After controlling the request message, paging the UE to make it enter the connected state. At this time, a per UE N2 signaling connection is established between the RAN and the AMF.
  • the AMF sends a perception control request message 1 to the RAN.
  • the perception control request message 1 includes the location information of the UE.
  • information such as UE ID, service type, service requirements and QoS requirements may also be included.
  • the RAN senses the UE based on the sensing control request message 1, and acquires first sensing data.
  • the RAN senses the position indicated by the position information of the UE, and acquires the first sensing data. Therefore, in this embodiment, the perception of the UE ID is converted into the perception of the location point of the UE, which can protect the privacy of the UE.
  • the RAN sends the first sensing data to the sensing network element, optionally carrying a sensing association ID, so that the sensing network element identifies the first sensing data as sensing data of the UE.
  • the sensing network element returns the second sensing data to the AF or the AS.
  • the sensing network element does not process the first sensing data from the RAN, that is, the second sensing data is the first sensing data.
  • step 420 may also be included.
  • the AF or AS returns the sensing application data to the UE.
  • FIG. 12 is a schematic flowchart of a method for sensing a UE provided by the present application.
  • the UE when the UE has a sensing need, send a sensing service data request to the AF or the AS through an application layer message.
  • the AF or the AS sends a perception service request message 1 to the NEF based on the perception requirement from the UE or its own perception requirement.
  • the NEF Based on the perception service request message 1, the NEF sends a perception authorization request message to the UDM or UDR.
  • the UDM or the UDM returns a perception authorization response message to the NEF according to the service authorization information of the UE.
  • the sensing authorization response message is used to indicate that the sensing service of the UE is authorized.
  • the perception service authorization response message includes service authorization indication information, and the service authorization indication information is used to indicate that the perception service of the UE is authorized.
  • the NEF network element determines that the sensing service of the UE is authorized.
  • the NEF acquires the location information of the UE.
  • the NEF requests the GMLC for the location information of the UE.
  • the GMLC returns the location information of the UE to the NEF.
  • the NEF sends a location request message to the GMLC, and the location request message includes the UE ID.
  • the GMLC Based on the location request message of the NEF, the GMLC initiates positioning for the UE and acquires the location of the UE.
  • the GMLC returns a response message to the location request message to the NEF, and the response message includes the location information of the UE.
  • the NEF sends a sensing service request message 2 to the AMF to request sensing of the UE.
  • the perceived service request message 2 carries UE location information, UE ID, service type, service requirements and QoS requirements, etc.
  • the AMF sends a sensing service request message 3 to the sensing network element to request sensing of the UE.
  • the sensing service request message 3 carries the location information of the UE.
  • it can also carry UE ID, service type, service requirements and QoS requirements, etc.
  • the sensing network element sends a message 1 to the UDM, where the message 1 is used to request the serving AMF of the UE.
  • message 1 carries UEID.
  • the UDM/UDR returns a message 2 to the sensing network element, and the message 2 carries the ID of the serving AMF of the UE.
  • the sensing network element may obtain the location information of the UE by itself, as in step 2011 below.
  • the sensing network element obtains the location information of the UE from the GMLC or the AMF or the LMF.
  • the sensing network element sends a location request message to the GMLC or AMF or LMF, and the UE location request message includes the UE ID.
  • the GMLC or AMF or LMF initiates positioning of the UE based on the location request message, obtains the location of the UE, and provides it to the sensing network element.
  • the sensing network element assigns a sensing association ID.
  • the sensing network element establishes a sensing signaling connection with the Nx interface between the AMF, as in steps 2013-2014 below.
  • the sensing network element sends a sensing context establishment request message to the AMF.
  • the AMF returns a sensing context establishment response message to the sensing network element.
  • the sensing signaling connection of the Nx interface may be a per UE signaling connection, or a per Node signaling connection.
  • the sensing network element controls the RAN to perform sensing on the UE through the per node signaling of the Nx interface and the per node signaling of the N2 interface.
  • the sensing network element does not send the sensing control request message 1 through per UE signaling, that is, the sensing control request message 1 is sent to RAN, the per node signaling of the Nx interface and the per node signaling of the N2 interface carry the location information and the perception association ID of the UE.
  • the sensing network element sends a sensing control request message 1 to the AMF.
  • the sensing network element may directly send the sensing control request message 1 to the RAN.
  • the sensing network element sends the sensing control request message 1 to the AMF through the sensing signaling of the Nx interface, and then the AMF sends the sensing control request message 1 to the RAN through the signaling of the N2 interface.
  • the sensory control request message 1 carries sensory control parameters.
  • the sensing network element also sends the information of the RAN responsible for sensing the UE to the AMF. That is, the sensing network element indicates the information of the RAN to the AMF, so that the AMF determines the corresponding RAN.
  • the sensing network element also sends the location information of the UE to be sensed to the AMF, so that the AMF determines the corresponding RAN according to the location information of the UE.
  • the AMF determines the corresponding RAN according to the RAN information indicated by the sensing network element or the location information of the UE.
  • the AMF finds that there is no sensing signaling connection on the N2 interface between it and the RAN, establish a sensing signaling connection on the N2 interface.
  • the perception signaling connection of the N2 interface may be a per Node N2 signaling connection or a per UE N2 signaling connection.
  • the sensing control request message 1 is sent through per UE signaling, and the UE is in the idle state, the AMF will page the UE after receiving the sensing control request message from the sensing network element through the sensing signaling of the Nx interface , making it into the connected state.
  • a per UE N2 signaling connection is established between the RAN and the AMF.
  • the AMF sends a perception control request message 1 to the RAN.
  • the perception control request message 1 includes the location information of the UE.
  • information such as UE ID, service type, service requirements and QoS requirements may also be included.
  • the RAN senses the UE based on the sensing control request message 1, and acquires first sensing data. In other words, based on the sensing control request message 1, the RAN senses the position indicated by the position information of the UE, and acquires the first sensing data.
  • the RAN sends the first sensing data to the sensing network element.
  • the RAN also sends the sensing association ID to the sensing network element, so that the sensing network element identifies the first sensing data as the sensing data of the UE.
  • the sensing network element returns the second sensing data to the AF or the AS. Further optionally, the AF or the AS returns the second sensing data (that is, sensing service data) to the UE.
  • FIG. 13 is a schematic flowchart of a method for sensing a UE provided by the present application.
  • the NEF sends a sensing service request message 2 to the sensing network element, so as to request sensing of the UE.
  • the perceived service request message 2 may include one or more of UE location information, UE ID, service type, service requirement and QoS requirement.
  • business requirements may include one or more of the following:
  • Sensing business type sensing distance, sensing area, sensing speed range, sensing distance resolution, sensing angle measurement accuracy, sensing speed resolution, QoS requirements, sensing object recognition accuracy, sensing object recognition false alarm rate, sensing data accuracy, sensing Data update frequency, perception dimension and perception feedback method.
  • the sensing network element determines the AMF according to the location information of the UE.
  • the AMF determined by the sensing network element according to the location information of the UE does not need to be the serving AMF of the UE, that is, the AMF determined by the sensing network element may be the serving AMF of the UE, or may not be the UE's serving AMF.
  • the service AMF may be the serving AMF of the UE, or may not be the UE's serving AMF.
  • the sensing network element determines the AMF based on the location information of the UE, or the sensing network element may determine the AMF by means of the NRF.
  • the sensing network element can obtain the location information of the UE by itself, for example, the sensing network element obtains the location information of the UE from the GMLC or LMF.
  • steps 510-518 refer to steps 412-420 in (a) of FIG. 12 , which will not be repeated here.
  • FIG. 13 is a schematic flowchart of another method for sensing a UE provided by the present application.
  • the NEF sends a sensing service request message 2 to the AMF to request sensing of the UE.
  • the AMF acquires the location information of the UE.
  • the AMF obtains the location information of the UE from the GMLC or the LMF, which may refer to the detailed descriptions in other embodiments above, and will not be repeated here.
  • the AMF sends a sensing service request message 3 to the sensing network element, so as to request sensing of the UE.
  • the perceived service request message 3 includes one or more of UE location information, UE ID, service type, service requirement and QoS requirement.
  • business requirements may include one or more of the following:
  • the sensing network element acquires the location information of the UE by itself.
  • the sensing network element acquires the location information of the UE.
  • the sensing network element obtains the location information of the UE from the GMLC, LMF or AMF.
  • the sensing network element determines the AMF according to the location information of the UE.
  • the AMF determined by the sensing network element according to the location information of the UE may or may not be the serving AMF of the UE.
  • the sensing network element sends a sensing control request message to the AMF.
  • the sensing network element receives the first sensing data of the UE from the AMF.
  • a perception association identifier may also be included.
  • the AMF further sends the sensing control request message to the RAN, and the RAN senses the UE and obtains the first sensing data according to the sensing control request message.
  • the RAN reports the first sensing data to the AMF. Therefore, the first sensing data of the UE is obtained by the RAN network element sensing the UE and reported to the AMF. For example, reference may be made to related descriptions of steps 311-313 in (a) of FIG. 11 .
  • the sensing network element provides the second sensing data to the AF/AS.
  • the AF/AS provides the second sensing data to the UE.
  • the NEF network element performs an authorization check on the first sensing service requested by the AF/AS as an example.
  • the AMF network element may also perform the authorization check on the first sensing service requested by the AF/AS.
  • Authorization check is performed, such as the flow of (c) in FIG. 6 , which will not be repeated here.
  • FIG. 14 is a schematic flowchart of a method for providing UE perception provided by the present application.
  • the UE sends an N1MM request message to the AMF.
  • the N1MM request message includes sensing indication information.
  • the sensing indication information is used to indicate the request sensing service.
  • the N1MM request message may also include service types and/or service requirements.
  • business requirements may include one or more of the following:
  • the N1MM request message is a registration request message or a service request message.
  • the AMF acquires service authorization information of the UE from subscription information of the UE, and determines that the perceived service of the UE is authorized according to the service authorization information.
  • the AMF can locally obtain the service authorization information of the UE. If the subscription information of the UE is not stored on the AMF, the AMF can request the subscription information of the UE from the UDM/UDR, and then obtain the service authorization information of the UE from the subscription information. According to the service authorization information, the AMF determines that the perceived service of the UE is authorized.
  • the service authorization information includes first perceptual authorization indication information and/or first perceptual authorization parameters.
  • the first sensing authorization indication information is used to indicate that the sensing service of the UE is authorized.
  • the first perception authorization parameter may include one or more of the following:
  • Perception business type perception distance, perception area, perception speed range, perception distance resolution, perception angle measurement accuracy, perception speed resolution, perception service quality QoS requirements, perception object recognition accuracy, perception object recognition false alarm rate, perception data Accuracy, sensory data update frequency, sensory dimension, sensory feedback method, sensory requester type, sensory requester ID, sensory application type, and sensory application ID.
  • the AMF selects an appropriate sensing network element for the UE.
  • the AMF may select an appropriate sensing network element according to the information carried in the N1MM request message.
  • step 603 there may be two implementations, such as implementation 1 and implementation 2 below.
  • this step may be performed between steps 609 and 610.
  • the AMF sends a response message of the N1MM request message to the UE.
  • the response message of the N1MM request message is used to indicate that the sensing service of the UE is authorized.
  • the response message includes sensing acceptance indication information and address information of the sensing network element.
  • the sensing acceptance indication information is used to indicate acceptance of the sensing service request of the UE.
  • the UE can request the sensing service from the sensing network element through the user.
  • the UE establishes a signaling connection with the sensing network element according to the address information of the sensing network element, and sends a sensing service request message 1 to the sensing network element based on the signaling connection.
  • the sensing service request message 1 is used to request the first sensing service.
  • the perceived service request message 1 includes one or more items of service type, service requirement and QoS requirement.
  • the 5GS senses the UE based on the sensing service request message 1 of the UE, and obtains sensing service data of the first sensing service.
  • the sensing network element receives the sensing service request message 1 from the UE.
  • the sensing network element obtains the sensing data of the first sensing service by selecting the AMF network element (the RAN network element needs to be further determined) or the RAN network element, and controlling the RAN network element to perform sensing.
  • the sensing network element selects the AMF network element or the RAN network element, and controls the RAN network element to perform the sensing process, which can be realized through the foregoing embodiments, such as steps 25-27 in FIG. 4(a), or other embodiments, Not limited.
  • the sensing network element returns the sensing service data to the UE.
  • the AMF sends a response message of the N1MM request message to the UE.
  • the response message of the N1MM request message is used to indicate that the sensing service of the UE is authorized.
  • the response message carries sensing acceptance indication information.
  • the sensing acceptance indication information is used to indicate acceptance of the sensing service request of the UE.
  • the UE can request the sensing service from the sensing network element through control.
  • the UE sends a perception service request message 1 to the AMF.
  • the sensing service request message 1 is used to request the first sensing service.
  • the perception service request message 1 may be an N1MM request message.
  • the perceived service request message 1 includes one or more items of service type, service requirement and QoS requirement.
  • the AMF sends a sensing service request message 2 to the sensing network element.
  • the sensing service request message 2 is used to request the first sensing service.
  • the perceived service request message 2 includes a service type and a service requirement.
  • the 5GS senses the UE based on the sensing service request message 2, and obtains sensing service data of the first sensing service.
  • the sensing network element receives the sensing service request message 2′ from the AMF. Subsequently, in step 611, the sensing network element selects the AMF network element (the RAN network element needs to be further determined) or the RAN network element, and controls the RAN network element to perform sensing to obtain the sensing data of the first sensing service. Wherein, the sensing network element selects the AMF network element or the RAN network element, and controls the RAN network element to perform the sensing process, which can be realized through the foregoing embodiments, such as steps 25-27 in FIG. 4(a), or other embodiments, Not limited.
  • the sensing network element returns the sensing service data to the UE.
  • FIG. 15 is a schematic flowchart of a method for sensing a UE provided in the present application.
  • connection management connection management
  • the UE sends an N1 message to the AMF.
  • the N1 message may be a session management (session management, SM) request message.
  • session management session management, SM
  • the UE carries a session management request message in the N1 message, and the session management request message is used to request a sensing service for the UE.
  • the UE carries a sensing indication in the session management request, which is used to indicate that the session management request message is used to request sensing services for the UE; optionally, the session management request message may also include sensing service types and sensing requirements.
  • the session management request message includes sensing indication information, and the sensing indication information is used to indicate that sensing services are requested.
  • the N1 message also includes service types and/or service requirements.
  • business requirements may include one or more of the following:
  • the AMF selects a suitable SMF for the UE.
  • the AMF selects an appropriate SMF according to the information carried in the N1 message.
  • the AMF sends an N11 message to the SMF.
  • the N11 message includes the above session management request message.
  • the N11 message may be an SM request message.
  • the SMF acquires service authorization information of the UE, and determines that the perceived service of the UE is authorized according to the service authorization information.
  • the SMF obtains the subscription information of the UE, and then obtains the service authorization information of the UE. According to the service authorization information, the SMF determines that the perceived service of the UE is authorized.
  • the SMF If the SMF does not have the subscription information of the UE, the SMF requests the UDM/UDR to obtain the subscription information of the UE.
  • the service authorization information may include first perceptual authorization indication information and/or first perceptual authorization parameters.
  • the first sensing authorization indication information is used to indicate that the sensing service of the UE is authorized.
  • the first perception authorization parameter may include one or more of the following:
  • Perception business type perception distance, perception area, perception speed range, perception distance resolution, perception angle measurement accuracy, perception speed resolution, perception service quality QoS requirements, perception object recognition accuracy, perception object recognition false alarm rate, perception data Accuracy, sensory data update frequency, sensory dimension, sensory feedback method, sensory requester type, sensory requester ID, sensory application type, and sensory application ID.
  • the SMF selects an appropriate sensing network element for the UE.
  • step 707 is included.
  • step 704 If the N11 message in step 704 is specifically a PDU session establishment request message, the SMF selects an appropriate user plane function UPF for the UE, and the SMF establishes an N4 connection between the SMF and the UPF.
  • the UE may request the sensing service from the sensing network element through the user plane connection, or may request the sensing service from the sensing network element through control plane signaling.
  • the SMF sends a session management SM response message to the UE.
  • the session management response message is used to indicate that the perception service of the UE is authorized.
  • the session management response message includes sensing acceptance indication information and the address information of the sensing network element, wherein the sensing acceptance indication information is used to indicate acceptance of the sensing service request of the UE.
  • the UE establishes a signaling connection with the sensing network element according to the address information of the sensing network element, and sends a sensing service request message 1 to the sensing network element based on the signaling connection.
  • the perceived service request message 1 is used to request a first perceived service, and the perceived service request message 1 includes a service type and/or a service requirement.
  • the 5GS senses the UE based on the sensing service request message 1 of the UE, and obtains sensing service data of the first sensing service. .
  • the sensing network element sends sensing service data to the UE.
  • the SMF sends a session management response message to the UE.
  • the session management response message is used to indicate that the perception service of the UE is authorized.
  • the session management response message includes sensing acceptance indication information, indicating acceptance of the UE's sensing service request.
  • the UE may request the sensing service from the sensing network element through control plane signaling.
  • the UE sends a perception service request message 1 to the SMF through a session management message.
  • the sensing service request message 1 is used to request the first sensing service.
  • the perceived service request message 1 includes a service type and/or a service requirement.
  • the SMF sends the sensing service request message 2 to the sensing network element.
  • the sensing service request message 2 is used to request the first sensing service.
  • the perceived service request message 2 includes a service type and a service requirement.
  • the 5GS senses the UE based on the sensing service request message 2, and obtains sensing service data of the first sensing service.
  • the sensing network element sends sensing service data to the UE.
  • FIG. 16 is a schematic flowchart of a method for sensing a UE provided in the present application.
  • the UE may obtain the authorization of the sensing service through steps 801-805.
  • the perception service may also be authorized through steps 806-813.
  • the UE sends an N1MM request message to the AMF.
  • the AMF acquires subscription information of the UE from the UDM/UDR, and then acquires service authorization information of the UE, and determines that the perceived service of the UE is authorized according to the service authorization information.
  • the service authorization information includes first perceptual authorization indication information and/or first perceptual authorization parameters.
  • the first sensing authorization indication information is used to indicate that the sensing service of the UE is authorized.
  • the first sensing authorization parameter is a sensing parameter authorized by the network side to be used by the UE.
  • the first perception authorization parameter may include one or more of the following:
  • Perception business type perception distance, perception area, perception speed range, perception distance resolution, perception angle measurement accuracy, perception speed resolution, perception service quality QoS requirements, perception object recognition accuracy, perception object recognition false alarm rate, perception data Accuracy, sensory data update frequency, sensory dimension, sensory feedback method, sensory requester type, sensory requester ID, sensory application type, and sensory application ID.
  • the AMF selects a suitable sensing network element for the UE.
  • the AMF acquires service authorization information of the UE from a perception network element.
  • the service authorization information includes first perception authorization indication information and/or first perception authorization parameters.
  • the first sensing authorization indication information is used to indicate that the sensing service of the UE is authorized.
  • the first sensing authorization parameter is a sensing parameter authorized by the network side to be used by the UE.
  • the first perception authorization parameter may include one or more of the following:
  • Perception business type perception distance, perception area, perception speed range, perception distance resolution, perception angle measurement accuracy, perception speed resolution, perception service quality QoS requirements, perception object recognition accuracy, perception object recognition false alarm rate, perception data Accuracy, sensory data update frequency, sensory dimension, sensory feedback method, sensory requester type, sensory requester ID, sensory application type, and sensory application ID.
  • steps 801-803 reference may be made to steps 601-603 above, and in order to avoid redundant description, details are not described here.
  • the AMF sends an N2 message to the RAN.
  • the N2 message includes the second perception authorization indication information and/or the second perception authorization parameter.
  • the second sensing authorization indication information is used to indicate that the sensing service of the UE is authorized.
  • the second sensing authorization parameter is a sensing parameter authorized by the network side to be used by the UE.
  • the second perception authorization parameter may include one or more of the following:
  • Perception business type perception distance, perception area, perception speed range, perception distance resolution, perception angle measurement accuracy, perception speed resolution, perception service quality QoS requirements, perception object recognition accuracy, perception object recognition false alarm rate, perception data Accuracy, sensory data update frequency, sensory dimension, sensory feedback method, sensory requester type, sensory requester ID, sensory application type, and sensory application ID.
  • the second perceptual authorization indication information is the first perceptual authorization indication information.
  • the second perceptual authorization parameter may be determined according to the first perceptual authorization parameter.
  • step 804 the AMF sends the second authorization indication information and/or the second sensing authorization parameter to the RAN through the N2 message, for the RAN to subsequently perform an authorization check on the sensing request of the UE.
  • the AMF returns a response message of the N1MM request message to the UE.
  • the response message of the N1MM request message is used to indicate that the sensing service of the UE is authorized.
  • the response message includes sensing acceptance indication information.
  • the sensing acceptance indication information is used to indicate acceptance of the sensing service request of the UE.
  • steps 804 and 805 are not limited.
  • step 804 and step 805 are combined into one message, that is, the AMF sends the information and/or parameters in step 804 and step 805 to the UE through one message, which is not limited.
  • the UE sends an N1 message to the AMF.
  • the AMF selects an appropriate SMF for the UE.
  • the AMF sends the session management request to the SMF through the N11 message.
  • the SMF acquires service authorization information of the UE, and determines that the perceived service of the UE is authorized according to the service authorization information.
  • the service authorization information includes first perceptual authorization indication information and/or first perceptual authorization parameters.
  • the first sensing authorization indication information is used to indicate that the sensing service of the UE is authorized.
  • the first sensing authorization parameter is a sensing parameter authorized by the network side to be used by the UE.
  • the first perception authorization parameter may include one or more of the following:
  • Perception business type perception distance, perception area, perception speed range, perception distance resolution, perception angle measurement accuracy, perception speed resolution, perception service quality QoS requirements, perception object recognition accuracy, perception object recognition false alarm rate, perception data Accuracy, sensory data update frequency, sensory dimension, sensory feedback method, sensory requester type, sensory requester ID, sensory application type, and sensory application ID.
  • the SMF selects an appropriate sensing network element for the UE.
  • the SMF acquires service authorization information of the UE from the sensing network element, and optionally, the service authorization information includes first sensing authorization indication information and/or first sensing authorization parameters.
  • the first sensing authorization indication information is used to indicate that the sensing service of the UE is authorized.
  • the first sensing authorization parameter is a sensing parameter authorized by the network side to be used by the UE.
  • the first perception authorization parameter may include one or more of the following:
  • Perception business type perception distance, perception area, perception speed range, perception distance resolution, perception angle measurement accuracy, perception speed resolution, perception service quality QoS requirements, perception object recognition accuracy, perception object recognition false alarm rate, perception data Accuracy, sensory data update frequency, sensory dimension, sensory feedback method, sensory requester type, sensory requester ID, sensory application type, and sensory application ID.
  • step 811 is included.
  • the SMF establishes an N4 connection between the SMF and the UPF.
  • steps 806-811 For other descriptions of steps 806-811, reference may be made to steps 702-707 above, and in order to avoid redundant description, details are not described here.
  • the SMF sends an N2 message to the RAN.
  • the SM message may include the second perception authorization indication information and/or the second perception authorization parameter.
  • the second sensing authorization indication information is used to indicate that the sensing service of the UE is authorized.
  • the second sensing authorization parameter is a sensing parameter authorized to be used by the UE.
  • the second perception authorization parameter may include one or more of the following:
