WO2023030199A1 - 资源指示方法及通信装置 - Google Patents

资源指示方法及通信装置 Download PDF

Info

Publication number
WO2023030199A1
WO2023030199A1 PCT/CN2022/115265 CN2022115265W WO2023030199A1 WO 2023030199 A1 WO2023030199 A1 WO 2023030199A1 CN 2022115265 W CN2022115265 W CN 2022115265W WO 2023030199 A1 WO2023030199 A1 WO 2023030199A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
subchannels
sub
channels
data
Prior art date
Application number
PCT/CN2022/115265
Other languages
English (en)
French (fr)
Inventor
张懿
苏宏家
郭文婷
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023030199A1 publication Critical patent/WO2023030199A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a resource indication method and a communication device.
  • Embodiments of the present application provide a resource indication method and a communication device, which can improve resource utilization.
  • the present application provides a resource indication method, which can be executed by a first terminal device.
  • the first terminal device may be a terminal device, or may be a component (such as a chip system) in the terminal device.
  • the method includes: the first terminal device sends first-level sidelink control information SCI, wherein the first-level SCI indicates period information and frequency domain resource information, the period information indicates the period for sending data channel information, and the frequency domain resource information indicates The data channel information reserves the number of sub-channels that occupy X sub-channels.
  • the first terminal device sends the data channel information according to the first-level SCI, wherein the data channel information includes the first data information and the second-level SCI, and the second-level SCI indicates that the first data information occupies Y sub-channels and the number of sub-channels /or position, Y sub-channels are Y sub-channels in X sub-channels, X and Y are both natural numbers, and 1 ⁇ Y ⁇ X ⁇ X max , X max is the maximum number of sub-channels reserved by the first terminal device.
  • the first terminal device not only indicates the number of subchannels reserved by the data channel information before the service demand changes, but also indicates the number and/or position of the subchannels actually occupied by the first data information after the service demand changes, and the second
  • the Y subchannels indicated by the first-level SCI are Y subchannels among the X subchannels indicated by the first-level SCI, so as to improve resource utilization.
  • other terminal devices can also perform resource exclusion in the resource selection process based on the above-mentioned first-level SCI and second-level SCI, such as only excluding sub-channels indicated by the second-level SCI, without excluding sub-channels indicated by the first-level SCI but not
  • the subchannel indicated by the second-level SCI avoids the situation that the resource indicated by the first-level SCI is not used by the first terminal device and is not used by other terminal devices, so as to improve resource utilization.
  • the starting positions of the Y sub-channels are the same as the starting positions of the X sub-channels.
  • the end positions of the Y subchannels are the same as the end positions of the X subchannels.
  • the start positions of the Y subchannels are determined by the start positions of the X subchannels and the first offset, where the first offset is indicated by the second-level SCI. That is to say, the positions of the Y sub-channels among the X sub-channels can be flexibly set.
  • X max is preconfigured.
  • X max is configured by the network device. That is to say, the value of X max can be flexibly configured.
  • X max is determined based on at least one of the following:
  • the first item is priority, wherein the priority indicates the priority level of the first data information.
  • the second item is the channel busy ratio CBR, wherein the CBR indicates the busyness of the channel within the first preset time period.
  • the third item is the maximum value of the channel occupancy rate CR, where CR indicates the extent to which the channel is occupied by the first terminal device within the second preset time period.
  • the value of X max is associated with the above-mentioned maximum value of priority, CBR and CR.
  • the maximum value of CR is preconfigured.
  • the maximum value of CR is configured by the network device. That is to say, the value of the maximum value of CR can be flexibly configured.
  • the maximum value of CR is determined according to at least one of the following: priority, the number of cycles of data channel information, CBR, or N subchannel , where N subchannel is the number of subchannels contained in the resource pool , and X max ⁇ N subchannel .
  • the maximum value of CR is associated with the above priority, CBR and N subchannel .
  • the second-level SCI further indicates the number and/or position of the subchannels occupied by the Z subchannels for the second data information.
  • the Z sub-channels are Z sub-channels among the X sub-channels, Z is a natural number, and 1 ⁇ Z ⁇ X.
  • the second data information belongs to data channel information, and is transmitted in a period next to the period of the first data information.
  • the second-level SCI also indicates the status of the sub-channel occupied by the second data information, and facilitates resource selection or decoding processing by other terminal devices.
  • the second-level SCI also indicates flag information, and the flag information indicates whether the values of Z and Y are the same.
  • Z represents the number of sub-channels occupied by the second data information
  • the Z sub-channels occupied by the second data information are Z sub-channels among the X sub-channels
  • Z is a natural number
  • 1 ⁇ Z ⁇ X the second data information belongs to the data
  • the channel information is transmitted in the period next to the period of the first data information.
  • the first terminal device indicates the occupancy status of the sub-channel by the second data information by marking information, so as to save signaling overhead and facilitate resource selection or decoding processing by other terminal devices.
  • Y also indicates the number of subchannels occupied by the third data information
  • the Y subchannels occupied by the third data information are Y subchannels among the X subchannels
  • the third data information belongs to data channel information
  • the period after the period of the first data information is transmitted.
  • the number of periods after the period where the first data information is located may be one, or multiple, or each period after the period where the first data information is located, so that when the subchannel changes little, Indicating the occupancy status of the sub-channel by the third data information to other terminal devices, so as to facilitate resource selection or decoding processing by other terminal devices.
  • the resource indication method in the embodiment of the present application further includes: the first terminal device determines the value of X according to the first service requirement.
  • the first terminal device determines the value of Y according to the second service requirement. That is to say, the number of sub-channels is determined according to service requirements, and the service requirements for determining the values of X and Y are different.
  • the present application provides a resource indication method, which can be executed by a second terminal device.
  • the second terminal device may be a terminal device, or may be a component (such as a chip system) in the terminal device.
  • the method includes: the second terminal device receives the first-level SCI, wherein the first-level SCI indicates period information and frequency domain resource information, the period information indicates the period for receiving data channel information, and the frequency domain resource information indicates that the data channel information is reserved to occupy X The number of subchannels of subchannels.
  • the second terminal device receives the data channel information according to the first-level SCI, wherein the data channel information includes the first data information and the second-level SCI, and the second-level SCI indicates that the first data information occupies Y sub-channels and the number of sub-channels /or position, Y sub-channels are Y sub-channels in X sub-channels, X and Y are both natural numbers, and 1 ⁇ Y ⁇ X ⁇ X max , X max is the maximum number of sub-channels reserved by the first terminal device.
  • the starting positions of the Y sub-channels are the same as the starting positions of the X sub-channels.
  • the end positions of the Y subchannels are the same as the end positions of the X subchannels.
  • the start positions of the Y subchannels are determined by the start positions of the X subchannels and the first offset, where the first offset is indicated by the second-level SCI.
  • the resource indication method in the embodiment of the present application further includes: the second terminal device decodes the first data information or performs resource selection according to the subchannel positions of the Y subchannels occupied by the first data information.
  • the resource indication method in the embodiment of the present application further includes: the second terminal device decodes the second data information or performs resource selection according to the subchannel positions of the Z subchannels, wherein the second-level SCI also indicates
  • the second data information occupies the subchannel number and/or position of Z subchannels, Z subchannels are Z subchannels in X subchannels, Z is a natural number, 1 ⁇ Z ⁇ X; the second data information belongs to data channel information, and It is received in the next cycle of the cycle where the first data message is located.
  • the resource indication method in the embodiment of the present application further includes: the second terminal device decodes the second data information or performs resource selection according to the label information, wherein the second-level SCI also indicates the label information, and the label information Indicates whether the values of Z and Y are the same, Z represents the number of sub-channels occupied by the second data information, Z sub-channels are Z sub-channels in X sub-channels, Z is a natural number, and 1 ⁇ Z ⁇ X, the second data information It belongs to data channel information, and is transmitted in the period next to the period of the first data information.
  • the resource indication method in the embodiment of the present application further includes: the second terminal device decodes the third data information or performs resource selection according to the subchannel positions of the Y subchannels occupied by the third data information, wherein, Y also indicates the number of sub-channels occupied by the third data information, the Y sub-channels occupied by the third data information are Y sub-channels in the X sub-channels, the third data information belongs to the data channel information, and is after the period of the first data information cycle transmission.
  • the present application provides a communication device, which may be the first terminal device in the first aspect above.
  • the device includes a processor, a transmitter and a receiver.
  • the transmitter is used to send the first-level SCI, wherein the first-level SCI indicates period information and frequency domain resource information, the period information indicates the period for sending the data channel information, and the frequency domain resource information indicates that the data channel information is reserved to occupy X sub-terminals. The number of subchannels of the channel.
  • a processor configured to send data channel information through the transmitter according to the first-level SCI, wherein the data channel information includes first data information and second-level SCI, and the second-level SCI indicates that the first data information occupies a subchannel of Y subchannels Quantity and/or position, Y sub-channels are Y sub-channels among X sub-channels, X and Y are both natural numbers, and 1 ⁇ Y ⁇ X ⁇ X max , X max is the maximum number of sub-channels reserved by the communication device.
  • the starting positions of the Y sub-channels are the same as the starting positions of the X sub-channels.
  • the end positions of the Y subchannels are the same as the end positions of the X subchannels.
  • the start positions of the Y subchannels are determined by the start positions of the X subchannels and the first offset, where the first offset is indicated by the second-level SCI.
  • X max is preconfigured.
  • X max is configured by the network device.
  • X max is determined based on at least one of the following:
  • the first item is priority, wherein the priority indicates the priority level of the first data information.
  • the second item is the channel busy ratio CBR, wherein the CBR indicates the busyness of the channel within the first preset time period.
  • the third item is the maximum value of the channel occupancy rate CR, wherein CR indicates the extent to which the communication device occupies the channel within the second preset time period.
  • the maximum value of CR is preconfigured.
  • the maximum value of CR is configured by the network device.
  • the maximum value of CR is determined based on at least one of the following:
  • N subchannel is the number of subchannels included in the resource pool, and X max ⁇ N subchannel .
  • the second-level SCI also indicates the number and/or location of subchannels occupied by the second data information in Z subchannels, where Z subchannels are Z subchannels among the X subchannels, Z is a natural number, and 1 ⁇ Z ⁇ X.
  • the second data information belongs to data channel information, and is transmitted in a period next to the period of the first data information.
  • the second-level SCI also indicates flag information, and the flag information indicates whether the values of Z and Y are the same.
  • Z represents the number of sub-channels occupied by the second data information
  • the Z sub-channels occupied by the second data information are Z sub-channels among the X sub-channels
  • Z is a natural number
  • 1 ⁇ Z ⁇ X the second data information belongs to the data
  • the channel information is transmitted in the period next to the period of the first data information.
  • Y also indicates the number of subchannels occupied by the third data information
  • the Y subchannels occupied by the third data information are Y subchannels among the X subchannels
  • the third data information belongs to data channel information
  • the period after the period of the first data information is transmitted.
  • the processor is further configured to determine the value of X according to the first service requirement, and to determine the value of Y according to the second service requirement.
  • the present application provides a communication device, which may be the second terminal device in the second aspect above.
  • the device includes a processor, a transmitter and a receiver.
  • the receiver is configured to receive the first-level sidelink control information SCI, wherein the first-level SCI indicates period information and frequency domain resource information, the period information indicates the period for receiving data channel information, and the frequency domain resource information indicates data
  • the channel information reserves the number of sub-channels that occupy X sub-channels.
  • a processor configured to receive data channel information through a receiver according to a first-level SCI, wherein the data channel information includes first data information and a second-level SCI, and the second-level SCI indicates that the first data information occupies a subchannel of Y subchannels Quantity and/or position, Y sub-channels are Y sub-channels among X sub-channels, X and Y are both natural numbers, and 1 ⁇ Y ⁇ X ⁇ X max , X max is the maximum number of sub-channels reserved by the first terminal device.
  • the starting positions of the Y sub-channels are the same as the starting positions of the X sub-channels.
  • the end positions of the Y subchannels are the same as the end positions of the X subchannels.
  • the start positions of the Y subchannels are determined by the start positions of the X subchannels and the first offset, where the first offset is indicated by the second-level SCI.
  • the processor is further configured to decode the first data information or perform resource selection according to the subchannel positions of the Y subchannels occupied by the first data information.
  • the processor is further configured to decode the second data information or perform resource selection according to the subchannel positions of the Z subchannels, wherein the second-level SCI also indicates that the second data information occupies the Z subchannels
  • the number and/or position of the sub-channels, Z sub-channels are Z sub-channels among the X sub-channels, Z is a natural number, 1 ⁇ Z ⁇ X; the second data information belongs to the data channel information, and is in the period of the first data information received in the next cycle.
  • the processor is further configured to decode the second data information or perform resource selection according to the label information, wherein the second-level SCI also indicates the label information, and the label information indicates whether the values of Z and Y are Similarly, Z represents the number of sub-channels occupied by the second data information, Z sub-channels are Z sub-channels among the X sub-channels, Z is a natural number, and 1 ⁇ Z ⁇ X, the second data information belongs to the data channel information, and in the The next period of the period in which a data message is transmitted is transmitted.
  • the processor is further configured to decode the third data information or perform resource selection according to the subchannel positions of the Y subchannels occupied by the third data information, where Y also indicates that the third data information occupies The number of sub-channels, the Y sub-channels occupied by the third data information are Y sub-channels among the X sub-channels, the third data information belongs to the data channel information, and is transmitted in a period after the period of the first data information.
  • the present application provides a communication device, which is used to realize the function of the first terminal device in the above first aspect, or to realize the function of the second terminal device in the above second aspect.
  • the embodiment of the present application provides a communication device, which has a function of implementing the resource indication method in any one of the above aspects.
  • This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the embodiment of the present application provides a communication device, including: a processor and a memory; the memory is used to store computer-executable instructions, and when the communication device is running, the processor executes the computer-executable instructions stored in the memory, To make the communication device execute the resource indication method according to any one of the above aspects.
  • the embodiment of the present application provides a communication device, including: a processor; the processor is used to be coupled with the memory, and after reading the instructions in the memory, execute the resource indication according to any one of the above aspects according to the instructions method.
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores instructions, and when it is run on a computer, the computer can execute the resource in any one of the above-mentioned aspects. Indicates the method.
  • the embodiment of the present application provides a computer program product including instructions, which, when run on a computer, enable the computer to execute the resource indication method in any one of the above-mentioned aspects.
  • the embodiment of the present application provides a circuit system, the circuit system includes a processing circuit, and the processing circuit is configured to execute the resource indication method according to any one of the foregoing aspects.
  • the embodiment of the present application provides a chip, the chip includes a processor, the processor is coupled to the memory, the memory stores program instructions, and when the program instructions stored in the memory are executed by the processor, any one of the above-mentioned aspects can be realized The resource indication method.
  • the embodiment of the present application provides a communication system, and the communication system includes the first terminal device in any one of the above aspects and the second terminal device in any one of the above aspects.
  • the technical effect brought by any one of the design methods in the second aspect to the thirteenth aspect can refer to the technical effect brought by different design methods in the first aspect, which will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a mobile communication system applied in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of another mobile communication system applied in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another mobile communication system applied in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of resource allocation provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the distribution of time-domain resources provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a resource selection scenario provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a resource reservation scenario provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a resource indication method provided by an embodiment of the present application.
  • FIG. 9a is another schematic diagram of resource allocation provided by the embodiment of the present application.
  • FIG. 9b is another schematic diagram of resource allocation provided by the embodiment of the present application.
  • FIG. 9c is another schematic diagram of resource allocation provided by the embodiment of the present application.
  • FIG. 9d is another schematic diagram of resource allocation provided by the embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another resource indication method provided by the embodiment of the present application.
  • Fig. 11a is a schematic flowchart of another resource indication method provided by the embodiment of the present application.
  • FIG. 11b is another schematic diagram of resource allocation provided by the embodiment of the present application.
  • FIG. 12 is a schematic flowchart of another resource indication method provided by the embodiment of the present application.
  • Fig. 13a is another schematic diagram of resource allocation provided by the embodiment of the present application.
  • FIG. 13b is another schematic diagram of resource allocation provided by the embodiment of the present application.
  • Fig. 13c is another schematic diagram of resource allocation provided by the embodiment of the present application.
  • Fig. 14a is a schematic flowchart of another resource indication method provided by the embodiment of the present application.
  • FIG. 14b is another schematic diagram of resource allocation provided by the embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • first and second in the specification and drawings of the present application are used to distinguish different objects, or to distinguish different processes for the same object, rather than to describe a specific sequence of objects.
  • the terms “including” and “having” mentioned in the description of the present application and any variations thereof are intended to cover non-exclusive inclusion.
  • a process, method, system, product or device comprising a series of steps or units is not limited to the listed steps or units, but optionally also includes other unlisted steps or units, or optionally also includes Other steps or elements inherent to the process, method, product or apparatus are included.
  • words such as “exemplary” or “for example” are used as examples, illustrations or descriptions.
  • the embodiment of the present application may be applicable to a communication system between terminal devices, such as a V2X communication system and a device to device (device to device, D2D) system.
  • a V2X communication system is taken as an example to describe a communication system to which this embodiment of the present application is applicable.
  • the communication system includes at least two terminal devices, and the two terminal devices can directly communicate through a side link (sidelink, SL) (in Fig. 1, Fig. 2 and Fig. 3 Both only show two terminal devices).
  • the communication system further includes network equipment. End devices can also communicate with network devices.
  • the V2X communication system can have the following communication scenarios: communication between vehicle to vehicle (V2V), communication between vehicle to infrastructure (V2I), vehicle to application server (vehicle to network , V2N) communication, vehicle-to-pedestrian mobile terminal (vehicle to pedestrian, V2P) communication, etc.
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2N vehicle to application server
  • V2P vehicle-to-pedestrian mobile terminal
  • terminal devices communicate directly through a sidelink (SL), without a sending and receiving process of network equipment, and there is no uplink and downlink communication links.
  • SL sidelink
  • the terminal device is mainly used for receiving or sending data.
  • the terminal device involved in the embodiment of this application may be a device or a component of a device that implements terminal functions.
  • a terminal device includes, for example but not limited to, various handheld devices with wireless communication functions, vehicle-mounted devices, Wearable devices, computing devices, or other processing devices connected to wireless modems; can also include subscriber units, cellular phones, smart phones, wireless data cards, personal digital assistants assistant, PDA) computer, tablet computer, handheld device (handheld), laptop computer (laptop computer), machine type communication (machine type communication, MTC) terminal (terminal), user equipment (user equipment, UE), mobile terminal etc.
  • PDA personal digital assistants assistant
  • MTC machine type communication
  • terminal terminal
  • user equipment user equipment
  • UE mobile terminal etc.
  • the terminal device may be a component in any of the above-mentioned devices (for example, the terminal device may refer to a chip system in any of the above-mentioned devices).
  • the terminal device may also be referred to as a terminal, which will be described collectively here and will not be described in detail below.
  • the network device involved in the embodiment of the present application is a device deployed on a radio access network to provide a wireless communication function.
  • a network device may refer to a device that communicates with a wireless terminal through one or more cells on the air interface of the access network, where the device that implements the function of the network device may be a network device, or it may be a device that supports the network device to implement the Functional device (such as a chip in a network device).
  • the network device can perform attribute management on the air interface.
  • the base station equipment may also coordinate attribute management for the air interface.
  • Network equipment includes various forms of macro base stations, micro base stations (also called small stations), relay devices such as relay stations or chips of relay devices, transmission reception points (transmission reception point, TRP), evolved network nodes (evolved Node B, eNB), next-generation network node (g Node B, gNB), evolved Node B (ng evolved Node B, ng-eNB) connected to the next-generation core network, etc.
  • the network equipment can be base band unit (base band unit, BBU) and remote radio unit (remote radio unit, RRU), and in the cloud radio access network (cloud radio access Netowrk, CRAN) scenario
  • network devices can be baseband pool (BBU pool) and RRU.
  • both terminal devices are in the same public land mobile network (public land mobile network).
  • mobile network, PLMN) such as PLMN1 coverage, as shown in Figure 1;
  • PLMN1 mobile network
  • PLMN1 mobile network
  • PLMN1 only one terminal device is within the coverage of the PLMN (such as PLMN1), and the other terminal device is outside the coverage of the PLMN (ie, PLMN1), As shown in FIG. 2;
  • the two terminal devices are outside the coverage of the PLMN (such as PLMN1), and the area where the two terminal devices are located has no pre-configured cell identity, as shown in FIG. 3 .
  • the dotted ellipse areas in FIG. 1 , FIG. 2 and FIG. 3 all indicate the coverage of the PLMN1. Since the sidelink link is used for communication between the two terminal devices, no matter whether the two terminal devices are within the coverage of the PLMN at the same time, they can communicate normally.
  • the communication systems shown in Figure 1, Figure 2 and Figure 3 can be applied to long term evolution (long term evolution, LTE) or advanced long term evolution (LTE Advanced, LTE-A) systems, and can also be applied to 5G networks or future In other networks, of course, it can also be applied to a system of mixed networking of LTE and 5G, or to other systems, which is not specifically limited in this embodiment of the present application.
  • LTE long term evolution
  • LTE Advanced LTE Advanced
  • LTE-A advanced long term evolution
  • 5G networks Fifth Generation
  • the network devices and terminal devices in the above-mentioned communication system may correspond to different names, and those skilled in the art can understand that the names do not limit the devices themselves.
  • CBR which means that within the preset measurement period (such as 100 time slots or 100 2 ⁇ time slots), the sidelink-received signal strength indicator (S-RSSI) exceeds the pre-configured critical
  • S-RSSI sidelink-received signal strength indicator
  • CBR is an index to measure the degree of interference. The larger the CBR, the higher the busyness of the channel, the greater the system load, and the stronger the interference between different terminal devices.
  • the S-RSSI of a certain sub-channel is greater than the pre-configured critical value, it indicates that the sub-channel has been occupied; if the S-RSSI of a certain sub-channel is less than or equal to the pre-configured critical value, it indicates that the sub-channel is not occupied occupy.
  • the CBR measurement methods are different, and the obtained CBR can represent the busyness of different types of channels.
  • the terminal device performs a physical sidelink feedback channel (physical sidelink feedback channel, PSFCH), physical sidelink shared channel (physical sidelink Shared channel, PSSCH) and physical sidelink control channel (physical sidelink control channel, PSCCH) three channels for CBR measurement.
  • PSFCH physical sidelink feedback channel
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • the terminal device performs CBR measurement on the two channels of PSSCH and PSCCH
  • the CBR obtained at this time indicates the overall channel busyness of PSSCH and PSCCH within the preset measurement period.
  • the detailed process of "the terminal device performs CBR measurement on different channels to obtain the CBR" can refer to related technologies, and will not be repeated here.
  • represents the serial number of the subcarrier interval.
  • CR which represents the sum of the number of sub-channels actually occupied by a certain terminal device and the number of sub-channels to be occupied in the future and the sub-channel The ratio between the total number of .
