WO2023029950A1 - 电子雾化装置及其控制方法 - Google Patents

电子雾化装置及其控制方法 Download PDF

Info

Publication number
WO2023029950A1
WO2023029950A1 PCT/CN2022/112217 CN2022112217W WO2023029950A1 WO 2023029950 A1 WO2023029950 A1 WO 2023029950A1 CN 2022112217 W CN2022112217 W CN 2022112217W WO 2023029950 A1 WO2023029950 A1 WO 2023029950A1
Authority
WO
WIPO (PCT)
Prior art keywords
time window
heating
window
heating period
heating element
Prior art date
Application number
PCT/CN2022/112217
Other languages
English (en)
French (fr)
Inventor
夏旭敏
方伟明
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2023029950A1 publication Critical patent/WO2023029950A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the invention relates to the field of atomization equipment, in particular to an electronic atomization device and a control method thereof.
  • the electronic atomization device is a device that can form the aerosol in the atomizer into a matrix atomization device. It has the advantages of safety, convenience, health, and environmental protection, so it has attracted more and more attention and favor from people.
  • the first method Obtain constant power output by modulating the duty cycle of the PWM wave. Specifically, as shown in Figure 1, a large cycle T is divided into multiple small cycles of equal duration, and each of the same large cycle The heating duration of a small cycle is fixed, that is, the duty cycle of a large cycle is constant. There may be some variation in the duty cycle for different macrocycles. Moreover, after each large period of operation, the output of the PWM signal is turned off, and then the resistance value of the heating element is detected by the heating element voltage U2 at this time and the heating element voltage U1 during heating. In this method, the detection of the resistance of the heating element is not within T, and only one resistance detection is performed in a large cycle. Therefore, in the initial stage of heating, the constant power output cannot be guaranteed, and it takes several cycles to adjust to Precise constant power output.
  • the second type use periodic monitoring of the voltage of the heating element and the current flowing to obtain the current power, and if the monitoring is less than the target power, continue heating; if it is greater than the target power, stop until the actual average power is lower than the target Power resumes heating. However, in this way, the output power is too high in some heating cycles.
  • the technical problem to be solved by the present invention lies in the technical problem in the prior art that the constant power output cannot be guaranteed at the initial stage of heating.
  • an electronic atomization device including a heating element, and also include:
  • a control module configured to control the heating element to heat during the heating period of the first time window of the current time window, and detect the resistance value of the heating element during the non-heating period of the first time window of the current time window ; Control the heating element to heat during the heating period of the middle time window of the current time window, and control the heating element to stop heating or detect the resistance value of the heating element during the non-heating period of the middle time window of the current time window ; Control the heating element to heat during the heating period of the last time window of the current time window;
  • the middle time window is other time windows except the first time window and the last time window in the current time window, the heating period of the middle time window and the heating period of the last time window The heating period is respectively related to the consumed energy and consumed time of the completed time window.
  • the heating period and the non-heating period of the first time window of the current time window are initial set values; or,
  • the heating period and the non-heating period of the first time window in the current time window are related to the running conditions of multiple time windows in the previous time window.
  • the window durations of each time window in the current time window are equal; or,
  • the window durations of each time window in the current time window are not exactly equal.
  • the duration of the small window of the intermediate time window is determined by Formula 1:
  • the setting value corresponding to the small window, and g x is an integer greater than 1.
  • the heating period of each small time window of the current time window is equal; or,
  • the heating period of each time window in the current time window is not exactly equal.
  • the heating period of the middle time window and the heating period of the last time window are respectively related to the actual power of the previous time window, the remaining duration of the current time window, and the remaining energy of the current time window.
  • the heating period of the middle time window is determined by formula 2:
  • the heating period of the middle time window is determined by formula 3:
  • the heating period of the window t left(x-1) is the remaining duration of the current time window
  • P t(x-1)A is the first actual power of the heating element in the heating period of the x-1th time window
  • P t(x-1)B is the second actual power of the heating element in the non-heating period of the x-1th time window
  • E left(x-1) is the remaining energy in the current time window.
  • the heating period of the last time window is determined in the following manner:
  • the first actual power of the heating element in the heating period of the penultimate time window is greater than or equal to the ratio of the remaining energy of the current time window to the remaining duration, then use the ratio as the heating of the last time window time period;
  • the remaining time is used as the heating of the last time window time period.
  • it also includes a first switch circuit, a second switch circuit, a reference resistor and a voltage sampling module, wherein the first end of the second switch circuit and the first end of the first switch circuit are respectively connected to the positive terminal, the second terminal of the second switch circuit is connected to the first terminal of the reference resistor, the second terminal of the reference resistor and the second terminal of the first switch circuit are respectively connected to the first terminal of the heating element terminal, the second terminal of the heating element is grounded, the input terminal of the voltage sampling module is connected to the first terminal of the heating element, and the output terminal of the voltage sampling module is connected to the voltage detection terminal of the control module.
  • the present invention also constructs a control method for an electronic atomization device, including:
  • the heating element is controlled to perform heating, wherein the middle time window is other time in the current time window except the first time window and the last time window Small window, the heating period of the intermediate time window is related to the energy consumption and time consumption of the time window that has been run;
  • control the heating element to stop heating or detect the resistance value of the heating element
  • the heating element is controlled to perform heating, wherein the heating period of the last time window is related to the consumed energy and time of the completed time window.
  • the window durations of each time window in the current time window are equal; or,
  • the window durations of each time window in the current time window are not exactly equal.
  • the heating period of each small time window of the current time window is equal; or,
  • the heating period of each time window in the current time window is not exactly equal.
  • Fig. 1 is a graph showing the relationship between the heating element voltage and time of an existing electronic atomization device
  • Fig. 2 is a logical structure diagram of Embodiment 1 of the electronic atomization device of the present invention.
  • Fig. 3 is a graph showing the relationship between voltage and time of the heating element of the electronic atomization device in one embodiment of the present invention
  • Fig. 4 is a graph showing the relationship between voltage and time of the heating element of the electronic atomization device in one embodiment of the present invention
  • Fig. 5 is a graph showing the relationship between voltage and time of the heating element of the electronic atomization device in one embodiment of the present invention
  • Fig. 6 is a logical structure diagram of Embodiment 2 of the electronic atomization device of the present invention.
  • Fig. 7 is a flow chart of Embodiment 1 of the control method of the electronic atomization device of the present invention.
  • the target power P output within the time window (total duration is T) is a fixed value (for example, 6.5W), that is, each The energy output by the time window is all P*T, which can be considered as constant power heating.
  • T total duration
  • P*T the closer the output energy of each time window is to P*T, the more accurate the control of constant power heating is.
  • Fig. 2 is a logical structure diagram of Embodiment 1 of the electronic atomization device of the present invention.
  • the electronic atomization device of this embodiment includes a connected control module 11 and a heating element R2, and the control module 11 is used for the first time in the current time window.
  • the heating period of a small time window controls the heating element R2 to heat, and detects the resistance value of the heating element R2 during the non-heating period of the first time window of the current time window; during the heating period of the middle time window of the current time window Control the heating element R2 to heat, control the heating element R2 to stop heating or detect the resistance value of the heating element R2 during the non-heating period of the middle time window of the current time window; control heating during the heating period of the last time window of the current time window Body R2 is heated.
