WO2023030031A1 - 车辆、能量转换装置及其充电方法 - Google Patents

车辆、能量转换装置及其充电方法 Download PDF

Info

Publication number
WO2023030031A1
WO2023030031A1 PCT/CN2022/113412 CN2022113412W WO2023030031A1 WO 2023030031 A1 WO2023030031 A1 WO 2023030031A1 CN 2022113412 W CN2022113412 W CN 2022113412W WO 2023030031 A1 WO2023030031 A1 WO 2023030031A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
switch
voltage
charging
external power
Prior art date
Application number
PCT/CN2022/113412
Other languages
English (en)
French (fr)
Inventor
李想想
李维诚
石雷
陈明文
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to BR112023026049A priority Critical patent/BR112023026049A2/pt
Priority to IL309596A priority patent/IL309596A/en
Priority to KR1020237041645A priority patent/KR20240004889A/ko
Priority to AU2022336368A priority patent/AU2022336368A1/en
Priority to EP22863170.1A priority patent/EP4333245A1/en
Publication of WO2023030031A1 publication Critical patent/WO2023030031A1/zh
Priority to US18/516,694 priority patent/US20240083275A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to the technical field of automobiles, in particular to a vehicle, an energy conversion device and a charging method thereof.
  • the present disclosure proposes a vehicle, an energy conversion device and a charging method thereof, in order to solve the problem that the charging piles in the prior art cannot meet the demand for DC fast charging of electric vehicles.
  • the first aspect of the present disclosure provides an energy conversion device, the energy conversion device includes an energy storage module, a transformer module, a first switch module, a second switch module and a control module, the energy storage module is connected to the transformer module , the transformer module is connected to the power battery and the first switch module through the second switch module, the first switch module is also connected to the energy storage module and the transformer module, and the control module is connected to The first switch module and the second switch module.
  • the voltage transformation module is further connected to a motor controller
  • the positive pole of the power battery is connected to the first end of the first switch module and the first end of the second switch module
  • the first The second end of the switch module is connected to the first end of the energy storage module and the low-voltage end of the transformation module
  • the second end of the second switch module is connected to the high-voltage end of the transformation module and the motor control
  • the first confluence terminal of the energy storage module, the second terminal of the energy storage module is connected to the negative pole of the power battery, the common terminal of the transformation module and the second confluence terminal of the motor controller, and the second terminal of the energy storage module
  • the first end and the second end are charging ports of the energy conversion device.
  • the motor controller is connected to the motor, and when the energy conversion device is in the driving mode, the power battery passes through the first switch module, the voltage transformation module, the energy storage module, the The motor controller supplies power to the motor; when the energy storage module is connected to an external power supply module and the energy conversion device is in boost charging mode, the external power supply module passes through the energy storage module, the transformer module, The second switch module charges the power battery.
  • the first switch module includes a switch K1, a switch K2, and a resistor R2; the first end of the resistor R2 is connected to the first end of the switch K1 and constitutes the first switch module of the first switch module. terminal, the second terminal of the resistor R2 is connected to the first terminal of the switch K2, and the second terminal of the switch K2 is connected to the second terminal of the switch K1 and constitutes the second terminal of the first switch module.
  • the transformation module includes a first inductor, a second inductor, a first power switch unit, a second power switch unit, a third power switch unit, and a fourth power switch unit, and the first inductor
  • the first end and the first end of the second inductance are commonly connected to form the low-voltage end of the transformation module, and the second end of the first inductance is connected to the second end of the first power switch unit and the The first end of the second power switch unit, the second end of the second inductor is connected to the second end of the third power switch unit and the first end of the fourth power switch unit, the first power switch
  • the first end of the unit and the first end of the third power switch unit are connected together to form the high-voltage end of the transformation module, and the second end of the second power switch unit and the fourth power switch unit
  • the second ends are connected together and constitute the common end of the transformer module.
  • the energy conversion device further includes a switch K3, a switch K4, a switch K5, and a third inductor L3, the first end of the switch K3 is connected to the negative pole of the power battery, and the second end of the switch K3 connected to the second terminal of the energy storage module, the first terminal of the switch K4 is connected to the first terminal of the external power module, and the second terminal of the switch K4 is connected to the first terminal of the third inductor L3 , the second end of the third inductor L3 is connected to the first end of the energy storage module, the first end of the switch K5 is connected to the second end of the external power module, and the second end of the switch K5 is connected to The second end of the energy storage module.
  • the second aspect of the present disclosure provides a charging method for an energy conversion device.
  • the charging method includes: when the energy conversion device is connected to an external power supply module and is in charging mode, acquiring the The maximum output voltage of the external power module; when the maximum output voltage of the external power module is not greater than the preset voltage, control the first switch module to turn off and the second switch module to turn on, so that the external power module passes through the The energy storage module, the voltage transformation module, and the second switch module boost and charge the power battery; when the maximum output voltage of the external power supply module is greater than a preset voltage, control the first switch module turning on and turning off the second switch module, so that the external power supply module performs DC charging on the power battery through the energy storage module and the first switch module.
  • obtaining the maximum output voltage of the external power supply module also includes: sending a target demand voltage value to the external power supply module, And control the conduction of the first switch module, so that the power battery precharges the energy storage module through the first switch module, so that the voltage value of the energy storage module is a preset voltage, and then controls the The voltage transformation module enables the energy storage module to discharge through the voltage transformation module, so that the voltage value of the energy storage module is the target required voltage value.
  • the obtaining the maximum output voltage of the external power module further includes: obtaining the target maximum output voltage of the external power module, continuously sending a constant current boost charging instruction to the external power module, detecting When the current output by the external power module is not a constant current or the actual maximum output voltage is less than the target maximum output voltage, it is determined that the target maximum output voltage is a false value, and the actual maximum output voltage is set as the maximum output voltage.
  • the continuously sending the constant current boost charging instruction to the external power module further includes: the external power module obtains the actual voltage value of the energy storage module, and determines the target required voltage value outputting current to the energy conversion device when the actual voltage value of the energy storage module meets a preset standard.
  • the step-up charging of the power battery by the external power supply module through the transformation module includes: obtaining the actual current value and the target current value output by the transformation module, and converting the actual The current value is compared with the target current value, and the voltage transformation module outputs the target current value to the power battery by outputting a PWM control signal to the power transformation module to charge the power battery.
  • the charging method further includes: when the energy conversion device is in the driving mode, controlling the first switch module to be turned on, and controlling the voltage transformation module to make the power battery pass through the second A switch module, the voltage transformation module, and the energy storage module boost and supply power to the motor controller pair.
  • a third aspect of the present disclosure provides a vehicle, and the vehicle further includes the energy conversion device described in the first aspect.
  • the vehicle, the energy conversion device and the charging method thereof provided by the present disclosure by setting the first switch module and the second switch module, and setting the second switch module between the power battery and the transformer module, when the first switch module is turned on
  • the power battery, the first switch module, the energy storage module and the external power supply module constitute the first charging circuit.
  • the second switch module is turned on, the power battery, the second switch module, the transformer module, the energy storage module and the external power supply
  • the module constitutes the second charging circuit.
  • the maximum output voltage of the external power module is not greater than the preset voltage, the second charging circuit is controlled to start working, so that the external power module can boost and charge the power battery through the transformer module.
  • the first charging circuit When the external power module When the maximum output voltage of the battery is greater than the preset voltage, the first charging circuit is controlled to start working, so that the external power supply module performs DC charging on the power battery through the first switch module.
  • the technical scheme of the present disclosure can realize the use of high-voltage power batteries to supply power to vehicles, which can reduce the current-carrying capacity requirements of cable connectors, thereby reducing the volume and quality of cable connectors.
  • the DC charging can be carried out through the first charging circuit, which improves the charging speed of the power battery. The problem that the platform DC charging pile is not enough to charge the power battery or cannot be charged.
  • Fig. 1 is a schematic structural diagram of an energy conversion device provided in Embodiment 1 of the present disclosure
  • Fig. 2 is a schematic structural diagram of a specific energy conversion device provided in Embodiment 1 of the present disclosure
  • Fig. 3 is a circuit diagram of an energy conversion device provided in Embodiment 1 of the present disclosure.
  • Fig. 4 is a flowchart of a charging method for an energy conversion device provided in Embodiment 2 of the present disclosure
  • Fig. 5 is a current path diagram for precharging an energy conversion device provided in Embodiment 2 of the present disclosure
  • Fig. 6 is a first current path diagram of an energy conversion device provided in Embodiment 2 of the present disclosure.
  • Fig. 7 is a second current path diagram of an energy conversion device provided in Embodiment 2 of the present disclosure.
  • Fig. 8 is a third current path diagram of an energy conversion device provided in Embodiment 2 of the present disclosure.
  • Fig. 9 is a fourth current path diagram of an energy conversion device provided in Embodiment 2 of the present disclosure.
  • Fig. 10 is a schematic structural diagram of a vehicle provided by a third embodiment of the present disclosure.
  • An embodiment of the present disclosure provides an energy conversion device. As shown in FIG. 103 is connected to the transformer module 104, the transformer module 104 is connected to the power battery 101 and the first switch module 102 through the second switch module 106, the first switch module 102 is also connected to the energy storage module 103 and the transformer module 104, and the control module 109 is respectively connected to The first switch module 102 and the second switch module 106 .
  • the energy storage module 103 is used to store the electric energy output by the power battery 101 , and the two ends of the energy storage module 103 can be connected with an external power supply module 107 , as shown in FIG. 2 .
  • the energy storage module 103 may include energy storage devices such as capacitors.
  • the voltage transformation module 104 may include an energy storage unit and a power switch unit.
  • the power switch unit in the voltage transformation module 104 is turned on or off according to the signal output by the control module 109, so that the energy storage unit is connected to different circuits for charging and charging. Discharge and then realize step-up or step-down.
  • the voltage transformation module 104 includes a low voltage terminal, a high voltage terminal and a common terminal. The low voltage terminal and the high voltage terminal of the voltage transformation module 104 are defined according to the size of the input voltage and the output voltage. After the low voltage terminal and the common terminal of the voltage transformation module 104 receive the input voltage After the input voltage is boosted, it is output from the high-voltage terminal and the common terminal of the transformer module 104. Common output.
  • the first switch module 102 is used to connect the power battery 101 to the energy storage module 103 and the external power module 107 .
  • the power battery 101, the first switch module 102, the energy storage module 103 and the external power supply module 107 form a first charging circuit, through which the external power supply module 107 charges the power battery 101 .