  • Perception business type perception distance, perception area, perception speed range, perception distance resolution, perception angle measurement accuracy, perception speed resolution, perception service quality QoS requirements, perception object recognition accuracy, perception object recognition false alarm rate, perception data Accuracy, sensory data update frequency, sensory dimension, sensory feedback method, sensory requester type, sensory requester ID, sensory application type, and sensory application ID.
  • the second perceptual authorization indication information is the first perceptual authorization indication information.
  • the second perceptual authorization parameter may be determined according to the first perceptual authorization parameter.
  • step 813 the SMF sends the second authorization indication information and/or the second perception authorization parameter to the RAN through the N2 session management message, for the RAN to subsequently perform an authorization check on the UE's perception request.
  • the SMF returns an SM response message to the UE.
  • the SM response message includes sensing acceptance indication information.
  • the UE determines according to the sensing acceptance indication information that the sensing service of the UE is authorized, that is, the UE can request the sensing service.
  • the UE can directly request the sensing resource from the RAN, and obtain the sensing service data of the requested sensing service based on the sensing resource, specifically as the following process.
  • the UE sends a sensing request message to the RAN.
  • the sensing request message is used to request sensing resources or request the RAN to perform sensing of the UE.
  • the perception request message includes the service type and/or service requirements (that is, the perception requirements)
  • perception requirements may include one or more of the following:
  • the sensing request message may be a radio resource control (radio resource control, RRC) message.
  • RRC radio resource control
  • the RAN performs an authorization check on the UE.
  • the RAN receives the second perceptual authorization indication information and/or the second perceptual authorization parameter from the AMF in step 804, or receives the second perceptual authorization indication information and/or the second perceptual authorization indication information from the SMF in step 812.
  • the second perception authorization parameter is to perform an authorization check on the service requirements in the UE's perception request message.
  • step 816 is performed.
  • the RAN sends sensing resource indication information to the UE, where the sensing resource indication information is used to indicate sensing resources, for example, time-frequency resources and the like.
  • the UE obtains the sensing data of the first sensing service based on the sensing resource.
  • the UE performs sensing based on sensing resources, that is, the UE performs sensing by itself sending a sensing signal and receiving an echo signal of the sensing signal, and obtains first sensing data of the first sensing service.
  • the UE receives the sensing signal from the RAN according to the sensing resource, that is, the RAN sends the sensing signal through the sensing resource, the UE receives the sensing signal for sensing, and obtains the first sensing data of the first sensing service.
  • the UE receives the sensing signal for sensing, it can also be said that the UE receives the echo signal of the sensing signal for sensing.
  • the UE sends a sensing signal based on the sensing resource, and the RAN network element receives the sensing signal and performs sensing to obtain the first sensing data of the first sensing service.
  • the RAN network element sends the first sensing data to the UE, and the UE receives the first sensing data from the RAN network element.
  • the RAN network element receives the sensing signal and performs sensing, it can also be said that the RAN network element receives the echo signal of the sensing signal and performs sensing.
  • the above-mentioned echo signal may also be referred to as a reflection signal.
  • FIG. 17 is a schematic flowchart of a method for sensing a UE provided in the present application.
  • step 914 is included.
  • the sensing network element has a sensing requirement.
  • the sensing network element needs to perform sensing for the first sensing service, and if it is determined that sensing is required by the UE, send a sensing control request to the selected UE.
  • the sensing control request is used to instruct the UE to perform sensing for the first sensing service.
  • the UE sends a sensing request message to the RAN.
  • the sensing resource request message is used to request sensing resources for the first sensing service.
  • the perception request message may be an RRC message.
  • the RAN is based on the second perceptual authorization indication information and/or the second perceptual authorization parameter acquired from the AMF in step 904, or based on the second perceptual authorization indication information and/or the second perceptual authorization parameter acquired from the SMF in step 912 , performing an authorization check on the first sensing service requested in the sensing request message of the UE.
  • the RAN sends back the sensing resource indication information to the UE, where the sensing resource indication information is used to indicate the sensing resource.
  • the UE obtains the first sensing data of the first sensing service based on the sensing resource. For details, refer to the description of step 817.
  • the UE sends the first sensing data to the sensing network element.
  • step 920 may also be included.
  • the UE receives second sensing data from the sensing network element.
  • the UE sends the first sensing data to the sensing network element.
  • the UE returns the first sensing data to the sensing network element based on the sensing control request of the sensing network element.
  • the UE sends the first sensing data to the sensing network element for processing, and receives the second sensing data from the sensing network element.
  • FIG. 18 is a schematic block diagram of a communication device provided by the present application.
  • the communication device 1000 includes a processing unit 1100 , a receiving unit 1200 and a sending unit 1300 .
  • the communication device 1000 may correspond to the NEF network element in this embodiment of the present application.
  • each unit of the communication device 1000 is used to realize the following functions:
  • the receiving unit 1200 is configured to receive a first sensing service request message, where the first sensing service request message is used to request a first sensing service, and the first sensing service is to sense user equipment UE;
  • a processing unit 1100 configured to determine that the first sensing service is authorized based on the first sensing service request message
  • the sending unit 1300 is configured to send a second sensory service request message to the sensory network element, where the second sensory service request message is used to request the first sensory service.
  • the sending unit 1300 is specifically configured to send a perception authorization request message to the UDM network element based on the first perception service request message, where the perception authorization request message is used to request confirmation of the first perception service request message.
  • the business is authorized;
  • the receiving unit 1200 is specifically configured to receive an authorization response message from the UDM network element, where the authorization response message is used to indicate that the first sensing service is authorized;
  • processing unit 1100 is specifically configured to determine that the first perception service is authorized based on the authorization response message.
  • the authorization response message includes the service authorization information.
  • the perception authorization request message includes one or more of the following:
  • the perception distance, perception area, perception speed range, perception distance resolution, perception angle measurement accuracy, perception speed resolution, perception service quality QoS requirements, perception object recognition accuracy rate, perception object recognition false alarm rate, perception data Accuracy, sensing data update frequency, sensing dimension, sensing feedback service type, sensing requester type, sensing requester ID, sensing application type, and sensing application ID are determined according to the first sensing service request message.
  • the first sensing service request message includes the first identity of the UE, and the sensing authorization request message includes the second identity of the UE;
  • the Perceptual Grant Response message includes a second identity of the UE
  • the second cognitive service request message includes the second identifier of the UE.
  • the processing unit 1100 is further configured to acquire the location information of the UE from a gateway mobile location center GMLC network element based on the second identifier of the UE;
  • the second sensing service request message includes the location information of the UE.
  • the receiving unit 1200 and the sending unit 1300 may also be integrated into a transceiver unit, which has the functions of receiving and sending at the same time, which is not limited here.
  • the processing unit 1100 is configured to perform processing and/or operations implemented internally by the NEF network element except for sending and receiving actions.
  • the receiving unit 1200 is configured to perform an action of receiving, and the sending unit 1300 is configured to perform an action of sending.
  • the communication device 1000 may correspond to a perception network element (or an SF network element) in this embodiment of the present application.
  • each unit of the communication device 1000 is used to realize the following functions:
  • the receiving unit 1200 is configured to receive a second sensing service request message, the second sensing service request message is used to request a first sensing service, and the first sensing service is to sense UE;
  • the processing unit 1100 is configured to determine a first network element according to the second sensing service request message, and the first network element supports the first sensing service;
  • the sending unit 1300 is configured to send a sensing control request message to the first network element, where the sensing control request message is used to control a RAN network element to perform a sensing operation of the first sensing service.
  • the second perception service request message includes the second identifier of the UE, and the processing unit 1100 is specifically configured to:
  • the second sensing service request message includes location information of the UE, and the processing unit 1100 is specifically configured to:
  • the second perception service request message includes the second identifier of the UE, and the processing unit 1100 is specifically configured to:
  • the processing unit 1100 is further configured to allocate a perception association identifier for the UE, where the perception association identifier is used to identify the perception data of the UE.
  • the sensing control request message includes location information and/or a sensing association identifier of the UE, where the sensing association identifier is used to identify sensing data of the UE.
  • the receiving unit 1200 is further configured to receive the first sensing data and the sensing association identifier from the first network element.
  • the first network element is an AMF network element
  • the processing unit 1100 is further configured to:
  • sensing signaling connection Establishing a sensing signaling connection between the communication device and the AMF network element, where the sensing signaling connection is used for the communication device and the AMF network element to exchange information about the first sensing service of the UE make.
  • the receiving unit 1200 and the sending unit 1300 may also be integrated into a transceiver unit, which has the functions of receiving and sending at the same time, which is not limited here.
  • the processing unit 1100 is configured to perform processing and/or operations implemented internally by the SF network element except for the actions of sending and receiving.
  • the receiving unit 1200 is configured to perform an action of receiving, and the sending unit 1300 is configured to perform an action of sending.
  • the communication device 1000 may correspond to the second network element in this embodiment of the present application.
  • each unit of the communication device 1000 is used to realize the following functions:
  • the receiving unit 1200 is configured to receive a first request message, where the first request message is used to request a sensing service of the UE;
  • the sending unit 1300 is configured to send a response message to the first request message, where the response message is used to indicate acceptance of the sensing service of the UE.
  • the processing unit 1100 is further configured to determine that the sensing service of the UE is authorized.
  • the first request message includes sensing indication information, and the sensing indication information is used to indicate that the sensing service is requested.
  • the response message includes sensing acceptance indication information, where the sensing acceptance indication information is used to indicate acceptance of the sensing service of the UE.
  • the response message includes address information of the sensing network element.
  • processing unit 1100 is specifically configured to:
  • Acquire subscription information of the UE where the subscription information includes service authorization information of the UE;
  • the service authorization information it is determined that the perceived service of the UE is authorized.
  • the service authorization information includes first perceptual authorization indication information, and the first perceptual authorization indication information is used to indicate that the UE's perceptual service is authorized.
  • the service authorization information includes a first perceptual authorization parameter
  • the first perceptual authorization parameter includes one or more of the following:
  • Sensing business type sensing distance, sensing area, sensing speed range, sensing distance resolution, sensing angle measurement accuracy, sensing speed resolution, QoS requirements, sensing object recognition accuracy, sensing object recognition false alarm rate, sensing data accuracy, sensing Data update frequency, perception dimension, perception feedback method, perception requester type, perception requester identification, perception application type, and perception application identification.
  • the processing unit 1100 is configured to acquire second perceptual authorization indication information and/or second perceptual authorization parameters according to the service authorization information;
  • the sending unit 1300 is further configured to send the second perceptual authorization indication information and/or the second perceptual authorization parameter to a RAN network element.
  • the receiving unit 1200 is further configured to receive a first sensing service request message from the UE, where the first sensing service request is used to request a first sensing service;
  • the sending unit 1300 is further configured to send a second sensory service request message to the sensory network element, where the second sensory service request message is used to request the first sensory service for the UE.
  • the communication device is an AMF network element or an SMF network element.
  • the first request message is specifically a session management request message
  • the response message is specifically a session management response message
  • the first request message is specifically a registration request message, and the response message is a registration acceptance message; or,
  • the first request message is specifically a service request message
  • the response message is a service acceptance message
  • the processing unit 1100 is configured to perform processing and/or operations implemented internally by the second network element except for sending and receiving actions.
  • the receiving unit 1200 is configured to perform an action of receiving
  • the sending unit 1300 is configured to perform an action of sending.
  • the communication device 1000 may correspond to the UE in this embodiment of the present application.
  • each unit of the communication device 1000 is used to realize the following functions:
  • a sending unit 1300 configured to send a first request message to a second network element, where the first request message is used to request a sensing service;
  • the receiving unit 1200 is configured to receive a response message of the first request message, where the response message is used to indicate acceptance of the sensing service of the UE.
  • the first request message includes sensing indication information, and the sensing indication information is used to indicate that the sensing service is requested.
  • the response message carries sensing acceptance indication information, and the sensing acceptance indication information is used to indicate acceptance of the sensing service of the UE.
  • the sending unit 1300 is further configured to send a first sensory service request message to the second network element, where the first sensory service request message is used to request the first sensory service;
  • the receiving unit 1200 is further configured to receive the second sensing data of the first sensing service from the second network element.
  • the sending unit 1300 is configured to send a sensing request message to the RAN network element for the first sensing service, where the sensing request message is used to request sensing resources;
  • the receiving unit 1200 is further configured to receive perceptual resource indication information from the RAN network element, where the perceptual resource indication information is used to indicate the perceptual resource;
  • processing unit 1100 is further configured to use the sensing resource to perform sensing, and obtain the first sensing data of the first sensing service.
  • the sending unit 1300 is further configured to send a sensing request message to the RAN network element for the first sensing service, where the sensing request message is used to request sensing resources;
  • the receiving unit 1200 is further configured to receive perceptual resource indication information from the RAN network element, where the perceptual resource indication information is used to indicate the perceptual resource;
  • the receiving unit 1200 is further configured to receive a sensing signal from the RAN network element according to the sensing resource;
  • the processing unit 1100 is further configured to obtain the first sensing data of the first sensing service based on the sensing signal.
  • the sending unit 1300 is further configured to send a sensing request message to a RAN network element for the first sensing service, where the sensing request message is used to request the RAN network element to perform sensing;
  • the receiving unit 1200 is further configured to receive sensing resource indication information from the RAN network element, where the sensing resource indication information is used to indicate the sensing resource;
  • the sending unit 1300 is further configured to send a sensing signal based on the sensing resource
  • the receiving unit 1200 is also used for the first sensing data of the first sensing service from the RAN network element.
  • the receiving unit 1200 is further configured to receive a sensing control request from a sensing network element, where the sensing control request is used to instruct the UE to perform sensing.
  • the sending unit 1300 is further configured to send the first sensing data to the sensing network element;
  • the receiving unit 1200 is further configured to receive the second sensing data of the first sensing service from the sensing network element.
  • the first request message is specifically a session management request message
  • the response message is specifically a session management response message
  • the first request message is specifically a registration request message, and the response message is a registration acceptance message; or,
  • the first request message is specifically a service request message
  • the response message is a service acceptance message
  • the processing unit 1100 is configured to perform processing and/or operations implemented internally by the UE except for the actions of sending and receiving.
  • the receiving unit 1200 is configured to perform an action of receiving, and the sending unit 1300 is configured to perform an action of sending.
  • the communication device 1000 may correspond to the RAN network element in this embodiment of the present application.
  • each unit of the communication device 1000 is used to realize the following functions:
  • the receiving unit 1200 is configured to receive a sensing request message from a user equipment UE, where the sensing request message is used to request sensing resources;
  • the sending unit 1300 is configured to send sensing resource indication information to the UE, where the sensing resource indication information is used to indicate the sensing resource.
  • the receiving unit 1200 is configured to receive second perception authorization indication information and/or second perception authorization parameters of the UE from a second network element, wherein the second perception authorization The authorization indication information is used to indicate that the sensing service of the UE is authorized.
  • the processing unit 1100 is further configured to determine a sensing request authorization for the UE according to the second sensing grant indication information and/or the second sensing grant parameter.
  • the sensing request message further includes a sensing requirement
  • processing unit 1100 is further configured to determine to authorize the sensing request according to the second sensing authorization indication information and/or the second sensing authorization parameter, and the sensing requirement.
  • the sending unit 1300 is further configured to send a sensing signal to the UE based on the sensing resource.
  • the receiving unit 1200 is further configured to receive a sensing signal from the UE based on the sensing resource;
  • the processing unit 1100 is further configured to obtain first sensing data according to the sensing signal
  • the sending unit 1300 is further configured to send the first sensing data to the UE.
  • the second perceptual authorization parameters include one or more of the following:
  • Perception business type perception distance, perception area, perception speed range, perception distance resolution, perception angle measurement accuracy, perception speed resolution, perception service quality QoS requirements, perception object recognition accuracy, perception object recognition false alarm rate, perception data Accuracy, sensory data update frequency, sensory dimensions and sensory feedback methods.
  • the perception requirements include one or more of the following:
  • the processing unit 1100 is configured to perform processing and/or operations implemented internally by the RAN network element except for the actions of sending and receiving.
  • the receiving unit 1200 is configured to perform an action of receiving, and the sending unit 1300 is configured to perform an action of sending.
  • the communication device 1000 may correspond to the UDM network element in this embodiment of the present application.
  • each unit of the communication device 1000 is used to realize the following functions:
  • the receiving unit 1200 is configured to receive a sensing authorization request message from an NEF network element, where the sensing authorization request message is used to request to confirm that the sensing service of the user equipment UE is authorized;
  • the sending unit 1300 is configured to send an authorization response message to the NEF network element, where the authorization response message is used to indicate that the sensing service of the UE is authorized.
  • the perceptual authorization request message includes one or more of the following:
  • sensing service type sensing distance, sensing area, sensing speed range, sensing distance resolution, sensing angle measurement accuracy, sensing speed resolution, QoS requirements, sensing object recognition accuracy, sensing object recognition false alarm rate , sensing data accuracy, sensing data update frequency, sensing dimension, sensing feedback mode, sensing requester type, sensing requester ID, sensing application type, and sensing application ID.
  • the authorization response message includes service authorization information of the UE.
  • the receiving unit 1200 is further configured to receive a first request message from an SF network element, where the first request message is used to request a serving AMF of the UE;
  • the sending unit 1300 is further configured to return a response message of the first request message to the SF network element, where the response message includes the identity of the serving AMF of the UE.
  • the processing unit 1100 is configured to perform processing and/or operations implemented internally by the UDM network element except for the actions of sending and receiving.
  • the receiving unit 1200 is configured to perform an action of receiving, and the sending unit 1300 is configured to perform an action of sending.
  • FIG. 19 is a schematic structural diagram of a communication device provided by the present application.
  • the communication device 10 includes: one or more processors 11 , one or more memories 12 and one or more communication interfaces 13 .
  • the processor 11 is used to control the communication interface 13 to send and receive signals
  • the memory 12 is used to store a computer program
  • the processor 11 is used to call and run the computer program from the memory 12, so that the communication device 10 executes the method described in each method embodiment of the present application. Processing performed by a corresponding network element (for example, a NEF network element, a sensing network element, a second network element, a UE, a RAN network element, or a UDM network element).
  • a corresponding network element for example, a NEF network element, a sensing network element, a second network element, a UE, a RAN network element, or a UDM network element.
  • the processor 11 may have the functions of the processing unit 1100 shown in FIG. 11
  • the communication interface 13 may have the functions of the receiving unit 1200 and/or the sending unit 1300 shown in FIG. 11 .
  • the processor 11 may be used to perform processing or operations internally performed by the corresponding network element
  • the communication interface 13 is used to perform sending and/or receiving operations by the corresponding network element.
  • the communication device 10 may be a corresponding network element in the method embodiment.
  • the communication interface 13 may be a transceiver. Transceivers may include receivers and/or transmitters.
  • the processor 11 may be a baseband device, and the communication interface 13 may be a radio frequency device.
  • the communication device 10 may be a chip (or chip system) installed in a corresponding network element.
  • the communication interface 13 may be an interface circuit or an input/output interface.
  • the dotted box behind the device indicates that there may be more than one device.
  • the memory and the processor in the foregoing apparatus embodiments may be physically independent units, or the memory and the processor may also be integrated together, which is not limited herein.
  • corresponding network element refers to any one of the NEF network element, the sensing network element, the second network element, the UE, the RAN network element, or the UDM network element in each embodiment.
  • the present application also provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are run on the computer, the method executed by the corresponding network element in each method embodiment of the present application Operations and/or processing are performed.
  • the present application also provides a computer program product.
  • the computer program product includes computer program codes or instructions. When the computer program codes or instructions are run on a computer, the operations performed by the corresponding network elements in each method embodiment of the present application and /or processing is performed.
  • the present application also provides a chip, the chip includes a processor, the memory for storing computer programs is set independently of the chip, the processor is used for executing the computer programs stored in the memory, so that the communication device installed with the chip Execute the operations and/or processing performed by the corresponding network element in any one method embodiment.
  • the chip may further include a communication interface.
  • the communication interface may be an input/output interface, or an interface circuit or the like.
  • the chip may further include the memory.
  • processors there may be one or more processors, one or more memories, and one or more memories.
  • the present application also provides a communication device (for example, it may be a chip or a chip system), including a processor and a communication interface, the communication interface is used to receive (or be referred to as input) data and/or information, and will receive The received data and/or information are transmitted to the processor, and the processor processes the data and/or information, and the communication interface is also used to output (or be referred to as output) the data and/or processed by the processor or information, so that the operation and/or processing performed by the corresponding network element in any one method embodiment is performed.
  • a communication device for example, it may be a chip or a chip system
  • the communication interface is used to receive (or be referred to as input) data and/or information, and will receive The received data and/or information are transmitted to the processor, and the processor processes the data and/or information, and the communication interface is also used to output (or be referred to as output) the data and/or processed by the processor or information, so that the operation and/or processing performed by the corresponding network element in
  • the present application also provides a communication device, including at least one processor, the at least one processor is coupled to at least one memory, and the at least one processor is configured to execute computer programs or instructions stored in the at least one memory, The communication device is made to perform the operation and/or processing performed by the corresponding network element in any one method embodiment.
  • the present application also provides a communication device, including a processor and a memory.
  • a transceiver may also be included.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the communication device performs operations performed by corresponding network elements in any method embodiment and/or deal with.
  • the present application also provides a communication system, including one or more of the NEF network element, the sensing network element (that is, the SF network element), the second network element, the UE, the RAN network element or the UDM network element in the embodiment of the present application network element.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the methods provided in the foregoing embodiments may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product may include one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • numbers such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • the first perceptual service request message and the second perceptual service request message are only used to distinguish different perceptual service request messages.
  • numbers such as “first” and “second” do not limit the quantity and execution sequence, and words such as “first” and “second” do not necessarily mean that they are different.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (unit) of a, b, or c may represent: a, b, c; a and b; a and c; b and c; or a and b and c.
  • a, b, c can be single or multiple.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种对UE进行感知的方法和通信装置,可以由SF网元、NEF网元、AMF网元、SMF网元或RAN网元等为感知请求者或UE执行针对UE的感知探测,并为感知请求者或UE提供相应的感知业务。在一些实现中,感知请求者可以是UE本身,也可以是应用功能AF。一般情况下,AF可以直接向通信系统(例如,5GS)请求感知业务;而UE可以向通信系统(例如,5GS)请求感知业务,也可以基于自身的感知需求直接从RAN网元请求感知资源进行感知,或者与RAN网元协作感知,并获得感知数据,从而能够快速高效地获得感知数据。另外,有一些实现不仅可以实现对UE的感知,还可以保护UE侧安全隐私。