  • the middle time window is other time windows except the first time window and the last time window in the current time window, the heating period of the middle time window and the heating period of the last time window are respectively compared with the running
  • the energy consumption of the completed time window is related to the consumption time.
  • Total duration T can be 8 milliseconds or 10 milliseconds, for example
  • the duration of the multiple divided time windows must be smaller than T.
  • the more time windows divided in a time window the more it can dynamically reflect the real situation of the heating process, which also means the higher the accuracy.
  • sampling time t ADC of the selected analog-to-digital conversion module is very short, a large number of small time windows can be divided within the time window, for example, 100 small time windows can be divided. In practical application, it is necessary to consider the performance of the MCU and the complexity of the calculation, and then divide an appropriate number of time windows according to the actual situation.
  • the window duration of the time window is 8ms.
  • the duration of each small time window is 250us.
  • the window durations of the time windows of the current time window are not completely equal. As shown in FIG. 4 , t 1 , t 2 , . . . , t n-1 , t n are not completely equal.
  • the heating element has two operating stages in a small time window: heating period and non-heating period, and both periods are not 0; in special cases, for the last time window (as energy Compensated time window), there may be only a heating period, that is, the window duration of the entire time window is the heating period, and the non-heating period is 0.
  • the control module controls the heating element to heat; for other time windows except the last time window, in the non-heating period, the control module controls the heating element to stop heating or detects the resistance of the heating element value; for the last small time window, regardless of whether the non-heating period exists or not, the detection of the resistance value of the heating element is not performed.
  • the heating periods of the time windows of the current time window are not completely equal. As shown in FIG. 4 , t 1A , t 2A , . . . , t ( n-1 ) A , t nA are not completely equal.
  • the heating periods of each small time window in the current time window are not completely equal, as shown in FIG. 4 , t 1B , t 2B , . . . , t ( n-1 ) B , t nB are not completely equal.
  • the non-heating period of the first small time window is used to detect the resistance value of the heating element
  • the non-heating period of the subsequent intermediate time window can also be used to detect the resistance value of the heating element
  • the detection of the resistance value of the heating element is to adjust the energy release mode of the subsequent time window in this time window, that is, according to the energy consumption of the time window that has run out (the energy consumption is related to the detected resistance value of the heating element ) and consumption time, dynamically adjust the heating period of the subsequent time window, so as to ensure that the energy released by the heating element in a time window is close to the total target energy.
  • the detection of the resistance value of the heating element may be performed during non-heating periods of all time windows except the last time window, as shown in FIG. 3 or FIG. 4 .
  • the detection of the resistance value of the heating element can only be performed during the non-heating period of the first small time window , the non-heating periods of other small time windows do not perform resistance detection, as shown in FIG. 5 .
  • resistance value detection may also be performed during the non-heating period of some intermediate time windows.
  • the frequency in each time window is constant (that is, the duration of each small period is fixed), and the duty cycle of each time window is fixed (that is, each small period
  • the heating period of the cycle is fixed), of course, the duty cycle may vary in different time windows.
  • the duration of the time window T 8ms
  • the frequency of the PWM signal is 4KHz
  • the duration of each small cycle is 250us.
  • the heating time is fixed, assuming that the duty cycle is 60%, then the heating time of each small cycle is 150us (250 us * 60%), and the non-heating time is 90us.
  • the window durations of each time window may be equal (as shown in Figure 3) or not (as shown in Figure 4), and the duration of each time window
  • the heating periods can be equal (as shown in Figure 3) or unequal (as shown in Figure 4).
  • the resistance value of the heating element is detected only after a time window is completed.
  • the heating duration and non-heating duration of each small cycle in a time window are determined before the start of the time window, and will remain unchanged afterwards. Therefore, the PWM control method can only make the average power of the following cycle close to the target power, but it is difficult to ensure constant power output in the early stage of heating.
  • the control mode of the control module of the present invention as shown in Figure 3-5, in each time window, at least the detection of the resistance value of the heating element will be carried out in the non-heating period of the first time window. The resistance value of the heating element is detected during the non-heating period of the subsequent middle time window, and the last time window is the energy compensation window, and the resistance value of the heating element is not detected.
  • the purpose of detecting the resistance value of the heating element is to adjust the energy release mode of the subsequent time window in this time window, that is to say, in a time window, the heating period and non-heating period of each time window are not preset. It is determined, but it is dynamically adjusted according to the consumed energy and time in real time, so that the average power of each time window can be close to the target power, so even in the initial stage of heating, the constant power output can be guaranteed .
  • the heating duration of the small time window to be operated can be adjusted in real time according to the operation of the small time window in which the heating element has run out, so even in the initial stage of heating, It can also accurately ensure that the released energy of the heating element within a time window is close to the total target energy, and does not need to be adjusted through multiple cycles. Therefore, the constant power output accuracy is higher.
  • the heating period and the non-heating period of the first time window of the current time window are initial setting values.
  • the sampling time t ADC of the analog-to-digital conversion module of the MCU is 50 microseconds
  • the target power is 6.5w
  • the heating power is about 10W (the heating voltage is more than 3V, and the resistance value of the heating element is about 1 Europe)
  • the duration of each time window is 250 us
  • the heating period and the non-heating period of the first time window of the current time window are related to the running conditions of multiple time windows in the previous time window.
  • the duration of the small window of the intermediate time window is determined by Formula 1:
  • the setting value corresponding to the small window, and g x is an integer greater than 1.
  • the heating period of the middle time window and the heating period of the last time window are respectively related to the actual power of the previous time window, the remaining duration of the current time window, and the remaining time of the current time window. energy related.
  • the actual power in the first time window can be , the current remaining duration, and remaining energy, determine the heating period t 2A and non-heating period t 2B of the second time window, and so on, and so on, until the heating period t nA and non-heating period t nA of the last time window are determined.
  • Heating period t nB (if present).
  • n is the total number of time windows in the current time window, and its heating period
  • the first type If the heating element is controlled to stop heating during the non-heating period of the small intermediate time window, the heating period of the small intermediate time window is determined by formula 2:
  • the heating period of the small intermediate time window is determined by formula 3:
  • t x is the window length of the xth time window
  • t xA is the heating period of the xth time window
  • t left(x-1) is the remaining time of the current time window
  • P t(x-1 )A is the first actual power of the heating element in the heating period of the x-1th time window
  • P t(x-1)B is the non-heating power of the heating element in the x-1th time window
  • the second actual power of the period, E left(x-1) is the remaining energy of the current time window.
  • its heating period can be determined in the following manner:
  • the first actual power of the heating element in the heating period of the penultimate time window is greater than or equal to the ratio of the remaining energy of the current time window to the remaining duration, then use the ratio as the heating of the last time window time period;
  • the remaining time is used as the heating of the last time window time period.
  • the heating period of the nth time window is E left(n-1) / P t(n-1)A
  • the non-heating period is t left(n-1) - E left(n-1) / P t(n-1)A
  • P t(n-1)A * t left(n-1) ⁇ E left(n-1) is t left(n-1) .