  • the second switch module 106 is used to connect the power battery 101 to the transformer module 104, the energy storage module 103 and the external power supply module.
  • the second switch module 106 When the second switch module 106 is turned on, the power battery 101, the second switch module 106, the transformer module 104, the energy storage module 103 and the external power module 107 form a second charging circuit, through which the external power module 107
  • the power battery 101 performs boost charging.
  • the external power module 107 may be an off-board charger, such as a charging pile.
  • the control module 109 can collect the voltage, current, and temperature of the power battery 101 and the phase current of the motor 108 , wherein the motor 108 is a three-phase AC motor.
  • the control module 109 may include a vehicle controller, a control circuit of the motor controller 105 and a BMS battery manager circuit, and the three are connected through a CAN line.
  • Different modules in the control module 109 control the first switch module 102 and the second switch module 106 to be turned on or off according to the acquired information, so as to realize the conduction of different charging circuits, and can also control the power switch in the transformer module 104 The turn-on and turn-off of different current loops is realized, and then the step-up or step-down of the input voltage is realized.
  • the transformer module 104 is also connected to the motor controller 105, and the positive pole of the power battery 101 is connected to the first terminal of the first switch module 102 and the first terminal of the second switch module 106.
  • the second terminal of a switch module 102 is connected to the first terminal of the energy storage module 103 and the low voltage terminal of the transformer module 104, and the second terminal of the second switch module 106 is connected to the high voltage terminal of the transformer module 104 and the first terminal of the motor controller 105.
  • a confluence terminal, the second terminal of the energy storage module 103 is connected to the negative pole of the power battery 101, the common terminal of the transformer module 104 and the second confluence terminal of the motor controller 105, the first terminal and the second terminal of the energy storage module 103 are Charging ports for energy conversion devices.
  • the preset voltage is the current voltage of the power battery 101, and the external power supply module 107 cannot directly charge the power battery 101.
  • the first switch module 102 is controlled to When the power is turned off and the second switch module 106 is turned on, the above-mentioned second charging circuit starts to work, so that the external power supply module 107 can boost and charge the power battery 101 through the transformer module 104 .
  • the external power module 107 can directly charge the power battery 101, control the first switch module 102 to turn on and the second switch module 106 to turn off, and the above-mentioned first charging circuit starts work, so that the external power supply module 107 performs DC charging on the power battery 101 through the first switch module 102 .
  • the high-voltage terminal and the common terminal of the transformer module 104 are also connected to the motor controller 105, and the motor controller 105 is connected to the motor 108.
  • the power battery 101 passes through the first The switch module 102, the transformer module 104, the energy storage module 103, and the motor controller 105 supply power to the motor 108; when the energy storage module 103 is connected to the external power supply module 107 and the energy conversion device is in the boost charging mode, the external power supply The energy module 103 , the voltage transformation module 104 , and the second switch module 106 charge the power battery 101 .
  • the energy storage module 103 and the voltage transformation module 104 are both used in the above-mentioned driving mode and boost charging mode, that is, by multiplexing the energy storage module 103 and the voltage transformation module 104 in different circuits, different functions are realized , improving the utilization rate of the modules in the circuit.
  • the external power module 107 can boost the power supply to the motor controller 105 and the motor 108 through the voltage transformation module 104, and the power battery 101 can also boost the power supply to the motor controller 105 and the motor 108 through the voltage transformation module 104.
  • the voltage transformation module 104 can boost the voltage of the battery pack with a wide voltage range or the battery pack of the low-voltage platform to the voltage required by the high-efficiency area of the motor controller 105 to ensure the power requirements of the vehicle.
  • the motor The controller 105 and the motor 108 can also supply voltage to the battery pack of the low-voltage platform through the voltage transformation module 104 .
  • the energy conversion device by setting the first switch module 102 and the second switch module 106, and setting the second switch module 106 between the power battery 101 and the transformer module 104, when the first switch module 102 When it is turned on, the power battery 101, the first switch module 102, the energy storage module 103 and the external power supply module 107 form a first charging circuit; when the second switch module 106 is turned on, the power battery 101, the second switch module 106, the transformer The voltage module 104, the energy storage module 103 and the external power module 107 constitute the second charging circuit.
  • the second charging circuit When the maximum output voltage of the external power module 107 is not greater than the preset voltage, the second charging circuit is controlled to start working, so that the external power module 107 The voltage module 104 boosts and charges the power battery 101.
  • the first charging circuit When the maximum output voltage of the external power module 107 is greater than the preset voltage, the first charging circuit is controlled to start working, so that the external power module 107 charges the power battery 101 through the first switch module 102. Perform DC charging.
  • the technical solution of the present disclosure can realize the use of high-voltage power battery 101 to supply power to the vehicle, which can reduce the current-carrying capacity requirements of the cable connector, thereby reducing the volume and quality of the cable connector.
  • the DC charging pile When connected to a high-voltage power supply platform for DC charging
  • the DC charging can be carried out through the first charging circuit, which improves the charging speed of the power battery 101.
  • the boost charging can be carried out through the second charging circuit, which solves the problem in the prior art.
  • the DC charging pile of the low-voltage power supply platform cannot fully charge the power battery 101 or cannot charge it.
  • the energy storage module 103 includes a capacitor C1 and a resistor R1, the first end of the capacitor C1 is connected to the first end of the resistor R1 to form the first end of the energy storage module 103, and the capacitor C1
  • the second terminal is connected to the second terminal of the resistor R1 to form the second terminal of the energy storage module 103 .
  • the first switch module 102 includes a switch K1, a switch K2, and a resistor R2; the first end of the resistor R2 is connected to the first end of the switch K1 and constitutes the first end of the first switch module 102, and the second end of the resistor R2 is connected to the switch K2.
  • the first terminal and the second terminal of the switch K2 are connected to the second terminal of the switch K1 and constitute the second terminal of the first switch module 102 .
  • the resistor R2 is set in series with the switch K2 and then connected to the capacitor C1.
  • the switch K2 is first turned on for pre-charging, so that the power battery 101 slowly charges the capacitor C1 through the resistor R2 to
  • the preset voltage for example, 80% of the preset voltage, avoids damage to the capacitor C1 caused by charging the capacitor C1 too fast.
  • the voltage transformation module 104 includes a first inductor L1, a second inductor L2, a first power switch unit Q1, a second power switch unit Q2, a third power switch unit Q3, and a fourth power switch unit Q4.
  • the first end of the first inductor L1 and the first end of the second inductor L2 are connected together to form the low voltage end of the transformer module 104, and the second end of the first inductor L1 is connected to the second end of the first power switch unit Q1 and the second end of the second inductor L2.
  • the first terminal of the power switch unit Q2, the second terminal of the second inductor L2 is connected to the second terminal of the third power switch unit Q3 and the first terminal of the fourth power switch unit Q4, and the first terminal of the first power switch unit Q1 It is connected with the first terminal of the third power switch unit Q3 and constitutes the high voltage terminal of the transformer module 104, and the second terminal of the second power switch unit Q2 is connected with the second terminal of the fourth power switch unit Q4 to form a transformer module 104.
  • the voltage transformation module 104 includes a first inductor L1, a second inductor L2, IGBT Q1, IGBT Q2, IGBT Q3, and IGBT Q4, and the first end of the first inductor L1 and the first end of the second inductor L2 are connected together and Constitute the low-voltage end of the transformer module 104, the second end of the first inductor L1 is connected to the emitter of IGBT Q1 and the collector of IGBT Q2, and the second end of the second inductor L2 is connected to the emitter of IGBT Q3 and the collector of IGBT Q4 , the collector of IGBT Q1 and the collector of IGBT Q2 are connected together and constitute the high voltage terminal of the transformer module 104, and the emitter of IGBT Q2 and the emitter of IGBT Q4 are connected together and constitute the common terminal of the transformer module 104.
  • a controllable switch and an inductor are set in the transformer module 104, and when the voltage is input from the low-voltage terminal and the common terminal of the transformer module 104, the IGBT Q2 and IGBT Q4 are controlled to be turned on and the IGBT Q1 and IGBT Q3 are turned off.
  • the external power module 107 charges the inductance, and when the IGBT Q2 and IGBT Q4 are controlled to be turned off and the IGBT Q1 and IGBT Q3 are turned on, the external power module 107 and the inductance are discharged to the power battery 101 through the diode, because there is a current in the inductance
  • the output realizes the boost charging of the power battery 101 by the external power module 107 .
  • the energy conversion device further includes a switch K3, a switch K4, a switch K5, and a third inductor L3.
  • the first end of the switch K3 is connected to the negative pole of the power battery 101, and the second end of the switch K3 is connected to the power storage module 103.
  • the second end, the first end of the switch K4 is connected to the first end of the external power module 107, the second end of the switch K4 is connected to the first end of the third inductance L3, and the second end of the third inductance L3 is connected to the energy storage module 103
  • the first end, the first end of the switch K5 is connected to the second end of the external power module 107 , and the second end of the switch K5 is connected to the second end of the energy storage module 103 .
  • the switch K3 by setting the switch K3, it is possible to control the output current of the power battery 101 or stop the output current. For example, when the output current of the power battery 101 fails, the control switch K3 is turned off, which can disconnect the power battery 101 from the circuit. , to protect the circuit safety.
  • the third inductance L3 is designed according to the working frequency of the transformer module 104 (for example, 20kHz), so that the current ripple can be controlled within ⁇ 1%.
  • switch K4 and switch K5 connection and disconnection with the external power supply module 107 can be realized.
  • the motor controller 105 includes a resistor R3, a capacitor C2, a fifth power switch unit Q5, a sixth power switch unit Q6, a seventh power switch unit Q7, an eighth power switch unit Q8, and a ninth power switch Q9
  • the control terminal of each power switch unit is connected to the control module 109
  • One end, the first end of the resistor R3, and the first end of the capacitor C2 are jointly connected as the first end of the motor controller 105
  • the second end of the tenth power switch unit Q10, the second end of the resistor R3, and the second end of the capacitor C2 are jointly connected as the second end of the motor controller 105, and the first phase coil of the three-phase AC motor is connected to the fifth power switch
  • control module 109 For the specific control method of the control module 109, please refer to the following embodiments:
  • Embodiment 2 of the present disclosure provides a charging method based on the energy conversion device provided in Embodiment 1.
  • the charging method provided in Embodiment 2 is used to enable an external power module to charge the power battery.
  • the charging method includes:
  • Step S101 When the energy conversion device is connected to the external power supply module and is in the charging mode, obtain the maximum output voltage of the external power supply module.
  • obtaining the maximum output voltage of the external power supply module in step S101 includes:
  • the external power supply module (DC charging pile) is connected with the energy conversion device, it sends an instruction to the DC charging pile to make the DC charging pile start charging with a small current constant current boost, and the DC charging pile is charged during the small current constant current charging process.
  • Actual voltage identification that is, receiving the output voltage of the DC charging pile in real time. When the voltage cannot be increased as required, it is judged that the output voltage of the DC charging pile is lower than the preset voltage value.