Description

对终端设备进行感知的方法和通信装置
本申请要求于2021年09月01日提交国家知识产权局、申请号为202111023168.0、申请名称为“对终端设备进行感知的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信感知领域,更具体地,涉及一种对终端设备进行感知的方法和通信装置。
背景技术
随着通信技术的演进,通信频段衍生出感知能力,特别是毫米波频段。当接入网(radio access network,RAN)网元或终端拥有感知能力时,就可以对特定区域、特定物体或特定事件等进行感知,可以解决很多场景下的感知需求。
但是,目前,业界还没有对UE进行感知的方案。
发明内容
本申请提供一种对终端设备进行感知的方法和通信装置,可以为端到端支持对UE进行感知。
第一方面,提供了一种对终端设备进行感知的方法,包括:
NEF网元接收第一感知业务请求消息,第一感知业务请求消息用于请求第一感知业务,第一感知业务是对UE进行感知;
NEF网元基于第一感知业务请求消息,确定第一感知业务被授权;
NEF网元向感知网元发送第二感知业务请求消息,第二感知业务请求消息用于请求第一感知业务。
可选地,还提供了一种对UE进行感知的的方法:包括:
NEF网元接收第一感知业务请求消息,第一感知业务请求消息用于请求第一感知业务,第一感知业务是对用户设备UE进行感知;
NEF网元向AMF网元发送第二感知业务请求消息,第二感知业务请求消息用于请求第一感知业务。
结合第一方面,在第一方面的某些实现方式中,NEF网元基于第一感知业务请求消息,确定第一感知业务被授权,包括:
NEF网元基于第一感知业务请求消息,向UDM网元发送感知授权请求消息,感知授权请求消息用于请求确认第一感知业务被授权;
NEF网元接收来自于UDM网元被授权响应消息,授权响应消息用于指示第一感知业务被授权;
NEF网元基于授权响应消息,确定第一感知业务被授权。
结合第一方面,在第一方面的某些实现方式中,授权响应消息包括业务授权信息。
结合第一方面,在第一方面的某些实现方式中,感知授权请求消息中包括如下一项或多项:
UE的第一标识、感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识;
其中,所述感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式业务类型、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识是根据第一感知业务请求消息确定的。
结合第一方面,在第一方面的某些实现方式中,第一感知业务请求消息包括UE的第一标识,感知授权请求消息包括UE的第二标识;
感知授权响应消息包括UE的第二标识;
第二感知业务请求消息包括UE的第二标识。
结合第一方面,在第一方面的某些实现方式中,NEF网元向感知网元发送第二感知业务请求消息之前,该方法还包括:
NEF网元基于UE的所述第二标识,从GMLC网元获取UE的位置信息;
以及,第二感知业务请求消息中包括UE的位置信息。
第二方面,提供了一种对终端设备进行感知的方法,包括:
SF网元接收感知业务请求消息,感知业务请求消息用于请求第一感知业务,第一感知业务是对UE进行感知;
SF网元根据感知业务请求消息,确定第一网元,第一网元支持第一感知业务;
SF网元向第一网元发送感知控制请求消息,感知控制请求消息用于控制RAN网元执行第一感知业务的感知操作。
可选地,第一网元可以为AMF网元、RAN网元或SMF网元。
结合第二方面,在第二方面的某些实现方式中,感知业务请求消息包括UE的第二标识,SF网元根据感知业务请求消息,确定第一网元,包括:
SF网元根据UE的所述第二标识,确定第一网元。
结合第二方面,在第二方面的某些实现方式中,感知业务请求消息包括UE的位置信息,
SF网元根据感知业务请求消息,确定第一网元,包括:
SF网元根据UE的位置信息,确定第一网元。
结合第二方面,在第二方面的某些实现方式中,感知业务请求消息包括UE的标识,SF网元根据感知业务请求消息,确定第一网元,包括:
SF网元根据感知业务请求消息中包括的UE的标识,获取UE的位置信息;
SF网元根据UE的位置信息,确定第一网元。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:
SF网元为UE分配感知关联标识,感知关联标识用于标识UE的感知数据。
结合第二方面,在第二方面的某些实现方式中,感知控制请求消息包括UE的位置信息和/或感知关联标识,其中,感知关联标识用于标识UE的感知数据。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:
SF网元接收来自于第一网元的第一感知数据和感知关联标识。
结合第二方面,在第二方面的某些实现方式中,第一网元为AMF网元,该方法还包括:
SF网元建立SF网元与AMF网元之间的感知信令连接,该感知信令连接用于SF网元和AMF网元交互UE的第一感知业务的信令。
第三方面,提供了一种对终端设备进行感知的方法,包括:
第二网元接收第一请求消息,第一请求消息用于请求UE的感知业务;
第二网元发送第一请求消息的响应消息,该响应消息用于指示接受UE的感知业务。
结合第三方面,在第三方面的某些实现方式中,第二网元返回第一请求消息的响应消息之前,该方法还包括:
第二网元确定UE的感知业务被授权。
结合第三方面,在第三方面的某些实现方式中,第一请求消息包括感知指示信息,感知指示信息用于指示请求感知业务。
结合第三方面,在第三方面的某些实现方式中,该响应消息包括感知接受指示信息,感知接受指示信息用于指示接受UE的感知业务。
结合第三方面,在第三方面的某些实现方式中,该响应消息包括感知网元的地址信息。
结合第三方面,在第三方面的某些实现方式中,第二网元确定UE的感知业务被授权,包括:
第二网元获取UE的签约信息,签约信息包含UE的业务授权信息;
第二网元根据业务授权信息,确定UE的感知业务被授权。
结合第三方面,在第三方面的某些实现方式中,业务授权信息包括第一感知授权指示信息,第一感知授权指示信息用于指示UE的感知业务被授权。
结合第三方面,在第三方面的某些实现方式中,业务授权信息包括第一感知授权参数,第一感知授权参数包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:
第二网元根据业务授权信息,获取第二感知授权指示信息和/或第二感知授权参数;
第二网元向RAN网元发送第二感知授权指示信息和/或第二感知授权参数。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:
第二网元接收来自于UE的第一感知业务请求消息,第一感知业务请求用于请求第一感知业务;
第二网元向感知网元发送第二感知业务请求消息,第二感知业务请求消息用于为UE 请求第一感知业务。
结合第三方面,在第三方面的某些实现方式中,第二网元为AMF网元或SMF网元。
结合第三方面,在第三方面的某些实现方式中,第一请求消息具体为会话管理请求消息,该响应消息具体为会话管理响应消息;或者,
第一请求消息具体为注册请求消息,该响应消息为注册接受消息;或者,
第一请求消息具体为服务请求消息,该响应消息为服务接受消息。
第四方面,提供了一种对终端设备进行感知的方法,包括:
UE向第二网元发送第一请求消息,第一请求消息用于请求感知业务;
UE接收第一请求消息的响应消息,该响应消息用于指示接受UE的感知业务。
结合第四方面,在第四方面的某些实现方式中,第一请求消息包括感知指示信息,感知指示信息用于指示请求感知业务。
结合第四方面,在第四方面的某些实现方式中,该响应消息中包括感知接受指示信息,感知接受指示信息用于指示接受UE的感知业务。
结合第四方面,在第四方面的某些实现方式中,UE接收第一请求消息的响应消息之后,该方法还包括:
UE向第二网元发送第一感知业务请求消息,第一感知业务请求消息用于请求第一感知业务;
UE接收来自于第二网元的第一感知业务的第二感知数据。
结合第四方面,在第四方面的某些实现方式中,UE接收第一请求消息的响应消息之后,该方法还包括:
UE为第一感知业务向RAN网元发送感知请求消息,感知请求消息用于请求感知资源;
UE接收来自于RAN网元的感知资源指示信息,感知资源指示信息用于指示感知资源;
UE使用该感知资源进行感知,获得第一感知业务的第一感知数据。
可选地,UE接收第一请求消息的响应消息之后,该方法还包括:
UE为第一感知业务向RAN网元发送感知业务请求消息,感知业务请求消息用于请求感知资源;
UE接收来自于RAN网元的感知资源指示信息,感知资源指示信息用于指示感知资源;
UE使用该感知资源进行感知,获得第一感知业务的第一感知数据。
结合第四方面,在第四方面的某些实现方式中,UE接收来自于第一请求消息的响应消息之后,该方法还包括:
UE为第一感知业务向RAN网元发送感知请求消息,感知请求消息用于请求感知资源;
UE接收来自于RAN网元的感知资源指示信息,感知资源指示信息用于指示感知资源;
UE根据该感知资源,接收来自于RAN网元的感知信号;
UE基于该感知信号,获得第一感知业务的第一感知数据。
可选地,UE接收来自于第一请求消息的响应消息之后,该方法还包括:
UE为第一感知业务向RAN网元发送感知业务请求消息,感知业务请求消息用于请求感知资源;
UE接收来自于RAN网元的感知资源指示信息,感知资源指示信息用于指示感知资源;
UE根据该感知资源,接收来自于RAN网元的感知信号;
UE基于该感知信号,获得第一感知业务的第一感知数据。
结合第四方面,在第四方面的某些实现方式中,UE接收来自于第一请求消息的响应消息之后,该方法还包括:
UE为第一感知业务向RAN网元发送感知请求消息,感知请求消息用于请求RAN网元执行感知;
UE接收来自于RAN网元的感知资源指示信息,感知资源指示信息用于指示感知资源;
UE基于该感知资源,发送感知信号;
UE接收来自于RAN网元的第一感知业务的第一感知数据。
可选地,UE接收来自于第一请求消息的响应消息之后,该方法还包括:
UE为第一感知业务向RAN网元发送感知业务请求消息,感知业务请求消息用于请求RAN网元执行感知;
UE接收来自于RAN网元的感知资源指示信息,感知资源指示信息用于指示感知资源;
UE基于该感知资源,发送感知信号;
UE接收来自于RAN网元的第一感知业务的第一感知数据。
结合第四方面,在第四方面的某些实现方式中,UE向RAN网元发送第一感知请求消息之前,该方法还包括:
UE接收来自于感知网元的感知控制请求,感知控制请求用于指示UE执行感知。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:
UE向感知网元发送所述第一感知数据;
UE接收来自于感知网元的第一感知业务的第二感知数据。
结合第四方面,在第四方面的某些实现方式中,第一请求消息具体为会话管理请求消息,响应消息具体为会话管理响应消息;或者,
第一请求消息具体为注册请求消息,响应消息为注册接受消息;或者,
第一请求消息具体为服务请求消息,响应消息为服务接受消息。
第五方面,提供了一种对终端设备进行感知的方法,包括:
RAN网元接收来自于用户设备UE的感知请求消息,所述感知请求消息用于请求感知资源;
RAN网元向UE发送感知资源指示信息,所述感知资源指示信息用于指示感知资源。
结合第五方面,在第五方面的某些实现方式中,RAN网元向UE发送感知资源指示信息之前,该方法还包括:
RAN网元接收来自于第二网元的UE的第二感知授权指示信息和/或第二感知授权参数,其中,第二感知授权指示信息用于指示UE的感知业务被授权。
结合第五方面,在第五方面的某些实现方式中,RAN网元向UE发送感知资源指示信息之前,该方法还包括:
RAN网元根据第二感知授权指示信息和/或第二感知授权参数,确定对UE的感知请求授权。
结合第五方面,在第五方面的某些实现方式中,感知请求消息中还包括感知要求,
以及,RAN网元向UE发送感知资源指示信息之前,该方法还包括:
RAN网元根据第二感知授权指示信息和/或第二感知授权参数,以及感知要求,确定 对感知请求授权。
结合第五方面,在第五方面的某些实现方式中,RAN网元向UE发送感知资源指示信息之后,该方法还包括:
RAN网元基于所述感知资源向UE发送感知信号。
结合第五方面,在第五方面的某些实现方式中,RAN网元向UE发送感知资源指示信息之后,该方法还包括:
RAN网元基于所述感知资源,接收来自于UE的感知信号;
RAN网元根据所述感知信号,获得第一感知数据;
RAN网元向UE发送所述第一感知数据。
结合第五方面,在第五方面的某些实现方式中,第二感知授权参数包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
结合第五方面,在第五方面的某些实现方式中,所述感知要求包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
第六方面,提供了一种对终端设备进行感知的方法,包括:
UDM网元接收来自于NEF网元的感知授权请求消息,感知授权请求消息用于请求确认UE的感知业务被授权;
UDM网元向NEF网元发送授权响应消息,授权响应消息用于指示UE的感知业务被授权。
结合第六方面,在第六方面的某些实现方式中,感知授权请求消息包括如下一项一项或多项:
UE的第一标识、感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识。
结合第六方面,在第六方面的某些实现方式中,授权响应消息包括UE的业务授权信息。
结合第六方面,在第六方面的某些实现方式中,该方法还包括:
UDM网元接收来自于SF网元的第一请求消息,第一请求消息用于请求UE的服务AMF;
UDM网元向SF网元返回第一请求消息的响应消息,响应消息包括UE的服务AMF的标识。
第七方面,提供一种通信装置,所述通信装置具有实现第一方面至第六方面的任一方面的方法,或第一方面至第六方面的任一方面的任一可能的实现方式的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个 或多个与上述功能相对应的单元。
第八方面,提供一种通信装置,包括处理器和存储器。可选地,还可以包括收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信装置执行如第一方面至第六方面的任一方面的方法,或第一方面至第六方面的任一方面的任一可能的实现方式的方法。
第九方面,提供一种通信装置,包括处理器和通信接口,通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至处理器,处理器处理所述数据和/或信息,以及,通信接口还用于输出经处理器处理之后的数据和/或信息,以使得如第一方面至第六方面的任一方面的方法,或第一方面至第六方面的任一方面的任一可能的实现方式中的方法被执行。
第十方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第一方面至第六方面的任一方面的方法,或第一方面至第六方面的任一方面的任一可能的实现方式中的方法被执行。
第十一方面,提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第一方面至第六方面的任一方面的方法,或第一方面至第六方面的任一方面的任一可能的实现方式中的方法被执行。
第十二方面,提供一种无线通信系统,包括如如第一方面至第六方面的任一方面的方法中涉及到的网元中的一个或多个。
示例性地,上述通信装置为本申请实施例中的相应网元。
可选地,所述相应网元可以为NEF网元、感知网元、第二网元、UE、RAN网元或UDM网元。进一步地可选地,第二网元可以为AMF网元或SMF网元。
附图说明
图1为适用于本申请实施例的一种5G通信系统架构的示例。
图2为一个服务化架构的示意图。
图3为本申请提供的一种通信系统的架构图。
图4(a)为本申请提供的一种对UE进行感知的方法的示意性流程图。
图4(b)为本申请提供的一种对UE进行感知的方法的示意性流程图。
图5为本申请提供的另一种通信系统的架构图。
图6的(a)为本申请提供的一种对UE进行感知的方法的示意性流程图。
图6的(b)为本申请提供的一种对UE进行感知的方法的示意性流程图。
图6的(c)为本申请提供的一种对UE进行感知的方法的示意性流程图。
图7为本申请提供的另一种通信系统的架构图。
图8为本申请提供的另一种对UE进行感知的方法的示意性流程图。
图9为本申请提供的另一种通信系统的架构图。
图10为本申请提供的另一种为UE提供感知业务的方法的示意性流程图。
图11的(a)为本申请提供一种对UE进行感知的方法的示意性流程图。
图11的(b)为本申请提供的一种对UE进行感知的方法的示意性流程图。
图12的(a)为本申请提供的一种对UE进行感知的方法的示意性流程图。
图12的(b)为本申请提供的一种对UE进行感知的方法的示意性流程图。
图13的(a)为本申请提供的对UE进行感知的方法的示意性流程图。
图13的(b)为本申请提供的一种对UE进行感知的方法的示意性流程图。
图14为本申请提供的提对UE进行感知的方法的示意性流程图。
图15为本申请提供的提对UE进行感知的方法的示意性流程图。
图16为本申请提供的对UE进行感知的方法的示意性流程图。
图17为本申请提供的对UE进行感知的方法的示意性流程图。
图18为本申请提供的通信装置的示意性框图。
图19为本申请提供的通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的方法可以应用于长期演进技术(long term evolution,LTE)系统,长期演进高级技术(long term evolution-advanced,LTE-A)系统,增强的长期演进技术(enhanced long term evolution-advanced,eLTE),第五代(the 5th Generation,5G)移动通信系统,新空口(New Radio,NR)系统,也可以扩展到类似的无线通信系统中,如无线保真(wireless-fidelity,WiFi),全球微波互联接入(worldwide interoperability for microwave access,WIMAX),以及第三代合作伙伴计划(3rd generation partnership project,3gpp)相关的蜂窝系统,以及未来通信系统中。
随着移动通信技术的更新换代,5G网络将以灵活高效的方式构建。5G网络可以将通信感知能力作为一种新的能力。示例性地,5G网络的系统架构可以如图1所示。
图1为适用于本申请实施例的一种5G通信系统架构的示例。其中,终端设备以及各网络实体的功能如下面的说明。
终端设备:也可以称为用户设备(user equipment,UE)、接入终端、终端设备单元(subscriber unit)、终端设备站、移动站、移动台(mobile station,MS)、远方站、远程终端、移动设备、用户终端、终端(terminal)、无线通信设备、终端设备代理或终端设备装置。
无线接入网(radio access network,RAN):由多个5G-RAN节点组成的网络,实现无线物理层功能、资源调度和无线资源管理、无线接入控制以及移动性管理功能。5G-RAN通过用户面接口N3和UPF相连,用于传输终端设备的数据;5G-RAN通过控制面接口N2和AMF建立控制面信令连接,用于实现无线接入承载控制等功能。
接入和移动管理功能(access and mobility management function,AMF):主要负责UE的认证、UE移动性管理、网络切片选择以及SMF选择等功能;作为N1和N2信令连接的锚点,并为SMF提供N1/N2 SM消息的路由;维护和管理UE的状态信息。
会话管理功能(session management function,SMF):主要负责UE会话管理的所有控制面功能,包括用户面功能(user plane function,UPF)的选择,互联网协议(internet protocol,IP)地址分配,会话的服务质量(quality of service,QoS)管理,(从PCF)获取策略和计费控制(policy and charging control,PCC)策略等。
UPF:作为PDU会话连接的锚定点,负责对用户设备的数据报文过滤、数据传输/转 发、速率控制、生成计费信息等。
统一数据管理(unified data management,UDM):主要用于管控用户数据,例如,签约信息的管理,包括从统一数据存储库(unified data repository,UDR)获取签约信息并提供给其它网元(例如AMF);为UE生成第三代合作伙伴计划(the third generation partnership project,3GPP)的认证凭证;登记维护当前为UE服务的网元,例如,当前为UE服务的AMF(即serving AMF)。
网络能力开放功能(network exposure function,NEF):用于连接核心网其它内部网元与核心网外部应用服务器之间的交互,以将网络能力信息提供给外部应用服务器,或者将外部应用服务器的信息提供给核心网网元。
应用功能(application function,AF):与核心网网元交互以提供一些服务,例如,与策略和控制功能(policy and control function,PCF)交互以进行业务策略控制,与NEF交互以获取一些网络能力信息或提供应一些应用信息给网络,提供一些数据网络接入点信息给PCF以生成相应的数据业务的路由信息。
认证服务器功能(authentication server function,AUSF),用于UE接入网络时对UE进行安全认证。
网络切片选择功能(network slice selection function,NSSF),为UE选择切片实例集合,为UE确定AMF集合、允许的NSSAI。
策略控制功能(policy control function,PCF):为UE提供配置策略信息,为网络的控制面网元(例如,AMF、SMF)提供管控UE的策略信息。
图1中各网元之间的接口如图1中所示。
图2为一个服务化架构的示意图。如图2,Nausf、Nnef、Npcf、Nudm、Naf、Namf、Nsmf分别为上述AUSF、NEF、PCF、UDM、AF、AMF和SMF提供的服务化接口,用于调用相应的服务化操作。N1、N2、N3、N4,以及N6为接口序列号。
在在上述图1和图2中,各个网元之间的接口名称及功能如下:
1)N1:AMF与终端之间的接口,可以用于向终端传递QoS控制规则等。
2)N2:AMF与RAN之间的接口,可以用于传递核心网侧至RAN的无线承载控制信息等。
3)N3:RAN与UPF之间的接口,主要用于传递RAN与UPF间的上下行用户面数据。
4)N4:SMF与UPF之间的接口,可以用于控制面与用户面之间传递信息,包括控制面向用户面的转发规则、QoS控制规则、流量统计规则等的下发以及用户面的信息上报。
5)N5:AF与PCF之间的接口,可以用于应用业务请求下发以及网络事件上报。
6)N6:UPF与DN的接口,用于传递UPF与DN之间的上下行用户数据流。
7)N7:PCF与SMF之间的接口,可以用于下发协议数据单元(protocol data unit,PDU)会话粒度以及业务数据流粒度控制策略。
8)N8:AMF与UDM间的接口,可以用于AMF向UDM获取接入与移动性管理相关签约数据与鉴权数据,以及AMF向UDM注册终端当前移动性管理相关信息等。
9)N9:UPF和UPF之间的用户面接口,用于传递UPF间的上下行用户数据流。
10)、N10:SMF与UDM间的接口,可以用于SMF向UDM获取会话管理相关签约 数据,以及SMF向UDM注册终端当前会话相关信息等。
11)N11:SMF与AMF之间的接口,可以用于传递RAN和UPF之间的PDU会话隧道信息、传递发送给终端的控制消息、传递发送给RAN的无线资源控制信息等。
12)N12:AMF和AUSF间的接口,可以用于AMF向AUSF发起鉴权流程,其中可携带SUCI作为签约标识;
13)N13:UDM与AUSF间的接口,可以用于AUSF向UDM获取用户鉴权向量,以执行鉴权流程。
14)N15:PCF与AMF之间的接口,可以用于下发终端策略及接入控制相关策略。
15)N35:UDM与UDR间的接口,可以用于UDM从UDR中获取用户签约数据信息。
16)N36:PCF与UDR间的接口,可以用于PCF从UDR中获取策略相关签约数据以及应用数据相关信息。
上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定
本申请实施例中的接入网设备可以是无线接入网设备。
此外,上述“网元”也可以称为实体、设备、装置或模块等,本申请并未特别限定。并且,为了便于理解和说明,下文的部分描述中省略“网元”这一描述,例如,将NEF网元简称NEF,此情况下,“NEF”应理解为NEF网元或NEF实体,以下省略对相同或相似情况的说明。
应理解,图1仅是示例性的一种网络架构,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。
例如,在某些网络架构中,AMF、SMF、PCF以及UDM等网络功能实体都称为网络功能(network function,NF)网元;或者,在另一些网络架构中,AMF、SMF、PCF及UDM等网元的集合都可以称为控制面功能(control Plane function,CPF)网元。