  • the CR is an index for statistics of characteristics of a terminal device, and the larger the CR, the more resources a certain terminal device occupies.
  • SCI is divided into first-level SCI (1st-stage SCI) and second-level SCI (2nd-stage SCI).
  • first-level SCI is carried on the PSCCH
  • first-level SCI is used to schedule the second-level SCI and the PSSCH. Since SL is a distributed system, the terminal device at the receiving end needs to correctly decode the first-level SCI before decoding the PSSCH.
  • the information carried by the PSSCH is described as data channel information.
  • the data channel information includes data information, second-level SCI, and the like.
  • the time-frequency resource position of the PSCCH is relatively fixed, and the format of the first-level SCI carried on the PSCCH is also relatively unique. That is, the terminal device does not need to blindly detect the time-frequency resource position where the PSCCH is located, nor does it need to blindly detect SCIs of different formats. It is sufficient for the terminal device to detect whether there is a first-level SCI at a fixed PSCCH time-frequency resource position.
  • PSCCH exists in every subchannel on every slot. Exemplarily, as shown in FIG. 4 , the start position of a PSCCH in the time domain is the second symbol used for SL transmission on each time slot, and the number of continuously occupied symbols is 2 or 3.
  • the starting position of a PSCCH in the frequency domain is the RB with the smallest index on each subchannel, and the number of RBs occupied continuously is at least 10 and does not exceed the size of the subchannel.
  • AGC automatic gain control
  • the first-level SCI includes a frequency domain resource assignment (frequency resource assignment) field and a time domain resource assignment (time resource assignment) field.
  • the frequency domain resource allocation field indicates the frequency domain resource of the PSSCH
  • the time domain resource allocation field indicates the time domain resource of the PSSCH.
  • the first-level SCI also includes a resource reservation period (resource reservation period) field.
  • the resource reservation cycle field indicates the cycle of PSSCH resource reservation.
  • the value of the resource reservation period field is configured by the network device, or pre-configured (pre-configuration), or predefined.
  • the network device indicates the time domain resource, frequency domain resource and period of the PSSCH for the terminal device through radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the second level SCI is carried in the PSSCH.
  • the second-level SCI does not occupy the resources of PSCCH, demodulation reference signal (demodulation reference signal, DMRS) and phase tracking reference signal (phase tracking reference signal, PT-RS).
  • the second-level SCI is mainly used for hybrid automatic repeat request (HARQ) feedback of NR SL, such as indicating HARQ process number (process number), source ID (source ID), destination ID (destination ID) and other related information.
  • HARQ hybrid automatic repeat request
  • the format of the second-stage SCI is indicated by the second-stage SCI format (2nd-stage SCI format) field in the first-stage SCI. Exemplarily, the format fields of the second-level SCI in the first-level SCI are as shown in Table 1:
  • the second-level SCI format when the value of the second-level SCI format field in the first-level SCI is 00, the second-level SCI format is 2-A. When the value of the second-level SCI format field is 01, the second-level SCI format is 2-B.
  • the X information is configured by the network device, which can be understood as one of the following two implementations:
  • the network device uses RRC signaling or system information block
  • the (system information block, SIB) message configures X information for the terminal device.
  • the network device indicates the X information to the terminal device through downlink control information (downlink control information, DCI).
  • the X information can also be pre-configured, which can be understood as the X information pre-configured when the terminal device leaves the factory.
  • the X information can also be predefined, which can be understood as defined in communication standard protocols or regional, national laws, and norms, and does not need to be obtained through configuration, instruction, or calculation.
  • the X information may be the period of the above-mentioned PSSCH cycle reserved resource, or the following X max , or the maximum value of CR, see the description of S801 for details, and will not be repeated here.
  • the SL resource pool can be understood as a collection of time-frequency resources, and is used for sidelink communication between terminal devices.
  • the SL resource pool also includes code domain resources.
  • the SL resource pool includes resources for the terminal device to transmit and receive physical channels.
  • the physical channel includes at least one of the following: PSCCH, PSSCH, physical sidelink discovery channel (physical sidelink discovery channel, PSDCH), PSFCH and physical sidelink broadcast channel (physical sidelink broadcast channel, PSBCH).
  • the PSCCH is used to bear the first level SCI.
  • the PSSCH is used to carry data channel information, such as at least one of second-level SCI, data information, and side channel state information (channel state information, CSI) feedback information.
  • PSDCH is used to carry discovery messages.
  • the PSFCH is used to carry sidelink feedback information.
  • the sidelink feedback information includes response feedback information for data channel information, such as HARQ response feedback information.
  • the HARQ response feedback information includes an acknowledgment (acknowledge, ACK) or a negative acknowledgment (negative acknowledgment, NACK).
  • the sidelink feedback information may also include CSI feedback information.
  • the sidelink feedback information may also indicate at least one of the following information: energy saving information, resource assistance information, and the like.
  • the resource auxiliary information indicates at least one of the following: recommended resources, unrecommended resources, resource collisions, resource reservation conflicts, half-duplex conflicts that have occurred in the past or will occur in the future, and the like.
  • the PSBCH is used to carry information related to sidelink synchronization.
  • the SL resource pool includes one or more time units in the time domain.
  • one time unit may be one or several symbols, one or several time slots (slot), one or several mini-slots (mini-slot), one or several subframes, or one or several frames.
  • multiple time-domain units can be continuous or discrete in time. In this application, only time slots are used as an example for introduction.
  • the SL resource pool includes one or more frequency domain units in the frequency domain.
  • a frequency domain unit may be one or several resource elements (resource element, RE), one or several resource blocks (resource block, RB), or one or several sub-channels (sub channel).
  • the size of the subchannel may be understood as that one subchannel includes one or more continuous (continuous) or interlaced (interlaced) RB quantities in the frequency domain.
  • one subchannel may include 10, 12, 15, 20, 25 or 50 subchannels. In this application, only sub-channels are used as an example for introduction.
  • a physical time slot refers to a time slot that is continuous in time.
  • time slot 1 to time slot 8 are continuous time slots in time, and such time slots are physical time slots.
  • time slot 1 on the physical time slot corresponds to time slot 1' in the SL resource pool
  • time slot 3 on the physical time slot corresponds to time slot 2' in the SL resource pool.
  • the time slot 5 on the physical time slot corresponds to the time slot 3' in the SL resource pool
  • the time slot 7 on the physical time slot corresponds to the time slot 4' in the SL resource pool.
  • time slot 1', time slot 2', time slot 3' and time slot 4' are logically continuous for the SL resource pool, and such time slots are logical time slots.
  • the terminal device can receive the system information block (system information block, SIB) from the network equipment, the cell-specific radio resource control (radio resource control, RRC) signaling or the terminal device user Level (UE-specific) RRC signaling to obtain SL resource pool configuration information and/or SL bandwidth part (bandwidth part, BWP) configuration information.
  • SIB system information block
  • RRC radio resource control
  • UE-specific terminal device user Level
  • the terminal device may also use pre-configured SL resource pool configuration information or SL BWP configuration information.
  • the terminal device can use pre-configured SL resource pool configuration information or SL BWP configuration information.
  • the SL BWP configuration information is used to configure the number of SL resource pools in the BWP.
  • the SL resource pool configuration information may include PSCCH configuration information.
  • the configuration information of the PSCCH includes the number of symbols occupied by the PSCCH in a time slot and the number of RBs occupied by the PSCCH in a subchannel.
  • the SL BWP configuration information may include at least one of the following:
  • the first item is SL bandwidth information.
  • the SL bandwidth information indicates the bandwidth size of the SL communication.
  • the SL bandwidth information indicates that the SL bandwidth is 20 megahertz (MHz).
  • the second item SL symbol information.
  • the SL symbol information indicates the starting SL symbol position and the number of consecutive SL symbols in a time slot.
  • the third item is the subcarrier spacing and cyclic prefix information of SL.
  • the subcarrier spacing indicates the subcarrier spacing used in the SL communication
  • the cyclic prefix information indicates that the cyclic prefix used in the SL communication is an extended cyclic prefix or a normal cyclic prefix.
  • the fourth item is the configuration information of the SL resource pool.
  • transmission mode 1 is also referred to as mode 1 for short
  • transmission mode 2 is also referred to as mode 2 for short.
  • transmission mode 1 and transmission mode 2 are used as examples for introduction.
  • the reserved resource of the terminal device is allocated by the network device, and the terminal device transmits information on the resource allocated by the network device.
  • the network device allocates a single transmission resource to the terminal device, and may also allocate periodic transmission resources to the terminal device.
  • the terminal device determines reserved resources in a manner of sensing (sensing)+reservation (reservation).
  • sensing sensing
  • reservation reservation
  • Step 1 the terminal device 1 acquires data information to be sent.
  • terminal device 1 has new data information arriving at or near time slot n, and needs to send data information to other terminal devices, triggering resource selection.
  • Step 2 The terminal device 1 determines a resource selection window.
  • the resource selection window is a preset duration after time slot n.
  • the start time slot of the resource selection window is marked as: n+T 1
  • the end time slot of the resource selection window is marked as: n+T 2 . in, T 2min ⁇ T 2 ⁇ PDB.
  • PDB represents the delay of data packets.
  • Step 3 The terminal device 1 determines a sensing window.
  • the listening window is a preset duration before time slot n, such as 1000 time slots (or 1000 ⁇ 2 ⁇ time slots).
  • nT 0 the start time slot of the listening window
  • nT proc,0 the ending time slot of the listening window
  • the terminal device 1 may perform step 2 first and then step 3, or may perform step 3 first and then step 2, or may perform step 2 and step 3 at the same time, which is not limited in this embodiment of the present application.
  • Step 4 The terminal device 1 performs resource selection in the resource selection window according to the interception result of the interception window, and determines reserved resources.
  • the listening result includes the detection result of the PSCCH and the measured value of the reference signal received power (reference signal received power, RSRP) of the PSSCH corresponding to the PSCCH.
  • RSRP reference signal received power
  • the resource reservation may be periodic or non-periodic.
  • resources in different periods can transmit the same transport block (TB) or different TBs.
  • Resources in the same cycle transfer the same TB.
  • resources in the same cycle can also transmit different TBs.
  • all the time-frequency resources within the resource selection window form a candidate resource set S_A, and the number of resources in the candidate resource set S_A is A.
  • the terminal device 1 excludes the resources reserved by the terminal device 2 from the candidate resource set S_A. At this time, it is recorded that the number of remaining resources in the candidate resource set S_A is equal to B.
  • the terminal device 1 If the remaining B resources in the candidate resource set S_A are less than X% of the total resources in the resource selection window, the terminal device 1 increases the above-mentioned RSRP threshold, for example, by 3dB, until the remaining resources in the candidate resource set S_A are greater than or equal to the resource selection window X% of total resources. Wherein, the value of X% is configured by the resource pool. Wherein, the terminal device 1 determines reserved resources from the remaining resources in the candidate resource set S_A.
  • the RSRP threshold is related to the priority prio TX of the data information to be sent and the priority prio RX indicated by the received SCI.
  • the RSRP threshold in step 4 is a value in the RSPR set, for example, the RSRP threshold in step 4 is the prio TX + (prio RX -1)*8th threshold in the RSPR set.
  • Step 5 the terminal device 1 sends data information on the reserved resource.
  • the data information can be transmitted in the form of TB.
  • a TB can also include SCI.
  • SCI includes data transmission process number and resource reservation information.
  • the resource reservation information may include period information, and the period information indicates a period for the terminal device 1 to reserve resources. It should be understood that reserving resources may be understood as that a certain terminal device (such as the terminal device 1) reserves some subsequent time-frequency resources. The terminal device may send and receive data on the reserved resource, or the terminal device may not use the reserved resource, that is, the reserved resource is not used, which is not limited in this embodiment of the present application.
  • the terminal device may adopt a dynamic scheduling mode or a semi-persistent scheduling (semi-persistent scheme, SPS) mode.
  • the dynamic scheduling method can select resources for a single TB and reserve resources for retransmission of the same TB.
  • the SPS method can select resources for multiple TBs and reserve resources for retransmission of multiple TBs.
  • the time domain resource, frequency domain resource and reservation period of the PSSCH are indicated by the first-level SCI.
  • the reserved resources of the PSSCH indicated by the first-level SCI are shown as the solid-line boxes in FIG.
  • the first-level SCI indicates the reserved resources of the PSSCH of five periods.
  • the PSSCH in one period occupies one time slot in the time domain and four sub-channels in the frequency domain.
  • the terminal device transmits information through the PSSCH indicated by the first-level SCI on time slot 0 and time slot 2.
  • time slot 3 the service requirement of the terminal device changes, and the terminal device re-determines the reserved resource based on the changed service requirement, as shown in the dashed box filled with grid lines in Fig. 7 .
  • the resource re-reserved by the terminal device is the same as the resource reserved before the service change in the time domain, but different in the frequency domain.
  • the resource reserved by the terminal device before the service demand changes is no longer used, as shown by the unfilled solid line box in FIG. 7 . Since the terminal device does not release the resources reserved before the service change, the resources reserved by the terminal device before the service demand change are excluded by other terminal devices in the resource selection process and cannot be used by other terminal devices, resulting in waste of resources.
  • an embodiment of the present application provides a resource indication method, and the resource indication method of the embodiment of the present application is applied to the communication system in FIG. 1 , FIG. 2 or FIG. 3 .
  • the first terminal device sends the first-level SCI, wherein the first-level SCI indicates period information and frequency domain resource information, period information indicates the period for sending data channel information, and frequency domain resource information indicates The data channel information reserves the number of sub-channels that occupy X sub-channels.
  • the first terminal device sends the data channel information according to the first-level SCI, wherein the data channel information includes the first data information and the second-level SCI, and the second-level SCI indicates that the first data information occupies Y sub-channels and the number of sub-channels /or position, Y sub-channels are Y sub-channels in X sub-channels, X and Y are both natural numbers, and 1 ⁇ Y ⁇ X ⁇ X max , X max is the maximum number of sub-channels reserved by the first terminal device.
  • the first terminal device not only indicates the number of sub-channels reserved by the data channel information, but also indicates the number and/or position of the sub-channels actually occupied by the first data information, and the Y sub-channels indicated by the second-level SCI are Y sub-channels among the X sub-channels indicated by the first-level SCI, that is, when the first terminal device determines that the service demand changes, it adjusts the sub-channels reserved by the first-level SCI instead of re-reserving resources , to improve resource utilization.
  • other terminal devices can perform resource exclusion in the resource selection process based on the above-mentioned first-level SCI and second-level SCI, such as only excluding the sub-channels indicated by the second-level SCI, without excluding the sub-channels indicated by the first-level SCI but not selected.
  • the sub-channel indicated by the second-level SCI is used to avoid the situation that the resources indicated by the first-level SCI are not used by the first terminal device and are not used by other terminal devices, thereby improving resource utilization.
  • the first terminal device determines reserved resources of data channel information.
  • the data channel information is information sent by the first terminal device to the second terminal device, rather than information sent by the first terminal device to the third terminal device or the fourth terminal device.
  • the second terminal device, the third terminal device and the fourth terminal device are all capable of communicating with the first terminal device.
  • the first terminal device determines the reserved resources of the data channel information in the time slot T 0 , such as the cycle T p of sending the data channel information, the number of sub-channels X occupied by the data channel information in each cycle, and the data channel information The number of time slots occupied in each cycle.
  • the time slot T 0 is the time slot corresponding to index 0.
  • the period T p of the data channel information is 4 time slots.
  • the cycle number of the data channel information is 5.
  • the number of time slots occupied by the data channel information in each cycle is 1, and the time slot indexes occupied by the data channel information are 1, 5, 9, 13 and 17.
  • the value of the number of sub-channels X should not be too large, so as to prevent the first terminal device from maliciously occupying resources. That is to say, the number of sub-channels reserved by the first terminal device is limited, such as X ⁇ X max .
  • the introduction of X max is as follows:
  • X max is pre-configured, such as a pre-agreed value of the communication system.
  • X max is configured by the network device.
  • the network device sends instruction 1 to the first terminal device.
  • the first terminal device receives instruction 1 from the network device.
  • instruction 1 indicates the value of X max , for example, instruction 1 indicates that the value of X max is 4.
  • X max is determined based on at least one of the following:
  • the first item indicates the priority level of the first data information.
  • the priority may be indicated by a priority field in the first-level SCI. The higher the priority, the larger the value of X max , which means that the first terminal device can occupy more channel resources.
  • the second item, CBR indicates the busyness of the channel within the first preset time period.
  • the first preset duration may be a preset measurement period, such as 100 time slots (or 100 ⁇ 2 ⁇ time slots).
  • the third item is the maximum value of CR.
  • the CR indicates the extent to which the first terminal device occupies the channel within the second preset time period.
  • the maximum value of CR may be recorded as CR limit .
  • the maximum value of CR may also have other notations, which are not limited in this embodiment of the present application.
  • the second preset duration may be a preset measurement period, such as 1000 time slots (or 1000 ⁇ 2 ⁇ time slots).
  • the greater the maximum value of CR the greater the value of X max .
  • the determination method of the maximum value of CR is as follows:
  • the maximum value of CR is pre-configured, such as the value predefined by the communication system.
  • the maximum value of CR is configured by the network device.
  • the network device sends instruction 2 to the first terminal device.
  • the first terminal device receives instruction 2 from the network device.
  • instruction 2 indicates the maximum value of CR.
  • the maximum value of CR is determined based on at least one of the following:
  • the first item for the introduction of the priority, please refer to the introduction of the priority in X max , which will not be repeated here.
  • the higher the priority the greater the maximum value of the CR.
  • the second item is the cycle number of data channel information.
  • the number of cycles reserved by the first terminal device is 5, that is, the number of cycles of data channel information is 5.
  • the third item, CBR The third item, CBR.
  • the introduction of CBR can refer to the introduction of CBR in X max , which will not be repeated here.
  • N subchannel is the number of subchannels included in the resource pool, and X max ⁇ N subchannel .
  • a resource pool includes a value of 5 subchannels N subchannel , and correspondingly, a maximum value of X max is 5.
  • the first terminal device determines the reserved resource of the data channel information according to the first service requirement in the time slot T0 .
  • the first business requirement includes but is not limited to at least one of the following:
  • the content to be transmitted by the first terminal device is the data information of service A.
  • the determination of the first service requirement by the first terminal device at the time slot T0 includes: data information of the service A to be sent by the first terminal device.
  • the second item, the packet is smaller than the packet threshold 1.
  • the first terminal device determines that the data packet is smaller than the data packet threshold 1 at time slot T0 .
  • the data channel information is transmitted in the form of data packets.
  • the first terminal device sends the first-level SCI.
  • other terminal devices receive the first-level SCI.
  • the first-level SCI indicates period information and frequency domain resource information
  • period information indicates the period for sending data channel information
  • frequency domain resource information indicates the number of subchannels that the data channel information reserves to occupy X subchannels.
  • the resource reservation period field of the first-level SCI indicates period information, and the period information indicates that the period T p for sending data channel information is 4 time slots.
  • the frequency domain resource allocation field of the first-level SCI indicates frequency domain resource information, and the frequency domain resource information indicates the number of subchannels that the data channel information reserves to occupy X subchannels.
  • the X subchannels may be continuous subchannels in the frequency domain, and the first subchannel among the X subchannels is a subchannel bearing the first-level SCI.
  • the time-domain resource allocation field of the first-level SCI indicates that the number of time slots reserved for data channel information in each cycle is 1.
  • the other terminal devices include terminal devices communicating with the first terminal device, such as terminal devices around the first terminal device.
  • Other terminal devices may include a second terminal device, a third terminal device, and a fourth terminal device.
  • FIG. 8 only shows the communication process between the first terminal device and the second terminal device.
  • the first terminal device adjusts reserved resources.
  • the first terminal device determines that the service requirement changes in time slot T1 , such as the transmission content changes, or the data packet size changes, etc., and the first terminal device determines that the number of sub-channels actually occupied is less than the number of sub-channels occupied by reservation .
  • the implementation process of S803 is introduced:
  • the first terminal device determines the number and position of the subchannels that the first data information occupies in the Y subchannels.
  • the first data information is the data transmitted in the first cycle after the service requirement of the first terminal device changes.
  • the Y subchannels occupied by the first data information are Y subchannels among the X subchannels indicated by the first-level SCI, and 1 ⁇ Y ⁇ X. Implicitly, it can be understood that the time domain resources occupied by the first data information belong to the time domain resources indicated by the first-level SCI. That is to say, the first terminal device adjusts the reserved resources in the frequency domain, and the time-domain reserved occupancy status of the reserved resources remains unchanged.
  • Time slot T1 is the time slot corresponding to index 7
  • the resources occupied by the first data information are shown in the squares filled with corresponding slashes on the slot index 9, and the reserved resources of the data channel information are shown in the dotted squares.
  • the first terminal device adjusts reserved resources in time slot T1 , it does not need to re-reserve new resources other than the reserved resources indicated by the first-level SCI. Dynamic adjustment is performed on reserved resources, such as sub-channels, to avoid the problem of resource waste caused by the first terminal device not using the reserved resources and re-reserving the resources.
  • the Y subchannels may be at least two continuous subchannels in the frequency domain, or at least two discrete subchannels in the frequency domain, which is not limited in this embodiment of the present application.
  • it is introduced by taking Y sub-channels continuous in the frequency domain as an example: as a case, the starting positions of the Y sub-channels are the same as the starting positions of the X sub-channels.
  • the end positions of the Y sub-channels and the end positions of the X sub-channels may be the same, that is, the Y sub-channels are all the sub-channels in the X sub-channels.
  • the end positions of the Y sub-channels and the end positions of the X sub-channels may also be different, that is, the Y sub-channels are part of the X sub-channels.
  • the end positions of the Y sub-channels are the same as the end positions of the X sub-channels.
  • the starting positions of the Y sub-channels and the starting positions of the X sub-channels may be the same, that is, the Y sub-channels are all the sub-channels in the X sub-channels.
  • the starting positions of the Y sub-channels and the starting positions of the X sub-channels may also be different, that is, the Y sub-channels are part of the X sub-channels.
  • the starting positions of the Y sub-channels are determined by the starting positions of the X sub-channels and the first offset.
  • the first offset is 1 subchannel.
  • the starting positions of the Y sub-channels and the starting positions of the X sub-channels are offset by 1 sub-channel.
  • the end positions of the Y sub-channels and the end positions of the X sub-channels may be the same or different. It is easy to understand that the end positions of the Y sub-channels are determined by the end positions of the X sub-channels and the second offset.
  • the second offset is 1 subchannel.
  • the end positions of the Y sub-channels and the end positions of the X sub-channels are offset by 1 sub-channel.
  • the starting positions of the Y sub-channels and the starting positions of the X sub-channels may be the same or different.
  • the first offset and the second offset may be pre-configured, or may be configured by a network device, which is not limited in this embodiment of the present application.
  • the first terminal device determines the value of Y according to the second service requirement in the time slot T1 .
  • the second business requirement includes but is not limited to at least one of the following:
  • the content to be transmitted by the first terminal device is the data information of service B.
  • the determination of the second service requirement by the first terminal device at the time slot T1 includes: data information of the service B to be sent by the first terminal device. That is to say, compared with the transmission content corresponding to the time slot T0 , the service content to be transmitted by the first terminal device changes.
  • the second item, the packet is smaller than the packet threshold 2.
  • the first terminal device determines that the data packet is smaller than the data packet threshold 2 in the time slot T1 . That is to say, compared with the size of the data packet corresponding to the time slot T0 , the size of the data packet to be transmitted by the first terminal device changes.
  • the first terminal device further determines the occupancy status of subchannels in periods subsequent to the period in which the first data information is located.
  • the first terminal device further determines the number and position of the subchannels occupied by the Z subchannels for the second data information.
  • the second data information belongs to data channel information, and is data transmitted in a period next to the period in which the first data information is located.
  • the Z subchannels occupied by the second data information are Z subchannels among the X subchannels indicated by the first-level SCI, and Z is a natural number. 1 ⁇ Z ⁇ X. Implicitly, it can be understood that the time-domain resource occupied by the second data information belongs to the time-domain resource indicated by the first-level SCI, and the time-domain reservation occupancy status of the reserved resource remains unchanged.
  • Z subchannels are at least two continuous subchannels in the frequency domain, and the starting positions of Z subchannels are the same as the starting positions of X subchannels.
  • the number Y of subchannels occupied by the first data information and the number Z of subchannels occupied by the second data information may have the same value, as shown in FIG. 9c.