  • the charging current of the DC charging pile is switched to the maximum target charging current required by the control module to start charging; if the output voltage of the DC charging pile can be increased to the preset voltage value according to the required voltage, for example, it is greater than 550V and follows the voltage increase of the power battery, Execute step S103.
  • Step S102 When the maximum output voltage of the external power module is not greater than the preset voltage, control the first switch module to turn off and the second switch module to turn on, so that the external power module passes through the energy storage module, the transformer module and the second switch module Boost charging for the power battery.
  • step S102 enabling the external power module to boost and charge the power battery through the transformer module includes:
  • the control module exchanges information with the external power supply module, obtains the target current value according to the current charging capacity of the power battery, such as the charging power, and the target current value meets the specified standard of the output current of the power supply equipment, and sends the target current value to the external power supply module, so that the external power module outputs according to the target current value.
  • the external power supply module outputs current
  • the control module controls the power switch tube in the transformer module to turn on, the energy storage current of the inductor increases, and when the control module turns off the power switch tube, the freewheeling current of the inductor decreases.
  • the magnitude of the DC current is determined by the external power module voltage, power battery voltage and PWM wave duty cycle.
  • the external power supply module works in constant voltage mode, and the output voltage is controllable within a certain range.
  • the output voltage of the off-board charger can be set to the highest output value.
  • the charging current can be controlled by adjusting the duty cycle of the PWM. Meet the demand of the control module for the charging current of the power battery.
  • Step S103 When the maximum output voltage of the external power module is greater than the preset voltage, control the first switch module to turn on and the second switch module to turn off, so that the external power module can charge the power battery with DC through the first switch module.
  • Embodiment 2 of the present disclosure provides a charging method for an energy conversion device.
  • the external power module boosts and charges the power battery through the transformer module.
  • the external power module When the maximum output voltage of the battery is greater than the preset voltage, the external power module is used to charge the power battery with DC through the first switch module.
  • the technical scheme of the present disclosure can realize the use of high-voltage power batteries to supply power to vehicles, which can reduce the current-carrying capacity requirements of cable connectors, thereby reducing the volume and quality of cable connectors.
  • the charging speed of the power battery can be improved.
  • boost charging can be performed, which solves the problem of dissatisfaction with the charging of the power battery by the DC charging pile of the low-voltage power supply platform in the prior art. Or the problem of not being able to charge.
  • step S101 before step S101, it also includes:
  • the voltage module enables the energy storage module to discharge through the voltage transformation module, so that the voltage value of the energy storage module is a target required voltage value.
  • the control module sends the target demand voltage to the DC charging pile, and controls the first switch module to be turned on, and the power battery, the first switch module and the energy storage module form a loop, so that the power battery pre-charges the energy storage module through the first switch module. Charging, so that the voltage value of the energy storage module (capacitor on the low-voltage side of the transformer module) is the preset voltage. At this time, the conduction of the transformer module is also controlled to make the capacitors ( Module high-voltage side capacitor) forms a loop, so that the voltage value of the high-voltage side capacitor of the transformer module is the preset voltage.
  • the voltage on the low-voltage side capacitor of the transformer module is the same as the voltage on the high-voltage side capacitor of the transformer module.
  • the module charges the energy conversion device, its output voltage needs to be the same as the voltage on the capacitor on the low-voltage side of the transformer module.
  • the voltage on the capacitor on the low-voltage side of the transformer module increases, and it is necessary to step down and discharge. Control the transformer module to make The energy storage module discharges through the voltage transformation module, so that the voltage value of the energy storage module is a target demand voltage value.
  • the power battery when the energy conversion device is connected to an external power supply module to charge the power battery, the power battery first charges the capacitor on the low-voltage side of the transformer module and the capacitor on the high-voltage side of the transformer module, so that the voltage of the capacitor on the high-voltage side of the transformer module is the preset value.
  • the voltage setting is to avoid the impact on the rear-stage circuit of the transformer module when the external power module charges the power battery, so as to realize the charging safety, and, by setting the transformer module, the low-voltage side capacitor of the transformer module can be stepped down through the transformer module , so that the capacitor voltage at the low-voltage side of the transformer module is the same as the output voltage of the external power module, which meets the condition of the output current of the external power module.
  • the step "obtaining the maximum output voltage of the external power module” further includes:
  • the target maximum output voltage of the external power module continuously send constant current boost charging commands to the external power module, and determine the target maximum output voltage when the current output by the external power module is not a constant current or the actual maximum output voltage is lower than the target maximum output voltage If it is a false value, set the actual maximum output voltage as the maximum output voltage.
  • the pile can also be charged, optimizing the vehicle during the charging process
  • the control module sends an instruction to the DC charging pile to start charging with a small current constant current boost, and to identify the real voltage of the DC charging pile during the small current constant current charging process, that is, to receive the output voltage of the DC charging pile in real time , when the voltage cannot be increased according to the demand, it is judged that the target maximum output voltage is a false value, and the actual maximum output voltage is set as the maximum output voltage.
  • the energy conversion device is controlled to increase the output voltage of the DC charging pile. Voltage, which solves the problem that the power battery is not fully charged due to the false voltage sent by the DC charging pile.
  • the step of continuously sending the constant current boost charge instruction to the external power module further includes:
  • the external power supply module obtains the actual voltage value of the energy storage module, and outputs current to the energy conversion device when it determines that the target demand voltage value and the actual voltage value of the energy storage module meet a preset standard.
  • the external power module detects that the error range between the battery voltage of the vehicle and the battery voltage of the communication message is ⁇ 5% according to the national standard, and the external power module can output current only when this standard is met.
  • the external power supply module judges whether the charging condition in the preset standard is met according to the target demand voltage value sent by the control module and the actual voltage of the energy storage module, and outputs current to the transformer module when the preset standard is met, so that the power battery
  • the charging control is simpler, which ensures the safety of charging the vehicle.
  • the charging method also includes:
  • the first switch module When the energy conversion device is in the driving mode, the first switch module is controlled to be turned on, and the transformer module is controlled to make the power battery boost and supply power to the motor controller pair through the first switch module, the transformer module and the energy storage module.
  • the voltage of the power battery when the vehicle is running, the voltage of the power battery may be relatively low.
  • the voltage circuit is used to boost the output voltage of the power battery and ensure the normal operation of the vehicle.
  • the charging method of the energy conversion device provided in the second embodiment is described in detail below:
  • the DC charging pile reports the real voltage output range of the internal power module to the vehicle, and the DC charging pile In the parameter matching stage with the electric vehicle, the vehicle will receive the maximum voltage output range sent by the DC charging pile:
  • the vehicle receives the maximum output voltage range of the DC charging pile and the voltage is not greater than 550V, start the transformer module for DC charging. If the vehicle is in the OFF position when the gun is inserted, pre-charge first, close the switch K3, and then close the switch K2.
  • the switch K6 is turned off, and the switch K2 is turned off at the same time.
  • the control module sends the target demand voltage to the DC charging pile, controls the transformer module to make the power battery step down and charge the energy storage module to the preset voltage, and closes the switches K4 and K5 after the control module detects that the DC charging pile reaches the voltage required by the message.
  • the charging permission is sent to the DC charging pile and the transformer module, and the charging method is constant current charging.
  • the DC charging pile closes its own charging contactor and starts charging when its own state meets the charging demand.
  • the main switch K1 of the whole vehicle When the gun is connected to the vehicle and it is in the OK gear, when starting the DC charging, the main switch K1 of the whole vehicle must be disconnected first, and the charging process of the vehicle in the OFF gear should be restarted.
  • the transformer module when the maximum voltage of the DC charging pile is not greater than the maximum voltage limit of the vehicle battery pack, the transformer module is started to work.
  • the working state of the transformer module includes boost mode and buck mode, and its work control energy flow is shown in Figure 5.
  • the power battery 101 precharges the capacitor C1 and the capacitor C2: the power battery 101, the switch K1, and the capacitor C1 form a first discharge loop, and the power battery 101, the inductor L1, the inductor L2, IGBT Q1, IGBT Q3, and capacitor C2 form a second discharge circuit, so that the voltages on capacitor C1 and capacitor C2 are equal.
  • FIG. 8 the power battery 101 precharges the capacitor C1 and the capacitor C2: the power battery 101, the switch K1, and the capacitor C1 form a first discharge loop, and the power battery 101, the inductor L1, the inductor L2, IGBT Q1, IGBT Q3, and capacitor C2 form a second discharge circuit, so that the voltages on capacitor C1 and capacitor C2 are equal
  • the IGBT Q2 and IGBT Q4 are controlled to be turned on, so that the capacitor C1 discharges the inductor L1 and the inductor L2 to a preset voltage, so that the voltage on the capacitor C1 is the same as the output voltage of the external power module 107, and then the The external power module 107 outputs current.
  • the transformer module 104 works in the boost mode: the external power module 107, the switch K4, the inductor L3, the inductor L1, the inductor L2, the IGBT Q2, and the IGBT Q4 form a first charging circuit, as shown in Figure 8,
  • the external power module 107, switch K4, inductor L3, inductor L1, inductor L2, IGBT Q1, IGBT Q2, switch K6, power battery 101, and switch K3 form a second charging loop, and control the first charging loop and the second charging loop to work alternately
  • the boost charging of the power battery 101 is realized.
  • the DC charging process is executed: if the vehicle is in the OFF position when the gun is inserted, pre-charging is performed, and the switch K3 is closed first, and then the switch K2 is closed.
  • the control module judges the pre-charging When the voltage meets the pre-charging completion conditions, close the switch K1 and open the switch K2; the control module detects that the vehicle meets the charging conditions and closes the switches K4 and K5, and at the same time sends charging permission and constant current charging mode to the DC charging pile; the DC charging pile according to its own state When the charging demand is met, close the self-charging contactor and start charging; if the vehicle is in the OK gear when the gun is connected to the vehicle, the control module will directly send the target charging voltage and constant current charging command to the DC charging pile to start the charging process.
  • the transformer module works in the DC charging mode: the external power module 107 , the capacitor C1 , the switch K1 , and the power battery 101 form a DC charging circuit to directly charge the power battery 101 .
  • the DC charging pile and the transformer module will control the target voltage required by the control module before the DC charging pile closes the charging contactor: the DC charging pile outputs the required target voltage and the voltage transformer module will measure the voltage within the error
  • the control module sends an instruction to the DC charging pile to start charging with a small current constant current boost.
  • the real voltage of the DC charging pile is recognized. That is to receive the output voltage of the DC charging pile in real time.
  • the vehicle 200 further includes the energy conversion device 100 provided in the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种车辆具有能量转换装置。该能量转换装置设置有一开关模块和第二开关模块,并将第二开关模块设置在动力电池与变压模块之间,当第一开关模块导通时,动力电池、第一开关模块、储能模块以及外部电源模块构成第一充电回路,当第二开关模块导通时,动力电池、第二开关模块、变压模块、储能模块以及外部电源模块构成第二充电回路。