接下来以5G系统(5G system,5GS)中的网元为例介绍具体的方案细节。可以理解的是,当该方案用于LTE系统,或者未来通信系统,方案中的各网元可以替换为具有相应功能的其他网元,本申请对此不作限定。
随着通信技术的演进,在未来的无线通信中,当RAN采用毫米波频段进行无线通信时,RAN将天然拥有类似雷达的感知能力,也即RAN将同时拥有无线通信能力和感知识别的能力。目前,业界只简单定义了使能感知服务的端到端的架构,鉴于当前的技术现状,例如,RAN网元的针对区域(即,per area)的感知精度可能无法满足某些特定应用需求(如L4以上自动驾驶),以及缺乏为单个UE进行感知的技术等,目前,业界还没有针对具体UE进行感知的方案。
为此,本申请提供一种对UE进行感知的方法。
可替换地,在本申请各实施例中,感知服务数据可以称为感知数据、感知业务数据或感知应用数据。
以下所有实施例中的NEF网元也可以替换为网关感知中心(gateway sensing center, GSC)。即,各实施例中由NEF网元执行的操作和/或处理,可以由网关感知中心来执行。其中,网关感知中心用于接收来自感知需求者(sensing client)的感知请求,并向感知网元发送感知请求。
1、AF或应用服务器(application server,AS)请求对UE进行感知。
参见图3,图3为本申请提供的一种通信系统的架构图。
如图3,该通信系统中可以包括NEF网元、UDM/UDR网元、感知网元和第一网元(例如,AMF网元、SMF网元或RAN网元)。
在本申请中,感知网元也即感知功能(sensing function,SF)网元。
基于图3的架构,本申请提供如图4(a)和图4(b)所示的对UE进行感知的流程。
参见图4(a),图4(a)为本申请提供的一种对UE进行感知的方法的示意性流程图。
21、可选地,UE向AF/AS发送感知业务数据请求消息。
22、AF/AS向NEF发送第一感知业务请求消息,第一感知业务请求消息用于请求第一感知业务,第一感知业务是对UE进行感知,或者说,第一感知业务是针对UE进行感知的感知业务。
其中,第一感知业务请求消息包括UE的第一标识。示例性地,可选地,第一标识可以为UE的内部标识,例如,用户永久标识符(subscription permanent identifier,SUPI);第一标识也可以为UE的外部标识,例如,通用公共用户标识(generic public subscription identifier,GPSI)。
可选地,第一感知业务请求消息中还包括业务类型、业务要求、QoS要求和UE的位置信息等信息。
可替换地,在本申请各实施例中,业务类型也即感知业务类型。业务要求也即感知要求。
示例性地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
23、可选地,NEF网元确定第一感知业务被授权。
具体地,NEF网元可以通过UDM网元/UDR网元,获取UE的业务授权信息,并根据UE的业务授权信息,确定UE的第一感知业务被授权。
确定UE的第一感知业务被授权可以理解为确定UE具有感知权限,或者说确定UE具有感知业务的权限。
24、NEF网元向SF网元发送第二感知业务请求消息,SF网元接收来自于NEF网元的第二感知业务请求消息。
其中,第二感知业务请求消息用于请求第一感知业务,第二感知业务请求消息包括UE的第二标识。示例性地,第二标识为UE的内部标识,例如,SUPI。其中,第二标识根据第一标识获得。
可选地,第二感知业务请求消息还包括第一感知业务的业务类型、业务要求和QoS要求等信息。
可选地,NEF网元可以根据UE的第二标识,向GMLC网元请求获取UE的位置信息。具体地,NEF网元向GMLC网元发送位置请求消息,位置请求消息包括UE的第二标识。GMLC网元向NEF网元返回位置响应消息,位置响应消息中包括UE的位置信息。可选地,NEF将UE的位置信息通过第二感知业务请求消息发送给SF网元。
应理解,GMLC网元为网关移动位置中心(gateway mobile location center),可以负责处理外部客户端(external client)位置请求。外部客户端向GMLC请求UE的位置信息,GMLC向网络的定位网元请求UE的位置。获得UE的位置之后,提供给UE位置的请求者或者外部客户端。
另外,示例性地,网络中的定位网元可以为定位管理功能(location management function,LMF),可以实现对UE的定位。
25、SF网元根据第二感知业务请求消息,确定第一网元。
可选地,第一网元可以为AMF网元、SMF网元或RAN网元。
为了描述上的清楚,下文将步骤25中确定的AMF网元称为第一AMF网元,将步骤25中确定的SMF网元称为第一SMF网元,将步骤25中确定的RAN网元称为第一RAN网元。
在一种实现中,第一网元为AMF网元。
如上文所述,在一种可能的实现中,第二感知业务请求消息中包括UE的第二标识。
在这种实现下,SF网元根据UE的第二标识确定AMF网元,具体地,SF网元根据UE的第二标识确定UE的服务AMF的标识,以下记作服务AMF ID。
在另一种可能的实现中,第二感知业务请求消息中还可以包括UE的位置信息。
可选地,如果第二感知业务请求消息中不包括UE的位置信息,SF网元可以获取UE的位置信息。
示例性地,SF网元可以从GMLC、AMF网元或LMF获取UE的位置信息。例如,SF网元向GMLC或AMF或LMF发送位置请求消息,UE位置请求消息中包含UE ID。GMLC或AMF或LMF基于位置请求消息发起对UE的定位,获得UE的位置,并提供给SF网元。
在这种实现下,SF网元根据UE的位置信息,确定AMF,此时,确定的AMF可以是UE的服务AMF,也可以不是UE的服务AMF。
由此可知,在步骤25中确定的第一网元如果为AMF网元,该AMF网元可能为UE的服务AMF,也可能不是UE的服务AMF。
在一种实现中,第一网元为SMF网元。
如上文所述,在一种可能的实现中,第二感知业务请求消息中包括UE的第二标识。
在这种实现下,SF网元根据UE的第二标识确定SMF网元,具体地,SF网元根据UE的第二标识确定UE的服务SMF的标识,以下记作服务SMF ID。
在另一种可能的实现中,第二感知业务请求消息中还可以包括UE的位置信息。
在这种实现下,SF网元根据UE的第二标识和/或UE的位置信息,确定SMF,此时,确定的SMF可以是UE的服务SMF,也可以不是UE的服务SMF。
由此可知,在步骤25中确定的第一网元如果为SMF网元,该SMF网元可能为UE的服务SMF,也可能不是UE的服务SMF。
26、SF网元向第一网元发送感知控制请求消息。其中,感知控制请求消息用于控制RAN网元执行第一感知业务的感知操作。
可选地,在一种实现中,步骤25中SF网元确定第一RAN网元,则在步骤26中,SF网元向第一RAN发送第一感知控制请求消息。
可选地,在另一种实现中,步骤25中SF网元确定第一AMF网元,则在步骤26中,SF网元向第一AMF发送第一感知控制请求消息,由AMF网元进一步向第一RAN网元发送第二感知控制请求消息。
可选地,在另一种实现中,步骤25中SF网元确定第一SMF网元,则在步骤26中,SF网元向第一SMF发送第一感知控制请求消息,由SMF网元进一步向第一RAN网元发送第二感知控制请求消息。
第一RAN网元根据第一控制请求消息或第二控制请求消息,执行第一感知业务的感知操作,获得第一感知业务的第一感知数据。
27、第一网元将第一感知数据上报到SF网元。SF网元通过NEF网元向AF/AS返回第二感知数据。
可选地,第二感知数据根据第一感知数据获得,或者第二感知数据为第一感知数据。
进一步地,还包括可选的步骤28。
28、AF/AF向UE发送第二感知数据。
如上所述,基于图4(a)所示的流程可以提供针对UE进行感知的感知业务。可选地,NEF网元为AF/AS请求的第一感知业务进行授权检查(其中,第一感知业务是对UE进行感知),在确认第一感知业务授权的情况下,提供第一感知业务,可以确保5GS只为有感知权限的UE提供感知业务。因此,该实施例不仅可以对UE进行感知探测,并保障了UE的隐私安全需求。
参见图4(b),图4(b)为本申请提供的一种对UE进行感知的方法的示意性流程图。
71、可选地,UE向AF/AS发送感知业务数据请求消息。
72、AF/AS向NEF发送第一感知业务请求消息,第一感知业务请求消息用于请求第一感知业务。
73、可选地,NEF网元确定第一感知业务被授权。
可选地,NEF网元获取UE的位置信息。
例如,NEF网元向GMLC或LMF发送位置请求消息,位置请求消息包括UE的标识。GMLC或LMF向NEF网元返回位置响应消息,位置响应消息中包括UE的位置信息。可选地,NEF将UE的位置信息通过下面步骤中的第二感知业务请求消息发送给AMF网元。
步骤71-73可以参考上述步骤21-23。
74、NEF网元向AMF网元发送第二感知业务请求消息,第二感知业务请求消息用于请求第一感知业务。
可选地,第二感知业务请求消息中包含UE的位置信息。
可选地,如果第二感知业务请求消息中不包含UE的位置信息,AMF网元可以自己获取UE的位置信息。
例如,AMF网元向GMLC或LMF发送位置请求消息,位置请求消息包括UE的标识。GMLC或LMF向NEF网元返回位置响应消息,位置响应消息中包括UE的位置信息。可 选地,AMF将UE的位置信息通过下面步骤中的第三感知业务请求消息发送给SF网元。
可选地,第二感知业务请求消息还可以包括UE的标识(第二标识)、业务类型、业务要求和QoS要求中的一项或多项。
75、AMF网元向SF网元发送第三感知业务请求消息。
其中,第三感知业务请求消息用于请求第一感知业务,第三感知业务请求消息包括UE的第二标识。示例性地,第二标识为UE的内部标识,例如,SUPI。
可选地,第三感知业务请求消息还包括UE的位置信息、业务类型、业务要求和QoS要求中的一项或多项。
可选地,如果第三感知业务请求消息中未包含UE的位置信息,SF网元可以自己获取UE的位置信息。
例如,SF网元向GMLC或LMF发送位置请求消息,位置请求消息包括UE的标识。GMLC或LMF向NEF网元返回位置响应消息,位置响应消息中包括UE的位置信息。
76、可选地,SF网元根据第三感知业务请求消息,确定第一网元。
可选地,第一网元可以为AMF网元、SMF网元或RAN网元。
步骤76可以参考上述步骤25中,确定第一AMF,或确定第一RAN,或确定第一SMF的内容。
77、SF网元向第一网元发送感知控制请求消息。其中,感知控制请求消息用于控制RAN网元执行第一感知业务的感知操作。
可选地,在一种实现中,步骤76中的第一网元为RAN网元(例如,第一RAN),则在步骤77中,SF网元向第一RAN网元发送第一感知控制请求消息。
可选地,在另一种实现中,步骤76中第一网元为AMF网元(例如,第一AMF),则在步骤77中,SF网元向第一AMF网元发送第一感知控制请求消息,由第一AMF网元进一步向第一RAN网元发送第二感知控制请求消息。
可选地,在另一种实现中,步骤76中SF网元确定第一SMF网元,则在步骤77中,SF网元向第一SMF发送第一感知控制请求消息,由第一SMF网元进一步向第一RAN网元发送第二感知控制请求消息。
RAN网元(也即,第一RAN网元)根据第一控制请求消息或第二控制请求消息,执行第一感知业务的感知操作,获得第一感知业务的第一感知数据。
78、RAN网元将第一感知数据上报到SF网元。SF网元通过AMF网元、NEF网元向AF/AS返回第二感知数据。
可选地,第二感知数据根据第一感知数据获得,或者第二感知数据为第一感知数据。
进一步地,还包括可选的步骤79。
79、AF/AF向UE发送第二感知数据。
如上所述,基于图4(b)所示的流程可以提供针对UE进行感知的感知业务。可选地,NEF网元为AF/AS请求的第一感知业务进行授权检查,并在确认第一感知业务授权的情况下,提供第一感知业务,可以确保5GS只为有感知权限的UE提供感知业务。
在图4(b)所示的流程中,NEF网元为第一感知业务进行授权检查。可选地,也可以由AMF网元为第一感知业务进行授权检查,不作限定。
参见图5,图5为本申请提供的另一种通信系统的架构图。
如图5,该通信系统中可以包括NEF网元、UDM网元/UDR网元、SF网元、第一网元(例如,AMF网元或RAN网元)和GMLC网元。
基于图5的架构,本申请提供如图6所示的对UE进行感知的流程。
参见图6的(a),图6的(a)为本申请提供的一种对UE进行感知的方法的示意性流程图。
31、可选地,UE向AF/AS发送感知业务数据请求消息。
32、AF/AS向NEF发送第一感知业务请求消息。
其中,第一感知业务请求消息用于请求第一感知业务,第一感知业务请求消息包括UE的标识。
可选地,第一感知业务请求消息还包括业务类型、业务要求和QoS要求等信息。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
33、可选地,NEF网元确定第一感知业务被授权。
具体地,NEF网元可以通过UDM网元/UDR网元,获取UE的业务授权信息,并根据业务授权信息,确定UE的第一感知业务被授权。
步骤31-33可以参考上述步骤21-23。
34、可选地,NEF网元根据UE的标识,获取UE的位置信息。
在一种实现中,NEF网元从GMLC获取UE的位置信息。
具体地,NEF网元可以向GMLC网元发送位置请求消息,位置请求消息中包括UE的标识。GMLC网元根据位置请求消息,发起对UE的定位,获得UE的位置。GMLC网元向NEF网元发送位置响应消息,位置响应消息中包括UE的位置信息。
在另一种实现中,NEF网元向LMF网元请求获取UE的位置信息。
具体地,NEF网元向LMF网元发送位置请求消息,位置请求消息中包括UE的标识。LMF网元基于NEF网元的请求,发起对UE的定位,获得UE的位置,并向NEF网元返回UE的位置信息。
在另一种实现中,NEF网元从AMF网元获取UE的位置信息。
具体地,NEF网元向AMF网元发送位置请求消息,位置请求消息中包括UE的标识。AMF网元根据位置请求消息,向LMF网元请求获取UE的位置。LMF网元基于AMF网元的请求,发起对UE的定位,获得UE的位置,并向AMF网元返回UE的位置信息。AMF网元进一步将UE的位置信息提供给NEF网元。
35、NEF网元向SF网元发送第二感知业务请求消息,第二感知业务请求消息用于请求第一感知业务。
可选地,第二感知业务请求消息包括UE的位置信息、UE的标识、业务类型、业务要求和QoS要求中的一项或多项。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
可选地,如果第二感知业务请求消息中不包含UE的位置信息,也即,NEF网元未向SF网元提供UE的位置信息,SF网元可以自己获取UE的位置信息。
示例性地,SF网元可以从GMLC、AMF网元或LMF获取UE的位置信息。例如,SF网元向GMLC或AMF或LMF发送位置请求消息,UE位置请求消息中包含UE ID。GMLC或AMF或LMF基于位置请求消息发起对UE的定位,获得UE的位置,并提供给SF网元。
36、可选地,SF网元分配感知关联标识。
可选地,感知关联标识用于标识UE的感知数据。也即,感知关联标识为UE粒度的标识,用于区分不同UE的感知数据。
可选地,感知关联标识用于标识UE的第一感知业务的感知数据。也即,感知关联标识为感知业务粒度的标识,可以区分一个UE的不同感知业务的感知数据。
或者,感知关联标识还可以为其它粒度,不作限定。
应理解,SF网元在后续通过per UE的数据通道上报UE的感知数据时,可以不需要感知关联标识,但是可能需要UE的位置信息。通过该per UE的数据通道上报的数据,接收端即可知道为该UE的感知数据。
37、SF网元向第一网元发送感知控制请求消息。
可选地,感知控制请求消息中包括UE的位置信息和/或感知关联标识。
根据上文的说明可知,UE的位置信息用于RAN执行感知操作,从而使RAN不需要根据UE的标识进行感知,可以保护UE的隐私。
感知关联标识用于在上报感知数据时携带,从而使SF以及后续节点能够识别该感知数据属于UE或者属于UE的第一感知业务。
38、SF网元接收来自于第一网元的所述第一感知业务的第一感知数据。可选地,如果步骤37中的感知控制请求消息中包含感知关联标识,则SF网元还接收感知关联标识。
可选地,还包括可选的步骤39。
39、UE接收第一感知业务的第二感知数据。
具体地,SF网元在获得第一感知业务的第一感知数据之后,通过NEF网元向AF/AS发送第二感知数据。可选地,第二感知数据根据第一感知数据获得,或者,第二感知数据为第一感知数据。进一步地,AF/AS向UE发送第二感知数据。
如上所述,基于图6的(a)中所示的流程,可以提供针对UE进行感知的感知业务。可选地,NEF网元为AF或AS请求的第一感知业务进行授权检查,以及可选地,NEF网元将针对UE ID的感知转化为针对该UE的位置点的感知,不仅可以确保5GS仅对有感知权限的UE提供感知业务,还能避免RAN网元涉及用户安全隐私,加强了感知业务的隐私保护。
参见图6的(b),图6的(b)为本申请提供的一种对UE进行感知的方法的示意性流程图。
81、可选地,UE向AF/AS发送感知业务数据请求消息。
82、AF/AS向NEF发送第一感知业务请求消息。
其中,第一感知业务请求消息用于请求第一感知业务,第一感知业务请求消息包括UE的标识。
可选地,第一感知业务请求消息还包括业务类型、业务要求和QoS要求等信息。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
83、可选地,NEF网元确定第一感知业务被授权。
具体地,NEF网元可以通过UDM网元/UDR网元,确定UE的第一感知业务被授权。
84、可选地,NEF网元根据UE的标识,获取UE的位置信息。
示例性地,NEF网元可以向GMLC网元、LMF网元或AMF网元获取UE的位置信息。
例如,NEF网元可以向GMLC网元或LMF网元发送位置请求消息,位置请求消息中包括UE的标识。GMLC网元或LMF网元根据位置请求消息,发起对UE的定位,获得UE的位置。GMLC网元或LMF网元向NEF网元发送位置响应消息,位置响应消息中包括UE的位置信息。
或者,NEF网元向AMF网元获取UE的位置信息。
具体地,NEF网元向AMF网元发送位置请求消息,位置请求消息中包括UE的标识。AMF网元根据位置请求消息,向LMF网元请求获取UE的位置。LMF网元基于AMF网元的请求,发起对UE的定位,获得UE的位置,并向AMF网元返回UE的位置信息。AMF网元进一步将UE的位置信息提供给NEF网元。
步骤81-84可以参考上述步骤31-34。
85、NEF网元向AMF网元发送第二感知业务请求消息,第二感知业务请求消息用于请求第一感知业务。
可选地,第二感知业务请求消息包括UE的位置信息、UE的标识、业务类型、业务要求和QoS要求中的一项或多项。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
可选地,如果第二感知业务请求消息中不包含UE的位置信息,也即,NEF网元未向AMF网元提供UE的位置信息,AMF网元可以自己获取UE的位置信息。
示例性地,AMF网元可以从GMLC或LMF获取UE的位置信息。
例如,AMF网元向GMLC或LMF发送位置请求消息,UE位置请求消息中包含UE ID。GMLC或LMF基于位置请求消息发起对UE的定位,获得UE的位置,并提供给AMF网元。
86、AMF网元向SF网元发送第三感知业务请求消息,第三感知业务请求消息用于请求第一感知业务。
可选地,第三感知业务请求消息包括UE的位置信息、UE的标识、业务类型、业务要求和QoS要求中的一项或多项。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分 辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
可选地,如果第三感知业务请求消息中不包含UE的位置信息,也即,AMF网元未向SF网元提供UE的位置信息,SF网元可以自己获取UE的位置信息。
示例性地,SF网元可以向GMLC或LMF发送位置请求消息,位置请求消息包括UE的标识。GMLC或LMF向NEF网元返回位置响应消息,位置响应消息中包括UE的位置信息。
87、可选地,SF网元分配感知关联标识。
感知关联标识可以参考上文步骤36的说明,这里不予赘述。
88、SF网元向第一网元发送感知控制请求消息。
可选地,感知控制请求消息中包括UE的位置信息和/或感知关联标识。
89、SF网元接收来自于第一网元的所述第一感知业务的第一感知数据。可选地,如果步骤87中的感知控制请求消息中包含感知关联标识,则SF网元还接收感知关联标识。
可选地,上述第一网元可以为AMF网元、SMF网元或RAN网元。
可选地,如果第一网元为RAN网元,SF网元向RAN网元发送第一感知控制请求消息。
可选地,如果第一网元为AMF网元,SF网元向该AMF发送第一感知控制请求消息,由该AMF网元进一步向RAN网元发送第二感知控制请求消息。
可选地,如果第一网元为SMF网元,SF网元向SMF网元发送第一感知控制请求消息,由SMF网元进一步向RAN网元发送第二感知控制请求消息。
RAN网元根据第一控制请求消息或第二控制请求消息,执行第一感知业务的感知操作,获得第一感知业务的第一感知数据。
RAN网元将第一感知数据上报到SF网元,SF网元通过NEF网元向AF/AS返回第二感知数据。可选地,AF/AS向UE发送第二感知数据。
如上所述,基于图6的(b)中所示的流程,可以提供针对UE进行感知的感知业务。并且,可选地,NEF网元为AF或AS请求的第一感知业务进行授权检查,以及可选地,NEF网元将针对UE ID的感知转化为针对该UE的位置点的感知,不仅可以确保5GS仅对有感知权限的UE提供感知业务,还能避免RAN网元涉及用户安全隐私,加强了感知业务的隐私保护。
在上述图6的(a)和图6的(b)中,NEF网元为AF/AS请求的第一感知业务进行授权检查。可选地,作为另一种实现,也可以由AMF网元为AF/AS请求的第一感知业务进行授权检查,如图6的(c)。
参见图6的(c),图6的(c)为本申请提供的一种对UE进行感知的方法的示意性流程图。
91、可选地,UE向AF/AS发送感知业务数据请求消息。
92、AF/AS向NEF发送第一感知业务请求消息。
其中,第一感知业务请求消息用于请求第一感知业务,第一感知业务请求消息包括UE的标识。
可选地,第一感知业务请求消息还包括业务类型、业务要求和QoS要求等信息。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
93、可选地,NEF网元获取UE的位置信息。
94、NEF网元向AMF网元发送第二感知业务请求消息,第二感知业务请求消息用于请求第一感知业务。
可选地,第二感知业务请求消息包括UE的位置信息、UE的标识、业务类型、业务要求和QoS要求中的一项或多项。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
95、可选地,AMF网元确定第一感知业务被授权。
示例性地,AMF网元可以向UDM/UDR网元请求获取UE的业务授权信息,并根据业务授权信息确认第一感知业务被授权。
可选地,如果第二感知业务请求消息中不包含UE的位置信息,也即,NEF网元未向AMF网元提供UE的位置信息,AMF网元可以自己获取UE的位置信息。
示例性地,AMF网元可以从GMLC或LMF获取UE的位置信息。
例如,AMF网元向GMLC或LMF发送位置请求消息,UE位置请求消息中包含UE ID。GMLC或LMF基于位置请求消息发起对UE的定位,获得UE的位置,并提供给AMF网元。
96、AMF网元向SF网元发送第三感知业务请求消息,第三感知业务请求消息用于请求第一感知业务。
可选地,第三感知业务请求消息包括UE的位置信息、UE的标识、业务类型、业务要求和QoS要求中的一项或多项。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
可选地,如果第三感知业务请求消息中不包含UE的位置信息,也即,AMF网元未向SF网元提供UE的位置信息,SF网元可以自己获取UE的位置信息。
示例性地,SF网元可以向GMLC或LMF发送位置请求消息,位置请求消息包括UE的标识。GMLC或LMF向NEF网元返回位置响应消息,位置响应消息中包括UE的位置信息。
97、可选地,SF网元分配感知关联标识。
98、SF网元向第一网元发送感知控制请求消息。
可选地,感知控制请求消息中包括UE的位置信息和/或感知关联标识。
99、SF网元接收来自于第一网元的所述第一感知业务的第一感知数据。可选地,如果步骤98中的感知控制请求消息中包含感知关联标识,则SF网元还接收感知关联标识。
可选地,第一网元可以为AMF网元、RAN网元或SMF网元。
进一步地,SF网元通过AMF网元和NEF网元向AF/AS返回第二感知数据。可选地,AF/AS向UE发送第二感知数据。
如上所述,基于图6的(c)中所示的流程,可以提供针对UE进行感知的感知业务。并且,可选地,AMF网元为AF或AS请求的第一感知业务进行授权检查,以及可选地,NEF网元或AMF网元或SF网元将针对UE ID的感知转化为针对该UE的位置点的感知,不仅可以确保5GS仅对有感知权限的UE提供感知业务,还能避免RAN网元在执行对UE的感知时涉及UE的安全隐私,加强了感知业务的隐私保护。
2、UE直接向5GS请求感知业务数据。
参见图7,图7为本申请提供的另一种通信系统的架构图。
如图7,该通信系统中可以包括SF网元和第二网元(AMF网元或SMF网元)。可选地,还包括UDM/UDR网元。
基于图7的架构,本申请提供图8所示的为UE提供感知业务的流程。
参见图8,图8为本申请提供的另一种为UE提供感知业务的方法的示意性流程图。