  • Fig. 6 is a logical structure diagram of Embodiment 2 of the electronic atomization device of the present invention.
  • the electronic atomization device of this embodiment includes a control module 11, a heating element R2, a first switch circuit 12, a second switch circuit 13, a reference resistor R1 and
  • the voltage sampling module 14 may further include a power supply 15 .
  • the first end of the second switch circuit 13 and the first end of the first switch circuit 12 are respectively connected to the positive end of the power supply 15, the second end of the second switch circuit 13 is connected to the first end of the reference resistor R1, and the reference resistor R1
  • the second end of the second end of the first switch circuit 12 and the second end of the first switch circuit 12 are respectively connected to the first end of the heating element R2, the second end of the heating element R2 is grounded with the negative end of the power supply 15, and the input end of the voltage sampling module 14 is connected to the heating element R2
  • the first terminal of the voltage sampling module 14 is connected to the voltage detection terminal of the control module 11 .
  • the heating element R1 can choose a resistance heating wire. During the heating process, the resistance value of the heating element R2 may change with the temperature.
  • the reference resistor R1 (the resistance value is known) generally selects a resistor whose resistance value is several times that of the heating element R2.
  • the control module 11 controls the first switch circuit 12 to be turned on, and at the same time, controls the second switch circuit 13 to be turned off.
  • the power supply 15 is supplied to the heating element R2 Power is supplied, and the heating element R2 starts to generate heat.
  • the control module 11 also collects the voltage of the heating element R2 through the voltage sampling module 14 to obtain a detection voltage U 1 on the heating element R2 (which can be regarded as a power supply voltage).
  • the control module 11 controls the first switch circuit 12 to turn off, and at the same time, controls the second switch circuit 13 to turn on.
  • the power supply 15 supplies power to the reference resistor R1 and the heating element R2, and the control module 11
  • the voltage of the heating element R2 is also collected by the voltage sampling module 14 to obtain the detection voltage U2 on the heating element R2.
  • the resistance value of the heating element R2 at this time can be calculated by the following formula:
  • R 2 U 2 *R 1 /( U 1 –U 2 )
  • R 2 is the resistance value of the heating element R2
  • R 1 is the resistance value of the reference resistor R1.
  • every other time window can calculate the heating element in the corresponding time window by the above method
  • the resistance value of R2 that is, the voltage of the heating element R2 needs to be sampled twice in each small time window, and the analog-to-digital conversion is performed twice, as shown in Figure 3 and Figure 4.
  • U 1t1 is the voltage U 1 detected by the voltage sampling module 14 during the heating period of the first small time window
  • U 2t1 is the voltage U 2 detected by the voltage sampling module 14 during the non-heating period of the first time window
  • U 1t(n-1) is the voltage U 1 detected by the voltage sampling module 14 during the heating period of the n-1th small time window;
  • U 2t(n-1) is the voltage U 2 detected by the voltage sampling module 14 during the non-heating period of the n-1th time window;
  • U 1tn is the voltage U 1 detected by the voltage sampling module 14 during the heating period of the nth small time window
  • t 1A is the heating period of the first small time window (the duration of opening the first switch circuit 12 and closing the second switch circuit 13);
  • t 1B is the non-heating period of the first small time window (the duration of closing the first switch circuit 12 and opening the second switch circuit 13);
  • t (n-1)A is the heating period of the n-1th small time window (the duration of opening the first switch circuit 12 and closing the second switch circuit 13);
  • t (n-1)B is the non-heating period of the n-1th time window (the duration of closing the first switch circuit 12 and opening the second switch circuit 13);
  • t nA is the heating period of the nth small time window (energy compensation time window) (the duration of opening the first switch circuit 12 and closing the second switch circuit 13);
  • the energy consumed by the heating element in this time window is:
  • P t1B U 2t1 *U 2t1 /R 2 ;
  • E t1 P t1A * t 1A + P t1B * t 1B
  • P t1A is the first actual power of the heating element in the heating period of the first time window
  • P t2B is the second actual power of the heating element in the non-heating period of the first time window
  • E t1 is the heating element Energy consumed in the first time window.
  • the calculation method of the energy consumed by the heating element in other small time windows is similar and will not be repeated here.
  • the detection of the resistance value of the heating element is not performed during the non-heating period of a certain time window, the second actual power in the non-heating period is 0 at this time.
  • Fig. 7 is a flow chart of Embodiment 1 of the control method of the electronic atomization device of the present invention, the control method of the electronic atomization device in this embodiment includes:
  • Step S10 During the heating period of the first small time window of the current time window, control the heating element to heat;
  • Step S20 Detect the resistance value of the heating element during the non-heating period of the first time window of the current time window
  • Step S30 During the heating period of the middle time window of the current time window, control the heating element for heating, wherein the middle time window is outside the first time window and the last time window in the current time window Other time windows, the heating period of the intermediate time window is related to the energy consumption and time consumption of the completed time window;
  • Step S40 During the non-heating period of the middle time window of the current time window, control the heating element to stop heating or detect the resistance value of the heating element;
  • Step S50 During the heating period of the last time window of the current time window, control the heating element to heat, wherein, the heating period of the last time window and the energy consumption and consumption of the completed time window time dependent.
  • the window durations of each time window in the current time window are equal. In another optional embodiment, the window durations of the various time windows in the current time window are not completely equal.
  • the heating period of each small time window of the current time window is equal. In another optional embodiment, the heating periods of the time windows of the current time window are not completely equal.