Description

车辆、能量转换装置及其充电方法
相关申请的交叉引用
本公开要求于2021年08月30日提交的申请号为202111007075.9、名称为“车辆、能量转换装置及其充电方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及汽车技术领域,尤其涉及一种车辆、能量转换装置及其充电方法。
背景技术
目前,能源危机和环境污染问题日趋严重,电动汽车作为新型的交通工具,电动汽车充电技术需求变得日益突出,特别是走高压路线的电动汽车,相关技术中,电池电压通常会达到700V,而普通500V输出的充电桩显然不能满足电动汽车直流快充的需求。
发明内容
本公开提出一种车辆、能量转换装置及其充电方法,以解决现有技术中存在的充电桩不能满足电动汽车直流快充需求的问题。
本公开第一方面提供一种能量转换装置,所述能量转换装置包括储能模块、变压模块、第一开关模块、第二开关模块以及控制模块,所述储能模块连接所述变压模块,所述变压模块通过所述第二开关模块连接动力电池和所述第一开关模块,所述第一开关模块还连接所述储能模块和所述变压模块,所述控制模块分别连接所述第一开关模块和所述第二开关模块。
在一个实施例中,所述变压模块还连接电机控制器,所述动力电池的正极连接所述第一开关模块的第一端和所述第二开关模块的第一端,所述第一开关模块的第二端连接所述储能模块的第一端和所述变压模块的低压端,所述第二开关模块的第二端连接所述变压模块的高压端和所述电机控制器的第一汇流端,所述储能模块的第二端连接所述动力电池的负极、所述变压模块的公共端和所述电机控制器的第二汇流端,所述储能模块的第一端和第二端为所述能量转换装置的充电端口。
在一个实施例中,所述电机控制器连接电机,所述能量转换装置处于行车模式时,所述动力电池通过所述第一开关模块、所述变压模块、所述储能模块、所述电机控制器对所述电机进行供电;所述储能模块连接外部电源模块并且所述能量转换装置处于升压充电模 式时,所述外部电源模块通过所述储能模块、所述变压模块、所述第二开关模块对所述动力电池进行充电。
在一个实施例中,所述第一开关模块包括开关K1、开关K2以及电阻R2;所述电阻R2的第一端连接所述开关K1的第一端并构成所述第一开关模块的第一端,所述电阻R2的第二端连接所述开关K2的第一端,所述开关K2的第二端连接所述开关K1的第二端并构成所述第一开关模块的第二端。
在一个实施例中,所述变压模块包括第一电感、第二电感、第一功率开关单元、第二功率开关单元、第三功率开关单元以及第四功率开关单元,所述第一电感的第一端和所述第二电感的第一端共接并构成所述变压模块的低压端,所述第一电感的第二端连接所述第一功率开关单元的第二端和所述第二功率开关单元的第一端,所述第二电感的第二端连接所述第三功率开关单元的第二端和所述第四功率开关单元的第一端,所述第一功率开关单元的第一端和所述第三功率开关单元的第一端共接并构成所述变压模块的高压端,所述第二功率开关单元的第二端和所述第四功率开关单元的第二端共接并构成所述变压模块的公共端。
在一个实施例中,所述能量转换装置还包括开关K3、开关K4、开关K5以及第三电感L3,所述开关K3的第一端连接所述动力电池的负极,所述开关K3的第二端连接所述储能模块的第二端,所述开关K4的第一端连接所述外部电源模块的第一端,所述开关K4的第二端连接所述第三电感L3的第一端,所述第三电感L3的第二端连接所述储能模块的第一端,所述开关K5的第一端连接所述外部电源模块的第二端,所述开关K5的第二端连接所述储能模块的第二端。
本公开第二方面提供一种能量转换装置的充电方法,基于第一方面所述的能量转换装置,所述充电方法包括:当所述能量转换装置连通外部电源模块处于充电模式时,获取所述外部电源模块的最大输出电压;当所述外部电源模块的最大输出电压不大于预设电压时,控制所述第一开关模块关断以及所述第二开关模块导通,使外部电源模块通过所述储能模块、所述变压模块以及所述第二开关模块对所述动力电池进行升压充电;当所述外部电源模块的最大输出电压大于预设电压时,控制所述第一开关模块导通以及所述第二开关模块关断,使外部电源模块通过所述储能模块以及所述第一开关模块对所述动力电池进行直流充电。
在一个实施例中,所述当所述能量转换装置连通外部电源模块处于充电模式时,获取所述外部电源模块的最大输出电压,之前还包括:向所述外部电源模块发送目标需求电压 值,并控制所述第一开关模块导通,使所述动力电池通过所述第一开关模块对所述储能模块进行预充电,使所述储能模块的电压值为预设电压,再控制所述变压模块使所述储能模块通过所述变压模块进行放电,使所述储能模块的电压值为所述目标需求电压值。
在一个实施例中,所述获取所述外部电源模块的最大输出电压,还包括:获取所述外部电源模块的目标最大输出电压,向所述外部电源模块持续发送恒流升压充电指令,检测所述外部电源模块输出的电流不是恒流或者实际最大输出电压小于所述目标最大输出电压时,判定所述目标最大输出电压为虚假值,将所述实际最大输出电压设定为最大输出电压。
在一个实施例中,所述向所述外部电源模块持续发送恒流升压充电指令,还包括:所述外部电源模块获取所述储能模块的实际电压值,并判定所述目标需求电压值和所述储能模块的实际电压值符合预设标准时向所述能量转换装置输出电流。
在一个实施例中,所述使外部电源模块通过所述变压模块对所述动力电池进行升压充电,包括:获取所述变压模块输出的实际电流值和目标电流值,将所述实际电流值与所述目标电流值进行对比,通过向所述变压模块输出PWM控制信号使所述变压模块向所述动力电池输出目标电流值以对动力电池进行充电。
在一个实施例中,所述充电方法还包括:当所述能量转换装置处于行车模式时,控制所述第一开关模块导通,并控制所述变压模块使所述动力电池通过所述第一开关模块、所述变压模块、所述储能模块对所述电机控制器对进行升压供电。
本公开第三方面提供一种车辆,所述车辆还包括第一方面所述的能量转换装置。
本公开提供的车辆、能量转换装置及其充电方法,通过设置第一开关模块和第二开关模块,并将第二开关模块设置在动力电池与变压模块之间,当第一开关模块导通时,动力电池、第一开关模块、储能模块以及外部电源模块构成第一充电回路,当第二开关模块导通时,动力电池、第二开关模块、变压模块、储能模块以及外部电源模块构成第二充电回路,当外部电源模块的最大输出电压不大于预设电压时,控制第二充电回路开始工作,使外部电源模块通过变压模块对动力电池进行升压充电,当外部电源模块的最大输出电压大于预设电压时,控制第一充电回路开始工作,使外部电源模块通过所述第一开关模块对动力电池进行直流充电。本公开技术方案可以实现使用高电压的动力电池对车辆进行供电,可以降低线缆接插件的载流能力需求,进而降低了线缆接插件的体积和质量,当连通高电压供电平台直流充电桩时,可以通过第一充电回路进行直流充电,提升了动力电池的充电速度,当连通低电压供电平台直流充电桩时,可以通过第二充电回路进行升压充电,解决 了相关技术中低电压供电平台直流充电桩对动力电池充电充不满或是不能充电的问题。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本公开的实施例,并且连同其说明一起用于解释本公开实施例的原理。
图1是本公开一种实施例一提供的一种能量转换装置的结构示意图;
图2是本公开一种实施例一提供的一种具体的能量转换装置的结构示意图;
图3是本公开一种实施例一提供的一种能量转换装置的电路图;
图4是本公开一种实施例二提供的一种能量转换装置的充电方法流程图;
图5是本公开一种实施例二提供的一种能量转换装置进行预充的电流路径图;
图6是本公开一种实施例二提供的一种能量转换装置的第一电流路径图;
图7是本公开一种实施例二提供的一种能量转换装置的第二电流路径图;
图8是本公开一种实施例二提供的一种能量转换装置的第三电流路径图;
图9是本公开一种实施例二提供的一种能量转换装置的第四电流路径图;
图10是本公开一种实施例三提供的车辆的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例提出的车辆、能量转换装置及其充电方法。
本公开实施例提供一种能量转换装置,如图1所示,能量转换装置包括储能模块103、变压模块104、第一开关模块102、第二开关模块106以及控制模块109,储能模块103连接变压模块104,变压模块104通过第二开关模块106连接动力电池101和第一开关模块102,第一开关模块102还连接储能模块103和变压模块104,控制模块109分别连接第一开关模块102和第二开关模块106。
其中,储能模块103用于存储动力电池101输出的电能,储能模块103的两端可以连接外部电源模块107,如图2所示。当动力电池101完成对储能模块103的充电时,储能 模块103上的电压与外部电源模块107的电压相同或相近,使外部电源模块107可以正常输出电压。可选地,储能模块103可以包括电容等储能器件。
变压模块104可以包括储能单元以及功率开关单元,变压模块104中的功率开关单元根据控制模块109输出的信号进行导通或者关断,使储能单元接入不同的回路中进行充电和放电进而实现升压或者降压。变压模块104包括低压端、高压端以及公共端,变压模块104的低压端和高压端是根据输入电压和输出电压的大小定义的,变压模块104的低压端和公共端接收输入电压后对输入电压进行升压后从变压模块104的高压端和公共端输出,变压模块104的高压端和公共端接收输入电压后对输入电压进行降压后从变压模块104的低压端和公共端输出。
第一开关模块102用于使动力电池101连接储能模块103和外部电源模块107。当第一开关模块102导通时,动力电池101、第一开关模块102、储能模块103以及外部电源模块107构成第一充电回路,通过该充电回路,外部电源模块107对动力电池101进行充电。