  • the number Y of sub-channels occupied by the first data information and the number Z of sub-channels occupied by the second data information may also have different values, as shown in FIG. 9b.
  • the second-level SCI can also indicate the number of sub-channels with more periods and the location of sub-channels with more periods, such as the period where the first data information is located.
  • the number and position of subchannels in each period in the remaining periods after the period are shown in FIG. 9d , which is not limited in this embodiment of the present application.
  • the first terminal device determines the second-level SCI.
  • the second-level SCI indicates the number of sub-channels that the first data information occupies Y sub-channels.
  • the Y subchannels in S804 are consistent with the Y subchannels in S803.
  • the second-level SCI indicates that the number of sub-channels occupied by the first data information is Y.
  • the second-level SCI indicates subchannel positions where the first data information occupies Y subchannels.
  • the second-level SCI indicates the starting positions of Y subchannels occupied by the first data information.
  • the second-level SCI indicates the end positions of Y subchannels occupied by the first data information.
  • the second-level SCI indicates the starting positions and first offsets of the X subchannels. Wherein, for the first offset, refer to the introduction of S803, which will not be repeated here.
  • the second-level SCI indicates the end positions and the second offset of the X subchannels. Wherein, for the second offset, refer to the introduction of S803, which will not be repeated here.
  • the second-level SCI indicates the position of each sub-channel in the Y sub-channels occupied by the first data information.
  • the second-level SCI may also only indicate the number of subchannels that the first data information occupies Y subchannels, but not indicate the subchannel positions that the first data information occupies Y subchannels.
  • the starting position of the Y sub-channels may be the sub-channel where the first-level SCI is located, so that other terminal devices can determine the position of each sub-channel in the Y sub-channels.
  • the second-level SCI may also indicate the number of subchannels and subchannel positions that the first data information occupies Y subchannels, which is not limited in this embodiment of the present application.
  • the introduction of the second-level SCI is as follows: the format of the second-level SCI can be recorded as SCI format 2-C, and the format of the second-level SCI is indicated by the first-level SCI, as shown in Table 2:
  • the value of the second-level SCI format field (value of 2nd- Second-stage SCI format (2nd-stage SCI format)
  • stage SCI format field the 00 SCI format 2-A 01 SCI format 2-B 10 SCI format 2-C 11 reserve
  • the second-level SCI format is 2-C. It should be understood that the second-level SCI in S804 may also have other formats, which are not limited in this embodiment of the present application.
  • the second-level SCI also indicates the occupancy status of the subchannel in a period after the period of the first data information.
  • the second-level SCI further indicates the number and/or positions of the Z sub-channels occupied by the second data information.
  • the Z sub-channels in S804 are consistent with the Z sub-channels in S803, and the indication of the Z sub-channels by the second-level SCI can refer to the introduction of the indication of the Y sub-channels by the second-level SCI, which will not be repeated here.
  • the second-level SCI also indicates that the number of sub-channels occupied by the second data information is 3, so that other terminal devices can perform reasonable resource exclusion.
  • Example 1 only the Z subchannel occupied by the second data information is taken as an example for introduction.
  • the second-level SCI can also indicate the subchannel occupancy status of more periods, such as the subchannel occupancy status in two or more consecutive periods after the period of the first data information, which is not limited in the embodiment of the present application .
  • the second-level SCI also indicates label information.
  • the label information indicates whether the values of Z and Y are the same.
  • Z represents the number of sub-channels occupied by the second data information.
  • the flag information may be recorded as flag.
  • the identification information is indicated by 1 bit.
  • the value of flag is 1, indicating that the values of Z and Y are the same, as shown in FIG. 9c.
  • the value of flag is 0, indicating that the values of Z and Y are different, which is not shown in FIG. 9c.
  • the value of flag is 1, indicating that the values of Z and Y are different.
  • the value of flag is 0, indicating that the values of Z and Y are the same.
  • the first terminal device indicates the occupancy status of the subchannel by the second data information by marking information, so as to save signaling overhead.
  • marked information is used as an example for introduction, and the marked information may also be replaced with other names, such as indication information, which is not limited in this embodiment of the present application.
  • the marking information may also use other values or characters to indicate whether the values of Z and Y are the same, which is not limited in this embodiment of the present application.
  • Y also indicates the number of sub-channels occupied by the third data information.
  • the Y subchannels occupied by the third data information are Y subchannels among the X subchannels.
  • the third data information belongs to data channel information, and is transmitted in a period after the period of the first data information.
  • the number of cycles after the cycle where the first data information is located may be one, or multiple, or each cycle after the cycle where the first data information is located. It should be understood that in this embodiment of the present application, each period after the period where the first data information is located refers to each period after the period where the first data information is located in the reservation period of the first-level SCI.
  • the value Y indicated by the second-level SCI can also represent the number of sub-channels occupied by the third data information in each period after the period of the first data information, so that when the sub-channel changes are small Next, indicate the occupancy status of the sub-channel by the first terminal device itself to other terminal devices.
  • Y when Y also indicates the number of subchannels occupied by the third data information, Y can also indicate the position of the subchannel occupied by the third data information, such as the position of the subchannel occupied by the third data information is different from that of the first data information The position of the sub-channel occupied by the information to better adapt to the situation where the sub-channel changes little.
  • the first terminal device sends data channel information according to the first-level SCI.
  • other terminal devices receive data channel information according to the first-level SCI.
  • the first-level SCI in S805 is consistent with the first-level SCI in S802.
  • the data channel information in S805 includes the first data information and the second level SCI.
  • the first data information refer to the introduction of S803, and for the second-level SCI, refer to the introduction of S804, which will not be repeated here.
  • other terminal devices include a second terminal device, a third terminal device and a fourth terminal device.
  • the second terminal device can identify the second-level SCI in the data channel information, and belongs to the target receiving end of the data channel information.
  • the third terminal device can identify the second-level SCI in the data channel information, but does not belong to the target receiving end of the data channel information.
  • the fourth terminal device cannot identify the second-level SCI in the data channel information, and does not belong to the target receiving end of the data channel information.
  • the processing procedures of the second terminal device, the third terminal device and the fourth terminal device are respectively introduced:
  • the specific implementation process of S805 is as follows: the second terminal device decodes the first-level SCI to obtain the subchannel reserved by the first-level SCI. The second terminal device then decodes the second-level SCI to obtain the number and position of sub-channels actually occupied by the first data information. After the second terminal device executes S805, execute S806:
  • the second terminal device decodes the first data information according to the subchannel positions of the Y subchannels.
  • the second terminal device determines Y sub-channels according to the number of sub-channels indicated by the second-level SCI and the predefined start positions of Y sub-channels The subchannel position of . Then, the second terminal device determines resource 1 according to the time domain resource allocation field in the first-level SCI and the subchannel positions of the Y subchannels, and decodes resource 1 to obtain the first data information.
  • the predefined start positions of the Y sub-channels and the start positions of the X sub-channels may be the same.
  • the second terminal device determines the subchannel positions of the Y subchannels according to the number of subchannels indicated by the second-level SCI and the predefined end positions of the Y subchannels. Then, the second terminal device determines resource 2 according to the time domain resource allocation field in the first-level SCI and the subchannel positions of the Y subchannels, and decodes resource 2 to obtain the first data information.
  • the end positions of the predefined Y sub-channels and the end positions of the X sub-channels may be the same.
  • the second terminal device determines the resource 3, and decode the resource 3 to obtain the first data information.
  • the second terminal device in the case where the second-level SCI indicates the number of subchannels and the end position of Y subchannels, the second terminal device, according to the time-domain resource allocation field in the first-level SCI, the number of sub-channels indicated by the second-level SCI, and The end position is to determine the resource 4 and decode the resource 4 to obtain the first data information.
  • the second terminal device In the case where the second-level SCI indicates the number of subchannels of Y subchannels, the starting positions of X subchannels, and the first offset, the second terminal device The starting positions of the Y sub-channels can be determined. In the case that the Y subchannels are continuous subchannels in the frequency domain, the second terminal device is based on the starting position of the Y subchannels and the number of subchannels of the Y subchannels indicated by the second-level SCI, and the number of subchannels in the first-level SCI The resource allocation field in the time domain can determine the resource 5, and decode the resource 5 to obtain the first data information.
  • the second terminal device bases the end position of X subchannels and the second offset , the end positions of the Y sub-channels can be determined.
  • the Y subchannels are continuous subchannels in the frequency domain
  • the second terminal device bases the end position of the Y subchannels on the basis of the number of subchannels of the Y subchannels indicated by the second-level SCI, and the time period in the first-level SCI.
  • the domain resource allocation field can determine the resource 6, and decode the resource 6 to obtain the first data information.
  • the second terminal device can determine the resources based on the subchannel positions of the Y subchannels and the time-domain resource allocation field in the first-level SCI 7. Decode the resource 7 to obtain the first data information.
  • the second-level SCI also indicates the occupancy status of the subchannel in a period after the period of the first data information.
  • three examples are used to introduce the processing process of the second terminal device:
  • Example 1 the second terminal device also executes S807a:
  • the second terminal device decodes the second data information according to the subchannel positions of the Z subchannels.
  • the second terminal device determines the resource to be decoded according to the time domain resource allocation field in the first-level SCI and the subchannel positions of the Z subchannels, and then performs decoding to obtain the second data information.
  • the process of determining the resource to be decoded by the second terminal device reference may be made to the description of S806, which will not be repeated here.
  • Example 2 the second terminal device also executes S807b:
  • the second terminal device decodes the second data information according to the label information.
  • the second-level SCI also indicates label information, and the label information indicates whether the values of Z and Y are the same.
  • the label information indicates whether the values of Z and Y are the same.
  • the second terminal device can determine the value of Z.
  • the second terminal device determines the resources to be decoded according to the time-domain resource allocation field in the first-level SCI, the value of Z, and the start positions of the predefined Z subchannels, and then performs decoding to obtain the second Data information.
  • the process of determining the resource to be decoded by the second terminal device reference may be made to the description of S806, which will not be repeated here.
  • the second terminal device continues to listen to the first-level SCI and the second-level SCI, so as to pass the first-level SCI and the second-level SCI detected subsequently.
  • the secondary SCI determines the resource to be decoded, and then decodes to obtain the second data information.
  • Example 3 the specific implementation process of S806 performed by the second terminal device includes: the second terminal device decodes the first data information according to the subchannel positions of the Y subchannels occupied by the first data information. In addition, the second terminal device further performs: the second terminal device decodes the third data information according to the subchannel positions of the Y subchannels occupied by the third data information.
  • Y also indicates the number of sub-channels occupied by the third data information. For details, refer to the introduction of S804, which will not be repeated here.
  • the second terminal device determines the resources to be decoded according to the time domain resource allocation field in the first-level SCI and the subchannel positions of the Y subchannels, and then performs decoding to obtain the third data information.
  • the process of determining the resource to be decoded by the second terminal device reference may be made to the description of S806, which will not be repeated here.
  • the third terminal device can identify the second-level SCI, then the third terminal device can execute S802, S805 and S808, as shown in Fig. 11a.
  • the implementation process of S802 and S805 can be referred to the introduction in Figure 8, and will not be repeated here.
  • the implementation process of S808 is introduced:
  • the third terminal device selects resources according to the subchannel positions of the Y subchannels.
  • the second terminal device determines Y sub-channels according to the number of sub-channels indicated by the second-level SCI and the predefined start positions of Y sub-channels The subchannel position of . Then, the second terminal device determines resource 1 according to the time-domain resource allocation field in the first-level SCI and the subchannel positions of the Y subchannels, and performs resource selection according to the resource positions of resource 1 .
  • the predefined start positions of the Y sub-channels and the start positions of the X sub-channels may be the same.
  • the second terminal device determines the subchannel positions of the Y subchannels according to the number of subchannels indicated by the second-level SCI and the predefined end positions of the Y subchannels. Then, the second terminal device determines resource 2 according to the time domain resource allocation field in the first-level SCI and the subchannel positions of Y subchannels, and performs resource selection according to the resource positions of resource 2 .
  • the end positions of the predefined Y sub-channels and the end positions of the X sub-channels may be the same.
  • the second terminal device determine resource 3, and perform resource selection according to the resource position of resource 3.
  • the second terminal device determine resource 4, and select resources according to the resource position of resource 4.
  • the second terminal device In the case where the second-level SCI indicates the number of subchannels of Y subchannels, the starting positions of X subchannels, and the first offset, the second terminal device The starting positions of the Y sub-channels can be determined. In the case that the Y subchannels are continuous subchannels in the frequency domain, the second terminal device is based on the starting position of the Y subchannels and the number of subchannels of the Y subchannels indicated by the second-level SCI, and the number of subchannels in the first-level SCI
  • the resource allocation field in the time domain can determine the resource 5, and perform resource selection according to the resource location of the resource 5.
  • the second terminal device bases the end position of X subchannels and the second offset , the end positions of the Y sub-channels can be determined.
  • the Y subchannels are continuous subchannels in the frequency domain
  • the second terminal device bases the end position of the Y subchannels on the basis of the number of subchannels of the Y subchannels indicated by the second-level SCI, and the time period in the first-level SCI.
  • the domain resource allocation field can determine the resource 6, and perform resource selection according to the resource location of the resource 6.
  • the second terminal device can determine the resources based on the subchannel positions of the Y subchannels and the time-domain resource allocation field in the first-level SCI 7. Perform resource selection according to the resource location of the resource 7.
  • the resource selection process may refer to the introduction in FIG. 6 , and details are not repeated here.
  • the occupied resources include the resources occupied by the first terminal device through the first-level SCI reservation, but the second-level SCI indicates that the resources are not occupied, such as the time slot index 9
  • the dotted squares filled with black dots are shown in order to improve resource utilization and avoid waste of resources.
  • the second-level SCI also indicates the occupancy status of the subchannel in a period after the period of the first data information.
  • three examples are used to introduce the processing process of the third terminal device:
  • Example 1 the third terminal device also executes S809a:
  • the third terminal device performs resource selection according to the subchannel positions of the Z subchannels.
  • the second-level SCI also indicates the number and/or positions of the sub-channels occupied by the Z sub-channels for the second data information. For details, please refer to the introduction in S804, which will not be repeated here.
  • the third terminal device determines Z sub-channels according to the number of sub-channels indicated by the second-level SCI and the predefined start positions of Z sub-channels s position. Then, the third terminal device performs resource selection according to the positions of the Z subchannels and the time-domain resource allocation field in the first-level SCI. In this case, the starting positions of the predefined Z sub-channels and the starting positions of the X sub-channels may be the same. Alternatively, the third terminal device determines the positions of the Z sub-channels according to the number of sub-channels indicated by the second-level SCI and the predefined end positions of the Z sub-channels.
  • the third terminal device performs resource selection according to the positions of the Z subchannels and the time-domain resource allocation field in the first-level SCI.
  • the end positions of the predefined Z sub-channels and the end positions of the X sub-channels may be the same.
  • the third terminal device in the case where the second-level SCI indicates the number and positions of Z sub-channels, the third terminal device, according to the time-domain resource allocation field in the first-level SCI, the number and position of sub-channels indicated by the second-level SCI , for resource selection.
  • the occupied resources include resources reserved by the first terminal device through the first-level SCI, but the second-level SCI indicates unoccupied resources, such as the resources on the slot index 13 As shown in the dotted squares filled with black dots, resource utilization is improved and resource waste is avoided.
  • Example 2 the third terminal device also executes S809b:
  • the third terminal device selects resources according to the label information.
  • the second-level SCI also indicates label information, and the label information indicates whether the values of Z and Y are the same.
  • the label information indicates whether the values of Z and Y are the same.
  • the third terminal device can determine the value of Z.
  • the third terminal device determines the positions of the Z sub-channels according to the value of Z and the predefined start positions of the Z sub-channels. Then, the third terminal device performs resource selection according to the positions of the Z subchannels and the time-domain resource allocation field in the first-level SCI.
  • the occupied resources include the resources occupied by the first terminal device through the first-level SCI reservation, but the second The level SCI indicates actual unoccupied resources, as shown by the dotted squares filled with black dots on the slot index 13, so as to improve resource utilization and avoid resource waste.
  • the third terminal device continues to listen to the first-level SCI and the second-level SCI, so as to pass the first-level SCI and the second-level SCI detected subsequently.
  • the secondary SCI is used to determine the number and location of the sub-channels occupied by the second data information.
  • Example 3 Y also indicates the number of subchannels occupied by the third data information. For details, refer to the introduction of S804, which will not be repeated here.
  • the third data information is the data transmitted in each period after the period of the first data information.
  • the third terminal device determines the positions of the Y sub-channels according to the number of sub-channels indicated by the second-level SCI and the starting positions of the Y sub-channels. Then, the third terminal device performs resource selection according to the positions of the Y subchannels and the time-domain resource allocation field in the first-level SCI.
  • the resources occupied by the third terminal device include the reserved resources occupied by the first terminal device through the first-level SCI, but the second-level SCI indicates the resources that are not actually occupied, such as the dotted lines filled with black dots on the slot indexes 13 and 17 As shown in the grid, to improve resource utilization and avoid waste of resources.
  • the fourth terminal device since the fourth terminal device cannot recognize the second-level SCI in the data channel information, the fourth terminal device executes S802, S805 and S810, as shown in FIG. 14a. Among them, the description of S810 is as follows:
  • the fourth terminal device performs resource selection according to the subchannel positions of the X subchannels.
  • the first-level SCI in S810 is consistent with the first-level SCI in S802.
  • the fourth terminal device performs resource selection according to the time-domain resource allocation field in the first-level SCI and the number X of subchannels indicated by the first-level SCI.
  • the fourth terminal device performs resource selection according to the time-domain resource allocation field in the first-level SCI and the number X of subchannels indicated by the first-level SCI.
  • the introduction in FIG. 6 which will not be repeated here.
  • the occupied resources do not include the resources occupied by the first terminal device through the first-level SCI reservation, such as the dotted line grids on the slot indexes 9, 13, and 17 shown.
  • the number of sub-channels indicated by the second-level SCI is also less than or equal to X, in other words, the resources occupied by the first data information belong to the reserved resources occupied by the data channel information indicated by the first-level SCI, so even if the fourth terminal device according to the first
  • the resource selection by the SCI at the same level does not cause resource conflict, which ensures the compatibility of the resource indication method 800 in the embodiment of the present application with the fourth terminal device, and does not cause interference to the fourth terminal device.
  • X ⁇ X max that is, the first terminal device does not preempt resources excessively when making resource reservations, so as to ensure that the fourth terminal device has available resources.
  • the first terminal device, the second terminal device, the third terminal device and the fourth terminal device include corresponding hardware structures and/or software modules for performing respective functions.
  • the embodiments of this application can be implemented in hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the technical solutions of the embodiments of the present application.
  • the embodiment of the present application may divide the functional units of the communication device according to the above method example, for example, each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units. It should be noted that the division of units in the embodiment of the present application is schematic, and is only a logical function division, and there may be another division manner in actual implementation.
  • Fig. 15 shows a schematic block diagram of a communication device provided in an embodiment of the present application.
  • the communication apparatus 1500 may exist in the form of software, or may be a device, or a component in a device (such as a chip system).
  • the communication device 1500 includes: a processing unit 1502 and a communication unit 1503 .
  • the communication unit 1503 can also be divided into a sending unit (not shown in FIG. 15 ) and a receiving unit (not shown in FIG. 15 ).
  • the sending unit is configured to support the communication device 1500 to send information to other network elements.
  • the receiving unit is configured to support the communication device 1500 to receive information from other network elements.
  • the processing unit 1502 can be used to support the communication device 1500 to execute S801, S803, and S804 in FIG. other processes of the program.
  • the communication unit 1503 is used to support communication between the communication device 1500 and other network elements (such as the second terminal device).
  • the communication unit is used to support the communication device 1500 to execute S802, S805 shown in FIG. 8, and/or other processes for the solution described herein.
  • the processing unit 1502 can be used to support the communication device 1500 to execute S806 in FIG. 8, and/or be used in the solutions described herein other processes.
  • the communication unit 1503 is used to support communication between the communication device 1500 and other network elements (such as the first terminal device). For example, the communication unit is used to support the apparatus 1500 to execute S802, S805 shown in FIG. 8, and/or other processes for the solution described herein.
  • the processing unit 1502 can be used to support the communication device 1500 to execute S808 in Figure 11a, and/or be used in the solutions described herein other processes.
  • the communication unit 1503 is used to support communication between the communication device 1500 and other network elements (such as the first terminal device).
  • the communication unit is used to support the apparatus 1500 to execute S802, S805 shown in FIG. 11a, and/or other processes for the solution described herein.
  • the processing unit 1502 can be used to support the communication device 1500 to execute S810 in Figure 14a, and/or be used in the solutions described herein other processes.
  • the communication unit 1503 is used to support communication between the communication device 1500 and other network elements (such as the first terminal device).
  • the communication unit is used to support the apparatus 1500 to execute S802, S805 shown in FIG. 14a, and/or other processes for the solutions described herein.
  • the communication device 1500 may further include a storage unit 1501 for storing program codes and data of the communication device 1500, and the data may include but not limited to original data or intermediate data.
  • the processing unit 1502 may be a processor or a controller, such as a CPU, a general processor, DSP, ASIC, FPGA or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
  • the communication unit 1503 may be a communication interface, a transceiver or a transceiver circuit, etc., wherein the communication interface is collectively referred to as, in a specific implementation, the communication interface may include multiple interfaces, for example, may include: an interface between terminals and/or or other interfaces.
  • the storage unit 1501 may be a memory.
  • the processing unit 1502 is a processor
  • the communication unit 1503 is a communication interface
  • the storage unit 1501 is a memory
  • the communication device 1600 involved in this embodiment of the present application may be as shown in FIG. 16 .
  • the communication device 1600 includes: a processor 1602 , a transceiver 1603 , and a memory 1601 .
  • the transceiver 1603 may be an independently configured transmitter, and the transmitter may be used to send information to other devices, and the transceiver may also be an independently configured receiver, used to receive information from other devices.
  • the transceiver may also be a component that integrates functions of sending and receiving information, and this embodiment of the present application does not limit the specific implementation of the transceiver.
  • the device 1600 may further include a bus 1604 .
  • the transceiver 1603, the processor 1602, and the memory 1601 can be connected to each other through a bus 1604;
  • the bus 1604 can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, referred to as EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 1604 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 16 , but it does not mean that there is only one bus or one type of bus.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the available medium may be a magnetic medium, (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD) )wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital video disc (Digital Video Disc, DVD)
  • a semiconductor medium for example, a solid state disk (Solid State Disk, SSD)
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may also be distributed to multiple network devices (such as terminal). Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each functional unit may exist independently, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware, or in the form of hardware plus software functional units.