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

一种电子雾化装置及其控制方法,电子雾化装置包括:控制模块(11),用于在第一个时间小窗的加热时段控制发热体(R2)进行加热,在第一个时间小窗的非加热时段检测发热体(R2)的电阻值;在中间时间小窗的加热时段控制发热体(R2)进行加热,在中间时间小窗的非加热时段控制发热体(R2)停止加热或检测发热体(R2)的电阻值;在最后一个时间小窗的加热时段控制发热体(R2)进行加热;其中,中间时间小窗及最后一个时间小窗的加热时段分别与已运行完的时间小窗的消耗能量及消耗时间相关。

Description

电子雾化装置及其控制方法 技术领域
本发明涉及雾化设备领域,尤其涉及一种电子雾化装置及其控制方法。
背景技术
电子雾化装置是一种能把雾化器中的气溶胶形成基质雾化的装置,其具有使用安全、方便、健康、环保等优点,因此越来越受人们的关注和青睐。
现有大部分电子雾化装置都是使用恒功率加热方式来使气溶胶形成基质雾化,而目前使用的恒功率加热的控制方法通常有以下两种:
第一种:通过调制PWM波占空比的方式来获取恒定功率输出,具体地,如图1所示,将一个大周期T分成多个等时长的小周期,而且,同一个大周期的各个小周期的加热时长是固定的,即,一个大周期的占空比恒定。不同的大周期占空比可能会有些变化。而且,在每运行完一个大周期后,关闭PWM信号的输出,再通过此时的发热体电压U2与加热时的发热体电压U1来检测发热体的阻值。在这种方式中,发热体阻值的检测是不在T内的,而且一个大周期仅进行一次阻值检测,所以,在加热初期,并不能保证恒功率输出,需要几个周期后才能调整到精确的恒功率输出。
第二种:采用周期性监控发热体的电压以及流过的电流来获取当前的功率,而且,如果监控小于目标功率,则继续加热;如果大于目标功率就停下来,直到实际平均功率低于目标功率再恢复加热。但是,这种方式存在某些加热周期内输出功率过高的情况。
技术问题
本发明要解决的技术问题在于,现有技术存在的加热初期不能保证恒功率输出的技术问题。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种电子雾化装置,包括发热体,还包括:
控制模块,用于在当前时间窗口的第一个时间小窗的加热时段控制所述发热体进行加热,在当前时间窗口的第一个时间小窗的非加热时段检测所述发热体的电阻值;在当前时间窗口的中间时间小窗的加热时段控制所述发热体进行加热,在当前时间窗口的中间时间小窗的非加热时段控制所述发热体停止加热或检测所述发热体的电阻值;在当前时间窗口的最后一个时间小窗的加热时段控制所述发热体进行加热;
其中,所述中间时间小窗为当前时间窗口内除第一个时间小窗、最后一个时间小窗外的其它时间小窗,所述中间时间小窗的加热时段及所述最后一个时间小窗的加热时段分别与已运行完的时间小窗的消耗能量及消耗时间相关。
优选地,当前时间窗口的第一个时间小窗的加热时段及非加热时段为初始设置值;或者,
当前时间窗口的第一个时间小窗的加热时段及非加热时段与前一时间窗口内多个时间小窗的运行情况相关。
优选地,当前时间窗口的各个时间小窗的小窗时长相等;或者,
当前时间窗口的各个时间小窗的小窗时长不完全相等。
优选地,所述中间时间小窗的小窗时长通过公式1确定:
t x = t left(x-1) / g x         公式1
其中,t x为第x个时间小窗的小窗时长,且x=2、3、…、n-1,n为当前时间窗口的时间小窗的总数量,g x为与第x个时间小窗所对应的设置值,且g x为大于1的整数。
优选地,当前时间窗口的各个时间小窗的加热时段相等;或者,
当前时间窗口的各个时间小窗的加热时段不完全相等。
优选地,所述中间时间小窗的加热时段及所述最后一个时间小窗的加热时段分别与前一时间小窗的实际功率、当前时间窗口的剩余时长、当前时间窗口的剩余能量相关。
优选地,若在当前时间窗口的中间时间小窗的非加热时段控制所述发热体停止加热,则所述中间时间小窗的加热时段通过公式2确定:
t left(x-1) *P t(x-1)A * t xA/ t x = E left(x-1)   公式2;
若在当前时间窗口的中间时间小窗的非加热时段检测所述发热体的电阻值,则所述中间时间小窗的加热时段通过公式3确定:
t left(x-1) *(P t(x-1)A * t xA + P t(x-1)B *(t x- t xA))/ t x = E left(x-1)   公式3;
其中,t x为第x个时间小窗的小窗时长,且x=2、3、…、n-1,n为当前时间窗口的时间小窗的总数量,t xA为第x个时间小窗的加热时段,t left(x-1)为当前时间窗口的剩余时长,P t(x-1)A为所述发热体在第x-1个时间小窗的加热时段的第一实际功率,P t(x-1)B为所述发热体在第x-1个时间小窗的非加热时段的第二实际功率,E left(x-1) 为当前时间窗口的剩余能量。
优选地,所述最后一个时间小窗的加热时段根据以下方式确定:
若所述发热体在倒数第二个时间小窗的加热时段的第一实际功率大于等于当前时间窗口的剩余能量与剩余时长的比值,则将所述比值作为所述最后一个时间小窗的加热时段;
若所述发热体在倒数第二个时间小窗的加热时段的第一实际功率小于当前时间窗口的剩余能量与剩余时长的比值,则将所述剩余时长作为所述最后一个时间小窗的加热时段。
优选地,还包括第一开关电路、第二开关电路、参考电阻和电压采样模块,其中,所述第二开关电路的第一端与所述第一开关电路的第一端分别连接电源的正端,所述第二开关电路的第二端连接所述参考电阻的第一端,所述参考电阻的第二端及所述第一开关电路的第二端分别连接所述发热体的第一端,所述发热体的第二端接地,所述电压采样模块的输入端连接所述发热体的第一端,所述电压采样模块的输出端连接所述控制模块的电压检测端。
本发明还构造一种电子雾化装置的控制方法,包括:
在当前时间窗口的第一个时间小窗的加热时段,控制发热体进行加热;
在当前时间窗口的第一个时间小窗的非加热时段,检测所述发热体的电阻值;
在当前时间窗口的中间时间小窗的加热时段,控制所述发热体进行加热,其中,所述中间时间小窗为当前时间窗口内除第一个时间小窗、最后一个时间小窗外的其它时间小窗,所述中间时间小窗的加热时段与已运行完的时间小窗的消耗能量及消耗时间相关;
在当前时间窗口的中间时间小窗的非加热时段,控制所述发热体停止加热或检测所述发热体的电阻值;
在当前时间窗口的最后一个时间小窗的加热时段,控制所述发热体进行加热,其中,所述最后一个时间小窗的加热时段与已运行完的时间小窗的消耗能量及消耗时间相关。
优选地,当前时间窗口的各个时间小窗的小窗时长相等;或者,
当前时间窗口的各个时间小窗的小窗时长不完全相等。
优选地,当前时间窗口的各个时间小窗的加热时段相等;或者,
当前时间窗口的各个时间小窗的加热时段不完全相等。
有益效果
实施本发明的技术方案,由于在每个时间窗口内均可根据发热体已运行完的时间小窗的运行情况来实时调整待运行的时间小窗的加热时长,所以,即使在加热初期,也能精确保证发热体在一个时间窗口内的释放能量接近于总目标能量,不需要经过多个周期的调整,因此,恒功率输出精度更高。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是现有的一种电子雾化装置的发热体电压与时间的关系曲线图;
图2是本发明电子雾化装置实施例一的逻辑结构图;
图3是本发明一个实施例中电子雾化装置的发热体电压与时间的关系曲线图;
图4是本发明一个实施例中电子雾化装置的发热体电压与时间的关系曲线图;
图5是本发明一个实施例中电子雾化装置的发热体电压与时间的关系曲线图;
图6是本发明电子雾化装置实施例二的逻辑结构图;