第二开关模块106用于使动力电池101连接变压模块104、储能模块103和外部电源模块。当第二开关模块106导通时,动力电池101、第二开关模块106、变压模块104、储能模块103以及外部电源模块107构成第二充电回路,通过该充电回路,外部电源模块107对动力电池101进行升压充电。外部电源模块107可以是非车载充电机,例如充电桩等。
参见图2,控制模块109可以采集动力电池101的电压、电流、温度以及电机108的相电流,其中,电机108为三相交流电机。控制模块109可以包括整车控制器、电机控制器105的控制电路和BMS电池管理器电路,三者通过CAN线连接。控制模块109中的不同模块根据所获取的信息控制第一开关模块102和第二开关模块106的导通或者关断,实现不同的充电回路导通,并且还可以控制变压模块104中功率开关的导通和关断以实现不同电流回路的导通,进而实现对输入电压的升压或者降压。
作为一种实施方式,如图3所示,变压模块104还连接电机控制器105,动力电池101的正极连接第一开关模块102的第一端和第二开关模块106的第一端,第一开关模块102的第二端连接储能模块103的第一端和变压模块104的低压端,第二开关模块106的第二端连接变压模块104的高压端和电机控制器105的第一汇流端,储能模块103的第二端连接动力电池101的负极、变压模块104的公共端和电机控制器105的第二汇流端,储能模块103的第一端和第二端为能量转换装置的充电端口。
其中,当外部电源模块107的最大输出电压不大于预设电压时,预设电压为动力电池 101当前的电压,外部电源模块107无法对动力电池101直接充电,此时,控制第一开关模块102关断以及第二开关模块106导通,上述第二充电回路开始工作,使外部电源模块107通过变压模块104对动力电池101进行升压充电。当外部电源模块107的最大输出电压大于预设电压时,外部电源模块107可以对动力电池101直接充电,控制第一开关模块102导通以及第二开关模块106关断,上述第一充电回路开始工作,使外部电源模块107通过第一开关模块102对动力电池101进行直流充电。
需要说明的是,如图2所示,变压模块104的高压端和公共端还连接电机控制器105,电机控制器105连接电机108,能量转换装置处于行车模式时,动力电池101通过第一开关模块102、变压模块104、储能模块103、电机控制器105对电机108进行供电;储能模块103连接外部电源模块107并且能量转换装置处于升压充电模式时,外部电源模块107通过储能模块103、变压模块104、第二开关模块106对动力电池101进行充电。可以看出,在上述行车模式和升压充电模式中,均使用了储能模块103和变压模块104,即通过在不同电路中复用储能模块103和变压模块104,实现不同的功能,提升了电路中模块的利用率。外部电源模块107通过变压模块104可以对电机控制器105和电机108进行升压供电,动力电池101也可以通过变压模块104对电机控制器105和电机108进行升压供电,在车辆行驶时变压模块104可以将宽电压范围的电池包或是低电压平台电池包电压升压至电机控制器105高效区需求电压,保证车辆动力性需求,当向低电压平台电池包馈电时,电机控制器105和电机108也可以通过变压模块104对低电压平台电池包进行降压供电。
本公开提供的一种能量转换装置,通过设置第一开关模块102和第二开关模块106,并将第二开关模块106设置在动力电池101与变压模块104之间,当第一开关模块102导通时,动力电池101、第一开关模块102、储能模块103以及外部电源模块107构成第一充电回路,当第二开关模块106导通时,动力电池101、第二开关模块106、变压模块104、储能模块103以及外部电源模块107构成第二充电回路,当外部电源模块107的最大输出电压不大于预设电压时,控制第二充电回路开始工作,使外部电源模块107通过变压模块104对动力电池101进行升压充电,当外部电源模块107的最大输出电压大于预设电压时,控制第一充电回路开始工作,使外部电源模块107通过第一开关模块102对动力电池101进行直流充电。本公开技术方案可以实现使用高电压的动力电池101对车辆进行供电,可以降低线缆接插件的载流能力需求,进而降低了线缆接插件的体积和质量,当连通高电压供电平台直流充电桩时,可以通过第一充电回路进行直流充电,提升了动力电池101的充电速度,当连通低电压供电平台直流充电桩时,可以通过第二充电回路进行升压充电,解 决了现有技术中低电压供电平台直流充电桩对动力电池101充电充不满或是不能充电的问题。
作为一种实施方式,如图3所示,储能模块103包括电容C1和电阻R1,电容C1的第一端和电阻R1的第一端连接构成储能模块103的第一端,电容C1的第二端和电阻R1的第二端连接构成储能模块103的第二端。第一开关模块102包括开关K1、开关K2以及电阻R2;电阻R2的第一端连接开关K1的第一端并构成第一开关模块102的第一端,电阻R2的第二端连接开关K2的第一端,开关K2的第二端连接开关K1的第二端并构成第一开关模块102的第二端。
本实施方式中设置电阻R2与开关K2串联后与电容C1连接,在动力电池101对电容C1进行充电时,首先接通开关K2进行预充电,使动力电池101通过电阻R2给电容C1缓慢充电到预设电压,例如,预设电压的80%,避免对电容C1充电过快导致电容C1的损坏。
作为一种实施方式,变压模块104包括第一电感L1、第二电感L2、第一功率开关单元Q1、第二功率开关单元Q2、第三功率开关单元Q3以及第四功率开关单元Q4,第一电感L1的第一端和第二电感L2的第一端共接并构成变压模块104的低压端,第一电感L1的第二端连接第一功率开关单元Q1的第二端和第二功率开关单元Q2的第一端,第二电感L2的第二端连接第三功率开关单元Q3的第二端和第四功率开关单元Q4的第一端,第一功率开关单元Q1的第一端和第三功率开关单元Q3的第一端共接并构成变压模块104的高压端,第二功率开关单元Q2的第二端和第四功率开关单元Q4的第二端共接并构成变压模块104的公共端。具体的,变压模块104包括第一电感L1、第二电感L2、IGBT Q1、IGBT Q2、IGBT Q3以及IGBT Q4,第一电感L1的第一端和第二电感L2的第一端共接并构成变压模块104的低压端,第一电感L1的第二端连接IGBT Q1的发射极和IGBT Q2的集电极,第二电感L2的第二端连接IGBT Q3的发射极和IGBT Q4的集电极,IGBT Q1的集电极和IGBT Q2的集电极共接并构成变压模块104的高压端,IGBT Q2的发射极和IGBT Q4的发射极共接并构成变压模块104的公共端。
本实施方式中在变压模块104中设置可控开关和电感,当从变压模块104的低压端和公共端输入电压时,控制IGBT Q2和IGBT Q4导通以及IGBT Q1和IGBT Q3关断时,使外部电源模块107对电感进行充电,控制IGBT Q2和IGBT Q4关断以及IGBT Q1和IGBT Q3导通时,使外部电源模块107和电感通过二极管向动力电池101进行放电,由于电感中有电流输出,实现了外部电源模块107对动力电池101的升压充电。
作为一种实施方式,能量转换装置还包括开关K3、开关K4、开关K5以及第三电感L3, 开关K3的第一端连接动力电池101的负极,开关K3的第二端连接储能模块103的第二端,开关K4的第一端连接外部电源模块107的第一端,开关K4的第二端连接第三电感L3的第一端,第三电感L3的第二端连接储能模块103的第一端,开关K5的第一端连接外部电源模块107的第二端,开关K5的第二端连接储能模块103的第二端。
本实施方式中,通过设置开关K3,可以实现控制动力电池101输出电流或者停止输出电流,例如,动力电池101在输出电流出现故障时,控制开关K3断开,可以使动力电池101与电路断开,保护了电路安全。通过设置第三电感L3,第三电感L3按变压模块104工作频率(例如20kHz)设计,可以使电流纹波控制在±1%以内。通过设置开关K4和开关K5,可以实现与外部电源模块107的连通和断开。
对于电机控制器105,电机控制器105包括电阻R3、电容C2、第五功率开关单元Q5、第六功率开关单元Q6、第七功率开关单元Q7、第八功率开关单元Q8、第九功率开关Q9以及第十功率开关Q10,每个功率开关单元的控制端连接控制模块109,第五功率开关单元Q5的第一端、第七功率开关单元Q7的第一端、第九功率开关单元Q9的第一端、电阻R3的第一端、电容C2的第一端共接为电机控制器105的第一端,第六功率开关单元Q6的第二端、第八功率开关单元Q8的第二端、第十功率开关单元Q10的第二端、电阻R3的第二端、电容C2的第二端共接为电机控制器105的第二端,三相交流电机的第一相线圈连接第五功率开关单元Q5的第二端和第六功率开关单元Q6的第一端,三相交流电机的第二相线圈连接第七功率开关单元Q7的第二端和第八功率开关单元Q8的第一端,三相交流电机的第三相线圈连接第九功率开关单元Q9的第二端和第十功率开关单元Q10的第一端。
其中控制模块109的具体控制方法请参照以下实施例:
本公开实施例二提供一种基于实施例一提供的能量转换装置的充电方法,实施例二提供的充电方法用于使外部电源模块对动力电池进行充电,如图4所示,充电方法包括:
步骤S101.当能量转换装置连通外部电源模块处于充电模式时,获取外部电源模块的最大输出电压。
其中,步骤S101中的获取外部电源模块的最大输出电压,包括:
向外部电源模块发送恒流升压充电指令,直至外部电源模块输出的电压为最大输出电压。