Abstract

本申请提供了资源指示方法及通信装置,涉及无线通信技术领域,能够提高资源利用率。该方法包括:第一终端装置发送第一级侧行链路控制信息SCI,其中,第一级SCI指示周期信息和频域资源信息,周期信息指示发送数据信道信息的周期,频域资源信息指示数据信道信息预约占用X个子信道的数量。然后,第一终端装置根据第一级SCI发送数据信道信息,其中,数据信道信息包括第一数据信息和第二级SCI,第二级SCI指示第一数据信息占用Y个子信道的子信道数量和/或位置,Y个子信道是X个子信道中的Y个子信道,X和Y均为自然数,且1≤Y≤X≤Xmax,Xmax为第一终端装置预约的最大子信道数。

Description

资源指示方法及通信装置
本申请要求于2021年09月03日提交国家知识产权局、申请号为202111034421.2、申请名称为“资源指示方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种资源指示方法及通信装置。
背景技术
在车与任何事物(vehicle to everything,V2X)侧行链路(sidelink,SL)通信场景中,采用模式(mode)2的半静态调度(semi-persistent scheme,SPS)时,可能存在资源过度预约(Over-Booking)的问题。例如,第一终端装置预约周期性资源之后,业务需求发生变化,第一终端装置基于变化后的业务需求重新预约了传输资源,不再使用之前预约的周期性资源,也不释放之前预约的周期性资源。如此,第一终端装置在业务需求变化前预约的资源未被第一终端装置使用,也无法被其他终端装置使用,造成资源浪费。
发明内容
本申请实施例提供一种资源指示方法及通信装置,能够提高资源利用率。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请提供一种资源指示方法,该方法可以由第一终端装置执行。第一终端装置可以为终端设备,也可以为终端设备中的组件(比如芯片系统)。该方法包括:第一终端装置发送第一级侧行链路控制信息SCI,其中,第一级SCI指示周期信息和频域资源信息,周期信息指示发送数据信道信息的周期,频域资源信息指示数据信道信息预约占用X个子信道的子信道数量。然后,第一终端装置根据第一级SCI发送数据信道信息,其中,数据信道信息包括第一数据信息和第二级SCI,第二级SCI指示第一数据信息占用Y个子信道的子信道数量和/或位置,Y个子信道是X个子信道中的Y个子信道,X和Y均为自然数,且1≤Y≤X≤X max,X max为第一终端装置预约的最大子信道数。
也就是说,第一终端装置既指示了业务需求变化前数据信道信息预约的子信道数量,也指示了业务需求变化后第一数据信息实际占用的子信道数量和/或位置,并且,第二级SCI指示的Y个子信道是第一级SCI指示的X个子信道中的Y个子信道,以提高资源利用率。并且,其他终端装置也可以基于上述第一级SCI和第二级SCI在资源选择过程中进行资源排除,如仅排除第二级SCI所指示的子信道,无需排除第一级SCI所指示但未被第二级SCI所指示的子信道,从而避免第一级SCI所指示的资源未被第一终端装置使用且未被其他终端装置使用的情况,以提升资源利用率。
在一种可能的设计中,Y个子信道的起始位置与X个子信道的起始位置相同。或者,Y个子信道的结束位置与X个子信道的结束位置相同。或者,Y个子信道的起始位置由X个子信道的起始位置和第一偏移量确定,其中,第一偏移量由第二级SCI指示。也就是说,Y个子信道在X个子信道中的位置可以灵活设置。
在一种可能的设计中,X max是预配置的。或者,X max是网络设备配置的。也就是说,X max的取值可以灵活配置。
在一种可能的设计中,X max是基于以下至少一项确定的:
第一项,优先级,其中,优先级指示第一数据信息的优先级等级。
第二项,信道繁忙比例CBR,其中,CBR指示在第一预设时长内信道的繁忙程度。
第三项,信道占用率CR的最大值,其中,CR指示在第二预设时长内第一终端装置占用信道的程度。
也就是说,X max的取值与上述优先级、CBR和CR的最大值相关联。
在一种可能的设计中,CR的最大值是预配置的。或者,CR的最大值是网络设备配置的。也就是说,CR的最大值的取值可以灵活配置。
在一种可能的设计中,CR的最大值是根据以下至少一项确定的:优先级,数据信道信息的周期数量,CBR,或N subchannel,其中,N subchannel是资源池所包含的子信道数,且X max≤N subchannel
也就是说,CR的最大值与上述优先级、CBR和N subchannel相关联。
在一种可能的设计中,第二级SCI还指示第二数据信息占用Z个子信道的子信道数量和/或位置。其中,Z个子信道是X个子信道中的Z个子信道,Z为自然数,1≤Z≤X。第二数据信息属于数据信道信息,且在第一数据信息所在周期的下一个周期传输。
也就是说,第二级SCI还指示第二数据信息占用的子信道状况,且方便其他终端装置进行资源选择或译码处理。
在一种可能的设计中,第二级SCI还指示标示信息,标示信息指示Z和Y的取值是否相同。其中,Z表示第二数据信息占用的子信道数量,第二数据信息占用的Z个子信道是X个子信道中的Z个子信道,Z为自然数,且1≤Z≤X,第二数据信息属于数据信道信息,且在第一数据信息所在周期的下一个周期传输。
也就是说,第一终端装置通过标示信息,来指示第二数据信息对子信道的占用状况,以节省信令开销,且方便其他终端装置进行资源选择或译码处理。
在一种可能的设计中,Y还指示第三数据信息占用的子信道数量,第三数据信息占用的Y个子信道是X个子信道中的Y个子信道,第三数据信息属于数据信道信息,且在第一数据信息所在周期之后的周期传输。示例性的,第一数据信息所在周期之后的周期数量可以是一个,也可以是多个,还可以是第一数据信息所在周期之后的每一个周期,以在子信道变化较小的情况下,向其他终端装置指示第三数据信息对子信道的占用状况,以方便其他终端装置进行资源选择或译码处理。
在一种可能的设计中,本申请实施例资源指示方法还包括:第一终端装置根据第一业务需求,确定X的取值。第一终端装置根据第二业务需求,确定Y的取值。也就是说,子信道的数量是依据业务需求来确定的,并且,用于确定X和Y的取值的业务需求不同。
第二方面,本申请提供一种资源指示方法,该方法可以由第二终端装置执行。第二终端装置可以为终端设备,也可以为终端设备中的组件(比如芯片系统)。该方法包括:第二终端装置接收第一级SCI,其中,第一级SCI指示周期信息和频域资源信息,周期信息指示接收数据信道信息的周期,频域资源信息指示数据信道信息预约占用X个子信道的子信道数量。然后,第二终端装置根据第一级SCI接收数据信道信息,其中,数据信道信息包括第一数据信 息和第二级SCI,第二级SCI指示第一数据信息占用Y个子信道的子信道数量和/或位置,Y个子信道是X个子信道中的Y个子信道,X和Y均为自然数,且1≤Y≤X≤X max,X max为第一终端装置预约的最大子信道数。
在一种可能的设计中,Y个子信道的起始位置与X个子信道的起始位置相同。或者,Y个子信道的结束位置与X个子信道的结束位置相同。或者,Y个子信道的起始位置由X个子信道的起始位置和第一偏移量确定,其中,第一偏移量由第二级SCI指示。
在一种可能的设计中,本申请实施例资源指示方法还包括:第二终端装置根据第一数据信息占用的Y个子信道的子信道位置,译码第一数据信息或进行资源选择。
在一种可能的设计中,本申请实施例资源指示方法还包括:第二终端装置根据Z个子信道的子信道位置,译码第二数据信息或进行资源选择,其中,第二级SCI还指示第二数据信息占用Z个子信道的子信道数量和/或位置,Z个子信道是X个子信道中的Z个子信道,Z为自然数,1≤Z≤X;第二数据信息属于数据信道信息,且在第一数据信息所在周期的下一个周期接收。
在一种可能的设计中,本申请实施例资源指示方法还包括:第二终端装置根据标示信息,译码第二数据信息或进行资源选择,其中,第二级SCI还指示标示信息,标示信息指示Z和Y的取值是否相同,Z表示第二数据信息占用的子信道数量,Z个子信道是X个子信道中的Z个子信道,Z为自然数,且1≤Z≤X,第二数据信息属于数据信道信息,且在第一数据信息所在周期的下一个周期传输。
在一种可能的设计中,本申请实施例资源指示方法还包括:第二终端装置根据第三数据信息占用的Y个子信道的子信道位置,译码第三数据信息或进行资源选择,其中,Y还指示第三数据信息占用的子信道数量,第三数据信息占用的Y个子信道是X个子信道中的Y个子信道,第三数据信息属于数据信道信息,且在第一数据信息所在周期之后的周期传输。
第三方面,本申请提供一种通信装置,该装置可以为上述第一方面中的第一终端装置。该装置包括处理器、发送器和接收器。其中,发送器,用于发送第一级SCI,其中,第一级SCI指示周期信息和频域资源信息,周期信息指示发送数据信道信息的周期,频域资源信息指示数据信道信息预约占用X个子信道的子信道数量。处理器,用于根据第一级SCI通过发送器发送数据信道信息,其中,数据信道信息包括第一数据信息和第二级SCI,第二级SCI指示第一数据信息占用Y个子信道的子信道数量和/或位置,Y个子信道是X个子信道中的Y个子信道,X和Y均为自然数,且1≤Y≤X≤X max,X max为通信装置预约的最大子信道数。
在一种可能的设计中,Y个子信道的起始位置与X个子信道的起始位置相同。或者,Y个子信道的结束位置与X个子信道的结束位置相同。或者,Y个子信道的起始位置由X个子信道的起始位置和第一偏移量确定,其中,第一偏移量由第二级SCI指示。
在一种可能的设计中,X max是预配置的。或者,X max是网络设备配置的。
在一种可能的设计中,X max是基于以下至少一项确定的:
第一项,优先级,其中,优先级指示第一数据信息的优先级等级。
第二项,信道繁忙比例CBR,其中,CBR指示在第一预设时长内信道的繁忙程度。
第三项,信道占用率CR的最大值,其中,CR指示在第二预设时长内通信装置占用信道的程度。
在一种可能的设计中,CR的最大值是预配置的。或者,CR的最大值是网络设备配置的。
在一种可能的设计中,CR的最大值是根据以下至少一项确定的:
优先级,数据信道信息的周期数量,CBR,或N subchannel,其中,N subchannel是资源池所包含的子信道数,且X max≤N subchannel
在一种可能的设计中,第二级SCI还指示第二数据信息占用Z个子信道的子信道数量和/或位置,Z个子信道是X个子信道中的Z个子信道,Z为自然数,1≤Z≤X。第二数据信息属于数据信道信息,且在第一数据信息所在周期的下一个周期传输。
在一种可能的设计中,第二级SCI还指示标示信息,标示信息指示Z和Y的取值是否相同。其中,Z表示第二数据信息占用的子信道数量,第二数据信息占用的Z个子信道是X个子信道中的Z个子信道,Z为自然数,且1≤Z≤X,第二数据信息属于数据信道信息,且在第一数据信息所在周期的下一个周期传输。
在一种可能的设计中,Y还指示第三数据信息占用的子信道数量,第三数据信息占用的Y个子信道是X个子信道中的Y个子信道,第三数据信息属于数据信道信息,且在第一数据信息所在周期之后的周期传输。
在一种可能的设计中,处理器,还用于根据第一业务需求,确定X的取值,以及用于根据第二业务需求,确定Y的取值。
第四方面,本申请提供一种通信装置,该装置可以为上述第二方面中的第二终端装置。该装置包括处理器、发送器和接收器。其中,接收器,用于接收第一级侧行链路控制信息SCI,其中,第一级SCI指示周期信息和频域资源信息,周期信息指示接收数据信道信息的周期,频域资源信息指示数据信道信息预约占用X个子信道的子信道数量。处理器,用于根据第一级SCI通过接收器接收数据信道信息,其中,数据信道信息包括第一数据信息和第二级SCI,第二级SCI指示第一数据信息占用Y个子信道的子信道数量和/或位置,Y个子信道是X个子信道中的Y个子信道,X和Y均为自然数,且1≤Y≤X≤X max,X max为第一终端装置预约的最大子信道数。
在一种可能的设计中,Y个子信道的起始位置与X个子信道的起始位置相同。或者,Y个子信道的结束位置与X个子信道的结束位置相同。或者,Y个子信道的起始位置由X个子信道的起始位置和第一偏移量确定,其中,第一偏移量由第二级SCI指示。
在一种可能的设计中,处理器,还用于根据第一数据信息占用的Y个子信道的子信道位置,译码第一数据信息或进行资源选择。
在一种可能的设计中,处理器,还用于根据Z个子信道的子信道位置,译码第二数据信息或进行资源选择,其中,第二级SCI还指示第二数据信息占用Z个子信道的子信道数量和/或位置,Z个子信道是X个子信道中的Z个子信道,Z为自然数,1≤Z≤X;第二数据信息属于数据信道信息,且在第一数据信息所在周期的下一个周期接收。
在一种可能的设计中,处理器,还用于根据标示信息,译码第二数据信息或进行资源选择,其中,第二级SCI还指示标示信息,标示信息指示Z和Y的取值是否相同,Z表示第二数据信息占用的子信道数量,Z个子信道是X个子信道中的Z个子信道,Z为自然数,且1≤Z≤X,第二数据信息属于数据信道信息,且在第一数据信息所在周期的下一个周期传输。
在一种可能的设计中,处理器,还用于根据第三数据信息占用的Y个子信道的子信道位置,译码第三数据信息或进行资源选择,其中,Y还指示第三数据信息占用的子信道数量,第三数据信息占用的Y个子信道是X个子信道中的Y个子信道,第三数据信息属于数据信道信息,且在第一数据信息所在周期之后的周期传输。
第五方面,本申请提供一种通信装置,用于实现上述第一方面中第一终端装置的功能,或用于实现上述第二方面中第二终端装置的功能。
第六方面,本申请实施例提供一种通信装置,该装置具有实现上述任一方面中任一项的资源指示方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第七方面,本申请实施例提供一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述任一方面中任一项的资源指示方法。
第八方面,本申请实施例提供一种通信装置,包括:处理器;处理器用于与存储器耦合,并读取存储器中的指令之后,根据指令执行如上述任一方面中任一项的资源指示方法。
第九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的资源指示方法。
第十方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的资源指示方法。
第十一方面,本申请实施例提供一种电路系统,电路系统包括处理电路,处理电路被配置为执行如上述任一方面中任一项的资源指示方法。
第十二方面,本申请实施例提供一种芯片,芯片包括处理器,处理器和存储器耦合,存储器存储有程序指令,当存储器存储的程序指令被处理器执行时实现上述任一方面任意一项的资源指示方法。
第十三方面,本申请实施例提供一种通信系统,通信系统包括上述各个方面中任一方面中的第一终端装置和任一方面中的第二终端装置。
其中,第二方面至第十三方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请的实施例应用的一种移动通信系统的架构示意图;
图2为本申请的实施例应用的再一种移动通信系统的架构示意图;
图3为本申请的实施例应用的又一种移动通信系统的架构示意图;
图4为本申请实施例提供的一种资源分配示意图;
图5为本申请实施例提供的一种时域资源的分布示意图;
图6为本申请实施例提供的一种资源选择的场景示意图;
图7为本申请实施例提供的一种预约资源的场景示意图;
图8为本申请实施例提供的一种资源指示方法的流程示意图;
图9a为本申请实施例提供的再一种资源分配示意图;
图9b为本申请实施例提供的又一种资源分配示意图;
图9c为本申请实施例提供的又一种资源分配示意图;
图9d为本申请实施例提供的又一种资源分配示意图;
图10为本申请实施例提供的再一种资源指示方法的流程示意图;
图11a为本申请实施例提供的又一种资源指示方法的流程示意图;
图11b为本申请实施例提供的又一种资源分配示意图;
图12为本申请实施例提供的又一种资源指示方法的流程示意图;
图13a为本申请实施例提供的又一种资源分配示意图;
图13b为本申请实施例提供的又一种资源分配示意图;
图13c为本申请实施例提供的又一种资源分配示意图;
图14a为本申请实施例提供的又一种资源指示方法的流程示意图;
图14b为本申请实施例提供的又一种资源分配示意图;
图15为本申请实施例提供的一种通信装置的结构示意图;
图16为本申请实施例提供的再一种通信装置的结构示意图。
具体实施方式
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例可以适用于终端装置之间通信的系统,如V2X通信系统、设备到设备(device to device,D2D)系统。下面,以V2X通信系统为例,对本申请实施例所适用的通信系统进行说明。参见图1、图2和图3,该通信系统包括至少两个终端装置,两个终端装置之间能够通过侧行链路(sidelink,SL)直接进行通信(图1、图2和图3中均仅示出了两个终端装置)。可选的,该通信系统还包括网络设备。终端装置还可以与网络设备进行通信。
V2X通信系统可以存在如下的通信场景:车与车(vehicle to vehicle,V2V)之间的通信、车与基础设施装置(vehicle to infrastructure,V2I)之间的通信、车与应用服务器(vehicle to network,V2N)之间的通信、车与行人的移动终端(vehicle to pedestrain,V2P)之间的通信等。在V2X通信系统中,终端装置之间就是通过侧行链路(sidelink,SL)直接进行通信,无需网络设备的收发过程,不存在上、下行通信链路。
其中,终端装置主要用于接收或者发送数据。可选的,本申请实施例中所涉及到的终端装置可以是实现终端功能的设备或设备中的组件,比如,终端装置包括例如但不限于各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备;还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、手持设备(handheld)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端(terminal)、用户设备(user equipment,UE)、移动终端等。又比如,终端装置可以是上述任一设备中的组件(比如,终端装置可以指上述任一设备中的芯片系统)。在本申请一些实施例中,终端装置还可以称为终端,在此统一说明,下文不再赘述。
本申请实施例所涉及的网络设备是一种部署在无线接入网用以提供无线通信功能的装置。可选的,网络设备可以指接入网的空中接口上通过一个或多个小区与无线终端通信的设备,其中,实现网络设备的功能的装置可以是网络设备,也可以是支持网络设备实现该功能的装置(比如网络设备中的芯片)。可选的,网络设备可对空中接口进行属性管理。基站设备还可协调对空中接口的属性管理。网络设备包括各种形式的宏基站,微基站(也称为小站),诸如中继站的中继设备或中继设备的芯片,发送接收点(transmission reception point,TRP),演进型网络节点(evolved Node B,eNB),下一代网络节点(g Node B,gNB)、连接下一代核心网的演进型节点B(ng evolved Node B,ng-eNB)等。或者,在分布式基站场景下,网络设备可以是基带单元(base band unit,BBU)和射频拉远单元(remote radio unit,RRU),在云无线接入网(cloud radio access Netowrk,CRAN)场景下,网络设备可以是基带池(BBU pool)和RRU。
参见图1、图2和图3,对采用侧行链路通信的两个终端装置而言,可能存在如下三种通信场景:第一,两个终端装置均处于同一公共陆地移动网络(public land mobile network,PLMN)(如PLMN1)覆盖范围内,如图1所示;第二,仅一个终端装置处于PLMN(如PLMN1)覆盖范围内,另一个终端装置处于PLMN(即PLMN1)覆盖范围外,如图2所示;第三,两个终端装置均处于PLMN(如PLMN1)覆盖范围外,两个终端装置所处的区域范围无预先配置的小区标识,如图3所示。其中,图1、图2和图3中的虚线椭圆区域均表示PLMN1的覆盖范围。由于两个终端装置之间采用侧行链路进行通信,因此,无论两个终端装置是否同时处于PLMN的覆盖范围内,均能够正常进行通信。
图1、图2和图3所示的通信系统可以应用于长期演进(long term evolution,LTE)或者高级的长期演进(LTE Advanced,LTE-A)系统中,也可以应用于5G网络或者未来的其它网络中,当然,还可以应用于LTE和5G混合组网的系统中,或者其他系统中,本申请实施例对此不作具体限定。其中,在不同的网络中,上述通信系统中的网络设备、终端装置可能对应不同的名字,本领域技术人员可以理解的是,名字对设备本身不构成限定。
为了便于理解本申请实施例,下面先对本申请实施例中涉及的术语做简单说明。应理解,这些说明仅为便于理解本申请实施例,而不应对本申请构成任何限定。
1、信道繁忙比率(channel busy ratio,CBR)