图7是本发明电子雾化装置的控制方法实施例一的流程图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
首先说明的是,若要在电子雾化装置中实现恒功率加热,需要满足:在时间窗口(总时长为T)内输出的目标功率P为固定值(例如为6.5W),即,每个时间窗口所输出的能量均为P*T,就可认为是恒功率加热。在实际应用中,每个时间窗口所输出能量越接近于P*T,便认为恒功率加热的控制越精确。
图2是本发明电子雾化装置实施例一的逻辑结构图,该实施例的电子雾化装置包括相连接的控制模块11及发热体R2,而且,控制模块11用于在当前时间窗口的第一个时间小窗的加热时段控制发热体R2进行加热,在当前时间窗口的第一个时间小窗的非加热时段检测发热体R2的电阻值;在当前时间窗口的中间时间小窗的加热时段控制发热体R2进行加热,在当前时间窗口的中间时间小窗的非加热时段控制发热体R2停止加热或检测发热体R2的电阻值;在当前时间窗口的最后一个时间小窗的加热时段控制发热体R2进行加热。其中,中间时间小窗为当前时间窗口内除第一个时间小窗、最后一个时间小窗外的其它时间小窗,中间时间小窗的加热时段及最后一个时间小窗的加热时段分别与已运行完的时间小窗的消耗能量及消耗时间相关。
关于该实施例,有以下几点需说明:
(1)将一个时间窗口(总时长T例如可为8毫秒、10毫秒)划分成多个时间小窗,所划分的多个时间小窗的小窗时长肯定小于T。一般情况下,一个时间窗口内所划分的时间小窗的数量越多,越能动态反应加热过程的真实情况,也意味着精度越高。但是,在对时间窗口进行划分时,还需考虑控制模块中MCU的模数转换模块的采样时间t ADC,即,要保证每个时间小窗的小窗时长不少于2*t ADC,这样就能保证在每个时间小窗内均能采样到发热体的电压。如果所选取的模数转换模块的采样时间t ADC 很短,在时间窗口内就可以划分数量较多的时间小窗,比如可以划分100个时间小窗。在实际运用中,还需考虑到MCU的性能和计算的复杂性,进而根据实际情况来划分数量合适的时间窗口。
而且,在一个具体例子中,当前时间窗口的各个时间小窗的小窗时长相等,如图3所示,在时间窗口内,划分了n个固定时长的时间小窗,即,t 1=t 2=…=t n-1=t n,其中,t 1、t 2、…、t n-1、t n分别为第一个、第二个、…、第n-1个、第n个时间小窗的小窗时长。在一个具体应用中,考虑到计算的复杂性和控制模块中MCU的性能,在对时间窗口进行固定时长的划分时,假设一个时间窗口的总时长为8ms。当把时间窗口均分为32个时间小窗时,则每个时间小窗的小窗时长为250us。在另一个具体例子中,当前时间窗口的各个时间小窗的小窗时长不完全相等,如图4所示,t 1、t 2、…、t n-1、t n不完全相等。
(2)通常情况下,发热体在一个时间小窗内有两个运行阶段:加热时段、非加热时段,且两个时段均不为0;特殊情况下,对于最后一个时间小窗(作为能量补偿的时间小窗),可能仅有加热时段,即,整个时间小窗的小窗时长即为加热时段,非加热时段为0。在每个时间小窗的加热时段,控制模块控制发热体进行加热;对于除最后一个时间小窗外的其它时间小窗,在其非加热时段,控制模块控制发热体停止加热或检测发热体的电阻值;对于最后一个时间小窗,不管其非加热时段存在与否,均不进行发热体电阻值的检测。
而且,在一个具体例子中,当前时间窗口的各个时间小窗的加热时段相等,如图3所示,t 1A=t 2A=…=t n-1 A=t nA,其中,t 1A、t 2A、…、t n-1 A、t nA分别为第一个、第二个、…、第n-1个、第n个时间小窗的加热时段。在另一个具体例子中,当前时间窗口的各个时间小窗的加热时段不完全相等,如图4所示,t 1A、t 2A、…、t n-1 A、t nA不完全相等。
同样地,在一个具体例子中,当前时间窗口的各个时间小窗的非加热时段相等,如图3所示,t 1B= t 2B = … = t n-1 B=t nB,其中,t 1B、t 2B、…、t n-1 B、t nB分别为第一个、第二个、…、第n-1个、第n个时间小窗的非加热时段。在另一个具体例子中,当前时间窗口的各个时间小窗的加热时段不完全相等,如图4所示,t 1B、t 2B、…、t n-1 B、t nB不完全相等。
(3)在一个时间窗口内,第一个时间小窗的非加热时段是用来检测发热体的电阻值的,且后续的中间时间小窗的非加热时段也可用来检测发热体的电阻值,而发热体电阻值的检测是为了调整本时间窗口内的后续时间小窗的能量释放方式,即,根据已运行完的时间小窗的消耗能量(消耗能量与所检测的发热体电阻值相关)及消耗时间,动态调整后续时间小窗的加热时段,从而保证发热体在一个时间窗口内的释放能量接近于总目标能量。
而且,在一个具体例子中,可在除最后一个时间小窗外的其它所有的时间小窗的非加热时段均进行发热体电阻值的检测,如图3或图4所示。在另一个具体例子中,如果发热体的阻值固定不变或者阻值随温度变化而变化极小,那么,可以仅在第一个时间小窗的非加热时段进行发热体的阻值的检测,其它的时间小窗的非加热时段不进行阻值检测,如图5所示。当然,在其它的一些具体例子中,除在第一个时间小窗的非加热时段进行电阻值检测外,还可在部分的中间时间小窗的非加热时段进行阻值检测。
下面结合图1及图3-5来说明本发明方案与现有方案的发热体电压与时间的关系曲线的区别:
(1)对于现有的PWM控制方式,如图1所示,每个时间窗口内频率不变(即,各个小周期的时长固定),每个时间窗口的占空比固定(即,各个小周期的加热时段固定),当然,不同时间窗口内,占空比可能会有变化。例如,假设时间窗口的时长T = 8ms,PWM信号的频率是4KHz,这样,在一个时间窗口内,共有32个小周期,每个小周期的时长为250us。而且,在每个小周期内,加热时长是固定的,假设其占空比是60%,那么,每个小周期的加热时长为150us(250 us *60%),非加热时长为90us。对于本发明控制模块的控制方式,一个时间窗口内,各个时间小窗的小窗时长可相等(如图3所示),也可不相等(如图4所示),而且,各个时间小窗的加热时段可相等(如图3所示),也可不相等(如图4所示)。
(2)对于现有的PWM控制方式,如图1所示,在运行完一个时间窗口之后,才去检测发热体的电阻值。电阻值的检测时段不占用时间窗口,而且,电阻值的检测目的是:调整下一个时间窗口的功率,即,调整下个时间窗口的占空比,具体地,如果本时间窗口内的平均功率(与发热体的电阻值相关)大于目标功率,则降低下一个时间窗口的占空比(例如,占空比改成50%,加热时长=125us,非加热时长为125us);如果本时间窗口内的平均功率小于目标功率,则提高下一个时间窗口的占空比(例如,占空比改成70%,加热时长=175us,非加热时长为75us)。也就是说,一个时间窗口内的各个小周期的加热时长与非加热时长是在本时间窗口开始前就已确定好,且后续保持不变。所以,PWM控制方式只能让后面周期的平均功率接近于目标功率,但在加热初期很难保证恒功率输出。对于本发明控制模块的控制方式,如图3-5所示,在每个时间窗口内,至少会在第一个时间小窗的非加热时段进行发热体电阻值的检测,当然,也可在后续的中间时间小窗的非加热时段进行发热体电阻值的检测,最后一个时间小窗为能量补偿窗口,并不进行发热体电阻值的检测。而发热体电阻值的检测目的是:在本时间窗口内调整后续时间小窗的能量释放的方式,也就是说,在一个时间窗口内,各个时间小窗的加热时段及非加热时段并不是预先确定好的,而是实时地根据已消耗的能量及时间进行动态调整的,这样便可保证每个时间窗口的平均功率均可接近目标功率,因此,即使在加热初期,也能保证恒功率输出。