其中,外部电源模块(直流充电桩)与能量转换装置连通后,向直流充电桩发送指令使直流充电桩开始以小电流恒流升压充电,在小电流恒流充电过程中对直流充电桩进行实际电压识别,即实时接收直流充电桩的输出电压,当电压不能按需求升高时,判断直流充 电桩的输出电压小于预设电压值,例如判定充电桩为不大于550V桩,执行步骤S102,直流充电桩的充电电流切换成控制模块要求的最大目标充电电流开启充电;若直流充电桩输出电压能够按需求电压升高至预设电压值,例如大于550V且跟随至动力电池的电压升高,执行步骤S103。
步骤S102.当外部电源模块的最大输出电压不大于预设电压时,控制第一开关模块关断以及第二开关模块导通,使外部电源模块通过储能模块、变压模块以及第二开关模块对动力电池进行升压充电。
其中,步骤S102中的使外部电源模块通过变压模块对动力电池进行升压充电,包括:
获取变压模块输出的实际电流值,将实际电流值与目标电流值进行对比,通过向变压模块输出PWM控制信号使变压模块向动力电池输出目标电流值以对动力电池进行充电。
其中,控制模块与外部电源模块进行信息交互,根据动力电池的当前充电能力,例如充电功率获取目标电流值,该目标电流值满足供电设备输出电流的规定标准,并将目标电流值发送给外部电源模块,使外部电源模块根据目标电流值进行输出。当外部电源模块输出电流时,控制模块控制变压模块中的功率开关管开通时,电感储能电流增加,控制功率开关管关断时,电感续流电流降低,通过给功率开关管施加PWM波,反复的开通和关断就会在电感中形成直流电流,该直流电流的大小由外部电源模块电压、动力电池电压和PWM波的占空比共同决定。外部电源模块工作在恒压模式下,输出电压在一定范围内可控,可将非车载充电机输出电压设为其输出的最高值,最后通过调节PWM的占空比来控制充电电流的大小,满足控制模块对动力电池充电电流的需求。
步骤S103.当外部电源模块的最大输出电压大于预设电压时,控制第一开关模块导通以及第二开关模块关断,使外部电源模块通过第一开关模块对动力电池进行直流充电。
其中,本步骤中外部电源模块的最大输出电压大于预设电压时,通过外部电源模块直接对动力电池进行充电,提高了动力电池的充电速度。
本公开实施例二提供一种能量转换装置的充电方法,当外部电源模块的最大输出电压不大于预设电压时,使外部电源模块通过变压模块对动力电池进行升压充电,当外部电源模块的最大输出电压大于预设电压时,使外部电源模块通过第一开关模块对动力电池进行直流充电。本公开技术方案可以实现使用高电压的动力电池对车辆进行供电,可以降低线缆接插件的载流能力需求,进而降低了线缆接插件的体积和质量,当连通高电压供电平台直流充电桩时,可以通过直流充电提升了动力电池的充电速度,当连通低电压供电平台直流充电桩时,可以进行升压充电,解决了现有技术中低电压供电平台直流充电桩对动力电 池充电充不满或是不能充电的问题。
在一些实施例中,步骤S101之前还包括:
向外部电源模块发送目标需求电压值,并控制第一开关模块导通,使动力电池通过第一开关模块对储能模块进行预充电,使储能模块的电压值为预设电压,再控制变压模块使储能模块通过变压模块进行放电,使储能模块的电压值为目标需求电压值。
其中,控制模块给直流充电桩发目标需求电压,并控制第一开关模块导通,动力电池、第一开关模块以及储能模块形成回路,使动力电池通过第一开关模块对储能模块进行预充电,使储能模块(变压模块低压侧电容)的电压值为预设电压,此时,还控制变压模块导通,使动力电池、变压模块以及电机控制器中的电容(变压模块高压侧电容)形成回路,使变压模块高压侧电容的电压值为预设电压,此时,变压模块低压侧电容上的电压和变压模块高压侧电容上的电压相同,由于外部电源模块对能量转换装置充电时,其输出电压需要与变压模块低压侧电容上的电压相同,而此时变压模块低压侧电容上的电压加大,需要进行降压放电,控制变压模块使储能模块通过变压模块进行放电,使储能模块的电压值为目标需求电压值。
本实施方式在能量转换装置连接外部电源模块对动力电池进行充电时,先使动力电池对变压模块低压侧电容和变压模块高压侧电容进行充电,使变压模块高压侧电容的电压为预设电压是避免外部电源模块对动力电池进行充电时对变压模块后级电路产生冲击,实现了充电安全,并且,通过设置变压模块,使变压模块低压侧电容通过变压模块进行降压,进而使变压模块低压侧电容电压与外部电源模块输出电压相同,达到了外部电源模块输出电流的条件。
在一些实施例中,步骤“获取外部电源模块的最大输出电压”,还包括:
获取外部电源模块的目标最大输出电压,向外部电源模块持续发送恒流升压充电指令,检测外部电源模块输出的电流不是恒流或者实际最大输出电压小于目标最大输出电压时,判定目标最大输出电压为虚假值,将实际最大输出电压设定为最大输出电压。
其中,实际市场上的外部电源模块(直流充电桩)为了能尽可能的满足电动汽车充电需求,早期安装直流充电桩很多是使用低电压平台电源模块(最高电压500V),运营商通过更改直流充电桩控制板程序,直流充电与控制模块信息交互时,直流充电桩对控制模块发送虚假最大电压为高电压平台(最高750~1000V),为了兼容这种情况桩也可充电,优化充电流程中车辆识别桩电压平台的逻辑,控制模块发指令给直流充电桩开始时以小电流恒流升压充电,在小电流恒流充电过程中做直流充电桩真实电压识别,即实时接收直流充 电桩输出电压,当电压不能升高按需求升高时,判断目标最大输出电压为虚假值,将实际最大输出电压设定为最大输出电压,此时,控制能量转换装置进行对直流充电桩输出的电压进行升压,解决了直流充电桩发送虚假电压导致动力电池充电充不满的问题。
在一些实施例中,步骤向外部电源模块持续发送恒流升压充电指令,还包括:
外部电源模块获取储能模块的实际电压值,并判定目标需求电压值和所述储能模块的实际电压值符合预设标准时向所述能量转换装置输出电流。
其中,检测采样储能模块的实际电压值和目标需求电压值之间的误差在-5%至5%范围内时判定符合预设标准。
其中,外部电源模块根据国标标准中外部电源模块检测到车辆端电池电压与通信报文电池电压误差范围≤±5%,当满足该标准时外部电源模块才能输出电流。
本实施方式中外部电源模块根据控制模块发送的目标需求电压值和储能模块的实际电压判定是否满足预设标准中的充电条件,当满足预设标准时向变压模块输出电流,使对动力电池充电的控制更加简单,保证了对车辆进行充电的安全性。
在一些实施例中,充电方法还包括:
当能量转换装置处于行车模式时,控制第一开关模块导通,并控制变压模块使动力电池通过第一开关模块、变压模块、储能模块对电机控制器对进行升压供电。
其中,车辆处于运行过程中时,动力电池的电压可能较低,此时,控制第一开关模块导通,由动力电池、第一开关模块、变压模块、储能模块、电机控制器构成升压电路,实现对动力电池输出的电压的升压,保证了车辆的正常运行。
下面以图3中的电路图为例,对本实施例二提供的能量转换装置的充电方法进行具体说明:车辆进行直流充电流程中,直流充电桩给车辆上报真实内部电源模块电压输出范围,直流充电桩和电动车在参数匹配阶段,车辆会收到直流充电桩发送的最大电压输出范围:
若车辆接收直流充电桩的最大输出电压范围电压不大于550V时,启动变压模块进行直流充电,如果插枪时车辆是OFF档,则先进行预充,闭合开关K3,再闭合开关K2,当控制模块判断预充电压满足预充完成条件时,开关K6,同时断开开关K2。控制模块给直流充电桩发目标需求电压,控制变压模块使动力电池对储能模块进行降压充电至预设电压,控制模块检测到直流充电桩达到报文要求电压后闭合开关K4和K5,同时给直流充电桩与变压模块发送充电允许,充电方式恒流充电。直流充电桩根据自身状态满足充电需求情况下闭合自身充电接触器,开启充电。当插枪连接车辆是OK档时,则直流充电启动时需先整车断开主开关K1,重新走车辆OFF档充电流程。
具体的,当直流充电桩的最大电压不大于车辆电池包最高电压限值,启动变压模块工作,变压模块的工作状态包括升压模式和降压模式,其工作控制能量流具体如图5至图8所示,如图5所示,动力电池101对电容C1和电容C2进行预充:动力电池101、开关K1、电容C1形成第一放电回路,动力电池101、电感L1、电感L2、IGBT Q1、IGBT Q3、电容C2形成第二放电回路,使电容C1和电容C2上的电压相等。之后,如图6所示,控制IGBT Q2、IGBT Q4导通,使电容C1对电感L1和电感L2放电至预设电压,使电容C1上的电压与外部电源模块107的输出电压相同,进而使外部电源模块107输出电流。如图7所示,变压模块104工作在升压模式:外部电源模块107、开关K4、电感L3、电感L1、电感L2、IGBT Q2、IGBT Q4形成第一充电回路,如图8所示,外部电源模块107、开关K4、电感L3、电感L1、电感L2、IGBT Q1、IGBT Q2、开关K6、动力电池101、开关K3形成第二充电回路,控制第一充电回路和第二充电回路交替工作实现对动力电池101的升压充电。
当车辆接收到直流充电桩的最大输出电压范围大于550V,执行直流充电流程:若插枪时车辆是OFF档,则进行预充,先闭合开关K3,再闭合开关K2,当控制模块判断预充电压满足预充完成条件时闭合开关K1,同时断开开关K2;控制模块检测车辆满足充电条件闭合开关K4和K5,同给直流充电桩发充电允许及恒流充电方式;直流充电桩根据自身状态满足充电需求情况下闭合自身充电接触器,开启充电;插枪连接车辆时若车辆是OK档,控制模块直接给直流充电桩发目标充电电压和恒流充电指令,启动充电流程。如图9所示,变压模块工作在直流充电模式:外部电源模块107、电容C1、开关K1、动力电池101形成直流充电电路,直接对动力电池101进行充电。