41、第二网元接收来自于UE的第一请求消息。其中,第一请求消息用于请求感知业务。
可选地,第一请求消息中携带感知指示信息,感知指示信息用于指示所述第一请求消息请求感知业务。
可选地,第一请求消息中还包括UE ID、业务类型、业务要求和QoS要求中的一项或多项。
可选地,业务要求可以包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
可选地,第二网元为AMF网元或SMF网元。
42、可选地,第二网元确定UE的感知业务被授权。
在一种实现中,第二网元保存了UE的签约信息,签约信息中包含UE的业务授权信息。第二网元根据UE的业务授权信息,确定UE的感知业务被授权。
在一种实现方式中,如果第二网元没有保存UE的签约信息,第二网元可以向UDM/UDR网元请求获取UE的签约信息,进而获得UE的业务授权信息。第二网元根据UE的业务授权信息,确定UE的感知业务被授权。
可选地,业务授权信息包括第一感知授权指示信息和/或第一感知授权参数。
其中,第一感知授权指示信息用于指示UE的感知业务被授权。
可选地,第一感知授权参数包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识。
示例性地,感知请求者类型可以为公安、消防、企业或者个人等。针对不同的感知请 求者类型,RAN网元在执行感知时可能采取不同的优先级。
43、第二网元向UE发送第一请求消息的响应消息,其中,响应消息用于指示UE的感知业务被授权。
可选地,响应消息中包括感知接受指示信息,感知接受指示信息用于指示接受UE的感知业务。也即,感知接受指示信息用于指示对UE的感知业务授权。
可选地,响应消息中还包括感知网元(例如,SF网元)的地址信息。
在一种实现中,响应消息中包括感知网元的地址信息,此时,步骤43之后执行步骤44-45。
实现方式1
44、UE根据SF网元的地址信息,通过用户面连接向SF网元发送第一感知业务请求消息。
其中,第一感知业务请求消息用于请求第一感知业务。第一感知业务请求消息中包括UE的标识。可选地,第一感知业务请求消息还可以包括业务类型、业务要求和QoS要求中的一项或多项。
45、UE接收来自于SF网元的第一感知业务的感知数据(例如,上述实施例中的第二感知数据)。
在另一种实现中,响应消息中包括感知接受指示信息,但不包括感知网元的地址信息,此时,步骤43之后执行步骤46-47。
实现方式2
46、UE向第二网元发送第一感知业务请求消息,第一感知业务请求消息用于请求第一感知业务。
可选地,第一感知业务请求消息中包括UE的标识、业务类型、业务要求和QoS要求中的一项或多项。
47、第二网元向SF网元发送第二感知业务请求消息,第二感知业务请求消息用于请求第一感知业务。可选地,第二感知业务请求消息中包括UE的标识。
可选地,第二感知业务请求消息中还包括业务类型、业务要求和QoS要求中的一项或多项。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
48、UE接收来自于SF网元的第一感知业务的第二感知数据。
如上所述,图8所示的流程提供了一种为UE提供感知业务的方法。第二网元(AMF网元或SMF网元)为UE的感知业务进行授权检查,在确定UE的感知业务授权的情况下,指示UE其感知业务授权,并可以指示感知网元的地址信息。进一步地,UE可以根据感知网元的地址信息,通过用户面连接直接向感知网元请求第一感知业务,并从感知网元接收第一感知业务的第二感知数据(如实现方式1的流程)。或者,UE通过控制面向SF网元请求第一感知业务,并从感知网元接收第一感知业务的第二感知数据(如实现方式2的流程)。该实施例不仅可以确保5GS仅对有感知权限的UE提供感知业务,还能避免加 强了感知业务的隐私保护。
参见图9,图9为本申请提供的另一种通信系统的架构图。
如图9,该通信系统中可以包括第二网元(AMF网元或SMF网元)、UDM/UDR网元和RAN网元。
基于图9的架构,本申请提供图10所示的为UE提供感知业务的流程。或者说,图10所示的流程是对UE进行感知的方法的示意性流程图。
参见图10,图10为本申请提供的另一种为UE提供感知业务的方法的示意性流程图。
51、UE向第二网元发送第一请求消息。其中,第一请求消息用于请求感知业务。
可选地,第一请求消息中携带感知指示信息,感知指示信息用于指示第一请求消息用于请求感知业务。
可选地,第一请求消息中还包括UE的标识、业务类型、业务要求和QoS要求中的一项或多项。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
可选地,第二网元为AMF网元或SMF网元。
52、可选地,第二网元确定UE的感知业务被授权。
示例性地,在一种实现方式中,第二网元可以通过UDM/UDR网元,确定UE的感知业务被授权。具体地,第二网元从UDM/UDR网元获取UE的签约信息,签约信息中包含UE的业务授权信息。第二网元根据UE的业务授权信息,确定UE的感知业务被授权。
53、第二网元向UE发送第一请求消息的响应消息,其中,响应消息用于指示UE的感知业务被授权。
可选地,响应消息中包括感知接受指示信息,感知接受指示信息用于指示接受UE的感知业务。
54、第二网元向RAN网元发送第二感知授权指示信息和/或第二感知授权参数。
其中,第二感知授权指示信息和/或第二感知授权参数是根据UE的业务授权信息确定的。如上文所述,业务授权信息可以包括第一感知授权指示信息和/或第一感知授权参数。具体地,第二感知授权指示信息可以为第一感知授权指示信息。第二感知授权参数是根据第一感知授权参数确定的。其中,第一感知授权参数可以参见步骤42中的示例。
可选地,第二感知授权参数包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
55、UE向RAN网元发送感知请求消息。
其中,感知请求消息用于为UE的第一感知业务请求感知资源,或者感知请求消息用于请求RAN网元执行对UE的感知。
可选地,感知请求消息中包括UE的标识、业务类型、业务要求和QoS要求中的一项或多项。
可选地,业务要求包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
RAN网元根据步骤54中接收到的第二感知授权指示信息和/或第二感知授权参数,对UE的第一感知业务进行授权检查,在确认对UE的第一感知业务授权的情况下,向UE发送感知资源指示信息。
56、UE接收来自于RAN网元的感知资源指示信息,感知资源指示信息用于指示UE的第一感知业务的感知资源。
57、UE根据感知资源,获得第一感知业务的第一感知数据。
在一种可能的实现中,UE基于感知资源发送感知信号,并接收感知信号的回波信号进行感知,获得第一感知业务的第一感知数据。
在另一种可能的实现中,UE根据感知资源接收来自于RAN网元的感知信号的回波信号并进行感知,获得第一感知业务的第一感知数据。
在另一种可能的实现中,UE基于感知资源发送感知信号,RAN网元接收感知信号的回波信号并进行感知,获得第一感知业务的第一感知数据。RAN网元向UE发送第一感知数据,UE接收来自于RAN网元的第一感知数据。
可替换地,上述回波信号还可以称为反射信号。
此外可选地,UE在获得第一感知数据之后,还可以向感知网元发送第一感知数据,第一感知数据可供感知网元使用,如下面的步骤58。
另外,考虑到UE自身处理数据的能力有限,UE在获得第一感知数据之后,还可以向感知网元发送第一感知数据,并接收来自于感知网元的第二感知数据。其中,第二感知数据是对第一感知数据处理获得的,如步骤58-59。
58、UE向感知网元发送第一感知数据。
59、UE接收来自于感知网元的第二感知数据。
如上所示,图10所示的流程提供了一种为UE提供感知业务的方法。第二网元(AMF网元或SMF网元)为UE的感知业务进行授权检查,在确定UE的感知业务授权的情况下,向UE指示其感知业务授权。进一步地,UE向RAN网元获得感知资源并基于感知资源进行感知,获得感知数据。或者,UE基于感知资源发送感知信号,由RAN网元接收感知信号并获得感知数据,RAN网元进一步将获得感知数据提供给UE。或者,UE基于感知资源接收来自于RAN网元的感知信号并进行感知,获得感知数据。
该实施例避免UE从5GC请求感知数据,使得UE可以基于自身的感知业务需求,与RAN网元协作来执行感知,从而获得感知数据。这种实现方式可以使UE快速、高效地感知获得感知数据。
以上,对本申请的实施例进行了详细说明,下面给出一些基于本申请的对UE进行感知的方法的示例。
参见图11的(a),图11的(a)为本申请提供的一种对UE进行感知的方法的示意性流程图。
301、可选地,当UE存在感知需求时,通过应用层消息向AF或者AS发送感知业务 数据请求消息。
302、AF或AS基于来自于UE的感知需求或者自身的感知需求,向NEF发送感知业务请求消息1。其中,感知业务请求消息1中携带UE的信息。
示例性地,UE的信息可以为UE ID。具体地,这里的UE ID可以为外部标识,也可以为内部标识。
可选地,感知业务请求消息1还包括感知业务的业务类型、感知要求和QoS要求等信息。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
303、NEF基于感知业务请求消息1,向UDM或UDR发送感知授权请求消息。
其中,感知授权请求消息用于请求获取UE的业务授权信息。感知授权请求消息1中包括UE的信息。可选地,还包括业务类型和业务要求。可选地,如果UE ID为外部标识,NEF将外部标识转换为内部标识。
304、UDM或UDM根据UE的业务授权信息,向NEF返回感知授权响应消息。感知授权响应消息用于指示UE的感知业务被授权。
可选地,感知业务授权响应消息包括业务授权指示信息,业务授权指示信息用于指示UE的感知业务被授权。
可选地,UDM或UDR还将UE的外部标识转换为内部标识。
应理解,通过步骤303-304,NEF网元可以确定UE的感知业务被授权。
305、可选地,NEF选择感知网元。
示例性地,NEF网元根据感知业务请求消息1,选择支持第一感知业务的感知网元。
其中,感知网元支持第一感知业务表示感知网元支持第一感知业务的业务类型、业务要求以及QoS要求等。
306、NEF向感知网元发送感知业务请求消息2。
其中,感知业务请求消息2中包括UE的标识。具体地,可以为UE的内部标识。可选地,感知业务请求消息2中还可以包括业务类型、业务要求和QoS要求中的一项或多项。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
307、感知网元向UDM发送第一消息,第一消息用于请求UE的服务AMF。其中,第一消息中包括UE的内部标识。
308、UDM向感知网元返回第二消息,第二消息中包括UE的服务AMF的标识,以下记作服务AMF ID。
可选地,感知网元可以建立感知网元与AMF之间的Nx接口的感知信令连接,该感知信令连接用于感知网元和AMF网元之间交互UE的感知业务的信令,如步骤309-310。
309、感知网元向AMF发送UE感知上下文建立请求消息,UE感知上下文建立请求消息中携带UE ID。
310、AMF向感知网元返回UE感知上下文建立响应消息。
可选地,如果UE处于空闲态,AMF寻呼UE,使其进入连接态。此时,RAN和AMF之间建立有N2信令连接。
在本申请各实施例中,Nx接口是指感知网元与AMF之间的接口,也可以定义为第一接口。可以理解的是,第一接口的具体名称可以不作限定,在5G系统或者未来的通信系统中可以采用其它的名称,不作限定。
可选地,感知网元可以调用AMF现有的消息传输服务来与RAN进行信令交互。例如,N1N2MessageTransfer,N2InfoNotify,NonUeN2MessageTransfer或NonUeN2InfoNotify等。即此时,AMF现有的消息传输服务用于感知网元和AMF之间的感知信令的交互。此时,步骤309-310为可选步骤。
311、感知网元向RAN发送感知控制请求消息。
可选地,感知网元可以直接向RAN发送感知控制请求消息1。
或者,感知网元通过Nx接口的感知信令向AMF发送感知控制请求消息1,再由AMF通过N2接口信令向RAN发送感知控制请求消息1。
其中,感知控制请求消息1中携带感知控制参数。
可选地,如果UE处于空闲态,AMF在通过Nx接口的感知信令收到来自感知网元的感知控制请求消息后,寻呼UE,使其进入连接态。此时,RAN和AMF之间建立有N2信令连接。
示例性地,感知控制参数可以包括如下一项或多项:
感知距离、感知角度、感知范围、感知速度范围、感知距离分辨率、感知速度分辨率、感知测角精度(或者,感知角度分辨率)和感知时长等。
其中,可选地,感知控制参数是由感知网元根据感知业务的业务类型、感知要求和QoS要求等确定的。或者,感知控制参数是由感知网元从感知业务请求消息1中获取的。
312、RAN根据感知控制请求消息1执行感知操作,获得第一感知业务的第一感知数据。
313、RAN向感知网元发送第一感知数据。
可选地,包括步骤314。
314、感知网元对第一感知数据进行感知计算,获得第二感知数据。
315、感知网元向AF或AS返回第二感知数据。
可选地,感知网元对来自于RAN的第一感知数据不作处理,也即,第二感知数据即为第一感知数据。
可选地,还可以包括步骤316。
316、AF或AS向UE返回第二感知数据。
参见图11的(b),图11的(b)为本申请提供的一种对UE进行感知的方法的示意性流程图。
1001、可选地,当UE存在感知需求时,通过应用层消息向AF或者AS发送感知业务数据请求消息。
1002、AF或AS基于来自于UE的感知需求或者自身的感知需求,向NEF发送感知业务请求消息1。
1003、NEF基于感知业务请求消息1,向UDM/UDR发送感知授权请求消息。
1004、UDM或UDM根据UE的业务授权信息,向NEF返回感知授权响应消息。感知授权响应消息用于指示UE的感知业务被授权。
也即,感知授权响应消息本身用于指示UE的感知业务被授权。
可选地,感知业务授权响应消息包括业务授权指示信息,业务授权指示信息用于指示UE的感知业务被授权。
步骤1001-1004可以参见步骤301-304,为了避免赘述,这里简单说明。
1005、NEF向AMF发送感知业务请求消息2。
其中,感知业务请求消息2中包括UE的标识。具体地,可以为UE的内部标识。可选地,感知业务请求消息2中还可以包括业务类型、业务要求和QoS要求中的一项或多项。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
1006、AMF网元向感知网元发送感知业务请求消息3。
其中,感知业务请求消息3中包括UE的标识。可选地,感知业务请求消息3中还可以包括业务类型、业务要求和QoS要求中的一项或多项。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
1007、感知网元向UDM发送第一消息,第一消息用于请求UE的服务AMF。其中,第一消息中包括UE的标识。
1008、UDM向感知网元返回第二消息,第二消息中包括UE的服务AMF的标识,以下记作服务AMF ID。
可选地,感知网元可以建立感知网元与AMF之间的Nx接口的感知信令连接,该感知信令连接用于感知网元和AMF网元之间交互UE的感知业务的信令,如步骤1109-1110。
1009、感知网元向AMF发送UE感知上下文建立请求消息,UE感知上下文建立请求消息中携带UE ID。
1010、AMF向感知网元返回UE感知上下文建立响应消息。
应理解,步骤1009-1010为可选步骤。
也即,感知网元和AMF之间可以采用现有的消息传输服务交互感知信令,而不建立专用的感知信令连接。
1011、感知网元向第一网元(例如,RAN网元或AMF网元)发送感知控制请求消息。
其中,感知控制请求消息中携带感知控制参数。
示例性地,感知控制参数可以包括如下一项或多项:
感知距离、感知角度、感知范围、感知速度范围、感知距离分辨率、感知速度分辨率、感知测角精度(或者,感知角度分辨率)和感知时长等。
其中,可选地,感知控制参数是由感知网元根据感知业务的业务类型、感知要求和QoS要求等确定的。或者,感知控制参数是由感知网元从感知业务请求消息中获取的。
1012、感知网元接收来自于第一网元的第一感知业务的第一感知数据。
可选地,第一网元可以为AMF网元、SMF网元或RAN网元。
1013、感知网元向AF或AS返回第二感知数据。
可选地,第二感知数据根据第一感知数据获得,或者,第二感知数据为第一感知数据获得。
可选地,还可以包括步骤1014。
1014、AF或AS向UE返回第二感知数据。
图11的(b)的其它说明可以参考图11的(a)中相应步骤的说明,这里不再赘述。
参见图12的(a),图12的(a)为本申请提供的另一种对UE进行感知的方法的示意性流程图。
401、可选地,当UE存在感知需求时,通过应用层消息向AF或者AS发送感知业务数据请求。
402、AF或AS基于来自于UE的感知需求或者自身的感知需求,向NEF发送感知业务请求消息1。
其中,感知业务请求消息1中包括UE ID。可选地,还包括业务类型、业务要求和QoS要求中的一项或多项。
403、NEF基于感知业务请求消息1,向UDM或UDR发送感知授权请求消息。
可选地,感知授权请求消息中包括UE ID。可选地,还包括业务类型、业务要求和QoS要求等信息。
404、UDM或UDM根据UE的业务授权信息,向NEF返回感知授权响应消息。
其中,感知授权响应消息用于指示UE的感知业务被授权。
可选地,感知业务授权响应消息包括业务授权指示信息,业务授权指示信息用于指示UE的感知业务被授权。
可选地,如果感知授权请求消息中包括UE ID为UE的外部标识,则UDM或UDR还将UE的外部标识转换为内部标识。
应理解,步骤403-404为NEF通过UDM/UDR网元对AF/AS请求的感知业务进行授权检查的过程。在步骤404中,NEF根据授权响应消息或者业务授权指示信息,确定UE的感知业务被授权。
405、可选地,NEF选择感知网元。
以上步骤401-405可以参考图11中的步骤301-305的详细说明,为了避免累赘,这些步骤简单说明。
可选地,NEF获取UE的位置信息,即步骤406-407为可选步骤。
406、NEF向GMLC请求UE的位置信息。
407、GMLC向NEF返回UE的位置信息。
具体地,NEF向GMLC发送消息1,消息1中包括UE ID。GMLC在接收到来自于 NEF的用于请求UE的位置的消息1之后,发起针对该UE的定位,获取该UE的位置。GMLC向NEF返回消息2,消息2中包括UE的位置信息。
408、NEF向感知网元发送感知业务请求消息2,以请求对UE进行感知。
可选地,感知业务请求消息2中携带UE的位置信息。可选地,还可以携带UE ID、业务类型、业务要求和QoS要求等。
可见,通过上述步骤406-408,NEF将针对UE ID的感知转化为针对UE的位置点的感知。
409、感知网元向UDM发送消息3,消息3用于请求UE的服务AMF。
其中,消息3中携带UEID(内部标识)。
410、UDM向感知网元返回消息4,消息4中携带UE的服务AMF的ID。
可选地,作为步骤405-407的另一种替换方案,NEF接收到感知授权响应消息之后,直接向感知网元发送感知业务请求消息2,感知业务请求消息2中包含UE的标识,但不包含UE的位置信息。也即,上述流程不执行步骤406-407。感知网元在接收到感知业务请求消息2之后,从GMLC请求UE的位置信息,如步骤411。也即,在步骤406-407未执行的情况下,执行步骤411。
411、感知网元从GMLC或AMF或LMF获取UE的位置信息。
具体地,感知网元向GMLC或AMF或LMF发送位置请求消息,UE位置请求消息中包含UE ID。GMLC或AMF或LMF基于位置请求消息发起对UE的定位,获得UE的位置,并提供给感知网元。
412、可选地,感知网元分配感知关联ID。
其中,感知关联ID用于标识UE的感知数据。进一步地,感知网元可以通过Nx接口的per node信令和N2接口的per node信令将感知关联ID发送给RAN。
后续,RAN在上报该UE的感知数据时使用该感知关联ID,从而将感知数据和该UE关联起来。
可选地,如果感知网元和AMF之间的Nx接口不存在用于感知的信令连接,感知网元建立与AMF之间的Nx接口的感知信令连接,如下面的步骤412-413。
413、感知网元向AMF发送感知上下文建立请求消息。
414、AMF向感知网元返回感知上下文建立响应消息。
可选地,该Nx接口的感知信令连接可以是per UE的信令连接,也可以是per Node信令连接。
感知网元通过Nx接口的per node信令和N2接口的per node信令,控制RAN对UE执行感知。
另外,如果在后续步骤415中,感知网元不通过per UE信令发送感知控制请求消息1,即感知控制请求消息1通过Nx接口的per node信令和N2接口的per node信令发送给RAN,则Nx接口的per node信令和N2接口的per node信令中携带UE的位置信息和感知关联ID。
415、感知网元向AMF发送感知控制请求消息1。
可选地,感知网元可以直接向RAN发送感知控制请求消息1。
或者,感知网元通过Nx接口的感知信令向AMF发送感知控制请求消息1,再由AMF 向通过N2接口信令向RAN发送感知控制请求消息1。
其中,感知控制请求消息1携带感知控制参数。
可选地,感知网元还向AMF发送负责对UE进行感知的RAN的信息。也即,感知网元向AMF指示RAN的信息,以使AMF确定对应的RAN。
示例性地,RAN的信息可以为RAN ID或E-UTRAN小区全局标识符(E-UTRAN cell global identifier,ECGI)。其中,E-UTRAN表示演进的通用陆基无线接入网(evolved universal terrestrial radio access network)。
可选地,感知网元还向AMF发送需要感知的UE的位置信息,以使AMF根据UE的位置信息确定对应的RAN。
AMF根据感知网元指示的RAN的信息,或者UE的位置信息,确定对应的RAN。
416、可选地,如果AMF发现其与RAN之间的N2接口不存在用于感知的信令连接,则建立N2接口的感知信令连接。
可选地,N2接口的感知信令连接可以是per Node的N2信令连接或者per UE的N2信令连接。可选地,如果在下面的步骤417中,AMF是通过per UE信令发送感知控制请求消息1,且UE处于空闲态,则AMF在通过Nx接口的感知信令接收到来自感知网元的感知控制请求消息后,寻呼UE,使其进入连接态。此时,RAN和AMF之间建立有per UE的N2信令连接。
417、AMF向RAN发送感知控制请求消息1。
其中,感知控制请求消息1中包括UE的位置信息。可选地,还可以包括UE ID、业务类型、业务要求和QoS要求等信息。
RAN基于感知控制请求消息1,对UE进行感知,获取第一感知数据。或者说,RAN基于感知控制请求消息1,对UE的位置信息所指示的位置进行感知,获取第一感知数据。因此,在该实施例中,针对UE ID的感知被转换为针对UE的位置点的感知,可以保护UE的隐私安全。
418、RAN向感知网元发送第一感知数据,可选地,还携带感知关联ID,以使感知网元识别第一感知数据为该UE的感知数据。
419、感知网元向AF或AS返回第二感知数据。
可选地,感知网元对来自于RAN的第一感知数据不作处理,也即,第二感知数据即为第一感知数据。
可选地,还可以包括步骤420。
420、AF或AS向UE返回感知应用数据。
参见图12的(b),图12的(b)为本申请提供的一种对UE进行感知的方法的示意性流程图。
2001、可选地,当UE存在感知需求时,通过应用层消息向AF或者AS发送感知业务数据请求。
2002、AF或AS基于来自于UE的感知需求或者自身的感知需求,向NEF发送感知业务请求消息1。
2003、NEF基于感知业务请求消息1,向UDM或UDR发送感知授权请求消息。
2004、UDM或UDM根据UE的业务授权信息,向NEF返回感知授权响应消息。
其中,感知授权响应消息用于指示UE的感知业务被授权。
可选地,感知业务授权响应消息包括业务授权指示信息,业务授权指示信息用于指示UE的感知业务被授权。
应理解,通过步骤2001-2004,NEF网元确定UE的感知业务被授权。
可选地,NEF获取UE的位置信息。
2005、NEF向GMLC请求UE的位置信息。
2006、GMLC向NEF返回UE的位置信息。
具体地,NEF向GMLC发送位置请求消息,位置请求消息中包括UE ID。GMLC基于NEF的位置请求消息,发起针对该UE的定位,获取该UE的位置。GMLC向NEF返回位置请求消息的响应消息,响应消息中包括UE的位置信息。
2007、NEF向AMF发送感知业务请求消息2,以请求对UE进行感知。
可选地,感知业务请求消息2中携带UE的位置信息、UE ID、业务类型、业务要求和QoS要求等。
2008、AMF向感知网元发送感知业务请求消息3,以请求对UE进行感知。
可选地,感知业务请求消息3中携带UE的位置信息。可选地,还可以携带UE ID、业务类型、业务要求和QoS要求等。
2009、感知网元向UDM发送消息1,消息1用于请求UE的服务AMF。
其中,消息1中携带UEID。
2010、UDM/UDR向感知网元返回消息2,消息2中携带UE的服务AMF的ID。
可选地,如果感知业务请求消息3中不包含UE的位置信息,感知网元可以自己获取UE的位置信息,如下面的步骤2011。
2011、可选地,感知网元从GMLC或AMF或LMF获取UE的位置信息。
具体地,感知网元向GMLC或AMF或LMF发送位置请求消息,UE位置请求消息中包含UE ID。GMLC或AMF或LMF基于位置请求消息发起对UE的定位,获得UE的位置,并提供给感知网元。