通过该实施例的技术方案,由于在每个时间窗口内均可根据发热体已运行完的时间小窗的运行情况来实时调整待运行的时间小窗的加热时长,所以,即使在加热初期,也能精确保证发热体在一个时间窗口内的释放能量接近于总目标能量,不需要经过多个周期的调整,因此,恒功率输出精度更高。
进一步地,在一个可选实施例中,当前时间窗口的第一个时间小窗的加热时段及非加热时段为初始设置值。在一个具体应用中,假设MCU的模数转换模块的采样时长t ADC为50微秒,目标功率为6.5w,加热时功率约为10W(加热时电压3V多,发热体的电阻值大概为1欧),每个时间小窗的小窗时长为250 us,那么,先根据加热功率和发热体的电阻初始值,可以推算,每个时间小窗的加热时段约为6.5W*250us/10W = 162.5us,所以可将第一个时间小窗的加热时段t 1A设置为160us,非加热时段t 1B设置为90us(均满足大于t ADC)。
在另一个可选实施例中,当前时间窗口的第一个时间小窗的加热时段及非加热时段与前一时间窗口内多个时间小窗的运行情况相关。
进一步地,在一个具体实施例中,中间时间小窗的小窗时长通过公式1确定:
t x = t left(x-1) / g x         公式1
其中,t x为第x个时间小窗的小窗时长,且x=2、3、…、n-1,n为当前时间窗口的时间小窗的总数量,g x为与第x个时间小窗所对应的设置值,且g x为大于1的整数。
在该实施例中,可预先设置不同时间小窗分别所对应的设置值,针对不同的g x的取值,可以实现当前时间窗口内的多个时间小窗为非固定时长的时间小窗,也可以实现当前时间窗口内的多个时间小窗为固定时长的时间小窗,例如,特殊情况下,当x=2时,g 2=31;当x=3时,g 3=30,以此类推,等等。
进一步地,在一个可选实施例中,中间时间小窗的加热时段及最后一个时间小窗的加热时段分别与前一时间小窗的实际功率、当前时间窗口的剩余时长、当前时间窗口的剩余能量相关。在该实施例中,当确定出第一个时间小窗的加热时段t 1A(例如160us)及非加热时段t 1B(例如为90us)后,便可根据第一个时间小窗内的实际功率、当前的剩余时长、剩余能量,确定第二个时间小窗的加热时段t 2A及非加热时段t 2B,等等,以此类推,直至确定出最后一个时间小窗的加热时段t nA及非加热时段t nB(如果存在)。
在一个具体实施例中,对于中间时间小窗,即,第x个时间小窗,x=2、3、…、n-1,n为当前时间窗口的时间小窗的总数量,其加热时段的确定方式分以下两种情况:
第一种:若在中间时间小窗的非加热时段控制发热体停止加热,则该中间时间小窗的加热时段通过公式2确定:
t left(x-1) *P t(x-1)A * t xA/ t x = E left(x-1)   公式2;
第二种:若在中间时间小窗的非加热时段检测发热体的电阻值,则该中间时间小窗的加热时段通过公式3确定:
t left(x-1) *(P t(x-1)A * t xA + P t(x-1)B *(t x- t xA))/ t x = E left(x-1)   公式3;
其中,t x为第x个时间小窗的小窗时长,t xA为第x个时间小窗的加热时段,t left(x-1)为当前时间窗口的剩余时长,P t(x-1)A为所述发热体在第x-1个时间小窗的加热时段的第一实际功率,P t(x-1)B为所述发热体在第x-1个时间小窗的非加热时段的第二实际功率,E left(x-1) 为当前时间窗口的剩余能量。
在该实施例中,由于在确定各个中间小窗的加热时段时,总是以剩余能量在剩余时长内均匀释放为原则进行确定的,所以可保证总目标能量(P*T)在一个时间窗口内释放的更均匀。
在一个具体实施例中,对于最后一个时间小窗,其加热时段可根据以下方式确定:
若所述发热体在倒数第二个时间小窗的加热时段的第一实际功率大于等于当前时间窗口的剩余能量与剩余时长的比值,则将所述比值作为所述最后一个时间小窗的加热时段;
若所述发热体在倒数第二个时间小窗的加热时段的第一实际功率小于当前时间窗口的剩余能量与剩余时长的比值,则将所述剩余时长作为所述最后一个时间小窗的加热时段。
在该实施例中,在当前时间窗口内,当运行完第n-1个时间小窗后,对于待运行的第n个时间小窗,如果P t(n-1)A * t left(n-1)>= E left(n-1),那么,第n个时间小窗的加热时段为 E left(n-1)/ P t(n-1)A,相应地,非加热时段为t left(n-1) - E left(n-1)/ P t(n-1)A;如果P t(n-1)A * t left(n-1) < E left(n-1),那么,第n个时间小窗的加热时长为t left(n-1)
图6是本发明电子雾化装置实施例二的逻辑结构图,该实施例的电子雾化装置包括控制模块11、发热体R2、第一开关电路12、第二开关电路13、参考电阻R1和电压采样模块14,另外还可包括电源15。其中,第二开关电路13的第一端与第一开关电路12的第一端分别连接电源15的正端,第二开关电路13的第二端连接参考电阻R1的第一端,参考电阻R1的第二端及第一开关电路12的第二端分别连接发热体R2的第一端,发热体R2的第二端与电源15的负端接地,电压采样模块14的输入端连接发热体R2的第一端,电压采样模块14的输出端连接控制模块11的电压检测端。
下面结合图3至图6说明发热体R2电阻值的检测过程:
首先,发热体R1可选取电阻发热丝,在加热的过程中,发热体R2的阻值是有可能会随温度而发生变化的。参考电阻R1(电阻值已知)一般选取阻值是发热体R2的阻值的好几倍的电阻。
在开始运行某一个时间小窗时,在该时间小窗的加热时段,控制模块11控制第一开关电路12导通,同时,控制第二开关电路13关闭,此时,电源15给发热体R2供电,发热体R2开始发热,另外,控制模块11还通过电压采样模块14采集发热体R2的电压,得到发热体R2上的检测电压U 1(可以认为是电源电压)。在该时间小窗的非加热时段,控制模块11控制第一开关电路12关闭,同时,控制第二开关电路13导通,此时,电源15给参考电阻R1及发热体R2供电,控制模块11还通过电压采样模块14采集发热体R2的电压,得到发热体R2上的检测电压U2。然后,根据U 1和U 2及参考电阻R1的电阻值,通过以下公式便可计算出此时的发热体R2的电阻值:
R 2 = U 2*R 1/( U 1–U 2 )
其中,R 2 为发热体R2的电阻值,R 1为参考电阻R1的电阻值。
最后还需说明的是,在一个时间窗口内,除了最后一个时间小窗(能量补偿时间小窗),其它的每个时间小窗均可通过上面的方法计算出相应时间小窗内的发热体R2的电阻值,也就是在每个时间小窗内需要采样两次发热体R2的电压,并进行两次模数转换,如图3、图4所示。
当然,也可以仅在一个时间窗口的第一个时间小窗内,按上述方法来计算发热体R2的电阻值,如图5所示,并且,后续时间小窗的消耗能量均按照该电阻值进行计算。
下面结合图3(或图4)说明发热体R2在一个时间小窗的实际功率的计算过程:
首先,在时间窗口的n个小时间窗内,其中:
U 1t1 为在第一个时间小窗的加热时段,电压采样模块14所检测到的电压U 1
U 2t1为在第一个时间小窗的非加热时段,电压采样模块14所检测到的电压U 2
U 1t(n-1) 为在第n-1个时间小窗的加热时段,电压采样模块14所检测到的电压U 1
U 2t(n-1) 为在第n-1个时间小窗的非加热时段,电压采样模块14所检测到的电压U 2
U 1tn 为在第n个时间小窗的加热时段,电压采样模块14所检测到的电压U 1
t 1A 为第一个时间小窗的加热时段(打开第一开关电路12及关闭第二开关电路13的时长);
t 1B 为第一个时间小窗的非加热时段(关闭第一开关电路12及打开第二开关电路13的时长);
t 1 为第一个时间小窗的小窗时长,即,t 1 = t 1A + t 1B