CBR,表示在预设测量周期(如100个时隙或100·2 μ个时隙)内,侧行链路接收信号强度指示(sidelink-received signal strength indicator,S-RSSI)超过预配置的临界值的子信道数量与子信道的总数的比例。CBR是衡量干扰程度的指标,CBR越大,表明信道繁忙程度越高,系统负荷越大,不同终端装置之间的干扰越强。若某一子信道的S-RSSI大于预配置的临界值,则表明该子信道已被占用,若某一子信道的S-RSSI小于或等于预配置的临界值,则表明该子信道未被占用。CBR测量方式不同,所得到CBR的可以表征不同类型的信道繁忙程度。例如,在100个时隙(或100·2 μ个时隙)的预设测量周期内,若终端装置对物理侧行反馈信道(physical sidelink feedback channel,PSFCH)、物理侧行共享信道(physical sidelink shared channel,PSSCH)和物理侧行控制信道(physical sidelink control channel,PSCCH)三种信道进行CBR测量。此时,所获得的CBR表示在预设测量周期内,PSFCH、PSSCH和PSCCH整体的信道繁忙程度。若终端装置对PSFCH进行CBR测量,此时所获得的CBR表示在预设测量周期内,PSFCH一种信道的繁忙程度。若终端装置对PSSCH和PSCCH两种信道进行 CBR测量,此时所获得的CBR表示在预设测量周期内,PSSCH和PSCCH整体的信道繁忙程度。其中,“终端装置对不同信道进行CBR测量,获取CBR”的详细流程可参见相关技术,这里不再赘述。在本申请实施例中,μ表示子载波间隔的序号。
2、信道占用比率(channel occupancy ratio,CR)
CR,表示在预设测量周期(如1000个时隙或1000·2 μ个时隙)内,某一终端装置实际占用的子信道个数和未来要占用的子信道个数之和与子信道的总数之间的比例。CR是统计终端装置特性的指标,CR越大,表明某一终端装置所占用的资源越多。
3、侧行链路控制信息(sidelink control information,SCI)
SCI分为第一级SCI(1st-stage SCI)和第二级SCI(2nd-stage SCI)。其中,第一级SCI承载于PSCCH,第一级SCI用于调度第二级SCI和PSSCH。由于SL是分布式系统,接收端的终端装置需要通过正确译码第一级SCI之后,才能译码PSSCH。在本申请实施例中,PSSCH所承载的信息描述为数据信道信息。其中,数据信道信息包括数据信息和第二级SCI等。
为了降低终端装置对PSCCH的盲检(blind decoding)复杂度,PSCCH的时频资源位置是相对固定的,PSCCH上承载的第一级SCI的格式也是相对唯一的。即终端装置不需要去盲检PSCCH所在的时频资源位置,也不需要盲检不同格式的SCI。终端装置在固定的PSCCH时频资源位置上检测是否存在第一级SCI即可。PSCCH在每个时隙上的每个子信道中存在。示例性的,如图4所示,一个PSCCH的时域起始位置为每个时隙上的用于SL传输的第二个符号,连续占用的符号数量为2或3个。一个PSCCH的频域起始位置为每个子信道上索引最小的RB,连续占用的RB数量为至少10个,且不超过子信道的大小。另外,一个时隙中的首个符号通常用于自动增益控制(automatic gain control,AGC),如图4所示。
其中,第一级SCI包括频域资源分配(frequency resource assignment)字段和时域资源分配(time resource assignment)字段。其中,频域资源分配字段指示PSSCH的频域资源,时域资源分配字段指示PSSCH的时域资源。可选的,第一级SCI还包括资源预留周期(resource reservation period)字段。其中,资源预留周期字段指示PSSCH预约资源的周期。资源预留周期字段的取值是网络设备配置的,或预配置(pre-configuration)的,或预定义的。例如,网络设备通过无线资源控制(radio resource control,RRC)信令为终端装置指示PSSCH的时域资源、频域资源和周期。其中,上述RRC信令指示的内容可以基于sl-ResourceReservePeriod来确定。
第二级SCI承载于PSSCH中。第二级SCI不占用PSCCH、解调参考信号(demodulation reference signal,DMRS)和相位跟踪参考信号(phase tracking reference signal,PT-RS)的资源。第二级SCI主要用于NR SL的混合自动重传请求(hybrid automatic repeat request,HARQ)反馈,如指示HARQ进程号(process number)、源标识(source ID)、目标标识(destination ID)等相关信息。第二级SCI的格式由第一级SCI中的第二级SCI格式(2nd-stage SCI format)字段来指示。示例性的,第一级SCI中的第二级SCI格式字段如表1所示:
表1
Figure PCTCN2022115265-appb-000001
Figure PCTCN2022115265-appb-000002
在表1中,第一级SCI中的第二级SCI格式字段的取值为00的情况下,第二级SCI格式为2-A。第二级SCI格式字段的取值为01的情况下,第二级SCI格式为2-B。
需要说明的是,在本申请实施例中,X信息由网络设备配置,可以理解为如下两种实现方式中的一种:作为一种可能的实现方式,网络设备通过RRC信令或系统消息块(system information block,SIB)消息为终端装置配置X信息。或者,作为另一种可能的实现方式,网络设备通过下行控制信息(downlink control information,DCI)为终端装置指示X信息。X信息也可以为预配置的,可以理解为,终端装置出厂时预先配置好的X信息。X信息还可以是预定义的,可以理解为,在通信标准协议或地区、国家法律、规范中定义的,不需要通过配置或指示或计算而获得。其中,X信息可以是上述PSSCH周期预约资源的周期,也可以是下述X max,还可以是CR的最大值,详见S801的描述,此处不再赘述。
4、SL资源池(resource pool)
SL资源池,可以理解为时频资源的集合,用于终端装置之间的侧行链路通信。可选的,SL资源池还包括码域资源。SL资源池包括终端装置发送和接收物理信道的资源。其中,物理信道包括以下至少一种:PSCCH、PSSCH、物理侧行发现信道(physical sidelink discovery channel,PSDCH)、PSFCH和物理侧行广播信道(physical sidelink broadcast channel,PSBCH)。其中,PSCCH用于承载第一级SCI。PSSCH用于承载数据信道信息,如第二级SCI、数据信息和侧行信道状态信息(channel state information,CSI)的反馈信息中的至少一种。PSDCH用于承载发现消息。PSFCH用于承载侧行反馈信息。其中,侧行反馈信息包括对数据信道信息的应答反馈信息,如HARQ应答反馈信息。其中,HARQ应答反馈信息包括确认应答(acknowledge,ACK)或否定应答(negative acknowledge,NACK)。可选的,侧行反馈信息还可以包括CSI的反馈信息。或者,侧行反馈信息还可以指示如下至少一项信息:节能信息、或资源辅助信息等。其中,资源辅助信息指示以下至少一项:推荐使用的资源、不推荐使用的资源、资源碰撞、资源预约冲突、过去发生了或未来即将发生半双工冲突等。PSBCH用于承载侧行同步相关信息。
SL资源池在时域上包括一个或多个时间单元。其中,一个时间单元可以为一个或若干个符号,一个或若干个时隙(slot),一个或若干个微时隙(mini-slot),一个或若干个子帧,或一个或若干个帧等。在一个SL资源池内,多个时域单元在时间上可以是连续的,也可以是离散的。在本申请中,仅以时隙为例进行介绍。
SL资源池在频域上包括一个或多个频域单元。其中,一个频域单元可以是一个或若干个资源元素(resource element,RE),一个或若干个资源块(resource block,RB),或一个或若干个子信道(sub channel)。其中,子信道的大小,可以理解为,一个子信道包括一个或多个在频域上连续的(continuous)或交错的(interlaced)RB数量。例如,一个子信道可以包括10、12、15、20、25或50个子信道。在本申请中,仅以子信道为例进行介绍。
本申请实施例中的符号、微时隙、时隙、子帧、帧、RE、RB和子信道的定义可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。
5、物理时隙(physical slot)、逻辑时隙(logical slot)
物理时隙,是指在时间上连续的时隙。如图5所示,时隙1至时隙8是时间上连续的时 隙,这种时隙即为物理时隙。将上述时隙1至时隙8中的时隙1、时隙3、时隙5和时隙8配置到同一SL资源池。从该SL资源池的角度来说,物理时隙上的时隙1对应为SL资源池中的时隙1′,物理时隙上的时隙3对应为SL资源池中的时隙2′,物理时隙上的时隙5对应为SL资源池中的时隙3′,物理时隙上的时隙7对应为SL资源池中的时隙4′。那么,时隙1′、时隙2′、时隙3′和时隙4′对于SL资源池来说在逻辑上是连续的,这种时隙即为逻辑时隙。
6、SL资源池配置信息
在网络覆盖范围下,终端装可以通过接收来自网络设备的系统消息块(system information block,SIB)、小区级(cell-specific)的无线资源控制(radio resource control,RRC)信令或终端装置用户级(UE-specific)的RRC信令来获得SL资源池配置信息和/或SL带宽部分(bandwidth part,BWP)配置信息。或者,终端装置也可以使用预配置的SL资源池配置信息或SL BWP配置信息。例如,在终端装置处于无网络覆盖范围时,终端装置即可使用预配置的SL资源池配置信息或SL BWP配置信息。其中,SL BWP配置信息用于配置BWP内SL资源池的个数。
示例性的,SL资源池配置信息可以包括PSCCH的配置信息。其中,PSCCH的配置信息包括一个时隙中PSCCH所占用的符号数量和一个子信道中PSCCH所占用的RB数量。
示例性的,SL BWP配置信息可以包括以下至少一项:
第一项,SL带宽信息。其中,SL带宽信息指示SL通信的带宽大小。例如,SL带宽信息指示SL带宽为20兆赫兹(MHz)。
第二项,SL符号信息。其中,SL符号信息指示一个时隙上起始的SL符号位置和连续的SL符号个数。
第三项,SL的子载波间隔和循环前缀信息。其中,子载波间隔指示SL通信所使用的子载波间隔,循环前缀信息指示SL通信所使用的循环前缀为扩展循环前缀或正常循环前缀。
第四项,SL资源池配置信息。
7、SL的传输模式(mode)、资源选择
终端装置与终端装置之间的通信过程有两种传输模式,即传输模式(mode)1和传输模式2。其中,传输模式1也简称为模式1,传输模式2也简称为模式2。在本申请实施例中,仅以传输模式1、传输模式2为例进行介绍。
在传输模式1中,终端装置的预约资源是由网络设备分配的,终端装置在网络设备分配的资源上传输信息。网络设备为终端装置分配单次的传输资源,也可以为终端装置分配周期性的传输资源。
在传输模式2中,终端装置采用侦听(sensing)+预留(reservation)的方式确定预约资源。下面,以终端装置1为例,对预约资源的确定过程进行介绍,具体步骤如图6所示:
步骤一、终端装置1获取待发送的数据信息。
示例性的,参见图6,终端装置1在时隙n或时隙n附近有新的数据信息到达,需要向其他终端装置发送数据信息,触发资源选择。
步骤二、终端装置1确定资源选择窗(resource selection window)。
其中,资源选择窗即为时隙n之后的预设时长。示例性的,参见图6,资源选择窗的起始时隙记为:n+T 1,资源选择窗的结束时隙记为:n+T 2。其中,
Figure PCTCN2022115265-appb-000003
T 2min≤T 2≤PDB。PDB表示数据包的时延。
步骤三、终端装置1确定侦听窗(sensing window)。
示例性的,侦听窗即为时隙n之前的预设时长,如1000个时隙(或1000·2 μ个时隙)。参见图6,侦听窗的起始时隙记为:n-T 0,侦听窗的结束时隙记为:n-T proc,0
应理解,终端装置1可以先执行步骤二,再执行步骤三,也可以先执行步骤三,再执行步骤二,还可以同时执行步骤二和步骤三,本申请实施例对此不作限定。
步骤四、终端装置1根据侦听窗的侦听结果,在资源选择窗中进行资源选择,确定预约资源。
其中,侦听结果包括PSCCH的检测结果和该PSCCH所对应的PSSCH的参考信号接收功率(reference signal received power,RSRP)的测量值。
其中,预约资源可以是周期性的,也可以是非周期性的。在预约资源是周期性的情况下,不同周期中的资源可以传输同一传输块(transport block,TB),也可以传输不同TB。同一周期中的资源传输同一TB。另外,同一周期中的资源也可以传输不同的TB。
示例性的,将资源选择窗内的所有时频资源组成候选资源集合S_A,且该候选资源集合S_A中的资源数量为A。
若侦听结果中的PSSCH的RSRP的测量值高于RSRP阈值,且该PSSCH对应的第一级SCI指示了发送该第一级SCI的终端装置2预留了后续传输所需的时频资源,则终端装置1将终端装置2预留的资源排除在候选资源集合S_A之外。此时,记该候选资源集合S_A中剩余的资源数量等于B。如果候选资源集合S_A中剩余的B个资源小于资源选择窗总资源的X%,则终端装置1提升上述RSRP阈值,如提升3dB,直至满足候选资源集合S_A中剩余的资源大于或等于资源选择窗总资源的X%。其中,X%的取值由资源池配置。其中,终端装置1从候选资源集合S_A中剩余的资源中确定预约资源。
需要说明的是,RSRP阈值和待发送的数据信息的优先级prio TX,以及接收到的SCI所指示的优先级prio RX有关。步骤四中的RSRP阈值是RSPR集合中的一个数值,如步骤四中的RSRP阈值是RSPR集合中的第prio TX+(prio RX-1)*8个阈值。
步骤五、终端装置1在预约资源上发送数据信息。
其中,数据信息可以TB的形式传输。一个TB还可以包括SCI。SCI包括数据传输进程号和资源预留信息。示例性的,在终端装置1的预约资源为周期性的情况下,资源预留信息可以包括周期信息,周期信息指示终端装置1预约资源的周期。应理解,预约资源,可以理解为,某一终端装置(如终端装置1)预定了后续的某些时频资源。该终端装置可以在该预约资源上收发数据,该终端装置也可以不使用该预约资源,即该预约资源未被使用,本申请实施例对此不作限定。
在传输模式2中,终端装置可以采用动态调度方式或者半静态调度(semi-persistent scheme,SPS)方式。其中,动态调度方式能够为单个TB选择资源,且为同一个TB的重传预约资源。SPS方式能够为多个TB选择资源,且为多个TB的重传预约资源。SPS方式中存在资源过度预约(Over-Booking)问题。在传输模式2的SPS方式中,由第一级SCI指示PSSCH的时域资源、频域资源和预约周期。示例性的,第一级SCI指示的PSSCH的预约资源如图7中的实线方框所示,即第一级SCI指示了五个周期的PSSCH的预约资源。一个周期上的PSSCH在时域上占一个时隙,在频域上占四个子信道。终端装置在时隙0和时隙2上通过第一级SCI指示的PSSCH进行信息传输。在时隙3中,终端装置的业务需求发生变化,终端装置基于变 化后的业务需求重新确定了预约资源,如图7中的网格线填充的虚线方框所示。终端装置重新预约的资源与业务变化前预约的资源在时域上相同,在频域上不同。也就是说,终端装置在业务需求变化前预约的资源不再使用,如图7中无填充的实线方框所示。由于终端装置未释放业务变化前预约的资源,所以,该终端装置在业务需求变化前预约的资源被其他终端装置在资源选择过程中排除,也无法被其他终端装置使用,造成资源浪费。
有鉴于此,本申请实施例提供了一种资源指示方法,本申请实施例资源指示方法应用于图1、图2或图3的通信系统。在本申请实施例资源指示方法中,第一终端装置发送第一级SCI,其中,第一级SCI指示周期信息和频域资源信息,周期信息指示发送数据信道信息的周期,频域资源信息指示数据信道信息预约占用X个子信道的子信道数量。然后,第一终端装置根据第一级SCI发送数据信道信息,其中,数据信道信息包括第一数据信息和第二级SCI,第二级SCI指示第一数据信息占用Y个子信道的子信道数量和/或位置,Y个子信道是X个子信道中的Y个子信道,X和Y均为自然数,且1≤Y≤X≤X max,X max为第一终端装置预约的最大子信道数。这样一来,第一终端装置既指示了数据信道信息预约的子信道数量,也指示了第一数据信息实际占用的子信道数量和/或位置,并且,第二级SCI指示的Y个子信道是第一级SCI指示的X个子信道中的Y个子信道,也就是说,第一终端装置在确定业务需求发生变化的情况下,对第一级SCI预约的子信道进行调整,而非重新预约资源,以提高资源利用率。并且,其他终端装置可以基于上述第一级SCI和第二级SCI在资源选择过程中进行资源排除,如仅排除第二级SCI所指示的子信道,无需排除第一级SCI所指示但未被第二级SCI所指示的子信道,以避免第一级SCI所指示的资源未被第一终端装置使用且未被其他终端装置使用的情况,从而提升资源利用率。
下面,结合图8,对本申请实施例提出的资源指示方法800进行详细介绍。
S801、第一终端装置确定数据信道信息的预约资源。
示例性的,数据信道信息是第一终端装置向第二终端装置发送的信息,而非第一终端装置向第三终端装置或第四终端装置发送的信息。其中,第二终端装置、第三终端装置和第四终端装置均能够与第一终端装置通信。
示例性的,第一终端装置在时隙T 0确定数据信道信息的预约资源,如发送数据信道信息的周期T p,数据信道信息在每个周期中占用的子信道个数X,数据信道信息在每个周期中占用的时隙个数。以图9a为例,时隙T 0是索引0对应的时隙。数据信道信息的周期T p为4个时隙。数据信道信息的周期数量为5个。数据信道信息在每个周期中占用的子信道个数X=4,且数据信道信息在不同周期中占用的子信道相同。数据信道信息在每个周期占用的时隙个数为1,数据信道信息占用的时隙索引为1、5、9、13和17。
需要说明的是,子信道个数X的取值不可以过大,以防止第一终端装置恶意占用资源。也就是说,第一终端装置预约的子信道数量是有限的,如X≤X max。其中,X max的介绍如下:
X max表示第一终端装置预约的最大子信道数。示例性的,在X max=4的情况下,X的取值最大为4。在X max=5的情况下,X的取值最大为5。
X max取值的确定方式如下:
方式1,X max是预配置的,如通信系统预先约定的取值。
方式2,X max是网络设备配置的。示例性的,网络设备向第一终端装置发送指令1。相应的,第一终端装置接收来自网络设备的指令1。其中,指令1指示X max的取值,如指令1指 示X max的取值为4。
方式3,X max是基于以下至少一项确定的:
第一项,优先级(priority)。其中,优先级指示第一数据信息的优先级等级。第一数据信息可以参见S803的介绍,此处不再赘述。示例性的,优先级可以由第一级SCI中的优先级字段来指示。优先级越高,X max的取值越大,表征第一终端装置可以占用更多信道资源。
第二项,CBR。其中,CBR指示在第一预设时长内信道的繁忙程度。示例性的,第一预设时长可以是预设测量周期,如100个时隙(或100·2 μ个时隙)。CBR的介绍可以参见名词解释部分的相关说明,此处不再赘述。示例性的,CBR的取值越小,X max的取值越大,表征第一终端装置可以占用更多信道资源。
第三项,CR的最大值。其中,CR指示在第二预设时长内第一终端装置占用信道的程度。示例性的,CR的最大值,可以记为CR limit,当然,CR的最大值也可以有其他记法,本申请实施例对此不作限定。第二预设时长可以是预设测量周期,如1000个时隙(或1000·2 μ个时隙)。CR的最大值越大,则X max的取值越大,CR的介绍可以参见名词解释部分的相关说明,此处不再赘述。需要说明的是,CR的最大值的确定方式如下:
方式1,CR的最大值是预配置的,如通信系统预先定义的取值。
方式2,CR的最大值是网络设备配置的。示例性的,网络设备向第一终端装置发送指令2。相应的,第一终端装置接收来自网络设备的指令2。其中,指令2指示CR的最大值。
方式3,CR的最大值是基于以下至少一项确定的:
第一项,优先级。其中,优先级的介绍可以参见X max中关于优先级的介绍,此处不再赘述。示例性的,优先级越高,CR的最大值的取值越大。
第二项,数据信道信息的周期数量。示例性的,仍以图9a为例,第一终端装置预约的周期数量为5个,即数据信道信息的周期数量为5个。
第三项,CBR。其中,CBR的介绍可以参见X max中关于CBR的介绍,此处不再赘述。示例性的,CBR的取值越小,CR的最大值的取值越大。
第四项,N subchannel。其中,N subchannel是资源池所包含的子信道数,且X max≤N subchannel。例如,一个资源池包括的子信道数N subchannel的取值5个,相应的,X max的取值最大为5。