2012、可选地,感知网元分配感知关联ID。
可选地,如果感知网元和AMF之间的Nx接口不存在用于感知的信令连接,感知网元建立与AMF之间的Nx接口的感知信令连接,如下面的步骤2013-2014。
2013、感知网元向AMF发送感知上下文建立请求消息。
2014、AMF向感知网元返回感知上下文建立响应消息。
其中,该Nx接口的感知信令连接可以是per UE的信令连接,也可以是per Node信令连接。感知网元通过Nx接口的per node信令和N2接口的per node信令,控制RAN对UE执行感知。
其中,在后续的步骤2015中,如果感知网元不是通过per UE信令发送感知控制请求消息1,即感知控制请求消息1通过Nx接口的per node信令和N2接口的per node信令发送给RAN,则Nx接口的per node信令和N2接口的per node信令中携带UE的位置信息和感知关联ID。
2015、感知网元向AMF发送感知控制请求消息1。
可选地,感知网元可以直接向RAN发送感知控制请求消息1。
或者,感知网元通过Nx接口的感知信令向AMF发送感知控制请求消息1,再由AMF向通过N2接口信令向RAN发送感知控制请求消息1。
其中,感知控制请求消息1携带感知控制参数。
可选地,感知网元还向AMF发送负责对UE进行感知的RAN的信息。也即,感知网元向AMF指示RAN的信息,以使AMF确定对应的RAN。
可选地,感知网元还向AMF发送需要感知的UE的位置信息,以使AMF根据UE的位置信息确定对应的RAN。
AMF根据感知网元指示的RAN的信息,或者UE的位置信息,确定对应的RAN。
2016、可选地,如果AMF发现其与RAN之间的N2接口不存在用于感知的信令连接,则建立N2接口的感知信令连接。
可选的,N2接口的感知信令连接可以是per Node的N2信令连接或者per UE的N2信令连接。可选的,如果是通过per UE信令发送感知控制请求消息1,且UE处于空闲态,则AMF在通过Nx接口的感知信令收到来自感知网元的感知控制请求消息后,寻呼UE,使其进入连接态。此时,RAN和AMF之间建立有per UE的N2信令连接。
2017、AMF向RAN发送感知控制请求消息1。
其中,感知控制请求消息1中包括UE的位置信息。可选地,还可以包括UE ID、业务类型、业务要求和QoS要求等信息。
RAN基于感知控制请求消息1,对UE进行感知,获取第一感知数据。或者说,RAN基于感知控制请求消息1,对UE的位置信息所指示的位置进行感知,获取第一感知数据。
后续,RAN向感知网元发送第一感知数据,可选地,RAN还向感知网元发送感知关联ID,以使感知网元识别第一感知数据为该UE的感知数据。
感知网元向AF或AS返回第二感知数据。进一步可选地,AF或AS向UE返回第二感知数据(也即,感知业务数据)。
参见图13的(a),图13的(a)为本申请提供的一种对UE进行感知的方法的示意性流程图。
501-507、参考图12的(a)中的步骤401-407,为了避免累赘,这里不予详述。
508、NEF向感知网元发送感知业务请求消息2,以请求对UE进行感知。
可选地,感知业务请求消息2中可以包括UE的位置信息、UE ID、业务类型、业务要求和QoS要求中的一项或多项。
可选地,业务要求可以包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
509、感知网元根据UE的位置信息,确定AMF。
需要说明的是,在步骤509中,感知网元根据UE的位置信息确定的AMF,不需要是UE的服务AMF,也即,感知网元确定的AMF可能是UE的服务AMF,也可能不是UE的服务AMF。
可选地,感知网元基于UE的位置信息确定AMF,或者感知网元可以借助于NRF确定AMF。
可选地,如果感知业务请求消息2中不包括UE的位置信息,感知网元可以自己获取UE的位置信息,例如,感知网元从GMLC或LMF获取UE的位置信息。
后续510-518步骤参考图12的(a)中的步骤412-420,这里不再赘述。
参见图13的(b),图13的(b)为本申请提供的另一种对UE进行感知的方法的示意性流程图。
3001-3007、参考图12的(a)中的步骤401-407,这里不予赘述。
3008、NEF向AMF发送感知业务请求消息2,以请求对UE进行感知。
3009、可选地,AMF获取UE的位置信息。
例如,AMF从GMLC或LMF获取UE的位置信息,可以详见上文其它实施例中的详述,这里不予赘述。
3010、AMF向感知网元发送感知业务请求消息3,以请求对UE进行感知。
可选地,感知业务请求消息3中包括UE的位置信息、UE ID、业务类型、业务要求和QoS要求中的一项或多项。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
如果感知业务请求消息3中不包含UE的位置信息,感知网元自己获取UE的位置信息。
3011、可选地,感知网元获取UE的位置信息。
示例性地,感知网元从GMLC、LMF或AMF获取UE的位置信息。
3012、感知网元根据UE的位置信息,确定AMF。
在步骤3012中,感知网元根据UE的位置信息确定的AMF,可能为UE的服务AMF,也可以不是UE的服务AMF。
3013、感知网元向AMF发送感知控制请求消息。
3014、感知网元接收来自于AMF的UE的第一感知数据。可选地,可能还包括感知关联标识。
应理解,AMF接收来自于感知网元的感知控制请求消息之后,进一步向RAN发送感知控制请求消息,RAN根据感知控制请求消息,对UE进行感知并获得第一感知数据。RAN向AMF上报第一感知数据。因此,UE的第一感知数据是由RAN网元对UE进行感知获得,并上报到AMF的。例如,可以参考图11的(a)中的步骤311-313的相关说明。
3015、感知网元向AF/AS提供第二感知数据。
进一步可选地,AF/AS向UE提供第二感知数据。
在图13的实施例中,以NEF网元对AF/AS请求的第一感知业务进行授权检查为例进行说明,可选地,也可以由AMF网元对AF/AS请求的第一感知业务进行授权检查,例如图6的(c)的流程,不再赘述。
参见图14,图14为本申请提供的提供对UE进行感知的方法的示意性流程图。
601、UE向AMF发送N1MM请求消息。
其中,N1MM请求消息包括感知指示信息。其中,感知指示信息用于指示请求感知 业务。
可选地,N1MM请求消息中还可以包括业务类型和/或业务要求。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
示例性地,N1MM请求消息为注册请求消息或服务请求消息。
602、可选地,AMF从UE的签约信息中获取UE的业务授权信息,并根据业务授权信息确定UE的感知业务被授权。
具体地,如果AMF存储了UE的签约信息,AMF可以从本地获得UE的业务授权信息。如果AMF上未存储UE的签约信息,则AMF可以向UDM/UDR请求UE的签约信息,进而从签约信息中获取UE的业务授权信息。根据业务授权信息,AMF确定UE的感知业务被授权。
示例性地,业务授权信息包括第一感知授权指示信息和/或第一感知授权参数。
其中,第一感知授权指示信息用于指示UE的感知业务被授权。
可选地,第一感知授权参数可以包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识。
603、可选地,AMF为UE选择合适的感知网元。
示例性地,AMF可以根据N1MM请求消息中携带的信息,选择合适的感知网元。
步骤603之后,可以有2种实现方式,如下面的实现方式1和实现方式2。
可选地,对于下述实现方式2,该步骤可以在步骤609和610之间执行。
实现方式1
604、AMF向UE发送N1MM请求消息的响应消息。
其中,N1MM请求消息的响应消息用于指示UE的感知业务被授权。
此外,响应消息中包括感知接受指示信息和感知网元的地址信息。其中,感知接受指示信息用于指示接受UE的感知业务的请求。
当响应消息中包括感知网元的地址信息,UE可以通过用户面向感知网元请求感知业务。
605、UE根据感知网元的地址信息,与感知网元建立信令连接,并基于该信令连接向感知网元发送感知业务请求消息1。
其中,感知业务请求消息1用于请求第一感知业务。
可选地,感知业务请求消息1中包括业务类型、业务要求和QoS要求中的一项或多项。
606、5GS基于UE的感知业务请求消息1,对UE进行感知,获得第一感知业务的感知业务数据。
在步骤605中,感知网元接收来自于UE的感知业务请求消息1。在步骤606中,感 知网元通过选择AMF网元(需要进一步确定RAN网元)或RAN网元,并控制RAN网元执行感知,获得第一感知业务的感知数据。其中,感知网元通过选择AMF网元或RAN网元,并控制RAN网元执行感知的过程,可以通过前述实施例实现,例如图4(a)中的步骤25-27,或其它实施例,不作限定。
607、感知网元向UE返回感知业务数据。
实现方式2
608、AMF向UE发送N1MM请求消息的响应消息。
其中,N1MM请求消息的响应消息用于指示UE的感知业务被授权。
可选地,响应消息中携带感知接受指示信息。其中,感知接受指示信息用于指示接受UE的感知业务的请求。
与实现方式1不同,此时,UE可以通过控制面向感知网元请求感知业务。
609、UE向AMF发送感知业务请求消息1。
其中,感知业务请求消息1用于请求第一感知业务。示例性地,感知业务请求消息1可以为N1MM请求消息。
可选地,感知业务请求消息1中包括业务类型、业务要求和QoS要求中的一项或多项。
610、AMF向感知网元发送感知业务请求消息2。
其中,感知业务请求消息2用于请求第一感知业务。
可选地,感知业务请求消息2中包括业务类型和业务要求。
611、5GS基于感知业务请求消息2,对UE进行感知,获得第一感知业务的感知业务数据。
在步骤610中,感知网元接收来自于AMF的感知业务请求消息2,。后续,在步骤611中,感知网元通过选择AMF网元(需要进一步确定RAN网元)或RAN网元,并控制RAN网元执行感知,获得第一感知业务的感知数据。其中,感知网元通过选择AMF网元或RAN网元,并控制RAN网元执行感知的过程,可以通过前述实施例实现,例如图4(a)中的步骤25-27,或其它实施例,不作限定。
612、感知网元向UE返回感知业务数据。
参见图15,图15为本申请提供的对UE进行感知的方法的示意性流程图。
701、UE进入连接管理(connection management,CM)连接态。
702、UE向AMF发送N1消息。
可选地,N1消息可以为会话管理(session management,SM)请求消息。
UE在N1消息中携带会话管理请求消息,该会话管理请求消息用于为UE请求感知业务。可选的,UE在会话管理请求中携带感知指示,用于指示该会话管理请求消息用于为UE请求感知业务;可选的,该会话管理请求消息还可以包括感知业务类型,感知要求。
可选地,会话管理请求消息中包括感知指示信息,感知指示信息用于指示请求感知业务。可选地,N1消息中还包括业务类型和/或业务要求。
可选地,业务要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据 更新频率、感知维度和感知反馈方式。
703、可选地,AMF为UE选择合适的SMF。
示例性地,AMF根据N1消息中携带的信息,选择合适的SMF。
704、AMF向SMF发送N11消息。
其中,N11消息中包括上述会话管理请求消息。
可选地,N11消息可以为SM请求消息。
705、可选地,SMF获取UE的业务授权信息,并根据业务授权信息确定UE的感知业务被授权。
具体地,SMF获取UE的签约信息,进而获取UE的业务授权信息。根据业务授权信息,SMF确定UE的感知业务被授权。
如果SMF没有UE的签约信息,SMF向UDM/UDR请求获取UE的签约信息。
示例性地,业务授权信息可以包括第一感知授权指示信息和/或第一感知授权参数。其中,第一感知授权指示信息用于指示UE的感知业务被授权。
可选地,第一感知授权参数可以包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识。
706、可选地,SMF为UE选择合适的感知网元。
可选地,包括步骤707。
707、如果步骤704中的N11消息具体为PDU会话建立请求消息,SMF为UE选择合适的用户面功能UPF,SMF建立SMF与UPF之间的N4连接。
可选地,步骤707之后,UE可以通过用户面连接向感知网元请求感知业务,或者,也可以通过控制面信令向感知网元请求感知业务。
实现方式1
708、SMF向UE发送会话管理SM响应消息。
其中,会话管理响应消息用于指示UE的感知业务被授权。
此外,会话管理响应消息中包括感知接受指示信息和感知网元的地址信息,其中,感知接受指示信息用于指示接受UE的感知业务的请求。
709、UE根据感知网元的地址信息,与感知网元建立信令连接,并基于该信令连接向感知网元发送感知业务请求消息1。
其中,感知业务请求消息1用于请求第一感知业务,感知业务请求消息1中包括业务类型和/或业务要求。
710、5GS基于UE的感知业务请求消息1,对UE进行感知,获得第一感知业务的感知业务数据。。
711、感知网元向UE发送感知业务数据。
实现方式2
712、SMF向UE发送会话管理响应消息。
其中,会话管理响应消息用于指示UE的感知业务被授权。
可选地,会话管理响应消息中包括感知接受指示信息,表示接受UE的感知业务的请求。
与实现方式1不同,此时,UE可以通过控制面信令向感知网元请求感知业务。
713、UE通过会话管理消息向SMF发送感知业务请求消息1。
其中,感知业务请求消息1用于请求第一感知业务。可选地,感知业务请求消息1中包括业务类型和/或业务要求。
714、SMF向感知网元发送感知业务请求消息2。
其中,感知业务请求消息2用于请求第一感知业务。可选地,感知业务请求消息2中包括业务类型和业务要求。
715、5GS基于感知业务请求消息2,对UE进行感知,获得第一感知业务的感知业务数据。
716、感知网元向UE发送感知业务数据。
参见图16,图16为本申请提供的对UE进行感知的方法的示意性流程图。
可选地,在该实施例中,UE可以通过步骤801-805获得感知业务被授权。或者,也可以通过步骤806-813获得感知业务被授权。
实现方式1
801、UE向AMF发送N1MM请求消息。
802、可选地,AMF从UDM/UDR获取UE的签约信息,进而获取UE的业务授权信息,并根据业务授权信息,确定UE的感知业务被授权。
可选地,业务授权信息包括第一感知授权指示信息和/或第一感知授权参数。
其中,第一感知授权指示信息用于指示UE的感知业务被授权。第一感知授权参数为网络侧授权UE使用的感知参数。
可选地,第一感知授权参数可以包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识。
803、可选地,AMF为UE选择合适的感知网元。
可选的,AMF从感知网元中获取UE的业务授权信息,可选地,业务授权信息包括第一感知授权指示信息和/或第一感知授权参数。
其中,第一感知授权指示信息用于指示UE的感知业务被授权。第一感知授权参数为网络侧授权UE使用的感知参数。
可选地,第一感知授权参数可以包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识。
步骤801-803的其它说明可以参考上文的步骤601-603,为了避免赘述,这里不予详述。
804、AMF向RAN发送N2消息。
其中,N2消息中包括感知第二授权指示信息和/或第二感知授权参数。
其中,第二感知授权指示信息用于指示UE的感知业务被授权。第二感知授权参数为网络侧授权UE使用的感知参数。
可选地,第二感知授权参数可以包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识。
可选地,第二感知授权指示信息即为第一感知授权指示信息。第二感知授权参数可以根据第一感知授权参数确定。
在步骤804中,AMF通过N2消息向RAN发送第二授权指示信息和/或第二感知授权参数,用于RAN后续对UE的感知请求进行授权检查。
805、AMF向UE返回N1MM请求消息的响应消息。
其中,N1MM请求消息的响应消息用于指示UE的感知业务被授权。
可选地,响应消息中包括感知接受指示信息。其中,感知接受指示信息用于指示接受UE的感知业务的请求。
应注意,步骤804和步骤805不限定先后顺序。或者,步骤804和步骤805合并为一条消息,也即AMF通过一条消息将UE发送步骤804和步骤805中的信息和/或参数,不作限定。
实现方式2
806、UE向AMF发送N1消息。
807、AMF为UE选择合适的SMF。
808、AMF通过N11消息将会话管理请求发送给向SMF。
809、可选地,SMF获取UE的业务授权信息,并根据业务授权信息确定UE的感知业务被授权。
可选地,业务授权信息包括第一感知授权指示信息和/或第一感知授权参数。
其中,第一感知授权指示信息用于指示UE的感知业务被授权。第一感知授权参数为网络侧授权UE使用的感知参数。
可选地,第一感知授权参数可以包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识。
810、可选地,SMF为UE选择合适的感知网元。
可选的,SMF从感知网元中获取UE的业务授权信息,可选地,业务授权信息包括第一感知授权指示信息和/或第一感知授权参数。
其中,第一感知授权指示信息用于指示UE的感知业务被授权。第一感知授权参数为网络侧授权UE使用的感知参数。
可选地,第一感知授权参数可以包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识。
可选地,包括步骤811。
811、SMF建立SMF与UPF之间的N4连接。
步骤806-811的其它说明可以参考上文的步骤702-707,为了避免赘述,这里不予详述。
812、SMF向RAN发送N2消息。
其中,SM消息中可以包括第二感知授权指示信息和/或第二感知授权参数。
其中,第二感知授权指示信息用于指示UE的感知业务被授权。第二感知授权参数为授权UE使用的感知参数。
可选地,第二感知授权参数可以包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识。
可选地,第二感知授权指示信息即为第一感知授权指示信息。第二感知授权参数可以根据第一感知授权参数确定。
在步骤813中,SMF通过N2会话管理消息向RAN发送第二授权指示信息和/或第二感知授权参数,用于RAN后续对UE的感知请求进行授权检查。
813、SMF向UE返回SM响应消息。
其中,SM响应消息中包括感知接受指示信息。
通过步骤801-805的流程,或者步骤806-813的流程,UE根据感知接受指示信息确定UE的感知业务被授权,也即UE可以请求感知业务。当UE存在感知需求时,UE可以直接向RAN请求感知资源,并基于感知资源获得所请求的感知业务的感知业务数据,具体如下面的流程。
814、当UE存在感知需求时,UE向RAN发送感知请求消息。
其中,感知请求消息用于请求感知资源或者请求RAN执行对UE的感知。
另外,可选地,感知请求消息中包括业务类型和/或业务要求(也即,感知要求)
可选地,感知要求可以包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
示例性地,感知请求消息可以为无线资源控制(radio resource control,RRC)消息。
815、RAN对UE进行授权检查。
具体地,RAN根据步骤804接收到的来自于AMF的第二感知授权指示信息和/或第二感知授权参数,或者根据步骤812中接收到的来自于SMF的第二感知授权指示信息和/ 或第二感知授权参数,对UE的感知请求消息中的业务要求进行授权检查。
在确定对UE的第一感知业务授权的情况下,执行步骤816。
816、RAN向UE发送感知资源指示信息,感知资源指示信息用于指示感知资源,例如,时频资源等。
817、UE基于感知资源,获得第一感知业务的感知数据。
在一种可能的实现中,UE基于感知资源进行感知,也即,UE自己发送感知信号并接收感知信号的回波信号进行感知,获得第一感知业务的第一感知数据。
在另一种可能的实现中,UE根据感知资源接收来自于RAN的感知信号,也即,RAN通过感知资源发送感知信号,UE接收感知信号进行感知,获得第一感知业务的第一感知数据。其中,可替换地,UE接收感知信号进行感知,也可以说,UE接收感知信号的回波信号进行感知。
在另一种可能的实现中,UE基于感知资源发送感知信号,RAN网元接收感知信号并进行感知,获得第一感知业务的第一感知数据。RAN网元向UE发送第一感知数据,UE接收来自于RAN网元的第一感知数据。其中,可选地,RAN网元接收感知信号并进行感知,也可以说,RAN网元接收感知信号的回波信号进行感知。
另外,上述回波信号还可以称为反射信号。
参见图17,图17为本申请提供的对UE进行感知的方法的示意性流程图。
901-913、参见图16的步骤801-813,为了避免累赘,这里不予详述。
可选地,包括步骤914。
914、可选地,感知网元存在感知需求,例如,感知网元需要为第一感知业务进行感知,确定需要UE进行感知,则向选择的UE发送感知控制请求。其中,感知控制请求用于指示UE为第一感知业务进行感知。
915、可选地,基于感知网元的感知控制请求,或者UE基于自身的第一感知业务的感知需求,则UE向RAN发送感知请求消息。
其中,感知资源请求消息用于为第一感知业务请求感知资源。
可选地,感知请求消息可以为RRC消息。
916、RAN基于步骤904中从AMF获取的第二感知授权指示信息和/或第二感知授权参数,或者,基于步骤912中从SMF获取的第二感知授权指示信息和/或第二感知授权参数,对UE的感知请求消息中请求的第一感知业务进行授权检查。
在确定UE的第一感知业务授权的情况下,执行后续步骤。
917、RAN向UE返回发送感知资源指示信息,感知资源指示信息用于指示感知资源。
918、UE基于感知资源,获得第一感知业务的第一感知数据。具体可参见步骤817的描述。
919、UE向感知网元发送第一感知数据。
可选地,还可以包括步骤920。
920、UE接收来自于感知网元的第二感知数据。
需要说明的是,步骤919中,UE向感知网元发送第一感知数据,一种可能的情况下,UE是基于感知网元的感知控制请求,向感知网元返回第一感知数据。在另一种可能的情况下,由于UE自身处理能力受限,UE将第一感知数据发送给感知网元进行处理,并接 收来自于感知网元的第二感知数据。
以上对本申请提供的对UE进行感知的方法作了详细说明,下面介绍本申请提供的通信装置。
参见图18,图18为本申请提供的通信装置的示意性框图。如图18,通信装置1000包括处理单元1100、接收单元1200和发送单元1300。
可选地,通信装置1000可以对应本申请实施例中的NEF网元。
此时,通信装置1000的各单元用于实现如下功能:
接收单元1200,用于接收第一感知业务请求消息,所述第一感知业务请求消息用于请求第一感知业务,所述第一感知业务是对用户设备UE进行感知;
处理单元1100,用于基于所述第一感知业务请求消息,确定所述第一感知业务被授权;
发送单元1300,用于向感知网元发送第二感知业务请求消息,所述第二感知业务请求消息用于请求所述第一感知业务。
可选地,在一个实施例中,发送单元1300,具体用于基于第一感知业务请求消息,向UDM网元发送感知授权请求消息,所述感知授权请求消息用于请求确认所述第一感知业务被授权;
接收单元1200,具体用于接收来自于所述UDM网元被授权响应消息,所述授权响应消息用于指示所述第一感知业务被授权;
以及,处理单元1100,具体用于基于所述授权响应消息,确定所述第一感知业务被授权。
可选地,在一个实施例中,所述授权响应消息包括所述业务授权信息。
可选地,在一个实施例中,所述感知授权请求消息中包括如下一项或多项:
UE的第一标识、感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识;
其中,所述感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式业务类型、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识是根据所述第一感知业务请求消息确定的。
可选地,在一个实施例中,所述第一感知业务请求消息包括所述UE的第一标识,所述感知授权请求消息包括所述UE的第二标识;
所述感知授权响应消息包括所述UE的第二标识;
所述第二感知业务请求消息包括所述UE的第二标识。
可选地,在一个实施例中,处理单元1100,还用于基于所述UE的所述第二标识,从网关移动位置中心GMLC网元获取所述UE的位置信息;
以及,所述第二感知业务请求消息中包括所述UE的位置信息。
在以上各实现方式中,接收单元1200和发送单元1300也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
在通信装置1000对应NEF网元的各实施例中,处理单元1100用于执行除了发送和接收的动作之外由NEF网元内部实现的处理和/或操作。接收单元1200用于执行接收的动作,发送单元1300用于执行发送的动作。
可选地,通信装置1000可以对应本申请实施例中的感知网元(或者说,SF网元)。
此时,通信装置1000的各单元用于实现如下功能:
接收单元1200,用于接收第二感知业务请求消息,所述第二感知业务请求消息用于请求第一感知业务,所述第一感知业务是对UE进行感知;
处理单元1100,用于根据所述第二感知业务请求消息,确定第一网元,所述第一网元支持所述第一感知业务;