t (n-1)A为第n-1个时间小窗的加热时段(打开第一开关电路12及关闭第二开关电路13的时长);
t (n-1)B为第n-1个时间小窗的非加热时段(关闭第一开关电路12及打开第二开关电路13的时长);
t n-1 为第n-1个时间小窗的小窗时长,即,t n-1 = t (n-1)A + t (n-1)B
t nA为第n个时间小窗(能量补偿时间窗口)的加热时段(打开第一开关电路12及关闭第二开关电路13的时长);
t nB第n个时间小窗的非加热时段(同时关闭第一开关电路12和第二开关电路13的时长);
t n为第n个时间小窗的小窗时长,即,t n = t nA + t nB
以第一个时间小窗为例,发热体在该时间小窗内所消耗的能量为:
P t1A = U 1t1* U 1t1/R 2
P t1B = U 2t1*U 2t1/R 2
E t1 = P t1A * t 1A + P t1B * t 1B
其中,P t1A为发热体在第一个时间小窗的加热时段的第一实际功率,P t2B为发热体在第一个时间小窗的非加热时段的第二实际功率,E t1为发热体在第一个时间小窗的消耗能量。
应理解,发热体在其它时间小窗内所消耗的能量的计算方法与其类似,在此不做赘述。另外,如果在某时间小窗的非加热时段未进行发热体电阻值的检测,此时,非加热时段的第二实际功率为0。
图7是本发明电子雾化装置的控制方法实施例一的流程图,该实施例的电子雾化装置的控制方法包括:
步骤S10.在当前时间窗口的第一个时间小窗的加热时段,控制发热体进行加热;
步骤S20.在当前时间窗口的第一个时间小窗的非加热时段,检测所述发热体的电阻值;
步骤S30.在当前时间窗口的中间时间小窗的加热时段,控制所述发热体进行加热,其中,所述中间时间小窗为当前时间窗口内除第一个时间小窗、最后一个时间小窗外的其它时间小窗,所述中间时间小窗的加热时段与已运行完的时间小窗的消耗能量及消耗时间相关;
步骤S40.在当前时间窗口的中间时间小窗的非加热时段,控制所述发热体停止加热或检测所述发热体的电阻值;
步骤S50.在当前时间窗口的最后一个时间小窗的加热时段,控制所述发热体进行加热,其中,所述最后一个时间小窗的加热时段与已运行完的时间小窗的消耗能量及消耗时间相关。
进一步地,在一个可选实施例中,当前时间窗口的各个时间小窗的小窗时长相等。在另一个可选实施例中,当前时间窗口的各个时间小窗的小窗时长不完全相等。
进一步地,在一个可选实施例中,当前时间窗口的各个时间小窗的加热时段相等。在另一个可选实施例中,当前时间窗口的各个时间小窗的加热时段不完全相等。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (12)

  1. 一种电子雾化装置,包括发热体,其特征在于,还包括:
    控制模块,用于在当前时间窗口的第一个时间小窗的加热时段控制所述发热体进行加热,在当前时间窗口的第一个时间小窗的非加热时段检测所述发热体的电阻值;在当前时间窗口的中间时间小窗的加热时段控制所述发热体进行加热,在当前时间窗口的中间时间小窗的非加热时段控制所述发热体停止加热或检测所述发热体的电阻值;在当前时间窗口的最后一个时间小窗的加热时段控制所述发热体进行加热;
    其中,所述中间时间小窗为当前时间窗口内除第一个时间小窗、最后一个时间小窗外的其它时间小窗,所述中间时间小窗的加热时段及所述最后一个时间小窗的加热时段分别与已运行完的时间小窗的消耗能量及消耗时间相关。
  2. 根据权利要求1所述的电子雾化装置,其特征在于,
    当前时间窗口的第一个时间小窗的加热时段及非加热时段为初始设置值;或者,
    当前时间窗口的第一个时间小窗的加热时段及非加热时段与前一时间窗口内多个时间小窗的运行情况相关。
  3. 根据权利要求1所述的电子雾化装置,其特征在于,
    当前时间窗口的各个时间小窗的小窗时长相等;或者,
    当前时间窗口的各个时间小窗的小窗时长不完全相等。
  4. 根据权利要求3所述的电子雾化装置,其特征在于,所述中间时间小窗的小窗时长通过公式1确定:
    t x = t left (x-1) / g x          公式1
    其中,t x为第x个时间小窗的小窗时长,且x=2、3、…、n-1,n为当前时间窗口的时间小窗的总数量,g x为与第x个时间小窗所对应的设置值,且g x为大于1的整数。
  5. 根据权利要求1所述的电子雾化装置,其特征在于,
    当前时间窗口的各个时间小窗的加热时段相等;或者,
    当前时间窗口的各个时间小窗的加热时段不完全相等。
  6. 根据权利要求1所述的电子雾化装置,其特征在于,所述中间时间小窗的加热时段及所述最后一个时间小窗的加热时段分别与前一时间小窗的实际功率、当前时间窗口的剩余时长、当前时间窗口的剩余能量相关。
  7. 根据权利要求6所述的电子雾化装置,其特征在于,
    若在当前时间窗口的中间时间小窗的非加热时段控制所述发热体停止加热,则所述中间时间小窗的加热时段通过公式2确定:
    t left (x-1) *P t(x-1)A * t xA/ t x = E left (x-1)   公式2;
    若在当前时间窗口的中间时间小窗的非加热时段检测所述发热体的电阻值,则所述中间时间小窗的加热时段通过公式3确定:
    t left (x-1) *(P t(x-1)A * t xA + P t(x-1)B *(t x- t xA))/ t x = E left (x-1)   公式3;
    其中,t x为第x个时间小窗的小窗时长,且x=2、3、…、n-1,n为当前时间窗口的时间小窗的总数量,t xA为第x个时间小窗的加热时段,t left (x-1)为当前时间窗口的剩余时长,P t(x-1)A为所述发热体在第x-1个时间小窗的加热时段的第一实际功率,P t(x-1)B为所述发热体在第x-1个时间小窗的非加热时段的第二实际功率,E left (x-1) 为当前时间窗口的剩余能量。
  8. 根据权利要求6所述的电子雾化装置,其特征在于,所述最后一个时间小窗的加热时段根据以下方式确定:
    若所述发热体在倒数第二个时间小窗的加热时段的第一实际功率大于等于当前时间窗口的剩余能量与剩余时长的比值,则将所述比值作为所述最后一个时间小窗的加热时段;
    若所述发热体在倒数第二个时间小窗的加热时段的第一实际功率小于当前时间窗口的剩余能量与剩余时长的比值,则将所述剩余时长作为所述最后一个时间小窗的加热时段。
  9. 根据权利要求1-8任一项所述的电子雾化装置,其特征在于,还包括第一开关电路、第二开关电路、参考电阻和电压采样模块,其中,所述第二开关电路的第一端与所述第一开关电路的第一端分别连接电源的正端,所述第二开关电路的第二端连接所述参考电阻的第一端,所述参考电阻的第二端及所述第一开关电路的第二端分别连接所述发热体的第一端,所述发热体的第二端接地,所述电压采样模块的输入端连接所述发热体的第一端,所述电压采样模块的输出端连接所述控制模块的电压检测端。
  10. 一种电子雾化装置的控制方法,其特征在于,包括:
    在当前时间窗口的第一个时间小窗的加热时段,控制发热体进行加热;
    在当前时间窗口的第一个时间小窗的非加热时段,检测所述发热体的电阻值;
    在当前时间窗口的中间时间小窗的加热时段,控制所述发热体进行加热,其中,所述中间时间小窗为当前时间窗口内除第一个时间小窗、最后一个时间小窗外的其它时间小窗,所述中间时间小窗的加热时段与已运行完的时间小窗的消耗能量及消耗时间相关;
    在当前时间窗口的中间时间小窗的非加热时段,控制所述发热体停止加热或检测所述发热体的电阻值;
    在当前时间窗口的最后一个时间小窗的加热时段,控制所述发热体进行加热,其中,所述最后一个时间小窗的加热时段与已运行完的时间小窗的消耗能量及消耗时间相关。