应理解,第一终端装置在时隙T 0根据第一业务需求确定数据信道信息的预约资源。示例性的,第一业务需求包括但不限于以下至少一项:
第一项,第一终端装置待传输的内容为业务A的数据信息。示例性的,第一终端装置在时隙T 0确定第一业务需求包括:第一终端装置待发送业务A的数据信息。
第二项,数据包小于数据包阈值1。示例性的,第一终端装置在时隙T 0确定数据包小于数据包阈值1。其中,数据信道信息以数据包的形式传输。
S802、第一终端装置发送第一级SCI。相应的,其他终端装置接收第一级SCI。
其中,第一级SCI指示周期信息和频域资源信息,周期信息指示发送数据信道信息的周期,频域资源信息指示数据信道信息预约占用X个子信道的子信道数量。
示例性的,仍以图9a为例,第一级SCI的资源预留周期字段指示周期信息,周期信息指示发送数据信道信息的周期T p为4个时隙。第一级SCI的频域资源分配字段指示频域资源信息,频域资源信息指示数据信道信息预约占用X个子信道的子信道数量。其中,X个子信道可以是频域上连续的子信道,且X个子信道中的首个子信道是承载第一级SCI的子信道。第一 级SCI的时域资源分配字段指示数据信道信息在每个周期预约占用的时隙个数为1。
其中,其他终端装置包括与第一终端装置通信的终端装置,如第一终端装置周围的终端装置。其他终端装置可以包括第二终端装置、第三终端装置和第四终端装置,具体可以参见S805的介绍,此处不再赘述。图8中仅示出了第一终端装置与第二终端装置的通信过程。
S803、第一终端装置调整预约资源。
其中,预约资源的介绍可以参见S801的介绍,此处不再赘述。
示例性的,第一终端装置在时隙T 1确定业务需求发生变化,如传输内容改变,或数据包大小发生变化等,第一终端装置确定实际占用的子信道数量小于预约占用的子信道数量。下面,以第一数据信息为例,对S803的实现过程进行介绍:
第一终端装置确定第一数据信息占用Y个子信道的子信道数量和位置。其中,第一数据信息是第一终端装置的业务需求发生变化后的首个周期中传输的数据。第一数据信息占用的Y个子信道是第一级SCI指示的X个子信道中的Y个子信道,1≤Y≤X。隐式地,可以理解的是,第一数据信息占用的时域资源属于第一级SCI指示的时域资源。也就是说,第一终端装置在频域上对预约资源进行调整,预约资源的时域预约占用状况保持不变。
示例性的,参见图9b,第一终端装置在时隙索引1和时隙索引5上分别占用了4个子信道。时隙T 1是索引7对应的时隙,第一终端装置的业务需求发生变化后的首个周期对应的时隙索引为9,第一数据信息实际占用的子信道数量Y=2。第一数据信息占用的资源如时隙索引9上对应斜线填充的方格所示,数据信道信息的预约资源如虚线的方格所示。换言之,当第一终端装置在时隙T 1调整预约资源时,无需在第一级SCI指示的预约资源之外重新预约新的资源,而是在已预约的资源(即第一级SCI指示的预约资源,如子信道)上进行动态调整,避免由于第一终端装置不使用已预约资源且重新预约资源所造成的资源浪费的问题。
需要说明的是,Y个子信道可以是频域上连续的至少两个子信道,也可以是频域上离散的至少两个子信道,本申请实施例对此不作限定。下面,以Y个子信道在频域上连续为例进行介绍:作为一种情况,Y个子信道的起始位置与X个子信道的起始位置相同。此种情况下,Y个子信道的结束位置与X个子信道的结束位置可以相同,即Y个子信道是X个子信道中的全部子信道。Y个子信道的结束位置与X个子信道的结束位置也可以不同,即Y个子信道是X个子信道中的部分子信道。作为再一种情况,Y个子信道的结束位置与X个子信道的结束位置相同。此种情况下,Y个子信道的起始位置与X个子信道的起始位置可以相同,即Y个子信道是X个子信道中的全部子信道。Y个子信道的起始位置与X个子信道的起始位置也可以不同,即Y个子信道是X个子信道中的部分子信道。作为又一种情况,Y个子信道的起始位置由X个子信道的起始位置和第一偏移量确定。示例性的,第一偏移量为1个子信道。相应的,Y个子信道的起始位置与X个子信道的起始位置之间偏移1个子信道。此种情况下,Y个子信道的结束位置与X个子信道的结束位置可以相同,也可以不同。容易理解的是,Y个子信道的结束位置由X个子信道的结束位置和第二偏移量确定。示例性的,第二偏移量为1个子信道。相应的,Y个子信道的结束位置与X个子信道的结束位置之间偏移1个子信道。此种情况下,Y个子信道的起始位置与X个子信道的起始位置可以相同,也可以不同。其中,第一偏移量、第二偏移量可以是预配置的,也可以是网络设备配置的,本申请实施例对此不作限定。
应理解,第一终端装置在时隙T 1根据第二业务需求确定Y的取值。示例性的,第二业务需求包括但不限于以下至少一项:
第一项,第一终端装置待传输的内容为业务B的数据信息。示例性的,第一终端装置在时隙T 1确定第二业务需求包括:第一终端装置待发送业务B的数据信息。也就是说,与时隙T 0对应的传输内容相比,第一终端装置待传输的业务内容发生变化。
第二项,数据包小于数据包阈值2。示例性的,第一终端装置在时隙T 1确定数据包小于数据包阈值2。也就是说,与时隙T 0对应的数据包大小相比,第一终端装置待传输的数据包大小发生变化。
在一些实施例中,第一终端装置还确定第一数据信息所在周期之后周期中的子信道占用状况。示例性的,第一终端装置还确定第二数据信息占用Z个子信道的子信道数量和位置。其中,第二数据信息属于数据信道信息,且是第一数据信息所在周期的下一个周期传输的数据。第二数据信息占用的Z个子信道是第一级SCI指示的X个子信道中的Z个子信道,Z为自然数。1≤Z≤X。隐式地,可以理解的是,第二数据信息占用的时域资源属于第一级SCI指示的时域资源,且预约资源的时域预约占用状况保持不变。
示例性的,仍以图9b为例,第二数据信息所在时隙索引为13,该周期中的第二数据信息占用3个子信道,即Z=3。在图9b中,仅以Z个子信道是频域上连续的至少两个子信道,且Z个子信道的起始位置与X个子信道的起始位置相同为例,进行介绍。
需要说明的是,第一数据信息占用的子信道数量Y与第二数据信息占用的子信道数量Z可以有相同的取值,如图9c所示。当然,第一数据信息占用的子信道数量Y与第二数据信息占用的子信道数量Z也可以有不同的取值,如图9b所示。
应理解,上述仅以第二数据信息所在的周期为例进行介绍,当然,第二级SCI还可以指示更多周期的子信道数量,以及更多周期的子信道位置,如第一数据信息所在周期之后的剩余周期中每个周期的子信道数量和位置,如图9d所示,本申请实施例对此不作限定。
S804、第一终端装置确定第二级SCI。
其中,第二级SCI指示第一数据信息占用Y个子信道的子信道数量。S804中的Y个子信道与S803中的Y个子信道一致。例如,第二级SCI指示第一数据信息占用的子信道数量为Y。
和/或,第二级SCI指示第一数据信息占用Y个子信道的子信道位置。例如,第二级SCI指示第一数据信息占用Y个子信道的起始位置。再如,第二级SCI指示第一数据信息占用Y个子信道的结束位置。又如,第二级SCI指示X个子信道的起始位置和第一偏移量。其中,第一偏移量可以参见S803的介绍,此处不再赘述。又如,第二级SCI指示X个子信道的结束位置和第二偏移量。其中,第二偏移量可以参见S803的介绍,此处不再赘述。又如,第二级SCI指示第一数据信息占用Y个子信道中每个子信道的位置。
应理解,第二级SCI也可以仅指示第一数据信息占用Y个子信道的子信道数量,而不指示第一数据信息占用Y个子信道的子信道位置。此种情况下,Y个子信道的起始位置可以是第一级SCI所在的子信道,以使其他终端装置确定Y个子信道中每个子信道的位置。当然,第二级SCI也可以指示第一数据信息占用Y个子信道的子信道数量和子信道位置,本申请实施例对此不作限定。
示例性的,第二级SCI的介绍如下:第二级SCI的格式可以记为SCI格式2-C,第二级SCI的格式由第一级SCI来指示,具体如表2所示:
表2
第二级SCI格式字段的取值(value of 2nd- 第二级SCI格式(2nd-stage SCI format)
stage SCI format field)  
00 SCI format 2-A
01 SCI format 2-B
10 SCI format 2-C
11 保留
在表2中,第一级SCI中的第二级SCI格式字段的取值为10的情况下,第二级SCI格式为2-C。应理解,S804中的第二级SCI也可以有其他格式,本申请实施例对此不作限定。
在一些实施例中,第二级SCI还指示第一数据信息所在周期之后的周期中子信道的占用状况。下面通过三个示例(即下述示例1、示例2和示例3)进行介绍:
示例1,第二级SCI还指示第二数据信息占用Z个子信道的子信道数量和/或位置。其中,S804中的Z个子信道与S803中的Z个子信道一致,第二级SCI对Z个子信道的指示情况可以参见第二级SCI对Y个子信道的指示情况的介绍,此处不再赘述。示例性的,仍以图9b为例,第二数据信息所在的时隙索引为13,该周期中的第二数据信息占用3个子信道,即Z=3。第二级SCI还指示第二数据信息占用的子信道数量为3,从而使得其他终端装置进行合理的资源排除。
应理解,示例1中仅以第二数据信息占用的Z子信道为例,进行介绍。当然,第二级SCI还可以指示更多周期的子信道占用状况,如第一数据信息所在周期之后的连续两个或两个以上周期中的子信道占用状况,本申请实施例对此不作限定。
示例2,第二级SCI还指示标示信息。其中,标示信息指示Z和Y的取值是否相同。Z表示第二数据信息占用的子信道数量,Z和第二数据信息的具体含义可以参见S803的介绍,此处不再赘述。示例性的,标示信息可以记为flag。标识信息通过1比特(bit)来指示。flag的取值为1,表示Z和Y的取值相同,如图9c所示。flag的取值为0,表示Z和Y的取值不同,图9c未示出。或者,反之,flag的取值为1,表示Z和Y的取值不同。flag的取值为0,表示Z和Y的取值相同。在示例2中,第一终端装置通过标示信息,来指示第二数据信息对子信道的占用状况,以节省信令开销。
应理解,本申请实施例中,仅以标示信息这一名称为例进行介绍,标示信息也可以替换为其他名称,如指示信息,本申请实施例对此不作限定。标示信息还可以通过其他取值或字符,来指示Z和Y的取值是否相同,本申请实施例对此不作限定。
示例3,Y还指示第三数据信息占用的子信道数量。其中,第三数据信息占用的Y个子信道是X个子信道中的Y个子信道。第三数据信息属于数据信道信息,且在第一数据信息所在周期之后的周期传输。其中,第一数据信息所在周期之后的周期数量可以是一个,也可以是多个,还可以是第一数据信息所在周期之后的每一个周期。应理解,在本申请实施例中,第一数据信息所在周期之后的每一个周期,是指,在第一级SCI的预约周期中,第一数据信息所在周期之后的每一个周期。
示例性的,以第一数据信息所在周期之后的每一个周期为例,参见图9d,第一数据信息所在周期之后的两个周期,如时隙索引13和17中,第三数据信息均占用两个子信道,与当前周期占用的子信道数量相同。此种情况下,第二级SCI所指示的数值Y,还可以表示第三数据信息在第一数据信息所在周期之后的每一个周期中占用的子信道数量,以在子信道变化较小的情况下,向其他终端装置指示第一终端装置自身对子信道的占用状况。
容易理解的是,在Y还指示第三数据信息占用的子信道数量的情况下,Y还可以指示第三数据信息占用的子信道位置,如第三数据信息占用的子信道位置与第一数据信息占用的子信道位置,以更好地适应子信道变化较小的情况。
S805、第一终端装置根据第一级SCI发送数据信道信息。相应的,其他终端装置根据第一级SCI接收数据信道信息。
其中,S805中的第一级SCI与S802中的第一级SCI一致。
其中,S805中的数据信道信息包括第一数据信息和第二级SCI。第一数据信息可以参见S803的介绍,第二级SCI可以参见S804的介绍,此处不再赘述。
示例性的,其他终端装置包括第二终端装置、第三终端装置和第四终端装置。其中,第二终端装置能够识别数据信道信息中的第二级SCI,且属于数据信道信息的目标接收端。第三终端装置能够识别数据信道信息中的第二级SCI,但不属于数据信道信息的目标接收端。第四终端装置无法识别数据信道信息中的第二级SCI,也不属于数据信道信息的目标接收端。下面,分别对第二终端装置、第三终端装置和第四终端装置的处理过程进行介绍:
对于能够识别第二级SCI的第二终端装置而言,S805的具体实现过程如下:第二终端装置对第一级SCI进行译码,以得到第一级SCI预约的子信道。第二终端装置再对第二级SCI进行译码,以得到第一数据信息实际占用的子信道数量和位置。第二终端装置执行S805之后,执行S806:
S806、第二终端装置根据Y个子信道的子信道位置,译码第一数据信息。
其中,第二级SCI对Y个子信道的指示状况,可以参见S804的介绍,第一数据信息可以参见S803的介绍,此处不再赘述。
例如,在第二级SCI指示Y个子信道的子信道数量的情况下,第二终端装置根据第二级SCI指示的子信道数量,以及预定义的Y个子信道的起始位置,确定Y个子信道的子信道位置。然后,第二终端装置根据第一级SCI中的时域资源分配字段和Y个子信道的子信道位置,确定资源1,对资源1进行译码,以得到第一数据信息。此种情况下,预定义的Y个子信道的起始位置与X个子信道的起始位置可以相同。或者,第二终端装置根据第二级SCI指示的子信道数量,以及预定义的Y个子信道的结束位置,确定Y个子信道的子信道位置。然后,第二终端装置根据第一级SCI中的时域资源分配字段和Y个子信道的子信道位置,确定资源2,对资源2进行译码,以得到第一数据信息。此种情况下,预定义的Y个子信道的结束位置与X个子信道的结束位置可以相同。
再如,在第二级SCI指示Y个子信道的子信道数量和起始位置的情况下,第二终端装置根据第一级SCI中的时域资源分配字段、第二级SCI指示的子信道数量和起始位置,确定资源3,对资源3进行译码,以得到第一数据信息。
又如,在第二级SCI指示Y个子信道的子信道数量和结束位置的情况下,第二终端装置根据第一级SCI中的时域资源分配字段、第二级SCI指示的子信道数量和结束位置,确定资源4,对资源4进行译码,以得到第一数据信息。
又如,在第二级SCI指示Y个子信道的子信道数量、X个子信道的起始位置和第一偏移量的情况下,第二终端装置基于X个子信道的起始位置和第一偏移量,即可确定Y个子信道的起始位置。在Y个子信道是频域上连续的子信道的情况下,第二终端装置基于Y个子信道的起始位置和第二级SCI指示的Y个子信道的子信道数量,以及第一级SCI中的时域资源分配字段, 即可确定资源5,对资源5进行译码,以得到第一数据信息。
又如,在第二级SCI指示Y个子信道的子信道数量、X个子信道的结束位置和第二偏移量的情况下,第二终端装置基于X个子信道的结束位置和第二偏移量,即可确定Y个子信道的结束位置。在Y个子信道是频域上连续的子信道的情况下,第二终端装置基于Y个子信道的结束位置和第二级SCI指示的Y个子信道的子信道数量,以及第一级SCI中的时域资源分配字段,即可确定资源6,对资源6进行译码,以得到第一数据信息。
又如,在第二级SCI指示Y个子信道的子信道位置的情况下,第二终端装置基于Y个子信道的子信道位置,以及第一级SCI中的时域资源分配字段,即可确定资源7,对资源7进行译码,以得到第一数据信息。
在本申请实施例中,译码过程可以参见相关技术,此处不再赘述。
在一些实施例中,第二级SCI还指示第一数据信息所在周期之后的周期中子信道的占用状况。如图10所示,通过三个示例对第二终端装置的处理过程进行介绍:
示例1,第二终端装置还执行S807a:
S807a、第二终端装置根据Z个子信道的子信道位置,译码第二数据信息。
其中,第二级SCI对Z个子信道的指示状况,可以参见S804中示例1的介绍,第二数据信息可以参见S803的介绍,此处不再赘述。
例如,第二终端装置根据第一级SCI中的时域资源分配字段和Z个子信道的子信道位置,确定待译码的资源,再进行译码,以获得第二数据信息。其中,第二终端装置确定待译码的资源的过程可以参见S806的描述,此处不再赘述。
示例2,第二终端装置还执行S807b:
S807b、第二终端装置根据标示信息,译码第二数据信息。
其中,第二级SCI还指示标示信息,标示信息指示Z和Y的取值是否相同,具体可以参见S804的介绍,此处不再赘述。
例如,在标示信息指示Z和Y的取值相同的情况下,第二终端装置即可确定Z的取值。第二终端装置根据第一级SCI中的时域资源分配字段、Z的取值,以及预定义的Z个子信道的起始位置,确定待译码的资源,再进行译码,以获得第二数据信息。其中,第二终端装置确定待译码的资源的过程可以参见S806的描述,此处不再赘述。
需要说明的是,在标示信息指示Z和Y的取值不同的情况下,第二终端装置继续侦听第一级SCI和第二级SCI,以通过后续侦听到的第一级SCI和第二级SCI来确定待译码的资源,再进行译码,以获得第二数据信息。
示例3,第二终端装置执行的S806的具体实现过程包括:第二终端装置根据第一数据信息占用的Y个子信道的子信道位置,译码第一数据信息。并且,第二终端装置还执行:第二终端装置根据第三数据信息占用的Y个子信道的子信道位置,译码第三数据信息。
其中,Y还指示第三数据信息占用的子信道数量,具体可以参见S804的介绍,此处不再赘述。
例如,第二终端装置根据第一级SCI中的时域资源分配字段和Y个子信道的子信道位置,确定待译码的资源,再进行译码,以获得第三数据信息。其中,第二终端装置确定待译码的资源的过程可以参见S806的描述,此处不再赘述。
对于第三终端装置而言,第三终端装置能够识别第二级SCI,则第三终端装置能够执行 S802、S805和S808,如图11a所示。其中,S802和S805的实现过程可以参见图8的介绍,此处不再赘述,下面,对S808的实现过程进行介绍:
S808、第三终端装置根据Y个子信道的子信道位置,进行资源选择。
其中,第二级SCI对Y个子信道的指示状况,可以参见S804的介绍,此处不再赘述。
例如,在第二级SCI指示Y个子信道的子信道数量的情况下,第二终端装置根据第二级SCI指示的子信道数量,以及预定义的Y个子信道的起始位置,确定Y个子信道的子信道位置。然后,第二终端装置根据第一级SCI中的时域资源分配字段和Y个子信道的子信道位置,确定资源1,根据资源1的资源位置进行资源选择。此种情况下,预定义的Y个子信道的起始位置与X个子信道的起始位置可以相同。或者,第二终端装置根据第二级SCI指示的子信道数量,以及预定义的Y个子信道的结束位置,确定Y个子信道的子信道位置。然后,第二终端装置根据第一级SCI中的时域资源分配字段和Y个子信道的子信道位置,确定资源2,根据资源2的资源位置进行资源选择。此种情况下,预定义的Y个子信道的结束位置与X个子信道的结束位置可以相同。
再如,在第二级SCI指示Y个子信道的子信道数量和起始位置的情况下,第二终端装置根据第一级SCI中的时域资源分配字段、第二级SCI指示的子信道数量和起始位置,确定资源3,根据资源3的资源位置进行资源选择。
又如,在第二级SCI指示Y个子信道的子信道数量和结束位置的情况下,第二终端装置根据第一级SCI中的时域资源分配字段、第二级SCI指示的子信道数量和结束位置,确定资源4,根据资源4的资源位置进行资源选择。
又如,在第二级SCI指示Y个子信道的子信道数量、X个子信道的起始位置和第一偏移量的情况下,第二终端装置基于X个子信道的起始位置和第一偏移量,即可确定Y个子信道的起始位置。在Y个子信道是频域上连续的子信道的情况下,第二终端装置基于Y个子信道的起始位置和第二级SCI指示的Y个子信道的子信道数量,以及第一级SCI中的时域资源分配字段,即可确定资源5,根据资源5的资源位置进行资源选择。
又如,在第二级SCI指示Y个子信道的子信道数量、X个子信道的结束位置和第二偏移量的情况下,第二终端装置基于X个子信道的结束位置和第二偏移量,即可确定Y个子信道的结束位置。在Y个子信道是频域上连续的子信道的情况下,第二终端装置基于Y个子信道的结束位置和第二级SCI指示的Y个子信道的子信道数量,以及第一级SCI中的时域资源分配字段,即可确定资源6,根据资源6的资源位置进行资源选择。
又如,在第二级SCI指示Y个子信道的子信道位置的情况下,第二终端装置基于Y个子信道的子信道位置,以及第一级SCI中的时域资源分配字段,即可确定资源7,根据资源7的资源位置进行资源选择。
在本申请实施例中,资源选择过程可以参见图6的介绍,此处不再赘述。
示例性的,参见图11b,第三终端装置进行资源选择之后,占用的资源包括第一终端装置通过第一级SCI预约占用,但第二级SCI指示未占用的资源,如时隙索引9上黑点填充的虚线方格所示,以提高资源利用率,避免资源浪费。
在一些实施例中,第二级SCI还指示第一数据信息所在周期之后的周期中子信道的占用状况。如图12所示,通过三个示例对第三终端装置的处理过程进行介绍:
示例1,第三终端装置还执行S809a:
S809a、第三终端装置根据Z个子信道的子信道位置,进行资源选择。
其中,第二级SCI还指示第二数据信息占用Z个子信道的子信道数量和/或位置,具体可以参见S804中的介绍,此处不再赘述。
例如,在第二级SCI指示Z个子信道的子信道数量的情况下,第三终端装置根据第二级SCI指示的子信道数量,以及预定义的Z个子信道的起始位置,确定Z个子信道的位置。然后,第三终端装置根据Z个子信道的位置和第一级SCI中的时域资源分配字段,进行资源选择。此种情况下,预定义的Z个子信道的起始位置与X个子信道的起始位置可以相同。或者,第三终端装置根据第二级SCI指示的子信道数量,以及预定义的Z个子信道的结束位置,确定Z个子信道的位置。然后,第三终端装置根据Z个子信道的位置和第一级SCI中的时域资源分配字段,进行资源选择。此种情况下,预定义的Z个子信道的结束位置与X个子信道的结束位置可以相同。