发送单元1300,用于向所述第一网元发送感知控制请求消息,所述感知控制请求消息用于控制RAN网元执行所述第一感知业务的感知操作。
可选地,在一个实施例中,所述第二感知业务请求消息包括所述UE的第二标识,处理单元1100具体用于:
根据所述UE的所述第二标识,确定所述第一网元。
可选地,在一个实施例中,所述第二感知业务请求消息包括所述UE的位置信息,处理单元1100具体用于:
根据所述UE的位置信息,确定所述第一网元。
可选地,在一个实施例中,所述第二感知业务请求消息包括所述UE的第二标识,处理单元1100具体用于:
根据所述第二感知业务请求消息中包括的所述UE的所述第二标识,获取所述UE的位置信息;
根据所述UE的位置信息,确定所述第一网元。
可选地,在一个实施例中,处理单元1100,还用于为所述UE分配感知关联标识,所述感知关联标识用于标识所述UE的感知数据。
可选地,在一个实施例中,所述感知控制请求消息包括所述UE的位置信息和/或感知关联标识,其中,所述感知关联标识用于标识所述UE的感知数据。
可选地,在一个实施例中,接收单元1200,还用于接收来自于所述第一网元的第一感知数据和所述感知关联标识。
可选地,在一个实施例中,所述第一网元为AMF网元,处理单元1100,还用于:
建立所述通信装置与所述AMF网元之间的感知信令连接,所述感知信令连接用于所述通信装置和所述AMF网元交互所述UE的所述第一感知业务的信令。
在以上各实现方式中,接收单元1200和发送单元1300也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
在通信装置1000对应SF网元的各实施例中,处理单元1100用于执行除了发送和接收的动作之外由SF网元内部实现的处理和/或操作。接收单元1200用于执行接收的动作,发送单元1300用于执行发送的动作。
可选地,通信装置1000可以对应本申请实施例中的第二网元。
此时,通信装置1000的各单元用于实现如下功能:
接收单元1200,用于接收第一请求消息,所述第一请求消息用于请求UE的感知业务;
发送单元1300,用于发送所述第一请求消息的响应消息,所述响应消息用于指示接受所述UE的感知业务。
可选地,在一个实施例中,处理单元1100,还用于确定所述UE的感知业务被授权。
可选地,在一个实施例中,所述第一请求消息包括感知指示信息,所述感知指示信息用于指示请求感知业务。
可选地,在一个实施例中,所述响应消息包括感知接受指示信息,所述感知接受指示信息用于指示接受所述UE的感知业务。
可选地,在一个实施例中,所述响应消息包括感知网元的地址信息。
可选地,在一个实施例中,处理单元1100,具体用于:
获取所述UE的签约信息,所述签约信息包含所述UE的业务授权信息;
根据所述业务授权信息,确定所述UE的感知业务被授权。
可选地,在一个实施例中,所述业务授权信息包括第一感知授权指示信息,所述第一感知授权指示信息用于指示所述UE的感知业务被授权。
可选地,在一个实施例中,所述业务授权信息包括第一感知授权参数,所述第一感知授权参数包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识。
可选地,在一个实施例中,处理单元1100,用于根据所述业务授权信息,获取第二感知授权指示信息和/或第二感知授权参数;
发送单元1300,还用于向RAN网元发送所述第二感知授权指示信息和/或所述第二感知授权参数。
可选地,在一个实施例中,接收单元1200,还用于接收来自于所述UE的第一感知业务请求消息,所述第一感知业务请求用于请求第一感知业务;
发送单元1300,还用于向感知网元发送第二感知业务请求消息,所述第二感知业务请求消息用于为所述UE请求所述第一感知业务。
可选地,在一个实施例中,所述通信装置为AMF网元或SMF网元。
可选地,在一个实施例中,所述第一请求消息具体为会话管理请求消息,所述响应消息具体为会话管理响应消息;或者,
所述第一请求消息具体为注册请求消息,所述响应消息为注册接受消息;或者,
所述第一请求消息具体为服务请求消息,所述响应消息为服务接受消息。
在通信装置1000对应第二网元的各实施例中,处理单元1100用于执行除了发送和接收的动作之外由第二网元内部实现的处理和/或操作。接收单元1200用于执行接收的动作,发送单元1300用于执行发送的动作。
可选地,通信装置1000可以对应本申请实施例中的UE。
此时,通信装置1000的各单元用于实现如下功能:
发送单元1300,用于向第二网元发送第一请求消息,所述第一请求消息用于请求感知业务;
接收单元1200,用于接收所述第一请求消息的响应消息,所述响应消息用于指示接受所述UE的感知业务。
可选地,在一个实施例中,所述第一请求消息包括感知指示信息,所述感知指示信息用于指示请求感知业务。
可选地,在一个实施例中,所述响应消息中携带感知接受指示信息,所述感知接受指示信息用于指示接受所述UE的感知业务。
可选地,在一个实施例中,发送单元1300,还用于向所述第二网元发送第一感知业务请求消息,所述第一感知业务请求消息用于请求第一感知业务;
以及,接收单元1200,还用于接收来自于所述第二网元的所述第一感知业务的第二感知数据。
可选地,在一个实施例中,发送单元1300,用于为第一感知业务向RAN网元发送感知请求消息,所述感知请求消息用于请求感知资源;
接收单元1200,还用于接收来自于所述RAN网元的感知资源指示信息,所述感知资源指示信息用于指示所述感知资源;
以及,处理单元1100,还用于使用所述感知资源进行感知,获得所述第一感知业务的第一感知数据。
可选地,在一个实施例中,发送单元1300,还用于为第一感知业务向RAN网元发送感知请求消息,所述感知请求消息用于请求感知资源;
接收单元1200,还用于接收来自于所述RAN网元的感知资源指示信息,所述感知资源指示信息用于指示所述感知资源;
接收单元1200,还用于根据所述感知资源,接收来自于所述RAN网元的感知信号;
以及,处理单元1100,还用于基于所述感知信号,获得所述第一感知业务的第一感知数据。
可选地,在一个实施例中,发送单元1300,还用于为第一感知业务向RAN网元发送感知请求消息,所述感知请求消息用于请求所述RAN网元执行感知;
接收单元1200,还用于接收来自于RAN网元的感知资源指示信息,所述感知资源指示信息用于指示感知资源;
发送单元1300,还用于基于所述感知资源,发送感知信号;
以及,接收单元1200,还用于来自于所述RAN网元的所述第一感知业务的第一感知数据。
可选地,在一个实施例中,接收单元1200,还用于接收来自于感知网元的感知控制请求,所述感知控制请求用于指示所述UE执行感知。
可选地,在一个实施例中,发送单元1300,还用于向所述感知网元发送所述第一感知数据;
以及,接收单元1200,还用于接收来自于所述感知网元的所述第一感知业务的第二感知数据。
可选地,在一个实施例中,所述第一请求消息具体为会话管理请求消息,所述响应消息具体为会话管理响应消息;或者,
所述第一请求消息具体为注册请求消息,所述响应消息为注册接受消息;或者,
所述第一请求消息具体为服务请求消息,所述响应消息为服务接受消息。
在通信装置1000对应UE的各实施例中,处理单元1100用于执行除了发送和接收的动作之外由UE内部实现的处理和/或操作。接收单元1200用于执行接收的动作,发送单元1300用于执行发送的动作。
可选地,通信装置1000可以对应本申请实施例中的RAN网元。
此时,通信装置1000的各单元用于实现如下功能:
接收单元1200,用于接收来自于用户设备UE的感知请求消息,所述感知请求消息用于请求感知资源;
发送单元1300,用于发送向所述UE发送感知资源指示信息,所述感知资源指示信息用于指示感知资源。
可选地,在一个实施例中,接收单元1200,用于接收来自于第二网元的所述UE的第二感知授权指示信息和/或第二感知授权参数,其中,所述第二感知授权指示信息用于指示所述UE的感知业务被授权。
可选地,在一个实施例中,处理单元1100,还用于根据所述第二感知授权指示信息和/或第二感知授权参数,确定对所述UE的感知请求授权。
可选地,在一个实施例中,所述感知请求消息中还包括感知要求,
以及,处理单元1100,还用于根据所述第二感知授权指示信息和/或所述第二感知授权参数,以及所述感知要求,确定对所述感知请求授权。
可选地,在一个实施例中,发送单元1300,还用于基于所述感知资源向所述UE发送感知信号。
可选地,在一个实施例中,接收单元1200,还用于基于所述感知资源,接收来自于所述UE的感知信号;
处理单元1100,还用于根据所述感知信号,获得第一感知数据;
发送单元1300,还用于向所述UE发送所述第一感知数据。
可选地,在一个实施例中,所述第二感知授权参数包括如下一项或多项:
感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
可选地,在一个实施例中,所述感知要求包括如下一项或多项:
感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
在通信装置1000对应RAN网元的各实施例中,处理单元1100用于执行除了发送和接收的动作之外由RAN网元内部实现的处理和/或操作。接收单元1200用于执行接收的动作,发送单元1300用于执行发送的动作。
可选地,通信装置1000可以对应本申请实施例中的UDM网元。
此时,通信装置1000的各单元用于实现如下功能:
接收单元1200,用于接收来自于NEF网元的感知授权请求消息,所述感知授权请求消息用于请求确认用户设备UE的感知业务被授权;
发送单元1300,用于向所述NEF网元发送授权响应消息,所述授权响应消息用于指示所述UE的感知业务被授权。
可选地,在一个实施例中,所述感知授权请求消息包括如下一项一项或多项:
UE的第一标识、感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识。
可选地,在一个实施例中,所述授权响应消息包括所述UE的业务授权信息。
可选地,在一个实施例中,接收单元1200,还用于接收来自于SF网元的第一请求消息,所述第一请求消息用于请求所述UE的服务AMF;
发送单元1300,还用于向所述SF网元返回所述第一请求消息的响应消息,所述响应消息包括所述UE的服务AMF的标识。
在通信装置1000对应UDM网元的各实施例中,处理单元1100用于执行除了发送和接收的动作之外由UDM网元内部实现的处理和/或操作。接收单元1200用于执行接收的动作,发送单元1300用于执行发送的动作。
参见图19,图19为本申请提供的通信装置的示意性结构图。如图19,通信装置10包括:一个或多个处理器11,一个或多个存储器12以及一个或多个通信接口13。处理器11用于控制通信接口13收发信号,存储器12用于存储计算机程序,处理器11用于从存储器12中调用并运行该计算机程序,以使得通信装置10执行本申请各方法实施例中由相应网元(例如,NEF网元、感知网元、第二网元、UE、RAN网元或UDM网元)执行的处理。
例如,处理器11可以具有图11中所示的处理单元1100的功能,通信接口13可以具有图11中所示的接收单元1200和/或发送单元1300的功能。具体地,处理器11可以用于执行由相应网元内部执行的处理或操作,通信接口13用于执行由相应网元的发送和/或接收的操作。
在一种实现方式中,通信装置10可以为方法实施例中的相应网元。在这种实现方式中,通信接口13可以为收发器。收发器可以包括接收器和/或发射器。可选地,处理器11可以为基带装置,通信接口13可以为射频装置。
在另一种实现中,通信装置10可以为安装在相应网元中的芯片(或芯片系统)。在这种实现方式中,通信接口13可以为接口电路或者输入/输出接口。
其中,图19中器件(例如,处理器、存储器或通信接口)后面的虚线框表示该器件可以为一个以上。
可选的,上述各装置实施例中的存储器与处理器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起,本文不作限定。
应理解,上述“相应网元”是指各实施例中的NEF网元、感知网元、第二网元、UE、RAN网元或UDM网元中的任意一个网元。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由相应网元执行的操作和/或处理被执行。
此外,本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由相应网元执行的操作和/或处理被执行。
此外,本申请还提供一种芯片,所述芯片包括处理器,用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,使得安装有所述芯片的通信装置执行任意一个方法实施例中由相应网元执行的操作和/或处理。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括所述存储器。
可选地,上述处理器可以为一个或多个,所述存储器可以为一个或多个,所述存储器可以为一个或多个。
此外,本申请还提供一种通信装置(例如,可以为芯片或芯片系统),包括处理器和通信接口,所述通信接口用于接收(或称为输入)数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以及,通信接口还用于输出(或称为输出)经处理器处理之后的数据和/或信息,以使得任意一个方法实施例中由相应网元执行的操作和/或处理被执行。
此外,本申请还提供一种通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,使得所述通信装置执行任意一个方法实施例中由相应网元执行的操作和/或处理。
此外,本申请还提供一种通信设备,包括处理器和存储器。可选地,还可以包括收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信设备执行任意一个方法实施例中由相应网元执行的操作和/或处理。
本申请还提供一种通信系统,包括本申请实施例中的NEF网元、感知网元(即SF网元)、第二网元、UE、RAN网元或UDM网元中的一个或多个网元。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
上述实施例所提供的方法,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算 机程序产品可以包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如,红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等编号对功能和作用基本相同的相同项或相似项进行区分。例如,第一感知业务请求消息和第二感知业务请求消息仅仅是为了区分不同的感知业务请求消息。本领域技术人员可以理解“第一”、“第二”等编号并不对数量和执行顺序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c;a和b;a和c;b和c;或a和b和c。其中a,b,c可以是单个,也可以是多个。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不予赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种对终端设备进行感知的方法,其特征在于,包括:
    网络能力开放功能网元接收第一感知业务请求消息,所述第一感知业务请求消息用于请求第一感知业务,所述第一感知业务是对用户设备UE进行感知;
    所述网络能力开放功能网元基于所述第一感知业务请求消息,确定所述第一感知业务被授权;
    所述网络能力开放功能网元向感知网元发送第二感知业务请求消息,所述第二感知业务请求消息用于请求所述第一感知业务。
  2. 根据权利要求1所述的方法,其特征在于,所述网络能力开放功能网元基于所述第一感知业务请求消息,确定所述第一感知业务被授权,包括:
    所述网络能力开放功能网元基于所述第一感知业务请求消息,向统一数据管理UDM网元发送感知授权请求消息,所述感知授权请求消息用于请求确认所述第一感知业务被授权;
    所述网络能力开放功能网元接收来自于所述UDM网元被授权响应消息,所述授权响应消息用于指示所述第一感知业务被授权;
    所述网络能力开放功能网元基于所述授权响应消息,确定所述第一感知业务被授权。
  3. 根据权利要求2所述的方法,其特征在于,所述授权响应消息包括所述UE的业务授权信息,所述业务授权信息用于指示所述第一感知业务被授权。
  4. 根据权利要求2或3所述的方法,其特征在于,所述感知授权请求消息中包括如下一项或多项:
    UE的标识、感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识;
    其中,所述感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式业务类型、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识是根据所述第一感知业务请求消息确定的。
  5. 一种对终端设备进行感知的方法,其特征在于,包括:
    感知功能网元接收感知业务请求消息,所述感知业务请求消息用于请求第一感知业务,所述第一感知业务是对UE进行感知;
    所述感知功能网元根据所述感知业务请求消息,确定第一网元,所述第一网元支持所述第一感知业务;
    所述感知功能网元向所述第一网元发送感知控制请求消息,所述感知控制请求消息用于控制RAN网元执行所述第一感知业务的感知操作。
  6. 根据权利要求5所述的方法,其特征在于,所述感知业务请求消息包括所述UE的标识,所述感知功能网元根据所述感知业务请求消息,确定第一网元,包括:
    所述感知功能网元根据所述UE的标识,确定所述第一网元。
  7. 根据权利要求5所述的方法,其特征在于,所述感知业务请求消息包括所述UE的位置信息,
    所述感知功能网元根据所述感知业务请求消息,确定第一网元,包括:
    所述感知功能网元根据所述UE的位置信息,确定所述第一网元。
  8. 根据权利要求5所述的方法,其特征在于,所述感知业务请求消息包括所述UE的标识,所述感知功能网元根据所述感知业务请求消息,确定第一网元,包括:
    所述感知功能网元根据所述感知业务请求消息中包括的所述UE的所述标识,获取所述UE的位置信息;
    所述感知功能网元根据所述UE的位置信息,确定所述第一网元。
  9. 根据权利要求5-8中任一项所述的方法,其特征在于,所述方法还包括:
    所述感知功能网元为所述UE分配感知关联标识,所述感知关联标识用于标识所述UE的感知数据。
  10. 根据权利要求5-9中任一项所述的方法,其特征在于,所述感知控制请求消息包括所述UE的位置信息和/或感知关联标识,其中,所述感知关联标识用于标识所述UE的感知数据。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述感知功能网元接收来自于所述第一网元的第一感知数据和所述感知关联标识。
  12. 一种对终端设备进行感知的方法,其特征在于,包括:
    第二网元接收第一请求消息,所述第一请求消息用于请求用户设备UE的感知业务;
    所述第二网元发送所述第一请求消息的响应消息,所述响应消息用于指示接受所述UE的感知业务。
  13. 根据权利要求12所述的方法,其特征在于,所述第二网元返回所述第一请求消息的响应消息之前,所述方法还包括:
    所述第二网元确定所述UE的感知业务被授权。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一请求消息包括感知指示信息,所述感知指示信息用于指示请求感知业务。
  15. 根据权利要求12-14中任一项所述的方法,其特征在于,所述响应消息包括感知接受指示信息,所述感知接受指示信息用于指示接受所述UE的感知业务。
  16. 根据权利要求12-15中任一项所述的方法,其特征在于,所述响应消息包括感知网元的地址信息。
  17. 根据权利要求12-16中任一项所述的方法,其特征在于,所述第二网元确定所述UE的感知业务被授权,包括:
    所述第二网元获取所述UE的签约信息,所述签约信息包含所述UE的业务授权信息;
    所述第二网元根据所述业务授权信息,确定所述UE的感知业务被授权。
  18. 根据权利要求17所述的方法,其特征在于,所述业务授权信息包括第一感知授权指示信息,所述第一感知授权指示信息用于指示所述UE的感知业务被授权。
  19. 根据权利要求17或18所述的方法,其特征在于,所述业务授权信息包括第一感知授权参数,所述第一感知授权参数包括如下一项或多项:
    感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度、感知反馈方式、感知请求者类型、感知请求者标识、感知应用类型和感知应用标识。
  20. 根据权利要求17-19中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二网元根据所述业务授权信息,获取第二感知授权指示信息和/或第二感知授权参数;
    所述第二网元向RAN网元发送所述第二感知授权指示信息和/或所述第二感知授权参数。
  21. 一种对终端设备进行感知的方法,其特征在于,包括;
    用户设备UE向第二网元发送第一请求消息,所述第一请求消息用于请求感知业务;
    所述UE接收所述第一请求消息的响应消息,所述响应消息用于指示接受所述UE的感知业务。
  22. 根据权利要求21所述的方法,其特征在于,所述第一请求消息包括感知指示信息,所述感知指示信息用于指示请求感知业务。
  23. 根据权利要求21或22所述的方法,其特征在于,所述响应消息中携带感知接受指示信息,所述感知接受指示信息用于指示接受所述UE的感知业务。
  24. 根据权利要求21-23中任一项所述的方法,其特征在于,所述UE接收所述第一请求消息的响应消息之后,所述方法还包括:
    所述UE向所述第二网元发送感知业务请求消息,所述感知业务请求消息用于请求第一感知业务;
    所述UE接收来自于所述第二网元的所述第一感知业务的第二感知数据。
  25. 根据权利要求21-23中任一项所述的方法,其特征在于,所述UE接收所述第一请求消息的响应消息之后,所述方法还包括:
    所述UE为第一感知业务向RAN网元发送感知请求消息,所述感知请求消息用于请求感知资源;
    所述UE接收来自于所述RAN网元的感知资源指示信息,所述感知资源指示信息用于指示所述感知资源;
    所述UE使用所述感知资源进行感知,获得所述第一感知业务的第一感知数据。
  26. 根据权利要求25所述的方法,其特征在于,所述UE向RAN网元发送感知请求消息之前,所述方法还包括:
    所述UE接收来自于感知网元的感知控制请求,所述感知控制请求用于指示所述UE执行感知。
  27. 一种对终端设备进行感知的方法,其特征在于,包括;
    无线接入网元接收来自于用户设备UE的感知请求消息,所述感知请求消息用于请求感知资源;
    所述无线接入网元向所述UE发送感知资源指示信息,所述感知资源指示信息用于指示感知资源。
  28. 根据权利要求27所述的方法,其特征在于,所述无线接入网元向所述UE发送 感知资源指示信息之前,所述方法还包括:
    所述无线接入网元接收来自于第二网元的所述UE的第二感知授权指示信息和/或第二感知授权参数,其中,所述第二感知授权指示信息用于指示所述UE的感知业务被授权。
  29. 根据权利要求28所述的方法,其特征在于,所述无线接入网元向所述UE发送感知资源指示信息之前,所述方法还包括:
    所述无线接入网元根据所述第二感知授权指示信息和/或第二感知授权参数,确定对所述UE的感知请求授权。
  30. 根据权利要求29所述的方法,其特征在于,所述感知请求消息中还包括感知要求,
    以及,所述无线接入网元向所述UE发送所述感知资源指示信息之前,所述方法还包括:
    所述无线接入网元根据所述第二感知授权指示信息和/或所述第二感知授权参数,以及所述感知要求,确定对所述感知请求授权。
  31. 根据权利要求28-30中任一项所述的方法,其特征在于,所述第二感知授权参数包括如下一项或多项:
    感知业务类型、感知距离、感知区域、感知速度范围、感知距离分辨率、感知测角精度、感知速度分辨率、感知服务质量QoS要求、感知物体识别准确率、感知物体识别虚警率、感知数据精度、感知数据更新频率、感知维度和感知反馈方式。
  32. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使所述通信装置执行如权利要求1-31中任一项所述的方法。
  33. 一种对终端设备进行感知的通信系统,其特征在于,包括如权利要求1-31中所述的网络能力开放功能网元、感知功能网元、第二网元、UE或无线接入网元中的一个或多个。
PCT/CN2022/116097 2021-09-01 2022-08-31 对终端设备进行感知的方法和通信装置 WO2023030368A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111023168.0 2021-09-01
CN202111023168.0A CN115734200A (zh) 2021-09-01 2021-09-01 对终端设备进行感知的方法和通信装置