需要说明的是,实际市场上的直流充电桩为了能尽可能的满足电动汽车充电需求,早期安装直流充电桩很多是使用低电压平台电源模块(最高电压500V),运营商通过更改直流充电桩控制板程序,直流充电桩与控制模块信息交互时,直流充电桩对车辆发虚假最大电压为高电压平台(最高750~1000V)。为了兼容这种情况桩也可以充电,优化充电流程中车辆识别直流充电桩电压平台的逻辑。插枪连接在执行直流充电流程时,直流充电桩闭合充电接触器前,直流充电桩和变压模块按控制模块需求目标电压:直流充电桩输出需求目标电压和变压模块将压测电压在误差范围内时稳压输出,直流充电桩闭合充电接触器后控制模块发指令给直流充电桩开始时以小电流恒流升压充电,在小电流恒流充电过程中对直流充电桩真实电压识别,即实时接收直流充电桩输出电压,当电压不能按需求升高时,判断为直流充电桩的输出电压不大于550V,按照升压流程充电,充电电流切换成控制模块的最大目标充电电流开启充电;若直流充电桩输出电压能够按需求电压升高至大于550V, 开始按控制模块最大目标开启直流充电。充电结束时,当检测充电回路电流不大于5A时,车端断开开关K4/K5时进行开关粘连检测后完成整个执行步骤。
本公开另一种实施例提供一种车辆200,如图10所示,车辆200还包括上述实施例提供的能量转换装置100。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种能量转换装置,其特征在于,所述能量转换装置包括储能模块、变压模块、第一开关模块、第二开关模块以及控制模块,所述储能模块连接所述变压模块,所述变压模块通过所述第二开关模块连接动力电池和所述第一开关模块,所述第一开关模块还连接所述储能模块和所述变压模块,所述控制模块分别连接所述第一开关模块和所述第二开关模块。
  2. 如权利要求1所述的能量转换装置,其特征在于,所述变压模块还连接电机控制器,所述动力电池的正极连接所述第一开关模块的第一端和所述第二开关模块的第一端,所述第一开关模块的第二端连接所述储能模块的第一端和所述变压模块的低压端,所述第二开关模块的第二端连接所述变压模块的高压端和所述电机控制器的第一汇流端,所述储能模块的第二端连接所述动力电池的负极、所述变压模块的公共端和所述电机控制器的第二汇流端,所述储能模块的第一端和第二端为所述能量转换装置的充电端口。
  3. 如权利要求2所述的能量转换装置,其特征在于,所述电机控制器连接电机,所述能量转换装置处于行车模式时,所述动力电池通过所述第一开关模块、所述变压模块、所述储能模块、所述电机控制器对所述电机进行供电;
    所述储能模块连接外部电源模块并且所述能量转换装置处于升压充电模式时,所述外部电源模块通过所述储能模块、所述变压模块、所述第二开关模块对所述动力电池进行充电。
  4. 如权利要求2或3所述的能量转换装置,其特征在于,所述第一开关模块包括开关K1、开关K2以及电阻R2;所述电阻R2的第一端连接所述开关K1的第一端并构成所述第一开关模块的第一端,所述电阻R2的第二端连接所述开关K2的第一端,所述开关K2的第二端连接所述开关K1的第二端并构成所述第一开关模块的第二端。
  5. 如权利要求2-4任意一项所述的能量转换装置,其特征在于,所述变压模块包括第一电感、第二电感、第一功率开关单元、第二功率开关单元、第三功率开关单元以及第四功率开关单元,所述第一电感的第一端和所述第二电感的第一端共接并构成所述变压模块的低压端,所述第一电感的第二端连接所述第一功率开关单元的第二端和所述第二功率开关单元的第一端,所述第二电感的第二端连接所述第三功率开关单元的第二端和所述第四功率开关单元的第一端,所述第一功率开关单元的第一端和所述第三功率开关单元的第一端共接并构成所述变压模块的高压端,所述第二功率开关单元的第二端和所述第四功率开关单元的第二端共接并构成所述变压模块的公共端。
  6. 如权利要求2-5任意一项所述的能量转换装置,其特征在于,所述能量转换装置还包括开关K3、开关K4、开关K5以及第三电感L3,所述开关K3的第一端连接所述动力电池的负极,所述开关K3的第二端连接所述储能模块的第二端,所述开关K4的第一端连接 所述外部电源模块的第一端,所述开关K4的第二端连接所述第三电感L3的第一端,所述第三电感L3的第二端连接所述储能模块的第一端,所述开关K5的第一端连接所述外部电源模块的第二端,所述开关K5的第二端连接所述储能模块的第二端。
  7. 一种能量转换装置的充电方法,基于权利要求1-6任意一项所述的能量转换装置,其特征在于,所述充电方法包括:
    当所述能量转换装置连通外部电源模块处于充电模式时,获取所述外部电源模块的最大输出电压;
    当所述外部电源模块的最大输出电压不大于预设电压时,控制所述第一开关模块关断以及所述第二开关模块导通,使所述外部电源模块通过所述储能模块、所述变压模块以及所述第二开关模块对所述动力电池进行升压充电;
    当所述外部电源模块的最大输出电压大于预设电压时,控制所述第一开关模块导通以及所述第二开关模块关断,使所述外部电源模块通过所述储能模块以及所述第一开关模块对所述动力电池进行直流充电。
  8. 如权利要求7所述的充电方法,其特征在于,所述当所述能量转换装置连通外部电源模块处于充电模式时,获取所述外部电源模块的最大输出电压,之前还包括:
    向所述外部电源模块发送目标需求电压值,并控制所述第一开关模块导通,使所述动力电池通过所述第一开关模块对所述储能模块进行预充电,使所述储能模块的电压值为预设电压,再控制所述变压模块使所述储能模块通过所述变压模块进行放电,使所述储能模块的电压值为所述目标需求电压值。
  9. 如权利要求7或8所述的充电方法,其特征在于,所述获取所述外部电源模块的最大输出电压,还包括:
    获取所述外部电源模块的目标最大输出电压,向所述外部电源模块持续发送恒流升压充电指令,检测所述外部电源模块输出的电流不是恒流或者实际最大输出电压小于所述目标最大输出电压时,判定所述目标最大输出电压为虚假值,将所述实际最大输出电压设定为最大输出电压。
  10. 如权利要求9所述的充电方法,其特征在于,所述向所述外部电源模块持续发送恒流升压充电指令,还包括:
    所述外部电源模块获取所述储能模块的实际电压值,并判定所述目标需求电压值和所述储能模块的实际电压值符合预设标准时向所述能量转换装置输出电流。
  11. 如权利要求7-10任意一项所述的充电方法,其特征在于,所述使外部电源模块通过所述变压模块对所述动力电池进行升压充电,包括:
    获取所述变压模块输出的实际电流值和目标电流值,将所述实际电流值与所述目标电流值进行对比,通过向所述变压模块输出PWM控制信号使所述变压模块向所述动力电池输出目标电流值以对动力电池进行充电。
  12. 如权利要求7-11任意一项所述的充电方法,其特征在于,所述充电方法还包括:
    当所述能量转换装置处于行车模式时,控制所述第一开关模块导通,并控制所述变压模块使所述动力电池通过所述第一开关模块、所述变压模块、所述储能模块对所述电机控制器对进行升压供电。
  13. 一种车辆,其特征在于,所述车辆还包括权利要求1-6任意一项所述的能量转换装置。
PCT/CN2022/113412 2021-08-30 2022-08-18 车辆、能量转换装置及其充电方法 WO2023030031A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112023026049A BR112023026049A2 (pt) 2021-08-30 2022-08-18 Aparelho de conversão de energia, método de carregamento de um aparelho de conversão de energia, e, veículo
IL309596A IL309596A (en) 2021-08-30 2022-08-18 vehicle, and an energy conversion device and its charging method
KR1020237041645A KR20240004889A (ko) 2021-08-30 2022-08-18 차량, 및 그 에너지 변환 장치 및 충전 방법
AU2022336368A AU2022336368A1 (en) 2021-08-30 2022-08-18 Vehicle, and energy conversion apparatus and charging method thereof
EP22863170.1A EP4333245A1 (en) 2021-08-30 2022-08-18 Vehicle, and energy conversion apparatus and charging method thereof
US18/516,694 US20240083275A1 (en) 2021-08-30 2023-11-21 Vehicle, and energy conversion apparatus and charging method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111007075.9 2021-08-30
CN202111007075.9A CN115723604A (zh) 2021-08-30 2021-08-30 车辆、能量转换装置及其充电方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/516,694 Continuation US20240083275A1 (en) 2021-08-30 2023-11-21 Vehicle, and energy conversion apparatus and charging method thereof