再如,在第二级SCI指示Z个子信道的子信道数量和位置的情况下,第三终端装置根据第一级SCI中的时域资源分配字段、第二级SCI指示的子信道数量和位置,进行资源选择。
示例性的,参见图13a,第三终端装置进行资源选择之后,占用的资源包括第一终端装置通过第一级SCI预约占用,但第二级SCI指示未占用的资源,如时隙索引13上黑点填充的虚线方格所示,提高了资源利用率,避免资源浪费。
示例2,第三终端装置还执行S809b:
S809b、第三终端装置根据标示信息,进行资源选择。
其中,第二级SCI还指示标示信息,标示信息指示Z和Y的取值是否相同,具体可以参见S804的介绍,此处不再赘述。
例如,在标示信息指示Z和Y的取值相同的情况下,第三终端装置即可确定Z的取值。第三终端装置根据Z的取值,以及预定义的Z个子信道的起始位置,确定Z个子信道的位置。然后,第三终端装置根据Z个子信道的位置和第一级SCI中的时域资源分配字段,进行资源选择。
示例性的,参见图13b,以标示信息指示Z和Y的取值相同为例,第三终端装置进行资源选择之后,占用的资源包括第一终端装置通过第一级SCI预约占用,但第二级SCI指示实际未占用的资源,如时隙索引13上黑点填充的虚线方格所示,以提高资源利用率,避免资源浪费。
需要说明的是,在标示信息指示Z和Y的取值不同的情况下,第三终端装置继续侦听第一级SCI和第二级SCI,以通过后续侦听到的第一级SCI和第二级SCI来确定第二数据信息占用的子信道数量和位置。
示例3,Y还指示第三数据信息占用的子信道数量,具体可以参见S804的介绍,此处不再赘述。
示例性的,以图13c为例,第三数据信息是第一数据信息所在周期之后每一个周期中传输的数据。第三终端装置根据第二级SCI指示的子信道数量和Y个子信道的起始位置,确定Y个子信道的位置。然后,第三终端装置根据Y个子信道的位置和第一级SCI中的时域资源分配字段,进行资源选择。
在图13c中,第三终端装置占用的资源包括第一终端装置通过第一级SCI预约占用,但第二级SCI指示实际未占用的资源,如时隙索引13、17上黑点填充的虚线方格所示,以提高资源利用率,避免资源浪费。
对于第四终端装置而言,由于第四终端装置无法识别数据信道信息中的第二级SCI,所以,第四终端装置执行S802、S805和S810,如图14a所示。其中,S810的说明如下:
S810、第四终端装置根据X个子信道的子信道位置,进行资源选择。
其中,S810中的第一级SCI与S802中的第一级SCI一致。
示例性的,第四终端装置根据第一级SCI中的时域资源分配字段和第一级SCI指示的子信道数量X,进行资源选择,具体可以参见图6的介绍,此处不再赘述。
示例性的,参见图14b,第四终端装置进行资源选择之后,占用的资源不包括第一终端装置通过第一级SCI预约占用,如时隙索引9、13、17上网格填充的虚线方格所示。
由于第二级SCI指示的子信道数量也小于或等于X,换言之,第一数据信息占用的资源属于第一级SCI指示的数据信道信息预约占用的资源,所以,即使第四终端装置根据第一级SCI进行资源选择,也不会发生资源冲突的问题,保证了本申请实施例资源指示方法800对第四终端装置的兼容,不会对第四终端装置造成干扰。并且,X≤X max,也就是说,第一终端装置在进行资源预约时未过度抢占资源,以保证第四终端装置有可用的资源。
应理解,本申请实施例中所涉及的子信道个数,如X、Y、Z、X max、N subchannel、a和b均是自然数。
上述主要从不同网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,第一终端装置、第二终端装置、第三终端装置和第四终端装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对通信装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图15示出了本申请实施例中提供的通信装置的一种示意性框图。该通信装置1500可以以软件的形式存在,也可以为设备,或者设备中的组件(比如芯片系统)。该通信装置1500包括:处理单元1502和通信单元1503。
通信单元1503还可以划分为发送单元(并未在图15中示出)和接收单元(并未在图15中示出)。其中,发送单元,用于支持通信装置1500向其他网元发送信息。接收单元,用于支持通信装置1500从其他网元接收信息。
当通信装置1500用于实现上述第一终端装置的功能时,示例性的,处理单元1502可以用于支持通信装置1500执行图8中的S801、S803、S804,和/或用于本文所描述的方案的其它过程。通信单元1503用于支持通信装置1500和其他网元(例如第二终端装置)之间的通信。比如,通信单元用于支持通信装置1500执行图8所示的S802、S805,和/或用于本文所描述的方案的其它过程。
当通信装置1500用于实现上述方法中第二终端装置的功能时,示例性的,处理单元1502 可以用于支持通信装置1500执行如图8中的S806,和/或用于本文所描述的方案的其它过程。通信单元1503用于支持通信装置1500和其他网元(例如第一终端装置)之间的通信。比如,通信单元用于支持装置1500执行图8所示的S802、S805,和/或用于本文所描述的方案的其它过程。
当通信装置1500用于实现上述方法中第三终端装置的功能时,示例性的,处理单元1502可以用于支持通信装置1500执行如图11a中的S808,和/或用于本文所描述的方案的其它过程。通信单元1503用于支持通信装置1500和其他网元(例如第一终端装置)之间的通信。比如,通信单元用于支持装置1500执行图11a所示的S802、S805,和/或用于本文所描述的方案的其它过程。
当通信装置1500用于实现上述方法中第四终端装置的功能时,示例性的,处理单元1502可以用于支持通信装置1500执行如图14a中的S810,和/或用于本文所描述的方案的其它过程。通信单元1503用于支持通信装置1500和其他网元(例如第一终端装置)之间的通信。比如,通信单元用于支持装置1500执行图14a所示的S802、S805,和/或用于本文所描述的方案的其它过程。
可选的,通信装置1500还可以包括存储单元1501,用于存储通信装置1500的程序代码和数据,数据可以包括不限于原始数据或者中间数据等。
其中,处理单元1502可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
通信单元1503可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口,例如可以包括:终端和终端之间的接口和/或其他接口。
存储单元1501可以是存储器。
当处理单元1502为处理器,通信单元1503为通信接口,存储单元1501为存储器时,本申请实施例所涉及的通信装置1600可以为图16所示。
参阅图16所示,该通信装置1600包括:处理器1602、收发器1603、存储器1601。
其中,收发器1603可以为独立设置的发送器,该发送器可用于向其他设备发送信息,该收发器也可以为独立设置的接收器,用于从其他设备接收信息。该收发器也可以是将发送、接收信息功能集成在一起的部件,本申请实施例对收发器的具体实现不做限制。
可选的,装置1600还可以包括总线1604。其中,收发器1603、处理器1602以及存储器1601可以通过总线1604相互连接;总线1604可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。所述总线1604可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算 机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络设备(例如终端)上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个功能单元独立存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种资源指示方法,其特征在于,包括:
    第一终端装置发送第一级侧行链路控制信息SCI,其中,所述第一级SCI指示周期信息和频域资源信息,所述周期信息指示发送数据信道信息的周期,所述频域资源信息指示所述数据信道信息预约占用X个子信道的子信道数量;
    所述第一终端装置根据所述第一级SCI发送所述数据信道信息,其中,所述数据信道信息包括第一数据信息和第二级SCI,所述第二级SCI指示所述第一数据信息占用Y个子信道的子信道数量和/或位置,所述Y个子信道是所述X个子信道中的Y个子信道,所述X和Y均为自然数,且1≤Y≤X≤X max,所述X max为所述第一终端装置预约的最大子信道数。
  2. 根据权利要求1所述的方法,其特征在于,
    所述Y个子信道的起始位置与所述X个子信道的起始位置相同;或者
    所述Y个子信道的结束位置与所述X个子信道的结束位置相同;或者
    所述Y个子信道的起始位置由所述X个子信道的起始位置和第一偏移量确定,其中,所述第一偏移量由所述第二级SCI指示。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述X max是预配置的;或者
    所述X max是网络设备配置的;或者
    所述X max是基于以下至少一项确定的:
    优先级,其中,所述优先级指示所述第一数据信息的优先级等级;
    信道繁忙比例CBR,其中,所述CBR指示在第一预设时长内信道的繁忙程度;
    信道占用率CR的最大值,其中,所述CR指示在第二预设时长内所述第一终端装置占用信道的程度。
  4. 根据权利要求3所述的方法,其特征在于,
    所述CR的最大值是预配置的;或者
    所述CR的最大值是所述网络设备配置的;或者
    所述CR的最大值是根据以下至少一项确定的:
    所述优先级,所述数据信道信息的周期数量,所述CBR,或N subchannel,其中,所述N subchannel是资源池所包含的子信道数,且X max≤N subchannel
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第二级SCI还指示第二数据信息占用Z个子信道的子信道数量和/或位置,所述Z个子信道是所述X个子信道中的Z个子信道,所述Z为自然数,1≤Z≤X;
    所述第二数据信息属于所述数据信道信息,且在所述第一数据信息所在周期的下一个周期传输。
  6. 根据权利要求1至4任一项所述的方法,其特征在于,所述第二级SCI还指示标示信息,所述标示信息指示Z和所述Y的取值是否相同;
    其中,所述Z表示第二数据信息占用的子信道数量,所述第二数据信息占用的Z个子信道是所述X个子信道中的Z个子信道,所述Z为自然数,且1≤Z≤X,所述第二数据信息属于所述数据信道信息,且在所述第一数据信息所在周期的下一个周期传输。
  7. 根据权利要求1至4任一项所述的方法,其特征在于,所述Y还指示第三数据信息占用的子信道数量,所述第三数据信息占用的Y个子信道是所述X个子信道中的Y个子信道,所述第三数据信息属于所述数据信道信息,且在所述第一数据信息所在周期之后的周期传输。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置根据第一业务需求,确定所述X的取值;
    所述第一终端装置根据第二业务需求,确定所述Y的取值。
  9. 一种资源指示方法,其特征在于,包括:
    第二终端装置接收第一级侧行链路控制信息SCI,其中,所述第一级SCI指示周期信息和频域资源信息,所述周期信息指示接收数据信道信息的周期,所述频域资源信息指示所述数据信道信息预约占用X个子信道的子信道数量;
    所述第二终端装置根据所述第一级SCI接收所述数据信道信息,其中,所述数据信道信息包括第一数据信息和第二级SCI,所述第二级SCI指示所述第一数据信息占用Y个子信道的子信道数量和/或位置,所述Y个子信道是所述X个子信道中的Y个子信道,所述X和Y均为自然数,且1≤Y≤X≤X max,所述X max为第一终端装置预约的最大子信道数。
  10. 根据权利要求9所述的方法,其特征在于,
    所述Y个子信道的起始位置与所述X个子信道的起始位置相同;或者
    所述Y个子信道的结束位置与所述X个子信道的结束位置相同;或者
    所述Y个子信道的起始位置由所述X个子信道的起始位置和第一偏移量确定,其中,所述第一偏移量由所述第二级SCI指示。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述第二终端装置根据所述第一数据信息占用的Y个子信道的子信道位置,译码所述第一数据信息或进行资源选择。
  12. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述第二终端装置根据Z个子信道的子信道位置,译码第二数据信息或进行资源选择,其中,所述第二级SCI还指示所述第二数据信息占用所述Z个子信道的子信道数量和/或位置,所述Z个子信道是所述X个子信道中的Z个子信道,所述Z为自然数,1≤Z≤X;所述第二数据信息属于所述数据信道信息,且在所述第一数据信息所在周期的下一个周期接收。
  13. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述第二终端装置根据标示信息,译码第二数据信息或进行资源选择,其中,所述第二级SCI还指示所述标示信息,所述标示信息指示Z和所述Y的取值是否相同,所述Z表示所述第二数据信息占用的子信道数量,所述Z个子信道是所述X个子信道中的Z个子信道,所述Z为自然数,且1≤Z≤X,所述第二数据信息属于所述数据信道信息,且在所述第一数据信息所在周期的下一个周期传输。
  14. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述第二终端装置根据第三数据信息占用的Y个子信道的子信道位置,译码所述第三数据信息或进行资源选择,其中,所述Y还指示所述第三数据信息占用的子信道数量,所述第三数据信息占用的Y个子信道是所述X个子信道中的Y个子信道,所述第三数据信息属于所述数据信道信息,且在所述第一数据信息所在周期之后的周期传输。
  15. 一种通信装置,其特征在于,包括:
    发送器,用于发送第一级侧行链路控制信息SCI,其中,所述第一级SCI指示周期信息和频域资源信息,所述周期信息指示发送数据信道信息的周期,所述频域资源信息指示所述数据信道信息预约占用X个子信道的子信道数量;
    处理器,用于根据所述第一级SCI通过所述发送器发送所述数据信道信息,其中,所述数据信道信息包括第一数据信息和第二级SCI,所述第二级SCI指示所述第一数据信息占用Y个子信道的子信道数量和/或位置,所述Y个子信道是所述X个子信道中的Y个子信道,所述X和Y均为自然数,且1≤Y≤X≤X max,所述X max为所述通信装置预约的最大子信道数。
  16. 根据权利要求15所述的装置,其特征在于,
    所述Y个子信道的起始位置与所述X个子信道的起始位置相同;或者
    所述Y个子信道的结束位置与所述X个子信道的结束位置相同;或者
    所述Y个子信道的起始位置由所述X个子信道的起始位置和第一偏移量确定,其中,所述第一偏移量由所述第二级SCI指示。
  17. 根据权利要求15或16所述的装置,其特征在于,
    所述X max是预配置的;或者
    所述X max是网络设备配置的;或者
    所述X max是基于以下至少一项确定的:
    优先级,其中,所述优先级指示所述第一数据信息的优先级等级;
    信道繁忙比例CBR,其中,所述CBR指示在第一预设时长内信道的繁忙程度;
    信道占用率CR的最大值,其中,所述CR指示在第二预设时长内所述通信装置占用信道的程度。
  18. 根据权利要求17所述的装置,其特征在于,
    所述CR的最大值是预配置的;或者
    所述CR的最大值是所述网络设备配置的;或者
    所述CR的最大值是根据以下至少一项确定的:
    所述优先级,所述数据信道信息的周期数量,所述CBR,或N subchannel,其中,所述N subchannel是资源池所包含的子信道数,且X max≤N subchannel
  19. 根据权利要求15至18任一项所述的装置,其特征在于,所述第二级SCI还指示第二数据信息占用Z个子信道的子信道数量和/或位置,所述Z个子信道是所述X个子信道中的Z个子信道,所述Z为自然数,1≤Z≤X;
    所述第二数据信息属于所述数据信道信息,且在所述第一数据信息所在周期的下一个周期传输。
  20. 根据权利要求15至18任一项所述的装置,其特征在于,所述第二级SCI还指示标示信息,所述标示信息指示Z和所述Y的取值是否相同;
    其中,所述Z表示第二数据信息占用的子信道数量,所述第二数据信息占用的Z个子信道是所述X个子信道中的Z个子信道,所述Z为自然数,且1≤Z≤X,所述第二数据信息属于所述数据信道信息,且在所述第一数据信息所在周期的下一个周期传输。
  21. 根据权利要求15至18任一项所述的装置,其特征在于,所述Y还指示第三数据信息占用的子信道数量,所述第三数据信息占用的Y个子信道是所述X个子信道中的Y个子信道,所述第三数据信息属于所述数据信道信息,且在所述第一数据信息所在周期之后的周期传输。
  22. 根据权利要求15至21任一项所述的装置,其特征在于,
    所述处理器,还用于根据第一业务需求,确定所述X的取值;以及用于根据第二业务需求,确定所述Y的取值。
  23. 一种通信装置,其特征在于,包括:
    接收器,用于接收第一级侧行链路控制信息SCI,其中,所述第一级SCI指示周期信息和频域资源信息,所述周期信息指示接收数据信道信息的周期,所述频域资源信息指示所述数据信道信息预约占用X个子信道的子信道数量;
    处理器,用于根据所述第一级SCI通过所述接收器接收所述数据信道信息,其中,所述数据信道信息包括第一数据信息和第二级SCI,所述第二级SCI指示所述第一数据信息占用Y个子信道的子信道数量和/或位置,所述Y个子信道是所述X个子信道中的Y个子信道,所述X和Y均为自然数,且1≤Y≤X≤X max,所述X max为第一终端装置预约的最大子信道数。
  24. 根据权利要求23所述的装置,其特征在于,
    所述Y个子信道的起始位置与所述X个子信道的起始位置相同;或者
    所述Y个子信道的结束位置与所述X个子信道的结束位置相同;或者
    所述Y个子信道的起始位置由所述X个子信道的起始位置和第一偏移量确定,其中,所述第一偏移量由所述第二级SCI指示。
  25. 根据权利要求23或24所述的装置,其特征在于,
    所述处理器,还用于根据所述第一数据信息占用的Y个子信道的子信道位置,译码所述第一数据信息或进行资源选择。
  26. 根据权利要求23或24所述的装置,其特征在于,
    所述处理器,还用于根据Z个子信道的子信道位置,译码第二数据信息或进行资源选择,其中,所述第二级SCI还指示所述第二数据信息占用所述Z个子信道的子信道数量和/或位置,所述Z个子信道是所述X个子信道中的Z个子信道,所述Z为自然数,1≤Z≤X;所述第二数据信息属于所述数据信道信息,且在所述第一数据信息所在周期的下一个周期接收。
  27. 根据权利要求23或24所述的装置,其特征在于,
    所述处理器,还用于根据标示信息,译码第二数据信息或进行资源选择,其中,所述第二级SCI还指示所述标示信息,所述标示信息指示Z和所述Y的取值是否相同,所述Z表示所述第二数据信息占用的子信道数量,所述Z个子信道是所述X个子信道中的Z个子信道,所述Z为自然数,且1≤Z≤X,所述第二数据信息属于所述数据信道信息,且在所述第一数据信息所在周期的下一个周期传输。
  28. 根据权利要求23或24所述的装置,其特征在于,
    所述处理器,还用于根据第三数据信息占用的Y个子信道的子信道位置,译码所述第三数据信息或进行资源选择,其中,所述Y还指示所述第三数据信息占用的子信道数量,所述第三数据信息占用的Y个子信道是所述X个子信道中的Y个子信道,所述第三数据信息属于所述数据信道信息,且在所述第一数据信息所在周期之后的周期传输。
  29. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令被执行时,如权利要求1至8中任一项所述的资源指示方法被实现,或者,如权利要求9至14中任一项所述的资源指示方法被实现。
PCT/CN2022/115265 2021-09-03 2022-08-26 资源指示方法及通信装置 WO2023030199A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111034421.2 2021-09-03
CN202111034421.2A CN115767468A (zh) 2021-09-03 2021-09-03 资源指示方法及通信装置