Publications (1)

Publication Number Publication Date
WO2023030368A1 true WO2023030368A1 (zh) 2023-03-09

Family

ID=85292366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116097 WO2023030368A1 (zh) 2021-09-01 2022-08-31 对终端设备进行感知的方法和通信装置

Country Status (2)

Country Link
CN (1) CN115734200A (zh)
WO (1) WO2023030368A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024093325A1 (en) * 2023-06-30 2024-05-10 Lenovo (Beijing) Limited Ue context transfer upon sensing function switch

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218328A (zh) * 2019-07-11 2021-01-12 华为技术有限公司 一种感知测量方法及装置
CN112738758A (zh) * 2021-04-02 2021-04-30 成都极米科技股份有限公司 感知业务管理方法、装置、系统及可读存储介质
CN113115341A (zh) * 2021-04-15 2021-07-13 成都极米科技股份有限公司 一种协商无线感知进程的方法、装置、设备及存储介质
CN113132917A (zh) * 2021-04-15 2021-07-16 成都极米科技股份有限公司 感知进程中发送和接收感知信号的方法、装置及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218328A (zh) * 2019-07-11 2021-01-12 华为技术有限公司 一种感知测量方法及装置
CN112738758A (zh) * 2021-04-02 2021-04-30 成都极米科技股份有限公司 感知业务管理方法、装置、系统及可读存储介质
CN113115341A (zh) * 2021-04-15 2021-07-13 成都极米科技股份有限公司 一种协商无线感知进程的方法、装置、设备及存储介质
CN113132917A (zh) * 2021-04-15 2021-07-16 成都极米科技股份有限公司 感知进程中发送和接收感知信号的方法、装置及存储介质

Also Published As

Publication number Publication date
CN115734200A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
AU2019251152B2 (en) Method and device for subscribing to service
KR102469191B1 (ko) 정보 전송방법 및 장치, 컴퓨터 판독가능 저장 매체
US11419046B2 (en) Methods and systems for performing multi-domain network slice selection and approval
KR102387239B1 (ko) 모바일 네트워크 상호 작용 프록시
CN112534899B (zh) 用于移动通信网络的位置管理部件和方法
KR20200052924A (ko) 에지 네트워크 능력 개방을 구현하는 방법, 디바이스, 장치 및 저장 매체
US20210168151A1 (en) Method for implementing user plane security policy, apparatus, and system
US20230148189A1 (en) Apparatus and method for providing low-latency location information service in wireless communication system
CN111149379B (zh) 无线通信系统中的接入层安全性
WO2020015634A1 (zh) 一种mec信息获取方法及装置
KR20190018235A (ko) 제 3자 응용 서버에서 단말의 무선 연결 타입 변경을 확인하는 방법
CN113630749A (zh) 一种获取边缘服务的方法和装置
WO2023030369A1 (zh) 通信感知业务中选择网元的方法、通信装置和通信系统
WO2023030368A1 (zh) 对终端设备进行感知的方法和通信装置
KR20220138227A (ko) 이동통신 시스템에서 트래픽 스티어링을 제공하기 위한 방법 및 장치
WO2016061788A1 (en) Telecommunications system and method
US20230132454A1 (en) Method and apparatus for supporting edge computing service for roaming ue in wireless communication system
WO2022151206A1 (zh) 通信方法和网络设备
WO2021159415A1 (zh) 通信方法、装置及系统
JP2023046094A (ja) ユーザ装置、通信装置及び通信方法
WO2022100197A1 (zh) 获取边缘服务的方法和装置
WO2022198497A1 (zh) 一种定位方法、装置和系统
CN117528462B (zh) 一种多网络组网实现的工业物联网的数据传输方法
US11723079B2 (en) Systems and methods for wireless mesh network devices operating on multiple radio access technologies
RU2801116C2 (ru) Способ связи и устройство связи

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022863503

Country of ref document: EP

Effective date: 20240314

NENP Non-entry into the national phase

Ref country code: DE