Publications (1)

Publication Number Publication Date
WO2023030031A1 true WO2023030031A1 (zh) 2023-03-09

Family

ID=85291090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113412 WO2023030031A1 (zh) 2021-08-30 2022-08-18 车辆、能量转换装置及其充电方法

Country Status (8)

Country Link
US (1) US20240083275A1 (zh)
EP (1) EP4333245A1 (zh)
KR (1) KR20240004889A (zh)
CN (1) CN115723604A (zh)
AU (1) AU2022336368A1 (zh)
BR (1) BR112023026049A2 (zh)
IL (1) IL309596A (zh)
WO (1) WO2023030031A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117148910A (zh) * 2023-10-31 2023-12-01 深圳和润达科技有限公司 恒流恒压供电电路的智能控制方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117913961B (zh) * 2024-03-19 2024-05-14 长峡数字能源科技(湖北)有限公司 储能电路系统及其工作模式切换方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355433A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机控制电路、车辆及其加热方法
CN111347893A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机控制电路、动力电池的充电方法及加热方法
CN111347924A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机控制电路、车辆、加热方法及充放电方法
CN111347926A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 动力电池充放电装置、车辆及加热装置
CN111391710A (zh) * 2020-06-04 2020-07-10 比亚迪股份有限公司 车辆工作模式切换控制方法、装置和车辆
CN111585437A (zh) * 2020-05-12 2020-08-25 联合汽车电子有限公司 锡须去除电路、电子终端产品及锡须去除方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355433A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机控制电路、车辆及其加热方法
CN111347893A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机控制电路、动力电池的充电方法及加热方法
CN111347924A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 电机控制电路、车辆、加热方法及充放电方法
CN111347926A (zh) * 2018-12-21 2020-06-30 比亚迪股份有限公司 动力电池充放电装置、车辆及加热装置
CN111585437A (zh) * 2020-05-12 2020-08-25 联合汽车电子有限公司 锡须去除电路、电子终端产品及锡须去除方法
CN111391710A (zh) * 2020-06-04 2020-07-10 比亚迪股份有限公司 车辆工作模式切换控制方法、装置和车辆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117148910A (zh) * 2023-10-31 2023-12-01 深圳和润达科技有限公司 恒流恒压供电电路的智能控制方法及系统
CN117148910B (zh) * 2023-10-31 2024-01-09 深圳和润达科技有限公司 恒流恒压供电电路的智能控制方法及系统

Also Published As

Publication number Publication date
KR20240004889A (ko) 2024-01-11
BR112023026049A2 (pt) 2024-03-12
EP4333245A1 (en) 2024-03-06
AU2022336368A1 (en) 2024-01-18
CN115723604A (zh) 2023-03-03
IL309596A (en) 2024-02-01
US20240083275A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
WO2023030031A1 (zh) 车辆、能量转换装置及其充电方法
AU2019410616B2 (en) Charging method for power battery, motor control circuit and vehicle
CN103825458B (zh) 直流-直流转换器及预充电方法
CN112389269B (zh) 一种汽车、能量转换装置及能量转换方法
US11349386B2 (en) Apparatus and method for charging battery of vehicle
CN210792823U (zh) 电动汽车充电系统及电动汽车
US11757298B2 (en) Charging system and method using motor driving system
WO2013129231A1 (ja) 電源装置
WO2024041331A1 (zh) 电动车辆的充电系统和电动车辆
JP2014036528A (ja) 絶縁型充電装置
US11496042B2 (en) Method and device for matching the voltage of the smoothing capacitor of a DC/DC converter before a high-voltage battery is connected
WO2022068593A1 (zh) 一种混合动力汽车的充电控制方法、装置以及汽车
CN106575916A (zh) 用于控制具有直流‑直流串联谐振变换器的电池充电器的方法
US20240001788A1 (en) Charger, soft-start method, electric vehicle, and charging system
CN110875609B (zh) 一种车载充电机及其死负载控制方法
CN112319251A (zh) 一种电动汽车快充电路以及控制方法
CN113910956B (zh) 电动车辆及其车载充电机,充电系统和充电方法
CN113381459A (zh) 一种充电控制方法、装置及电动汽车
CN111262317B (zh) 电动汽车及其充电器和充电器控制方法
CN219477650U (zh) 一种基于移动电源车的双电源充电系统
KR20190092994A (ko) 차량용 배터리 충전 장치
CN116039419A (zh) 一种直流充电升压装置及其控制方法
CN113381473A (zh) 无线充电车端设备电源电路和充电控制方法
CN117507949A (zh) 电池自加热系统、动力驱动系统、控制方法以及车辆
CN118107419A (zh) 车辆动力电池预充电系统和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863170

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022863170

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20237041645

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2022863170

Country of ref document: EP

Effective date: 20231128

WWE Wipo information: entry into national phase

Ref document number: 1020237041645

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/015229

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023026049

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 309596

Country of ref document: IL

Ref document number: 2301008351

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022336368

Country of ref document: AU

Ref document number: AU2022336368

Country of ref document: AU

Ref document number: 807025

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2022336368

Country of ref document: AU

Date of ref document: 20220818

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023026049

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231211

NENP Non-entry into the national phase

Ref country code: DE