Publications (1)

Publication Number Publication Date
WO2023030199A1 true WO2023030199A1 (zh) 2023-03-09

Family

ID=85332649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115265 WO2023030199A1 (zh) 2021-09-03 2022-08-26 资源指示方法及通信装置

Country Status (2)

Country Link
CN (1) CN115767468A (zh)
WO (1) WO2023030199A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734665A (zh) * 2016-08-11 2018-02-23 中国移动通信有限公司研究院 资源指示、确定方法及装置、网络侧设备及移动通信终端
CN110972176A (zh) * 2018-09-28 2020-04-07 展讯半导体(南京)有限公司 资源选择方法及装置、存储介质、终端
CN111447682A (zh) * 2019-01-17 2020-07-24 电信科学技术研究院有限公司 一种业务数据传输方法、装置及通信节点
CN112673698A (zh) * 2018-09-14 2021-04-16 富士通株式会社 无线终端和无线通信系统
WO2021098713A1 (en) * 2019-11-18 2021-05-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource allocation method and related product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734665A (zh) * 2016-08-11 2018-02-23 中国移动通信有限公司研究院 资源指示、确定方法及装置、网络侧设备及移动通信终端
CN112673698A (zh) * 2018-09-14 2021-04-16 富士通株式会社 无线终端和无线通信系统
CN110972176A (zh) * 2018-09-28 2020-04-07 展讯半导体(南京)有限公司 资源选择方法及装置、存储介质、终端
CN111447682A (zh) * 2019-01-17 2020-07-24 电信科学技术研究院有限公司 一种业务数据传输方法、装置及通信节点
WO2021098713A1 (en) * 2019-11-18 2021-05-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource allocation method and related product

Also Published As

Publication number Publication date
CN115767468A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
US11395358B2 (en) Communications device
US10931407B2 (en) User terminal and radio communication method
CN108029120B (zh) 用于为低复杂度窄带终端指示对随机接入过程中的harq消息分配的资源的方法
US9591673B2 (en) Method and apparatus for providing machine initial access procedure for machine to machine communication
CN111148240B (zh) 资源配置方法及装置
EP4093132A1 (en) Method and apparatus for allocating resources through cooperation between terminals in v2x system
CN109428680B (zh) 发送或接收上行数据的方法和装置
CN109429334B (zh) 一种数据传输方法及装置
EP3634056B1 (en) Signal transmission method, related apparatus and system
CN108292983A (zh) 业务传输的方法和装置
EP3410804B1 (en) User terminal, wireless base station, and wireless communication method
US20220053495A1 (en) Multicast Feedback Configuration Method and Apparatus
US20210204312A1 (en) Downlink control information transmission method and apparatus
EP3142438A1 (en) Method for inter-device communications, base station, and user equipment
WO2021109358A1 (en) System and method for sidelink configuration
WO2023030199A1 (zh) 资源指示方法及通信装置
EP4093131A1 (en) Prioritization method and device for plurality of collision resources
CN116326042A (zh) 用于资源确定的方法及装置
CN115211170A (zh) 用于侧链路配置的系统和方法
WO2018014297A1 (zh) 信息传输装置、方法以及无线通信系统
US20230084429A1 (en) PDSCH Transmission Method and Apparatus
WO2023151391A1 (zh) 波束训练方法及通信装置
US20230354387A1 (en) Resource allocation for feedback channels in sidelink communications
WO2023155586A1 (zh) 侧行链路信道接入方法及通信装置
WO2024067017A1 (zh) 一种通信方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863336

Country of ref document: EP

Kind code of ref document: A1