  11. 根据权利要求10所述的电子雾化装置的控制方法,其特征在于,
    当前时间窗口的各个时间小窗的小窗时长相等;或者,
    当前时间窗口的各个时间小窗的小窗时长不完全相等。
  12. 根据权利要求10所述的电子雾化装置的控制方法,其特征在于,
    当前时间窗口的各个时间小窗的加热时段相等;或者,
    当前时间窗口的各个时间小窗的加热时段不完全相等。
PCT/CN2022/112217 2021-09-06 2022-08-12 电子雾化装置及其控制方法 WO2023029950A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111038430.9A CN115769918A (zh) 2021-09-06 2021-09-06 电子雾化装置及其控制方法
CN202111038430.9 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023029950A1 true WO2023029950A1 (zh) 2023-03-09

Family

ID=85388016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112217 WO2023029950A1 (zh) 2021-09-06 2022-08-12 电子雾化装置及其控制方法

Country Status (2)

Country Link
CN (1) CN115769918A (zh)
WO (1) WO2023029950A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088875A (zh) * 2008-07-08 2011-06-08 菲利普莫里斯生产公司 流量传感器系统
CN109805451A (zh) * 2018-12-29 2019-05-28 惠州市新泓威科技有限公司 恒功率防干烧电子烟及其控制方法
WO2020109253A1 (de) * 2018-11-28 2020-06-04 Hauni Maschinenbau Gmbh Verfahren und vorrichtung zur temperaturregelung eines verdampfers für einen inhalator, insbesondere ein elektronisches zigarettenprodukt
CN111436668A (zh) * 2020-03-27 2020-07-24 河南中烟工业有限责任公司 一种电子雾化烟的控制电路
CN112369707A (zh) * 2020-04-19 2021-02-19 湖北中烟工业有限责任公司 加热不燃烧烟草器具及供电控制方法
CN112403405A (zh) * 2020-10-15 2021-02-26 深圳麦克韦尔科技有限公司 气溶胶产生装置、气溶胶产生方法、控制电路及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088875A (zh) * 2008-07-08 2011-06-08 菲利普莫里斯生产公司 流量传感器系统
WO2020109253A1 (de) * 2018-11-28 2020-06-04 Hauni Maschinenbau Gmbh Verfahren und vorrichtung zur temperaturregelung eines verdampfers für einen inhalator, insbesondere ein elektronisches zigarettenprodukt
CN109805451A (zh) * 2018-12-29 2019-05-28 惠州市新泓威科技有限公司 恒功率防干烧电子烟及其控制方法
CN111436668A (zh) * 2020-03-27 2020-07-24 河南中烟工业有限责任公司 一种电子雾化烟的控制电路
CN112369707A (zh) * 2020-04-19 2021-02-19 湖北中烟工业有限责任公司 加热不燃烧烟草器具及供电控制方法
CN112403405A (zh) * 2020-10-15 2021-02-26 深圳麦克韦尔科技有限公司 气溶胶产生装置、气溶胶产生方法、控制电路及存储介质

Also Published As

Publication number Publication date
CN115769918A (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
US8737092B2 (en) Control device for a resonant converter
CN106688172B (zh) 用于控制dc-dc转换器的方法
TWI390828B (zh) 具有可變峰值電流及可變斷開時間控制之開關轉換器
CN101582638B (zh) 开关电源装置
TWI451681B (zh) 降壓切換電壓調節器電路及用於調節一降壓切換電壓調節器電路之輸出電壓的方法
CN102255484B (zh) 突发模式控制器和方法
US9473029B2 (en) Adaptive low-power zero-cross comparator for discontinuous current mode operated switching mode power supply
US20020057080A1 (en) Optimized digital regulation of switching power supply
CN103051220B (zh) 开关电源及其控制器
US9515545B2 (en) Power conversion with external parameter detection
CN102695319B (zh) 一种led无级调光电路
CN109768703B (zh) 一种基于输出电压反馈的变频平均电流控制装置和方法
CN102404899B (zh) 对连接至切相调光器的泄流器进行控制的方法和装置
WO2023029950A1 (zh) 电子雾化装置及其控制方法
JP3740385B2 (ja) スイッチング電源装置
TW200833171A (en) Systems and methods of driving an electroluminescent lamp
CN203086362U (zh) 开关电源及其控制器
TWI742282B (zh) 直流-直流轉換電路及其控制方法
US11277895B1 (en) LED driver control using MCU
RU2008100033A (ru) Высокоэффективный преобразователь мощности для модуляторов и передатчиков
JP5132784B2 (ja) エネルギー出力の制御方法及び制御回路
US20140375285A1 (en) Dc-dc boost converter
CN105262340B (zh) 电源控制器以及相关的控制方法
KR101769361B1 (ko) 펄스 전원시스템 및 펄스전원 출력 방법
CN112152433A (zh) 组合型连续导电模式单电感双输出开关变换器变频控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE